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ABSTRACT 
 
 

Hydrogels have been widely investigated for their versatility in biomedical 

applications such as tissue engineering scaffolds and minimally invasive vehicles for site-

specific delivery of bioactive molecules. Hybrid hydrogels combine the strengths of 

intrinsic bioactivity from naturally derived materials and superior control over network 

physical and chemical properties from synthetic materials. The most prominent approach 

in three-dimensional (3D) hybrid matrices is the use of MMP-sensitive peptides derived 

from native extracellular matrix molecules to crosslink synthetic polymers. These 

peptide-based techniques have several limitations such as high cost, limited mechanical 

properties, and reduced degradation kinetics that limit the network crosslinking density 

and mechanical properties. This led us to develop a novel hydrid hydrogel system, in situ 

photopolymerizable, degradable, poly(ethylene glycol) (PEG) diacrylate / hyaluronic acid 

(HA) semi-interpenetrating networks (semi-IPNs).   

In the first set of studies, we determined the effects of network composition 

(PEGdA and HA molecular weight and concentration) on 3D cell spreading and 

identified polymerization-induced phase separation as the underlying mechanism 

responsible for the ability of PEGdA/HA semi-IPNs to support 3D cell spreading. Semi-

IPNs with optimal network composition including a blend of three different PEGdA 

providing improved degradation kinetics demonstrated the ability to support long-term 

fibroblast cell spreading, migration, and network formation. In addition, the selected 

semi-IPNs were also found to possess elastic moduli significantly higher than most 

alternative hybrid hydrogels and within the range reported as optimal for osteogenic 



 iii 

differentiation of mesenchymal stem cells. In second study, we investigated the ability of 

the semi-IPNs to support hMSC differentiation as a preliminary study towards bone 

tissue engineering application. Gene expression, alkaline phosphatase activity, 

histological analysis, and calcium quantification demonstrated the semi-IPN’s ability to 

support osteogenic differentiation over 35 days of culture. In the final study, we 

incorporated poly-L-lactic acid (PLLA) nanospheres in semi-IPNs to test the hypothesis 

that provision of hydrophobic domains capable of supporting higher protein adsorption 

than the PEG network could increase extracellular matrix accumulation. Significantly 

increased collagen deposition was observed in histological sections and by quantitative 

analysis. 

Overall, the results of this work suggest that PEGdA / HA semi-IPNs and their 

composite derivatives offer potential as a hybrid matrices for therapeutic cell 

transplantation. In the future, the biofunctionality of these hybrid networks can be further 

enhanced by inclusion of growth factors or biochemicals.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Cell Therapy and Tissue Engineering 

The early attempts to repair defective tissues or organs in regenerative medicine 

were to simply transplant (inject) somatic cells into a lesion area, but typically this 

approach led to little success [1,2]. Transplanted cells may be perfused out or die at the 

early stage of transplantation [3]. Cell death occurs in the first few days post-

transplantation, caused by the combination of ischemia (a restriction in blood supply to 

tissues) and inflammation. Also the lack of matrix can induce cell death and this is 

mediated by the anoikis signaling pathway [1,4]. The most widely used tissue 

engineering strategy to avoid initial cell death and increase cell retention is to combine 

cells and biologically active molecules together within the tissue engineering scaffold [5] 

which allows the creation of biomimetic three-dimensional (3D) microenvironments that 

provide biomolecular cues that direct cellular function, guiding the spatially and 

temporally complex multicellular processes of tissue formation and regeneration [6]. 

Cellular encapsulation in scaffold matrices helps successful cell transplantation by 

preventing the anoikis signaling pathway and prohibiting immediate cell perfusion while 

permitting the diffusion of gas, nutrients, wastes and bioactive molecules by fine-tuning 

the pore sizes [7]. Additionally, advanced 3D microenvironment systems are needed to 

better understand cellular activities using in vitro models in order to later realize their 

potential in vivo since there are significant differences in cellular activities, especially in 
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stem cell differentiation between two-dimensional (2D) and 3D culture conditions [8–

11]. 

 

1.2 Monolayer vs. Three Dimensional (3D) Culture 

Cells in monolayer culture (2D surface) develop an apical/basal polarity with one 

side in contact with the culture substrate and the other exposed to culture media that is 

non-physiological for most cell types. Additionally, cell-cell contact only occurs at the 

periphery of cells spread in 2D monolayers. However, in the in vivo (3D) environment, 

cells interact with neighboring cells as well as the ECM [12]. Mass transport is also 

different in 3D culture from 2D monolayer culture. Soluble factors are not diffusion 

limited in 2D culture, whereas diffusion gradients play a key role in transport of 

biochemical factors produced from native ECM [13].  

Cell-matrix interactions in 3D environments reflect a narrowed integrin usage 

(more dependency on α5 integrin) and enhanced biological activity relative to monolayer 

culture such as cell adhesion (by a factor of 6) [10]. These differences in morphology 

have significant impacts on cell function. Breast epithelial cells exhibited a tumoral trend 

when assayed in 2D culture, while regressed to normal state upon transferal to 3D models 

which resembled their natural niche [14]. In the same way, increased chondrogenesis has 

been reported in ESCs cultured as 3D embryoid bodies when compared to the monolayer 

culture [15]. Morphogenesis, migration, and proliferation of cells in 3D culture are 

restricted by matrix, whereas 2D surface offer no restriction to cell migration as shown in 

Figure 1.1 [11]. Cell interaction with microenvironment (ECM) is more important factor 
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in directing cell phenotype than its genotype [14,16]. Thus, cells should be evaluated in 

the context of the ECM [11].  

(A)            (B) 

 
Figure 1.1 Comparison between monolayer (2D) and 3D interactions. Cells placed in 2D 

culture (A) become polarized and orient in a specific direction that confines their 

interactions with adsorbed proteins (yellow fiber) through integrin binding (brown) 

receptors to specific ligands (green) located on specific regions of the cell. This 

polarization also limits their interactions with media components and soluble factors 

(orange receptors and red ligands) on the opposite side of the cell, while confining cell-

cell interactions and migration to a plane. In contrast, 3-D culture (B) conditions enable 

isotropic interactions with extracellular biomolecules and chemical factors through 

receptor-ligand binding on all surfaces of the cell as well as isotropic cell-cell interactions 

and migration [17].  
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1.3 Native Extracellular Matrix (ECM) 

 In order to achieve successful tissue regeneration, 3D cell transplantation 

scaffolds must mimic natural niches closely. This requires a comprehensive insight into 

the complex and dynamic nature of the extracellular matrix (ECM) and cells within the 

matrix [11]. It is a hierarchically organized structure composed of a three-dimensional 

array of protein fibers and filaments embedded in a hydrated gelatinous network of 

polysaccharide chains of glycosaminoglycans (GAGs).  

GAGs are hydrophilic, unbranched, negatively charged polysaccharide chains that 

form stiff and highly extended conformations. Their negative charges attract counter ions 

inducing an osmotic effect that enables the matrix to occupy large volumes of water. 

Most GAGs are sulfated, covalently linked to protein via linker proteins and are 

synthesized intra-cellularly and released via exocytosis. The four main groups of GAGs 

are hyaluronic acid, chondroitin sulfate, keratin sulfate, and heparin sulfate. The 

exception among the GAGs is hyaluronic acid which is the simplest GAG molecule and 

is released directly from the cell surface by an enzyme complex embedded in the plasma 

membrane, not sulfated, and not covalently linked to proteins. HA is found in most 

mammalian tissue and fluid, especially prevalent during embryogenesis and wound 

healing where its presence modulates cell migration in the extracellular space by 

controlling the level of hydration in tissues. Proteins with covalently attached GAGs 

constitute proteoglycans (PGs) which fill the majority of the ECM interstitial space 

within the tissue in the form of hydrated gel with varying porosity and charge density, 

allowing them to regulate the molecular diffusion of molecules and cell migration [18–
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22]. From this unique nature (hydrated state and glycosylated protein filaments), PGs 

associated with collagen fibers provide the ECM with mechanical buffering which resists 

compressive stresses. Additionally, PGs bind a variety of growth factors, acting as a 

storage reservoir from which they can be enzymatically released by cellular proteolytic 

activity [20,23,24].  

The fibrous proteins of the ECM can be categorized as structural (i.e., collagen 

and elastin) and adhesive (i.e., fibronectin and laminin) types and their fibrous forms 

provide mechanical integrity of ECM. Collagen is the most abundant protein in the ECM 

(up to 30% total protein mass) which is secreted locally by cells, for instance, fibroblasts 

in most connective tissues, osteoblasts in bone, and chondrocytes in cartilage [19,20]. 

Various chemically distinct forms of collagen (28 types in vertebrates identified to date) 

exist and they assemble into different supramolecular structures, mostly fibrils and 

network type, to have functional diversity [25,26]. Fibrous collagens (type I, II, and III) 

form the backbone of the collagen fibril bundles within the interstitial tissue stroma. 

Collagen type IV is a network-forming collagen resulting in a mesh-like lattice which 

constitutes a major portion of the basal lamina. Cells bind to this basal lamina via indirect 

binding to laminin adhesive proteins [19,26,27]. Another major fibrous protein is elastin 

and its fiber form provides recoil to tissues that undergoes repeated stretch. Elastin 

precursor (tropoelastin) molecules assemble to form fibers via covalent bonding of lysine 

residues between individual tropoelastin molecules, which renders the ECM elastic. 

Collagen associates with elastin and forms interwoven fibrous protein structures. These 
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structures provide the ECM with tensile strength and limit elastin stretch by tight 

association with collagen fibrils [20,28].  

 Fibronectin (FN) is adhesive protein in the ECM consisting of two subunits and 

plays crucial role in cell attachment and ECM organization with several binding sites to 

other FN dimers, to collagen, to heparin and to integrin receptors. It can be stretched 

several times over its resting length by neighboring cellular traction force [29]. This 

traction force-dependent nfolding of FN exposes cryptic integrin-binding sites recognized 

by integrins on cell surface, resulting in integrin-ECM ligand (α5β1) adhesion binding 

and also promoting FN-fibril assembly. Integrin receptors on the cell surface bind to a 

fibronectin domain containing the well-known tripeptide adhesion sequence arginine-

glycine-aspartic acid (RGD) and the neighboring synergy site while other distinct protein 

domains bind to collagen and heparin [30]. Additional binding sites (IIICS) within FN 

contains peptide sequence REDV and LDV which mediate specific cell type binding such 

as neural cells and lymphocytes. FN is also a regulating factor for cell migration timing 

during development [21,31]. As mentioned above, another adhesive protein, laminin is 

associated with basement membranes. Multiple peptide sequences such as RGD, YIGSR, 

IKVAV, heparin and collagen IV binding regions have been identified in laminin. These 

insoluble, adhesive type proteins are deposited on this backbone of fibrous proteins 

[18,30]. Integrin-ECM ligand binding interactions provide communication between the 

intracellular and extracellular environments which have been shown to play critical roles 

in cell shape, migration, proliferation and differentiation [28,32].  
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 The ECM is a dynamic cellular microenvironment that undergoes constant 

remodeling (i.e. assembly and degradation of its constituents) by cells particularly during 

the normal physiological process of development, differentiation, and wound healing. 

Also, the mechanical properties and biochemical composition of ECM varies 

considerably from tissue to tissue (e.g. lungs versus skin versus bone), locally within one 

tissue (e.g. renal cortex versus renal medulla), as well as from one physiological state to 

another (normal versus cancerous) [18,20,30]. Cells embedded within ECM have to 

change from an adhesive phenotype to a migratory phenotype prior to their migration 

within its three-dimensional structure [33]. During cell migration, cells secrete proteolytic 

enzymes (proteases) that cleave a variety of ECM substrates to break down physical 

barriers that inhibit cell locomotion. The most prominent example of this protease is 

matrix metalloproteinase (MMP) family which consists of 23 structurally related 

endopeptidases in humans. There are four different classes of MMPs and they degrade 

different types of ECM molecules or activate other types of MMPs [34]. Most MMPs are 

secreted in latent form as pro-enzymes and later activated by the displacement of the pro-

domain by conformational change or proteolysis induced by the protease plasmin or by 

other MMPs [35]. This MMP activity is counterbalanced by tissue inhibitors of 

metalloproteinases (TIMPs) and the collagen crosslinking activity of lysyl oxidase (LOX) 

and transglutaminases, which result in locally stiffened ECM [18,20,36,37]. During the 

process of tissue remodeling, cells degrade the ECM with matrix metalloproteinase 

(MMPs) as they deposit their own ECM components simultaneously. Both processes are 

regulated by spatiotemporal integrin-mediated signaling pathways [30,38]. The ECM also 
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contains growth factors (or cells producing growth factors) and other bioactive 

molecules, as well as binding sites for cell-surface molecules exposed upon MMP 

proteolysis [34,39]. Growth factors modulate cell growth and migration in the form of 

controlled (release) feedback process for tissue homeostasis [40]. Cell-derived growth 

factors may either be directly released for immediate signaling or embedded within the 

matrix by binding proteins and later released by proteolytic degradation [32,39].  

 Cells in ECM sense and convert mechanical stimuli into biochemical signals via 

cell-surface receptors [6]. Upon injury, recruited neighboring fibroblasts synthesize and 

deposit large amounts of ECM proteins, resulting in stiffened matrix. The elevated 

elasticity and deposited ECM induce trans-differentiation of fibroblasts or other tissue 

residing cells into other cell types, for instance, epithelial cells to mesenchymal cell 

transition or bone marrow derived mesenchymal stem cells into myofibroblast [41,42]. 

Also, remodeled ECM attracts the directional migration toward wound site [43]. Once 

wound site is populated with healthy cells, feedback mechanisms are initiated to restore 

tissue homeostasis and resolve fibrosis [20,41,42].  

  

1.4 Hydrogel as Synthetic ECM 

In tissue engineering, hydrogels are applied as space filling agents (bulking, 

adhesion barrier, and biological glue), delivery vehicles for bioactive molecules, and 

three-dimensional cell transplant scaffold as they can provide highly swollen 3D 

environment enabling diffusive transport. Among these applications, hydrogels are 

appealing scaffold materials as they are structurally similar to the ECM of many tissues, 
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capable of being processed under cytocompatible conditions and delivered in a minimally 

invasive manner [6,11,44,45].  

Hydrogels can be categorized by the origin of macromere materials, naturally-

derived hydrogels and synthetic hydrogels. Representative naturally-derived hydrogels 

may be protein-based (collagen, gelatin, and fibrin) or polysaccharide-based (e.g., 

alginate, chitosan, hyaluronic acid, and dextran) [45]. Naturally-derived hydrogels 

possess intrinsic bioactivities such as cell adhesion and biodgradability, which are 

advantageous over synthetic hydrogels. For example, collagen and fibrin are clinically 

well-established, FDA-approved materials for the healing of burns and chronic wounds, 

and used as tissue sealants, respectively [6]. Especially, collagen is an attractive material 

as it is the most abundant protein in mammalian tissues and can self-aggregate to form 

stable fibers [46]. Also collagens can form fibers and scaffolds by introducing various 

chemical linkers (i.e. glutaraldehyde, formaldehyde, carbodiimide) [47,48], by 

crosslinking with physical treatments (i.e. UV irradiation, freeze-drying, heating) [47,49], 

and by blending it with other polymers (i.e. HA, PLA, poly(glycolic acid) (PGA), 

poly(lactic-coglycolic acid) (PLGA), chitosan, PEO) [47,48,50,51]. However, the use of 

naturally derived hydrogels is often restricted due to concerns of potential 

immunogenicity, pathogen transmission, difficulties in purification process as well as 

poor mechanical properties [45,52]. In addition, their mechanical properties cannot be 

readily manipulated, especially due to batch-batch variability and complexity. 

Alternatively, synthetic hydrogels have advantages over naturally derived hydrogels, 

such as greater and systematic control of material compositions and properties for the 
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design of scaffolds for multiple tissue types [53,54]. Various non-immunogenic synthetic 

materials have been tested as 3D hydrogel scaffolds for cell transplant application, 

including poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA), poly(acrylic acid) 

(PAA), and various polypeptides. These hydrogels can be polymerized in situ under mild 

physiological conditions [6,45,55]. 

The concept of hybrid hydrogel is to integrate the advantages of both naturally 

derived and synthetic hydrogel. As synthetic hydrogels exhibit minimal or no intrinsic 

bioactivities by themselves, they require the incorporation of biofunctional oligopeptide 

sequences (e.g. RGD and MMP sensitive peptides), proteins (e.g. collagen), and other 

biological molecules (e.g. heparin) from the native ECM to mimic natural ECM as hybrid 

hydrogel concept [6,11,56–58]. With these biologically inert characteristics, synthetic 

hydrogel can be a useful tool for 3D in vitro tissue culture scaffold to investigate cellular 

response to ECM as it allows independent control of biomolecular and structural cues 

from native ECM [6,59]. Among these synthetic components in hybrid hydrogel, PEG-

based hydrogels have been widely investigated in tissue engineering as they have critical 

properties such as easy structural modification and proven history of successful 

application in many clinically-approved products [6,45]. In this dissertation research, we 

will focus on the modification of PEG based hydrogel to mimic the native ECM and 

improve its bioactivities over other PEG based hydrogel scaffolds.  
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1.5 Design Strategy – Engineering ECM Cues 

Successful 3D cell transplant scaffolds need to mimic critical aspects of the 

natural ECM and must meet critical design criteria; biocompatibility, geling 

(crosslinking) mechanism, mechanical properties (stiffness), degradation, and mass 

transport. These properties or design variables are specified by the intended scaffold 

application and environment into which the scaffold will be placed (target 

microenvironment) as shown in Figure 1.2 [60]. Additionally, selection of the most 

appropriate scaffolding material is crucial in a tissue-engineered construct. Synthesis of 

the appropriate hydrogel scaffold materials is governed by the physical properties (gel 

formation mechanism, mechanical characteristics, and degradation), the mass transport 

properties, and the biological interaction requirements (biocompatibility and target 

microenvironment) of each specific application [44].  

 

 
Figure 1.2 Design considerations, factors dictating 3D tissue engineering scaffold [60] 
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 1.5.1 Biocompatibility 

Biocompatibility is the first and most critical factor to consider prior to cell 

encapsulation. The ideal way to encapsulate cells is in situ polymerization while the 

hydrogel is forming for homogeneous distribution of cells and in the case of in vivo 

applications, avoiding invasive surgical procedures. Scaffolds designed to encapsulate 

cells must be capable of being gelled without damaging the cells and must be nontoxic to 

the cells and the surrounding tissue after gelling. When naturally-derived materials such 

as collagen are used, there should be no cross-species immunological response. Along 

with naturally-derived polymers such as collagen, alginate, and fibrin; PEO and PEG are 

currently used in many FDA-approved medical applications such as spinal sealant. 

However, additional care should be taken post gelation as there are small toxic molecules 

during hydrogel fabrication [44,60]. For example, unreacted maleimides in Michael-type 

addition reactions are highly potent neurotoxins [61]. Photoinitiators, such as 2,2-

dimethoxy-2-phenyl-acetophenone used frequently in free-radical polymerization, can be 

cytotoxic [62].  

1.5.2 Mass transport 

Most chemically crosslinked polymer hydrogels are dense network acting similar 

to a porous structure [54], with a mesh sizes ranging nanometer to the order of tens of 

nanometers allowing appropriate diffusion of nutrients and metabolites to and from the 

encapsulated cells and surrounding tissue. In vivo, most cells exists within 100 µm of 

capillary (one of exception is chondrocytes where no blood vessel exists in cartilage 

tissue), and diffusion is the primary method of mass transport over this range [63]. 
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Additionally, diffusion governs mass transport within hydrogel networks due to their 

nanoporous structure [44]. Crosslinking density and molecular weight of macromer 

determines its nanoporous structure (mesh size) and resulting molecular weight cut-off of 

solutes. Its porosity changes with matrix stiffness. The diffusion of small molecules is 

more hindered in stiffer matrices [64–67].    

1.5.3 Mechanism for hydrogel formation  
 

Common polymer scaffold fabrication techniques use harsh conditions for live 

cells such as high temperature, pH changes, and various organic solvents that can 

denature proteins, which makes many fabrication techniques incompatible with live cell 

encapsulation [60]. However many hydrogel formulations have been shown as injectable, 

in vivo, in situ polymerizable 3D cell transplant scaffolds [68–71]. The success of this 

approach depends on the ability to control both pre- and post-gelation properties 

including gelation rates and liquid flow properties [44].  

PEGs has linear and branched (multiarm or star) structures. The basic PEG 

structure is PEG diol with two hydroxyl end groups, which converted into other 

functional groups, such as methyloxyl, carboxyl, amine, thiol, azide, vinyl sulfone, 

acetylene, and acrylate as listed in Figure 1.3 [45,68,72–74]. This functionalized PEG can 

be further modified as thermally reversible hydrogel from block copolymer of PEG and 

poly-L-lactic acid (PLLA) [75]. Degradable PEG based hydrogels can be formed by 

incorporating either hydrolytically degradable poly(lactic acid) or enzyme specific 

cleavage sequences of oligopeptides [73,74]. 
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Figure 1.3 Structures of linear PEG and four arm PEG with various functional end 

groups [45] 
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The two or more functional end groups can be used for crosslinking the network 

and also for crosslinking bioactive peptides such as MMP sensitive and cell adhesion 

peptides. They are also used for conjugating with biomolecules such as growth factors 

[45]. The most commonly used polymerization methods for cell encapsulation 

applications (in presence of cells under physiological conditions) are free radical 

polymerization (Figure 1.4) [68,76–79], Michael-type addition (Figure 1.5) [80,81], and 

thiol-ene reaction [82,83].  

Free radical polymerization involves the formation of free radicals via 

decomposition of an initiator by light, temperature, or redox reaction to yield primary 

radical species [84]. These free radicals propagate through unsaturated functional groups 

(carbon-carbon double bond) such as acrylate bonds on the PEG macromers and chain 

polymerization occurs, resulting in covalently crosslinked polymer networks (Figure 1.4) 

[85]. In these systems, complete gelation is achieved in relatively short times (seconds to 

a few minutes). Photopolymerization of PEG diacrylate (PEGdA) hydrogels has been 

extensively investigated in tissue engineering and regenerative medicine applications 

since it offers advantages such as well-characterized reaction kinetics and facile in situ 

polymerization in presence of cells with spatiotemporal control [86]. However, free 

radicals can be transferred to proteins, affecting their bioactivity, or transferred to 

biomolecules present in the cell membrane, affecting cell viability [60,87].  
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(A)        (B) 

  

 

 

 

 

 

Figure 1.4 Chemical structures of PEG macromer and its diacrylate derivatives (A) [85] 

and synthesis of enzyme sensitive peptide (ESP) containing PEGdA by conjugating 

acrylate-PEG-NHS with ESP diamine (ESP-2NH2) (B) [45] 
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 Michael addition is a step-growth approach to crosslink PEG hydrogel network 

under mild physiological condition in direct contact with tissues, cells and biological 

molecules [45,85] using PEG or multiarm PEG macromers functionalized with acrylate, 

maleimide, or vinyl sulfone group with dithiol monomers [88]. Michael-type addition 

reactions occur between acrylates and thiols, and between maleimide and thiol groups 

[28]. This reaction takes longer (hours) relative to the time of completion in free-radical 

polymerization. This mechanism was extended to include cell adhesion motif and 

enzymatic (MMP) degradation peptides as ECM mimics. For example, vinyl sulfone 

functionalized four-arm PEG underwent two-step Michael addition reaction presented on 

mono-cysteine adhesion peptides (RGD) and bis-cysteine MMP sensitive peptides for 3D 

cell culture application (Figure 1.5) [89]. 
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Figure 1.5 A Michael type addition reaction between vinyl sulfone functionalized multi-

arm PEGs and mono-cysteine adhesion peptides (step 1, stoichiometric deficit) or bis-

cysteine MMP sensitive peptides (step 2, stoichiometric balance) was used to form gels 

from aqueous solutions in the presence of cells and cells locally interact with networks by 

adhesion and protease secretion (step 3) [89].  
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1.5.4 Engineering ECM cue – adhesion 

Although many hydrogels are nontoxic and do not stimulate an immune response, 

they are also biologically inert and do not facilitate cell adhesion. Additionally, ECM 

proteins such as laminin, fibronectin, and vitronectin typically do not readily absorb to 

the hydrogel due to their hydrophilic nature [90]. Therefore, the minimum requirement 

for anchorage-dependent cells to survive on and within synthetic PEG-based scaffolds is 

to render them cell-adhesive. In order to design highly specific adhesive surface, many 

groups have covalently incorporated cell adhesion peptide sequences capable of binding 

to cell receptors [73,90,91]. The most common peptide sequence is the arginine-glycine-

aspartic acid (Arg-Gly-Asp or RGD) sequence, derived from ECM proteins such as 

fibronectin, laminin, vitronectin and collagen. While most cell types bind to the RGD 

sequence, an additional region (IIICS) within fibronectin has been identified to contain 

the peptide sequences, arginine–glutamic acid–aspartic acid–valine (REDV) that permit 

the adhesion of specific cell types such as neural cells and lymphocytes. Other common 

peptides from laminin include tyrosine–isoleucine–glycine–serine–arginine (YIGSR), 

and isoleucine–lysine–valine–alanine–valine (IKVAV). The IKVAV peptide motif 

involved in neurite growth, and a heparin and collagen IV binding region [90]. There are 

two forms of RGD peptides, linear RGD and cyclic RGD (cRGD). cRGD peptide 

sequence shows increased the affinity to integrin avβ3 and can enhance biological 

activity up to 240 times in comparison with linear RGD analogues [92–94]. The 

incorporation of cRGD peptides into the PEGDA hydrogels can better mimic the native 

RGD loop structure and benefits the cell adhesion [45,95].  
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1.5.5 Engineering ECM cue – degradation 

The native ECM is dynamic matrix continuously remodeled for homeostasis and 

tissue regeneration [19]. Therefore, the temporal and spatial variability of ECM 

properties must be introduced into 3D culture models in order to simulate realistic 

microenvironments. The incorporation of cell adhesion peptide sequences in PEG 

hydrogels does not guarantee prolonged cell survival when cells are encapsulated within 

3D scaffolds due to the nanometer mesh size of the crosslinked PEG network being less 

than the average diameter of a cell. This small mesh size acts as a physical barrier to cell 

migration and cell morphogenesis, resulting in a spherical cell morphology that is non-

physiological for many cell types [54,96]. Therefore, the successful design of scaffolds 

for cell transplantation requires rendering the scaffolds degradable. Degradation allows 

cell spreading and migration and can regulate the release of matrix-tethered biomolecules 

that induce different cellular functions. Ideally, the rate of scaffold degradation should 

mirror the rate of new tissue formation [97,98].  

Degradation in hybrid hydrogel matrix can be achieved via ester bond hydrolysis, 

enzymatic hydrolysis, or a combination of these mechanisms [60].  Synthetic hydrogels 

can be designed to include degradable polymers within their network such as poly(lactic 

acid) [99] or poly(caprolactone) [100] blocks in combination with PEG backbone for 

hydrolytic degradation. Similarly, the scaffolds can be built by co-polymerization of 

different ratios of degradable and non-degradable macromers [101]. The degradation rate 

can be controlled by the number of incorporated hydrolytically labile bonds in the 

hydrogel. The ratio between the number of two bonds offers predictable degradation 
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profiles independent of cellular interactions as hydrolysis is an autocatalytic process 

[102]. The degradation rate of hydrolytically labile gels (e.g. PEG-PLA copolymer) can 

be manipulated by the composition of the material but not the environment [103]. 

However, hydrolytic degradation is not representative of the cell-mediated and dynamic 

process of proteolysis that takes place within the native ECM. Instead, native ECM 

derived molecules (i.e. collagen and fibrinogen) or protease sensitive peptide sequences 

for degradation within synthetic hydrogel may present the site for enzymatic degradation 

and constitutes hybrid hydrogel susceptible to cellular enzymatic degration [11]. 

Degradation of polymer is mediated by surface or bulk processes, or sometimes a 

combination of the two. Hydrophilic polymers often exhibit bulk degradation process as 

the rate of uptake of water is faster than the rate of conversion of polymer into water 

soluble materials [104]. Enzymatic degradation site is usually localized to where 

cells/enzymes are present while hydrolysis occurs throughout the bulk of the network 

[11,60,85].  

The rate of enzymatic degradation will depend both on the number of cleavage 

sites in the polymer and the amount of available enzymes in the scaffold environment 

[73,74]. Incorporation of peptide sequences susceptible to cleavage by cell-secreted 

proteases (i.e., plasmin-sensitive or MMP sensitive sequences) into PEG hydrogels 

manipulate gel degradation dynamically in response to cell-mediated events 

[28,74,97,105–108]. However, these substrates do not degrade particularly fast which 

may limit cellular infiltration within the scaffold [Chung S J Biomed Mater Res 2006] 

and these peptides can also be cleaved by a variety of MMPs. Additionally, local pH and 
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ionic strength, enzyme concentration, and temperature may affect enzyme-substrate 

formation, resulting in degradation profile change [60]. Thus, recent strategies have 

focused on enhancing proteolytic degradation of PEG hydrogels by using combinatorial 

methods of peptide libraries consisting of MMP substrate sequences with increased 

catalytic activity [28,109,110], by increasing the spatial presentation of these signaling 

molecules within the hydrogel network [111], or by increasing the number of MMP-

sensitive peptides [112]. These hydrogel systems allow accelerated proteolysis, giving a 

broader in vivo application. 

1.5.6 Engineering ECM cue – matrix stiffness 

Once the scaffold is produced and implanted, formation of tissues with desirable 

properties relies on scaffold mechanical properties on both the macroscopic and the 

microscopic level. Macroscopically, the scaffold must bear loads to provide structural 

stability to the wound site until cells have produced their own functional ECM. 

Microscopically, the scaffold must transmit mechanical loads to encapsulated cells and 

maintain certain stiffness as cell growth and differentiation are dependent on these 

mechanical inputs [113–116]. In the in vivo microenvironment, cellular level mechanical 

forces consist of endogenous (generated by cells) and exogenous (applied to cells) forces. 

Most of endogenous forces occur from cytoskeletal contractility [117,118]. Gravity and 

tissue specific interactions such as endothelial cells exposed to pulsatile shear forces from 

blood flow are examples of exogenous forces [119]. Additionally, it is well known that 

cellular function is modulated by local matrix stiffness. In vivo, tissue modulus ranges 

from Pa (liver tissue and adipose tissue) to GPa (bone) [59]. And this stiffness range is 
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not static as it changes during physiological processes such as embryonic development, 

tissue remodeling during wound healing, and in pathological responses like 

tumorigenesis [120]. Individual cells can sense the stiffness change of surrounding ECM 

to which they adhere and interact [121]. Various mechanotransducers in the cell convert 

mechanical stimuli into chemical signals that regulate cell responses such as adhesion, 

spreading, migration and proliferation [122]. Mechanochemical conversion is mediated 

by ion channels [123], primary cilia [124], integrins [125], G-protein receptors [126], 

cell–cell adhesions [127], and the cytoskeleton [128]. In particular, the integrin protein 

family is a widely studied force transducer that serves as a mechanical linkage between 

ECM and the cytoskeleton [129]. On the exterior of the cell, integrins bind ECM protein 

ligands including collagen, laminin, and fibronectin, suggesting integrin receptors serves 

as integrators of extracelluar signals [130]. Cells sense matrix stiffness by cellular 

contractility and traction forces. Actin stress fibers are tensed by mysosin motors and 

cytoskeletal contractility is transmitted to ECM as traction forces [131–133]. In response 

to variation in substrate stiffness, cells alter cytoskeletal organization, cell-substrate 

(focal) adhesions, and other processes important for regulating cell behaviors [134–137]. 

An increasing substrate stiffness results in increased cell-matrix (substrate) adhesion, 

demonstrated by elongated adhesions (changes in cell shape) and increased tyrosine 

phosphorylation of focal adhesion kinase (FAK) [138]. Califano showed that endothelial 

cells on compliant substrates adopt an elongated spindle-shaped morphology, while those 

on stiffer substrates exhibit more isotropic spreading, demonstrating that both cell area 

and substrate stiffness are significant predictors of traction force generation [139].  
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Matrix stiffness also modulates cell-cell assembly, migration, and proliferation. 

Cells on compliant substrates (< 1kPa) prefer cell-cell interactions rather than migration 

and self –assemble into network. When placed on stiffer substrates, cells prefer cell-

substrate interactions [139,140].  Cellular responses to gradients of different stimuli are 

referred as durotaxis, the process by which cells respond to changes in matrix rigidity. 

Fibroblasts migrate toward substrates of increasing stiffness [141]. The sensitivity of cell 

migration to stiffness gradients may have important implications for disease states such 

as fibrosis or tumorigenesis that are accompanied in increases in ECM stiffness.  

Stem cell differentiation is also controlled either by matrix stiffness or actomyosin 

contractility. Engler and co-workers showed that mesenchymal stem cell differentiation is 

controlled by matrix stiffness where neuronal differentiation occurred on soft surface 

(two dimensional – monolayer culture condition) substrates and osteogic differentiation 

occurred on stiffer 2D substrates [142]. Chondrocytes in stiffer matrices (up to 500 kPa) 

tend toward preliferative states rather than differentiated phenotype, resulting in 

decreased collgen II synthesis [47,143]. A recent study by Mooney and co-workers 

demonstrated that matrix stiffness also governed stem cell commitment in 3D culture. 

They encapsulated mesenchymal stem cells in non-biodegradable alginate matrix with 

different stiffness under 50:50 mixture of adipogenic and osteogenic medium. At low 

elastic modulus, stem cells differentiated toward adipogenic lineage, whereas, at higher 

elastic modulus values, stem cells differentiated toward osteogenic lineage even though 

cells remains restricted to a spherical morphology during osteogenic differentation [8].  

Polymer concentration, the stoichiometry of reactive groups, and crosslinking density are 
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all commonly used to tune the mechanical properties of cell-compatible hydrogels and 

accordingly to control the cellular microenvironment [60,144,145]. 

1.5.7 Engineering ECM cues - incorporated biofunctionality 

In addition to cell adhesion motif and MMP sensitive peptide sequences (for 

degradation), hybrid hydrogel scaffold may require growth factors and morphogens 

incorporated to the scaffold backbone for sequestering and controlled release in order to 

mimic the native ECM [146,147]. Cell signaling molecule have been covalently attached 

to hydrogel polymers to enhance either ECM production (TGFβ tethered to PEG 

network) [148] or ectopic bone formation process (oligopeptide derived from BMP-2) 

[149]. Multiple factors may also be incorporated into hydrogels to manipulate tissue 

formation [150].  
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1.6 State of the Art Approaches 

There are several state of the art researches ongoing to enhance bioactivities of 

3D hybrid hydrogel scaffolds and to better understand cellular activities in 3D culture 

conditions.  

Additional feedback mechanism, other than stiffness of the matrix, is required for 

matrix remodeling. Kubow and coworkers compared native ECM scaffolds with 

fibronectin based scaffolds stiffened by chemical crosslinking and showed differential 

scaffold remodeling by fibroblasts. Native scaffolds from decellularized ECM were 

progressively remodeled over stiffer, manually deposited (crosslinked) fibronectin fiber 

(on silicon sheet) based scaffold [151]. Legant and co-workers also pointed out the 

importance of spatio-temporal interplay between collagen and FN on matrix remodeling 

[152]. The hydrogel networks often lack the fibrillar network structure of the ECM 

protein backbone. To address this issue, the scaffolds need to couple self-assembly 

mechanism within the network [11,153,154]. 

In addition to engineering cellular biochemical cues in hydrogel matrix, directed 

migration is required for maintenance and development of numerous physiological 

processes [19,155]. Cell migration is proportional to adhesion ligand density up to a 

critical value [156].  
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1.7 Concluding Remarks 

Scaffold design is the most important factor for successful in vivo cell 

transplantation and in vitro 3D cell culture. The design depends on the target tissue and 

microenvironments where transplanted cells reside. The design requirements for 

successful cell delivery are biocompatibility, mass transport, mechanical properties 

(stiffness), and degradability. These design criteria need to be considered for the 

continued enhancement of these scaffolds for regenerative medicine applications. For the 

development of a functional tissue construct, it is important to understand the natural 

microenvironment of the source cell and the innate mechanisms of cell differentiation and 

tissue regeneration. This knowledge forms the backbone of the biomimetic approach for 

cell differentiation and tissue regeneration. Significant progress has been made using 

PEG hydrogel scaffolds as ECM mimics to support and direct cell behavior and tissue 

regeneration. Numerous efforts have focused on investigating the effects of biological 

signal identity, gel degradation rate, and mechanical properties on cell behavior, but little 

work has been done to independently tune these properties in order to isolate and quantify 

the individual effects of these factors on cell behavior. Finally, this dissertation study is 

aimed to develop a novel cell transplant scaffold for tissue engineering application with 

these design criteria.   
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CHAPTER TWO 

RESEARCH OBJECTIVES 

 

2.1 Project Rationale 

 In general, tissue engineering uses the combination of living cells, biocompatible 

materials (scaffolds), and suitable biochemical and physical factors to restore, improve or 

replace biological functions of a failing tissue or organ [157,158]. Tissue engineering 

scaffolds should provide biophysical and biochemical milieus that direct cellular behavior 

and function. As a scaffolding material, hydrogels have been widely investigated because 

of their biochemical similarity with highly hydrated GAG components of the 

extracellular matrix (ECM) and in situ polymerization capability under mild 

physiological conditions with highly defined spatio-temporal control. Hydrogels can be 

used as carriers for transplanted cells, biochemical factors, or both simultaneously and 

matrices that induce morphogenesis ex vivo and in vivo. Hydrogels are made either from 

naturally-derived or synthetic polymers, or combinations thereof, referred to as hybrid 

hydrogels. This hybrid concept takes advantage of inherent bioactivities of naturally 

derived materials and the well-defined, reproducible, and tunable nature of synthetic 

polymer networks [6]. During the course of tissue regeneration, the degradation rates of 

scaffolds must be matched with the rate of regeneration of newly formed tissues 

[159,160]. The native ECM is degraded by various protease activities, mainly by plasmin 

and matrix metalloproteinases (MMP) family. The incorporation of protease sensitive 

peptides identified from native ECM within the synthetic hydrogel networks renders 
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hybrid hydrogels biodegradable and has been used to create 3D matrices for the culture of 

a variety of cell types. However, these peptide sequences only possess primary structure, 

resulting in reduced degradation rate and require high cost for production for clinical use 

[28,110,161]. In addition, these hybrid hydrogel networks often have limited mechanical 

properties (less than 1 kPa elastic modulus value) to support cell migration within the 

networks. Along with native ECM-inspired peptides or other naturally derived materials 

for bioactivity, polyethylene glycol (PEG) has been extensively used as synthetic 

backbone of hybrid hydrogels due to  its excellent biocompatibility and easy control of 

scaffold architecture [45,85]. PEG has been also used as surface coating material for 

implants due to its resistance to protein adsorption [162]. So matrix deposition and 

assembly on PEG based hydrogel scaffold may be limited [163–165]. 

Our novel hybrid hydrogel system developed in this dissertation research 

represents an opportunity to overcome the limitations of peptide-based hybrid hydrogel 

scaffolds. In tissue engineering applications, this system may serve as a cost effective 3D 

in vivo cell transplant vehicle that will eventually bring about regeneration of native 

tissue ECM composition as well as a substrate for host cell infiltration and colonization.  
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2.2 Overall Objective 

The overall objective of this project was to develop polyethylene glycol diacrylate 

(PEGdA) / hyaluronic acid (HA) semi-interpenetrating polymer networks (semi-IPNs) 

capable of supporting 3D cell spreading, migration, differentiation, and extracellular 

matrix (ECM) deposition for cell therapy applications. In Specific Aim 1 (Chapter 3), the 

mechanism that allows semi-IPNs to support encapsulated cell spreading was identified. 

Then semi-IPNs were further optimized by investigating the effect of network 

compositions on spreading and migration of encapsulated cells and a selected semi-IPN 

composition was tested for long term cellular remodeling. In Specific Aim 2 (Chapter 4), 

human mesenchymal stem cells were encapsulated within the optimized semi-IPNs and 

cultured under osteogenic conditions to test the ability of semi-IPNs to support long-term 

stem cell differentiation. In Specific Aim 3 (Chapter 5), hydrophobic poly-L-lactic acid 

(PLLA) nanospheres were incorporated in semi-IPNs to enhance ECM deposition inside 

the network.    

 

Figure 2.1 Outline of research objectives. 
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2.3 Specific Aims 

2.3.1 Specific aim 1 

To investigate the mechanism of semi-IPNs to create a space for cell activities 

and the effect of network composition on spreading and migration of encapsulated 

cells in hydrogel network in order to select the optimal combination for long term 

cellular remodeling inside hydrogel scaffold. We hypothesized that the incorporation 

of native HA supports initial and long-term survival, spreading, and migration of 

encapsulated cells by Hase activity combined with hydrolysis of PEGdA backbone. 

Hence we aimed to 1) investigate the changes in physicochemical properties during 

photopolymerization of semi-IPN hydrogels consisting of PEGdA and unmodified HA, 

2) evaluate the effects of network composition (HA concentration, HA molecular weight, 

PEGdA concentration, PEGdA chemistry) on encapsulated human fibroblast spreading, 

and 3) prepare semi-IPNs with various PEGdA blends to obtain improved control over 

degradation kinetics, and 4) test the ability of the optimal formulation to support long 

term cell survival and sustained migration.  

2.3.2 Specific aim 2 

To test the ability of the optimized semi-IPN to support long term stem cell 

differentiation for hard tissue application. We hypothesized that the semi-IPN with 

optimal mechanical properties for osteogenic differentiation can support prolonged 

osteogenic differentiation of mesenchymal stem cells. Hence we aimed to 1) evaluate 

optimized semi-IPNs as 3D microenviroments for osteogenic differentiation of 
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encapsulated human mesenchymal stem cells during long-term culture by expression of 

osteogenic markers, collagen deposition, and mineralization. 

2.3.3 Specific aim 3 

To incorporate nano/microspheres in semi-IPNs as hydrophobic domains to 

increase ECM deposition. We hypothesized that PEG-based hydrogels support limited 

ECM molecule deposition due to its hydrophilic nature and that hydrophobic surfaces of 

polylactic acid (PLA) nano/microspheres incorporated in semi-IPN can support ECM 

binding and serve as nucleation sites for ECM deposition and assembly. Hence we aimed 

to 1) develop preparation and recovery methods for PLA nano/microspheres of varying 

size, 2) incorporate nano/microspheres into hybrid semi-IPNs and evaluate cellular 

remodeling using human dermal fibroblasts by assessing ECM molecule (collagen) 

accumulation both quantitatively and qualitatively by comparison to negative control 

group (semi-IPN without nano/microspheres).  
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CHAPTER THREE 

PEG DIACRYLATE/HYALURONIC ACID SEMI-    

INTERPENETRATING NETWORK COMPOSITIONS FOR                       

3D CELL SPREADING AND MIGRATION 

3.1 Introduction 

Hydrogels have been widely investigated as matrices for therapeutic cell 

transplantation based upon their ability to be delivered using minimally invasive 

methods, crosslinked in situ under mild conditions, and provide viscoelastic mechanical 

properties similar to many soft tissues [166,167]. Conventionally, hydrogels for tissue 

engineering applications have been prepared from either naturally-derived or synthetic 

macromolecules. Many naturally-derived materials such as collagen, fibrin, and 

hyaluronic acid (HA) form hydrogels that intrinsically support cell adhesion and cell-

mediated enzymatic degradation. However, these networks possess relatively limited 

mechanical properties and can be vulnerable to rapid degradation and contraction unless 

stabilized with additional crosslinking agents. Hydrogels formed from synthetic materials 

such as polyethylene glycol (PEG) offer superior control over the network physical and 

chemical properties, but lack intrinsic bioactivity to support cell adhesion and cell-

mediated degradation. Many recent efforts in the field have sought to create hybrid or 

biosynthetic hydrogels composed of both naturally-derived and synthetic materials that 

combine the strengths and minimize the limitations of each type of material when used 

alone [11,58,168]. 
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One of the most prominent strategies for the creation of hybrid hydrogels has 

been the modification of synthetic networks with oligopeptides derived from natural 

extracellular matrix (ECM) molecules, including the RGD sequence to support cell 

adhesion and matrix metalloproteinase (MMP)-substrate sequences to support proteolytic 

degradation [74,169]. Recent work in this field has shown that hybrid networks 

containing RGD and MMP-sensitive peptides are effective 3D matrices for the culture of 

a variety of cell types and support cell proliferation, migration, and ECM deposition 

[89,112,170]. When combined with growth factors, various types of PEG-peptide 

hydrogels have been shown to support bone regeneration and angiogenesis in vivo 

[89,108,171–174]. Despite their success, there are several limitations to peptide-based 

hybrid hydrogels. First, oligopeptides are difficult to synthesize in large quantities and 

expensive while most tissue defects requiring cell-based therapy are relatively large 

[175]. In addition, most oligopeptides are linear sequences of amino acids only 

possessing primary structure, resulting in reduced degradation kinetics relative to the 

native macromolecules from which they are derived [161]. Consequently, gel 

formulations that support cellular activity are frequently prepared at low polymer 

concentrations and crosslinking densities, severely limiting their mechanical properties 

[89,176–178]. This has led several groups to explore screening alternative peptide 

sequences and strategies for increasing the number of degradable sites [28,110,112,179]. 

Alternatively, the use of intact or modified naturally-derived macromolecules to 

form hybrid hydrogels offers several benefits including substantially lower cost and 

preservation of native structure potentially supporting higher rates of enzymatic 
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degradation and greater diversity of bioactivity [180]. For example, PEGylated fibrinogen 

derivatives have been used to prepare hybrid hydrogels with improved control over 

mechanical properties and degradation rate compared to native fibrin that have been used 

for orthopaedic, neural, and cardiovascular applications [181–185]. Hybrid hydrogels 

based on chemically-modified HA crosslinked with reactive PEG derivatives have been 

investigated as degradable adhesion barriers and vocal fold augmentation materials 

[163,164,186]. While the above studies have used co-polymer networks, our group has 

recently investigated the possibilities of semi-interpenetrating polymer networks (semi-

IPNs) composed of hydrolytically degradable PEG-diacrylates (PEGdA) and native HA 

[187–189]. The previous studies have shown that these hydrogels support increased cell 

spreading and proliferation relative to fully synthetic networks that is dependent on 

cellular hyaluronidase activity. The objective of the present study was to systematically 

examine the effects of PEGdA/HA semi-IPN network composition on cell spreading. 3D 

spreading of encapsulated fibroblasts exhibited a biphasic response to HA concentration, 

required a minimum HA molecular weight, decreased with increasing PEGdA 

concentration, and was independent of hydrolytic degradation at early time points. 

Incorporation of native HA increased gel turbidity, suggesting a potential mechanism of 

microphase separation resulting in HA-enriched defects in the network structure. Finally, 

semi-IPNs with optimized PEGdA degradation rate and HA formulation supported 

sustained 3D cell migration in a gel-within-gel encapsulation model. 
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3.2 Materials and Methods 

3.2.1 Synthesis of PEGdA macromers with ester linkages containing variable alkyl 

spacers  

Three different types of PEGdA macromers with varying susceptibility to 

hydrolytic degradation were synthesized by a two-step process as previously reported 

[188]. Briefly, PEG (4000 MW, Fluka, Buchs, Switzerland) was reacted with either 

chloroacetyl chloride, 2-chloropropionyl chloride, or 4-chlorobutuyrl chloride (Sigma-

Aldrich, St. Louis, MO) in the presence of triethylamine (TEA, Sigma) at a 1:4:1.8 molar 

ratio in dry dichloromethane (Sigma). After 24 hours reaction at room temperature, the 

reactants were filtered, washed with sodium bicarbonate and water, dried with anhydrous 

sodium sulfate, and then precipitated in ethyl ether. After recovery, each resulting 

intermediate product was reacted with sodium acrylate (5X molar ratio) in dry 

dimethylformamide (Acros, Morris Plains, NJ) for 30 hours at 50, 85, and 100 ⁰C to yield 

PEG-bis-(acryloyloxy acetate) [PEG-bis-AA], PEG-bis-(acryloyloxy propanoate) [PEG-

bis-AP], and PEG-bis-(acryloyloxy butyrate) [PEG-bis-AB], respectively.  The products 

were purified by filtration, rotary evaporation, and precipitation in ethyl ether and dried 

under vacuum. The structures of each PEGdA and the degree of acrylation were 

determined from the 1H-NMR (Brucker 300 MHz, CDCl3) spectra. All samples achieved 

acrylation efficiencies greater than 90%. 

3.2.2 Synthesis of methacrylated HA (GMHA)  

GMHA was synthesized as previously described [189]. Briefly, HA (1g, MW:1.5 

MDa, LifeCore Biomedical, Chaska, MN) was dissolved at 1% (w/v) concentration in 
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deionized water and then TEA (7.33 mL), glycidyl methacrylate (7.33 ml, Acros), and 

tetrabutyl ammonium bromide (7.33 g, Acros) were added with 3 hours mixing between 

addition of each reagent. The reaction was allowed to proceed for 12 hours at room 

temperature followed by 1 hour at 60 ⁰C. The GMHA product was precipitated in 

acetone, re-dissolved in deionized water, dialyzed, and recovered by lyophilization. 

3.2.3 Cell culture 

Adult normal human dermal fibroblasts (NHDF, Lonza, Walkersville, MD) were 

cultured in 75 cm2 tissue culture flasks with DMEM/F-12 50:50 1X media (Mediateach, 

Herdon, VA) with L-glutamine supplemented with 10% (v/v) bovine growth serum 

(Hyclone, Logan UT), and 50 U/mL penicillin and 50 µg/mL streptomycin (Mediatech).  

Medium was changed every 2 days and cells were passaged at a 1:3 ratio for expansion. 

All encapsulation studies were done with cells between passages 4 and 5.  

3.2.4 Effect of semi-IPN network composition on fibroblast morphology  

HA and GMHA (1.75% w/v) and PEGdA (30% w/v) stock solutions were 

prepared in 1X-PBS (0.1 M, pH 7.4).  Acryl-PEG-GRGDS was synthesized by 

conjugating GRGDS peptide (Bachem, Torrance, CA) to acryl-PEG-NHS (Jenkem, 

Beijing, China) as previously described [169]. Based upon pilot studies, 6% w/v PEG-

bis-AP containing 0.36% w/v 1.5 MDa HA was selected as an initial baseline gel 

composition. In order to systematically investigate the effect of semi-IPN network 

composition on the morphology of encapsulated fibroblasts, a series of studies was 

performed in which one parameter of the gel composition (HA concentration, HA 

molecular weight, PEGdA concentration, PEGdA chemistry) was varied while the others 
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were held constant. 250 µl gel precursor solutions were prepared containing PEGdA and 

HA at varying concentrations, acryl-PEG-GRGDS (1 µmol/mL), 2-hydroxy-1-[4-

(hydroxyethoxy) phenyl]-2-methyl-1-propanone (I-2959, BASF, Florham Park, NJ, 0.1% 

w/v), and NHDF (5×106 cells/mL). Sample volumes (50 µl) were pipetted in between 

glass coverslips separated by 1 mm Teflon spacers and exposed to low intensity UV light 

(365nm, 10mW/cm2, Blak-Ray B100-AP, Upland, CA) for 5 minutes on each side of the 

disc as previously described [Kutty JK J Biomater Sci Polym Ed 2009]. Hydrogels with 

encapsulated cells were cultured in Petri dishes (BD, San Jose, CA) with 3mL culture 

medium. For studies examining the effect of HA concentration, homogeneous synthetic 

PEGdA hydrogels (no HA) and co-polymer networks in which native HA was replaced 

with the same concentrations of GMHA were also prepared. For the study examining the 

effect of PEGdA concentration, the HA concentration was also varied in order to 

maintain the 6% w/w ratio of HA:PEGdA present in the baseline gel composition with 

6% w/v PEGdA and 0.36% w/v HA. Gels containing encapsulated cells (n=4 samples / 

group) were cultured for 7 days, fixed with 4% paraformaldehyde (Sigma-Aldrich) in 

1X-PBS for 1 hour, permeabilized with 0.1% Triton X-100 (Sigma-Aldrich) in 1X-PBS 

for 5 minutes and, stained with Alexa Fluor 647-phalloidin (Life Technologies, Grand 

Island, NY). Samples were imaged using Nikon Ti-Eclipse confocal microscope. Cell 

morphology at 200µm depth inside hydrogel was visualized and compared to assess cell 

spreading and network connectivity. Average cell circularity (dimensionless parameter 

defined as circularity = (4π×area)/perimeter2, ranging from 0 to 1, with 1 being a perfect 
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circle) was calculated from confocal images using the NIH Image J Software Analyze 

Particles feature.  

3.2.5 Hydrogel turbidity and mechanical properties 

To assess gel turbidity, PEG-bis-AP semi-IPNs (6% w/v, 100 µL volume) with 

varying HA concentration/molecular weight and copolymerized hydrogels with GMHA 

without NHDF cells (n=4 per group) were photopolymerized as described above. As an 

additional control, semi-IPNs were also prepared with 0.36% w/v dextran (80 and 1100 

kDa, Sigma). The sample discs were placed in 24 well plates and absorbance was 

measured at 570 nm using µQuant UV-VIS spectrophotometry (BIO-TEK Instruments). 

The final absorbance values were normalized by subtracting the average value of blank 

wells. Turbidity was calculated as Turbidity = -ln(10-A), where A=absorbance. 

 To measure hydrogel mechanical properties, semi-IPNs composed of 1) PEG-bis-

AP (6% w/v) with varying concentrations of HA and 2) varying concentrations of PEG-

bis-AP with HA maintained at 6% w/w HA:PEGdA were photopolymerized as described 

above. Hydrogels were cut into custom made dumbbell shaped samples with 30 mm 

gauge length, 5 mm width, and 1 mm thickness. The samples (n=3/group) were subjected 

to 35% strain at 5 mm/min using an MTS Synergy 100 (MTS Systems Corporation) at 

room temperature. Each sample was tested three times to ensure that slippage did not 

occur. 

3.2.6 Hydrogel degradation study 

To evaluate the effect of PEGdA macromer chemistry on hydrogel degradation, 

semi-IPNs were crosslinked as 1) homogeneous networks containing each of the 3 
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different PEGdAs and 2) blended networks composed of all 3 PEGdAs mixed in varying 

ratios. All samples were prepared at 6% w/v total PEGdA concentration with 0.36% HA 

w/v (1.5 MDa). After photopolymerization, samples were equilibrated with NHDF 

culture medium with 0.1% w/v sodium azide (Sigma-Aldrich), washed with deionized 

water, lyophilized, and weighed (Wd0). Samples were incubated in 4mL of cell culture 

media with sodium azide in scintillation vials in a cell culture incubator with 5% CO2 

supply at 37 ⁰C. Medium was changed once every 2 days. At each time point, samples 

(n=3/group) were collected, washed with deionized water, lyophilized, and weighed 

(Wdt). Percent mass loss was calculated as [(Wd0–Wdt)/Wd0]×100. 

3.2.7 NHDF morphology and migration in PEGdA blend / HA semi-IPNs 

PEGdA macromer blend (12.5% PEG-bis-AA; 37.5% PEG-bis-AP; 50.0% PEG-

bis-AB) at 6% w/v final concentration was prepared with 0.36% w/v HA (MW: 1.5 MDa) 

and acrylate-PEG-GRGDS (1 µmol/mL) and I-2959 (0.1%). In order to evaluate 

fibroblast morphology during long-term culture, NHDF (10×106 cells/mL final 

concentration) were uniformly dispersed within the gel precursor solution and 

photopolymerized as described above. Hydrogel samples (n=4/time point) were cultured 

in 35 mm Petri dishes for 3, 7, 14, 21, 28, and 35 days, then fixed and stained with Alexa 

647-phalloidin and imaged by confocal microscopy. To assess the gel’s capacity to 

support cellular invasion and migration, a gel-within-gel encapsulation system was used. 

NHDF were first entrapped within small fibrin clots (120,000 cells / 4 µl) prepared from 

1% human fibrinogen (Enzyme Research Laboratories) with 2.5 mM calcium chloride 

(Sigma) and 0.001 U/mL thrombin (Enzyme Research Laboratories). After gelation for 
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15 minutes at 37⁰C, NHDF-loaded fibrin clots were gently placed within 50 µl solutions 

of the semi-IPN formulation described above (without additional cells) and gels formed 

by photopolymerization. As controls, NHDF-loaded fibrin clots were also polymerized 

within hydrogels of the same composition without native HA and co-polymerized 

networks with comparable concentrations of GMHA. Hydrogel samples were imaged at 

day 0, 3, 7, 10, 14, 18, and 21 using phase contrast microscopy (Zeiss). For 3D images, 

NHDF-loaded fibrin clots were harvested at day 14 and prepared for confocal microscopy 

as described above. Samples were three dimensionally scanned with 20 µm z-interval.  

3.2.8 Statistical analysis 

Quantitative data for hydrogel turbidity and elastic modulus were compared by 

ANOVA using Tukey’s method for post-hoc comparisons (one-way ANOVA followed 

by Bonferroni’s multiple comparison test). p values < 0.05 were considered to be 

statistically significant. All quantitative data are presented as mean ± standard deviation. 

 

3.3 Results  

3.3.1 Effect of HA concentration on 3-D fibroblast morphology 

NHDF were encapsulated in photopolymerized PEG-bis-AP hydrogels, PEG-bis-

AP / HA semi-IPNs containing varying concentrations of HA, and PEG-bis-AP / GMHA 

copolymer hydrogels. After 7 days in culture, cells in PEG-bis-AP hydrogels without HA 

were unable to spread and retained a spherical morphology (Figure 3.1A, circularity 

=0.65±0.08). In contrast, PEG-bis-AP/HA semi-IPNs supported extensive cell spreading 

that qualitatively appeared to be greatest at 0.36 and 0.54% HA and moderately decrease 
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at 0.72% HA and higher (Figure 3.1B-E), although all samples had circularity values 

ranging between 0.11-0.14 with no significant differences among these groups. Cells 

within copolymer hydrogels formed with comparable amounts of GMHA were unable to 

spread (Figure 1F, circularity=0.68±0.09), demonstrating that the ability of PEG-bis-

AP/HA semi-IPNs to support cell spreading is a unique property of the semi-IPN network 

structure.  

 

Figure 3.1 Confocal microscopy images of actin-stained human dermal fibroblasts 

encapsulated within 6% w/v PEG-bis-AP hydrogel (A), PEG-bis-AP/HA semi-IPNs 

containing 0.18% w/v HA (B), 0.36% w/v HA (C), 0.54% w/v HA (D), 0.72% w/v HA 

(E), and PEG-bis-AP/GMHA co-polymer hydrogel containing 0.36% w/v GMHA (F) at 

200 µm depth after 7 days culture, scale bar = 100 µm. 
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3.3.2 Physico-chemical characterization of PEG—bis-AP/HA semi-IPNs and hydrogels  

 The effect of HA incorporation on hydrogel physico-chemical properties was 

analyzed by measuring turbidity and tensile properties. Figure 3.2 shows the turbidity of 

both PEG-bis-AP/HA semi-IPNs and PEG-bis-AP/GMHA copolymer hydrogels 

measured by spectrophotometry. Relative to PEG-bis-AP hydrogels, incorporation of 

native HA to form semi-IPNs significantly increased sample turbidity in a dose-

dependent manner. The turbidity of copolymer hydrogels containing comparable amounts 

of GMHA was not significantly different than the PEG-bis-AP control at any 

concentration tested.  
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Figure 3.2 Turbidity of 6% w/v PEG-bis-AP hydrogels, PEG-bis-AP/HA semi-IPNs 

containing varying amounts of HA, and PEG-bis-AP/GMHA copolymer hydrogels 

containing varying amounts of GMHA. *=p<0.05 relative to PEG-bis-AP hydrogel and 

#=p<0.05 between groups. 

 

 

 

 

 

 



 45 

The mechanical properties of PEG-bis-AP/HA semi-IPNs were measured by 

tensile testing. The elastic modulus of semi-IPNs containing 0.18% w/v HA was 

modestly higher than the PEG-bis-AP hydrogel without HA and then elastic moduli 

values decreased with increasing HA content with the differences being statically 

significant at the two highest concentrations (Figure 3.3).  

 

Figure 3.3 Elastic modulus of 6% w/v PEG-bis-AP hydrogels and PEG-bis-AP/HA semi-

IPNs containing varying amounts of HA. *=p<0.05 relative to PEG-bis-AP hydrogel and 

#=p<0.05 between groups. 
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3.3.3 Effect of HA molecular weight on 3-D fibroblast morphology and gel turbidity 

 NHDF were encapsulated in semi-IPNs containing 6% w/v PEG-bis-AP and 

0.36% w/v HA of varying molecular weight (MW). Semi-IPNs containing low MW (100 

kDa) HA did not support the spreading of fibroblasts, which retained a spherical 

morphology (circularity = 0.69±0.03) after 7 days in culture (Figure 3.4). At 700 kDa HA 

MW and higher, all samples exhibited comparable cell spreading and circularity values 

ranging between 0.17-0.21. These results demonstrate that a minimum threshold for HA 

MW exists that is required to support cell spreading. Semi-IPNs prepared with high MW 

HA (700-1500 kDa) that supported cell spreading exhibited significant increases in gel 

turbidity, while the 100 kDa HA group was not significantly different from the PEGdA 

only control (Figure 3.5). Semi-IPNs prepared with dextran at both low (80 kDa) and 

high (1100 kDa) MW did not exhibit significant changes in turbidity relative to the 

PEGdA control. 
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Figure 3.4 Confocal microscopy images of actin-stained human dermal fibroblasts 

encapsulated within 6% w/v PEG-bis-AP / 0.36% w/v HA semi-IPNs prepared using HA 

with molecular weights of 100 kDa (A), 700 kDa (B), 1.0 MDa (C) and 1.5 MDa (D) at 

200 µm depth after 7 days culture, scale bar = 100 µm. 
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Figure 3.5 Turbidity of 6% w/v PEG-bis-AP hydrogel and PEG-bis-AP/HA and PEG-

bis-AP/dextran semi-IPNs containing 0.36% w/v HA or dextran of varying molecular 

weight. *=p<0.05 relative to PEG-bis-AP hydrogel and #=p<0.05 between groups.  
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3.3.4 Effect of PEG diacrylate macromer concentration and chemical structure on 3-D 

fibroblast morphology 

 NHDF were encapsulated in semi-IPNs containing various concentrations of 

PEG-bis-AP and HA, maintaining constant 6% w/w PEG/HA ratio. Semi-IPNs 

containing 4-6% PEG-bis-AP effectively supported cell spreading at 7 days with the most 

robust response observed at the 4% concentration (Figure 3.6). Cell spreading was 

substantially reduced as the PEG-bis-AP concentration was increased to 8% and 

minimally present at 10%. Circularity values steadily increased with increasing PEGdA 

concentration, although the maximum value reached was 0.32±0.02 at 10% PEGdA, 

which was significantly lower that PEGdA hydrogel controls without HA. Tensile testing 

showed that semi-IPN elastic modulus increased from 10.2 +/- 2.07 kPa at 6% to 28.0 

w/v +/-2.65 kPa and 76.0 +/- 3.61 kPa at 8 and 10% concentration, respectively. Samples 

prepared at 4% were visibly weaker and could not be evaluated by tensile testing.  
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Figure 3.6 Confocal microscopy images of actin-stained human dermal fibroblasts 

encapsulated within PEG-bis-AP / HA semi-IPNs containing varying concentrations of 

PEG-bis-AP and HA; 4% w/v PEG-bis-AP with 0.24% w/v HA (A), 5% w/v PEG-bis-

AP with 0.30% w/v HA (B), 6% w/v PEG-bis-AP with 0.36% w/v HA (C), 8% w/v PEG-

bis-AP with 0.48% w/v HA (D) and 10% w/v PEG-bis-AP with 0.60% w/v HA (E) at 

200 µm depth after 7 days culture, scale bar = 100 µm. 
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NHDF were also encapsulated in semi-IPNs prepared from various PEGdA 

macromers with varying chemical structures (PEG-bis-AA, PEG-bis-AP, or PEG-bis-

AB) previously shown to provide different susceptibility to hydrolytic degradation [188]. 

As early as 3 days post-encapsulation, fibroblast spreading was observed in all semi-IPN 

compositions (Figure 3.7). Circularity values for all three groups ranged from 0.17-0.21 

without significant differences. Cells encapsulated within homopolymer hydrogels of 

even the most rapidly hydrolytically degrading macromer (PEG-bis-AA) without HA did 

not exhibit any spreading (data not shown). These results confirm that the initiation of 

cell spreading within these gels is attributable to the HA component and independent of 

PEG macromer chemistry and hydrolytic degradation.  

 

Figure 3.7 Confocal microscopy images of actin-stained human dermal fibroblasts 

encapsulated within 6% w/v PEGdA / 0.36% w/v HA semi-IPNs formed from PEG-bis-

AA (A), PEG-bis-AP (B), and PEG-bis-AB (C) macromers at 200 µm depth after 3 days 

culture, scale bar = 100 µm.  
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3.3.5 Degradation kinetics of various semi-IPNs  

 In preparation for longer-term studies, the hydrolytic degradation kinetics of 

semi-IPNs prepared from PEGdA macromers with varying chemical structure were 

studied during incubation in serum-containing medium. For semi-IPNs prepared from 

each of the three different PEGdA macromers individually, PEG-bis-AA semi-IPNs 

showed the fastest degradation rate (complete degradation at day 7), PEG-bis-AP showed 

intermediate degradation rate (complete degradation at day 18), and PEG-bis-AB based 

semi-IPNs showed the slowest degradation rate (ca. 34% mass loss at day 42) (Figure 

3.8A). In order to achieve a broader range of degradation profiles, blended PEGdA 

compositions (C1-C7, Figure 3.8B) containing the 3 different PEGdA macromers in 

various ratios were evaluated. A gel composition consisting of 12.5 % PEG-bis-AA, 

37.5% PEG-bis-AP, and 50% PEG-bis-AB (‘C1’) was found to exhibit relatively linear 

mass loss over 5 weeks and was used for all further studies.  
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Figure 3.8 Mass loss of 6% w/v PEGdA / 0.36 % w/v semi-IPNs prepared with 

homogeneous (A) and blended (B) PEGdA composition in routine culture medium 

containing 0.1% w/v sodium azide.  
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3.3.6 Long-term 3-D fibroblast culture in blended PEGdA/HA semi-IPNs  

In the first long-term culture study, NHDF were homogeneously encapsulated 

within semi-IPNs (6% w/v ‘C1’ PEGdA blend / 0.36% w/v HA) and cultured for 35 days. 

As shown in Figure 3.9, NHDF spreading progressively increased over the culture period 

and the cell number exhibited little change, suggesting limited cell proliferation. This is 

in contrast to blended PEGdA only (no HA) or blended PEGdA/GMHA hydrogel 

controls, where cells remained restricted to a spherical morphology and cell number 

visibly decreased by approximately 50% within 14 days (data not shown).  

 

Figure 3.9 Confocal microscopy images of actin-stained human dermal fibroblasts 

encapsulated within 6% w/v blended PEGdA (C1-12.5% PEG-bis-AA, 37.5% PEG-bis-

AP, 50.0% PEG-bis-AB) / 0.36% HA semi-IPNs at 200 µm depth after 7 days (A), 21 

days (B), and 35 days (C) culture, scale bar = 100 µm. 
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In order to assess the ability of NHDF to migrate through blended PEGdA/HA 

semi-IPNs, NHDF were pre-encapsulated within fibrin clots that were subsequently 

entrapped within semi-IPNs during photopolymerization. Within 3 days, NHDF began to 

migrate out of the fibrin clots into the surrounding semi-IPNs (Figure 3.10A). NHDF 

migration progressively increased over time, reaching 1.5 mm depth within 21 days 

(Figure 3.10B/C). NHDF-loaded fibrin clots encapsulated within blended 

PEGdA/GMHA copolymer hydrogels as a control exhibited limited migration into the 

surrounding gel after 21 days in culture (Figure 3.10D). 3D confocal reconstruction 

confirmed that NHDF-loaded clots and cellular outgrowth was occurring within the 3D 

network volume rather than on the gel surface (Figure 3.9E).  
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Figure 3.10 Migration of human dermal fibroblasts pre-encapsulated within 1% w/v 

fibrin clots into surrounding 6% w/v blended PEGdA (C1-12.5% PEG-bis-AA, 37.5% 

PEG-bis-AP, 50.0% PEG-bis-AB) / 0.36% w/v HA semi-IPNs after 3 days (A), 7 days 

(B), 14 days (C) 21 days (D) and 6% w/v blended PEGdA (C1) / 0.36% w/v GMHA 

copolymer hydrogels after 21 days (E) culture. 3D confocal reconstruction of fibroblasts 

migrating from fibrin clots into surrounding 6% w/v blended PEGdA (C1) / 0.36% w/v 

HA semi-IPN after 14 days in culture (F). Scale bars = 500 µm. 
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3.4 Discussion 

The efficacy of cell-based therapy can be substantially improved by the use of 

scaffolds that serve as a provisional matrix for cell adhesion, migration, and proliferation. 

Synthetic hydrogels offer injectable matrices with defined structure and composition; 

however, such networks generally possess nanometer-scale mesh sizes that restrict 

encapsulated cells to a spherical morphology. For most anchorage-dependent cell types, 

the ability to adopt a spread morphology is essential for survival, migration, proliferation, 

and differentiation [190–192]. Therefore, there is a critical need for the development of 

hybrid networks incorporating naturally-derived components that support localized, cell-

mediated remodeling.  

As an alternative to the prevailing approach of crosslinking synthetic 

macromolecules with protease-sensitive oligopeptides, our group has previously shown 

that semi-IPNs composed of hydrolytically degradable PEG diacrylates and native HA 

support rapid 3D cell spreading in a hyaluronidase-dependent manner [187]. These 

materials are attractive candidates because other PEG and HA derivatives have been 

successfully translated for clinical applications [193,194]. In this study, the effect of 

semi-IPN network composition on 3D cell spreading was systematically examined, 

beginning with a baseline gel formulation composed of 6% w/v PEG-bis-AP macromer 

that provides an intermediate rate of hydrolytic degradation and 0.36% w/v HA (1.5 

MDa). Fibroblast spreading in 3D exhibited a biphasic response to varying the 

concentration of HA, initially increasing at levels higher that those originally tested by 

Kutty et al. (0.18% w/v), then subsequently declining at 0.72% or higher. We 
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hypothesized that the activity of PEGdA/HA semi-IPNs originates from polymerization-

induced phase separation as previously suggested by Ouasti and co-workers. [195]. In 

support of this hypothesis, fibroblast spreading was completely eliminated when native 

HA was replaced with a methacrylated HA derivative (GMHA) that could be covalently 

incorporated into the network, thereby limiting its potential to undergo phase separation. 

Gel turbidity was also evaluated as a quantitative measure of phase separation and found 

to increase with increasing HA concentration in semi-IPNs, but not copolymerized 

hydrogels containing GMHA. Finally, when the HA molecular weight was varied, it was 

observed that cell spreading required relatively high HA molecular weight, consistent 

with the increased tendency for phase separation as solute molecular weight increases. 

Interestingly, semi-IPNs prepared with dextran, even at high molecular weight, did not 

result in increased gel turbidity. This result suggests that HA is unique among various 

materials tested for the non-crosslinked component of these semi-IPNs, including 

collagen and gelatin in previous studies [187], in its ability to induce phase separation, at 

least to a degree sufficient to create microdomains that allow cell spreading. This is likely 

attributable to the unique properties of HA in terms of water-binding capacity; H-bonding 

and self-association; and solution rheology [196].  

The ability of cells to spread and migrate in 3D has also been found to be 

dependent on the hydrogel’s mechanical properties [112,176,178]. Tensile testing showed 

that the elastic modulus of semi-IPNs decreased with increasing HA concentration, likely 

due to the increasing level of phase separation creating defects within the network 

structure. However, it is particularly important to note that the elastic moduli values for 
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6% PEG-bis-AP with 0.36% and 0.54% HA that most effectively supported cell 

spreading ranged between 8-10 kPa. In contrast, most peptide-crosslinked hydrogels that 

support cell spreading/migration are characterized by elastic shear moduli values 

generally around and below 1 kPa, approximately an order of magnitude lower 

[96,175,179,197]. The higher mechanical properties of PEGdA/HA semi-IPNs offer 

several advantages including increased mechanical stability and resistance to cell-

mediated contraction. In addition, recent studies have shown that substrate mechanics 

influence stem cell differentiation in both 2D and 3D culture systems and the elastic 

modulus of PEGdA/HA semi-IPNs is in close approximation to  values shown to most 

efficiently promote osteogenic differentiation of human mesenchymal stem cells [8,142].   

We also investigated the effect of variation in PEGdA concentration and chemical 

composition on 3D fibroblast spreading. Higher polymer concentrations resulted in 

increased mechanical properties and strongly inhibited cell spreading at PEGdA 

concentrations of 8% w/v and greater, despite corresponding increases in HA 

concentration to maintain a constant PEGdA:HA w/w ratio. This observation is consistent 

with many previous reports in the literature, although as noted above, the range of 

mechanical properties was much higher in PEGdA/HA semi-IPNs 

[112,176,178,181,197]. At 6% w/v, all three PEGdA chemical compositions supported 

the initiation of cell spreading within three days. In combination with previous work 

showing that the most slowly degrading PEG-bis-AB exhibits negligible mass loss at 3 

days [189], this result demonstrates that the initiation of cell spreading in these semi-IPNs 

is independent of hydrolytic degradation and based solely upon cell-mediated degradation 
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of HA. The ability of cells to begin spreading rapidly is another important advantage of 

these PEGdA/HA semi-IPNs relative to peptide-crosslinked networks in which a lag 

period of 7-14 days is often observed between the time of encapsulation and the initiation 

of cell spreading, particularly when encapsulation is performed with dissociated 

individual cells [28,96,110,170,198]. Collectively, these results suggest that 

photopolyermization-induced phase separation creates HA-enriched defects within the 

network structure that facilitate rapid hyaluronidase-mediated localized degradation that 

supports cell spreading.  

One challenge to the application of these semi-IPNs for long-term culture and 

translational applications was that none of the PEGdA macromers when used alone 

provided an ideal degradation profile. PEG-bis-AA and PEG-bis-AP degraded too rapidly 

resulting in loss of mechanical integrity and contraction, while PEG-bis-AB degraded too 

slowly, with little further cell spreading observed beyond that at 3-7 days and subsequent 

reduction in cellularity at later time points, presumably as a result of cell death. 

Previously, Quick and co-workers showed that blending acrylated PLA-b-PEG-b-PLA 

macromers with different PLA block lengths and therefore hydrolytic degradation rate 

could produce gels with more finely controlled and linear rates of degradation [199]. We 

adapted this approach by creating blends of the three different PEGdAs used in this study 

to obtain a formulation displaying relative linear mass loss over 5 weeks. These 

degradation studies were performed in serum-containing medium to reflect culture 

conditions because gel degradation was originally noticed to be much more rapid than 

previously observed during degradation in PBS, likely due to the contribution of serum 
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esterase enzymes. Using the selected blend formulation of PEGdA, sustained cell 

spreading and viability was observed for up to 35 days. Finally, a gel-within-gel 

encapsulation model was used to test the ability of blended PEGdA/HA semi-IPNs to 

support cell invasion and sustained migration. Fibroblasts pre-encapsulated within fibrin 

clots began sprouting into the surrounding semi-IPN and progressively migrated radially 

outward for over 21 days. As in our dispersed cell encapsulation model, copolymer 

hydrogels prepared with GMHA were unable to support this behavior. These results 

suggest that the HA-enriched zones created by phase separation are sufficiently inter-

connected, in combination with gradual hydrolytic degradation, to support sustained cell 

migration. 

 

3.5 Conclusions 

These studies demonstrate that through systematic optimization of network 

composition, PEGdA/HA semi-IPNs can be formulated to provide dynamic 

microenvironments that support cell survival, spreading, and sustained migration. The 

bioactivity of these networks is a unique feature of the semi-IPN structure derived from 

polymerization-induced phase separation that creates HA-enriched micro-domains 

susceptible to cell-mediated enzymatic degradation in combination with prolonged 

hydrolytic degradation. Specific advantages of these semi-IPNs relative to existing hybrid 

hydrogels are the ability to support the rapid initiation of cell spreading within three days 

post-encapsulation and the provision of improved mechanical properties.  
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CHAPTER FOUR 

OSTEOGENIC DIFFERENTIATION OF                                               

HUMAN MESENCHYMAL STEM CELLS IN                                           

SEMI-INTERPENETRATING NETWORK 

 

4.1 Introduction 

The rationale for bone tissue engineering originated from the limitations of 

traditional bone graft techniques. Bone defects resulting from trauma and tumor resection 

are common clinical problems. Bone tissue has the ability to regenerate, but when a 

defect of critical size needs to be bridged, the repair attempt fails in most cases. 

Replacing missing bone with material from the patient’s own bone (autograft) is still 

considered as an ideal standard. However, the limited supply from the patient and 

possible donor site morbidity are problematic. Allograft is another bone graft technique, 

replacing missing bone with material from a donor (bone bank). In this technique, there is 

the potential risk of disease transmission and demand still outstrips supply. Healing can 

also be inconsistent due to its heterogeneity [200]. As a new practice, bone tissue 

engineering is an alternative strategy to regenerate bone using osteogenic progenitor or 

mature cells on osteoconductive scaffold material with or without appropriate 

osteoinductive growth factors [201–204]. Regarding bone graft substitutes, they should 

be osteoconductive which refers to the ability to provide an interconnected structure for 

new bone formation on its surface (or within the entire volume of construct) by mature 

bone forming cells. The objective of bone graft substitutes is to reliably replicate healthy 
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autograft. The research focus is to develop the matrix material with better biological 

compatibility and functionality, cell adhesion surface, bioresorbable capability, and drug 

delivery potential to release growth factors (stimulating bone repair) [202,205]. The most 

successfully commercialized osteoconductive three dimensional scaffold materials are 

bioceramics which undergo ex vivo fabrication prior to cell seeding due to harsh 

condition of fabrication [206–208]. This material by itself sometimes exhibits poor 

osteoconductive capability, shown as limited bone formation only at the boundary of the 

defects [209] and may require additional fabrication processes when the defect site 

geometry is complicated [208]. Alternatively, hydrogel scaffolds are widely studied as 

non-load bearing scaffold materials for bone tissue engineering due their ability to be 

delivered in a minimally invasive manner and polymerized in situ in the presence of cells 

under mild conditions [44,210,211].  

For osteogenic cells, the fundamental studies have focused on mesenchymal 

stromal cells obtained from bone marrow because these cells have shown high osteogenic 

activity and can be cultivated ex vivo in quantities appropriate for clinical applications. 

They also show the advantage of low morbidity and cost over autograft. However, this 

has little clinical impact due to the limited number of clinical studies [212]. The ability of 

mesenchymal stem cells to differentiate has been found to be dependent on 

scaffold/substrate mechanical properties in both monolayer (2D) and three-dimensional 

(3D) culture systems [8,142]. Specifically, substrates with elastic moduli ranging from 5 

kPa to 40 kPa favor osteogenic differentiation of mesenchymal stem cells in 3D culture 

[8,213–215]. As an in situ forming or minimally invasive cell transplant scaffold 
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candidate, hybrid hydrogels are designed to integrate the precise control of 

composition/properties provided by synthetic networks with the bioactivity of naturally-

derived materials. PEG derivatives crosslinked with MMP-sensitive peptides are a 

prominent example and have been widely used for in vitro culture models and in vivo 

tissue engineering [11,58,168]. However, most peptide-crosslinked hydrogels that 

support cell spreading/migration are characterized by elastic shear moduli values 

generally around and below 1 kPa, approximately an order of magnitude lower than the 

optimal range for osteogenic differentiation [96,175,179,197,216]. Attempts to increase 

the elastic modulus of hydrogel scaffolds often requires higher cross-linking density of 

the network, resulting in a spherical morphology of encapsulated stem cells, which is not 

favorable to cell viability and also for osteogenic differentiation of encapsulated stem 

cells [170,217,218]. To achieve high elastic modulus and proper rate of degradation 

simultaneously, several groups explored alternative strategies such as increasing the 

number of degradable sites [112,179]. However, this approach has a practical limitation 

for cell based therapy due to its production cost and requirement of large quantity for 

application [175]. 

In previous research, the incorporation of native hyaluronic acid (HA) into 

photocrosslinked networks of hydrolytically degradable PEG diacrylates (PEGdA) 

creates semi-interpenetrating networks (semi-IPNs) that support increased cell spreading 

and proliferation relative to fully synthetic networks that is dependent on cellular 

hyaluronidase activity [187,188]. In Chapter 3, the network composition of semi-IPNs 

(6% w/v PEG diacrylate with 0.36% hyaluronic acid at 1.5 MDa molecular weight) was 
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identified to best support cell spreading and network formation. Selected semi-IPNs with 

PEGdA blends and HA supported prolonged 3D fibroblast culture for 35 days and 

sustained 3D cell migration. It is particularly important to note that the elastic moduli 

values of semi-IPNs for 6% PEG-bis-AP with 0.36% and 0.54% HA that most effectively 

supported cell spreading ranged between 8-10 kPa, which is in close approximation to 

values shown to most efficiently promote osteogenic differentiation of hMSCs in 3D 

culture condition [8]. In this study, semi-IPN application will be expanded toward stem 

cell therapy, especially osteogenic differentiation of mesenchymal stem cells (MSCs) for 

possible hard tissue applications. In situ photopolymerization of autologous cell 

encapsulated, mechano-mimetic, degradable hydrogels can be used as bone void-filler in 

non-load bearing site and act as 3D cell niche [219]. Human mesenchymal stem cells 

(hMSCs) have encapsulated within selected semi-IPNs and cultured under osteogenic 

differentiation conditions for up to 35 days. Encapsulated hMSCs exhibited alkaline 

phosphatase expression, osteogenic gene expression, and the progressive accumulation of 

collagen and mineralization. Histology and quantified calcium contents showed calcified 

tissue formation at the end of 3D culture. Osteogenic differentiation of encapsulated 

hMSCs followed similar mineralization process and relatively early osteoblast maturation 

process compared to its gene expression profile in monolayer (2D) culture from other 

study [220].  
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4.2 Materials and Methods 

4.2.1 Synthesis of PEGdA macromers with ester linkages containing variable alkyl 

spacers 

 Three PEGdAs with varying susceptibility to hydrolytic degradation were 

synthesized by a two-step process. First, PEG (Fluka, MW 4000) was reacted with 

chloroacetyl chloride, 2-chloropropionyl chloride, or 4-chlorobutyryl chloride and then 

the resulting intermediate products were reacted with sodium acrylate to obtain PEG-bis-

AA, PEG-bis-AP, or PEG-bis-AB, as previously described in Chapter 3. All samples 

achieved acrylation efficiencies greater than 92.5%, determined from 1H-NMR (Bruker 

300 MHz, CDCl3) spectra. 

4.2.2 In vitro cell culture 

For cell growth and expansion, human mesenchymal stem cells (hMSCs, Lonza, 

Walkersville, MD) were cultured in 75cm2 tissue culture flasks at 37⁰C with 5% CO2 

supply. Cells were cultured with low glucose DMEM with L-glutamine media (Life 

Technologies, Grand Island, NY) supplemented with 10% (v/v) MSC qualified fetal 

bovine serum (Life Technologies), 50U/mL penicillin and 50µg/mL streptomycin 

(Mediatech) and 10 ng/mL basic FGF (PeproTech, Rocky Hill, NJ).  Medium was 

changed every 2 days and cells were passaged at a 1:3 ratio for expansion after reaching 

85 to 90% confluence. All encapsulation studies were done with cells between passages 5 

and 6.  
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4.2.3 hMSC encapsulation in semi-IPNs 

Hyaluronic acid with 1.5 MDa molecular weight (Lifecore Biomedical, Chaska, 

MN) stock solution (1.75% w/v) and PEGdA (30% w/v) stock solutions were prepared in 

1X-PBS (0.1M, pH 7.4).  Acryl-PEG-GRGDS was synthesized by conjugating GRGDS 

peptide (Bachem, Torrance, CA) to acryl-PEG-NHS (Jenkem, Beijing, China) as 

previously described [169]. Gel precursor solutions (250 µL in 1X PBS) were prepared 

containing 6% w/v PEGdA blend (12.5% PEG-bis-AA, 37.5% PEG-bis-AP, and 50.0% 

PEG-bis-AB) and 0.36% w/v HA, acryl-PEG-GRGDS (1µmol/mL), 2-hydroxy-1-[4-

(hydroxyethoxy) phenyl]-2-methyl-1-propanone (I-2959, BASF, Florham Park, NJ, 

0.05% w/v), and hMSCs (final concentration at 12.5×106 cells/mL). hMSCs were 

uniformly dispersed within the gel precursor solution by pipetting. Sample volumes (55 

µl) were pipetted in between glass separated by 1 mm Teflon spacers and exposed to low 

intensity UV light (365nm, 10mW/cm2, Black-Ray B100-AO, Upland, CA) for 5 minutes 

on each side of the disc. Hydrogels with encapsulated cells were cultured in 35 mm 

diameter Petri dishes (BD, San Jose, CA) with 3mL culture medium. For osteogenic 

differentiation studies, encapsulated hMSCs were cultured with low glucose DMEM 

media with L-glutamine (Life Technologies) supplemented with 10% (v/v) MSC 

qualified fetal bovine serum (Life Technologies), 50U/mL penicillin and 50µg/mL 

streptomycin (Mediatech) in the presence of osteogenic differentiation supplements (50 

µM ascorbic acid-2-phosphate (right?), 10 mM β-glycerophosphate, and 100 nM 

dexamethasone, all from Sigma-Aldrich).  
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4.2.4 Monitoring of encapsulated hMSC morphology under osteogenic differentiation 

condition 

 hMSCs were encapsulated as described above in semi-IPNs. Hydrogel samples 

(n=3/time point) were cultured in 35mm Petri dishes for 21 and 28 days, then fixed with 

4% paraformaldehyde (Alfa Aesar, Ward Hill, MA), permeabilized with 0.1% Triton X-

100 (Sigma-Aldrich), and stained with Alexa Fluor 647-phalloidin (Life Technologies). 

The morphologies of encapsulated cells were imaged using a Nikon Eclipse Ti confocal 

microscopy at 200 µm z-depth.   

4.2.5 Alkaline phosphatase (Al-P) activity 

  hMSCs encapsulated in semi-IPNs were prepared and cultured in full osteogenic 

media for 7, 14, 21, and 28 days. At each time point, four hydrogel samples were 

harvested (n=4), washed twice with 1X PBS for 3 minutes each, and stored at -80⁰C 

freezer. For analysis, hydrogel samples were thawed and lysed with 0.1% Triton X-100 

(Sigma) solution by manual homogenization. Residual hydrogel debris and cells were 

removed by centrifugation at 10,000 rpm for 5 minutes and supernatant was recovered for 

analysis. Prior to alkaline phosphatase activity measurement, total protein concentration 

was measured for normalization of alkaline phosphatase activity using BSA Total Protein 

Assay kit (Thermo Scientific, Waltham, MA). Alkaline phosphatase activity of 

encapsulated hMSCs was measured using alkaline phosphatase activity kit according to 

manufacturer’s protocol (Sigma-Aldrich).     
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4.2.6 Quantitative RT-PCR 

hMSCs encapsulated in semi-IPNs were prepared and cultured in growth 

(expansion) media for 1 day (24 hours). After 1 day, 4 hydrogel samples were harvested 

as reference condition (calibrator) samples for gene expression. For the rest of samples, 

culture media was switched to osteogenic differentiation media and cultured for 7, 14, 21, 

and 28 days. At each time point, four hydrogel samples were harvested (n=4), manually 

homogenized, lysed with 500 µL of RLT buffer (Qiagen, Valencia, CA) at room 

temperature, and stored at -80⁰C freezer. After thawing and centrifugation at 13,000 g for 

15 minutes at 4⁰C, supernatant was collected for analysis. Total RNA was isolated using 

the Qiagen RNeasy mini kit (Qiagen) and treated with Turbo DNA-free DNase I Kit (Life 

Technologies) to remove trace amounts of genomic or plasmid DNA. cDNA was 

synthesized using 1 µg of total RNA from each sample as template using Retroscript Kit 

(Life Technologies) and Rotorgene 3000 light thermal cycler (Corbett Research, 

Mortlake, NSW, Australia). Real-time RT-PCR was performed with Quantitect SYBR 

green PCR Kit (Qiagen) using custom-designed primers (Table 4.1).  Relative gene 

expression levels were calculated using ΔΔCt method with using β-2-microglobulin 

(β2MG) as an internal control and the day 1 static samples as reference condition 

(calibrator) [221]. The following PCR parameters were utilized: 95°C for 90 second 

followed by 45 cycles of 95°C for 30 seconds and 55°C for 60 seconds. 
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Target gene Sense primer Antisense primer 

RUNX2 5’-CGAATGGACTATCCAGCCAC-3’ 5’-TCCACTCTGGCTTTGGGAAG-3’ 

Collagen I 5’-TGCTGGTGCTCCTGGTACTC-3’ 5’-TCCAGAGGGACCTTGTTTGC-3’ 

SP7 5’-TTCACTATGGCTCCAGTCCC-3’ 5’-GAGTACGGCTTCTTTGTGCC-3’ 

Al-P 5’-ACCGAGATACAAGCACTCCC-3’ 5’-TCACGTTGTTCCTGTTCAGC-3’ 

IBSP 5’-GGGAGTACGAATACACGGGC-3’ 5’-TAGCCATCGTAGCCTTGTCC-3’ 

BGLAP 5’-GCGCTACCTGTATCAATGGC-3’ 5’-TCCTGAAAGCCGATGTGGTC-3’ 

β2MG 5’-TGTGCTCGCGCTACTCTCTC-3’ 5’-CGGATGGATGAAACCCAGAC-3’ 

 
Table 4.1 Target genes and primers for real time RT-PCR analysis. 

4.2.7 Calcium and collagen staining  

Encapsulated hMSCs were cultured with osteogenic supplements for 7, 14, 21, 

28, and 35 days as described above, then fixed with 4% paraformaldehyde. Fixed 

hydrogels were gradually infiltrated by OCT (Optimal Cutting Temperature) compound 

(Sakura Finetechnical, Torrance, CA)  by varying concentration of OCT in 1X PBS 

solution (increasing concentration from 25 to 100% OCT). Samples in OCT were snap-

frozen using liquid N2, then sectioned using Leica CM 1950 cryostat for desired 

thickness. Calcium on 6 µm sections was visualized using von Kossa (Poly Scientific, 

Bay Shore, NY) with Safranin O counter stain (Acros Organics) and Alizarin red S 

(Acros Organics) staining. 15 µm sections were stained for collagen using aniline blue 

(Poly Scientific). Stained sections were imaged using Nikon UZ-100 widefield 

microscopy.  
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4.2.8 Calcium quantification 

 Both acellular and hMSC encapsulated hydrogels were cultured with osteogenic 

supplements for 7, 14, 21, 28, and 35 days as described above. 4 samples from each 

group were harvested, then washed twice with 1X PBS, frozen at -80⁰C overnight, and 

lyophilized using Labconco Freezone 4.5 freeze dryer. Dry weights of samples were 

measured. Then samples were acid hydrolyzed at 90⁰C in 1 mL of 6 N Ultrex HCl 

(Fisher Scientific, Pittsburgh, PA) overnight, dried under continuous stream of nitrogen 

gas (Airgas National Welders, Atlanta, GA), re-dissolved with diluted 0.01 N Ultrex HCl 

solution (Fisher Scientific) and centrifuged at 12,500 rpm to remove undissolved 

impurities. Sample supernatants were diluted either 100 or 200 times volume with  0.5% 

w/v lanthanum oxide (Alfa Aesar) in 0.3 N Ultrex HCl solution (Fisher Scientific). 

Calcium concentrations of samples were measured using Perkin Elmer AAnalyst 200 

atomic absorption spectrometer and normalized by dry weight of each sample previously 

measured. Absorbance reading was converted to calcium concentration based on calcium 

standard curve.   

4.2.9 Statistical analysis 

Quantitative data for calcium quantification, Al-P activities and osteogenic gene 

expression by RT-PCR were compared by ANOVA using Tukey’s method for post-hoc 

comparisons (one-way ANOVA followed by Bonferroni’s multiple comparison test). p 

values < 0.05 were considered to be statistically significant. All quantitative data are 

presented as mean ± standard deviation. 
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4.3 Results 

4.3.1 Alkaline phosphatase activity  

 hMSCs were encapsulated within semi-IPNs and cultured in the presence of 

osteogenic supplements for 28 days. Total protein assay results indicated there was no 

significant increase in protein level after day 7 in culture (data not shown here). Alkaline 

phosphatase (Al-P) activity increased over time in culture, with levels measured at days 

21 and 28 significantly higher than day 7 (Figure 4.1). However, the normalized Al-P 

level of day 14 was not significantly different from day 21 and 28 (p<0.05).   

 

Figure 4.1 Alkaline phosphatase activity normalized by total protein concentration of 

hMSCs encapsulated in semi-IPNs at different time points during culture in the presence 

of full osteogenic supplements, *=p<0.05 relative to day 7.  
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4.3.2 Osteogenic gene expression 

hMSC mRNA expression levels of several genes related  to osteogenic 

differentiation were examined after 7, 14, 21, and 28 days of culture with osteogenic 

supplements. In general, hMSCs exhibited significantly increased expression of all genes 

examined at day 7 relative to control at day 0 (Figure 4.2). Expression levels of osterix 

(SP7, Figure 4.2B), integrin-binding sialoprotein (IBSP, Figure 4.2D), and collagen type 

I (Figure 4.2E) significantly decreased at later time points beyond day 7. In case of runt-

related transcription factor 2 (RUNX2, Figure 4.2A) and osteocalcin (BGLAP, Figure 

4.2F), increased gene expression levels relative to the day 0 control were maintained 

throughout the differentiation period.  Interestingly, expression levels of alkaline 

phosphatase (Al-P) were significantly increased over time up to day 21 and later 

decreased at day 28. However, it still maintained higher level of gene expression 

compared to day 0 (Figure 4.2C).  
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Figure 4.2 mRNA expression levels of RUNX2 (A), osterix (SP7) (B), alkaline 

phosphatase (C), bone sialoprotein (IBSP) (D), collagen type I (E), and osteocalcin 

(OCN) (F) at different time points during culture in the presence of full osteogenic 

supplements. *=p<0.05 relative to day 0 control, #=p<0.05 and +=p<0.05 between 

groups. 
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4.3.3 hMSC morphology encapsulated in semi-IPN under osteogenic differentiation 

condition 

 hMSCs were homogeneously encapsulated in photopolymerized 6% w/v PEGdAs 

(12.5% PEG-bis-AA, 37.5% PEG-bis-AP, 50.0% PEG-bis-AB) / 0.36% w/v HA semi-

IPNs and cultured in full osteogenic media for 35 days. The selected semi-IPNs 

supported the survival and spreading of hMSCs. After 21 days in culture, the semi-IPNs 

showed increasing macroscopic opacity and encapsulated cells had spread and begun to 

form a connected network (Figure 4.3A and B). The extensive mineralization in semi-

IPNs after 28 days of culture (Figure 4.3C) limited the ability of the confocal laser to 

penetrate into the 3D structure, resulting in imaging only a limited number of cells 

(Figure 4.3D).   
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Figure 4.3 Macroscopic images of hMSC encapsulated 6% w/v PEGdAs / 0.36% w/v 

HA semi-IPNs after 21 days in culture (A), and 28 days in culture (C), confocal 

microscopy images of actin-stained hMSC encapsulated in semi-IPNs at 200 mm z-depth 

after 21 days in culture (B), and 28 days in culture (D), scale bar = 100 µm. 
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4.3.4 Collagen deposition and calcification in hMSC encapsulated semi-IPNs 

 Collagen deposition was modest at day 7 and then increased substantially after 21 

days in culture (Figure 4.4A-C). Both calcium staining images (Figure 4.4G-I) showed 

that mineralization increased with the time in culture, similar to observations of collagen 

staining. Both collagen and calcium were homogeneously deposited throughout the entire 

volume of hydrogels.     

 

Figure 4.4 Histological sections of semi-IPNs with encapsulated hMSCs stained with 

aniline blue for collagen (A-C), von Kossa for calcium (D-F), and  Alizarin red S for 

calcium (G-I) after 7, 21, and 35 days in culture, scale bar = 100 µm. 
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4.3.5 Quantitative calcification  

 In order to determine the contribution of non-physiological calcification, acellular 

semi-IPNs were included in the study as a negative control. As an additional control, 

semi-IPNs with encapsulated hMSCs were cultured without dexamethasone to investigate 

spontaneous osteogenic differentiation in the absence of a specific osteoinductive 

stimulus. Encapsulated hMSCs in full osteogenic media (OB) showed significantly 

increased calcification over time (Figure 4.5). Calcification in the experimental group 

was also significantly higher than both control groups at all (time) points. The acellular 

control group showed only a modest level of non-specific calcification. The control group 

without dexamethasone also exhibited minimal calcification through day 21, but 

significantly higher levels of calcium at days 28 and 35 relative to the acellular group.  

 



 79 

 

Figure 4.5 Calcium content measured in semi-IPN hydrogels normalized to sample dry 

weight. All samples were cultured in full medium with osteogeneic supplements 

(ascorbic acid-2-phosphate, betaglycerophosphate, and dexamethasone) except w/o dex 

where dexamenthasone was omitted. Only statistical analyses for OB group shown here 

for graphical clarity, #=p<0.05 between groups.  
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4.4 Discussion 

This study was designed to both qualitatively and quantitatively asses the ability 

of selected semi-IPNs to support osteogenic differentiation of encapsulated hMSCs. It 

was previously shown that, by the formation of HA-enriched zones from polymerization-

induced phase separation, semi-IPNs composed of hydrolytically degradable PEG 

diacrylates, acrylate-PEG-GRGDS and native HA support rapid 3D cell spreading and 

migration in a hyaluronidase-dependent manner. PEGdA/HA semi-IPNs were also able to 

support cell spreading at relatively high levels of mechanical properties (~10 kPa elastic 

modulus) compared to alternative hybrid hydrogels as shown in Chapter 3. This elastic 

modulus value was previously reported as optimal for osteogenic differentiation in three-

dimensional (3D) culture [8]. In addition, the initial matrix stiffness is important as 

hMSCs are no longer reprogrammable once they have committed to the lineage specified 

by matrix elasticity after the initial week in culture [142]. As shown in Chapter 3, 

selected semi-IPNs maintained about 70% of initial mass after 1 week of culture while it 

provided the space for cell spreading.   

To test of its feasibility as  a scaffold for cell transplantation and 3D in vitro 

culture platform, hMSCs were photo-encapsulated within 6% w/v PEGdA/ 0.36% HA 

semi-IPNs with previously selected compositions (12.5% PEG-bis-AA, 37.5% PEG-bis-

AP, and 50.0% PEG-bis-AB) and cultured under osteogenic differentiation conditions for 

up to 35 days. Confocal microscopy images showed spindle- shaped morphology of 

hMSCs encapsulated within semi-IPNs. Initial cell spreading occurred within the space 

filled with HA where HAse degrades first [187]. Cell spreading was supported in selected 
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semi-IPNs and could be observed till day 28. At later stage of culture (day 35), confocal 

scanning was hindered by deposited calcium (image not shown). Since hMSC viability 

and spreading are dependent on 3D network degradability, this enzymatic degradation 

positively affected long-term survival of transplanted stem cells and enhanced osteogenic 

differentiation and mineralization [9,170,217,218]. 

Alkaline phosphatase (Al-P) activity increased over time in 3D culture. Other 

research groups have also reported similar trends in Al-P activities for encapsulated 

hMSCs and dependency of differentiation on matrix degradability. Anderson and co-

workers observed increased Al-P activity over time and over increasing MMP sensitive 

peptide concentration in thiol-ene hydrogels over 21 days of culture, suggesting 

osteogenic differentiation was influenced by network degradability [170].  Benoit and co-

workers also reported the increasing trend of Al-P activity in 3D culture and its 

dependency on copolymer network composition (i.e. degradation rate). The Al-P activity 

increased over time and with increased degradability along with increased osteopontin 

and type I collagen expression [218]. Temenoff and co-workers reported different 

biphasic behavior (lowest Al-P activity at day 14 for all conditions) of Al-P activities in 

3D MSC culture using oligo(poly-(ethylene glycol) fumarate) hydrogel [222].  

When gene expression related to osteogenic differentiation of MSCs in 3D 

hydrogel culture was investigated and compared to other 3D culture studies, the temporal 

patterns and gene expression levels are not consistent with one another due to the fact 

that gene expression of encapsulated hMSCs depends on the surface characteristics 

(topography, chemistry, surface energy, and interplay of stiffness and adhesion ligand 
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presentation) of materials and changed accordingly [215,218,223–225]. Protein related to 

ECM maturation and bone cell phenotype, alkaline phosphatase (Al-P) gene expression 

of hMSCs encapsulated within semi-IPNs followed similar trend to 2D monolayer 

culture, with a  peak around day 12 to 18 and subsequent decrease [220,226]. Early 

marker genes associated with extracellular matrix (ECM, type I collagen) and master 

gene controlling MSC differentiation into pre-osteoblast (runt-related transcription factor, 

RUNX2) exhibit different patterns of expression from each other. Collagen type I 

reached its peak expression level at day 7 and gradually decreased during subsequent 

stages of differentiation, which followed general profile of monolayer culture reported by 

Stein et al. and Born et al., but different from increasing trend in 3D culture reported by 

Benoit and co-workers [218,220,226]. However, RUNX2 maintained relatively similar 

gene expression level (no significant difference after day 7) throughout the entire 

differentiation period, exhibiting similar pattern to hMSCs cultured within soft (100 Pa) 

PEG-silica hydrogel (control to 2D monolayer culture) reported by Pek and co-workers, 

but different from the profile reported by Jha and co-workers. (up-regulated at day 21 

compared to day 7 gene expression level) [216,227]. Osterix (SP7), which is 

transactivated by Runx2, regulates bone formation and plays a role in terminal maturation 

for osteoblast differentiation. hMSCs encapsulated within semi-IPNs showed early up-

regulation of osterix at day 7, suggesting  early differentiation of pre-osteoblasts to 

osteoblasts [228,229]. Osteocalcin (OCN), a major non-collagenous protein related to 

ECM mineralization, maintained high expression level after day 7 for hMSCs 

encapsulated within semi-IPNs, different from 2D monolayer pattern (up regulation 
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around days 16-20), but similar to one in 3D culture reported by Pek and co-workers 

[220,226,227]. Bone sialoprotein (IBSP), a major component of ECM, has been known to 

be a potent nucleator for hydroxyapatite formation and important for the initiation of 

bone mineralization. Early up-regulation of IBSP suggested early initiation of bone 

mineralization and the adhesion of (pre)osteoblasts to mineralized matrix [230]. Overall, 

hMSCs encapsulated within semi-IPNs showed similar ECM production process 

(collagen type I, alkaline phosphatase, osteocalcin, and IBSP) and relatively up-regulated 

and rapid osteoblast differentiation process (RUNX2 and SP7) compared to 2D 

monolayer culture reported by Stein and co-workers [220]. 

After 21 days of culture, calcification could be observed macroscopically and 

rapidly progressed over time. Although there were varying degrees of decrease in total 

volume of hydrogels (images not shown), hydrogels remained mechanically intact until 

the end of culture (day 35). Over a comparable timeframe, acellular semi-IPNs 

completely degrade in normal culture conditions as shown in Chapter 3, suggesting that 

the hybrid hydrogel network was replaced by newly formed mineralized tissue. As for 

acellular semi-IPNs, although they swelled more (i.e. weaker and increased volume of 

hydrogels) compared to semi-IPNs with hMSC, they maintained the structural integrity 

till day 35 by non-physiological calcium deposition. This observed calcification also 

coincided with histology and calcium quantification results (rapid increase in 

calcification after 21 days). The degree of mineralization increased for all control and 

experimental groups over time. However the degree and the rate of calcification was 

different from one another. Two control groups reached calcification plateau at day 21 
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(acellular hydrogel) and 28 (hydrogels in osteogenic media without dexamethasone) 

while experimental group showed substantial increase after day 21 as also shown in 

histology. Compared to other studies, the degree of mineralization (deposited calcium 

level) in semi-IPNs is relatively higher than those reported elsewhere [170,222]. Calcium 

ion transport would not be diffusion limited as IgG has been shown to be readily released 

from PEGdA hydrogels [188]. Additionally, it was hypothesized that Hase-mediated 

degradation at the early stage of cell culture could expand pore size in semi-IPNs and 

promote ion diffusion inside hydrogel network. Acellular control hydrogels showed little, 

but obvious calcium deposition, suggesting that non-physiological calcium deposition 

was still possible with full osteogenic media. Although it has been known that 

biomineralization in (acelluar) organic matrix is slow and difficult to control due to pore 

size and dense network structure, the process works relatively better in soft polymer with 

very large equilibrium water contents [231–233]. Comparably, encapsulated hMSCs and 

deposited collagen (produced from cells) acted as nucleation site for calcium ion and 

resulting in increased calcification / biomineralization [233,234]. Cell encapsulated 

hydrogels in osteogenic media without dexamethasone showed higher calcium deposition 

than acellular hydrogels, but significantly less calcium contents compared to hydrogels in 

full osteogenic media, indicating that semi-IPN mineralization was primarily attributable 

to dexamethasone-induced hMSC differentiation and spontaneous osteogenic 

differentiation could be achieved even in the absence of a specific osteoinductive 

stimulus (i.e. absence of dexamethasone supply). 
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4.5 Conclusions 

This study demonstrated that PEGdA blend/HA semi-IPNs supported initial 

hMSC survival, spreading, and long term osteogenic differentiation. HA enriched zone 

from phase separation between the two components occurring during photocrosslinking 

provided the space for initial cell spreading via enzymatic degradation. Osteogenic 

differentiation of hMSCs encapsulated within semi-IPNs provided detailed gene 

expression profile in 3D culture, which followed relatively faster osteoblast maturation 

process and similar gene expression profile of mineralization process compared to 2D 

monolayer culture reported in the literature. The orchestrated prolonged degradation 

resulted in physiological collagen and calcium deposition during hMSC differentiation 

and network remodeling over 35 days in culture. These experiments suggest that 

PEGdA/HA based semi-IPNs are promising cell carrier materials for stem cell therapy 

applications. Ongoing studies are examining covalent conjugation of bioactive molecules 

to the HA component of these networks for sequestration and cell-mediated release 

during network remodeling and applications in bone tissue engineering. 
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CHAPTER FIVE 

HYBRID HYDROGEL / HYDROPHOBIC                            

NANOPARTICLE COMPOSITES FOR ENHANCED      

EXTRACELLULAR MATRIXS DEPOSITION 

 

5.1 Introduction 

 Following tissue injury, the coagulation cascade produces a blood clot consisting 

predominantly of fibrin with smaller amounts of other plasma proteins such as fibronectin 

and growth factors released from damaged platelets. The fibrin clot serves as a 

hemostatic plug and a provisional matrix for tissue repair. During the proliferative phase, 

fibroblasts in healthy tissue adjacent to the wound site divide and migrate into the fibrin 

clot, remodeling it through a combination of cell-mediated proteolytic degradation and 

synthesis and organization of new extracellular matrix [235,236]. Briefly, ECM assembly 

in vivo is initiated by ECM glycoproteins binding to cell surface receptors, such as 

fibronectin (FN) dimers binding to α5β1 integrin receptors. Receptor binding stimulates 

FN self-association mediated by the N-terminal assembly domain and organizes the actin 

cytoskeleton to promote cell contractility [237]. FN conformational changes (compact to 

extended) induced by cellular traction expose additional cryptic integrin binding domains 

[29]. Cells use collagen V and XI to nucleate collagen fibrils, and FN and integrins to 

specify the assembly site at the cell surface [238–240].  

Most tissue engineering and regenerative medicine strategies involve the use of a 
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polymeric scaffold as a transient structure to support cell adhesion, migration, 

proliferation, and differentiation that gradually degrades and is replaced by newly 

synthesized matrix. Much recent attention has focused on the use of hydrogel scaffolds 

due to their ability to be delivered to the injury site by minimally invasive procedures and 

crosslinked in situ using mild chemistries compatible with the encapsulation of living 

cells and bioactive molecules. With the exception of protein-based hydrogels (collagen, 

fibrin, etc.), the vast majority of hydrogels are based on hydrophilic polysaccharides and 

synthetic polymers [6,11,44,45]. One shared characteristic of these materials is a very 

low capacity for protein binding, rendering them ‘blank slates’ that do not interact with 

cells without the incorporation of exogenous cues such as RGD peptides to promote cell 

adhesion [45]. In fact, the most widely studied of these polymers, polyethylene glycol 

(PEG), has been extensively applied as a surface coating specifically intended to block 

protein adsorption and cell adhesion [162,241,242]. Although the most abundant ECM 

proteins, collagen type I and II spontaneously form fibrils in vitro by entropy-driven self-

assembly [243], the hydrophilic nature of hydrogel network hinders cell derived matrix-

protein binding, resulting in diffusional loss to the liquid phase [164,244]. This 

diffusional loss of ECM proteins can to some degree be compensated by increased ECM 

production through sequestration of proteins by specific hydrogel chemistries 

[101,245,246], increasing encapsulated cell density [247], and controlled release or 

covalent immobilization of growth factors [148,248]. As an alternative approach to this 

strategy of promoting increased ECM production within the hydrogel scaffolds, 

incorporation of collagen mimetic peptide sequence into PEG based hydrogel showed 
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increased collagen deposition inside scaffold [249]. However, this approach would not be 

cost effective because relatively large scale production is required for practical clinical 

applications.  

Previously, the inclusion of biodegradable polymer spheres or fibers with 

hydrophobic surfaces showed increased volume of cell-derived matrix accumulation 

compared to tissues formed from cells alone when used as cell transplant scaffolds [250–

252]. Based on these findings, it was hypothesized that the incorporation of 

biodegradable hydrophobic nanospheres within hybrid hydrogel networks could provide 

binding sites for secreted ECM and serve as nucleation sites for matrix assembly. In this 

study, submicron size (500 to 900 nm diameter) poly-L-lactic acid (PLLA) spheres were 

fabricated and incorporated into PEGdA/hyaluronic acid (HA) semi-IPNs described in 

Chapters 3 and 4. Normal human dermal fibroblasts (NHDF) were encapsulated within 

semi-IPNs with PLLA nanospheres (semi-IPN composites) and cultured under ascorbate-

supplemented growth condition for 35 days to evaluate the effect of incorporation of 

PLLA nanospheres on matrix protein (collagen) deposition. Experimental groups with 

PLLA nanospheres exhibited higher accumulation of collagen than control (semi-IPNs 

without PLLA nanospheres) qualitatively (histology) and quantitatively (hydroxyproline 

assay). Mechanical properties obtained from tensile testing and swelling revealed the 

effect of inclusion of nanospheres on structural integrity of semi-IPNs. Confocal imaging 

and AFM force indentation showed the changes in elastic modulus profile on surface of 

semi-IPNs.  
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5.2 Materials and Methods 

5.2.1 Synthesis of PEGdA macromers with ester linkage containing variable alkyl 

spacers 

Three PEGdAs with varying susceptibility to hydrolytic degradation were 

synthesized by a two-step process. First, PEG (Fluka, MW 4000) was reacted with 

chloroacetyl chloride, 2-chloropropionyl chloride, or 4-chlorobutyryl chloride and then 

the resulting intermediate products were reacted with sodium acrylate to obtain PEG-bis-

AA, PEG-bis-AP, or PEG-bis-AB, as previously described in Chapter 3. All samples 

achieved acrylation efficiencies greater than 92.5%, determined from 1H-NMR (Bruker 

300 MHz, CDCl3) spectra. 

5.2.2 Preparation of poly-L-lactic acid nanospheres 

 Poly-L-lactic acid (PLLA, NatureWorks, Minetonka, MN) spheres with 

nanometer size range (500 to 950 nm diameter) were prepared by the modified single 

emulsion technique [253]. Briefly, PLLA particles were dissolved (50 mg/mL) in 

dimethylformamide (DMF, Sigma-Aldrich, St. Louis, MO) solution and mixed with 

deionized water at 2:1 (PLLA solution:H2O) ratio. Then PLLA solution was quickly 

sonicated for 30 seconds at 10 watt intensity using Sonic Ruptor 400 Ultrasonic 

Homogenizer (Omni International, Kennesaw, GA) to produce PLLA nanospheres. 

Solutions were continuously stirred for 4 hours to remove excessive DMF. Large size 

PLLA particles were removed using cell strainer with 40 micron size mesh (Fisher 

Scientific, Pittsburgh, PA). Filtered solution containing small size PLLA nanospheres 

was centrifuged at 4500 g for 10 minutes and the supernatant discarded. Nanospheres 
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were re-suspended in deionized water and mean particle size distribution was measured 

using 90 Plus particle size analyzer (Brookhaven Instruments Corporation, Holtsville, 

NY). PLLA spheres with target size distribution (ca. 500 nm to 1 µm diameter) were 

recovered and exposed to two additional washing steps (re-suspension with deionized 

water and recovery by centrifugation at 4500 g for 10 minutes).  PLLA nanospheres were 

later freeze-dried using Labconco Freezone 4.5 lyophilizer and dry weight was measured. 

Dried spheres were re-suspended with deionized water, centrifuged at 4500 g, re-

suspended with 70% ethanol for sterilization for 30 minutes, and washed with 1X PBS 

solution three times prior to encapsulation.        

5.2.3 Semi-IPNs and semi-IPN composites photopolymerization 

Hyaluronic acid (Lifecore Biomedical, Chaska, MN) with 1.5 MDa molecular 

weight stock solution (1.75% w/v), PLLA nanosphere stock solution (100 mg/mL) and 

PEGdA (30% w/v) stock solutions were prepared in 1X-PBS (0.1M, pH 7.4).  Gel 

precursor solutions (total 250 µL in 1X PBS) were prepared containing 6% w/v PEGdA 

blend (12.5% PEG-bis-AA, 37.5% PEG-bis-AP, and 50.0% PEG-bis-AB) and 0.36% w/v 

HA, and 2-hydroxy-1-[4-(hydroxyethoxy) phenyl]-2-methyl-1-propanone (I-2959, BASF, 

Florham Park, NJ, 0.1% w/v), and varying amounts of PLLA nanospheres (0, 10, 20, 25, 

50 mg/mL). Sample volumes (55 µl) were pipetted in between glass separated by 1 mm 

Teflon spacers and exposed to low intensity UV illumination (365 nm, 10 mW/cm2, 

Black-Ray B100-AP, Upland, CA) for 5 minutes on each side of the disc.  
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5.2.4 Hydrogel characterization; swelling test, mechanical properties and hydrophobic 

domain visualization 

Semi-IPNs and semi-IPN composites (6% w/v PEGdAs with 0.36% HA 

containing PLLA nanospheres with 10 mg/mL and 20 mg/mL concentration respectively) 

were photopolymerized as described above (n=6/group). Circular hydrogel samples 

(1mm thick, 8mm diameter) were punched out using General Hollow Steel Punches 

(General Tools MFG., New York, NY) and equilibrated in distilled water for 24 hours to 

remove any unpolymerized macromer. Samples were lyophilized and dry weights (Dw1) 

were measured. The gels were immersed in 1X PBS and allowed to swell for 24 hours in 

order to record the wet weights (Ww). Samples were lyophilized again and second dry 

weights (Dw2) were measured. The gel content (Dw1 / Dw2), equilibrium water content 

((Ww-Dw2) / Ww2), and mass swelling ratio (Ww / Dw2) were calculated as previously 

described [Martens PJ Biomacromolecules 2003, Lin CC Adv Drug Deliv Rev 2006]. 

The weights of PLLA nanospheres in semi-IPN composite samples were subtracted in all 

swelling calculation based on the volume of semi-IPNs and concentration of PLLA 

nanospheres.  

Semi-IPNs and semi-IPN composites with same composition as in swelling tests 

were prepared and cut into custom made dumbbell shaped samples with 30 mm gauge 

length, 5 mm width, and 1 mm thickness. The samples (n=3/group) were subjected to 

75% strain at 30 mm/min using an MTS Synergy 100 (MTS Systems Corporation) at 

room temperature.  
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Hydrophobic surfaces within semi-IPNs and semi-IPN composites with 10 or 20 

mg/ml PLLA nanosphere concentrations were visualized using histological staining. 

Semi-IPNs and semi-IPN composites were gradually infiltrated by OCT (Optimal Cutting 

Temperature) compound (Sakura Finetechnical, Torrance, CA)  by varying concentration 

of OCT in 1X PBS solution (increasing concentration from 25 to 100% OCT). Samples 

in OCT were snap-frozen using liquid N2, then sectioned using Leica CM 1950 cryostat 

at desired thickness. Hydrophobic domains on 10 µm sections were stained using Sudan 

black B (Acros Organics with other supplies from Poly Scientific, Bay Shore, NY). 

Stained sections were imaged using Nikon UZ-100 widefield microscopy.  

5.2.5 In vitro cell culture 

Normal human dermal fibroblasts (NHDF, Lonza, Walkersville, MD) were 

cultured in 75cm2 tissue culture flasks at 37⁰C with 5% CO2 supply. Cells were cultured 

in DMEM/F-12 (50/50 mix) with L-glutamine media (Mediatech, Manassas, VA) 

supplemented with 10% (v/v) bovine growth serum (Thermo Scientific) and 50U/mL 

penicillin and 50µg/mL streptomycin (Mediatech). Medium was changed every 2 days 

and cells were passaged at a 1:3 ratio for cell expansion after reaching 85 to 90% 

confluence. All encapsulation studies were done with cells between passages 5 and 6.  

5.2.6 NHDF encapsulation in semi-IPNs and semi-IPN composites 

Hyaluronic acid with 1.5 MDa molecular weight stock solution (1.75% w/v), 

PLLA nanosphere (100 mg/mL) stock solution, and PEGdA (30% w/v) stock solutions 

were prepared in 1X-PBS (0.1M, pH 7.4).  Acryl-PEG-GRGDS was synthesized by 

conjugating GRGDS peptide (Bachem, Torrance, CA) to acryl-PEG-NHS (Jenkem, 
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Beijing, China) as previously described [169]. Gel precursor solutions (250 µL in 1X 

PBS) were prepared containing 6% w/v PEGdA blend (12.5% PEG-bis-AA, 37.5% PEG-

bis-AP, and 50.0% PEG-bis-AB), 0.36% w/v HA, acryl-PEG-GRGDS (1µmol/mL), 

0.1% w/v I-2959 initiator (BASF in 70% ethanol solution), PLLA nanosphere (0, 10, 20 

mg/mL as final concentration each) and NHDF (final concentration at 10.0×106 

cells/mL). Prior to cell addition, all other components were mixed and vortexed to 

uniformly disperse PLLA nanospheres. NHDF were then added and uniformly dispersed 

within the gel precursor solution by manual pipetting. Sample volumes (55 µl) were 

pipetted in between glass coverslips separated by 1 mm Teflon spacers and exposed to 

low intensity UV light for 5 minutes on each side of the disc. Semi-IPNs and semi-IPN 

composites with encapsulated cells were cultured in growth media with addition of 1mM 

ascorbic acid-2-phosphate (Sigma-Aldrich) in 35 mm diameter Petri dishes (BD, San 

Jose, CA) with 3mL culture medium.  

5.2.7 Monitoring of encapsulated NHDF morphology  

Semi-IPNs and semi-IPN composites (10 and 20 mg/mL PLLA nanosphehere 

concentrations) with encapsulated NHDF (n=2/time point in each group) were cultured in 

35mm Petri dishes for 7, 21 and 35 days, then fixed with 4% paraformaldehyde (Alfa 

Aesar, Ward Hill, MA), permeabilized with 0.1% Triton X-100 (Sigma-Aldrich), and 

stained with Alexa Fluor 594-phalloidin (Life Technologies). The morphologies of 

encapsulated cells were imaged using a Nikon Eclipse Ti confocal microscopy at various 

z-depths.  
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5.2.8 Surface characterization by AFM 

Semi-IPNs and semi-IPN composites (10 and 20 mg/mL PLLA nanosphehere 

concentrations) with encapsulated NHDF (n=3/time point) were cultured in 35mm Petri 

dishes for 7, 21 and 35 days. Acellular semi-IPNs and semi-IPN composites with 10 and 

20 mg/mL PLLA nanosphere concentrations were also prepared as day 0 samples. At 

each time point, gels were washed with 1X PBS and tested for nano-indentation in 1X 

PBS immersion using a Molecular Force Probe 3D AFM (MFP-3D, Asylum Research, 

Santa Barbara, CA, USA) using silicon nitride cantilevers (NanoAndMore USA, Lady’s 

Island, SC, 0.08 N/m spring constant, 5.0 µm tip radius, and 37.7 kHz resonance 

frequency) at room temperature. The elastic moduli of the semi-IPNs and semi-IPN 

composite surfaces were calculated by fitting the nano-indentation data with Hertz model 

[254,255]. Five indentation curves were collected at random positions of each sample.  

5.2.9 Collagen histological staining  

Deposited collagen within semi-IPNs and semi-IPN composites (10 and 20 mg/ml 

PLLA nanospheres) with encapsulated NHDF was visualized by histological staining. 

Semi-IPNs with encapsulated NHDF were cultured in 1mM ascorbic acid-2-phosphate 

supplemented growth media for 7, 21 and 35 days as described above, then fixed with 4% 

paraformaldehyde, gradually infiltrated by OCT, snap frozen with liquid N2, and then 

cryosectioned as previously described in detail (5.2.4). 15 µm sections were stained for 

collagen using aniline blue (Poly Scientific). Stained sections were imaged using Nikon 

UZ-100 widefield microscopy.  
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5.2.10 Scanning electron microscopy imaging 

 Extracellular matrix deposition on semi-IPNs and semi-IPN composites surface 

was studied using scanning electron microscopy (SEM; Hitachi S-4800, Japan). 15 µm 

thick cryosections from each semi-IPNs and semi-IPN composites (10 and 20 mg/mL 

PLLA nanospheres) group with encapsulated NHDF at day 35 were dehydrated through 

grade series of  ethanol solutions and hexamethyldisilazane (United Chemical 

Technologies, Bristol, PA), sputtered with gold for 2 minutes in prior to imaging.   

5.2.11 Collagen quantification 

Semi-IPNs and semi-IPN composites (10 and 20 mg/mL PLLA nanospheres) with 

encapsulated NHDF were cultured in growth media supplemented with ascorbic acid-2-

phosphate (Sigma-Aldrich) for 7, 21, and 35 days. 12 samples from each group at each 

time point were harvested, washed twice with 1X-PBS, collected in three 1.7 mL 

centrifuge tubes (n=4 in each tube), and stored in -80⁰C in deep freezer. Samples were 

thawed, manually homogenized, lysed with 0.1% w/v Triton X-100 (Sigma-Aldrich), 

sonicated for 10 minutes in ice bath, and centrifuged at 10,000 g at 4⁰C for 10 minutes. 

Supernatants were recovered and the amount of total DNA measured using Pico-green 

assay (Life Technologies) according to manufacturer’s instruction. The remaining sample 

volumes were mixed with equal volumes of 12N hydrocholoric acid (Fisher Scientific) to 

have 6N as final HCl concentration and acid-hydrolyzed overnight at 120⁰C. The 

digested products were centrifuged at 10,000 g for 10 minutes at room temperature and 

supernatants were used for hydroxyproline assay. Briefly, hydroxyproline in acid 

hydrolyzed samples was reacted with p-dimethylamino benzaldehyde and chloramine-T 
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hydrate (both from Sigma-Aldrich). Absorbance was measured at 558 nm and 

hydroxyproline concentration was calculated from a standard curve prepared with trans-

4-hydroxy-L-proline (Sigma-Aldrich). Total collagen content of the semi-IPNs was 

estimated from hydroxyproline assay result based on the estimation that hydroxyproline 

made up about 13.2% of the total collagen [256,257]. Total collagen amounts were 

normalized by total DNA contents from Pico-green assay results. 

5.2.12 Statistical analysis 

Quantitative data were analyzed by ANOVA using Tukey’s method for post-hoc 

comparisons (one-way ANOVA followed by Bonferroni’s multiple comparison test). p 

values < 0.05 were considered to be statistically significant. All quantitative data are 

presented as mean ± standard deviation. 

 

5.3 Results 

5.3.1 PLLA nanosphere production 

Various intensities and exposure times of sonication were tested to increase the 

product yield of PLLA nanospheres with mean size distribution ranging from 500 to 900 

nm diameter. Sonication intensity at 10 Watts for 30 seconds was identified as the 

optimal condition for production of PLLA nanospheres in this size range. PLLA 

nanosphere yield was 16.2% w/w (dry weight of product/dry weight of raw PLLA 

particulate). Most of yield loss occurred through the removal of large size spheres (larger 

than 50 µm size microspheres) using the cell strainer. 
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5.3.2 Hydrogel characterization; swelling and mechanical properties of semi-IPNs 

containing various amounts of PLLA nanospheres and hydrophobic domain visualization 

The effect of PLLA nanosphere incorporation on semi-IPNs physical properties 

was analyzed by measuring swelling and elastic modulus. Semi-IPNs containing 10 

mg/mL PLLA nanospheres did not exhibit any significant differences in gelation 

efficiency and swelling relative to controls without PLLA nanospheres (Figure 5.1). 

When the PLLA nanosphere concentration was raised to 20 mg/ml, gelation efficiency 

significantly increased and swelling significantly decreased relative to both composites 

containing 10 mg/ml and the control gels without PLLA nanospheres. Figure 5.2 shows 

the elastic modulus of PEGdAs/HA semi-IPNs containing 0 (control), 10, and 20 mg/mL 

PLLA nanospheres. Addition of 20 mg/ml PLLA nanospheres significantly increased the 

elastic modulus of semi-IPNs. The incorporation of higher amounts of PLLA 

nanospheres (more than 25 mg/mL) resulted in breakage of sample during tensile test, 

suggesting the microsphere content had reached a level where it compromised the 

mechanical integrity of the semi-IPN network. The hydrophobic domains within 10 µm 

section of semi-IPNs were visualized by Sudan black B staining. Hydrophobic surface 

was stained black showing the hydrophobic domain distribution within the entire volume 

of semi-IPN control (no PLLA nanospheres, semi-IPNs) and semi-IPN/PLLA nanosphere 

composites (Semi-IPN composites) as shown in Figure 5.3. 
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Figure 5.1 Swelling test results of 6% w/v PEGdA/0.36% w/v HA semi-IPNs containing 

varying amounts of PLLA nanospheres; gel content (A), equilibrium water content (B), 

and mass swelling ratio (C). *=p<0.05 relative to PEGdA/HA semi-IPNs (no 

nanospheres) and #=p<0.05 between groups. 
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Figure 5.2 Elastic modulus of 6% w/v PEGdA/0.36% w/v HA semi-IPNs containing 

varying amounts of PLLA nanospheres. *=p<0.05 relative to PEGdA/HA semi-IPNs (no 

nanospheres) and #=p<0.05 between groups. 

 

Figure 5.3 Widefield microscopy images of Sudan black B stained cryosections of 6% 

w/v PEGdAs / 0.36% w/v HA semi-IPNs containing 0 mg/mL (A), 10 mg/mL (B), and 

20 mg/mL (C) PLLA nanospheres, scale bar = 500 µm. 
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5.3.3 NHDF morphology on semi-IPNs and semi-IPN composite surfaces 

Both semi-IPNs (no PLLA nanospheres) and semi-IPN composites (semi-IPNs 

containing PLLA nanospheres) supported the survival and spreading of encapsulated 

NHDF. NHDF morphology within semi-IPN composites was not imaged clearly because 

PLLA nanospheres interfered with light penetration into the samples, resulting in 

increased noise level in confocal image (not shown here). The only detectable difference 

between groups in morphological development of NHDF was observed on sample 

surfaces (z=0) at 7 days in culture. NHDF on semi-IPN composites showed increased cell 

spreading and even dense network formation on the surface of semi-IPN composites with 

20 mg/mL PLLA nanospheres (Figure 5.4).   

 

Figure 5.4 Confocal microscopy images of NHDF on the surface of 6% w/v PEGdA / 

0.36% w/v HA semi-IPNs (A) and semi-IPN composites containing PLLA nanospheres 

at 10 mg/mL (B), and 20 mg/mL (C) concentration after 7 days in culture, scale bar = 100 

µm. 

 

 

 



 101 

5.3.4 Monitoring changes in surface mechanical property using AFM nano-indentation 

The changes in elastic modulus on the surface of semi-IPNs and semi-IPN 

composites over entire time scale of cell culture were monitored using AFM nano-

indentation technique (Figure 5.5). Elastic modulus values for acellular control semi-

IPNs were in close agreement with the values measured by tensile testing (Figure 5.2). 

Interestingly, the surface elastic moduli values of acellular semi-IPN composites are 

different from tensile testing values, 11.3 ± 0.49 kPa from tensile testing vs. 5.97 ± 0.09 

kPa from AFM nano-indentation for acellular semi-IPN composites with 10 mg/mL 

PLLA nanospheres. As for semi-IPN composites with 20 mg/mL PLLA nanospheres, 

AFM nano-indentation results showed higher elastic modulus value (18.01 ± 2.57 kPa) 

over one from tensile testing (12.5 ± 0.44 kPa). All three groups showed significant 

decreases in surface elastic modulus at day 7 compared to acellular groups (day 0). In 

case of semi-IPN composites with 20 mg/mL PLLA nanospheres, the value was an order 

of magnitude lower. Then, all 3 groups exhibited similar surface elastic moduli values 

(no significant difference) after 21 and 35 days in culture.  
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Figure 5.5 Elastic modulus of the surface of acellular and NHDF encapsulated semi-

IPNs and semi-IPN composites over time obtained from AFM nano-indentation 

technique. *=p<0.05 relative to semi-IPNs (no spheres) and #=p<0.05 between groups. 
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5.3.5 Collagen deposition within NHDF encapsulated semi-IPNs and semi-IPN 

composites 

 The effect of incorporation of PLLA nanospheres in semi-IPNs on collagen 

deposition was visualized by histological staining and quantified by measuring total 

collagen content. Semi-IPN composites showed more collagen deposition over semi-IPN 

controls after 35 days in culture as shown in Figure 5.6. Aniline blue was used for 

staining collagen. No other counter stain agent was used to visualize collagen around cell 

(pericelluar region) as it could interfere the visualization. Within semi-IPNs and semi-

IPN composites, pericellular regions are stained darker (blue), indicating collagen 

deposition around the cell. Also more collagen molecules were deposited on the surface 

of semi-IPNs and semi-IPN composites.   

 

Figure 5.6 Widefield microscopy images of NHDF encapsulated semi-IPN and semi-IPN 

composite cryosections stained with aniline blue for collagen (stained blue) after 35 days 

in culture; semi-IPNs (A), semi-IPN composites with 10 mg/mL (B), and 20 mg/mL (C) 

PLLA nanosphere concentrations, scale bar = 500 µm. 
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To confirm these histological results, total collagen amounts (estimated from 

hydroxyproline assay results and then normalized by total DNA amounts in each sample) 

deposited within semi-IPNs and semi-IPN composites were compared. Due to low 

concentration of hydroxyproline within individual semi-IPNs and semi-IPN composite 

sample (close to detection threshold), a total of 4 samples were hydrolyzed together for 

each hydroxyproline assay (i.e. total 12 hydrogels were used for one time point in Figure 

5.7). Collagen deposition in both semi-IPNs and semi-IPN composites did not show 

significant difference between groups at day 7 and 21. Deposited collagen amounts were 

significantly increased for all groups at day 21 in culture compared to day 7 groups. At 

day 35 in culture, semi-IPN composites exhibited significantly increased collagen 

deposition relative to semi-IPNs control (Figure 5.7). 
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Figure 5.7 Total collagen amounts within semi-IPNs and semi-IPN composites over time 

obtained from hydroxyproline assay and normalized by total DNA concentration from 

Pico-green assay results. *=p<0.05 relative to total collagen measured at day 7 in each 

group, +=p<0.05 relative to total collagen measured at day 21 in each group and 

#=p<0.05 between groups. 
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Scanning electron microscopy images also showed ECM deposition on the 

surface of PLLA nanospheres (Figure 5.8 C through F) within semi-IPN composites 

compared to semi-IPNs (Figure 5.8A and B). Although the mean size distribution was 

submicron size (500 to 900 nm diameter), the diameters of PLLA nanospheres in SEM 

images exhibited relatively larger size diameter due to aggregated nature of hydrophobic 

particles inside hydrophilic hydrogel environment (Figure 5.8D and E) and deposited 

ECM proteins on surface of PLLA nanospheres (Figure 5.8C and F). 
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Figure 5.8 Scanning electron microscopy images of NHDF encapsulated within semi-

IPNs (A and B) and PLLA nanospheres within semi-IPN composites with 10 mg/mL (C 

and D), and 20 mg/mL (E and F) PLLA nanosphere concentrations after 35 days in 

culture. 
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5.4 Discussion 

Inside a successful cell transplantation hydrogel scaffold, encapsulated cells must 

produce native ECM molecules to gradually replace the original polymer network as it 

degrades. PEG-based hybrid hydrogel scaffolds have been widely investigated as 

matrices for 3D cell culture and transplantation as PEG can be easily modified with 

naturally derived molecules such as adhesion and MMP sensitive peptides [6,45,85]. 

Despite its many benefits, the original biomedical application of PEG was grafting to 

other surfaces such as implant or prosthetics to create anti-fouling, protein-repellent 

materials [162,241,242]. Therefore, PEG may not be a particularly effective material for 

supporting ECM binding and assembly. Many research groups have also reported 

diffusional loss of matrix protein produced by encapsulated cells in PEG based hydrogel 

scaffolds as a consequence of PEG’s inability to bind these molecules [163–

165,244,258]. In this study, to avoid diffusional loss of ECM molecules produced from 

encapsulated cells in hydrogel network, nanometer size range (500 to 950 nm diameter) 

hydrophobic PLLA nanospheres were incorporated within semi-IPNs to promote matrix 

protein deposition inside the network.  

The incorporation of PLLA nanospheres affected physical properties of semi-

IPNs. Our first step was to encapsulate PLLA nanospheres (along with NHDF) and 

confirm they were homogenously distributed (Figure 5.3 and 5.8). Interestingly, PLLA 

nanospheres increased elastic modulus of semi-IPNs in a dose-dependent manner up to 

20 mg/mL concentration range although it damaged the network structure over 25 mg/mL 

concentration (breakage of sample during tensile testing) (Figure 5.2). Semi-IPN 



 109 

composites with 20 mg/mL PLLA nanospheres showed significantly increased gel 

content and significantly decreased equilibrium water content and mass swelling ratio 

relative to semi-IPNs control and semi-IPN composites with 10 mg/mL PLLA 

nanosphere groups. This may be due to the increase in hydrophobicity of the network by 

encapsulated PLLA nanospheres, which could be explained by the work done by 

Sawhney and co-workers. They demonstrated that the addition (increase) of hydrophobic 

PLA or PGA groups between central PEG block and terminal acrylate groups led to 

micelle type conformational change. This change effectively increased the proximity of 

acrylate groups, resulting in more rapid polymerization [259].  

After day 7 in ascorbic acid-2-phosphate supplemented culture, encapsulated 

NHDF showed different degree of spreading and network formation on the surface of 

semi-IPNs and semi-IPN composites (z at 0 µm in confocal image in Figure 5.4). Cells 

on semi-IPN composites showed increased cell spreading and network formation 

compared to semi-IPNs control, consistent with previous reports of increased cell 

spreading and network formation on stiffer surfaces [137,260,261]. The incorporation of 

PLLA nanospheres provided localized stiffer surface (18.0 ± 2.6 kPa) than semi-IPNs 

alone (10.9 ± 0.1 kPa) in case of semi-IPN composites with 20 mg/mL PLLA 

nanospheres. At day 7 in culture, the elastic modulus of semi-IPN compoistes with 20 

mg/mL surface was dramatically decreased from 18.0 ± 2.6 kPa to 0.53 ± 0.36 kPa 

(Figure 5.5). This dramatic change reflected rapid network formation (followed by ECM 

deposition), and was also visualized by confocal microscopy image (Figure 5.4). AFM 

nano-indentation results showed biphasic behavior in elastic moduli values of semi-IPN 
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composites with 20 mg/mL PLLA nanosphere surface. Between day 7 and 21, all 

surfaces of semi-IPNs and semi-IPN composites groups were gradually covered by 

cellular network and deposited matrix protein and elastic moduli values from AFM nano-

indentation reached the plateau. After 21 days in culture, all surfaces formed dense 

ECM/cellular network (Figure 5.5). The final elastic modulus values ranged around 2 kPa 

(no significant difference amongst groups at day 21 and 35 and between days in each 

group), which suggested the surfaces of semi-IPNs and semi-IPN composites were 

covered by matrix and densely packed cellular network, similar to the value of adipose 

tissue elastic modulus and human dermis range [59,262,263].  

Like other ECM proteins, collagens are synthesized intracellularly and excreted 

into pericellular regions, and later diffuse to extracellular region in vivo [264]. In highly 

crosslinked hydrogel network system, diffusion of secreted collagen molecules may be 

limited to the pericellular region as hydrogel mesh size is smaller than collagen (~67 nm 

size for hydrated collagen fibril). Mesh size of our semi-IPNs was estimated ca. 10 nm 

size, comparable to other studies [187,265,266]. At initial stage of cell culture, collagens 

are deposited mainly within the pericellular region as hydrogel network structure remains 

intact. As the hydrogel network degrades, free collagens diffuse to matrix region 

[67,101,143,246,247,267]. However, more ECM protein deposition within semi-IPNs 

and less diffusional loss would be expected. HA in semi-IPNs was degraded relatively 

faster than PEGdA backbone by Hase activity and cells encapsulated within semi-IPNs 

spread as early as day 3 in culture as shown in Chapter 3. Hydrophobic surfaces of PLLA 

nanosphres could provide sites for ECM protein adsorption and fibril nucleation outside 
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the pericellular region. No significant difference in collagen deposition between semi-

IPNs and semi-IPN composites up to day 21 in culture (Figure 5.7), suggesting produced 

collagens were deposited mainly in pericellular region also shown as darker (blue) spots 

within semi-IPNs and semi-IPN composites in Figure 5.6 even though HA enriched zone 

was enzymatically degraded as early as day 3 in culture. Collagen deposition was 

observed throughout the entire volume of semi-IPNs and semi-IPN composites at the end 

of culture at day 35 (Figure 5.6). Especially, more collagen was deposited on the surface 

of semi-IPNs and semi-IPN composites. At day 35, collagen deposition was significantly 

increased in semi-IPN composites relative to semi-IPNs control and collagen deposited 

within semi-IPNs control did not significantly increase after 21 days, indicating that 

collagen deposition mainly occurred on the surface of PLLA nanospheres, not on 

pericellular region after 21 days in culture. SEM images also confirmed matrix protein 

deposition on PLLA nanospheres after 35 days in culture (Figure 5.8C through F). 

Although mean size distribution of most PLLA nanosphere population ranges from 500 

to 900 nm diameter, larger size PLLA partcles were spotted due to local PLLA 

nanosphere aggregation by hydrophobic interaction (Figure 5.8D and E) and ECM 

protein deposition on the surface of PLLA nanospheres (Figure 5.8D and F). Increased 

collagen deposition within semi-IPN composites is mainly attributed to direct 

accumulation of cell-secreted collagen on hydrophobic PLLA nanosphere surface. These 

results suggest that the incorporation of hydrophobic PLLA nanospheres within semi-

IPNs support matrix protein deposition at the later stage of 3D cell culture.   
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5.5 Conclusions 

These studies demonstrate that through the incorporation of PLLA nanospheres 

within the network, novel semi-IPN composites can provide localized hydrophobic and 

stiffer surfaces that support enhanced matrix protein adsorption and promote rapid 

cellular network formation relative to semi-IPNs. Newly synthesized matrix proteins 

were adsorbed on hydrophobic surfaces of encapsulated PLLA nanospheres after 

saturated deposition in the pericellular region. Additionally, the incorporation of 

submicron-size hydrophobic polymer spheres within semi-IPNs results in less swelled 

hydrogel network with significantly increased overall mechanical properties. The overall 

results suggest that novel semi-IPN composites system can potentially benefit wound 

healing applications with increased matrix molecule deposition.  
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CHAPTER SIX 

CONCLUSIONS AND FUTURE RESEARCH SUGGESTIONS 

 

6.1 Conclusions 

 The ultimate goal of scaffold-based cell transplantation is to regenerate healthy 

tissue at wound sites, which requires resorption/degradation of the scaffold accompanied 

by new tissue formation through cell division, differentiation and matrix synthesis. 

Toward this end, the overall goal of this dissertation study was to develop polyethylene 

glycol diacrylate (PEGdA) / hyaluronic acid (HA) based semi-interpenetrating polymer 

networks (semi-IPNs) capable of supporting 3D cell spreading, migration, differentiation, 

and extracellular matrix (ECM) deposition for cell therapy applications. These studies 

build upon previous work reporting the synthesis of three PEGdA macromers with 

different hydrolytic degradation kinetics [188] and the ability of PEG-bis-AP with the 

addition of native HA to form semi-IPNs that support encapsulated fibroblast spreading 

[187]. 

In chapter 3, it was hypothesized that the incorporation of native HA creates 

network defects by polymerization-induced phase separation that provides space for 

initial Hase-mediated cell spreading and that controlled long term cellular remodeling can 

be achieved by mixing of PEGdA macromers with various hydrolytic degradation rates. 

First, increased gel turbidity was observed in semi-IPNs, but not in copolymerized 

hydrogels containing methacrylated HA that did not support cell spreading, which 

suggests an underlying mechanism of polymerization-induced phase separation resulting 
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in HA-enriched defects within the network structure. These interconnected micro-

domains provide the space for initial cell spreading via enzymatic degradation. Thus, 

PEGdA/HA semi-IPNs support two degradation mechanisms-enzymatic degradation that 

is relatively fast and allows cell to assume a physiological morphology that is essential to 

the function of most mesenchymally-derived cells, as well as more gradual hydrolytic 

degradation to allow sustained remodeling. Through systematic optimization of network 

composition, fibroblast spreading exhibited a biphasic response to HA concentration, 

required a minimum HA molecular weight, decreased with increasing PEGdA 

concentration, and was independent of hydrolytic degradation at early time points. 

PEGdA/HA semi-IPNs were also able to support cell spreading at relatively high levels 

of mechanical properties (~10 kPa elastic modulus) compared to alternative hybrid 

hydrogels.  Optimized semi-IPN formulations using the blend of three PEGdA 

macromers with varying susceptibility supported long-term survival of encapsulated 

fibroblasts and sustained migration in a gel-within-gel encapsulation model. These results 

demonstrate that PEGdA/HA semi-IPNs provide dynamic microenvironments that can 

support 3D cell survival, spreading, and migration for a variety of cell transplant and 

three dimensional in vitro culture applications. 

In Chapter 4, it was hypothesized that the semi-IPN with optimal mechanical 

properties for osteogenic differentiation could support prolonged osteogenic 

differentiation of mesenchymal stem cells. Selected base composition semi-IPNs fell into 

optimal range for osteogenic differentiation of hMSC in 3D culture condition (10 to 30 

kPa) [8]. Semi-IPNs with PEGdA blends successfully supported osteogenic 
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differentiation of encapsulated hMSCs. hMSCs initially spread in HA-enriched zones 

which were degraded faster by Hase and resulting spindle morphology would benefit 

osteogenic differentiation because this is closer to hMSC morphology undergoing 

osteogenic differentiation in vivo. Ostetogenic differentiation of encapsulated hMSCs 

showed faster osteoblast maturation and similar tendency of mineralization relative to 

other 2D monolayer studies [220]. Physiological calcium deposition could be observed 

macroscopically as early as day 14. Hydrogels kept relatively comparable mechanical 

integrity and its initial volume up to day 35, suggesting that hydrogel network was 

replaced by newly generated calcified tissue with collagen, also quantitatively confirmed 

by AA spectrometry. Acellular semi-IPN control result showed there was autologous 

calcium deposition and culture without dexamethasone also confirmed the dependency of 

osteogenic differentiation of hMSCs on dexamethasone. These results demonstrate that 

PEGdA/HA semi-IPNs can support long-term osteogenic differentiation of hMSCs and 

can be used as scaffolds for hard tissue (orthopaedic) engineering applications.  

 In Chapter 5, it was hypothesized that hydrogels have limited capacity for protein 

adsorption due to their hydrophilic nature. In order to overcome this, biodegradable poly-

L-lactic acid (PLLA) nanospheres were incorporated within the networksto provide 

hydrophobic surfaces for protein adsorption. Compared to control group (no 

microspheres), higher degree of collagen deposition and more cellular network formation 

inside semi-IPNs were clearly observed at day 35 in histological staining. Additionally, 

the incorporation of PLLA nanospheres increased overall elastic modulus value and gel 

content of semi-IPNs, and decreased equibrium water content and mass swelling ratio of 
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semi-IPNs, suggesting that encapsulated hydrophobic PLLA nanospheres enhanced 

polymerization process. Locally increased surface stiffness by PLLA microspheres 

accommodated increased cellular spreading and accelerated network formation. These 

results demonstrate that semi-IPN composites containing biodegradable hydrophobic 

nanospheres provide dynamic microenvironments that can further accelerate ECM 

remodeling relative to pure hydrogel scaffolds.     

  Overall, these studies demonstrated that PEGdA/HA semi-IPN system 

successfully supported long-term cellular remodeling and its bioactivity could be further 

enhanced via the incorporation of hydrophobic nanospheres. Both semi-IPNs and semi-

IPN composites could be used as cell transplant tissue engineering scaffold and 3D in 

vitro culture system for both soft and hard tissue applications.  

 

6.2 Future Research Suggestions  

As a next step, successful in vitro culture results should be evaluated in vivo. Cells 

encapsulated within semi-IPNs can be transplanted to verify degradation profile and 

tissue reconstruction capability in vivo. And following studies are suggested for each 

specific aims. 

Aim 1: To further optimize semi-IPN composition for different target elastic 

moduli values 

 Although semi-IPNs are fairly well optimized, it can be further tested for higher 

MW of HA (more than 1.5 MDa) or higher PEGdA concentration with higher 

PEGdA/HA ratios. We have already tested 6% PEGdA/HA ratios and found 6% optimal. 
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However, at higher PEGdA concentration over 8% w/v, the ratio of PEGdA/HA higher 

than 6% has not been tested. Cells react differently to elastic modulus of scaffold. If 

optimal composition for different PEGdA concentration (i.e. different elastic modulus 

value) can be identified for corresponding target mechanical properties, the application 

can be extended.  

 Aim 2: To expand semi-IPN application toward other stem cell 

differentiation lineage and test the conjugation of bioactive molecule to enhance its 

functionality 

Similar semi-IPN compositions can be used for hMSC differentiation toward 

chondrogenic and adipogenic differentiation in vitro. These two differentiation conditions 

can easily be applied as hMSCs are capable of differentiating toward these lineages. 

Ongoing studies are examining covalent conjugation of bioactive molecules such as 

dexamethasone to the HA component of these networks for sequestration and cell-

mediated release during network remodeling. In addition, conjugating other drugs with 

dexamethasone would create bilayer scaffolds that can target osteochondral defects with 

two different zones, one for bone and the other for cartilage. 

Aim 3: To further investigate the effect of incorporation of PLLA 

nanospheres on surface roughness and gene expression, and to further enhance 

bioactivity by loading bioactive growth factors within PLLA nanospheres as 

delivery vehicle along with cell transplant scaffold  
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 3.1 Surface roughness analysis 

Material surface roughness affects cell adhesion and other cellular activities 

[268,269]. Although the difference observed in network formation rate on semi-IPNs and 

semi-IPN composites was attributed to differences in surface stiffness, it is also possible 

that changes in surface roughness may have contributed. Therefore, surface roughness 

measurement (surface profile) should be done to identify the effect of PLLA nanospheres 

on surface roughness.  

3.2 Matrix analysis 

Although changes in collagen content have been attributed to increased adsorption 

to the surface of hydrophobic nanospheres resulting in improved retention within the 

network, it is also possible that the changes in mechanical properties between semi-IPNs 

and semi-IPN composites may also affect collagen synthesis. Therefore, it would be 

beneficial to compare type I collagen transcriptional activity between cells encapsulated 

within composite and control semi-IPNs to determine if this mechanism may also be 

contributing to the observed results. 

"3.3 Use of nanoparticle to deliver drugs/growth factors 

In this dissertation study, only non-porous PLLA spheres were used for semi-IPN 

composites in order to investigate the effect of inclusion of hydrophobic surface. Double 

emulsion technique can be applied to include various growth factors such as TGF-β1, 

vascular endothelial growth factor (VEGF), and fibroblast growth factor (FGF) in 

accordance with target application for enhanced bioactivity of semi-IPN composites.   
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