
Clemson University
TigerPrints

All Dissertations Dissertations

12-2015

An Efficient Holistic Data Distribution and Storage
Solution for Online Social Networks
Guoxin Liu
Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Liu, Guoxin, "An Efficient Holistic Data Distribution and Storage Solution for Online Social Networks" (2015). All Dissertations. 1774.
https://tigerprints.clemson.edu/all_dissertations/1774

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1774&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1774&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1774&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1774&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/1774?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1774&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

An Efficient Holistic Data Distribution and Storage
Solution for Online Social Networks

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Computer Engineering

by

Guoxin Liu

December 2015

Accepted by:

Dr. Haiying Shen, Committee Chair

Dr. Richard R. Brooks

Dr. Kuang-Ching (KC) Wang

Dr. Feng Luo

Abstract

In the past few years, Online Social Networks (OSNs) have dramatically spread over the

world. Facebook [4], one of the largest worldwide OSNs, has 1.35 billion users, 82.2% of whom are

outside the US [36]. The browsing and posting interactions (text content) between OSN users lead to

user data reads (visits) and writes (updates) in OSN datacenters, and Facebook now serves a billion

reads and tens of millions of writes per second [37]. Besides that, Facebook has become one of the

top Internet traffic sources [36] by sharing tremendous number of large multimedia files including

photos and videos. The servers in datacenters have limited resources (e.g. bandwidth) to supply

latency efficient service for multimedia file sharing among the rapid growing users worldwide. Most

online applications operate under soft real-time constraints (e.g., ≤ 300 ms latency) for good user

experience, and its service latency is negatively proportional to its income. Thus, the service latency

is a very important requirement for Quality of Service (QoS) to the OSN as a web service, since it

is relevant to the OSN’s revenue and user experience. Also, to increase OSN revenue, OSN service

providers need to constrain capital investment, operation costs, and the resource (bandwidth) usage

costs. Therefore, it is critical for the OSN to supply a guaranteed QoS for both text and multimedia

contents to users while minimizing its costs.

To achieve this goal, in this dissertation, we address three problems. i) Data distribution

among datacenters: how to allocate data (text contents) among data servers with low service latency

and minimized inter-datacenter network load; ii) Efficient multimedia file sharing: how to facilitate

the servers in datacenters to efficiently share multimedia files among users; iii) Cost minimized data

allocation among cloud storages: how to save the infrastructure (datacenters) capital investment

and operation costs by leveraging commercial cloud storage services.

Data distribution among datacenters. To serve the text content, the new OSN model,

which deploys datacenters globally, helps reduce service latency to worldwide distributed users and

ii

release the load of the existing datacenters. However, it causes higher inter-datacenter communica-

tion load. In the OSN, each datacenter has a full copy of all data, and the master datacenter updates

all other datacenters, generating tremendous load in this new model. The distributed data storage,

which only stores a user’s data to his/her geographically closest datacenters, simply mitigates the

problem. However, frequent interactions between distant users lead to frequent inter-datacenter com-

munication and hence long service latencies. Therefore, the OSNs need a data allocation algorithm

among datacenters with minimized network load and low service latency.

Efficient multimedia file sharing. To serve multimedia file sharing with rapid growing

user population, the file distribution method should be scalable and cost efficient, e.g. minimiza-

tion of bandwidth usage of the centralized servers. The P2P networks have been widely used for

file sharing among a large amount of users [58, 131], and meet both scalable and cost efficient re-

quirements. However, without fully utilizing the altruism and trust among friends in the OSNs,

current P2P assisted file sharing systems depend on strangers or anonymous users to distribute files

that degrades their performance due to user selfish and malicious behaviors. Therefore, the OSNs

need a cost efficient and trustworthy P2P-assisted file sharing system to serve multimedia content

distribution.

Cost minimized data allocation among cloud storages. The new trend of OSNs

needs to build worldwide datacenters, which introduce a large amount of capital investment and

maintenance costs. In order to save the capital expenditures to build and maintain the hardware

infrastructures, the OSNs can leverage the storage services from multiple Cloud Service Providers

(CSPs) with existing worldwide distributed datacenters [30, 125, 126]. These datacenters provide

different Get/Put latencies and unit prices for resource utilization and reservation. Thus, when se-

lecting different CSPs’ datacenters, an OSN as a cloud customer of a globally distributed application

faces two challenges: i) how to allocate data to worldwide datacenters to satisfy application SLA

(service level agreement) requirements including both data retrieval latency and availability, and ii)

how to allocate data and reserve resources in datacenters belonging to different CSPs to minimize

the payment cost. Therefore, the OSNs need a data allocation system distributing data among

CSPs’ datacenters with cost minimization and SLA guarantee.

In all, the OSN needs an efficient holistic data distribution and storage solution to minimize

its network load and cost to supply a guaranteed QoS for both text and multimedia contents. In

this dissertation, we propose methods to solve each of the aforementioned challenges in OSNs.

iii

Firstly, we verify the benefits of the new trend of OSNs and present OSN typical properties

that lay the basis of our design. We then propose Selective Data replication mechanism in Distributed

Datacenters (SD3) to allocate user data among geographical distributed datacenters. In SD3, a

datacenter jointly considers update rate and visit rate to select user data for replication, and further

atomizes a user’s different types of data (e.g., status update, friend post) for replication, making

sure that a replica always reduces inter-datacenter communication.

Secondly, we analyze a BitTorrent file sharing trace, which proves the necessity of proximity-

and interest-aware clustering. Based on the trace study and OSN properties, to address the second

problem, we propose a SoCial Network integrated P2P file sharing system for enhanced Efficiency and

Trustworthiness (SOCNET) to fully and cooperatively leverage the common-interest, geographically-

close and trust properties of OSN friends. SOCNET uses a hierarchical distributed hash table

(DHT) to cluster common-interest nodes, and then further clusters geographically close nodes into a

subcluster, and connects the nodes in a subcluster with social links. Thus, when queries travel along

trustable social links, they also gain higher probability of being successfully resolved by proximity-

close nodes, simultaneously enhancing efficiency and trustworthiness.

Thirdly, to handle the third problem, we model the cost minimization problem under the

SLA constraints using integer programming. According to the system model, we propose an Eco-

nomical and SLA-guaranteed cloud Storage Service (ES3), which finds a data allocation and resource

reservation schedule with cost minimization and SLA guarantee. ES3 incorporates (1) a data al-

location and reservation algorithm, which allocates each data item to a datacenter and determines

the reservation amount on datacenters by leveraging all the pricing policies; (2) a genetic algorithm

based data allocation adjustment approach, which makes data Get/Put rates stable in each data-

center to maximize the reservation benefit; and (3) a dynamic request redirection algorithm, which

dynamically redirects a data request from an over-utilized datacenter to an under-utilized datacenter

with sufficient reserved resource when the request rate varies greatly to further reduce the payment.

Finally, we conducted trace driven experiments on a distributed testbed, PlanetLab, and

real commercial cloud storage (Amazon S3, Windows Azure Storage and Google Cloud Storage)

to demonstrate the efficiency and effectiveness of our proposed systems in comparison with other

systems. The results show that our systems outperform others in the network savings and data

distribution efficiency.

iv

Acknowledgments

I would like to thank many people who helped me during my Ph.D. study at Clemson

University. I would like to first thank my advisor Dr. Haying Shen, who not only shed lights on

my study, but also help me solve many difficulties in life. Without her help, I cannot finish my

Ph.D. study, not even to mention a productive research. Her passion for scientific research and hard

working will always set an example to me, which will benefit me for my whole life.

I would also like to thank my committee members: Dr. Richard R. Brooks, Dr. Kuang-

Ching Wang, and Dr. Feng Luo. Their professional suggestions for my research and valuable

comments for my dissertation helped me finish my research. I have learned a lot from their broad

knowledge and deep outstanding of research, which helps me pursue my future career. I also want

to thank Dr. Daniel L. Noneaker, who always encourages me to explore the research happiness and

overcome the obstacles in both research and daily life.

My life at Clemson University is full of happiness and friendship. I should thank all labmates

in the Pervasive Communication Lab for their help and hard working together to accomplish each

research projects. Without their accompanies, we research cannot be fruitful and my life at Clemson

will be grey.

To the end, the most important is that I am deeply grateful to my wife, Fang Qi, and my

parents, Zhiqiang Liu and Xinling Liang, whose endless love and support always be the harbors of

my heart and soul. My achievement belongs to them.

v

Table of Contents

Title Page . i

Abstract . ii

Acknowledgments . v

List of Tables . viii

List of Figures . ix

1 Introduction . 1
1.1 Problem Statement . 2
1.2 Research Approach . 5
1.3 Contributions . 9
1.4 Dissertation Organization . 11

2 Related Work . 12
2.1 Data Allocation among Datacenters in OSNs . 12
2.2 P2P Assisted Efficient Multimedia File Sharing Systems 14
2.3 Cost Minimized Data Allocation among Geo-distributed Cloud Storages 16

3 SD3: An Network Load Efficient Data Allocation among Datacenters in OSNs . 18
3.1 Basis of the Design of SD3 . 18
3.2 The Design of SD3 . 26
3.3 Performance Evaluation of SD3 . 37

4 SOCNET: An Trustworthy and Efficient P2P-Assisted Multimedia File Sharing
among Users for OSNs . 49
4.1 BitTorrent Trace Data Study . 49
4.2 Social Network Integrated P2P File Sharing System 54
4.3 Evaluation of SOCNET . 66

5 ES3: An Cost Efficient and SLA-Guaranteed Data Allocation Among CPSs for
OSNs . 79
5.1 Problem Statement . 79
5.2 Data Allocation and Resource Reservation . 84
5.3 GA-based Data Allocation Adjustment . 89
5.4 Dynamic Request Redirection . 91
5.5 Performance Evaluation . 92

6 Conclusions and Future Work .100

vi

Bibliography .103

vii

List of Tables

3.1 Notations of input and output in SD3. 27

5.1 Notations of inputs and outputs. 80

viii

List of Figures

1.1 An example of geo-distributed cloud storage across multiple providers. 7

3.1 The OSN user distribution [105]. 19
3.2 The OSN datacenters and one community distribution. 19
3.3 CDF of user connection latencies to the OSN. 19
3.4 CDF of user latencies vs. num. of simulated datacenters. 19
3.5 Distance of friend and interaction. 20
3.6 Avg. interaction rates between friends. 20
3.7 Variance of interaction frequency. 20
3.8 User update rates. 20
3.9 Update rates of different types. 22
3.10 Status updates over time. 22
3.11 Friend post updates over time. 22
3.12 Photo updates over time. 22
3.13 The time between successive comments. 23
3.14 Standard deviation of friends’ post rates of a user. 23
3.15 Time of absent periods. 23
3.16 Number of updates in an absence period. 23
3.17 The expected subsequent absent time. 25
3.18 Inter-datacenter interactions in SD3. 25
3.19 Comparison of replication methods. 31
3.20 Locality-aware multicast vs. broadcast tree. 35
3.21 The datacenter congestion control. 35
3.22 Num of total replicas. 38
3.23 Num. of replicas. 38
3.24 Avg. replication distance. 38
3.25 Network load savings. 38
3.26 Avg. service latency. 40
3.27 Visit hit rate. 40
3.28 Transmission traffic. 40
3.29 Network load savings. 40
3.30 Effect of threshold for replica creation and maintenance. 42
3.31 Datacenter load balance. 42
3.32 Network load savings. 42
3.33 Multicast vs. broadcast transmission time. 44
3.34 Effectiveness of the replica deactivation over thresholds. 45
3.35 Percentage of visits invoking activations. 45
3.36 Datacenter overload. 47
3.37 Total replica maintaining time. 47

4.1 Necessity of locality-aware node clustering. 51

ix

4.2 Distribution of requests on main interests. 51
4.3 Distribution of interest peer coefficient. 53
4.4 Distribution of country peer coefficient. 53
4.5 Distribution of interests. 53
4.6 The SOCNET overlay infrastructure. 55
4.7 Overview of voting-based subcluster head election method. 57
4.8 The efficiency of file searching. 67
4.9 The trustworthiness of file searching. 69
4.10 The overhead of structure maintenance. 70
4.11 Efficiency of voting-based subcluster head election. 70
4.12 Effectiveness of head election. 70
4.13 Performance in peer dynamism. 74
4.14 Efficiency and effectiveness of enhanced random search. 76
4.15 Overhead of enhanced random search. 77
4.16 The efficiency of follower based replication. 77

5.1 Unbalanced and optimal data allocation. 84
5.2 Efficiency and the validity of the dominant-cost based data allocation algorithm . . . 86
5.3 GA-based data allocation enhancement. 90
5.4 Overview of the ES3 and the dynamic request redirection 91
5.5 Get SLA guaranteed performance. 92
5.6 Put SLA guaranteed performance. 92
5.7 Percent of Gets received by overloaded datacenters. 94
5.8 Percent of Puts received by overloaded datacenters. 94
5.9 Payment cost minimization with normal load. 94
5.10 Payment cost minimization with light load. 94
5.11 Get SLA guaranteed performance with light workload. 96
5.12 Put SLA guaranteed performance with light workload. 96
5.13 Effectiveness with varying Get rate in simulation. 96
5.14 Effectiveness with varying Get rate in real clouds. 96

x

Chapter 1

Introduction

In the past few years, Online Social Networks (OSNs) have dramatically spread over the

world. Facebook [4], one of the largest worldwide OSNs, has 864 million daily active users, 82.2%

of whom are outside the US [36]. Currently, most of datacenters of Facebook are located within the

US, and each datacenter stores complete replicas of all user data [122]. An entire user data set is

made up of several types of data, including wall posts, personal info, photos, videos, and comments.

Except photos and videos, which are stored and distributed by Facebook’s content delivery network

(CDN) partners, all other data is stored and served by Facebook’s datacenters. The browsing and

posting interactions between OSN users lead to user data reads (visits) and writes (updates) for text

contents in OSN datacenters. Facebook has now become one of the top Internet traffic sources with

more than a billion reads and tens of millions of writes per day [37]. Besides that, Facebook now

is one of the largest multimedia publisher online, with tremendous number of photos and videos.

Due to multimedia sharing, its traffic has passed Google to become one of the top internet traffic

source [5].

However, due to its fast growth of user population and multimedia sharing, in an OSN, the

servers in current datacenters cannot supply latency efficient service with their limited resources

(e.g., bandwidth). The Quality of Service (QoS) (e.g. service latency) is important to OSNs as web

applications, which affects the OSN providers’ revenue. For example, experiments at the Amazon

portal [55] demonstrated that a small increase of 100ms in webpage presentation time significantly

reduces user satisfaction, and degrades sales by one percent. For a request of data retrieval in the

web presentation process, the typical latency budget inside a storage system is only 50-100ms [34].

1

To supply guaranteed QoS, OSNs need a scalable data storage and sharing system. Furthermore, to

increase OSN revenue, OSN service providers need to constrain capital investment, operation costs,

and the resource (bandwidth) usage costs in the scalable data storage and sharing system. In all, it

is critical for the OSN to build a system to supply a guaranteed QoS for both text and multimedia

contents while minimizing the system costs.

1.1 Problem Statement

To build a guaranteed QoS and cost efficient data storage and sharing system, we need

to address three problems. i) Data distribution among datacenters: we need a data replication

method to allocate data replicas among geo-distributed datacenters with minimized inter-datacenter

communication load and meanwhile achieve low service latency. ii) Efficient multimedia file sharing:

due to tremendous and sharply increasing number of image and video sharing through OSNs, it needs

a technology to facilitate the multimedia file sharing and release the load of servers in datacenters.

iii) Cost minimized data allocation among cloud storages: the geographical distributed datacenters

may cost too much to be built and maintained, so that, the OSN needs a method to generate data

allocation among commercial cloud service providers’ (CSP) datacenters to leverage their cloud

storage services with minimized cost. We discuss each problem in detail below.

Data distribution among datacenters. As original Facebook’s datacenter deployment,

with all datacenters located in the US, two issues arise: high latency and costly service to distant

users, and a difficult scaling problem with a bottleneck of the limited local resources [58]. In addi-

tion to a rapidly increasing number of users, the traffic requirements from dramatically increasing

online applications and media sharing in OSNs exacerbate the scaling problem. This problem can

be solved by shifting the datacenter distribution from the centralized manner to a globally dis-

tributed manner [57], in which many small datacenters spread all over the world. By assigning the

geographically-closest datacenter to a user to serve the user and store his/her master replica, this

new OSN model helps reduce service latency and cost. Indeed, Facebook now is building a datacenter

in Sweden to make Facebook faster for Europeans [8]. However, the new model concurrently brings

a problem of higher inter-datacenter communication load (i.e., network load, the resource consump-

tion for data transmission [122]). Since Facebook employs a single-master replication protocol [122],

2

in which a slave datacenter forwards an update to the master datacenter, which then pushes the

update to all datacenters. Both slave and master datacenters have a full copy of user data. In this

new model, Facebook’ single-master replication protocol obviously would generate a tremendously

high load caused by inter-datacenter replication and updates. Though the distributed data stor-

age that stores a user’s data to his/her geographically-closest datacenter mitigate the problem, the

frequent interactions between far-away users lead to frequent communication between datacenters.

Therefore, the OSNs need a data allocation algorithm among datacenters with minimized network

load and low service latency.

For the data allocation in large-scale distributed systems, replication methods [91, 95, 100]

replicate data in the previous requesters, the intersections of query routing paths or the nodes

near the servers to reduce service latency and avoid node overload. Many structures for data

updating [46, 66, 99] also have been proposed. However, these methods are not suitable for OSNs

because OSN data access pattern has typical characteristics due to OSN’s social interactions and

relationship. Therefore, the data allocation needs to decide when and where to replicate user data.

Wittie et al. [122] proposed using regional servers as proxies instead of Facebook’s distant datacenters

to serve local users by all previously visited data. SPAR [85] handles partitioning and replication

of data among servers within one datacenter in order to reduce inter-server communications. If

we adopt these replication methods respectively to the worldwide distributed datacenters (regard

severs in their algorithms as datacenters), both of them reduce the service latency of distant users

and the traffic load for inter-datacenter data reads. However, interactions are not always active.

Thus, replicating infrequently visited data may generate more storage and update costs than the

saved visit cost. This poses a challenge on how to identify the subset of previously visited data to

replicate in order to achieve an optimal tradeoff between user service latency and inter-datacenter

traffic costs. Furthermore, they regard all of a user’s data as a single entity in replication. Different

types of user data in an OSN, such as statuses, friend posts, photo comments and video comments,

have different update rates. Replication of a user’s entire data may generate unnecessary inter-

datacenter communication for updates of some data types that have low local visit rates or high

update rates.

Efficient multimedia file sharing. Due to the billions of users and the rapid growth of

user population, the multimedia file (images and videos) sharing introduces increasing workloads

to the servers and a large amount of costs for the bandwidth usage to the OSN service providers.

3

Current OSNs depend on servers in their datacenters or in Content Delivery Networks (CDNs) to

serve multimedia files, which is not scalable or cost efficient. P2P networks meet the scalability and

cost efficiency requirements of file sharing systems by leveraging the users’ idle upload bandwidths

for file sharing. The P2P network has been used to release the centralized servers’ workloads to

distribute large files [131]. Therefore, we can leverage P2P based file sharing systems to distribute

multimedia files in order to achieve high cost-efficiency and scalability. However, in a P2P assisted

file sharing system, the file sharing among anonymous users or strangers is not trustable due to

malicious behaviors and user selfishness. Indeed, 45% of files downloaded through the Kazaa file

sharing application contained malicious code [7], and 85% of Gnutella users were sharing no files [47].

Therefore, P2P file sharing methods need to cooperate with online social networks to improve

efficiency and trustworthiness. Some P2P file sharing systems with OSNs [51, 84] cluster common-

interest OSN friends for high efficiency and trust by leveraging the social property of “friendship

fosters cooperation” [81] and common-interest, but they fail to leverage OSNs for proximity-aware

search or efficient intra-cluster search. Some other OSN-based systems [27,74,75,83] use social links

for trustworthy routing, they cannot guarantee data location. By only considering routing or data

discovery between friends, these approaches cannot significantly enhance the efficiency. To further

improve efficiency, some works consider proximity [31,40,54,60,71,93,96,127,130]. However, they do

not cooperative with OSNs to enhance the trustworthiness. In all, little research has been undertaken

to fully and cooperatively leverage OSNs to significantly enhance the efficiency and trustworthiness

of P2P assisted multimedia file sharing systems. By “cooperatively”, we mean that the OSN-based

methods should coordinate with P2P methods to ensure the availably of search results without

confining the file sharing only among friends. Therefore, in OSNs, the problem to design an efficient

and trustworthy multimedia file sharing system based on P2P networks is still unsolved.

Cost minimized data allocation among cloud storages. In the new model, Facebook

intends to build datacenters worldwide. However, the geographical distributed datacenters need

tremendous capital expenditures to be built and maintain. Cloud storage (e.g., Amazon S3 [2],

Microsoft Azure [10] and Google Cloud Storage [6]) is emerging as a popular commercial service.

Each cloud service provider (CSP) provides a worldwide data storage service (including Gets and

Puts) using its geographically distributed datacenters. To save the capital cost, more and more

enterprisers shift their data workload to the cloud storages [108]. OSNs can leverage cloud storages

to store and replicate user data worldwide without really distributing geographically datacenters.

4

However, different CSPs have different data service latency and cost, and the same CSP provides

different service latency and cost in different locations. Therefore, OSNs need a data allocation

system distributing data among CSPs’ datacenters with cost minimization while meeting their service

efficiency requirement.

1.2 Research Approach

According to the discussion of the challenges in Section 1.1, OSNs need a network load and

cost efficient holistic data distribution and storage solution. Through the data analysis of real world

trace data, we have proposed different algorithms to solve these problems, respectively. We briefly

describe our solution for each problem below.

1.2.1 Data Distribution among Datacenters

To generate a network load efficient data allocation with low service latency, we propose

Selective Data replication mechanism in Distributed Datacenters (SD3). The design of SD3 is

based on many previous studies on OSN properties. The works in [14,77] study OSN structures and

evolution patterns, which distinguish OSNs from other internet applications. OSNs are characterized

by the existence of communities based on user friendship, with a high degree of interaction within

communities and limited interactions outside [18, 78]. It has been observed that most interactions

and friendships are between local users, while some interactions and friendships are between distant

users [33, 92, 122]. Therefore, SD3 can serve users with the closest datacenter, and in this way

there are fewer inter-datacenter communications. However, for very large OSNs, the communities

become untight [61]. This supports the decision in SD3 to create replicas based on user interaction

rates rather than static friend communities. Some other works focus on communication through

relationships and construct weighted activity graphs [32,33]. Based on activity graphs, Viswanath et

al. [114] found that social links can grow stronger or weaker over time, which supports SD3’s

strategy of periodically checking the necessity of replicas. Previous studies [21, 26, 44] also showed

that different atomized user data has different visit/update rates, which supports the atomized user

data replication in SD3. For example, wall posts usually have higher update rates than photo/video

comments. In this work, we first analyze our crawled data to verify these OSN properties and the

benefits of the new OSN model that serve as the basis of our dissertation.

5

Facebook’s past centralized infrastructure with all datacenters in US has several draw-

backs [58]: poor scalability, high cost of energy consumption, and single point of failure for attacks.

A new OSN model is proposed that distributes smaller datacenters worldwide and maps users to

their geographically closest datacenters. Based on that we then propose Selective Data replication

mechanism in Distributed Datacenters (SD3) for OSNs that embraces the aforementioned general

features. It jointly considers the visit rate and update rate of a part of remote user data to decide

when and where to replicate it.

1.2.2 Efficient Multimedia File Sharing

In order to enhance the efficiency and trustworthiness of P2P-assisted multimedia file shar-

ing systems for OSNs, we fully and cooperatively leverage OSNs in the design of the P2P file sharing

system. We propose a SoCial Network integrated P2P file sharing system for enhanced Efficiency and

Trustworthiness (SOCNET). SOCNET leverages OSNs in designing advanced mechanisms based on

OSN properties and our observations on the necessity of interest- and proximity-aware node clus-

tering. By “integrated,” we mean that an OSN is merged into a P2P system by using social links

directly as overlay links, and exploiting social properties in the technical design of the P2P system,

rather than simply combining two separate systems such as the Maze file sharing system [67]. SOC-

NET is the first to build a hierarchical DHT to fully exploit the common-interest, geographically-close

and trust properties of friends in OSNs for simultaneous interest/proximity-aware and trustworthy

file querying.

In order to integrate the proximity- and interest-aware clustering and fully utilize OSNs to

further enhance the searching efficiency and trustworthiness, we propose SOCNET that incorporates

five components: a social-integrated DHT, a voting based subcluster head selection, efficient and

trustworthy data querying, social based query path selection, and follower and cluster based file

replication. SOCNET incorporates a hierarchical DHT overlay to cluster common-interest nodes,

then further clusters geographically-close nodes into subclusters, and connects these nodes with

social links. This social-integrated DHT enables friend intra-subcluster querying and locality- and

interest-aware intra-cluster searching, and guarantees file location with the system-wide DHT lookup

function. The social based query path selection algorithms further enhance the efficiency of intra-

subcluster searching with or without guidance of sub-interests. The file replication algorithm reduces

the file querying and transmission cost.

6

1.2.3 Cost Minimized Data Allocation among Cloud Storages

The data allocation system based on Cloud storages distributes OSN user data among CSPs’

datacenters, and it needs to satisfy the OSN’s service requirement and meanwhile minimize the cost.

The data access delay and availability are important to OSNs as web applications, which affect their

incomes. For example, experiments at the Amazon portal [55] demonstrated that a small increase

of 100ms in webpage presentation time significantly reduces user satisfaction, and degrades sales

by one percent. For a request of data retrieval in the web presentation process, the typical latency

budget inside a storage system is only 50-100ms [34]. In order to reduce data access latency, the data

requested by clients needs to be allocated to datacenters near the clients, which requires worldwide

distribution of data replicas. Also, inter-datacenter data replication enhances data availability since

it avoids a high risk of service failures due to datacenter failure, which may be caused by disasters

or power shortages.

In order to reduce data access latency, the data requested by clients needs to be allocated

to datacenters near the clients, which requires worldwide distribution of data replicas. Also, inter-

datacenter data replication enhances data availability since it avoids a high risk of service failures

due to datacenter failure, which may be caused by disasters or power shortages.

 Storage
 <dj,…>

 Storage
 <di,…>

AWS US East Windows Azure US East
Get (di)

Get (dj)

 AVMs

 AWS: Amazon Web
 Services
AVMs: Application Virtual
 Machines

DAR: Data storage & request Allocation and resource Reservation

Input: Customer store data Output: Minimum payment cost

 AVMs

 Storage
 <dl,…>

AWS Asia Tokyo

 AVMs

Put (dl)

Figure 1.1: An example of geo-distributed cloud storage across multiple providers.

However, a single CSP may not have datacenters in all locations needed by a worldwide web

application. Besides, using a single CSP may introduce a data storage vendor lock-in problem [48],

in which a customer may not be free to switch to the optimal vendor due to prohibitively high

7

switching costs. This problem can be addressed by allocating data to datacenters belonging to

different CSPs, as shown in Figure 1.1. Building such a geo-distributed cloud storage is faced with

a challenge: how to allocate data to worldwide datacenters to satisfy application SLA (service level

agreement) requirements including both data retrieval latency and availability? The data allocation

in this dissertation means the allocation of both data storage and Get requests to datacenters.

Different datacenters of a CSP or different CSPs offer different prices for Storage, data

Gets/Puts and Transfers. For example, as shown in Figure 1.1, Amazon S3 provides cheaper data

storage price ($0.01/GB and $0.005/1,000 requests), and Windows Azure in the US East region

provides cheaper data Get/Put price ($0.024/GB and $0.005/ 100,000 requests). An application

running on Amazon EC2 in the US East region has data dj with a large storage size and few Gets and

data di which is read-intensive. Then, to reduce the total payment cost, the application should store

data dj into Amazon S3, and stores data di into Windows Azure in the US East region. Besides the

different prices, the pricing manner is even more complicated due to two charging formats: pay-as-

you-go and reservation. Then, the second challenge is introduced: how to allocate data to datacenters

belonging to different CSPs and make resource reservation to minimize the service payment cost?

Though many previous works [12, 15, 16, 73] focus on finding the minimum resource to

support the workload to reduce cloud storage cost in a single CSP, there are few works that studied

cloud storage cost optimization across multiple CSPs with different prices. SPANStore [126] aims

to minimize the cloud storage cost while satisfy the latency and failure requirement across multiple

CSPs. However, it neglects both the resource reservation pricing model and the datacenter capacity

limits for serving Get/Put requests. Reserving resources in advance can save significant payment cost

for customers and capacity limit is critical for guaranteeing SLAs since datacenter network overload

occurs frequently [35, 124]. For example, Amazon DynamoDB [1] has the capacity limitation of

360,000 reads per hour. The integer program in [126] becomes NP-hard with capacity-awareness,

which however cannot be resolved by SPANStore. Therefore, we first model the problem that build

a data allocation system cross multiple CSPs with cost minimization and SLA guarantee. Based on

the model, we propose an Economical and SLA-guaranteed cloud Storage Service (ES3) for brokers

to generate an optimized data allocation automatically. It helps OSN operators autocratically

find a geo-distributed data allocation schedule over multiple CSPs with cost minimization by fully

leveraging all aforementioned pricing policies and SLA guarantee even under request rate variation.

8

1.3 Contributions

We summarize our contributions of the dissertation below:

• We propose SD3 for the new OSN model that distributes smaller datacenters worldwide and

maps users to their geographically closest datacenters.

(1) Selective user data replication. To achieve our goal, a datacenter can replicate

its frequently requested user data from other datacenters, which however necessitates inter-

datacenter data updates. Thus, break the tie between service latency and network load, a

datacenter jointly considers visit rate and update rate in calculating network load savings, and

creates replicas that save more visit loads than concurrently generated update loads.

(2) Atomized user data replication. To further reduce inter-datacenter traffic, SD3 at-

omizes a user’s data based on different data types, and only replicates the atomized data that

saves inter-datacenter communication.

(3) Performance enhancement. SD3 also incorporates three strategies to enhance its

performance: locality-aware multicast update tree, replica deactivation, and datacenter con-

gestion control. When there are many replica datacenters, SD3 dynamically builds them into

a locality-aware multicast update tree that connects the geographically closest datacenters for

update propagation, thus reducing inter-datacenter update network load. In the replica deac-

tivation scheme, SD3 does not update a replica if it will not be visited for a long time in order

to reduce the number of update messages. In the datacenter congestion control scheme, when

a datacenter is overloaded, it releases its excess load to its geographically closest datacenters

by redirecting user requests to them.

• We propose SOCNET, a SoCial Network integrated P2P file sharing system for enhanced Ef-

ficiency and Trustworthiness, to facilitate the multimedia file sharing for OSNs.

(1) BitTorrent trace study. We analyze a BitTorrent trace to verify the importance of

proximity- and interest-aware clustering and its integration with OSN friend clustering and

file replication.

(2) A social-integrated DHT. SOCNET novelly incorporates a hierarchical DHT to cluster

common-interest nodes, then further clusters geographically-close nodes into a subcluster, and

connects the nodes in a subcluster with social links.

(3) Efficient and trustworthy data querying. When queries travel along trustable social

9

links, they also gain higher probability of being successfully resolved by geographically-close

nodes. Unsolved queries can be resolved in an interest cluster by geographically-close nodes

for system-wide free file querying.

(4) Social based query path selection. Common sub-interest (subclass of interest clas-

sification, e.g., country music within music) nodes within a larger interest tend to connect

together. In the social link querying, a requester chooses K paths with the highest past suc-

cess rates and lowest latencies based on its query’s sub-interest. We also enhance this method

to be dynamism-resilient by letting each forwarding node record and use the next hop with

high success rate and low latency. For queries that are difficult to determine sub-interests, we

propose a method to enable a node to identify a subset of friends, who are more trustworthy

and are more likely to resolve the queries or forward the query to file holders by considering

both social and interest closeness.

(5) Follower and cluster based file replication. A node replicates its newly created files

to its followers (interest-followers) that have visited (i.e., downloaded) majority of its files (files

in the created file’s interest). Also, frequently visited file between subclusters and clusters are

replicated for efficient file retrieval.

• We propose a geo-distributed cloud storage system for Data storage and request Allocation of

OSNs and resource Reservation across multiple CSPs (DAR).

(1) Problem formulation. We model the cost minimization problem under multiple con-

straints using the integer programming.

(2) Data allocation and reservation algorithm. it allocates each data item to a data-

center and determines the reservation amount on each allocated datacenter to minimize the

payment by leveraging all the aforementioned pricing policies and also provide SLA guarantee.

(3) Genetic Algorithm (GA) based data allocation adjustment approach. It further

adjusts the data allocation to make data Get/Put rates stable over time in each datacenter in

order to maximize the benefit of reservation.

(4) Dynamic request redirection algorithm. it dynamically redirects a data Get from

an over-utilized datacenter to an under-utilized datacenter with sufficient reserved resource to

serve the Get in order to further reduce the payment cost.

10

1.4 Dissertation Organization

The rest of this dissertation is structured as follows. Chapter 2 presents the related work

solving each research problem. Chapter 3 details the proposed method, a data allocation algorithm

among datacenters with minimized network load and low service latency. Chapter 4 presents the

proposed method that can efficiently search files in constructed P2P networks with OSN users to

save OSNs’ network load and cost for multimedia content sharing. Chapter 5 introduces the method,

which efficiently and automatically allocate data among CPSs for OSNs in order to save the capital

expenditures to build and maintain the hardware infrastructures. Finally, Chapter 6 concludes this

dissertation with remarks on our future work.

11

Chapter 2

Related Work

Over the past few years, the immense popularity of the Online Social Networks (OSNs) has

produced a significant stimulus to the study on the OSNs. Among them, many works focus on the

latency and cost efficient data distribution and storage for OSN’s tremendous data. In this chapter,

we present the related works, which focus on similar problems as each of the proposed research

problems in Chapter 1. We first discuss previous works on data allocation among OSNs’ datacenters

in order to reduce the inter-datacenter network load. Since we use a P2P system that uses OSN

users to assist its multimedia file sharing, we then summarize the related works on P2P assisted

file sharing systems. Finally, we discuss current data allocation schemes among geo-distributed

datacenters of multiple CSPs, which help OSNs to automatically and cost efficiently allocate data

all over the world to CSPs in order to save the capital expenditures to build and maintain hardware

infrastructures.

2.1 Data Allocation among Datacenters in OSNs

The design of SD3 is based on many previous studies on OSN properties. The works

in [14, 77] studied OSN structures and evolution patterns. OSNs are characterized by the existence

of communities based on user friendship, with a high degree of interaction within communities and

limited interactions outside [18,78]. For very large OSNs, the communities become untight [61]. This

supports the decision in SD3 to create replicas based on user interaction rates rather than static

friend communities. Some other works focus on communication through relationships and construct

12

weighted activity graphs [32,33]. Viswanath et al. [114] found that social links can grow stronger or

weaker over time, which supports SD3’s strategy of periodically checking the necessity of replicas.

Previous studies [21,26,44] also showed that different atomized user data has different visit/update

rates, which supports the atomized user data replication in SD3.

Facebook’s original centralized infrastructure with all datacenters in US has several draw-

backs [58]: poor scalability, high cost of energy consumption, and single point of failure for attacks.

To solve this problem, some works [20, 58] improve current storage methods in Facebook’s CDN

to facilitate video and image service, and some works [30, 125] utilize the geo-distributed cloud to

support large-scale social media streaming. Unlike these works, SD3 focuses on OSNs’ datacenters’

other types of user data and distributed small datacenters worldwide, which do not necessarily have

full copy of all user data.

To scale Facebook’s datacenter service, a few works that rely on replication have been

proposed recently. Pujol et al. [85] considered the problem of placing social communities in different

servers within a datacenter and proposed creating a replica for a friend relationship between users

in different servers. Tran et al. [111] considered the same problem with a fixed number of replicas of

each user data, and S-CLONE was proposed, which attempts to place as many socially connected

data items into the same server as possible. Wittie et al. [122] indicated the locality of interest

of social communities, and proposed to build regional servers to cache data when it is first visited.

This method does not consider the visit and update rates to reduce inter-datacenter communications,

which may waste resources for updating barely visited replicas. Little previous research has been

devoted to data replication in OSN distributed datacenters in order to reduce both user service

latency and inter-datacenter network load. TailGate [112] adopts a lazy content update method

to reduce the peak bandwidth usage of each OSN site. It predicts future accesses of new contents

and pushes new contents only to sites close to the requesters in order improve QoE and reduce

bandwidth consumption. In TailGate, users’ access patterns (such as a diurnal trend) are predicted

to help TailGate decide a time for new content transmission when the source and destination sites’

uplinks and downlinks are in low usage and content has not yet been accessed. Different from

TailGate, SD3 deals with dynamic content such as profile information. SD3 aims to reduce the

total network load instead of peak bandwidth usage. That is, SD3 does not replicate user data to

a datacenter close to some requesters if the total request rate from that datacenter is much smaller

than the update rate of that data. Therefore, compared to TailGate, SD3 can reduce network load

13

but introduce longer service latencies. The replica deactivation scheme in SD3 is similar to the lazy

updating in TailGate but aims to save network load instead. However, after replica deactivation,

SD3 can incorporate TailGate to decide when to transmit updates to the replicas by predicting

replicas’ next visits, in order to save bandwidth costs.

To scale clouds, the techniques of service redirection, service migration and partitioning [13,

119] have been introduced. In large-scale distributed systems, replication methods [91, 95, 100]

replicate data in the previous requesters, the intersections of query routing paths or the nodes near

the servers to reduce service latency and avoid node overload. Many structures for data updating [46,

66, 99] also have been proposed. However, these methods are not suitable for OSNs because OSN

data access patterns have typical characteristics due to OSN’s social interactions and relationship

and the datacenters have a much smaller scale. SD3 also shares the adaptive replication techniques

with some works in P2P systems, such as [43], which dynamically adjusted the number and location

of data replicas. These works focus on load balancing, while SD3 focuses on saving network load.k

In summary, SD3 is distinguished from the aforementioned works by considering OSN prop-

erties in data replication to reduce inter-datacenter communications while achieving low service

latency.

2.2 P2P Assisted Efficient Multimedia File Sharing Systems

In order to enhance the efficiency of P2P file sharing systems, some works cluster nodes based

on node interest or file semantics [28,29,50,62,63,68,102]. Iamnitchi et al. [50] found the smallworld

pattern in the interest-sharing community graphs, which is characterized by two features: i) a small

average path length, and ii) a large clustering coefficient that is independent of network size. The

authors then suggested clustering common-interest nodes to improve file searching efficiency.

Li et al. [62] clustered peers having semantically similar data into communities, and found

the smallworld property from the clustering, which can be leveraged to enhance the efficiency of

intra- and inter-cluster querying. Chen et al. [28] built a search protocol, routing through users

having common interests to improve searching performance. Lin et al. [68] proposed a social based

P2P assisted video sharing system through friends and acquaintances, which can alleviate the traffic

of servers and share videos efficiently. Chen et al. [29] constructed a P2P overlay by clustering

common-interest users to support efficient short video sharing. Li et al. [63] grouped users by in-

14

terests for efficient file querying and used the relevant judgment of a file to a query to facilitate

subsequent same queries. Shen et al. [102] proposed a multi-attribute range query method with

locality-awareness for efficient file searching.

Some works improve the searching efficiency with proximity-awareness. Genaud et al. [40]

proposed a P2P-based middleware, called P2P-MPI, for proximity-aware resource discovery. Liu

et al. [71] took PPLive as an example and examined traffic locality in Internet P2P streaming

systems. Shen and Hwang [96] proposed a locality-aware architecture with resource clustering and

discovery algorithms for efficient and robust resource discovery in wide-area distributed grid systems.

Yang et al. [127] combined the structured and unstructured overlay with proximity-awareness for

P2P networks; and the central-core structured overlay with supernodes ensures the availability

of searching results. A number of other works with proximity-awareness also take into account the

physical structure of the underlying network [31,54,60,93,130]. However, most of the proximity-aware

and interest-clustering works fail to simultaneously consider proximity, interest and trustworthiness

of file searching.

Social links among friends in OSNs are trustable and altruistic [81], which can further

facilitate the efficiency and trustworthiness of data searching. Some OSN-based systems cluster

common-interest OSN friends for high efficiency and trustworthiness [51, 84]. However, these works

fail to further leverage OSNs for efficient intra-cluster search and proximity-aware search. A number

of other OSN-based systems use social links for trustworthy routing [27, 74, 75, 83]. However, they

either only use social links to complement the DHT routing [74,75], which provides limited efficiency

enhancement, or directly regard an OSN as an overlay [27,83], which cannot guarantee data location.

SOCNET shares similarity with the works [94,96,103,116,127] in utilizing supernodes with

high capacity to enhance file searching efficiency. Different from current works, SOCNET is the

first P2P system that fully and cooperatively leverages the properties of OSNs to integrate with the

proximity- and interest-clustering of nodes in a DHT for high efficiency and trustworthiness. To

leverage trustworthiness inside OSNs, any work exploiting trust relationships for access control in

OSNs [87] is orthogonal to our study.

15

2.3 Cost Minimized Data Allocation among Geo-distributed

Cloud Storages

Storage services over multiple clouds. SafeStore [56], RACS [48] and DepSky [22] are

storage systems that transparently spread the storage load over many cloud storage providers with

replication in order to better tolerate provider outages or failures. COPS [72] allocates requested

data into a datacenter with the shortest latency. Wieder et al. [120] proposed a deployment au-

tomation method for Map/Reduce computation tasks across multiple CSPs, and it transparently

selects appropriate cloud providers’ services for a Map/Reduce task to minimize the customer cost

and reduce the completion time. Wang et al. [118] proposed a social application deployment method

among geographical distributed cloud datacenters. They found that the contents are always re-

quested by users in the same location. Thus, the contents are stored and responded regionally; and

only popular contents are distributed worldwide. Unlike these systems, ES3 considers both SLA

guarantee and payment cost minimization.

Cloud/datacenter storage payment cost minimization. Alvarez et al. [15] proposed

MINERVA, a tool to atomically design the storage system for a storage cluster. MINERVA explores

the search space of possible solutions under specific application requirements and device capabilities

constraints, and achieves the optimized cost by using the fewest storage resources. Anderson et

al. [16] proposed Hippodrome, which analyzes the workload to determine its requirements and iter-

atively refines the design of the storage system to achieve the optimized cost without unnecessary

resources. Madhyastha et al. [73] proposed another automate cluster storage configuration method,

which can achieve the optimized cost under the constraint of SLAs in a heterogeneous cluster archi-

tecture. Farsite [12] is a file system with high availability, scalability and low traffic cost. It depends

on randomized replication to achieve data availability, and minimize the cost by lazily propagat-

ing file updates. These works are focused on one cloud rather than a geographical distributed cloud

storage service over multiple CSPs, so they do not consider the price differences from different CSPs.

Puttaswamy et al. [86] proposed FCFS, a cloud file system using multiple cloud storage services from

different CSPs. FCFS considers data size, Get/Put rates, capacities and service price differences

to adaptively assign data with different sizes to different storage services to minimize the cost for

storage. However, it cannot guarantee the SLAs without deadline awareness. SPANStore [126] is a

key-value storage system over multiple CSPs’ datacenters to minimize payment cost and guarantee

16

SLAs. However, it does not consider the datacenter capacity limitation, which may lead to SLA

violation, and also does not fully leverage all pricing policies in cost minimization. Also, SPANStore

does not consider Get/Put rate variation during a billing period, which may cause datacenter over-

load and violate the SLAs. ES3 is advantageous to consider these neglected factors in SLA guarantee

and cost minimization.

Pricing models on clouds. There are a number of works studying resource pricing

problem for CSPs and customers. In [117], [106] and [80], dynamic pricing models including adaptive

leasing or auctions for cloud computing resources are studied to maximize the benefits of cloud

service customers. Roh et al. [89] formulated the pricing competition of CSPs and resource request

competition of cloud service customers as a concave game. The solution enables the customers

to reduce their payments while receiving a satisfied service. Different from all these studies, ES3

focuses on the cost optimization for a customer deploying geographically distributed cloud storage

over multiple cloud storage providers with SLA constraints.

Cloud service SLA Guarantee. Spillane et al. [107] used advanced caching algorithms,

data structures and Bloom filters to reduce the data Read/Write latencies in a cloud storage system.

Wang et al. [115] proposed Cake to guarantee service latency SLA and achieve high throughput using

a two-level scheduling scheme of data requests within a datacenter. Wilson et al. [121] proposed

D3 with explicit rate control to apportion bandwidth according to flow deadlines instead of fairness

to guarantee the SLAs. Hong et al. [45] adopted a flow prioritization method by all intermediate

switches based on a range of scheduling principles to ensure low latencies. Vamanan et al. [113]

proposed a deadline-aware datacenter TCP protocol, which handles bursts of traffic by prioritizing

near deadline flows over far deadline flows to avoid long latency. Zats et al. [129] proposed a new

cross-layer network stack to reduce the long tail of flow completion times. Wu et al. [123] adjusted

TCP receive window proactively before packet drops occur to avoid incast congestions in order to

reduce the incast delay. Unlike these works, ES3 focuses on building a geographically distributed

cloud storage service over multiple clouds with SLA guarantee and cost minimization.

17

Chapter 3

SD3: An Network Load Efficient

Data Allocation among

Datacenters in OSNs

In this chapter, we introduce our efficient data allocation method among geographical dis-

tributed datacenters in OSNs. We first analyze a self-crawled user data from a major OSN to sup-

port our design principles. We then introduce Selective Data replication mechanism in Distributed

Datacenters (SD3) in detail. The results of trace-driven experiments on the real-world PlanetLab

testbed demonstrate the higher efficiency and effectiveness of SD3 in comparison to other replication

methods and the effectiveness of its three schemes.

3.1 Basis of the Design of SD3

In this section, we verify the benefits of the new OSN model and analyze trace data from a

major OSN to verify general OSN properties. SD3 is particularly proposed for OSNs that embrace

these general properties. In order to obtain a representative user sample, we used an unbiased

sampling method [41] to crawl user data. If a randomly generated id exists in the OSN and the user

with the id is publicly available, we crawled the user’s data. We anonymized users’ IDs and only

recorded the time stamps of events without crawling event contents. All datasets are safeguarded

18

Figure 3.1: The OSN user
distribution [105].

Figure 3.2: The OSN data-
centers and one community
distribution.

0%
20%
40%
60%
80%

100%

10 100 1000

C
D

F
 o

f
u

se
rs

Latency (ms)

Figure 3.3: CDF of user
connection latencies to the
OSN.

0%

20%

40%

60%

80%

100%

60 120 180 240 300

C
D

F
 o

f
u

se
rs

Average servcie latency (ms)

5 datacenters
10 datacenters
15 datacenters
30 datacenters

Figure 3.4: CDF of user la-
tencies vs. num. of simu-
lated datacenters.

and are not shared publicly. We crawled three OSN datasets for different purposes in our data

analysis.

For the first dataset, the number of statuses, friend posts, photo comments and video

comments during a one month period (May 31-June 30, 2011) were collected from 6,588 publicly

available user profiles to study the update rates of user data. In order to collect detailed information

about to whom and from whom posts were made, post timestamps and friend distribution, in the

second dataset, we crawled the information from 748 users who are friends of students in our lab

for 90 days from March 18 to June 16, 2011. For the third dataset, we collected publicly available

location data from 221 users out of users in the first set and their publicly available friends’ location

data (22,897 friend pairs) on June 23, 2011, in order to examine the effects of user locality. We only

use the datasets to confirm the previously observed OSN properties in the literature.

3.1.1 Basis of Distributed Datacenters

Figure 3.1 shows the global distribution of the OSN users, as reported in [105]. Of countries

with the OSN presence, the number of users ranges from 260 to over 150 million. Figure 3.2 shows the

locations of the OSN’s current datacenters represented by stars. The OSN constructed the datacenter

in VA in order to reduce the service latency of users in the eastern side of US. The typical latency

budget for the data store and retrieval portion of a web request is only 50-100 milliseconds [34].

With rapid increase of users worldwide, the OSN needs to relieve load by increasing the number of

datacenters. In order to investigate the effect of the new OSN model, we conducted experiments

on simulated users or datacenters via PlanetLab nodes [82]. Figure 3.3 shows the OSN connection

latencies from 300 globally distributed PlanetLab nodes to front-end servers in the OSN. The OSN

connections from 20% of the PlanetLab nodes experience latencies greater than 102 ms, all of which

are from nodes outside the US, and 4% of users even experience latencies over 1000 ms. Such wide

19

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000

C
D

F

Distance (km)

CDF of interactions
CDF of friend pairs

Figure 3.5: Distance of
friend and interaction.

0%

20%

40%

60%

80%

100%

1.E-4 1.E-2 1.E+0

C
D

F
 o

f
fr

ie
n

d
 p

a
ir

s

Avg. interaction rate

Figure 3.6: Avg. interac-
tion rates between friends.

0%

20%

40%
60%

80%
100%

1.E-3 1.E-1 1.E+1

C
D

F
 o

f
fr

ie
n

d
 p

a
ir

s

Interaction rate variance

Figure 3.7: Variance of in-
teraction frequency.

0%
20%
40%
60%
80%

100%

1.E-3 1.E-1 1.E+1 1.E+3

C
D

F
 o

f
u

se
rs

Overall update rate

Figure 3.8: User update
rates.

variability demonstrates the shortcomings of the OSN’s centralized datacenters and the increased

latencies associated with user-datacenter distance. Since the OSN’s popularity has become global,

the new OSN model with globally distributed datacenters and locality-aware mapping (i.e., mapping

users to their geographically close datacenters for data storage and services) would reduce service

latency.

We then conducted experiments with different numbers of simulated distributed datacenters.

We first randomly chose 200 PlanetLab nodes as users in different continents according to the

distribution of the OSN users shown in Figure 3.1. We chose 5 PlanetLab nodes in the locations of

the current datacenters of the OSN to represent the datacenters. We then increased the number of

datacenters to 10, 15 and 30 by choosing nodes uniformly distributed over the world. We measured

each user’s average local service latency for 10 requests from the user’s nearest datacenter. Figure 3.4

shows the cumulative distribution function (CDF) of percent of users versus the latency. The result

shows that increasing the number of distributed datacenters reduces latency for users. With 30

datacenters, 84% of users have latencies within 30ms, compared to 73%, 56% and 24%, respectively

with 15, 10 and 5 datacenters; more than 95% of all users have latencies within 120ms for 30, 15

and 10 datacenters, compared to only 58% with 5 datacenters within the US. Thus, adding 5 more

datacenters would significantly reduce the service latency of the current OSN. These results confirm

the benefit of low service latency of the new OSN model and suggest distributing small datacenters

globally.

It was observed that the communities partitioned with locality awareness are tight based

on both social graphs and activity networks [33,92]. Most interactions are between local users while

some interactions are between distant users [122]. Our analysis results from the third dataset shown

in Figure 3.5 are consistent with these observations. Figure 3.5 shows the CDF of friend pairs and

the CDF of interactions (i.e., a user posts or comments on another user’s wall, video, or photo)

20

between users versus distance based on the locations of users. It shows that 50% of friend pairs

are within 100km and around 87% of friend pairs are within 1,000km, which indicates that friends

tend to be geographically close to each other [19]. This result implies that with the locality-aware

mapping algorithm, the data of most friend pairs is stored in the same datacenter, while the data

of some friend pairs is mapped to separate datacenters. Regarding the interaction distance, 95% of

interactions occur between users within 1,000km of each other, which means most interactions are

between geographically close friends [122], whose data tends to be stored within the same datacenter.

This phenomenon is confirmed by the distribution of all users in our lab and their friends, represented

by blue circles in Figure 3.2, where the circle size stands for the number of users. The larger a circle

is, the more number of users there are. This figure shows that most users are within a small distance,

such as 1,000km, while there are still some distant friends.

3.1.2 Basis for Selective Data Replication:

It was observed that in OSNs, the ties of social links decrease with age [114] and different

users have different updates for user data [44,64]. Thus, friend relationships do not necessarily mean

high data visit/update rates between the friends and the rates vary between different friend pairs and

over time. These features are confirmed by Figure 3.6 and Figure 3.7 shown above. Figure 3.6 plots

the CDF of friend pairs versus the average interaction rate (i.e., average number of interactions per

day) for each pair of friends in the second dataset. Around 90% of all friend pairs have an average

interaction rate below 0.4, and the average interaction rate of the remaining 10% ranges from 0.4 to

1.8. This result implies that the data visit rate between some friends is not high. Thus, replication

based on static friend communities will generate replicas with low visit rates, wasting resources for

storage and inter-datacenter data updates. Therefore, we need to consider the visit rate of a user’s

data when determining the necessity of data replication.

We calculated the variance of interaction rates between each pair of friends by

σ2 =
∑

(x− μ)2/(n− 1), (3.1)

where x is the interaction rate, μ is the average of all interaction rates and n is the number of

interaction rates. Figure 3.7 shows the variance of interaction rate for each friend pair. We see that

around 10% of friend pairs have high variance in the range of [0.444,29.66]. Thus, the interaction

rate between friend pairs is not always high; rather, it varies greatly over time. This implies that

21

0%
20%
40%
60%
80%

100%

1.E-02 1.E+00 1.E+02

C
D

F
 o

f
u

se
rs

Update rate

Status
Friend post
Photo comment
Video comment

Figure 3.9: Update rates of
different types.

0
1
2
3
4
5
6

0 10 20 30 40 50 60 70 80 90

S
ta

tu
se

s
/

d
a

y

Day index

99th 50th 25th
99th 50th 25th

Figure 3.10: Status up-
dates over time.

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90

F
ri

e
n

d
 p

o
st

s
 /

 d
a

y

Day index

99th
50th
25th

99th 50th 25th

Figure 3.11: Friend post
updates over time.

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90

P
h

o
to

s
/

d
a

y

Day index

99th
50th
25th

99th 50th 25th

Figure 3.12: Photo updates
over time.

the visit/update rate of data replicas should be periodically checked and replicas with low visit rates

and high update rates should be discarded in order to save inter-datacenter communications for data

updates and resources for storage.

The network load for data updates is related to the update rate and the write request size.

We monitored packets to and from the OSN from our lab during June, 2011, and we found that

the average write request size is around 1KB in the OSN. Thus, an update from the OSN’s master

datacenter to only one datacenter generates around 2TB of transmission data per day given 2 billion

posts per day [36]. Next, we examine user data update rates in the OSN. Figure 3.8 shows the

distribution of users’ update rates from the first dataset. We see that 75% have ≤0.742 updates per

day, 95% have ≤15.51 updates per day. Also, only 0.107% have an update rate in the range [50,100]

and 79% users have an update rate in the range [0.0,1.0]. The result verifies that the update rates

of user data vary greatly. Therefore, to save network load, user data should be replicated only when

its replica’s saved visit network load is more than its update network load.

3.1.3 Basis for Atomized Data Replication

Previous studies [21,26,44] showed that different types of user data (e.g., wall/friend posts,

personal info, photos, videos) have different visit/update rates. Indeed, in our daily life, users always

post on walls more frequently than on for videos. Figure 3.9 show the distribution of update rates

for friend posts, statuses, photo comments, and video comments respectively from our second trace

dataset. We see that different types of data have different update rates. Specifically, the update

rate follows friend posts>statuses>photo comments>video comments.

We calculated the average update rate of each user over 90 days for different data types.

We then identified users with the 99th, 50th, and 25th percentiles and plotted their updates over

time in Figures 3.10, 3.11, and 3.12 from the top to the bottom, respectively. The figure for video

22

0%

20%

40%

60%

80%

100%

1.E-1 1.E+1 1.E+3 1.E+5

C
D

F

The time between comments (min)

Figure 3.13: The time be-
tween successive comments.

0%
20%
40%
60%
80%

100%

1 10 100

C
D

F
 o

f
u

s
e

rs

Standard deviationof friends' post rates

Figure 3.14: Standard devi-
ation of friends’ post rates
of a user.

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000 100000C
D

F
 o

f
a

b
s
e

n
t

p
e

ri
o

d
s

Absent period (s)

Figure 3.15: Time of absent
periods.

1
4

16
64

256

6
4

1
2

8
2

5
6

5
1

2
1

0
2

4
2

0
4

8
4

0
9

6
8

1
9

2
1

6
3

8
4

3
2

7
6

8
6

5
5

3
6

#
 o

f
u

p
d

a
te

s
 w

it
h

in

a
n

 a
b

s
e

n
t

p
e

ri
o

d

Absent period (s)

Figure 3.16: Number of up-
dates in an absence period.

comments is not included due to few video comments. These figures showcase the variation in update

behaviors for different types of data, where statuses tend to be updated relatively evenly over time,

while walls and photos tend to have sporadic bursts of rapid activity. For example, a user receives

many comments on his/her birthday or a photo becomes popular and receives many comments in a

short time.

Thus, a replication strategy can exploit the different visit/update rates of atomized data to

further reduce inter-datacenter communication. If we consider a user’s entire data set as a single

entity for replication, the entire data is replicated when only part of the data (e.g., video comments)

is visited frequently. Then, although video comments are not updated frequently, since friend posts

are updated frequently, this replica has to be updated frequently as well. Instead, if the friend post

data is not replicated, the inter-datacenter updates can be reduced. Thus, we can treat each type of

a user’s data as distinct and avoid replicating infrequently visited and frequently updated atomized

data to reduce inter-datacenter updates.

3.1.4 Basis for Replica Deactivation

Currently, the update delay from the master datacenter to another datacenter in the OSN

can reach 20 seconds [104]. A comment (status, photo or video) causes an update. Facebook relies

on strong consistency maintenance [25], in which the slave datacenter that received an update of

a user data item forwards the update to the master datacenter, which then pushes the update to

all datacenters. Therefore, each comment leads to many inter-datacenter communications, thus

exacerbating the network load. In order to see how heavy this network load is, we drew Figure 3.13,

which shows the CDF of the time interval between pairs of successive comments on a user data

item in the second dataset. We see that 13.3% pairs of comments have an interval time less than

23

one minute. Taking Facebook as an example, there are 10 million updates per second [79]. Such a

tremendous number of user postings within a short time period leads to a high network load between

datacenters.

The purpose of data updating is to enable users to see the updated contents when they visit

the user data. Some replicas may not be visited for a long time after an update, which indicates

that immediate updates are not necessary. Additionally, after an update the data may be changed

many times; transmitting all the updates together to the replicas can reduce the number of update

messages. In order to see whether there are replicas with visit rates lower than update rates, we

analyzed publicly available trace data of the wall posts in Facebook [114]; each post includes the two

anonymized IDs of the poster and the wall owner, and the posting time. The trace covers inter-posts

between 188,892 distinct pairs of 46,674 users in the Facebook New Orleans networks for two days,

and all of these user pairs have at least one inter-post. We calculated the standard deviation, σ, of

each user’s friend post rates (# of posts per day) according to Equation (3.1). Figure 3.14 shows the

CDF of users according to the standard deviation of a user’s friend post rates. It shows that 11%

of users have standard deviations larger than 7 (posts/day), and the largest standard deviation is

287 (posts/day). Due to the lack of Facebook users’ visits inside the post dataset, we use the user’s

friend post rates to predict friend visit rates on the user’s data replicas, since 92% of all activities

in OSNs are transparent (e.g., navigation) compared to 8% update activities [21]. Large standard

deviations indicate some friend post rates are much smaller than others, which means low visit rates.

The sum of a user’s friend post rates means the update rate of the user’s data. Therefore, the large

standard deviations for many users’ friend post rates imply that there may be replicas that have high

update rates but very low visit rates. Since these replicas are not visited for a long time, they can

be deactivated, in which the replica datacenter notifies the master datacenter not to send updates.

Whenever the next visit on this replica, the replica datacenter requests all previous updates together

and continues the immediate update operations. In this way, the number of communication messages

between datacenters for updates can be reduced.

We then measured the time interval between two consecutive posts on a user’s wall, named

as an absent period of the user’s wall. Figure 3.15 shows the CDF of absent periods. It shows that

57% of absent periods are over 100s and 30% of absent periods are over 600s. This result implies

that the time interval between two consecutive visits on a user’s wall may last a long time. We then

measured the time between user i’s two consecutive posts on user j’s wall, called the absent time

24

0

2000

4000

6000

8000

10000

0 2000 4000 6000 8000 10000

E
x
p

e
c
te

d
 a

d
d

it
io

n
a

l
a

b
s
e

n
t

ti
m

e
 (

s
)

Absent time (s)

Figure 3.17: The expected
subsequent absent time.

A
B

D

CA

Japan(JP)
A,B,C’

D,B’,C’ C

VA

C,D’,B’

Endpoints
Data center User

Figure 3.18: Inter-datacenter interactions in SD3.

of poster i on user j’s wall, and then calculated the number of updates on each user’s wall within

each absent period of each poster on the user’s wall. Figure 3.16 shows the 1st, median and 99th

percentiles of the number of updates for each time period of absent periods of posters. It shows that

for all absent periods within (0,64]s, the 1st percentile and the median of the number of updates are

0, and the 99th percentile is 5. It also shows that for all absent periods within (32768,65536]s, the

1st percentile, median and 99th percentile of the number of updates are 0, 30 and 489, respectively.

The result indicates that the absent periods of posters can be very long (as confirmed by Figure 3.15)

and during a longer absent period, there are more updates.

If a replica of a user’s data serves a group of visitors, the replica does not immediately

require the user’s data updates, as visitors do not view the data until much later. Figure 3.5 implies

that a slave datacenter that is far away from the master datacenter may have replicas with low

visit rates. Thus, a slave replica may have a long absent period. If we deactivate such a replica

(i.e., transmitting all updates together to a replica upon its next visit), we can save many update

messages as implied in Figure 3.16.

Figure 3.17 shows the expected subsequent absent time versus the time that each absent

period has already lasted, i.e., y =
∫∞
x

(ai − x) × Nai
dai/

∫∞
x

Nai
dai, where ai is the time of an

absent period, and Nai
is the total number of the absent periods lasting time t. It implies that the

longer an absent period has lasted, the longer subsequent time is expected to last. Thus, we can set

a threshold for the lasting absent period. If the time period, that a user’s data replica is not visited,

lasts longer than this threshold, it means that it will not be visited for a long time period. The

deactivation of such a replica can save the network load by compression of aggregated updates sent

to this replica later and exempt package headers for saved network messages. The reduced network

load also includes the exempted updates to the replicas, which will be removed in next checking

period due to the low visit rates. This threshold cannot be too small. If it is too small, the expected

subsequent absent time is not long enough to save the update messages and frequent deactivation

25

and activation lead to many additional communication messages.

3.2 The Design of SD3

In this section, we first describe the design overview of SD3. To break the tie between

service latency and network load, SD3 focuses on where and when to replicate a user’s data and

how to propagate the updates in order to save network load and reduce service latency. SD3

incorporates with the selective user data replication, the atomized user data replication, the locality-

aware multicast update tree and replica deactivation methods to achieve this goal. SD3 also adopts a

datacenter congestion control method to shift traffic from overloaded datacenters to theirs neighbors

to achieve load balance. We show the detailed design below.

3.2.1 An Overview of SD3

Based on the guidance in Section 3.1, in SD3, a datacenter replicates the data of its mapped

user’s distant friends only when the replica saves network load by considering both visit rate and

update rate. Also, SD3 atomizes a user’s data based on different types and avoids replicating

infrequently visited and frequently updated atomized data in order to reduce inter-datacenter com-

munications.

Figure 3.18 shows an example of SD3, where users A, B, C and D are friends. A new

datacenter is added to Japan (JP). Then, the master datacenter of users A and B is switched from

CA to their nearest datacenter, JP, and they will no longer suffer long service latency from CA.

Though C and D are friends of JP’s users, as user D’s data is rarely visited by JP’s users, JP only

creates a replica of user C, denoted by C’. As a result, users A and B can read and write their

own data in JP and also locally read C’s data with whom they frequently interact, thus saving

inter-datacenter traffic. Though user A is visited by C and D, A’s data is so frequently updated that

the update load is beyond the load saved by replication in both CA and VA; thus CA and VA do

not create replicas of A. CA only has replicas of C and B, and VA only creates replicas of B and D.

When replicating data of a user, the datacenters only replicate the atomized data that actually saves

network load. When user B updates status in its master datacenter in JP, JP pushes the update to

CA and VA, since they both have B. When user A reads D, JP needs to contact CA, but such visits

are rare.

26

Table 3.1: Notations of input and output in SD3.

C/c the whole datacenter set/datacenter c
Uout(c) the set of outside users visited by datacenter c
R(Uout) the set of replicated users among Uout

j/dj the user j / atomized user data d of user j
cj the master datacenter of user j
Uj the update rate of user j’ data
Vc,j the visit rate from datacenter c to user j
Sv
k,j the size of the kth visit message

Sv
j /S

u
j the average visit/update messages size

Dc,cj the distance between datacenters c and cj
Os

c,j/O
u
c,j the saved visit/consumed update load by replicating j in c

Bc,j the network load benefits replicating user j’s data in c
δMax the threshold to determine whether replicate any user’s data
δMin the threshold to determine whether remove any user’s replica

Os
c,dj

/Ou
c,dj

the saved visit/consumed update load by replicating dj in c

Bc,dj the networkload benefit by replicating j’s atomized data d in c

SD3 also incorporates three schemes to enhance its performance: locality-aware multicast

update tree, replica deactivation, and datacenter congestion control. When there are many replica

datacenters, SD3 dynamically builds them into a locality-aware multicast update tree, which con-

nects the geographically closest datacenters for update propagation, thus reducing inter-datacenter

update network load. As illustrated by the dashed red lines in Figure 3.18, master datacenter JP

builds a locality-aware multicast update tree. When JP needs to update CA and VA, it pushes the

update to CA, which further pushes the update to VA. In the replica deactivation scheme, SD3 does

not update a replica if it will be a long time until its next visit in order to reduce the number of

update messages. In the datacenter congestion control scheme, when a datacenter is overloaded, it

releases its excess load to its geographically closest datacenters by redirecting user requests to them.

3.2.2 Selective User Data Replication

Inter-datacenter communication occurs when a user mapped to a datacenter reads or writes

a friend’s data in another datacenter or when a master datacenter pushes an update to slave dat-

acenters. The inter-datacenter communications can be reduced by local replicas of these outside

friends, but replicas also generate data update load. This work aims to break the tie between service

latency and network load by selective replication. We first measure the extra saved network load of

all replicas by considering both saved visit network load and consumed update network load. For

easy reference, Table 3.1 lists all primary parameters in SD3.

27

The network load for any message is related to its size, since a larger package takes more

bandwidth resource. Also, the network load is related to transmission distance. That is because

longer distance may introduce more cross ISP network load, which is costly. Therefore, we adopt

a measure used in [122] for the network load of inter-datacenter communications. It represents the

resource consumption or cost in data transmission. That is, the network load of an inter-datacenter

communication, say the kth visit of datacenter c on a remote user j in datacenter cj , is measured by

Sv
k,j ×Dc,cj MBkm (Mega-Byte-kilometers), where Sv

k,j denotes the size of the response of the kth

query on user j and Dc,cj denotes the distance between datacenters c and cj .

We use Uout(c) to denote the set of outside users visited by datacenter c, and use R(Uout(c))

to denote the set of outside users replicated in datacenter c. Then, the total network load of inter-

datacenter communications saved by all replicas in the system (denoted by Os) equals:

Os =
∑

c∈C

∑

j∈R(Uout(c))

∑

k∈[1,Vc,j]

Sv
k,j ×Dc,cj

=
∑

c∈C

∑

j∈R(Uout(c))

Vc,jS
v
j ×Dc,cj ,

(3.2)

where C denotes the set of all datacenters of an OSN, Sv
j denotes the average visit message size,

and Vc,j denotes the visit rate of datacenter c on remote user j, which is the number of the visits

on user j during a unit time interval. In OSNs, users are usually interested in friends’ recent news

such as posts in the News Feed. Thus, user data tends to be accessed heavily immediately after

creation for some time, and then will be accessed rarely [20, 25]. Accordingly, SD3 only focuses on

user j’s recent data to make the replication decision, which may have high Vc,j in order to enlarge

the savings. If each datacenter c replicates user data for each visited remote user j ∈ Uout(c), O
s

reaches the maximum value. However, the replicas bring about extra update load (denoted by Ou).

Similar to Os in Eq. 3.2 , Ou is calculated by the summary of network load of each update message,

which is the product of the package size and the update transmission distance. Thus,

Ou =
∑

c∈C

∑

j∈R(Uout(c))

UjS
u
j ×Dc,cj , (3.3)

where Uj and Su
j denotes the update rate and average update message size of remote user j’s recent

data, respectively. Our objective is to minimize the inter-datacenter communication by maximizing

28

the benefits (denoted by B) of replicating data while maintaining low service latency:

Btotal = Os −Ou. (3.4)

To achieve this objective in a distributed manner, each datacenter tries to maximize the benefit of

its replicas by choosing a subset of remote visited users to replicate. Accordingly, it only replicates

remote visited users whose replica benefits are higher than a pre-defined threshold, denoted by δMax.

Each datacenter c keeps track of the visit rate of each visited outside user j (Vc,j), obtains j’s update

rate from j’s master datacenter, and periodically calculates the benefit of replicating j’s data:

Bc,j = Os
c,j −Ou

c,j = (Vc,jS
v
j − UjS

u
j)×Dc,cj , (3.5)

where Os
c,j and Ou

c,j are the saved visit network load and update network load of replica j at

datacenter c. We call this time period checking period, denoted by T. If Bc,j > δMax, datacenter c

replicates user j. As previously indicated, the interaction rate between friends varies. Thus, each

datacenter periodically checks the Bc,j of each replica, and removes those with low Bc,j . Removing

a replica simply means the replica stops receiving updates without being deleted from the storage, in

order to facilitate its creation later. It will be deleted only when there is not enough storage space.

In order to avoid frequent creation and deletion of the same replica, SD3 sets another threshold

Tmin that is less than δMax. When Bc,j < Tmin, datacenter c removes replica j. As a result,

R(Uout(c)) ={j|j ∈ Uout(c)

∧ ((Bc,j > δMax ∧ ¬ j ∈ R(Uout(c)))

∨ (Bc,j > δMin ∧ j ∈ R(Uout(c))))}.

(3.6)

In Eq. (3.6), if we set δMax and δMin to negative infinity, SD3 becomes the method of

simply replicating all previously queried data [122] with a long cache time. Datacenter c sets δMax

(δMin) for different remote datacenter c′ with different values, denoted by δMax,c′ (δMin,c′), since

different datacenter c′ has different Dc,c′ for the same update message. For a specific datacenter

c′, there exists a tradeoff between service latency and update load. More replicas generate lower

service latency, but increase update load, and vice versa. SD3 uses the benefit metric and two

29

thresholds to break the tie in order to achieve an optimal tradeoff. δMax and δMin in Eq. (3.6) can

be determined based on multiple factors such as user service latency constraint, saved network load,

user data replication overhead, replica management overhead and so on. For example, if the OSN

needs very short service latency for browsing, it can set a negative value to δMax. Therefore, even

a replica benefit Bc,j has a negative value, which means this replica generates more update network

load than its saved visit network load, it may still be created in order to meet the low service latency

requirement. However, this replica brings more inter-datacenter communications.

The checking period T needs to be carefully determined to reflect the general visit and

update rates. A small T could be sensitive to the varying of visit and update rates, leading to

frequent replica creation and deletion. Therefore, T needs to be long enough to contain the majority

of the absent periods in Figure 3.15. Such a T takes into account the visits before, within and after

the absence period, which avoids frequent deletion and creation of replicas that are frequently visited

before and after a long absent period.

Algorithm 1: Pseudo-code of the selective user data replication algorithm.

Input: Set of visited users during previous period, H(c);
Current slave replicas set, R(Uout(c);

Output: R(Uout(c));
for each j ∈ R(Uout(c)) do

if j ∈ Hc then
Bc,j ←

∑
k

Sv
k,j ×Dc,cj −

∑
k

Su
k,j ×Dc,cj

else
Bc,j ← 0

if Bc,j < ΔMin,cj then
remove local replica of j;
delete j from R(Uout(c));
notify cj

;

for each j ∈ Hc ∧ j �∈ R(Uout(c)) do
Bc,j ← V (c, j)× Sv

j ×Dc,cj − Uj × Su
j ×Dc,cj ; if Bc,j ≥ ΔMax,cj then

create a local replica of j;
add j into R(Uout(c));
notify cj

;

After a datacenter creates or removes a replica of user j, it notifies j’s master datacenter.

Each master datacenter maintains an index that records the slave datacenters of its user’s data

for data updates. When user i writes to user j, if ci does not have j’s master replica, ci sends a

write request to cj . When cj receives a write request from ci or a user in cj writes to j, cj invokes

30

instant update to all slave datacenters. A datacenter responds to a read request for a remote user

j’s data if the datacenter locally has a replica of j; otherwise, it redirects the read request to cj . We

demonstrate the formal procedure of selective user data replication as shown in Algorithm 1.

Comparison Analysis of Different Systems. SPAR [85] addresses user data replication among

servers within one datacenter in order to reduce inter-server communications. Since user interactions

are mainly between friends, SPAR stores a user’s master replica with the data (master or slave repli-

cas) of all the user’s friends while simultaneously minimizing the total number of created replicas.

Consequently, a user’s server always has the data frequently visited by the user locally. We can

apply SPAR to the problem of data replication among datacenters by regarding servers in SPAR as

datacenters. However, based on SPAR, a user’s master replica may be migrated to a geographically

distant datacenter to reduce the total number of replicas in all datacenters, generating long user

service latency and increasing user-datacenter service cost. Also, because users with static friend

relationships do not necessarily have frequent interactions, data replication according to static rela-

tionships may generate many updates to replicas rarely visited. Further, SPAR needs a centralized

server to build and maintain the complete social graph. Wittie et al. [122] proposed using regional

servers (RS) as proxies for Facebook’s distant datacenters to serve local users by replicating all their

previously visited data. However, replicating infrequently visited data leads to unnecessary updates.

A

B C

D E

F G

V=25 U=20 V = 30 U
=25

V=23 U=5

V=50 U=45

D B

C
A’

E

G

A

F

D’

B’
V=0 U=90

D B

C G

E

F

E’

F’ A
A’ V=0 U=112.5 G’

D B

C G

E

F

E’

F’ A
V=26 U=52.5

(a) Without replication

���(b) SPAR

���(c) RS

(d) SD3

1

1

2

2

2

2

1

1

Figure 3.19: Comparison of replication methods.

31

Below, we adapt the ideas in SPAR [85] and RS [122] for data replication between datacen-

ters, and compare their performance with SD3. In the example shown in Figure 3.19(a), users A,

B, C and D are in one location, users E, F and G are in another location, and each location has

one datacenter. A link (marked with V and U) connecting two users means they have interactions

and each node contributes to V/2 visit rate and U/2 update rate in their interactions. A’ denotes a

slave replica of user A. If there is no replication algorithm, the inter-datacenter communication has

V = 50 and U = 45. With SPAR, as Figure 3.19(b) shows, user A is mapped to the same datacenter

with users E, F and G. However, mapping user A to the remote datacenter leads to a long service

latency for A. Because all users can always find their friends’ replicas locally, V = 0. The only

inter-datacenter communication is caused by data writing between A and B, and A and D. When

B writes to A, the update package is forwarded to the master datacenter of A, which pushes the

update to A’. This generates two inter-datacenter communications. Therefore, the inter-datacenter

update rate equals 2× (UA,B +UA,D) = 90, where UA,B stands for update rate between users A and

B. SPAR decreases the number of inter-datacenter interactions by 5.RS [122] replicates previously

queried user data and creates four replicas as shown in Figure 3.19(c). Then, the inter-datacenter

update rate equals 2× (UA,G +UA,E +UA,F) + (UD,A +UB,A)/2 = 112.5. RS increases the number

of interactions by 17.5. SD3 maps users to their geographically closest datacenters. Each datacenter

calculates the benefit of replicating each contacted remote user:

B1,E = Os
E −Ou

E = VE,A/2− UE,A/2 = 9;

B1,F = Os
F −Ou

F = VF,A/2− UF,A/2 = 7.5;

B1,G = Os
G −Ou

G = VG,A/2− UG,A/2 = −14;

B2,A = Os
A −Ou

A = (VE,A + VF,A + VG,A

− UE,A − UF,A − UG,A − UD,A − UB,A)/2 = −20.

If δMax = 0, then SD3 only creates replicas of E and F . Therefore, the inter-datacenter visit

is V = (VA,E+VA,F)/2+VG,A = 26; and the update is U = (UA,E+UA,F)/2+UE,A+UF,A+UG,A =

52.5, since except the updates to all master replicas, the slave replicas of E and F also get updates.

Thus, SD3 has an inter-datacenter communication rate of 78.5 and saves 11.5 and 34 compared to

SPAR and RS, respectively. Compared to SPAR and RS, SD3 additionally saves update load for

rarely visited but frequently updated user data. Thus, SD3 significantly outperforms SPAR and RS

32

in reducing inter-datacenter network load while still achieving low service latency. Original SPAR

and RS are not designed to assign and replicate user data among datacenters. Since datacenters

are usually located on backbone networks, which are not close to the users of OSN, it is worthwhile

adopting RS to facilitate SD3 to distribute data among regional servers as proxies close to the users.

It is also worthwhile adopting SPAR to complement SD3’s design by distributing and replicating

data among servers inside a datacenter. In our future work, we will study how to combine SD3 with

SPAR and RS to reduce the network load and service latency.

Next, we analyze the time complexity of the selective data replication algorithm of a data-

center. We partition all users into two groups; one group G1 is formed by the users in one datacenter

c and the other group G2 is formed by all other users in the OSN. We draw an edge between c and

each of its visited users j in G2, and an edge’s weight equals the benefit value Bc,j . Then, the

problem of benefit maximization is equivalent to the problem of maximizing the total weights of

edges in this bipartite graph. Our method is a greedy algorithm that predicts future benefits by

maximizing previous benefits. We use N2 to denote the total number of all c’s outside users in G2,

and N to denote the total number of users in the OSN. Then, the time complexity of the selective

data replication algorithm is O(αN2) = O(N). Thus, this selective replication algorithm is cost

effective. SPAR uses a complete social graph of all users for partitioning and then decides data

replications, which is a NP-Hard problem [85]. Despite the low time complexity of SD3’s selective

user data replication method, it is still hard for datacenter c to keep track of the visit rate from

datacenter c to each remote user due to the potentially vast size of OSNs. In order to do so effi-

ciently, SD3 in datacenter c records each user’s visits to remote users during the checking period, T.

Periodically, SD3 depends on a word count-like application in Map/Reduce parallel framework [9],

which is already deployed in many datacenters including Facebook’s, to calculate the visit rate of

each remote user.

3.2.3 Atomized User Data Replication

In OSNs, a user’s data can be classified into different types such as photo comments, video

comments, friend posts, statuses and personal information. As shown in Section 3.1, these different

types of data have different update rates. If SD3 replicates a user’s entire data, it wastes storage

and bandwidth resources for storing, replicating and updating the atomized data that is infrequently

visited but frequently updated. Therefore, rather than regarding a user’s data set as a whole

33

replication entity, SD3 atomizes a user’s data based on different types and regards atomized data

as an entity for replication. Accordingly, each datacenter keeps track of the visit rate and update

rate of each atomized data in a user’s data set. By replacing user j’s data in Eq. (3.5) with user j’s

atomized data d, denoted by dj , we get:

Bc,dj
= Os

dj
−Ou

dj
= (Vc,dj

Sv
dj
− Udj

Su
dj
)×Dc,cj . (3.7)

Based on Eq. (3.7), datacenters decide whether to create or maintain the atomized data

of a user using the same method introduced in selective user data replication. A datacenter can

directly respond to local requests for frequently visited atomized data of remote user j, and directs

the requests for infrequently visited atomized data to the master datacenter of j. Each master

datacenter maintains a record of its users’ atomized data replicas for updating the replicas. Since

the number of different user data types is limited and can be regarded as a constant, the time

complexity of atomized user data replication is still O(N).

3.2.4 Locality-aware Multicast Update Tree

If a master datacenter c of a user’s data dj broadcasts an update to all slave datacenters

of the data, the update network load equals
∑

i∈Rr(dj)
Su
dj
× Dc,ci where Rr(dj) denotes the set

of all slave replicas of data dj . We see that larger Dc,ci generates higher network load and also

a larger Rr(dj) may overload the master datacenter. Since datacenters are spread out worldwide,

we can reduce Dc,ci and meanwhile reduce the load on the master datacenter by transmitting

an update between geographically close datacenters in order to reduce the update network load

while still constraining update delay. For example, in Figure 3.20, JP needs to send an update to

datacenters in CA, VA, AK, and Canada. The sum of the update transmission network loads from

JP to four other datacenters is much higher than the sum of the update transmission network loads

of JP→AK→CA→VA and Canada. Also, the transmission along geographically close datacenters

guarantees low latency.

Recall that a master datacenter c records the slave datacenters of each of its users and builds

the slave datacenters of the user into a minimum spanning tree [39] G = {v, e}. Node v denotes

a datacenter. Edge e denotes an edge connecting two datacenters, and takes their geographical

distance as its weight. Then, c sends the update along with the tree information to its children in

34

B

Update path AK

VA
CA

Canada

Japan (JP)

Multicast tree
Broadcast

Figure 3.20: Locality-aware multicast vs. broadcast tree.

VA

CA

Canada A

B

Neighborhood Req/ACK

Figure 3.21: The datacenter congestion control.

the tree. The children receiving the update further forward it to their children in the tree. This

process repeats until the leaf nodes in the tree receive the update. The minimum spanning tree is

acyclic with the minimum sum of the path weights when a package travels from the root to the leaf

nodes. Therefore, there are no redundant updates in the multicasting, and the update travels the

minimum geographical distance, which reduces the updating network load. Note that the datacenters

continue in operation and are reliable for a long time once deployed, so no maintenance is required

for the multicast tree. SD3 depends on the replicas creation and remove messages to update the

multicast tree.

3.2.5 Replica Deactivation

As shown in Figure 3.15, in OSNs, the time interval between two consecutive visits on the

same user replica may be long, during which there may be many updates. These updates do not

need to be immediately pushed to the replica upon occurrence during this time interval. They can be

pushed together to the replica upon its next visit, which can reduce the number of update messages

and the network load on the datacenters for consistency maintenance. Based on this rationale, we

propose a replica deactivation method, the details of which are presented below.

Recall Figure 3.17 indicates that the longer an absent period has lasted, the longer subse-

quent absent periods are expected to last; then, we can set a threshold using the previous absent

period length to identify user replicas that will have a future long absent period. Thus, in order to

identify the replicas that will have long absent periods before the next visit, we set a time threshold

Ta. If the absent period of a replica of user j in datacenter ck (denoted by Rj,ck) is over Ta, dat-

acenter k deactivates this replica, i.e., it notifies the master datacenter of user j to stop updating

this replica. Upon receiving the deactivation notification, the master datacenter will not involve

35

datacenter k in building its multicast update tree. Later on, once datacenter ck receives a visit

request on this replica, it reactivates this replica, i.e., it requests that the master datacenter push all

updates that occurred during the deactivation and continue to push each update upon occurrence.

The master datacenter notifies the closest datacenter of datacenter ck in the multicast update tree

to push all missed updates to datacenter ck, and adds datacenter ck back to the multicast update

tree.

Recall that at the end of each checking period T, each datacenter determines whether it

should keep a user data replica and remain in the multicast update tree of the user data. If the

closest datacenter (say cj) of datacenter ck leaves the tree before ck reactivates its replica, then

when ck reactivates its replica, a datacenter geographically farther than cj needs to push the missed

updates to cj . To save the network load, if a leaving datacenter has a deactivated child datacenter, it

pushes missed updates to this datacenter before leaving. When ck reactivates its replica, the master

datacenter notifies its currently closest datacenter cj to push the remaining updates to ck.

3.2.6 Datacenter Congestion Control

The users in an OSN are not evenly distributed throughout the world, as shown in Figure 3.1.

Also, the number of users in different areas and the visit rates from users to a datacenter may vary

over time. These changes in user service load in an area may overload some datacenters while lightly

loading others. Thus, we propose a datacenter congestion control scheme to release the excess load

of the overloaded datacenters to lightly loaded datacenters.

In this strategy, when datacenter ci is overloaded, i.e., its user request workload (Lc) is

greater than its request serving capacity (Cc) during a unit time period Tc, it contacts M geograph-

ically neighboring datacenters to release the excess workload equal to Lci − Cci . Specifically, at

the start, it replicates its master replicas to these neighboring datacenters to reduce service latency.

Later on, when datacenter ci is overloaded, it redirects the upcoming requests to these datacenters

proportional to their available service capacity, i.e., Ccj −Lcj . Figure 3.21 shows an example of the

datacenter congestion control scheme. As shown in the figure, when the CA datacenter is overloaded,

it contacts its neighboring datacenters VA and Canada, to release its workload. Assume datacenters

VA and Canada are lightly loaded datacenters with available capacities equal to m and n, respec-

tively. Then, when redirecting the requests, CA has probability of m/(m + n) and n/(m + n) to

redirect a request to datacenter VA and Canada, respectively. In order to avoid infinite redirection,

36

a request cannot be redirected twice. Note that this datacenter congestion control scheme creates

user data replicas, which should be considered as normal user data replicas to be handled by the

multicast update tree based consistency maintenance and replica deactivation schemes.

3.3 Performance Evaluation of SD3

To evaluate the design of SD3, we implemented a prototype on PlanetLab [82] and conducted

trace-driven experiments. We used the first dataset for users’ update rates of three data types

including wall, status, and photo comments. For post activities of each data type’s update rate, we

used the second, 90 day dataset. Unless otherwise indicated, the number of users was set to 36,000 by

randomly selecting user data in the trace. We distributed the users according to the user distribution

(i.e., percent of all nodes located in each country) in Figure 3.1. We chose 200 globally distributed

nodes from PlanetLab. For each user, we randomly chose one of the PlanetLab nodes in the user’s

country to virtually function as the user. From the PlanetLab nodes that always have relatively

low resource utilization, we chose 13 PlanetLab nodes to serve as globally distributed datacenters;

4 nodes are randomly from America, Europe and Asia, respectively and 1 node is randomly chosen

from Australia, according to the distribution of the physical servers of the DNS root name servers.

The distribution of friends of each user follows the trend in Figure 3.5; to determine the friends of

a user, we randomly chose a certain number of users from all users within different distance ranges.

Since 92% of all activities in OSNs are transparent (e.g., navigation) [21], we calculated a

user j’s visit rate (Vj) by his/her update rate (Uj): Vj = 0.92
0.08Uj . The distribution of read requests

on a user among the user’s friends follows the interactions’ distribution in Figure 3.5, which indicates

the update rate over distance. All users read and write on different types of data over time at the

rate in the trace data.

Based on the real sizes of update (write request) and visit (read) response packets on the

OSN, we set the size of each update and visit response packet size to 1KB and 10KB, respectively.

We ignored the size for visit requests since it is negligibly small. Considering the replication cost, we

set each datacenter’s TMax with datacenter i to the visit load of a visit packet transmission between

this datacenter and datacenter i and set TMin,i to −TMax,i. We set the replica checking time period

to 1 hour, during which a datacenter determines whether to keep or discard replicas based on their

update and visit rates.

37

We use LocMap to denote the locality-aware user-datacenter mapping method in the new

OSN model with many worldwide distributed small datacenters. As there are no existing replication

methods specifically for this new OSN model, we adapt SPAR [85] and RS [122] in this environment

for comparison evaluation. Based upon LocMap, we implemented SPAR [85], RS [122] and SD3.

We use RS S and RS L to denote RS with 1-day cache timeout and all 90-day cache timeout,

respectively. In order to test the effectiveness of SD3 without enhancements, by default, SD3 does

not incorporate the enhanced schemes, if without specific declaration.

1
10

100
1000

10000
100000

1000000

6.E+3 1.E+4 2.E+4 2.E+4 3.E+4

N
u

m
b

e
r

o
f

to
ta

l
re

p
li

c
a

s

Number of users

SPAR
RS_L
SD3
RS_S

Figure 3.22: Num of total
replicas.

1.E+3

1.E+4

1.E+5

1.E+6

1 11 21 31 41 51 61 71 81

N
u

m
b

e
r

o
f

re
p

li
c
a

s

Day index in trace data

SPAR RS_L SD3 RS_S
SPAR RS_L SD3 RS_S

Figure 3.23: Num. of repli-
cas.

5000
5500
6000
6500
7000
7500
8000
8500

1 11 21 31 41 51 61 71 81
A

v
g

.
re

p
li

c
a

ti
o

n

d
is

ta
n

c
e

 (
k

m
)

Day index in trace data

SPAR RS_L
SD3 RS_S

RS_L SPAR SD3 SSRS_S

Figure 3.24: Avg. replica-
tion distance.

-10%

0%

10%

20%

30%

40%

50%

1 11 21 31 41 51 61 71 81

P
e

rc
e

n
t

o
f

re
d

u
c
e

d

n
e

tw
o

rk
 l

o
a

d
 o

v
e

r
L
o

c
M

a
p

Day index in trace data

SPAR RS_L SD3 RS_S

SD3

RS L

RS_S
SPAR

Figure 3.25: Network load
savings.

3.3.1 Effect of Selective User Data Replication

First, we did not apply the atomized user data replication algorithm in order to see the

sole effect of the selective data replication algorithm. Figure 3.22 shows the median, 1st and 99th

percentiles of the number of total replicas in all datacenters each day, during the 90 days versus

the number of users. Note that the Y axis is in the log scale. We see that the median results

follow SPAR>RS L>SD3>RS S. Also, the median number of replicas of SD3 is about one third of

SPAR’s. SPAR replicates user data so that all data of friends of a user is in the same datacenter and

the total number of replicas is minimized. As Section 3.1 indicated that most friend relationships

are not active, SPAR wastes system resources on those relationships with few interactions, thus

producing the largest number of replicas. Each datacenter in RS replicates previously queried data

from other datacenters. RS L produces fewer replicas than SPAR because RS does not replicate

unvisited friend data. SD3 considers the real interactions among datacenters, and only replicates

user data that saves more network load for visits than the generated update load, thus producing

fewer replicas than RS L. RS S has only a one-day cache timeout, which makes its total number of

replicas much smaller than SD3. SD3 always maintains replicas with high visit rates, resulting in

better data availability than RS S. The results indicate that SD3 needs lower load to create and

38

maintain replicas than the other systems.

From the figure, we also observe that the variation of the total replicas follows SPAR<SD3<

RS S< RS L. Because of the stable social relationships, the number of replicas in SPAR remains

constant. RS S has a greater variation than SD3. RS S creates a replica after each inter-datacenter

visit and deletes it after timeout. SD3 periodically measures the benefit of a replica when determin-

ing whether to create or remove a replica, which leads to a relatively stable number of replicas and

avoids frequent creations and deletions of replicas. Because RS L has no timeout, it aggregates repli-

cas during the 90 days and generates nearly triple the peak number of replicas in RS S. Therefore,

the variance of RS L is larger than RS S. The result indicates that SD3 avoids frequent replica cre-

ations and deletions that consume unnecessary inter-datacenter communications. We also see that

as the number of users increases, the number of total replicas increases. The result indicates that

given the extremely rapid growth of users in the OSN, it is important to design a replication method

that constrains the number of replicas, without compromising the data availability to guarantee low

service latency. SD3 meets this requirement.

Figure 3.23 shows the number of replicas each day over the 90 days. For the same reason as

in Figure 3.22, SD3 has the second smallest number of replicas, and SPAR has the largest number

of replicas, which is stable. The number of replicas of RS L gradually approaches SPAR due to an

accumulation of replicas during the entire period, because of its 90-day cache timeout. SD3 exhibits

a similar growing trend as RS L due to the replica creations as more and more friends are visited.

RS L has more replicas each day than SD3, while RS S generally has fewer replicas than SD3. This

is because SD3 eliminates replicas with low benefit, keeps all frequently used replicas and avoids

frequent replica creation and deletion. RS S has a short cache timeout, leading to frequent replica

creation and deletion and great variation in the number of replicas each day. The experimental

result indicates that SD3 generates fewer replicas while still maintaining frequently used replicas.

We define the replication distance of a replica as the geographical distance from its master

datacenter to the slave datacenter. Longer distances also lead to higher data updating network

load. Figure 3.24 shows the average replication distance of all replicas each day during the 90 days.

We observe that the result follows SPAR>RS L>RS S>SD3. RS L gradually approaches SPAR

and RS S exhibits variation in different days. SPAR considers static relationships in data replica-

tion. As indicated in Section 3.1, many friends are geographically distant from each other, leading

to long replication distances in SPAR. RS conducts replication based on actual friend interaction

39

activities. As we previously indicated, the probability of a long distance interaction occurrence is

much smaller than that of a short distance interaction occurrence. Therefore, RS generates a shorter

replication distance than SPAR. Since long-distance visits occur over a long time, the average repli-

cation distance of RS L gradually increases as more long-distance data is replicated. For RS S,

long-distance replicas are created and deleted each day, so its average distance fluctuates. SD3 has

few long-distance replications because long-distance replica updates usually generate higher update

load than the saved visit load. The experimental results imply that SD3 performs the best in

reducing replication distances leading to low inter-datacenter network load.

We measured the total network load for reads, writes, updates and replication in MBkm

in each of the 90 days for each system. We then calculated the average value per day, which

follows LocMap>RS S>SPAR>RS L>SD3. LocMap generates 7.06× 106MBkm network load per

day. Using LocMap as the baseline, Figure 3.25 shows the percent of reduced network load over

LocMap of other systems. RS S produces 4% lower network load than LocMap, and SPAR and RS L

have 15% and 16% lower network load, respectively, while SD3 generates 33% lower network load.

Compared to other methods, SD3 considers both visit and update rates when deciding replication,

ensuring that each replica always reduces network load. RS replicates all previously visited data and

SPAR replicates all friends’ data regardless of their visit and update rates. As a result, for replicas

that are infrequently visited but frequently updated, SPAR produces much higher network load. In

a nutshell, SD3 dramatically reduces the inter-datacenter network load of the other systems.

24
29
34
39
44
49
54

1 11 21 31 41 51 61 71 81

A
v
g

.
s
e

rv
ic

e
 l

a
te

n
c
y

o

f
d

a
y

 1
-

x
 (

m
s
)

Day index in trace data

SPAR RS_L RS_S
SD3 SD3 (0) LocMap

SD3
SD3(0)

LocMap

SPAR
RS_L

RS_S

Figure 3.26: Avg. service
latency.

85%

90%

95%

100%

1 11 21 31 41 51 61 71 81

H
it

 r
a

te

Day index in trace data

RS_L RS_S SD3 LocMap

RS_S

SD3 RS_L

LocMap

Figure 3.27: Visit hit rate.

0%

20%

40%

60%

80%

100%

256 2048 16384

C
D

F
 o

f
p

e
rc

e
n

t
o

f
d

a
y
s

The size of all packets [MB]

SPAR
RS_L
RS_S
SD3 (w/o)
SD3 (w/)
LocMap

SD3(w/)

RS_S

LocMap

SPAR

SD3(w/o)

RS_L

Figure 3.28: Transmission
traffic.

0%
10%
20%
30%
40%
50%
60%
70%

0.E+00

2.E+03

4.E+03

6.E+03

8.E+03

1.E+04

1 11 21 31 41 51 61 71 81

N
e

tw
o

rk
 l

o
a

d
 s

a
v
in

g

N
e

tw
o

rk
 l

o
a

d

(1

0
3
*

 M
B

k
m

)

Day index in trace data

SD3 (w/) Network load saving %

Figure 3.29: Network load
savings.

Next, we study whether the reduction of the inter-datacenter network load of SD3 is at the

cost of compromising the service latency of users. Figure 3.26 shows the average service latency per

user request from day 1 to day x = {1, 2...90}. In this experiment, we also measured SD3 with

TMax = 0, denoted by SD3(0). The average service latency follows LocMap>RS S>SD3>SPAR>

SD3(0)>RS L. LocMap generates the highest average service latency because it does not have a

40

replication strategy, thus generating many inter-datacenter queries for long-distance user interac-

tions. RS S has a short cache timeout for replicas, hence it still generates many inter-datacenter

visits even though for data visited before, leading to long service latency. RS L does not have replica

timeouts during the experiment time, so most of the visit requests can be resolved locally, reducing

the average service latency. It is intriguing to see that SPAR produces longer latency than RS L

even though it places all friends of a user together in a datacenter. This is because, as previously

indicated, SPAR may map some users to distant datacenters to reduce the number of total repli-

cas. Thus, the long distance between these users and their master datacenters increases the average

service latency. SD3 uses the selective replication strategy, which does not replicate infrequently

visited user data with high probability. Queries towards such data are only a small part of total

queries. Therefore, SD3’s latency is lower than those of LocMap and RS S. Reducing the threshold

introduces more replicas, thus increasing the probability of queries being resolved locally. This is

why SD3(0)’s latency is shorter than SPAR after day37.

From the figure, we also see that the average service latencies of LocMap and RS S remain

nearly constant while those of RS L and SD3 decrease as the time elapses. Since LocMap has no

replication strategy and RS S has a short cache timeout, both gain no or little benefit from replicas.

In RS L and SD3, the growing number of replicas over time increases the probability of requests

being resolved locally. This figure shows that SD3 still achieves strong performance for user service

latency even though it also generates the lowest network load and a smaller number of total replicas.

Also, the parameter TMax can be adjusted to balance the tradeoff between the network load and

service latency.

To further investigate the reasons for the service latency result, we measured the data hit

rate, defined as the percent of the requests that are resolved locally in a datacenter. Figure 3.27

shows the hit rate of different systems for each day. RS L generates the highest hit rate, which

increases from 89% to 99%. SD3’s hit rate increases from 89% to 97%. On average, it is 9% and

4% higher than LocMap and RS S, respectively. LocMap generates a stable hit rate because an

interaction between geographically distant friends always produces a miss. Due to the variation of

visit rate and different interacting friends each day, the hit rate of SD3 also varies over different

days. Additionally, we observe that the hit rates of SD3 and RS L exhibit a rise during day1-day14,

and then stay stable during day15-day90. This is because they initially do not have replicas, and

replicas are created over time and subsequently help increase the hit rate. The results are consistent

41

with the results in Figure 3.26, as a higher hit rate means lower user service latency.

3.3.2 Effect of Atomized User Data Replication

We then evaluate the performance of SD3 with and without the atomized user data repli-

cation, denoted by SD3(w/) and SD3(w/o), respectively. We set the user visit packet size to 1/3 of

its entire data size in SD3(w/). Figure 3.28 shows the CDF of days versus the size of all generated

packets in different systems. We see that the amount of traffic load generated by the systems follows

SD3(w/)<SD3(w/o)<SPAR<RS L<LocMap<RS S.

SD3(w/) has the smallest traffic load, about one half of SD3(w/o). This is because the atomized

user data replication algorithm avoids replicating some partial user data with higher network load

for updates than for reads. The result shows the effectiveness of this algorithm in reducing inter-

datacenter traffic. SD3 generates less traffic load than other systems because SD3 avoids replicating

data with higher update network load than read network load. By replicating all queried data of

users’ friends, SPAR and RS L save traffic load for reads but simultaneously generate extra traffic

for updates. The short replica timeout of RS S causes it to generate more update and replication

traffic load than saved read traffic load, leading to higher traffic load than LocMap, which does not

have a replication strategy. The result indicates that SD3 saves more transmission traffic load than

other systems, and the atomized user data replication algorithm further reduces traffic. Figure 3.29

shows all network loads of SD3(w/) each day and the network load saving percentage measured by

(SD3(w/o)-SD3(w/))/SD3(w/o) with Y axis on the right. SD3(w/) saves at least 42% of network

load of SD3(w/o) due to the same reasons as Figure 3.28; independently considering each type of

a user’s data avoids replicating partial user data with a higher update rate and low visit rate, thus

further reducing network load.

96%

97%

98%

99%

-50

50

150

250

350

450

550

- - /2 0 /2

H
it

 r
a

te

S
e

rv
ic

e
 l

a
te

n
c
y

(m

in
)/

T
o

ta
l

n
e

tw
o

rk

lo
a

d
 (

1
0

*
G

B
k

m
)

Max threshold

Service latency

Total network load

Hit rate

(a) SD3 (w/o)

92%

93%

94%

95%

0
50

100
150
200
250
300
350

- - /2 0 /2

H
it

 r
a

te

S
e

rv
ic

e
 l

a
te

n
c
y

(m

in
)/

T
o

ta
l

n
e

tw
o

rk

lo
a

d
 (

1
0

*
G

B
k

m
)

Max threshold

Service latency
Total network load
Hit rate

(b) SD3 (w/)

Figure 3.30: Effect of threshold for replica creation and
maintenance.

0%

5%

10%

15%

20%

25%

1 11 21 31 41 51 61 71 81

D
a

ta
c
e

n
te

r
lo

a
d

 r
a

ti
o

Day index in trace data

Maximum Median
Minimum

Maximum Minimum Median

Figure 3.31: Datacenter
load balance.

0%

10%

20%

30%

40%

50%

1

10

100

1000

1 11 21 31 41 51 61 71 81

N
e

tw
o

rk
 lo

a
d

 s
a

v
in

g
 U

p
d

a
te

 n
e

tw
o

rk
 l

o
a

d

(1
0

3
*

M
B

k
m

)

Day index in trace data

Broadcast Multicast Network load saving

Figure 3.32: Network load
savings.

42

3.3.3 Effect of Thresholds for Replication

In this experiment, we regarded the TMax in previous experiments as T , and varied TMax

from −T to T with T/2 increase in each step to evaluate its effect on the visit latency, hit rate

and total network load. Figure 3.30(a) and Figure 3.30(b) show the average service latency, total

network load and hit rate each day of SD3(w/o) and SD3(w/), respectively. We see that as TMax

increases, the total network load and hit rate decrease, and the average service latency increases.

As TMax increases, the number of replicas decreases, thus resulting in a lower probability of visits

being resolved locally. The result indicates that TMax affects system performance in terms of different

metrics. Thus, we can adjust the threshold for different goals. Figure 3.30(a) shows that TMax = T/2

can achieve a good tradeoff between visit latency and network load. It decreases the service latency of

TMax = T by 40% at the cost of slightly more traffic. Comparing Figure 3.30(b) and Figure 3.30(a),

we observe that SD3(w/) reduces the network load of SD3(w/o) due to the reasons explained in

Figure 3.28.

3.3.4 Effect of Load Balance Among Datacenters

We use the number of users mapped and replicated to a datacenter to represent the dat-

acenter’s load since this number directly determines the datacenter workload. We measured the

load balance between datacenters of SD3 compared to the current Facebook OSN system, in which

each datacenter has a full copy of all user data. For each of the 13 datacenters, we calculated the

ratio of its total load each day in SD3(w/) compared to the Facebook OSN. Figure 3.31 shows the

maximum, median and minimum of the load ratios of the 13 datacenters each day. We see that

the maximum gradually increases and finally stays around 21%, which means that the datacenter

in SD3(w/) only consumes around 1/5 of resources of the OSN’s centralized datacenters. Also, we

see that the median stays very close to the minimum, and the maximum is always ≤ 5% more than

the minimum, which means that SD3 achieves a balanced load distribution among datacenters even

with unevenly distributed users.

3.3.5 Effect of Locality-aware Multicast Update Tree

We compared SD3(w/) with broadcasting (denoted by Broadcast) and with the locality-

aware multicast update tree (denoted by Multicast). Figure 3.32 shows the total update load in each

43

day on the left Y axis, and the network load saving percent with the right Y axis, which is calculated

by (OBroad −OMulti)/OBroad. As the figure shows, the update network load of both systems varies

over the days due to the update rate’s variation, and Multicast incurs much less update network

load than Broadcast. The network load saving percentage varies from 3.6% to 33.5% with a median

of 13.2%. This is because Multicast saves update network load by reducing the total transmission

distance of traffic and avoiding redundant traffic paths for each update.

0

2000

4000

6000

20 40 60 80 100
U

p
d

at
e

 la
te

n
i 0.E+0

2.E+3
4.E+3
6.E+3
8.E+3
1.E+4

<
2

,2
0

>
<

2
,4

0
>

<
2

,6
0

>
<

2
,8

0
>

<
2

,1
0

0
>

<
3

,2
0

>
<

3
,4

0
>

<
3

,6
0

>
<

3
,8

0
>

<
3

,1
0

0
>

<
4

,2
0

>
<

4
,4

0
>

<
4

,6
0

>
<

4
,8

0
>

<
4

,1
0

0
>

<
5

,2
0

>
<

5
,4

0
>

<
5

,6
0

>
<

5
,8

0
>

<
5

,1
0

0
>

<
6

,2
0

>
<

6
,4

0
>

<
6

,6
0

>
<

6
,8

0
>

<
6

,1
0

0
>

A
vg

. u
p

d
at

e
 t

im
e

 (
m

s)

<i,j>

Broadcast Multicast

Figure 3.33: Multicast vs. broadcast transmission time.

Next, we compare the total traffic transmission time of consistency maintenance using SD3’s

multicast tree and the broadcasting. We first randomly chose j nodes from 200 PlanetLab nodes,

then we randomly selected 1/i nodes from the i nodes, that will be involved in update. Among those

nodes, we randomly selected one node as the master datacenter, and other nodes as slave datacenters.

We calculated total traffic transmission time for the update with Broadcast and Multicast strategy.

We repeated this operation 10 × j times and then calculated the average. We varied j from 20 to

100 with an increase of 20 in each step, and varied i from 2 to 6 with 1 increase in each step. For

each pair of < i, j >, we calculated the average total time, which is shown in Figure 3.33.

The average latencies of both broadcasting and multicast-tree increase as j increases or i

decreases. When j increases or i decreases, more nodes are involved in an update, producing more

update transmissions and total transmission time. Given a pair < i, j >, the time of Multicast

is much smaller than Broadcast, since Multicast has much shorter transmission distance, which

determines the majority of total time in a normal case. In all, the multicast update tree saves traffic

cost reflected by both load and transmission time.

44

0.E+00
1.E+04
2.E+04
3.E+04
4.E+04
5.E+04
6.E+04
7.E+04

1 2 5 10 20 30

N
u

m
b

e
r

o
f

re
d

u
c
e

d

m
e

s
s
a

g
e

s

Deactivation threshold (Ta) (min)

T=30 T=60
T=120 T=240

(a) Number of reduced up-
date messages

4.0E+04
5.0E+04
6.0E+04
7.0E+04
8.0E+04
9.0E+04
1.0E+05
1.1E+05

1 2 5 10 20 30

R
e

d
u

c
e

d
 n

e
tw

o
rk

lo

a
d

 (
M

B
k

m
)

Deactivation threshold (Ta) (min)

T=30 T=60
T=120 T=240

(b) Reduced network load

3.0E+05

8.0E+05

1.3E+06

1.8E+06

1 2 5 10 20 30

R
e

d
u

c
e

d
 t

o
ta

l
re

p
li

c
a

m

a
in

ta
in

in
g

 t
im

e

(r
e

p
li

c
a

*
h

o
u

r)

Deactivation threshold (Ta) (min)

T=30 T=60
T=120 T=240

(c) Reduced total replica
maintaining time

Figure 3.34: Effectiveness of the replica deactivation over thresholds.

0.0%
0.2%
0.4%
0.6%
0.8%
1.0%
1.2%
1.4%

1 2 5 10 20 30

P
e

rc
e

n
ta

g
e

 o
f

v
is

it
s

in
v
o

k
in

g
 a

c
ti

v
a

ti
o

n
s

Deactivation threshold (Ta) (min)

T=30 T=60
T=120 T=240

Figure 3.35: Percentage of
visits invoking activations.

3.3.6 Effect of Replica Deactivation

We then evaluate the effectiveness of the replica deactivation scheme under different thresh-

olds for deactivation (Ta) and different checking periods (T). We used the publicly available trace

data of the wall posts in an OSN [114] to set the experimental environment. We used all 46,674

users in the trace. All other settings are the same as the default settings.

Figure 3.34(a) shows the total number of reduced messages for updates, deactivations and

activations in SD3 with the replica deactivation scheme compared to SD3 without this scheme under

different checking periods T and deactivation thresholds Ta. It shows that the replica deactivation

method with different combinations of T and Ta reduces many messages by a range of 7%-13% due

to the reduced update messages. This scheme deactivates replicas (i.e., stops propagating updates

to them) that have a high probability not to be visited for a long time until their next visits. This

method ensures the updated status of such a replica when being visited while reducing n−1 number

of messages, where n is the total number of updates of the original data prior to its next visit. The

experimental result indicates that the replica deactivation scheme is effective in reducing the number

of messages to reduce network load from the master datacenter to slave datacenters. Figure 3.34(a)

also shows that the number of reduced messages decreases as T increases for a given Ta. A smaller

T is more sensitive to the varying of visit rates and update rates, and then more replicas are created

whenever there are frequent visits, i.e., more datacenters are added to the update tree, leading to

more update pushes saved due to the deactivated replicas, and hence increasing reduced update

messages.

This figure further shows that the number of reduced messages first increases and then

decreases as the deactivation threshold Ta increases. As a longer Ta may miss some short absent

periods that contain many updates, there is a smaller number of reduced messages. Though a

45

small Ta is unlikely to miss short absent periods, it introduces more frequent deactivations and

reactivations. The total reduced numbers of messages reach the highest at Ta = 10min only except

T = 30min, where it is the second-highest. Thus, Ta = 10min is the optimal threshold maximizing

the number of reduced messages.

Figure 3.34(b) shows the reduced network load for updates by the replica deactivation

scheme. The reduced network load is due to the exempted updates to the replicas, which will be

removed in next checking period due to the low visit rates. Note we did not include the network

load for deactivation and reactivation notifications here. The result confirms that this scheme can

reduce the update network load due to the fewer update messages as explained previously. This

figure also shows that the reduced update network load decreases as T increases due to the same

reason as in Figure 3.34(a); since smaller Ta saved more update messages due to the same reason as

Figure 3.34(a), the reduced update network load decreases as Ta increases.

As the deactivation of a replica makes its datacenter disappear from the multicast update

tree of this user data, we define replica maintaining time as the total existing time of all replicas in

all multicast update trees in the entire experiment. Figure 3.34(c) shows the total reduced replica

maintaining time by the replica deactivation scheme. It confirms that this scheme can reduce the

replica maintaining time due to the same reason as in Figure 3.34(a). It also shows that the reduced

replica maintaining time decreases as T increases and as Ta increases due to the same reason as

in Figure 3.34(b). Note that smaller T actually increases the number of replicas and hence replica

maintaining time even though it reduced more replica maintaining time.

Recall that once there is a visit for a deactivated replica, the replica datacenter needs to ask

for its missed updates before responding, which introduces a certain service delay. Figure 3.35 shows

the percentages of such delayed visits with different values of T and Ta. It shows the percentage

decreases as Ta increases due to the same reason as in Figure 3.34(b). Thus, Ta determines a tradeoff

between the service latency and network load. Smaller Ta leads to lower network load as shown in

Figure 3.34(b); however, it also increases the percentage of visits with longer service latency. The

average service latency of such visits is 278ms compared to the normal average service latency less

than 45ms as shown in Figure 3.26. However, when T = 120min and T = 240min, the percentage

rates are constrained to lower than 0.2%. We see that the percentage increases as T decreases. Recall

that a smaller T leads to more slave replica creations and deletions, which increase the probability

that a visit is served by a deactivated slave replica, and hence increase the number of activation

46

with higher service latency.

80%

90%

100%

110%

120%

130%

0 1 2 3 4

Th
e

99
.9

th
 p

er
ce

nt
ile

ov

er
lo

ad
 r

at
e

Number of neighbor datacenters

Figure 3.36: Datacenter overload.

0.E+00

2.E+06

4.E+06

6.E+06

8.E+06

1.E+07

0 1 2 3 4

Re
p

lic
as

 t
im

e

(r
ep

lic
a*

h
o

u
r)

Number of neighbor datacenters

Figure 3.37: Total replica maintaining
time.

3.3.7 Effect of Datacenter Congestion Control

In this section, we evaluate the effectiveness of the datacenter congestion control scheme

under the same scenario as the evaluation before. In this experiment, the periodical time for each

datacenter to measure workload, Tc, was set to 10 seconds. The user request serving capacity of

each datacenter was set to 150 requests per second. For an overloaded datacenter, it needs to probe

M neighboring datacenters to release its excess workload. We varied M from 0 to 4 with increase of

1 in each step. For a datacenter, recall that Lc denotes its user request workload and Cc denotes its

request serving capacity during a unit time period Tc. We define a datacenter’s overload rate as Lc

Cc
.

Figure 3.36 shows the minimum, median and maximum of the 99.9th percentile overload rate of the

datacenters during the simulated time of two days. The case of M = 0 means that the datacenter

congestion control scheme is not employed. This case generates the highest maximum rate and

the lowest minimum rate, which indicates the effectiveness of this scheme in avoiding datacenter

overload and balance the load distribution among datacenters. The figure also shows that the

maximum and median rates exhibit a decreasing trend and the minimum exhibits an increasing

trend as the number of probed neighboring datacenters M increases. This is because a larger M

leads to more datacenter options for an overloaded datacenter to successfully release its excess load,

and also leads to a higher probability for lightly loaded datacenters to afford the workload from

overloaded datacenters. These experimental results verify that the datacenter congestion control

method is effective in avoiding overload datacenters, and probing a larger number of neighboring

datacenters achieves lower overload rates.

Figure 3.37 shows the maximum, median and minimum of total replica maintaining time of

each datacenter. It shows that a larger M leads to longer replica maintaining time, which causes

47

higher network load for updating. Because each pair of neighboring datacenters need to replicate

all master replicas of each other, the replica maintaining time increases even using the replica

deactivation scheme. Thus, in the datacenter congestion control scheme, it is important to consider

the tradeoff between overload rates and the network load to decide the M value. A larger M

decreases the overload rates when datacenters are busy; however, it also introduces more network

load in releasing the excess loads.

3.3.8 Summary of Evaluation and Limitations of SD3

We summarize our experimental results by enumerating the outperformance of SD3 com-

pared to the other systems: SD3 is effective in saving the largest amount of network load by incorpo-

ration with the selective user data replication, atomized user data replication, multicast update tree

and replica deactivation methods; SD3 meanwhile can still achieve comparable low service latency

and high percentage of locally resolved requests by replicating the frequently visited user data; SD3

can release the load of overloaded servers by incorporation with the datacenter congestion control

method.

The trace analysis in Section 3.1 sheds light on the design of SD3. However, the datasets

only consist the data which can be seen by all friends or all users. Such data has a larger visit

rate than its update rate. Therefore, it is worthwhile to being replicated. However, some private

data, which can be visited by a limited number of friends, such as Facebook messages, may have

different visit/update pattern. Intuitively, the visit latency is more important to these data than to

the five types of data crawled in the trace. Thus, using the same TMax and TMin for all types of

data may not be appropriate. In the future, we will crawl and analyze more different types of data,

and propose a method to generate adaptive thresholds to different types of data in order to meet

different quality of service requirement. Moreover, a user’s master datacenter needs to be close to

this user, in order to reduce the service latency. Due to a user’s mobility, the master datacenter

also needs to be changed among datacenters. However, since it is hard to crawl the users’ OSN

login traces currently, SD3 considers a constant master datacenter for each user. In the future work,

we will also study the mobility pattern and master datacenter switch load to determine the master

datacenters of users dynamically.

48

Chapter 4

SOCNET: An Trustworthy and

Efficient P2P-Assisted Multimedia

File Sharing among Users for OSNs

In this chapter, we introduce our efficient multimedia file sharing among users for OSNs.

We first analyze a BitTorrent trace data to prove the necessities for proximity- and interest-aware

user clustering. We then introduce a SoCial Network integrated P2P file sharing system for enhanced

Efficiency and Trustworthiness (SOCNET) in detail.

4.1 BitTorrent Trace Data Study

4.1.1 Observations from OSNs

In OSNs, nodes with close social relationships tend to have common interests [76] and

location [122]. These observations are confirmed by a study on the video sharing in the Facebook

OSN [97] which revealed that i) around 90% of a video’s viewers are within two social hops of the

video owner, ii) on average, most viewers of a video are in the same city of the video owner, and

iii) users tend to watch videos within their interests (e.g., gaming and sports). In a nutshell, nodes

in OSNs tend to visit files within their interests and from socially close nodes (geographically-close

49

and common-interest). Therefore, we arrive at a conclusion (C):

C1 The interest/proximity-awareness feature proves the necessity of OSN friend-clustering, in which

efficient data queries transmit through social links as logical links.

Data queries as well as recommendations can travel through Social links, which can be

applied in social-based file sharing system. However, a node’s queried data within its interests may

not be held by its socially close nodes. A logical overlay that cooperatively merges the social links is

needed for open, free and deterministic data querying. We thus seek to determine the feasibility of

interest/proximity node clustering in a P2P file sharing system: do nodes in a location share data

of a few interests? If yes, we can use interest/proximity-aware clustering that maps OSN friend-

clustering to complement social link querying. Through our study on the BitTorrent trace below,

we arrive at a positive answer for the above question.

4.1.2 BitTorrent Trace Study

The BitTorrent User Activity Trace [3] traced the downloading status of 3,570,587 peers

in 242 countries, which requested 36,075 files in 366 file categories. The BitTorrent trace offers file

categories (i.e., interests) such as computer games and sports. We regarded a node’s country as its

location and grouped nodes by their locations. The trace does not provide the information of the

servers for the requested file of a client. Since there are five main downloading connections for a

peer’s file request, according to the uplink utilization strategy in BitTorrent [59], we randomly chose

5 servers that were uploading a client’s requested file during the same time period when the client

is downloading the file.

4.1.3 Necessity of Proximity-aware Clustering

From the BitTorrent trace, we can only retrieve the geographical locations of peers without

IPs, so we cannot measure the ping latency. We then used the geographical distances to measure the

inter-country distances and file provider-requester distances. The geographical distance generally,

though not very accurately, reflects the communication latency to a certain extent. We measured

the distance of any two different countries. The average, maximum, and minimum distances between

all pairs of countries are 8518km, 19903km and 39km, respectively. We then measured the distance

50

0%
20%
40%
60%
80%

100%

0 5 10 15 20C
D

F
 o

f
p

e
rc

e
n

t
o

f
re

q
u

e
st

s

��������	
�	����	����������������
�����������

(a) Distribution of
requester-provider pairs

0%

50%

100%

0.02 0.04 0.1 0.3 0.5 0.7

C
D

F
 o

f
p

e
rc

e
n

t
o

f
c
o

u
n

tr
ie

s

Country request coefficient

(b) Distribution of country
request coefficient

99.4%

99.6%

99.8%

100.0%

1 51 101 151 201

S
h

a
ri

n
g

 c
o

rr
e

la
ti

o
n

Country Index

(c) File sharing among coun-
tries

Figure 4.1: Necessity of locality-aware node clustering.

0
10
20
30
40
50
60

60% 80% 100%
��	������������������	��������

��������	�����	����������!���

N
u

m
b

e
r

o
f

a
 c

o
u

n
tr

y'
s

m
a

in
 in

te
re

st
s

Figure 4.2: Distribution of
requests on main interests.

between each pair of the file provider and requester of a file request and used the average of the five

pairs as its requester-provider distance.

Figure 4.1(a) shows the cumulative distribution function (CDF) for the percent of file re-

quests versus the requester-provider distance. Nearly 50% of the file requesters retrieve files from

providers that are more than 9000km away. Also, only 10% of the files can be retrieved from

providers that are less than 3000km away. We calculated that the average requester-provider dis-

tance is around 7500km, which equals to the average distance of all pairs of peers. The long distance

greatly increases the cost of file retrieval.

We use S to denote the set of all countries and Rij to denote the number of requests from

country i to country j. We define country i’s country request coefficient as Cr(i) = Rii/
∑

Rij (j ∈
S), which means the percentage of requests within country i. Figure 4.1(b) shows the Cr distribution

over all countries. We see that 80% of countries have ≤0.02 country request coefficient, 90% of

countries have ≤0.04 country request coefficient, and 99.5% of countries have ≤0.5 country request

coefficient. The result shows that nodes in most countries access files in other countries rather than

in their own countries. This implies that the percentage of requests responded by local providers (in

the same location) is very low without a locality-aware strategy, and peers choose non-local providers

(not in the same location) with high probability. This verifies the importance of proximity-awareness

in file searching.

We use N to denote the number of files requested by the peers in a country. Multiple

requests for the same file are counted as one. We use Ns to denote the number of files among the N

files that are requested by at least one peer in another country and define the sharing correlation of

a country as Cso = Ns/N . Figure 4.1(c) shows the sharing correlations for each country, most Cso

are 100% or very close to 100%. This means nearly all the files in one country are visited by the

51

nodes in other countries in addition to the nodes in their own country in the BitTorrent global-wide

file sharing application.

C2 The long requester-provider distances and remote file retrievals in current file sharing system

make the locality-aware file sharing desirable for enhanced file sharing efficiency.

4.1.4 Necessity of Interest-based Clustering

By “an interest requested by a peer,” we mean “an interest whose files are requested by

a peer.” We use c to denote a country, and use R and Rc to denote the group of all interests

requested by the peers in all the countries and in country c, respectively. For each country c, we

calculated the number of requests for files in each interest denoted by Fi,c (i ∈ Rc). We then

calculated the average value of the numbers: F̄c =
∑

i∈Rc
Fi,c/|Rc| and regarded it as an interest

threshold of the country. We then regarded those interests whose number of requests are above the

threshold (Fi,c ≥ F̄c) as the main interests of the country, denoted by Ic. For each country, we

calculated the percentage of requests for the country’s main interests in the country’s total interests:

PF =
∑

i∈Ic
Fi,c/

∑
j∈Rc

Fj,c. We also calculated the percentage of the country’s main interests in

the number of total interests of all the countries: PN = |Ic|/|R|.
Figure 4.2 plots the PN versus the PF for each country, respectively. In the figure, each

point represents a country, and the x-axis and y-axis represent PF and PN , respectively. The figure

shows that in each country, more than 50% of file requests are for less than 15% of the total interests.

Most countries’ main interests constitute 10% of the total interests, and the requests in their main

interests constitute 75%-85%. In some countries, even 100% of the file requests are focused on less

than 5% of the total interests. The result indicates that the requests in a country focus on the main

interests.

Given a pair of interests i and j, we define their interest peer coefficient as CI = |Ii ∧
Ij |2/(|Ii| × |Ij |), where Ii and Ij are the set of peers who requested files in interests i and j,

respectively. Figure 4.3 shows the CDF of the percentage of interest pairs versus the interest peer

coefficient. We find the coefficient between interests is very low, which means interests do not have

a strong relationship to each other. That is, if a peer has one interest, it is difficult to tell its

other interests with high probability caused by no tight relationship between this interest and other

interests. This also means that grouping several specific interests together may not be helpful to

52

75%

80%

85%

90%

95%

100%

1.E-06 1.E-04 1.E-02 5.E-02

C
D

F
 o

f
p

e
rc

e
n

t
o

f
in

te
re

s
t

p
a

ir
s

Interest peer coefficient

Figure 4.3: Distribution of
interest peer coefficient.

80%

85%

90%

95%

100%

0.02 0.04 0.1 0.3 0.5

C
D

F
 o

f
p

e
rc

e
n

ta
g

e

o
f

�
�

�	
��

�
��

�
�

�
�

�	
��

���

Country peer coefficient

Figure 4.4: Distribution of
country peer coefficient.

400

0

1000

2000

3000

4000

0 200 400

N
u

m
.

o
f

fi
le

re

q
u

e
st

s
(*

1
0

0
0

)

Interest index

Actual distribution from
the trace
Power-Law distribution
with a=0.78

(a) Distribution of files over
interests

1
10

100
1000

10000
100000

60 120 180 240 300 360

 A
v
e

.
n

u
m

.
o

f
re

q
u

e
st

s

Index of every group of thirty
interests sorted by # of request

1st Ave. 99th

(b) Distribution of peers over
countries and interests

Figure 4.5: Distribution of interests.

limit file querying within a local cluster in order to reduce the querying cost.

C3 Nodes in a cluster tend to visit files in a few uncorrelated interests, which necessitates single

interest-based subcluster clustering.

4.1.5 Cluster-based File Replication

Figure 4.1(a) indicates that a large number of files tend to be shared among a long distance,

and Figure 4.1(c) indicates that a large number of files are shared among different countries. Thus,

we can derive that:

C4 In order to enhance search efficiency, file replication can be executed between locations for

popular files.

ackFor countries i and j, we can calculate the country peer coefficient by Cp = |Pi ∩
Pj |2/(|Pi| × |Pj |), where Pi (or Pj) is the set of peers who requested files in country i (or j). In

Figure 4.4, we find that around 93% of country pairs have Cp ≤0.02 and 100% of country pairs have

Cp ≤0.5. The results show that some pairs of countries share a certain number of peers that visit

files in both countries.

Figure 4.5(a) plots the number of file requests in each interest in the entire trace data and a

line for power-law distribution with α = 0.78. The result shows that the distribution of the number

of requests over file interests obeys the power-law distribution. Thus, some files have high popularity

while others have low popularity, during a certain time period.

For each interest (file category), we calculated the number of file requests from a country

in the entire trace data. We sorted the interests in the ascending order by the average number of

requests per country for each interest. Figure 4.5(b) shows the 1st percentile, the 99th percentile

53

and the average of the numbers for each group of 30 interests. We see that for each group, the 99th

percentile is much larger than the average, and the average is much larger than the 1st percentile.

Thus, a given file category has high popularity in some locations and low popularity in others.

Finally, from Figures 4.5(a) and 4.5(b), we derive:

C5 For popular files in each interest, the file replication is needed between locations; for locating

unpopular files, a system-wide file searching is needed.

4.2 Social Network Integrated P2P File Sharing System

4.2.1 An Overview of SOCNET

Based on C1 and the social property of “friendship fosters cooperation” [81], SOCNET

directly uses social links as logical links for efficient and trustworthy data querying among so-

cially close nodes. For open, free and deterministic system-wide data querying, SOCNET uses

interest/proximity-aware clustering that matches the OSN friend-clustering. For trustworthy file

querying between non-friends, SOCNET can employ reputation systems [52, 98, 132] to provide co-

operative incentives. The reputation system collects peer feedbacks and aggregates them to generate

a global reputation score for each peer to represent its trustworthiness. Nodes do not provide ser-

vices to nodes with low reputation scores. For more details of the reputation systems, please refer

to [52, 98,132].

According to C3, we cluster nodes sharing a interest into a cluster. According to C2, we

further group physically close nodes, in a cluster, into a subcluster. Since the high scalability,

efficiency and deterministic data location make DHTs favorable overlays, SOCNET aims to build

a DHT embedded with interest/proximity-aware clusters and OSN friend clusters. According to

C4 and C5, we propose a follower and cluster based file replication algorithm. SOCNET is the

first to fully and cooperatively exploit the properties of OSNs and DHTs, which enhances efficiency

and trustworthiness simultaneously with consideration of both proximity and interest. Below, we

introduce each component of SOCNET.

54

��������	

�������	���
��	���
����	

���������	
��
interest

ID: (k, c),

interest

interest

interest

interestinterestinterest

interest

(a) Entire overlay (b) Subcluster within the overlay

Cluster (c): interest, Subcluster (k): proximity TradeColleagueClassmateKinship

Figure 4.6: The SOCNET overlay infrastructure.

4.2.2 A Social-integrated DHT

DHT overlays [88,90,109] are well-known for their high scalability and efficiency. However,

few previous works can cluster nodes based on both interest and proximity in a single DHT while

integrating an OSN. SOCNET is designed based on the Cycloid [101] DHT overlay and supernode

structure [94, 96, 103, 116, 127]. Cycloid is a hierarchical structured overlay with n = d × 2d nodes,

where d is its dimension. In Cycloid, each node is represented by a pair of indices (k, c), where

k ∈ [1, d] and c ∈ [1, 2d]. k differentiates nodes in the same cluster, and c differentiates clusters in the

network. Each cluster has a primary node with the largest k in node ID, and a query always passes the

primary nodes in inter-cluster routing. Thus, Cycloid supports the hierarchical clustering of nodes

based on their interest and locality together in a single DHT. As shown in Figure 4.6, SOCNET

leverages a hierarchical infrastructure to simultaneously consider interest/proximity-awareness and

social based clustering. SOCNET groups nodes with similar interest into the same cluster, and

further groups geographically-close nodes into the same subcluster, and then connects nodes within

a subcluster using their friendship.

1) Representation of interest and proximity. SOCNET requires a user to enter its interests

in his/her profile when registering for the system based on a globally uniform attribute list such

as “movie” and “music”. A node’s interests are then described by a set of attributes, which are

translated to a set of real numbers using consistent hash functions [53] (e.g., SHA-1), denoted by

< S1, S2, · · · >. We employed a method [96] to represent a node’s physical location by real number,

named as Hilbert value denoted by H. This method uses Hilbert curves [17] to map the distance

vector from a node to a set of landmarks to a H value. The closeness of H values of different nodes

55

denotes the closeness of these nodes in the network; higher similarity between the H values of two

nodes means closer proximity between them in the network.

2). SOCNET structure and maintenance. Recall that each node in Cycloid is represented

by a Cycloid ID denoted by (k, c). We set the range of H to [1, d] and set the range of S to [1, 2d].

In SOCNET, a node i with m interests has m IDs, denoted by (Hi, S1), · · · , (Hi, Sm). As shown

in Figure 4.6(a), by connecting nodes based on their Cycloid IDs, common-interest nodes with the

same S are clustered into a cluster, in which physically-close nodes with the same H are further

clustered into a subcluster. Logically closer subclusters have closer proximity. As shown in Fig-

ure 4.6(b), nodes in a subcluster connect with each other by their social friend links. Node i exists

in m subclusters of different interest clusters. All nodes in a subcluster elect a stable supernode that

has the most social links with cluster members as their head in the subcluster. Each node reports

its files’ information to its head. The head maintains a record of subcluster members and their files.

Thus, a file is recorded by all heads with one of the multiple interests of this file. The subcluster

heads that form the Cycloid structure take the responsibility of DHT lookup functionality.

When node i joins in the SOCNET system, it first generates its interest ID (S1, · · · , Sm)

and its proximity ID Hi. It then generates its IDs (Hi, S1), · · · , (Hi, Sm). By using the Cycloid

DHT node join algorithm, node i joins in the clusters of its interests and the subcluster in the

cluster that has its physically close nodes. Node i then connects to the head of its subcluster. From

the record in the head, node i locates its social friends in the subcluster and connects to them. If

there is no cluster having an interest of node i or no subcluster with Hi, node i becomes the first

node of the cluster or subcluster. For a node rejoin, no matter it is still in the previous location

or in a different location, the rejoin is handled as a new node join, in which the node regenerates

its Hi, which represents its current location. When node i leaves the SOCNET system, it notifies

its subcluster head and its social friends. The head removes the record of node i and its files. Its

social friends remove the links to node i. If node i is a subcluster head, it notifies all members in

the subcluster to elect a new head and transfers its record to the new head.

Users’ interests are dynamic. When a node loses one of its interests, it will leave the

subcluster of this interest; if a node has a new interest, it will join the according subcluster. To

detect the overlay link disconnection due to node abrupt departures, each node periodically probes

its neighbors including its subcluster head. If a node’s probing fails, it assumes that the probed

node has abruptly departed the system and updates its corresponding link. If a head is detected to

56

1

2

(a) First round of voting

1

2

(b) Second round of voting

2

1

(c) Decision period in a central-
ized manner

2

1

New head

(d) Decision period in a de-
centralized manner

Figure 4.7: Overview of voting-based subcluster head election method.

have abruptly departed, a new head is elected and all subcluster members again report their files to

the new head.

4.2.3 Voting-based Subcluster Head Election

Recall that all nodes in a subcluster elect a stable supernode that has the most social links

with cluster members as their head. The head election can be simply realized by using a centralized

method, which provides high trustability. In this method, each node reports its capacity and the

number of its social links to a centralized system server. Then, the server selects the node with large

capacity and more social links in each subcluster as the head of the subcluster. However, such a

centralized method is not scalable in the large-scale P2P file sharing system. Also, if we consider that

friends with ds (e.g., 3) hops rather than direct friends can be trusted [110], the centralized server

needs to calculate the number of unique nodes within 3-hop social distance of each node, which

takes polynomial time and leads to long delay and resource consumption. To solve the problems,

we introduce a decentralized method for vote collection in a subcluster head election.

In this election method, each subcluster member sends its vote among its friends and its

received votes to its voted friend, so that the votes in the subcluster finally are collected into high

capacity and trustworthy nodes. The node that receives the most votes are elected as the head.

Specifically, the subcluster’s head is responsible for initiating the head election periodically. The

periodical election ensures that the head is always one of the most capable nodes in the subcluster,

in terms of capacity and trustworthiness. The time period is determined by the node join and

departure rate; a faster rate leads to a shorter period. Before the head leaves the system, it also

initiates the head election. When a node notices that the head has left, the node also initiates the

head election.

57

When a node initiates a head election, it broadcasts a election message. When a node

receives the message for the first time, it broadcasts this message to its friends, and then checks its

friends and selects the one with the highest capacity, and finally sends its generated vote including

its digital signature associated with TTL=ds to the selected friend. Each node can only generate

one vote. If the node itself has the highest capacity compared to its friends, it votes itself and

keeps its received votes to itself. We call such a node head candidate. If node i votes node j, it

also send its received votes with TTL>0 to node j. After each node has voted, the number of

votes received by node k means the number of nodes that trust it in terms of both capacity and

trustworthiness within ds distance of its social network. Head candidates broadcast their received

votes to subcluster members. After receiving this information, each member verifies the validation

of each vote by its signature, and chooses the one with the maximum number of votes as the

subcluster head and connects to it. Such a decentralized signature-based voting procedure eliminates

the dependence on the centralized server and provides a certain degree of trustability. However,

the broadcasting from the head candidates produces many communication messages and the fully

decentralized method is not as trustable as the centralized method. To increase the trustability and

reduce the communication messages, the head candidates can send their votes to the centralized

server, which verifies the validation of each vote, and chooses the one with the maximum number of

votes as the subcluster head. Note that the decentralized method may sacrifice a certain trustability.

In our future work, we will find possible attacks and the methods to deter the attacks.

Figure 4.7 shows an example of the head election process with ds = 2 with the centralized

server selecting the final subcluster head. The node size represents the node capacity and the red

nodes mean they are voted as a candidate by some nodes. In Figure 4.7(a), each node sends its vote

to its friend or itself, that has the highest capacity. Node 2 is voted as the candidate by each of its

friends and itself, and node 1 is voted as the candidate by two of its friends. In Figure 4.7(b), node

1 sends all of its received votes to node 2 since node 1 has lower capacity than node 2. As a result,

node 2 is the winner of the campaign of the 7 nodes. Figure 4.7(c) shows the procedure to select the

subcluster head in the centralized manner. In this procedure, all nodes holding votes submit their

received votes to the centralized server. The server checks the validation of all votes, and counts

the number of votes of each final candidate. The node (e.g., node 2) with the most votes is selected

as the head. In this head election procedure, only several final candidates communicate with the

server, which only needs linear time to count the votes. Thus, this head selection algorithm reduces

58

the load on the centralized server in the centralized method. Figure 4.7(d) shows the procedure to

select the subcluster head in the fully decentralized manner. The head candidates broadcast their

votes to the members in the subcluster, and each member selects the head candidate with the most

votes.

4.2.4 Efficient and Trustworthy Data Querying

SOCNET enables nodes to cache and share their visited files, which facilitates the rapid

dissemination of files among interested friends. Algorithm 2 shows the pseudocode of the data

querying algorithm in SOCNET. If a requester queries a file within its own interests, the file should

be in its cluster with the same interest of the file. In an intra-cluster querying, to leverage OSNs

for trustworthy and efficient search, the requester first executes intra-subcluster querying to find the

file in its geographically-close nodes, and then executes inter-subcluster querying.

Algorithm 2: The data querying algorithm in SOCNET.

if the queried file within the requester’s interests then
//Intra-cluster search is launched
Start an intra-subcluster search with TTL;
if search failed then

Request the file from the head of the subcluster;
if search failed then

Start an inter-subcluster search;

else
Start a DHT lookup with Lookup(Hi, S);

In the intra-subcluster querying, the query is forwarded along social links to find the file

from the requester’s common-interest and geographically-close nodes in a trustworthy manner. The

requester sends its query with a TTL to K friends, selected by the social based query path selection

algorithm as shown blow. If the selected friends do not have the queried file, they forward the query

to the nodes in the specified paths or randomly chosen nodes until TTL=0. Upon receiving a query,

a node checks whether it has the requested file. If the requester cannot find the file after TTL steps

of social routing, it resorts to its head, which checks its file index of its subcluster. If the queried file

exists in the subcluster, the head notifies the file holder to send the file to the requester. Otherwise,

the intra-subcluster searching fails. Then, the head of node i launches the inter-subcluster querying.

Recall that the distance between subclusters represents the physical distance between the

59

nodes in the subclusters. Thus, in order to find the queried file that is most physically close to the

requester, the query is forwarded sequentially between subcluster heads. Specifically, the head of

node i forwards the query to its successor subcluster head. The query receiver head then checks its

record to find the matching record of requested file. If the queried file exists, then it notifies the

file holder in its subcluster to send the file to the requester. Otherwise, it continues to forward the

query to its successor head. This process continues until the queried file is found or the head of node

i receives the query (i.e., intra-cluster searching fails).

From C3, we know that users still have infrequent visits on files beyond their own interests.

This implies that there exist a certain number of inter-cluster queries as cluster represents interest.

When node i queries data with interest S which is not in its interests, it conducted an inter-cluster

searching by DHT Lookup(Hi, S) function, where Hi is normalized Hilbert value [96] of node i, and

S is the interest of the queried file. After the head in the cluster of (Hi, S) receives the query, it

launches an intra-cluster search. The receiver head searches the queried file in its file index and

then searches nearby heads until finding the matching files. This inter-cluster search guarantees

the availability of files, which is a necessary complementary policy for searching based on social

relationship and locality awareness.

4.2.5 Social based Query Path Selection

4.2.5.1 Sub-interest Guided Search.

In SOCNET, the social graph is in a subcluster, which is constructed by nodes having the

same interest. Thus, the social based querying is within the same cluster of one interest. An interest

can be classified into a number of sub-interests. For example, Computer Engineering can be classified

to Computer Networks, Computer Systems and so on. In a social network, nodes in a sub-interest

group within a larger interest group have a higher probability of connecting with each other (e.g.,

Lab members majoring in Computer Systems) [76]. From C3, we know that users intend to visit

files of several interests they visit frequently [38,49]. Leveraging these two social network properties,

we propose a method to enhance intra-subcluster querying along social links in SOCNET.

We classify each interest into sub-interests. When a query is forwarded along the social

links, each forwarder piggybacks its IP address with the query. As a result, the file holder can know

the entire forwarding path and sends it with the file back to the requester. For each sub-interest

60

Sk, a requester records the successful query paths and their response latency from the query’s initial

time to the response arrival time for each query. The record is in the form of 4-tuple < Sk : Pj , v, t >,

where Pj denotes the querying path; v denotes the query success rate of this path for queries in

interest Sk, which is calculated by the percentage of the appearance times of this path in all suc-

cessful query paths for queries in interest Sk; and t is average latency of all successful responses of

this path for queries in interest Sk.

In order to increase success rate of file querying, for each sub-interest Sk, a requester first

sorts all paths by their success rate v in a decreasing order, and sorts paths with the same success

rate by response latency t in an increasing order. Later on, when the requester queries a file in

the sub-interest Sk, it selects the first K paths that have the highest success rate (v) and shorter

response latency (t). If there are fewer than K paths for the sub-interest Sk, the requester randomly

chooses the next hops from its social friends. Thus, these paths have a high probability of quickly

forwarding the query to the nodes int the subcluster, who contain the queried file and are willing to

provide this queried file. This policy helps nodes choose low-latency paths toward the file holders

and receive the file quickly and trustworthily.

4.2.5.2 Dynamism-resilient Sub-interest Guided Search.

In high node dynamism, a stored entire path may become invalid due to node departures in

the path. In this case, the node preceding the departed node has to randomly choose a forwarding

node, and then the remaining path is not useful anymore. The path breakup degrades the perfor-

mance of the previously introduced sub-interest guided search algorithm in terms of both success

rate and efficiency. We then further improve it to deal with node dynamism. Instead of letting a re-

quester record the entire successful source-destination path, each node in the querying path records

its next hop in the path for the sub-interest Sk of the query.

Specifically, in a query forwarding, each forwarding node records its previous node in the

querying path. Upon a successful query, the file holder sends a message in the backward direction

of the path. Upon receiving such a successful query notification, each node in the path updates its

path record in the form of 4-tuple < Sk : fj , v, t >, where fj denotes the user’s friend j; v denotes

the query success rate of all queries through fj in sub-interest Sk; and t is average latency of all

successful responses for queries through fj in sub-interest Sk. When each node probes its friends in

structure maintenance, if it notices that fj is not online, it marks all records of fj as invalid, and if

61

it notices fj is online, it removes these marks.

For each file query, the requester selects best K friends in the records with the same sub-

interest Sk of the queried file, with the same selecting orders as the sub-interest guided search

algorithm. When a node receives a request, if it has the queried file, it returns the file back to the

requester. Otherwise, if TTL �= 0, it routes the request to the friend in sub-interest Sk that has

the highest success rate and lower response rate accordingly. If TTL= 0, it sends a query failure

notification to the requester. After the requester receives K failure notifications or timeout, it starts

the inter-subcluster searching.

This enhanced search algorithm brings a problem: possible routing loop, which produces

unnecessary overhead and decreases querying success rate. To avoid this problem, when a query

is forwarded along the social links, each forwarder piggybacks its ID on the query. Thus, a node

can know the previous routing path and avoids forwarding the query to a node already in existing

path to avoid routing loop. Also, if a node’s recorded best candidate for sub-interest Sk departed, it

still can choose the next best candidate. This resolves the problems of candidate unavailability and

remaining path invalidation caused by node departures in the previous sub-interest guided search

algorithm.

As indicated before, if a requester does not have enough K candidates for its query, it

randomly chooses other friends with the same sub-interest as the query. Simply relying on the

historical records for forwarding node selection may miss better forwarding candidates or new file

holders in newly joined nodes. Thus, in addition to the K best candidates, a requester also randomly

selects other K2 friends with the same sub-interest as the query in its newly established friends.

4.2.5.3 Enhanced Random Search

It may not be easy to determine the sub-interests for some file queries. In this case, the

sub-interest guided search algorithms cannot be used and the previously described random friend

selection method has to be used. As mentioned, node i’s friends usually are common-interest,

geographically-close and trustworthy nodes to node i. We improve the random friend selection

method by sifting a subset of friends that are more trustworthy to node i and share closer interests

with the requester for forwarder selection. Friends that are more trustworthy to node i are more

willing to forward or respond its queries. Friends that share closer interests to a query have higher

probability to hold the queried file or forward the query to file holders.

62

We then use CSi,j to denote the social closeness and use CIi,j to denote the interest closeness

of a node i’s friend, say node j, to node i. We use α, β, γ and δ to denote the weight of a factor

in calculation below. To calculate the interest closeness CIi,j of node j to node i, we consider two

factors: (i) the number of common sub-interests between node i and j, denoted as N I
i,j ; (ii) the

successful query response rate of node j for node i’s queries, denoted by SI
i,j . We use Ii to denote

the sub-interests of node i, and then N I
i,j is calculated by

N I
i,j =

Ii ∩ Ij
Ii ∪ Ij . (4.1)

SI
i,j is updated periodically based on the successful response rate in each period denoted by sIi,j :

SI
i,j

new
= (1− α)× SI

i,j

old
+ α× sIi,j . (4.2)

As the work in [52] that uses weights of the old reputation value and recent reputation value of a

node in determining its updated reputation value, α determines the weights of the old interactions

and recent interactions in determining SI
i,j . A larger α means that the recent interactions account

more while a small α means that the old interactions account more. When the network condition

is poor (e.g., traffic congestion) that sometimes prevents successful message routing and leads to

frequently varying sIi,j , α should be set to a small value to alleviate the effect from the factors other

than the cooperative willingness of nodes. We then normalize the value of SI
i,j by:

F I
i,j = SI

i,j/Max{SI
i,k, ∀k ∈ Fi}, (4.3)

where Fi is the set of node i’s friends. Then, interest closeness of node j to node i is calculated by:

CIi,j = β ×N I
i,j + (1− β)× F I

i,j . (4.4)

β determines the weights of the two factors in determining CIi,j . A higher β means that the factor

of common interests accounts more, while a lower β means that the factor of holding queried files

accounts more in determining CIi,j . The value of β is determined by the effects of both factors on

CIi,j in real applications.

Node i’s friends with closer social relationship to node i are more trustworthy to it. The

63

friends who have more common friends with node i or more successful interactions with node i tend

to have closer social relationship to it. Therefore, we use these two factors to calculate friend social

closeness and use γ to balance these two factors in determining the social closeness. Recall that

Fi denotes the friend set of node i, and then the number of common friends of node i and node j,

denoted by NF
i,j is calculated by

NF
i,j =

Fi ∩ Fj

Fi ∪ Fj
. (4.5)

In order to calculate the social closeness, we introduce another parameter as SF
i,j , which is the

interaction rates between node i and node j including routing and response interactions. Similar to

SI
i,j , we can get its normalized value as FF

i,j . Then, social closeness of node j to i is calculated by:

CSi,j
= γ ×NF

i,j + (1− γ)× FF
i,j . (4.6)

A larger γ means a higher weight for NF
i,j and a lower weight for FF

i,j , when determining CSi,j
and

vice versa. The value of γ should be determined by the effect of each factor on the probability of

successful interactions.

The social closeness CSi,j
and interest closeness CIi,j are used to calculate the suitability of

node i’s friend j to be selected as query forwarder, denoted by Pi,j , which is calculated by

Pi,j = δ × CSi,j
+ (1− δ)× CIi,j . (4.7)

δ determines the balance between the success of receiving responses (reflected by CSi,j
) and the

success of locating queried files (reflected by CIi,j). A larger β leads to a larger success rate of

queries since peers having a larger CSi,j
have a higher probability to forward or response to the

query. On the other hand, a smaller β leads to higher probability of locating queried files since peers

having a larger CIi,j with the file requester are more likely to have the requested file. The effect

of different weights of the serving willingness and the interest similarity is studied in our previous

study [65]. The δ value can be set based on the focus on the two factors of the real applications.

The suitability reflects the probability of each friend to be a queried file holder or to forward

the query to a file holder. When a node selects its friends to forward a query, it calculates Pi,j for

each of its friends, and then sorts its friends by the results. The first K friends with the highest

suitability values are selected as the query forwarders. For each query receiver, it replies this request

if it is the queried file holder; otherwise it forwards the query to its suitability top m (m ≥ 1) best

64

friends using the same method.

4.2.6 Follower and Cluster based File Replication

In an OSN, a node visiting behavior is driven by both social relationship and interests [97].

For example, a node always visits its friends’ files. We define a node that visits a certain high

percentage of files of node i as its full-follower ; one that visits a certain high percentage of files

in a specific interest of node i as its interest-follower. Each node i keeps track of the file visit

activities from each of other nodes j, represented by < j, ptotal, ps1, ps2, · · · >, where ptotal denotes

the percentage of files in node i that node j visits and psk denotes the percentage of files in interest

k in node i that node j visits in a unit of time period. When ptotal reaches a predefined threshold,

node i regards node j as its full-follower. When psk reaches a predefined threshold, node i regards

node j as its interest-follower in interest k. A node pushes its newly created file to its full-followers

and its interest-followers of the file’s interest. Thus, the full-followers and interest-followers of node

i can directly retrieve their desired files locally without the need to request, which enhances the

efficiency of file retrieval.

Recall that subclusters represent different locations of nodes in one interest cluster, and if a

file query cannot be resolved in a subcluster, it is passed through the subcluster heads sequentially.

When there are many file queries passing through the subclusters, from subcluster i to another

subcluster j, we can build a bridge between the head of subcluster i and the head of subcluster j

to avoid subsequent query passing to reduce the query latency. Specifically, each subcluster head i

keeps track of its file visit rate to each of other subclusters j on a file F , represented by < j, F, v >,

where v denotes the file visit rate. If a head i finds that the accumulated visit rates of its subcluster

nodes, on a file F in subcluster j, is higher than a pre-defined threshold, it generates a replica of

the file in itself for local file retrieval. Thus, the queries for this file from head i’s subcluster can be

resolved locally without the need of subsequential query passing.

Recall that a node may query for a file outside of its interests and the query has to be

forwarded using the lookup function in a system-wide manner. It is possible that many nodes from

a cluster query for files in another cluster. Similarly, in this case, we can use file replication to reduce

the system-wide routing overhead. Recall that in Cycloid, an inter-cluster query passes through the

primary nodes of clusters. Thus, each primary node keeps track of the inter-cluster activities of

its cluster in the form of < S,F, v >, where S represents a cluster where queries are sent to, and

65

v represents the visit rate on the file F in cluster S during a unit time. When v is larger than a

predefined threshold, the primary node replicates the file. Later on, it can directly respond with the

replicated file without the need to forward the inter-cluster query.

File replicas help to improve the file querying efficiency. However, when the visit rate of

the replicas is low, the replicas may not be frequently used. Thus, when the visit rate of a replica

decreases below a pre-defined threshold, the replica is deleted.

4.3 Evaluation of SOCNET

In order to evaluate the performance of SOCNET in comparison with other file sharing

systems, we built prototypes of the systems on the PlanetLab [82] real-world distributed testbed.

We randomly selected 350 nodes all over the world, and clustered them into 20 locations using the

previously introduced Hilbert number method. For each PlanetLab node, we randomly selected a

country in the BitTorrent trace and assigned the country’s interests (as shown in Figure 4.4) to the

PlanetLab node.

We set the dimension of Cycloid to 20. The system has 100,000 peers and used 366 interests

from the BitTorrent trace. Each peer was first assigned to a location randomly chosen from the

20 locations, and then mapped to a randomly chosen PlanetLab node in the location, and finally

assigned 20% of the PlanetLab node’s interests as its own interests. All peers mapped to the same

PlanetLab node are 10km distant from each other. Each peer randomly selected 100 other peers as

its friends that have at least one same interest, and the distribution of its friend over distance obeys

power-law distribution [19]. The requests of a peer over interests follow the distribution as indicated

in Figure 4.4, and the TTL of searching among social friends or common-interest nodes was set

to 4 considering that a file can be discovered within 2 hops on average in a common-interest node

cluster [50]. Each peer in SOCNET maintains five social based query paths. In each experiment

round, each peer generates a query sequentially at the rate of 10 queries per second in the system. We

used the 36075 files in the BitTorrent trace and the files are randomly distributed among peers with

the files’ interests. 80% of all queries of a requester are located in peers within 4 social hops of the

requester, and 70% of its queries are in the interests of the requester [50]. We also let each file have a

copy owned by another peer in a different location in order to show the proximity-aware performance.

SOCNET integrates interest/proximity-aware clustering and OSN friend clustering, while

66

0%
20%
40%
60%
80%

100%

1 2 4 8 16 32 64

C
D

F
 o

f
q

u
e

ri
e

s

Path length (hop)

SWorld TS_Net SOCNET Tribler

(a) The CDF of queries over
hops

0

20

40

60

80

100

SWorld TS_Net SOCNET Tribler

%
 o

f
q

u
e

ri
e

s

re
s
o

lv
e

d
 i

n
 e

a
c
h

 s
ta

g
e

Inter -cluster Intra-cluster Intra-subcluster

(b) The breakdown of query-
ing

1

10

100

1000

10000

100000

1 2 3 4 5 6

L
a

te
n

c
y

(m

s
)

Round index

SWorld TS_Net SOCNET Tribler

(c) The routing distance/la-
tency

0%
20%
40%
60%
80%

100%

10 100 1000 10000C
D

F
 o

f
s
e

rv
e

r-
c
li

e
n

t
p

a
ir

s

Transmission distance (km)

SWorld TS_Net SOCNET Tribler

(d) CDF of server-client
pairs over distance

Figure 4.8: The efficiency of file searching.

other systems leverage single clustering. Thus, we compared SOCNET with three other systems

with single clustering denoted by SWorld, TS Net and Tribler that are variations of the systems

in [50], [127] and [84], respectively. We modified the three systems to make them comparable to

SOCNET. In order to guarantee the success of file lookups, we complement the three systems

with system-wide file lookups. That is, the file metadata is distributed using the Cycloid In-

sert(ID,metadata) function, and a file can always be found using the Lookup(ID) function. We

use SWorld as a representative of interest-aware clustering systems. Its structure is the same as

SOCNET except that each peer in an interest cluster randomly selected 20 cluster peers to connect

with and there are no proximity-aware subclusters. When a node queries for a file, it chooses K

friends for K-multicasting with TTL=4 in its cluster. That is, each query receiver forwards the

query to K randomly chosen neighbors until TTL=0. If the lookup fails, it uses Lookup(ID) to find

the file. We use TS Net as a representative of proximity-aware clustering systems. We use Cycloid

as TS Net’s central structured overlay called T-network. We use 350 PlanetLab nodes to represent

350 different locations, while the peers in a location (mapped to a PlanetLab node) form a Cycloid

cluster. The peers in a cluster form a four-ary proximity-aware tree [127] called S-network. We

randomly selected 20 peers from each cluster as Cycloid peers. When a node queries for a file, it

first searches the file in its tree in its cluster, and then uses Lookup(ID) to find the file. We use

Tribler to represent the OSN-based file searching systems. Tribler directly connects peers using their

social links and also builds the DHT overlay as SOCNET. When a node queries for a file, it first

randomly chooses K friends for K-multicasting with TTL=4, and then uses Lookup(ID) to find the

file. Unless specified, by default, there is no node dynamism.

67

4.3.1 The Efficiency of File Searching

Figure 4.8(a) shows the CDF of queries versus file search path length in hops. It shows that

SOCNET has 18.7%, 33.8% and 5.9% more queries resolved within two hops than SWorld, TS Net

and Tribler, respectively. Also, SOCNET has fewer queries resolved within long path lengths.

Although SWorld clusters common-interest peers as SOCNET, and Tribler connects OSN friends as

SOCNET, SOCNET generates shorter path lengths than SWorld and Tribler due to two reasons.

First, SOCNET has the social based query path selection algorithm to forward queries to the nodes

that are likely to resolve the queries. Second, SOCNET collects the indices of all files in a subcluster

to its head for file querying, so it can always find the file inside the cluster, while SWorld and Tribler

have to rely on system-wide lookup DHT function when the intra-cluster search fails. Tribler has

more queries resolved in two hops than SWorld and TS Net, because queries are forwarded using

K-multicasting to nodes that are more likely to have the required files than strangers in the same

location or having the same interest. SWorld forwards the query between randomly connected peers

in an interest cluster that do not have high probability of holding the queried file. TS Net carries

out the file querying along the proximity-aware tree of the requester. Recall that 80% of queries

are for files owned by peers within 4 social hop distance of the requester, and the distance between

a requester’s friends and the requester is usually short. Therefore, a peer has a certain probability

to find a queried file from its proximity-aware tree. However, since geographically-close nodes do

not necessarily have the same interest, TS Net produces longer path lengths than other systems

that consider either friendship or interests. This figure shows that SOCNET generates shorter path

length than other methods, which verifies its high searching efficiency.

Figure 4.8(b) shows the percent of queries resolved in each stage of searching. The inter-

cluster stage in SOCNET is where the Lookup() operation to forward the query to the cluster with

the queried file’s interest outside the requester’s clusters. We classified the queries in SOCNET

that used the Lookup() operation to the inter-cluster stage. The inter-cluster stage in other three

systems is the complementary system-wide Lookup() function. We see that SOCNET resolves the

highest percent of queries by intra-cluster searching due to its interest and friend clustering features.

TS Net resolves more queries than Tribler and SWorld in intra-cluster searching as it searches all

nodes in a location cluster. These results verify the reasons we explained for the different path

length performance in Figure 4.8(a).

68

20%

40%

60%

80%

1 2 3 4 5 6R
o

u
ti

n
g

su
cc

es
s

ra
te

Round index

SWorld TS_Net SOCNET Tribler

(a) Routing success rate

20%

40%

60%

80%

100%

1 2 3 4 5 6

R
es

p
o

n
se

 s
u

cc
es

s
ra

te

Round index

SWorld TS_Net SOCNET Tribler

(b) Response success rate

Figure 4.9: The trustworthiness of file searching.

Figure 4.8(c) shows the median, 1st percentile and 99th percentile of all routing latency of

each of six rounds. We see that the results follow SOCNET<TS Net<Tribler<SWorld. The routing

latency is determined by path length and the distance between hops in the path. From Figure 4.8(a),

we know SOCNET generates the shortest path lengths. Also, due to its proximity-aware intra-

and inter-subcluster searching, it can resolve the queries by servers physically closest. Therefore,

SOCNET produces the least routing distance and latency. Though TS Net generates longer path

lengths than Tribler and SWorld, it generates shorter routing distance due to its proximity-aware

searching within a cluster, which reduces its routing distance and latency. The median routing

distance and latency of SWorld are slightly longer than Tribler. In Tribler, a peer searches files in

its social friends, while in SWorld a peer searches files in its common-interest peers. As most of

friend pairs are physically close, Tribler produces shorter median routing distance and latency than

SWorld.

Figure 4.8(d) shows the CDF of server-client pairs over distance, which indicates the effi-

ciency of file transmission from the server to the client. The figure shows that both TS Net and

SOCNET have more clients served by servers within shorter distance than other methods. They

have 34% and 29% more queries responded by peers within 1000km than SWorld and Tribler, re-

spectively. Recall each file has two copies in the system. The proximity-awareness of SOCNET and

TS Net enables them to find the physically closer server to the requester. We also see that Tribler

produces slightly more server-client pairs within short distance than SWorld, because friends tend

to be physically close to each other, but common-interest peers are scattered over the world. This

figure shows the low file transmission latency of SOCNET due to its proximity-aware searching.

69

0

2000

4000

6000

8000

1 2 3 4 5 6A
c
c
u

m
u

la
te

d
 n

u
m

.
o

f
m

e
s
s
a

g
e

s
 (

1
0

4
)

Round index

SWorld TS_Net SOCNET Tribler

Figure 4.10: The overhead
of structure maintenance.

0
50000

100000
150000
200000
250000

2000 4000 8000 16000 32000 64000N
u

m
.

o
f

m
e

s
s
a

g
e

s

Subcluster size

Centralized Voting-C (Server)
Voting-C (Peer) Voting-D

(a) Number of messages

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

4000 16000 64000C
o

m
p

u
ti

n
g

 t
im

e
 (
μ
s)

Subcluster size

Centralized Voting-C

(b) Computing time

Figure 4.11: Efficiency of voting-based subcluster head
election.

0

1

2

2000 4000 8000 16000 32000 64000

F
in

a
l

s
c
o

re

Subcluster size

Voting (trust) Centralized (capacity)
Voting (capacity) Centralized (trust)

Figure 4.12: Effectiveness of
head election.

4.3.2 The Trustworthiness of File Searching

We assumed that a peer is cooperative in forwarding and responding to a query from its

friend [81]. The cooperation probability of forwarding or responding to a query between strangers

was randomly chosen from 100%, 50% and 10%. Figure 4.9(a) shows the average success rate of

query routing of each round in the six successive rounds. In each hop, the forwarder decides whether

to deliver or drop the query based on the cooperation probability. Due to the social based routing,

Tribler and SOCNET have a higher query routing success rate than other two methods by routing

queries among friends who are cooperative. We observe that SOCNET’s success rate is 3% lower

than Tribler. Tribler uses K-multicasting while SOCNET uses K paths. Thus, by forwarding the

quires to more peers, Tribler resolves more queries by social friends than SOCNET, leading to a

higher routing success rate. If SOCNET also employs the K-multicasting method, it would have

the similar routing success rate as Tribler. We also see that SWorld generates a higher success rate

than TS Net. Recall each peer in SWorld connects to 20 peers while each peer in TS Net connects

to 4 peers. Thus, with a similar drop rate in routing, SWorld produces a higher average success rate

of query routing than TS Net. Figure 4.9(b) shows the average success rate of querying responses

in each of six rounds. The success rate of querying response shows the same tendency as the results

in Figure 4.9(a) due to the same reasons. Both figures verify the high performance of SOCNET in

trustworthy file searching by leveraging social based searching.

4.3.3 The Overhead of File Searching

Figure 4.10 shows the number of messages in system maintenance including those for the

maintenance of DHT and subclusters, and the Insert() function for file metadata distribution. The

structure maintenance is conducted after each round. We see that the system overhead follows

70

SOCNET<TS Net<SWorld<Tribler. SOCNET generates fewer messages than other systems for

two reasons. First, SOCNET does not need Insert() function for file metadata distribution. Second,

SOCNET generates fewer messages for structure maintenance. Tribler maintains all social links,

leading to the highest system overhead. SWorld maintains 20 common-interest connections, while

in TS Net, each peer only needs to maintain at most 5 connections to the parent and children. Thus

SWorld generated a larger number of maintenance messages than TS Net. The lightest overhead of

SOCNET indicates its high scalability for millions of users in a file sharing system.

4.3.4 Performance of Voting-based Subcluster Head Election

In this section, we evaluate the efficiency and effectiveness of our voting-based subcluster

head election algorithm based on centralized server, denoted by Voting-C, and the decentralized

head election algorithm, denoted by Voting-D. The number of peers in one subcluster was varied

from 2,000 to 64,000 by doubling the size in each step. We chose 20 PlanetLab nodes in one location

and randomly assigned each peer to a PlanetLab node. Each peer’s capacity was randomly chosen

from [1, 104]. The number of friends of each peer was randomly chosen from [1,
√
Nc] where Nc

denotes the subcluster size and ds was set to 2. We conducted 20 experiments for each test and

report the average result.

We compared Voting with the centralized method denoted by Centralized. Suppose P is the

set of all peers in a subcluster. Centralized uses the number of peers within ds = 2 social hops of

peer i, denoted as Ni, to calculate its trust score by:

ScoreTi = Ni/Max{Nk, ∀k ∈ P}.

Centralized calculates the capacity score of peer i (denoted by ScoreCi) by replacing N in the above

equation with node capacity denoted by C. Centralized then calculates each peer’s final score by

Scorei = ScoreTi
+ ScoreCi

,

and selects the one with the highest score as the head.

Figure 4.11(a) shows the number of messages transmitted for head election in both Cen-

tralized and Voting versus the size of the subcluster. It shows that the total number of messages

71

exchanged follows Voting-D>Voting-C>Centralized. In the head decision period, in Voting-D, head

candidates broadcast their votes to all subcluster members, which produces more message exchanges.

Thus, Voting-D generates the largest number of messages. Voting-C generates slightly more mes-

sages than Centralized because in the voting procedure, all nodes transmit messages to their elected

candidates at least once to send the votes, which occupy the majority of total messages. We see that

on average, 94.2% of messages in Voting-C and all of the messages in Voting-D are for votes. Theses

voting messages are transmitted inside a cluster between geographically-close friends, which does

not introduce much network load. Message transmission between the centralized server and peers

introduces more network load than message transmission among peers, due to the longer distance

transmission.

As shown in the figure, compared to Centralized, Voting-C saves 89%-96% of messages sent

to the centralized server respectively for each subcluster size increasing from 2,000 to 64,000. Thus,

Voting-C saves most of the network traffic load over long distances. Voting-D generates significantly

more messages, but it eliminates the dependence on the centralize server. Voting-D also reduces the

network load of the centralized server by reducing the number of messages sent to it. In the figure,

we also see that the number of messages received by the centralized server increases proportional

to the size of the subcluster in Centralized method, while the number of messages increases much

slower in Voting-D. Because all peers in Centralized need to send messages to the centralized server,

while few peers in Voting-C that are final head candidates need to send messages to the centralized

server. This result indicates higher scalability of Voting-D compared to Centralized by releasing

load on the central server in the system. It also shows that though the fully decentralized method

can eliminate the dependence on the centralized server, it generates many communication messages.

Figure 4.11(b) shows the computing time of subcluster head election in the centralized

server. Since Voting-D get rids of the centralized sever, we only compare Voting-D with Centralized

It shows that the computing time of Centralized is three to five magnitudes longer than Voting-C

while the network size increases from 2,000 to 64,000. When the size of subcluster is 64,000, the

computing time of Centralized is 90.6s compared to 0.58ms in Voting-C. Because in Centralized, the

server needs to count the unique friends within two-hop social relationship for each peer to calculate

the trustworthiness. The process has time complexity as O(N2
c), where Nc is the subcluster size. In

Voting-C, the servers only need to check all received messages and select a head with the highest

number of votes. The time complexity of this process is O(M), where M is the number of final

72

candidates sending messages to the centralized server. Thus, the time complexity of Voting-C is

much smaller than that of Centralized. It means Voting-C brings much less work load to the

centralized server than Centralized. It confirms that Voting-C has a better efficiency and scalability

than Centralized on the server side. From the above two figures, we see that Voting-C gains much

better scalability and efficiency than Centralized, and Voting-D eliminates the dependence of the

centralized server at the cost of more communication messages.

We then evaluate whether both methods compromise the effectiveness of selecting the opti-

mal peer as the head. Since both Voting-C and Voting-D utilize the same strategy in selection the

head, they will get the same result. Thus, we use Voting to denote both of them. Figure 4.12 shows

the final scores (with breakdown into the capacity score and trust score) of the selected heads in

Voting and Centralized. Since Centralized compares the final scores of all peers in head selection, we

can regard its result as the optimal. The figure shows that Voting ’s head only has a slightly lower

final score than the optimal head. The score breakdown shows that the elected head in Voting has

similar capacity as the optimal head and has slightly lower trustworthiness. These results indicate

that Voting has a similar effectiveness as Centralized, but it achieves a much better efficiency and

scalability as shown in Figure 4.11(a) and Figure 4.11(b).

4.3.5 Dynamism-resilient Sub-interest Guided Search

This experiment tests the performance of the dynamism-resilient sub-interest guided search

algorithm, denoted by SOCNET-D. For comparison, we also include the results of SOCNET with

un-optimized sub-interest guided search algorithm, denoted by SOCNET-P. In this experiment, the

peer failure rate follows a Poisson distribution, with the mean rate varying from 1% to 3.5% node

failures per second. The experimental settings are the same as the settings in evaluating the efficiency

of file searching. We conducted 10 experiments, and calculated the average results to report.

We used the average of the path lengths of a successful resolved query as its path length, and

used TTL as the path length for a failed query. Figure 4.13(a) shows the average path length in hops

of different methods with different mean node failure rates. It shows that the average path length

of SOCNET-D is the shortest in all methods, and it follows TS Net>SWorld>Tribler>SOCNET-P,

which is consistent with Figure 4.8(a) due to the same reasons. SOCNET-P records and uses an entire

source-destination path, which may suffer from path breakups due to node failures. Thus, SOCNET-

P produces more failed queries and hence longer average path length. In contrast, SOCNET-D

73

5
6
7
8
9

10

1.0% 1.5% 2.0% 2.5% 3.0% 3.5%A
v
e

.
p

a
th

 l
e

n
g

th

(h
o

p
)

Mean node failure rate

SWorld TS_Net SOCNET-D
Tribler SOCNET-P

(a) Ave. path length

0
5000

10000
15000
20000

1.0% 1.5% 2.0% 2.5% 3.0% 3.5%A
v
e

.
d

is
ta

n
c
e

(k

m
)

Mean node failure rate

SWorld TS_Net SOCNET-D
Tribler SOCNET-P

(b) Ave. routing distance

0
2000
4000
6000
8000

10000

1.0% 1.5% 2.0% 2.5% 3.0% 3.5%

A
v
e

.
la

te
n

c
y

(m

s
)

Mean node failure rate

SWorld TS_Net SOCNET-D
Tribler SOCNET-P

(c) Ave. routing latency

10%

30%

50%

70%

1.0% 1.5% 2.0% 2.5% 3.0% 3.5%

R
o

u
ti

n
g

s
u

c
c
e

s
s
 r

a
te

Mean node failure rate

Sworld TS_Net SOCNET-D
Tribler SOCNET-P

(d) Query success rate

Figure 4.13: Performance in peer dynamism.

records the next hop in each forwarding node on a path, so it is not affected by node failures and

hence is dynamism resilient. As a result, SOCNET-D produces shorter path length than SOCNET-P.

The figure also shows that the average path length increases as the node failure rate increases

for all methods. More peer failures lead to more querying failures, hence longer path lengths for

the intra-cluster search. From the figure, we see that TS Net has the highest increase rate than

others. In TS Net’s four-ary proximity-aware tree, there is only one path from a file requester to

a file holder. When a path is broken, there is no alternative routing path to the file holder. Thus,

TS Net has more query failures and hence faster path length increasing. We also see that SOCNET-

P has faster path length increase than SWorld and Tribler as node failure rate increases. This is

because SOCNET-P only tries the best K paths and does not have an alternative path for a failed

path. In SWorld and Tribler, a query is forwarded to K peers in each hop, so there may be several

paths to the file holders. Thus, SOCNET-P has a larger increase rate than SWorld and Tribler. In

SOCNET-D, the forwarder detects the peer failure in the next hop, and forwards the query to an

alternative friend with both success rate and latency consideration. Therefore, SOCNET-D always

finds the shortest alternative path and hence produces the smallest increase rate among all methods.

The figure indicates that SOCNET-D has a relative stable performance in node dynamism compared

to other methods, and it produces the shortest routing path length in all methods.

Figure 4.13(b) and Figure 4.13(c) show the average routing distance and latency of all

methods, respectively. The figure shows that the average routing distance and latency of all

methods except SOCNET-D follow the same order shown as Figure 4.8(c) due to the same rea-

son. SOCNET-D has a shorter average routing distance and latency than SOCNET-P, due to

the same reason as Figure 4.13(a). The figure also shows that all methods’ routing distance and

latency increase as the node failure rate increases, and the increase rate follows TS Net>SOCNET-

P>SWorld≈Tribler>SOCNET-D due to the same reason as Figure 4.13(a).

74

Figure 4.13(d) shows that the routing success rate of all methods except SOCNET-D follows

the same order as Figure 4.9(a) due to the same reason. SOCNET-D has higher success rate than

SOCNET-P, since SOCNET-D has a smaller failure rate in intra-subcluster search due to the same

reason as Figure 4.13(a). It also shows that all methods’ routing success rates decrease as node failure

rate increases, and the decrease ratio follows TS Net>SOCNET-P>SWorld≈Tribler>SOCNET-P

due to the same reason as Figure 4.13(a).

4.3.6 Performance of the Enhanced Random Search Algorithm

In this experiment, we test the performance of the enhanced random search algorithm in

a subcluster. We used the same 20 PlanetLab nodes as evaluating voting-based subcluster head

election to simulate 6000 peers to construct the social graph using the same setting as evaluating

the efficiency of file searching. We simulated 30 sub-interests, and each peer randomly selected 6

sub-interests. There are 10 files in each sub-interest. Each file has 10 copies that were randomly

assigned to the peers of the same sub-interest. If a requester’s friend has ≥ 8 common friends with

the requester, the friend has a probability of 100% to forward or respond to the requester’s query.

The probability that other friends forward or respond to the query was randomly chosen from {10%,

20%, 30%}. We let each peer request a file randomly selected from all files of his own sub-interests.

The file querying rate in the system is 1 query per second, and finally each peer requests two files.

We use TF to denote the set of target files of a query in the system, and use RF to denote the set

of retrieved files of a query. We define the recall rate as |RF |/|TF | to denote the completeness of

our search algorithm.

We compared SOCNET with i) SOCNET only considering interest closeness (denoted by

Interest), ii) SOCNET only considering social closeness (denoted by Social), and iii) random selection

from all friends (denoted by Random). We varied the K of the best selected friends from 4 to 20

increased by 4 in each step. We set α, β, γ and δ as 0.5 to assign equal weights to all factors in

closeness calculation, and set m equals to K. We will investigate how to determine each parameter

in our future work.

When peer i forwards a query to peer j, if peer j forwards the query to another peer or

replies the queried file to peer i, we call it a response; otherwise, a query deny. We define response

rate as the ratio of all responses in all querying hops. Figure 4.14(a) shows the response rate of

different systems. The response rate follows Social>SOCNET>Interest≈Random. In SOCNET and

75

20%

40%

60%

80%

100%

4 8 12 16 20

R
e

s
p

o
n

s
e

 r
a

te

of selected friends per query (K)

Social Interest SOCNET Random

(a) Response rate

0%
20%
40%
60%
80%

100%

4 8 12 16 20

R
e

c
a

ll
 r

a
te

of selected friends per query (K)

Social Interest SOCNET Random

(b) Recall rate

0

1

2

3

4

4 8 12 16 20

A
v
e

.
p

a
th

 l
e

n
g

th

(h
o

p
)

of selected friends per query (K)

Social Interest SOCNET Random

(c) Ave. path length

0%
20%
40%
60%
80%

100%

4 8 12 16 20

S
u

c
c
e

s
s
 r

a
te

of selected friends per query (K)

Social Interest SOCNET Random

(d) Query success rate.

Figure 4.14: Efficiency and effectiveness of enhanced random search.

Social, peers choose friends with higher social closeness that are most willing to respond to their

file queries, so they have a higher response rate than Interest and Random that do not consider

social closeness. In SOCNET, peers may choose friends with high interest closeness but lower social

closeness. Thus, it generates a lower response rate than Social. The result indicates that SOCNET

and Social leverage the social closeness to effectively motivate peers to respond to file queries. We

also see that the response rate of SOCNET and Social decreases as the number of selected friends

increases. Since peers with lower social closeness are chosen, more query denies occur. This result

confirms the importance of choosing friends with high social closeness. Figure 4.14(a) shows that

SOCNET is effective in encouraging peers to respond to queries by considering social closeness.

Figure 4.14(b) shows the average recall rate of each system. We see that all systems’ recall

rates increase when the number of selected friends increases. As more friends are selected as for-

warders, more files can be founded. We also see that the recall rate follows SOCNET>Interest>Social>

Random. Since SOCNET considers both interest and willingness to response a query, requesters re-

ceive more files than other systems. We see that Interest has larger recall rate than Social, especially

when the number of selected friends is large. This is because Social ensures high willingness to re-

spond but cannot guarantee the accuracy of queries, while Interest provides high query accuracy due

to the consideration of interest. As Random does not consider interest or social closeness, it gener-

ates the lowest recall rate. The result confirms that SOCNET achieves better file query completeness

than others, which means it provides more files than other systems.

We then measured the routing path length of the first received file for a file query. We

regard the routing path length of unresolved queries in the intra-subcluster searching as TTL.

Figure 4.14(c) shows the average path length for all file queries. We see that the routing path

length follows SOCNET<Interest≈Social<Random. Again, since SOCNET considers both interest

and social closeness, queries can meet peers that are capable and willing to forward or respond

76

0
20
40
60
80

100
120

4 8 12 16 20
O

ve
rh

ea
d

 p
er

q

u
es

ti
o

n

of selected friends per query (K)

Social Interest SOCNET Random

Figure 4.15: Overhead of enhanced
random search.

0

50000

100000

150000

T=50% T=60% T=70% T=80% T=90%N
u

m
. o

f
m

es
sa

ge
s

Saved querying msgs Replication msgs
Total saved msgs

Figure 4.16: The efficiency of follower
based replication.

queries, so it achieves shorter path length. Interest produces similar path length as Social. Social

has lower query accuracy when routing without considering the interest-closeness, so Social may

produce longer path length to route a query to a capable peer holding a file. However, Interest has

much lower response rate than Social as shown in Figure 4.14(a), so Interest may route through

an alternative path, due to query denies. Thus, they generate similar performance of routing path

length. We also see that all methods have shorter path length when there are more friends selected

due to the same reason as Figure 4.14(b). This figure indicates that SOCNET leads to shorter path

length for file queries than other methods, which confirms its better search efficiency.

If a request receives at least one file copy, it is successful; otherwise, it failed. Figure 4.14(d)

shows the request success rate of all file requests. We see that the query success rate follows

SOCNET>Interest>Social>Random. This is because both Interest and SOCNET choose potential

capable friends with interest consideration, which leads to accurate routing, while Social and Ran-

dom do not. Thus, Interest and SOCNET have larger success rates. According to Figure 4.14(a),

Interest and Random have a larger drop rate than Social and SOCNET. Thus, Interest has a lower

success rate than SOCNET, and Random has a lower success rate than Social. We also see that

the query success rate increases as K increases since more queries are sent and forwarded. This

figure indicates that by more accurately routing a file query to peers that are capable and willing

to respond the file query, SOCNET generates the higher success rate than systems considering only

social/interest closeness or none.

Figure 4.15 shows the overhead per file query measured by the average number of request

messages generated for a query before it receives the first file copy. We see that Random has

the highest overhead and SOCNET has the lowest overhead as in Figure 4.14(c) due to the same

reasons. We also see that Social is larger than Interest, though they have similar average path

77

length in Figure 4.14(c). This is because Social has much larger response rate than Interest as

shown in Figure 4.14(a). Thus, more queries are sent to peers leading to higher overhead in Social

than in Interest. We also see that the overhead increases as K increases since more queries are sent

or forwarded. This figure indicates that by more accurately routing a file query to peers that are

capable and willing to response this request, SOCNET generates the lowest overhead than other

systems considering only social/interest closeness or none.

4.3.7 Follower based File Replication

Recall that we have file replication strategies for three cases. Here, we use the follower

based file replication as an example to show the efficiency enhancement from file replication. In each

cluster, we randomly selected a node to be the followee, who had 50 files of its interest in the initial

round. Then we randomly chose one peer instead of all peers in each subcluster to query a randomly

chosen file in the followee at the same rate as previous experiments. We ran the experiment for an

initial round and subsequent ten successive rounds. In each round, each followee generates a new

file, which will be replicated to followers. We varied the threshold of the percentage of visited files

(T) for follower determination and measured the performance.

Figure 4.16 shows the total number of saved querying messages, the number of file replication

messages and their difference (total saved messages) with different T values in the ten successive

rounds. We see that the number of saved querying messages and the number of file replication

messages decreases when T increases. As T increases, fewer followers are generated, leading to fewer

replicas. Thus, fewer queries can be resolved locally, leading to fewer saved querying messages and

fewer replication messages. We also see that the number of total saved messages is at least 16860,

which means that the follower based replication algorithm can always save cost in file sharing. We

observe that T = 60% and T = 50% lead to the maximum number of total saved messages, but

T = 60% generates fewer replication messages. This implies that T = 60% is the optimal threshold

value in our experiment settings.

78

Chapter 5

ES3: An Cost Efficient and

SLA-Guaranteed Data Allocation

Among CPSs for OSNs

In this chapter, we describe the background of the cost minimization problem of data alloca-

tion among CSPs’ datacenters for OSNs. We then model the problem using an integer programming

and prove its NP-hardness. To solve the problem efficiently, we present our Economical and SLA-

guaranteed cloud Storage Service (ES3), which finds a data allocation and resource reservation

schedule with cost minimization and SLA guarantee.

5.1 Problem Statement

5.1.1 System Model and Assumptions

A customer may deploy its application on multiple datacenters, which we call customer dat-

acenters. A broker’s ES3 serves multiple customers. We use Dc to denote the customer datacenters

of all customers and use dci∈ Dc to denote the ith customer datacenter. Ds denotes the set of the

storage datacenters of all CSPs and dpj ∈ Ds denotes the jth datacenter. D denotes the set of

all customers’ data items, and dl ∈ D denotes the lth data item. As in [48], the SLA indicates

79

Table 5.1: Notations of inputs and outputs.

Input Description Input Description

Dc set of customer dci ith customer
datacenters datacenter

Ds set of storage dpj jth storage
datacenters datacenter

cgdpj Get capacity of dpj cpdpj Put capacity of dpj

psdpj (x) unit storage price pt(dpj) smallest unit

of dpj under x GB transfer price
storage size to dpj

pgdpj unit Get price of dpj ppdpj unit Put price of dpj

F g(x) CDF of Get latency F p(x) CDF of Put latency

αdpj reservation price ratio D entire data set

dl/sdl data l and dl’s size Lg(dl) Get deadline to dl
β number of replicas Lp(dl) Put deadline to dl

εg(dl) allowed % of Gets/ v
dl,tk
dci

Get/Put rates

/εp(dl) Puts on dl beyond /u
dl,tk
dci

targeting dl gene-

deadlines rated by dci in tk
T reservation time tk kth billing period

Ct total cost for storing X
dl,tk
dpj

existence of dl’s

D and serving replica in dpj
requests during tk

H
dl,tk
dci,dpj

whether dpj serves Rg
dpj

optimal reserved

requests on dl /Rp
dpj

number of

from dci Gets/Puts

the maximum allowed percentages of Gets/Puts beyond their deadlines. We use εg(dl) and εp(dl)

to denote the percentages and use Lg(dl) and Lp(dl) to denote the Get/Put deadlines in the SLA

of the customer of dl. In order to ensure data availability [23] in datacenter overloads or failures,

like current storage systems (e.g., Google File System (GFS)) and Windows Azure), ES3 creates a

constant number (β) of replicas for each data item. One of the β replicas is serving the Get request

while the others ensure the data availability.

CSPs charge three different types of resources: the storage measured by the data size stored

in a specific region, the data transfer to other datacenters operated by the same or other CSPs, and

the number of Get/Put operations [1]. We use αdpj
to denote the reservation price ratio, which

represents the ratio of the reservation price to the pay-as-you-go price for Get/Put operations.

A broker reserves the same amount of Gets/Puts in each billing period (denoted by tk) during a

reservation time (denoted by T). For each billing period, the amount of Gets/Puts under reservations

is charged by the reservation price, and the amount of overhang of the reservations is charged by the

pay-as-you-go price. ES3 needs to predict the size and Get/Put request rates of each data item (dl)

based on the past T periods to generate the data allocation schedule. Previous study [126] found

80

that a group of data items with requesters from the same location has a more stable request rate

than each single item. Thus, in order to have relatively stable request rates for more accurate rate

prediction, ES3 groups data objects (the smallest unit of data) (e.g., a user’s profile in an online

social network) from the same location to one data item as in [70]. For easy reference, we list the

main notations used in the dissertation in Table 5.1.

5.1.2 Problem Constraints and Objective

ES3 finds a schedule that allocates each data item and its replicas to CSPs’ datacenters to

achieve cost minimization for the broker and SLA guarantees for all of the broker’s customers. We

formulate the problem to find the data allocation schedule using an integer programming below.

Payment minimization objective. We aim to minimize the total cost for a broker

(denoted by Csum); Csum = Cs +Ct +Cg +Cp, where Cs, Ct, Cg and Cp denote the total Storage,

Transfer, Get and Put cost during entire reservation time T of the broker, respectively. Below, we

first present how to calculate Cs, Ct, Cg and Cp.

We use sdl
to denote the size of data dl and use binary variable Xdl

dpj
to indicate whether

dl is stored in dpj . We define Sdpj
=

∑
dl∈D Xdl

dpj
∗ sdl

as the aggregate storage size in dpj during

tk. Then, the storage cost is calculated by:

Cs =
∑

tk∈T

∑

dpj∈Ds

Sdpj ∗ psdpj (Sdpj), (5.1)

where psdpj
(x) denotes the unit storage price of datacenter dpj with a storage data size as x GB.

The Transfer cost is the cost for importing data to storage datacenters. The imported data

is the data that needs to be stored after tk−1 but is not stored in the datacenter at tk−1. Thus, the

data transfer cost is calculated by:

Ct =
∑

tk∈T

∑

dl∈D

∑

dpj∈Ds

X
dl,tk
dpj

∗ (1−X
dl,tk−1

dpj
) ∗ pt(dpj) ∗ sdl , (5.2)

where pt(dpj) is the smallest unit transfer price to dpj from a source datacenter containing dl.

We use rtkdci,dpj
and wtk

dci,dpj
to denote the Get and Put rates from dci to dpj during tk,

respectively. We use vdl,tk
dci

and udl,tk
dci

to denote the Get and Put rates on data dl generated by dci

per unit time during tk, respectively. Thus,

81

r
tk
dci,dpj

=
∑

dl∈D

v
dl,tk
dci

∗Hdl
dci,dpj

,

w
tk
dci,dpj

=
∑

dl∈D

u
dl,tk
dci

∗Xdl
dpj

,

where Hdl,tk
dci,dpj

and Xdl,tk
dpj

are binary variables. Xdl

dpj
= 1 indicates dl is stored in dpj . Hdl,tk

dci,dpj
= 1

indicates dpj serves dci’s requests on data dl.

The cost for Gets/Puts (i.e., Cg and Cp) can be calculated by deducting the reservation’s

cost saving (i.e., reservation benefit) from the pay-as-you-go cost. We use Rg
dpj

to denote the number

of reserved Gets for a billing period. We then calculate the Get cost saving by reservation in dpj

(denoted by fg
dpj

(Rg
dpj

)) by:

fg
dpj

(Rg
dpj

) = (
∑

tk∈T

Rg
dpj

∗ (1− αdpj)−Og
dpj

(Rg
dpj

)) ∗ pgdpj , (5.3)

where Og
dpj

(Rg
dpj

) is the over reserved Get rates including the cost for over reservation and the over

calculated saving and it is calculated by

Og
dpj

(Rg
dpj

) =
∑

tk∈T

Max{0, Rg
dpj

−
∑

dci∈Dc

r
tk
dci,dpj

∗ tk}. (5.4)

Similarly, we can calculate the Put cost saving (denoted by fp
dpj

(Rp
dpj

)). Finally, the Get/Put cost

is calculated by:

Cg =
∑

tk

∑

dpj

∑

dci

r
tk
dci,dpj

∗ tk ∗ pgdpj − fg
dpj

(Rg
dpj

), (5.5)

Cp =
∑

tk

∑

dpj

∑

dci

w
tk
dci,dpj

∗ tk ∗ ppdpj − fp
dpj

(Rp
dpj

). (5.6)

Constraints. To create a valid data allocation with cost minimization, ES3 needs to ensure

that a request is served by its targeting replica, that is:

s.t. ∀dci∀dpj∀dl Hdl
dci,dpj

≤ X
dl
dpj

≤ 1, (5.7)

and any request should be served, denoted as:

∀dci∀dl
∑

dpj

H
dl
dci,dpj

= 1. (5.8)

ES3 also needs to make sure any Get/Put satisfy the Get/Put SLA. We use F g
dci,dpj

(x) and

F p
dci,dpj

(x) to denote the cumulative distribution function (CDF) of Get and Put latency from dci

82

to dpj , respectively. Thus, F
g
dci,dpj

(Lg(dl)) and F p
dci,dpj

(Lp(dl)) are the percentage of Gets and Puts

from dci to dpj within the latencies Lg(dl) and Lp(dl), respectively. Accordingly, for each customer’s

datacenter dci, we can find a set of storage datacenters that satisfy the Get SLA for Gets from dci

targeting dl, i.e.,

Sg
dci,dl

= {dpj |F g
dci,dpj

(Lg(dl)) ≥ (1− εg(dl))}.

We define Gdci as the whole set of Get/Put data requested by dci during T . For each data dl ∈ Gdci ,

we can find another set of storage datacenters Sp
dl

= {dpj |∀dci∀tk, (udl,tk
dci

> 0)→ (F g
dci,dpj

(Lp(dl) ≥
1− εp(dl))} that consists of datacenters satisfying Put SLA of dl. The intersection of the two sets,

Sp
dl
∩ Sg

dci,dl
, includes the appropriate datacenters that serve dl’s requests from dci with Get/Put

SLA guarantee, that is:

∀dci∀dl ∈ Gdci

∑

dpj �∈S
g
dci,dl

H
dl
dci,dpj

= 0 ∧
∑

dpj �∈S
p
dl

X
dl
dpj

= 0 (5.9)

ES3 needs to maintain a constant number (β) of replicas for each data item requested by

datacenter dci:

∀dci∀dl ∈ Gdci

∑

dpj∈S
g
dci,dl

X
dl
dpj

≥ β. (5.10)

Finally, ES3 needs to ensure that any datacenter’s Get/Put capacity is not exceeded:

∀dpj∀ti
∑

dci∈Dc

r
tk
dci,dpj

≤ cgdpj ∧
∑

dci∈Dc

w
tk
dci,dpj

≤ cpdpj , (5.11)

where cgdpj
and cpdpj

denote the Get and Put capacity of datacenter dpj , respectively.

Problem statement and customer cost assignment. Below, we formulate the problem

that minimizes the cost under the aforementioned constraints using an integer programming.

min Csum = Cs + Ct + Cg + Cp (5.12)

s.t. Constraints Formulas (5.7), (5.8), (5.9), (5.10) and (5.11).

Formula (5.12) represents the goal to minimize the total payment cost of a broker. Con-

straints (5.7) and (5.8) together indicate that any request should be served by a replica of the

targeted data. Constraint (5.9) guarantees the Get/Put SLA. Constraint (5.10) indicates that for

any Get request at any time, there are at least β replicas to serve the request to ensure data avail-

ability. Constraint (5.11) indicates that any datacenter’s Get/Put capacities cannot be exceeded.

83

The payment cost of the broker for its customer cn is:

Ccn
sum = Cs ∗ γcn

s + Ct ∗ γcn
c + Cg ∗ γcn

g + Cp ∗ γcn
p , (5.13)

where γcn
s , γcn

c , γcn
g and γcn

p are the percentages of cn’s usages in all customers’ usages of Storage,

Transfer, Get and Put, respectively. In [69], we proved that this integer program is NP-Hard.

Therefore, we propose a heuristic solution to solve the problem, called data allocation and reservation

algorithm (Section 5.2).

This algorithm considers all pricing policies mentioned in Chapter 1 to reduce the total cost

of a broker as much as possible while providing guaranteed SLA to its customers. To maximize

the reservation benefit, before determining reservation amount, ES3 can use its GA-based data

allocation adjustment approach (Section 5.3) to rearrange the data allocation to reduce the variance

of Get/Put rates in each datacenter between different billing periods. Then, ES3 determines resource

reservation amount to maximize the reservation benefit in each used storage datacenter under this

specific data allocation. ES3 further has a dynamic request redirection algorithm (Section 5.4) to

select a datacenter with sufficient reservation to serve requests from over-utilized datacenters in

order to reduce costs when the request rates vary greatly from the expected rates.

5.2 Data Allocation and Resource Reservation

5.2.1 Resource Reservation

dp1

d1
d2

d1

d2

t1 t2
dp2

d3

d4
d3

d4

t1 t2

(a) Unbalanced data allocation (b) Optimal data allocation

dp1

d1

d2

d1
d2

t1 t2
dp2

d3

d4

d3
d4

t1 t2

GA
=>>

Reservation

A1=100

A2=200

A1=100

A1=A2=150

Figure 5.1: Unbalanced and optimal data allocation.

First, we introduce how to find the optimal reservation amount that maximizes the reser-

vation benefit given a specific data allocation among datacenters. We take the Get reservation for

datacenter dpj as an example to explain the determination of the optimal reservation amount. We use

Bdpj = Max{fg
dpj

(Rg
dpj

)}Rg
dpj

∈N∪{0} to denote the largest reservation benefit for dpj given a specific

data allocation, where Rg
dpj

denotes the amount of reservation. We use Atk =
∑

dci∈Dc
rtkdci,dpj

∗ tk

84

to denote the number of Gets served by dpj during tk, and define A = {A1, A2, ..., An} as a list of

all Atks of different tk ∈ T sorted in an increasing order. As shown in Figure 5.1(a), for datacenter

dp1, if the reservation is the amount of Gets in billing period t1, since the usage is much higher than

the reserved amount in t2, the payment in t2 is high. If the reservation is the amount of Gets in t2,

then since the real usage in t1 is much lower, the reserved amount is wasted. It is a challenge to

determine the optimal reservation.

In [69], we proved that when Rg
dpj
∈ [Ai, Ai+1] (i ∈ [1, n−1]), reservation benefit fg

dpj
(Rg

dpj
)

increases or decreases monotonically. Thus, the optimal reservation is the Ai (i ∈ [1, n − 1]) that

generates the largest reservation benefit, i.e.,

Bdpj = Max{fg
dpj

(Ai)}Ai∈A. (5.14)

We also proved [69] that for Rg
dpj
∈ [0, A1], f

g
dpj

(Rg
dpj

) is positively proportional to Rg
dpj

. Also, the

maximum reservation benefit is no less than the reservation benefit of choosingRg
dpj

= Min{Ai}Ai∈A =

A1. Therefore, in order to maximize reservation benefit, we can enlarge its lower bound fg
dpj

(A1),

which needs to enlarge A1 in data allocation. Hence, a larger A1 increment in data allocation may

lead to higher reservation benefit increment. Then, in the data allocation method introduced in

Section 5.2.2, we choose the datacenters that lead to the largest A1 increment as candidates to

allocate the data. After the data allocation is determined, we use Equation (5.14) to determine the

reserved amount for each datacenter. The determination of the Put reservation is the same as the

Get reservation.

5.2.2 Data Allocation

In this section, we propose a heuristic data allocation solution for the formulated problem

in Section 5.1.2. That is, we find a datacenter to allocate each data item to minimize the total cost

of this data replica (Objective 5.12) while satisfying Constraints (5.7)-(5.11). Before we explain the

datacenter selection, we first introduce a concept of Storage/Get/Put-intensive data item.

A data item dl’s payment cost consists of Get, Put, Transfer and Storage cost denoted by

Cdl
s , Cdl

g , Cdl
t and Cdl

p . Transfer conducts one-time data import to clouds and is unlikely to become

the dominant cost. We consider data item dl as Storage-intensive if C
dl
s dominates the total cost (e.g,

Cdl
s � Cdl

g +Cdl
p), and the Get/Put-intensive data items are defined similarly. Many data items have

certain operation patterns and accordingly become Get-, Put- or Storage-intensive. For example,

85

0%

10%

20%

30%

40%

Storage Get Put Balanced

P
e

rc
e

n
ta

g
e

 o
f

d
a

ta

it
e

m
s

o
f

e
a

ch
 s

e
t

Domination set

(a) Data distribution over
dominant sets

0%

20%

40%

60%

80%

100%

2 8 32 128 512 2048

C
D

F
 o

f
d

a
ta

 i
te

m
s

Domnination ratio

(b) CDF of data items over
dominant ratio

Figure 5.2: Efficiency and the validity of the dominant-
cost based data allocation algorithm .

the instant messages in Facebook are Put-intensive [24]. In the web applications such as Facebook,

data is usually requested heavily immediately after its creation, and then is rarely accessed [25].

Then, the old data items with rare Gets/Puts become Storage-intensive. In addition, recall that

only one copy of the β replicas of each data item is responsible for the Get requests, the remaining

β − 1 replicas then become either Put or Storage intensive. In order to reduce cost, a Get, Put or

Storage-intensive replica should be allocated to a datacenter with the cheapest unit price for Get,

Put or Storage, respectively.

Efficiency and validity of the algorithm. The efficiency of the dominant-cost based

data allocation algorithm depends on the percentage of data items belonging to the three dominant

sets, since it allocates data in each dominant set much more efficiently than data in the balanced set.

We then measure the percentage of data items in each data set from a real trace in order to measure

the efficiency of the algorithm. We get the Put rates of each data from the publicly available wall

post trace from Facebook New Orleans networks [114], which covers inter-posts between 188,892

distinct pairs of 46,674 users. We regard each user’s wall post as a data item. The data size is

typically smaller than 1 KB. The Get:Put ratio is typically 100:1 in Facebook’s workload [79], from

which we set the Get rate of each data item accordingly. We uses the unit prices for Storage, Get

and Put in all regions in Amazon S3, Microsoft Azure and Google cloud storage [2, 6, 10]. For each

data item dl, we calculated its dominant ratio of Storage as Mindl
s /(Maxdl

g +Maxdl
p), and if it is

no less than 2, we consider dl as storage dominant. Similarly, we can get a dominant ratio of Get

and Put. Figure 5.2(a) shows the percentage of data items belonging to each dominant set. We can

see that most of the data items belong to the Storage dominant set and Get dominant set, and only

17.2% of data items belong to the balanced set. That is because in the trace, most data items are

either rarely or frequently requested with majority costs as either Storage or Get cost. The figure

indicates that the dominant-cost based data allocation algorithm is efficient since most of the data

86

belongs to the three dominant sets rather than the balanced set. Figure 5.2(b) shows the CDF of

data items over the dominant ratio in the Get dominant set as an example. It shows that most

of the data items in the Get dominant set have a dominant ratio no less than 8, and the largest

dominant ratio reaches 3054. Thus, the cost of these data items quickly decreases when the Get

unit price decreases, and then we can allocate them to the datacenter with the minimum Get unit

price. These results support the algorithm design of finding appropriate datacenter dpj in the sorted

datacenter list of the dominant resource of a data item.

Algorithm 3: Data allocation and reservation algorithm.

for each dci in Dc do
for each dl in Gdci do

H = 100%; dl is assigned with H
dl
dci

= H

while
∑

dpj∈S
g
dci,dl

X
dl
dpj

< β do

if dl is Storage intensive then
L = {(dpj with the largest Sdpj among all datacenters having the smallest
Storage unit price) ∧(dpj ∈ Sp

dl
∩ Sg

dci,dl
)∧(dpj with enough Ge/Put capacity)

};
else if dl is Get/Put intensive then

L = {(dpj with the smallest Get/Put unit price ∨ with the lowest unit
reservation price ∨ with the largest increment of A1 between before and after
dl ’s allocation) ∧(dpj ∈ Sp

dl
∩ Sg

dci,dl
)∧(dpj with enough Get/Put capacity)};

else if dl with H
dl
dci

= H is non-intensive then
L is the union of all the above L sets when dpj is regarded as
Storage/Gett/Put intensive, respectively;

dl is allocated to dpj in L with the smallest Csum; X
dl
dpj

= 1; H
dl
dci,dpj

= H;
H = 0;

Next, we introduce how to identify the datacenter to store a given data item as the problem

solution. Section 5.1.2 indicates that datacenters in (Sp
dl
∩ Sg

dci,dl
) satisfy the SLA of data item dl

(Constraint (5.9)) and Constraint (5.11) must be satisfied to ensure that the allocated datacenters

have enough Get/Put capacity for dl. Among these qualified datacenters, we need to choose β

(Constraint (5.10) datacenters that can reduce the cost as much as possible (Objective (5.12)). For

this purpose, we consider different pricing policies. First, storing the data in the datacenter that

has the cheapest unit price for its dominant cost (e.g., Get, Put or Storage) can reduce the cost

greatly. Second, if the data is Storage-intensive, based on the tiered pricing policy, storing the data

in the datacenter that results in the largest aggregate storage size Sdpj can reduce the cost greatly.

Third, if the data is Get/Put-intensive, in order to minimize the reservation cost, the data should

be stored in the datacenter with the lowest unit reservation price, and as indicated in Section 5.2.1,

87

in order to maximize the reservation benefit, the data should be stored in the datacenter that has

the maximum reservation benefit increment after allocation, i.e., the largest increment of A1. Based

on these three considerations, the datacenter candidates to store the data are further selected.

Algorithm 3 shows the pseudocode for the data allocation and reservation algorithm. Line

3 ensures that the first replica handles all Get requests (Constraints (5.7) and (5.8)) and Line 4

ensures that β replicas are created for each data item (Constraint (5.10)). Lines 5-6 and Lines 7-8

find the datacenter candidates for Storage-intensive data and Get/Put intensive data, respectively.

The identified datacenters meet Constraint (5.9) and Constraint (5.11) and also reduce the cost

greatly based on the three considerations explained above. A data item without any intensiveness

is temporarily considered as Storage, Get and Put intensive, respectively, and all corresponding

qualified datacenter candidates are identified (Lines 9-10). Finally, the datacenter candidate with

the smallest Csum is chosen to store the data item (Objective (5.12)).

After determining the data allocation schedule based on Algorithm 3, ES3 needs to allocate

data items to their assigned datacenters. Specifically, it transfers a data replica from a source

datacenter with the replica to the assigned datacenter. To reduce cost (Objective (5.12)), ES3 takes

advantage of the tiered pricing model of Transfer to reduce the Transfer cost. It assigns priorities

to the datacenters with the replica for selection in order to have a lower unit price of Transfer.

Specifically, for the datacenters belonging to the same CSP of assigned datacenter dpj , those in the

same location as dpj have the highest priority, and those in different locations from dpj have a lower

priority. The datacenters that do not belong to dpj ’s CSP have the lowest priority, and are ordered

by their current unit transfer prices (under the aggregate transfer data size) in an ascending order

to assign priorities. Finally, the datacenter with the highest priority will be chosen as the source

datacenter to transfer data.

The resource reservation is conducted for one billing period tk and keeps the same during T ,

while data allocation needs to be updated after each billing period tk during T . Specifically, at the

initial time of a reservation period T , using Algorithm 3, ES3 calculates a data allocation schedule

satisfying all constraints with cost minimization, and then calculates the optimal reservation for

each dpj based on the method in Section 5.2.1. Then, after each billing period tk during T , ES3

needs to find optimal data allocation schedule under the determined Get/Put reservation during T .

Specifically, under the current Get/Put reservation, ES3 uses Algorithm 3 to calculate the Csum for

the new data allocation schedule. It compares the new Csum with previous Csum, and chooses the

88

data allocation schedule with smaller Csum.

5.3 GA-based Data Allocation Adjustment

To maximize the reservation benefit, the data allocation and reservation schedule should

achieve the ideal situation, in which all data Get/Put rates are no more than the reserved rates while

there is no over-reservation. If the allocated Get/Put rates vary over time largely (i.e., the rates

exceed and drop below the reserved rates frequently), then the reservation saving is small according

to Equation (5.3) in the data allocation and reservation algorithm. For example, Figure 5.1(a)

shows the Get rates of different data items in two datacenters (dp1 and dp2) in two billing periods

(t1 and t2). We assume the reservation price ratio αdpj
= 60%, A1 = 100 Gets and A2 = 200

Gets for both dp1 and dp2, and pgdp1
= pgdp2

= $1. According to Equation (5.14), we calculate

fg
dp1

(A1) = fg
dp2

(A1) = 80 and fg
dp1

(A2) = fg
dp2

(A2) = 60. Then, we can get that Rg
dpj

= A1 = 100

introduces the maximum reservation benefit. After the data allocation and reservation scheduling,

the reserved amounts in both dp1 and dp2 can be much smaller than the actual usage (i.e., 100<200),

which prevents from achieving high reservation benefit. In Figure 5.1(b), the ideal data allocation

and reservation schedule can make the reserved amount approximately equal to the actual usage and

hence enlarge the reservation benefits to reduce the cost. In order to keep the Get/Put relatively

stable so as to maximize the reservation benefit, we propose a genetic algorithm (GA) [42]-based data

allocation adjustment approach that further improves the data allocation schedule to approximately

achieve the ideal situation after calculating a data allocation schedule and before determining the

reservation amount.

GA is a heuristic method that mimics the process of natural selection and is routinely used

to generate useful solutions to optimization problems. In the GA-based data allocation adjustment

approach, as shown in Figure 5.3, a data allocation schedule is formed by <dl, {dp1, ..., dpβ}> of

each data item requested by a customer datacenter, where {dp1, ..., dpβ} (denoted by Gdl
) is the

set of datacenters that store dl. This algorithm regards each data allocation schedule as a genome

string. Using Algorithm 3, it generates data allocation schedules with the lowest total cost (named

as global optimal schedule), and with the lowest Storage cost, lowest Get cost and lowest Put cost

(named as partial optimal schedules) by assuming all data items as Storage-, Get- and Put-intensive

data, respectively.

89

<d1,{dp1,…,dpβ}> <d2,{dp1’,…,dpβ’}> … <dk,{dp1’’,…,dpβ’’}>

<d1,{dp1,…,dpβ}> <d2,{dp1’,…,dpβ’}> … <dk,{dp1’’,…,dpβ’’}>

Global optimal

Storage optimal

<d1,{dp1,…,dpβ}> <d2,{dp1’,…,dpβ’}> … <dk,{dp1’’,…,dpβ’’}> Get optimal

<d1,{dp1,…,dpβ}> <d2,{dp1’,…,dpβ’}> … <dk,{dp1’’,…,dpβ’’}> Put optimal

<d1,{dp1’,…,dpβ’}>

Crossover Crossover Crossover

Mutation

Figure 5.3: GA-based data allocation enhancement.

To generate the children of the next generation, the global optimal schedule sequentially

conducts crossover with each partial optimal schedule with crossover probability θ (Figure 5.3). For

each genome of a child’s genome string, either the global optimal schedule (with probability θ) or the

partial optimal schedule (with probability 1-θ) propagates its genome to this child. To ensure the

schedule validity, for each crossover, the genomes that do not meet all constraints in Section 5.1.2

are discarded. Since each genome remains the same, we do not need to check the constraints for

Get and Put SLAs. However, the Get/Put capacity of each dpj may be exceeded. Thus, we only

need to check Constraint (5.11). In order not to be trapped into a sub-optimal result, the genome

mutation occurs after the crossover in each genome string with a certain probability to change it to

a new genome string. In the mutation of a genome, for each data item, dp1 in Gdl
which serves Gets

and a randomly selected dpk in Gdl
are replaced with qualified datacenters.

After a crossover and mutation, the global optimal schedule and the partial optimal sched-

ules are updated accordingly. To produce the new global optimal schedule, we calculate each child

schedule’s total cost (Csum) according to Equation (5.12), among the child schedules and the global

optimal schedule, the one with the smallest Csum is selected as the new global optimal sched-

ule. Similarly, we evaluate each schedule’s cost according to Equations (5.1), (5.5) and (5.6) to

generate the new Storage/Get/Put partial optimal schedules, respectively. In order to speed up

the convergence to the optimal solution, the population of the next generation (Ng) is inversely

proportional to the improvement of the global optimal schedule in the next generation. That is,

Ng = Min{N, N
Csum/C′

sum
}, where N is a constant integer as the base population, Csum and C ′

sum

are the total cost of global optimal solution of current and next generations, respectively. Creat-

ing generation is terminated when the maximum number of consecutive generations without cost

improvement or the largest number of generations is reached.

The GA-based data allocation adjustment approach aims to increase reservation benefit and

90

it is only executed once at the initial time of reservation period T before determining the reservation

amount. Though it is time consuming, compared to the long reservation time period (e.g., one year

in Amazon DynamoDB [1]), the computing time is negligible. After each billing period tk during T ,

ES3 only needs to do the data allocation if the new allocation schedule leads to lower cost based on

the determined reservation in T .

5.4 Dynamic Request Redirection

In a web application, such as an online social network, the user data tends to be accessed

heavily immediately after creation, and then are rarely accessed [20, 25]. There may be a request

burst due to a big event, which leads to an expensive usage under current request allocation among

storage datacenters. Sudden request silence may lead to a waste of reserved usage. The Put operation

needs to be transmitted to all replicas, but the Get operation only needs to be resolved by one of β

replicas. Therefore, as shown in Figure 5.4, we can redirect the burst Gets on a datacenter that uses

up its reservation to a replica in a datacenter that has sufficient reserved resource for the Gets in

order to save cost. This redirection can also be conducted whenever a datacenter overload or failure

is detected.

 Storage
AWS US East Azure US East

 Storage
X

Get(di) Request Reservation Request Expectation

Starvation Saturation
Agent

Figure 5.4: Overview of the ES3 and the dynamic request redirection

There are two types of servers in ES3, a master and agents. The master is responsible for

calculating the data allocation schedule. Each customer datacenter dci has an agent to measure the

parameters (shown in Table 5.1) needed in the data allocation and reservation schedule calculation

by the master. Due to the time-varying latency and Get/Put rates, the master needs to periodically

calculate the allocation schedule and reallocates the data accordingly. For this purpose, each agent

reports its dci’s usage on each datacenter pdj to the master periodically after each billing period tk.

Since the number of storage datacenters is not too large, the traffic load will not be high.

91

0%
20%
40%
60%
80%

100%

50 60 70 80 90 100

L
o

w
e

s
t

G
e

t
S

L
A

s
a

ti
s
fa

c
ti

o
n

 l
e

v
e

l

Request ratio (%)

ES3 SPANStore COPS
Cheapest Random

(a) In simulation

0%
20%
40%
60%
80%

100%

50 60 70 80 90 100

L
o

w
e

s
t

G
e

t
S

L
A

s
a

ti
s
fa

c
ti

o
n

 l
e

v
e

l

Request ratio (%)

ES3 SPANStore COPS
Cheapest Random

(b) In real clouds

Figure 5.5: Get SLA guaranteed performance.

0%
20%
40%
60%
80%

100%

50 60 70 80 90 100

L
o

w
e

s
t

P
u

t
S

L
A

s
a

ti
s
fa

c
ti

o
n

 l
e

v
e

l

Request ratio (%)

ES3 SPANStore COPS
Cheapest Random

(a) In simulation

0%
20%
40%
60%
80%

100%

50 60 70 80 90 100

L
o

w
e

s
t

P
u

t
S

L
A

s
a

ti
s
fa

c
ti

o
n

 l
e

v
e

l

Request ratio (%)

ES3 SPANStore COPS
Cheapest Random

(b) In real clouds

Figure 5.6: Put SLA guaranteed performance.

ES3 master calculates the assigned Get load of each storage datacenter dpj at the initial time of

tk (Atk), which is used to calculate the data allocation schedule. If the actual number of Gets is

larger than Atk , then the schedule may not reach the goal of SLA-guarantee and minimum cost. We

use threshold Tmax = Atk/tk to check whether a datacenter is over-utilized, whose Get load is too

high and may degrade the performance of the schedule, and use threshold Tmin = Rg
dpj

/tk to check

whether a datacenter is under-utilized, whose reserved Gets are not fully used.

The master calculates the aggregate number of Gets for each datacenter during tk, denoted

by the gdpj
. We used t to denote the elapsed time interval during tk. Datacenters with gdpj

/t < Tmin

are under-utilized, datacenters with gdpj
/t ≥ Tmax are over-utilized, and datacenters with Tmin <

gdpj/t < Tmax are called normal-utilized datacenters. We aim to release the load from over-utilized

datacenters to under-utilized datacenters in order to fully utilize the reservation. Specifically, ES3

master sends out the three different groups to all the agents. If an agent notices that the target

datacenter to serve a request is an over-utilized datacenter, it selects another replica among β replicas

in an under-utilized datacenter with the smallest pay-as-you-go unit Get price to serve the request.

If there are no under-utilized datacenters, the normal-utilized datacenter with the lowest unit Get

price is selected to serve the request. In this way, the dynamic request redirection algorithm further

reduces the cost by fully utilizing the reserved usage.

5.5 Performance Evaluation

We conducted trace-driven experiments on Clemson University’s Palmetto Cluster [11],

which has 771 8-core nodes, and on real-world clouds with a real deployment of ES3. We first

introduce the experimental settings.

92

Simulated clouds. We simulated geographically distributed datacenters in all 25 cloud

storage regions in Amazon S3, Microsoft Azure and Google cloud storage [2, 6, 10]; each region

has two datacenters simulated by two nodes in Palmetto. The distribution of the inter-datacenter

Get/Put latency between any pair of cloud storage datacenters follows the real latency distribution

as in [126]. The unit prices for Storage, Get, Put and Transfer in each region follow the real prices

listed online. As in [1], we assumed that the reservation price ratio saving (1 − αdpj
) follows a

bounded Pareto distribution among datacenters with a shape as 2 and a lower bound and an upper

bound as 53% and 76%, respectively, and set the minimum number of replicas of each data item

to β = 3. We simulated ten times of the number of all customers listed in [2, 6, 10] for each cloud

storage provider. The number of customer datacenters for each customer follows a bounded Pareto

distribution, with upper bound, lower bound and shape as 10, 3 and 2, respectively. As in [126], in

the SLAs for all customers, the Get deadline is 100ms [126], the percentage of latency guaranteed

Gets and Puts is 90%, and the Put deadline for a customer’s datacenters in the same continent is

250ms and is 400ms for an over-continent customer. Also, the aggregate data size of a customer was

randomly chosen from [0.1TB, 1TB, 10TB] [126]. The number of aggregate data items of a customer

follows a bounded Pareto distribution with a lower bound, upper bound and shape as 1, 30000 and

2 [128].

Get/put operations. Each customer datacenter of a customer visits its partial aggregate

data items, and the number of the visited data follows a bounded Pareto distribution with a upper

bound, lower bound and shape as 20%, 80% and 2. The size of each requested data object was set to

100KB [126]. The Put rate follows the publicly available wall post trace from Facebook [114], which

crawled users within New Orleans. The Get:Put ratio is typically 100:1 in Facebook’s workload [79],

based on which we set the Get rate of each data item accordingly. We set the Get and Put

capacities of each datacenter in an area to 1E8 and 1E6 Gets/Puts per second, respectively, based

on real Facebook Get/Put capacities [79]. When a datacenter is overloaded, the Get/Put operation

on it was repeated once. We set the mutation and crossover rates in the GA-based data allocation

adjustment approach in Section 5.3 to 0.2 and 0.8, respectively, which leads to the largest cost

saving when randomly generating all parameters. We set the number of consecutive generations

in this algorithm to 5 and the maximum number of generations to 200 as the stop criterion. In

simulation, we set the billing period to 1 month, and we computed the cost and evaluated the

SLA performance in 12 months. We run each experiment for 10 times and reported the average

93

0%
20%
40%
60%
80%

100%

50 60 70 80 90 100%
 o

f
G

e
ts

 r
e

c
e

iv
e

d
 b

y

o
v
e

rl
o

a
d

e
d

d

a
ta

c
e

n
te

rs

Request ratio (%)

ES3 SPANStore COPS
Cheapest Random

(a) In simulation

0%

20%

40%

60%

80%

50 60 70 80 90 100%
 o

f
G

e
ts

 r
e

c
e

iv
e

d
 b

y

o
v
e

rl
o

a
d

e
d

d

a
ta

c
e

n
te

rs

Request ratio (%)

ES3 SPANStore COPS
Cheapest Random

(b) In real clouds

Figure 5.7: Percent of Gets received by overloaded data-
centers.

0%
20%
40%
60%
80%

100%

50 60 70 80 90 100%
 o

f
P

u
ts

 r
e

c
e

iv
e

d
 b

y

o
v
e

rl
o

a
d

e
d

d

a
ta

c
e

n
te

rs

Request ratio (%)

ES3 SPANStore COPS
Cheapest Random

(a) In simulation

0%
20%
40%
60%
80%

100%

50 60 70 80 90 100%
 o

f
P

u
ts

 r
e

c
e

iv
e

d
 b

y

o
v
e

r
lo

a
d

e
d

d

a
ta

c
e

n
te

rs

Request ratio (%)

ES3 SPANStore COPS
Cheapest Random

(b) In real clouds

Figure 5.8: Percent of Puts received by overloaded data-
centers.

16

32

64

128

50 60 70 80 90 100C
o

s
t

ra
ti

o
 t

o
 R

a
n

d
o

m
 (
%

)

Request ratio (%)

ES3 ES3-IND SPANStore
COPS Cheapest Random

(a) In simulation

16

32

64

128

50 60 70 80 90 100C
o

s
t

ra
ti

o
 t

o
 R

a
n

d
o

m
 (

%
)

Request ratio (%)

ES3 SPANStore COPS
Cheapest Random

(b) In real clouds

Figure 5.9: Payment cost minimization with normal load.

16

32

64

128

50 60 70 80 90 100C
o

s
t

ra
ti

o
 t

o
 R

a
n

d
o

m
 (

%
)

Request ratio (%)

ES3 ES3-NG ES3-NR
SPANStore COPS Cheapest

(a) In simulation

16

32

64

128

50 60 70 80 90 100C
o

s
t

ra
ti

o
 t

o
 R

a
n

d
o

m
 (

%
)

Request ratio (%)

ES3 ES3-NG ES3-NR
SPANStore COPS Cheapest

(b) In real clouds

Figure 5.10: Payment cost minimization with light load.

performance.

Real clouds. As [126], we also conducted a small scale trace-driven experiment on real-

world clouds with a real deployment of ES3. We implemented ES3’s master in Amazon EC2’s US

West (Oregon) Region. We simulated one customer that has customer datacenters in Amazon EC2’s

US West (Oregon) Region and US East Region. The CSPs include Amazon S3, Windows Azure

Storage and Google Cloud Storage. Unless otherwise indicated, the settings are the same as before.

Due to the small scale, the number of data items was set to 1000, the size of each item was set to

100MB, and β was set to 2. The datacenter in each region requests all data objects. We set the Put

deadline to 200ms. Due to the small scale, the workload cannot reach the Get/Put rate capacity

of each datacenter. We set the capacity of a datacenter in each region of all CSPs as 30% of total

expected Get/Put rates. Since it is impractical to conduct experiments lasting a real contract year,

we set the billing period to 4 hours, and set the reservation period to 2 days.

Comparison methods. We compared ES3 with the following systems. i) COPS [72]. It

allocates requested data into a datacenter with the shortest latency to each customer datacenter

but does not consider payment cost minimization. ii) Cheapest. It selects the datacenters with

94

the cheapest cost in the pay-as-you-go manner to store each data item. It neither provides SLA

guarantee nor attempts to minimize the cost with reservations. iii) Random. It randomly selects

datacenters to allocate each data item without considering cost minimization or SLA guarantee.

iv) SPANStore [126]. It is a storage system over multiple CSPs’ datacenters to minimize cost and

support SLAs. It neither considers datacenter capacity limitations to guarantee SLAs nor considers

reservation, tiered pricing model, or the Transfer price differences to minimize cost.

5.5.1 Comparison Performance Evaluation

In this section, we varied each data item’s Get/Put rate from 50% to 100% (named as

request ratio) of its actual Get/Put rate in the trace, with a step increase of 10%. In order to

evaluate the SLA guaranteed performance, we measured the lowest SLA satisfaction level of a

customer among all customers. The Get SLA satisfaction level of a customer is calculated by

Min{Min{n′
tk
/ntk}∀tk∈T , (1 − εg)}/(1 − εg), where n′

tk
and ntk are the number of Gets within Lg

and the total number of Gets of this customer, respectively. Similarly, we can get the Put SLA

satisfaction level.

Figures 5.5(a) and 5.5(b) show the lowest Get SLA satisfaction level of each system in simula-

tion and real-world experiment, respectively. We see that the result follows 100% =ES3=COPS>SPA-

NStore>Random>Cheapest. ES3 considers both the Get SLA and capacity constraints, thus it can

supply a Get SLA guaranteed service. COPS always chooses the provider datacenter with the small-

est latency. SPANStore always chooses the provider datacenter with the Get SLA consideration.

However, since it does not consider datacenter capacity, a datacenter may become overloaded and

hence is unable to meet the Get SLA deadline. Random randomly selects datacenter without con-

sidering datacenter capacity limitation, latency or SLA, so it generates a lower Get SLA guaranteed

performance than SPANStore. Cheapest does not consider SLAs, and stores data in a few datacen-

ters with the cheapest price, leading to heavy datacenter overload. Thus, it generates the worst SLA

satisfaction level.

Figure 5.6(a) and 5.6(b) show the lowest Put SLA satisfaction level of each system in simu-

lation and real-world experiment, respectively. It shows the same order and trends of all systems as

in Figure 5.5(a) due to the same reasons except for COPS. COPS allocates data without considering

the Put latency minimization, and the Put to other datacenters except the datacenter nearby may

introduce a long delay. Thus, COPS cannot supply a Put SLA guaranteed service, and generates a

95

0%
20%
40%
60%
80%

100%

50 60 70 80 90 100

G
e

t
S

L
A

 s
a

ti
s
fa

c
ti

o
n

le

v
e

l

Request ratio (%)

ES3 SPANStore COPS
Cheapest Random

(a) In simulation

0%
20%
40%
60%
80%

100%

50 60 70 80 90 100

G
e

t
S

L
A

 s
a

ti
s
fa

c
ti

o
n

le

v
e

l

Request ratio (%)

ES3 SPANStore COPS
Cheapest Random

(b) In real clouds

Figure 5.11: Get SLA guaranteed performance with light
workload.

0%
20%
40%
60%
80%

100%

50 60 70 80 90 100P
u

t
S

L
A

 s
a

ti
s
fa

c
ti

o
n

le

v
e

l

Request ratio (%)

ES3 SPANStore COPS
Cheapest Random

(a) In simulation

0%
20%
40%
60%
80%

100%

50 60 70 80 90 100P
u

t
S

L
A

 s
a

ti
s
fa

c
ti

o
n

le

v
e

l

Request ratio (%)

ES3 SPANStore COPS
Cheapest Random

(b) In real clouds

Figure 5.12: Put SLA guaranteed performance with light
workload.

0%
20%
40%
60%
80%

100%

10 20 30 40 50

A
v
g

.
G

e
t

S
L
A

S

a
ti

s
fa

c
ti

o
n

 l
e

v
e

l

Varying ratio bound(%)

ES3 ES3-RR SPANStore
COPS Cheapest Random

(a) SLA guarantee of Get

16

32

64

128

10 20 30 40 50C
o

s
t

ra
ti

o
 t

o
 R

a
n

d
o

m
 (

%
)

Varying ratio bound (%)

ES3 ES3-RR SPANStore
COPS Cheapest Random

(b) Cost minimization

Figure 5.13: Effectiveness with varying Get rate in simu-
lation.

0%
20%
40%
60%
80%

100%

10 20 30 40 50

A
v
g

.
G

e
t

S
L
A

S

a
ti

s
fa

c
ti

o
n

 l
e

v
e

l

Varying ratio bound(%)

ES3 ES3-RR SPANStore
COPS Cheapest Random

(a) SLA guarantee of Gets

16

32

64

128

10 20 30 40 50C
o

s
t

ra
ti

o
 t

o
 R

a
n

d
o

m
 (

%
)

Varying ratio bound (%)

ES3 ES3-RR SPANStore
COPS Cheapest Random

(b) Cost minimization

Figure 5.14: Effectiveness with varying Get rate in real
clouds.

lower Put SLA satisfaction level than SPANStore. Figures 5.5 and 5.6 indicate that only ES3 can

supply a both Get/Put SLA guaranteed service.

Figures 5.7(a) and 5.7(b) show the percentage of Gets received by overloaded datacenters

in simulation and real-world experiment, respectively. We see that the percentage values follows

0%=ES3≤Random<COPS<SPANStore<Cheapest. Due to the capacity-awareness, ES3 can avoid

the datacenter overloads, so it has no requests received by overloaded datacenters. Random allocates

data items over all storage datacenters randomly, so it has a smaller probability of overloading storage

datacenters. The other methods make datacenters overloaded, and have an opposite trends and

orders as in Figure 5.5(a) due to the same reasons. Figures 5.8(a) and 5.8(b) show the percentage

of Puts received by overloaded datacenters. They show the same trends and orders between all

systems as Figures 5.7(a) and 5.7(b), due to the same reasons. Figures 5.7 and 5.8 indicate that

ES3 outperforms other systems in that it can effectively avoid overloading datacenters by capacity-

aware data allocation, which helps ensure the Get/Put SLAs.

Since Random does not consider SLA guarantee or payment cost minimization, we measure

96

the cost improvement of the other systems compared to Random. Figures 5.9(a) and 5.9(b) show the

ratio of each system’s cost to Random’s cost in simulation and real-world experiment, respectively. In

order to show the effect of considering the tiered pricing model for aggregate workload, in simulation,

we also tested a variant of ES3, denoted by ES3-IND, in which each customer individually uses ES3

to allocate its data without aggregating their workload together. The figures show that the cost

follows COPS≈Random>SPANStore>Cheapest>ES3-IND>ES3. Since both COPS and Random

do not consider cost when allocating data, they produce the largest cost. SPANStore selects the

cheapest datacenter in pay-as-you-go manner with SLA constraints, thus it generates a smaller cost.

However, it produces a larger cost than Cheapest, which always chooses the cheapest datacenter in

all datacenters in pay-as-you-go manner. ES3-IND generates a smaller cost than these methods,

because it chooses the datacenter under SLA constraints that minimizes each customer’s cost by

considering all pricing policies. ES3 generates the smallest cost, because it further aggregates

workloads from all customers to get a cheaper Storage and Transfer unit price based on the tiered

pricing model. The figures confirm that ES3 generates the smallest payment cost in all systems and

the effectiveness of considering tiered pricing model.

5.5.2 Performance with Light Workload

Recall that ES3 considers a data item’s intensiveness for determining its allocated data-

centers. In this test, we repeated the experiments in Section 5.5.1 with the Get/Put rates of data

objects reduced by 1/10 times, which makes a larger percentage of data items Storage-intensive. Re-

call that our GA-based data allocation adjustment approach helps minimize cost when the Get/Put

rates vary. In order to measure this algorithm’s effectiveness on cost minimization, we varied the

Get/Put rate of each data item in a billing period. Specifically, the Get/Put rate was set to x% of

the rate in the previous billing period, where x was randomly chosen from [50, 200] according to the

observation in [126]. We use ES3-NG to denote ES3 without the GA based data allocation adjust-

ment approach. In order to show the effect of considering the reservation on cost minimization, we

also tested ES3 without any reservation consideration, denoted by ES3-NR.

Figures 5.10(a) and 5.10(b) show the ratio of each system’s cost to Random’s cost in simu-

lation and real-world experiment, respectively. The figures show the same order between all systems

as Figure 5.9(a) due to the same reasons, which indicates that the data intensiveness does not affect

the performance differences between the systems. Since ES3-NR also chooses the cheapest data-

97

centers to allocate data as ES3 and additionally considers tiered pricing model and Transfer price

differences, it produces a cheaper cost than SPANStore. However, without considering reservation

and choosing datacenters with SLAs constraints that may offer a higher price than the cheapest

price, ES3-NR generates a larger cost than Cheapest, which generates a larger cost than ES3. This

result shows the effectiveness of considering reservation in cost minimization. ES3-NG produces a

higher cost than ES3, which shows the effectiveness of the GA-based data allocation adjustment

approach in cost minimization. These results indicate that ES3 generates the lowest cost among the

different system, and both the GA-based data allocation adjustment approach and the consideration

of reservation in the data allocation and reservation algorithm are effective in reducing the cost.

Figure 5.11(a) shows the median, 5th and 95th percentile of all customers’ Get SLA satis-

faction levels of each system with each request ratio in simulation. Figure 5.11(b) shows the Get

SLA satisfaction level of the customer of each system in real-world experiment. They show that

ES3 and COPS can supply a Get SLA ensured service due to the same reasons as in Figure 5.5(a).

SPANStore also supplies a Get SLA guaranteed service, due to its SLA awareness and the light

workload that does not overload datacenters. Random and Cheapest do not consider the SLA, thus

their Get SLA satisfaction levels are much lower. Since most datacenters do not become overloaded

in the light workload scenario, different from Figure 5.5(a), Random and Cheapest produce similar

median Get SLA satisfaction levels. In simulation, Cheapest exhibits a larger variance in customers’

satisfaction level, because the cheapest datacenters may be very close to some customer datacenters

while are far away from other customer datacenters. Random randomly allocates the data among

widely distributed datacenters, which leads to a long latency to all customers. The figures indicate

that under a light load, ES3 can still supply a Get SLA guaranteed service.

Figure 5.12(a) shows the median, 5th and 95th percentile of all customers’ Put SLA satisfac-

tion levels of each system with each request ratio. Figure 5.12(b) shows the Put SLA satisfaction level

of the customer of each system with each request ratio in real-world experiment. The figures show

that the median Put SLA satisfaction level follows 100%=ES3=SPANStore>COPS>Random≈
Cheapest. They show a similar order of all systems as in Figure 5.6(a) due to the same reasons. Dif-

ferent from Figure 5.6(a), in Figure 5.12(a), SPANStore can supply an SLA guaranteed service, and

Random and Cheapest achieve similar performances due to the same reasons as in Figure 5.11(a).

The figures indicate that under a light load, ES3 can supply a Put SLA guaranteed service.

98

5.5.3 Performance under Dynamic Request Rates

Recall that the dynamic request redirection algorithm (in Section 5.4) handles the case when

the Get rate varies greatly from the predicted rate. This section measures the effectiveness of this

algorithm in providing Get SLA guaranteed service and cost minimization under dynamic request

rates. We denote ES3 without this Request Redirection algorithm by ES3-RR. The Get rate of

each data item was varied within [(1−x)v, (1+x)v], where v is the Get rate, and x is called varying

ratio bound and is varied from 10% to 50% in experiments.

Figures 5.13(a) and 5.14(a) show the average Get SLA satisfaction level of all customers

in simulation and real-world experiment, respectively, with different varying ratio bounds. They

show the same trends and orders of all systems as in Figures 5.5(a) and 5.5(b), due to the same

reasons. The figure also shows that ES3-RR generates a lower Get SLA satisfaction level than ES3

and COPS, but a higher level than the others. This is because ES3-RR generates long latency

on overloaded datacenters when data items have larger request rates than expected, so it cannot

supply an SLA guaranteed service in the case of varying request rates, leading to a lower Get SLA

satisfaction level than ES3 and COPS. However, due to its Get/Put SLA guarantee and capacity

awareness, it generates a higher SLA satisfaction level than others. The figures indicate the high

effectiveness of ES3’s dynamic request redirection algorithm to handle the Get rate variance in

ensuring Get SLA.

Figures 5.13(b) and 5.14(b) show the ratio of each system’s cost to Random’s cost. The

figures show the same order between all systems as in Figure 5.9(a) due to the same reasons. It

also shows that ES3-RR generates a higher cost than ES3 but a lower cost than others. Without

dynamic request redirection, ES3-RR cannot fully utilize reserved resources like ES3 and pays more

for the over-utilized resources beyond the reservation, which leads to a higher payment cost than

ES3. However, by leveraging all pricing policies, ES3-RR generates a lower payment cost than other

systems. The figures indicate the high effectiveness of ES3’s dynamic request redirection algorithm

to reduce the payment cost in varying request rates and the superior performance of ES3 in handling

dynamic request rates for cost minimization among the different systems.

99

Chapter 6

Conclusions and Future Work

In this dissertation, we propose three methods to solve the challenges in realizing a network

load and cost efficient holistic data distribution and storage solution for Online Social Networks

(OSNs). Specifically, the first method aims to minimize the network load of inter-datacenter com-

munication in OSNs; the second method aims to enhance the trustworthiness and efficiency in a

P2P-assisted multi-media file sharing in OSNs; the third method aims to design a data allocation

system over multiple CSPs for OSNs to save their capital investment of building worldwide data-

centers and the datacenter operation costs.

Firstly, to realize the promising new OSN model with many worldwide distributed small

datacenters to reduce service latency, a critical challenge is reducing inter-datacenter communications

(i.e., network load). Thus, we propose the Selective Data replication mechanism in Distributed

Datacenters (SD3) to reduce inter-datacenter communications while achieving low service latency.

We verify the advantages of the new OSN model and present the OSN properties with the analysis

of our trace datasets to show the design rationale of SD3. Some friends may not have frequent

interactions and some distant friends may have frequent interactions. In SD3, rather than relying

on static friendship, each datacenter refers to the real user interactions and jointly considers the

update load and saved visit load in determining replication in order to reduce inter-datacenter

communications. Also, since different atomized data has different update rates, each datacenter only

replicates atomized data that saves inter-datacenter communications, rather than replicating a user’s

entire dataset. SD3 also has a locality-aware multicast update tree for consistency maintenance

and a replica deactivation scheme to further reduce network load. To avoid workload congestion of

100

datacenters in SD3, each overloaded datacenter releases its excess load to its neighboring datacenters

based on their available capacities. Through trace-driven experiments on PlanetLab, we prove that

SD3 outperforms other replication methods in reducing network load and service latency.

Secondly, to propose a searching efficient P2P system, we have analyzed an open public

BitTorrent trace and verified that clustering physically close nodes and common-interest nodes can

improve file searching efficiency in a P2P file sharing system. Though recently proposed OSN-based

systems use social links for efficient and trustworthy file searching, they cannot provide file location

guarantees in a large-scale P2P system. In order to integrate the proximity- and interest-aware

clustering and fully utilize OSNs to further enhance the searching efficiency and trustworthiness,

we propose SOCNET that incorporates five components: a social-integrated DHT, a voting based

subcluster head selection, efficient and trustworthy data querying, social based query path selection,

and follower and cluster based file replication. SOCNET incorporates a hierarchical DHT overlay to

cluster common-interest nodes, then further clusters geographically-close nodes into subclusters, and

connects these nodes with social links. This social-integrated DHT enables friend intra-subcluster

querying and locality- and interest-aware intra-cluster searching, and guarantees file location with

the system-wide DHT lookup function. The social based query path selection algorithms further

enhance the efficiency of intra-subcluster searching with or without guidance of sub-interests. The

file replication algorithm reduces the file querying and transmission cost. Through trace-driven

experiments on PlanetLab, we prove that SOCNET outperforms other systems in file searching

efficiency, trustworthiness, system overhead and dynamism-resilience.

Finally, in this dissertation, we propose a data allocation system distributing data among

CSPs’ datacenters with cost minimization and SLA guarantee for OSNs to fully leverage cloud

computing resources in order to save capital investment for storage hardware and system infrastrues.

Worldwide distributed datacenters belonging to different CSPs have different resource capacities and

unit prices. We first modeled this cost minimization problem using integer programming, and proved

its NP-hardness. We then propose an Economical and SLA-guaranteed cloud Storage Service (ES3)

for a cloud broker over multiple CSPs that provides SLA guarantee and cost minimization even

under the Get rate variation. ES3 is more advantageous than previous methods in that it fully

utilizes different pricing policies and considers request rate variance in minimizing the payment cost.

ES3 has a data allocation and reservation algorithm and a GA-based data adjustment enhancement

to rearrange the data allocation schedule in order to guarantee the SLA and minimize the payment

101

cost. ES3 further has a dynamic request redirection algorithm to select a replica in a datacenter

with available reservation to serve the request on an over-utilized datacenter in order to reduce the

cost when the request rates vary greatly from the expected rates. Our trace-driven experiments on a

supercomputing cluster and real different CSPs show the superior performance of ES3 in providing

SLA guaranteed services and cost minimization in comparison with previous systems.

The future work will be three folds. First, for efficient data distribution among datacenters

in OSNs, we will investigate how to determine the parameters in the design to meet different require-

ments on service latency and network load. Second, for P2P-assisted multimedia file sharing among

users for OSNs, we will investigate how to predict a user’s potential file interests by locality, interest

and social relationship and use proactive file recommendation and replication to further enhance the

searching efficiency and trustworthiness, and investigate how to assign weights to different factors in

closeness calculation in enhanced random search to satisfy different users’ requirements. Third, for

cost minimized data allocation among cloud storages for OSNs, we will study how to dynamically

create and delete data replicas in datacenters to fully utilize the Put reservation and avoid the over-

load caused by Puts, and will also consider the dependency and relationships between data items

for data allocation in order to expedite the data retrieval.

102

Bibliography

[1] Amazon DynnamoDB. http://aws.amazon.com/dynamodb/, [accessed in Jun. 2015].

[2] Amazon S3. http://aws.amazon.com/s3/, [accessed in Jun. 2015].

[3] BitTorrent User Activity Traces. http://www.cs.brown.edu/p̃avlo/torrent/, [accessed in Jun.
2015].

[4] Facebook. http://www.facebook.com/, [accessed in Jun. 2015].

[5] Facebook passes google in time spent on site for first time ever.
http://www.businessinsider.com/chart-of-the-day-time-facebook-google-yahoo-2010-9, [ac-
cessed in Jun. 2015].

[6] Goolge Cloud storage. https://cloud.google.com/products/cloud-storage/, [accessed in Jun.
2015].

[7] Kazaa Delivers More Than Tunes. http://www.wired.com/.

[8] Lulea data center is on facebook. https://www.facebook.com/luleaDataCenter, [accessed in
Jun. 2015].

[9] MapReduce Tutorial. http://hadoop.apache.org/docs/r1.2.1/mapred tutorial.html, [accessed
in Jun. 2015].

[10] Microsoft Azure. http://www.windowsazure.com/, [accessed in Jun. 2015].

[11] Palmetto Cluster. http://http://citi.clemson.edu/palmetto/, [accessed in Jun. 2015].

[12] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell, J. R.
Lorch, M. Theimer, and R. Wattenhofer. FARSITE: Federated, Available, and Reliable Storage
for an Incompletely Trusted Environment. In Proc. of OSDI, 2002.

[13] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan. Volley: Automated
data placement for geo-distributed cloud services. In Proc. of NSDI, 2010.

[14] Yong-Yeol Ahn, Seungyeop Han, Haewoon Kwak, Sue Moon, and Hawoong Jeong. Analysis of
topological characteristics of huge online social networking services. In Proc. of WWW, 2007.

[15] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer, R. A. Becker-Szendy, R. A. Golding, A. Mer-
chant, M. Spasojevic, A. C. Veitch, and J. Wilkes. Minerva: An Automated Resource Provi-
sioning Tool for Large-Scale Storage Systems. ACM Trans. Comput. Syst., 2001.

[16] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and A. C. Veitch. Hippodrome:
Running Circles Around Storage Administration. In Proc. of FAST, 2002.

103

[17] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmaier. Space Filling Curves and Their
Use in Geometric Data Structure. Theoretical Computer Science, 181(1):3–15, 1997.

[18] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in large social
networks: Membership, growth, and evolution. In Proc. of ACM KDD, 2006.

[19] L. Backstrom, E. Sun, and C. Marlow. Find Me If You Can: Improving Geographical Predic-
tion with Social and Spatial Proximity. In Proc. of WWW, pages 61–70, 2010.

[20] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. Finding a needle in haystack: Face-
book’s photo storage. In Proc. of OSDI, 2010.

[21] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida. Characterizing user behavior in online
social networks. In Proc. of ACM IMC, 2009.

[22] A. N. Bessani, M. Correia, B. Quaresma, F. Andr, and P. Sousa. DepSky: Dependable and
Secure Storage in a Cloud-of-Clouds. TOS, 2013.

[23] N. Bonvin, T. G. Papaioannou, and K. Aberer. A Self-Organized, Fault-Tolerant and Scalable
Replication Scheme for Cloud Storage. In Proc. of SoCC, 2010.

[24] D. Borthakur, J. S. Sarma, J. Gray, K. Muthukkaruppan, and et al. Apache Hadoop Goes
Realtime at Facebook. In Proc. of SIGMOD, 2011.

[25] N. Bronson, Z. Amsden, G. Cabrera, and et al. TAO: Facebooks Distributed Data Store for
the Social Graph. In Proc. of ATC, 2013.

[26] M. Burke, C. Marlow, and T. Lento. Social network activity and social well-being. In Proc.
of CHI, 2010.

[27] V. Carchiolo, M. Malgeri, G. Mangioni, and V. Nicosia. An Adaptive Overlay Network Inspired
By Social Behavior. JPDC, 70(3):282–295, 2010.

[28] G. Chen, C. P. Low, and Z. Yang. Enhancing Search Performance in Unstructured P2P
Networks Based on Users’ Common Interest. TPDS, 19(6):821–836, 2008.

[29] X. Cheng and J. Liu. NetTube: Exploring Social Networks for Peer-to-Peer Short Video
Sharing. In Proc. of INFOCOM, pages 1152–1160, 2009.

[30] X. Cheng and J. Liu. Load-Balanced Migration of Social Media to Content Clouds. In Proc.
of NOSSDAV, 2011.

[31] D. R. Choffnes and F. E. Bustamante. Taming the Torrent: A Practical Approach to Reducing
Cross-ISP Traffic in P2P Systems. In Proc. of Sigcomm, pages 363–374, 2008.

[32] W. Christo, B. Bryce, S. Alessandra, P. N. P. Krishna, and Y. Z. Ben. User interactions in
social networks and their implications. In Proc. of ACM EuroSys, 2009.

[33] H. Chun, H. Kwak, Y. H. Eom, Y. Y. Ahn, S. Moon, and H. Jeong. Comparison of online
social relations in volume vs interaction: a case study of Cyworld. In Proc. of ACM IMC,
2008.

[34] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannona, H.-A. Jacobsen,
N. Puz, D. Weaver, and R. Yerneni. PNUTS: Yahoo!s Hosted Data Serving Platform. In Proc.
of VLDB, 2008.

[35] J. Dean. Software Engineering Advice from Building Large-Scale Distributed Systems.
http://research.google.com/people/jeff/stanford-295-talk.pdf, [accessed in Jun. 2015].

104

[36] Facebook statistics. http://www.facebook.com/press/info.php?statistics, [[accessed in Jun.
2015].

[37] Scaling Memcache at Facebook. https://www.usenix.org/sites/default/files/conference/protected
-files/nishtala nsdi13 slides.pdf, [accessed in Jun. 2015].

[38] A. Fast, D. Jensen, and B. N. Levine. Creating Social Networks to Improve Peer-to-Peer
Networking. In Proc. of KDD, pages 568–573, 2005.

[39] M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum spanning trees
and shortest paths. J. Comput. Syst. Sci., 1994.

[40] S. Genaud and C. Rattanapoka. Large-Scale Experiment of Co-allocation Strategies for Peer-
to-Peer Supercomputing in P2P-MPI. In Proc. of IPDPS, pages 1–8, 2008.

[41] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou. Walking in Facebook: a case study
of unbiased sampling of OSNs. In Proc. of INFOCOM, 2010.

[42] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley, 1989.

[43] V. Gopalakrishnan, B. D. Silaghi, B. Bhattacharjee, and P. J. Keleher. Adaptive Replication
in Peer-to-Peer Systems. In Proc. of ICDCS, 2004.

[44] K. N. Hampton, L. S. Goulet, L. Rainie, and K. Purcell. Social networking sites and our lives.
http://www.pewinternet.org/Reports/2011/Technology-and-social-networks.aspx, [accessed in
Jun. 2015], 2011.

[45] C. Hong, M. Caesar, and P. B. Godfrey. Finishing Flows Quickly with Preemptive Scheduling.
In Proc. of SIGCOMM, 2012.

[46] Y. Hu, M. Feng, and L. N. Bhuyan. A balanced consistency maintenance protocol for structured
P2P systems. 2010.

[47] D. Hughes, G. Coulson, and J. Walkerdine. Free Riding on Gnutella Revisited: The Bell Tolls?
IEEE Dist. Systems Online, 6(6):81, 2005.

[48] A. Hussam, P. Lonnie, and W. Hakim. RACS: A Case for Cloud Storage Diversity. In Proc.
of SoCC, 2010.

[49] A. Iamnitchi, M. Ripeanu, and I. Foster. Small-World File-Sharing Communities. In Proc. of
INFOCOM, pages 952 – 963, 2004.

[50] A. Iamnitchi, M. Ripeanu, E. Santos-Neto, and I. Foster. The Small World of File Sharing.
TPDS, 22(7):1120–1134, 2011.

[51] D. N. Kalofonos, Z. Antonious, F. D. Reynolds, M. Van-Kleek, J. Strauss, and P. Wisner.
MyNet: A Platform For Secure P2P Personal And Social Networking Services. In Proc. of
PerCom, pages 135–146, 2008.

[52] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The EigenTrust algorithm for reputation
management in P2P networks. In Proc. of WWW, pages 640–651, 2003.

[53] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy. Consistent
Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the
World Wide Web. In Proc. of STOC, pages 654–663, 1997.

105

[54] G.A. Koenig and L.V. Kale. Optimizing Distributed Application Performance Using Dynamic
Grid Topology-Aware Load Balancing. In Proc. of IPDPS, pages 1–10, 2007.

[55] R. Kohavl and R. Longbotham. Online Experiments: Lessons Learned., 2007.
http://exp-platform.com/Documents/IEEEComputer2007OnlineExperiments.pdf, [accessed
in Jun. 2015].

[56] R. Kotla, L. Alvisi, and M. Dahlin. SafeStore: A Durable and Practical Storage System. In
Proc. of ATC, 2007.

[57] B. Krishnamurthy. A measure of online social networks. In Proc. of COMSNETS, 2009.

[58] M. Kryczka, R. Cuevas, C. Guerrero, E. Yoneki, and A. Azcorra. A first step towards user
assisted online social networks. In Proc. of SNS, 2010.

[59] N. Laoutaris, D. Carra, and P. Michiardi. Uplink Allocation Beyond Choke/Unchoke: or How
to Divide and Conquer Best. In Proc. of CoNEXT, page 18, 2008.

[60] F. Lehrieder, S. Oechsner, T. Hossfeld, Z. Despotovic, W. Kellerer, and M. Michel. Can
P2P-Users Benefit from Locality-Awareness? In Proc. of P2P, pages 1–9, 2010.

[61] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Community structure in large
networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Math-
ematics, 2009.

[62] M. Li, W.-C. Lee, A. Sivasubramaniam, and J. Zhao. SSW: A Small-World-Based Overlay for
Peer-to-Peer Search. TPDS, 19(6):735–749, 2008.

[63] Y. Li, L. Shou, and K. L. Tan. CYBER: A Community-Based Search Engine. In Proc. of P2P,
pages 215–224, 2008.

[64] Z. Li and H. Shen. Social-p2p: An online social network based P2P file sharing system. In
Proc. of ICNP, 2012.

[65] Z. Li, H. Shen, G. Liu, and J. Li. A distributed context-aware question answering system based
on social networks, Technical Report TR-2012-06. Technical report, Department of Electrical
and Computer Engineering, Clemson University, 2012.

[66] Z. Li, G. Xie, and Z. Li. Efficient and scalable consistency maintenance for heterogeneous
Peer-to-Peer systems. TPDS, 2008.

[67] Q. Lian, Z. Zhang, M. Yang, B. Y. Zhao, Y. Dai, and X. Li. An Empirical Study of Collusion
Behavior in the MAZE P2P File-Sharing System. In Proc. of ICDCS, page 56, 2007.

[68] K. C. J. Lin, C. P. Wang, C. F. Chou, and L. Golubchik. SocioNet: A Social-Based Multimedia
Access System for Unstructured P2P Networks. TPDS, 21(7):1027–1041, 2010.

[69] G. Liu and H. Shen. Geographical Cloud Storage Service with SLA Guarantee over Multiple
Cloud Providers. Technical report, Clemson University, 2014.

[70] G. Liu, H. Shen, and H. Chandler. Selective Data Replication for Online Social Networks with
Distributed Datacenters. In Proc. of ICNP, 2013.

[71] Y. Liu, L. Guo, F. Li, and S. Chen. A Case Study of Traffic Locality in Internet P2P Live
Streaming Systems. In Proc. of ICDCS, pages 423–432, 2009.

[72] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Dont Settle for Eventual:
Scalable Causal Consistency for Wide-Area Storage with COPS. In Proc. of SOSP, 2011.

106

[73] H. V. Madhyastha, J. C. McCullough, G. Porter, R. Kapoor, S. Savage, A. C. Snoeren, and
A. Vahdat. SCC: Cluster Storage Provisioning Informed by Application Characteristics and
SLAs. In Proc. of FAST, 2012.

[74] S. Marti, P. Ganesan, and H. Garcia-Molina. SPROUT: P2P Routing With Social Networks.
In Proc. of P2P&DB, pages 425–435, 2004.

[75] S. Marti, P. Ganesan, and H. G. Molina. DHT Routing Using Social Links. In Proc. of IPTPS,
pages 100–111, 2004.

[76] M. Mcpherson. Birds of a Feather: Homophily in Social Networks. Annual Review of Sociology,
27(1):415–444, 2001.

[77] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee. Measurement
and analysis of online social networks. In Proc. of IMC, 2007.

[78] A. Nazir, S. Raza, and C. Chuah. Unveiling facebook: A measurement study of social network
based applications. In Proc. of IMC, 2008.

[79] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy, M. Paleczny,
D. Peek, P. Saab, D. Stafford, T. Tung, and V. Venkataramani. Scaling Memcache at Facebook.
In Proc. of NSDI, 2013.

[80] D. Niu, B. Li, and S. Zhao. Quality-assured Cloud Bandwidth Auto-scaling for Video-on-
Demand Applications. In Proc. of INFOCOM, 2012.

[81] E. Pennisi. How did Cooperative Behavior Evolve? Science, 309(5731):93, 2005.

[82] PlanetLab. http://www.planet-lab.org/, [accessed in Jun. 2015].

[83] B. Popescu, B. Crispo, and A. Tanenbaum. Safe and Private Data Sharing With Turtle:
Friends Team-Up And Beat The System. In Proc. of SPW, pages 221–230, 2004.

[84] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D. H. J. Epema, M. Rein-
ders, M. van Steen, and H. J. Sips. Tribler: A Social-based Peer-to-Peer System. CCPE,
20(2):127–138, 2008.

[85] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra, and P. Rodriguez.
The little engine(s) that could: scaling online social networks. In Proc. of SIGCOMM, 2010.

[86] K. P. N. Puttaswamy, T. Nandagopal, and M. S. Kodialam. Frugal storage for cloud file
systems. In Proc. of EuroSys, 2012.

[87] N. Rammohan, Z. Miklos, and K. Aberer. Towards Access Control Aware P2P Data Manage-
ment Systems. In Proc. of the 2nd International workshop on data management in peer-to-peer
systems, pages 10–17, 2009.

[88] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content-
Addressable Network. In Proc. of SIGCOMM, pages 161–172, 2001.

[89] H. Roh, C. Jung, W. Lee, and D. Du. Resource Pricing Game in Geo-Distributed Clouds. In
Proc. of INFOCOM, 2013.

[90] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location and Routing
for Large-scale Peer-to-Peer Systems. In Proc. of Middleware, pages 329–350, 2001.

[91] D. Rubenstein and S. Sahu. Can Unstructured P2P Protocols Survive Flash Crowds?
IEEE/ACM Trans. on Networking, 13(3), 2005.

107

[92] S. Scellato, C. Mascolo, M. Musolesi, and J. Crowcroft. Track globally, deliver locally: Im-
proving content delivery networks by tracking geographic social cascades. In Proc. of WWW,
2011.

[93] S. Seetharaman and M.H. Ammar. Managing Inter-domain Traffic in the Presence of BitTor-
rent File-Sharing. In Proc. of Sigmetrics, pages 453–454, 2008.

[94] S. Seshadri and B. Cooper. Routing Queries through a Peer-to-Peer InfoBeacons Network
Using Information Retrieval Techniques. TPDS, 18(12):1754 – 1765, 2007.

[95] H. Shen. IRM: integrated file replication and consistency maintenance in P2P systems. TPDS,
2009.

[96] H. Shen and K. Hwang. Locality-Preserving Clustering and Discovery of Resources in Wide-
Area Distributed Computational Grids. TC, 61(4):458–473, 2012.

[97] H. Shen, Z. Li, Y. Lin, and J. Li. SocialTube: P2P-assisted Video Sharing in Online Social
Networks. TPDS, (99):1, 2013.

[98] H. Shen, Y. Lin, and Z. Li. Refining Reputation to Truly Select High-QoS Servers in Peer-to-
Peer Networks. TPDS, (99):1, 2013.

[99] H. Shen and G. Liu. A geographically-aware poll-based distributed file consistency maintenance
method for P2P systems. TPDS, 2012.

[100] H. Shen and G. Liu. A lightweight and cooperative multi-factor considered file replication
method in structured P2P systems. TC, 2012.

[101] H. Shen, C. Xu, and G. Chen. Cycloid: A scalable constant-degree P2P overlay network.
Performance Evaluation, 63(3):195–216, 2006.

[102] H. Shen and C.-Z. Xu. Leveraging a Compound Graph based DHT for Multi-Attribute Range
Queries with Performance Analysis. TC, 61(4):433–447, 2012.

[103] H. Shen, L. Zhao, H. Chandler, J. Stokes, and J. Li. Toward P2P-based Multimedia Sharing
in User Generated Contents. In Proc. of INFOCOM, pages 667–675, 2011.

[104] J. Sobel. Scaling out. http://www.facebook.com/note.php?note id=23844338919, [accessed in
Jun. 2015].

[105] Socialbakers. http://www.socialbakers.com/facebook-statistics/, [accessed in Jun. 2015].

[106] Y. Song, M. Zafer, and K.-W. Lee. Optimal Bidding in Spot Instance Market. In Proc. of
INFOCOM, 2012.

[107] R. P. Spillane, P. Shetty, E. Zadok, S. Dixit, and S. Archak. An Efficient Multi-Tier Tablet
Server Storage Architecture. In Proc. of SoCC, 2011.

[108] H. Stevens and C. Pettey. Gartner Says Cloud ComputingWill Be As Influential As E-Business.
Gartner Newsroom, Online Ed., 2008.

[109] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and H. Bal-
akrishnan. Chord: A Scalable Peer-to-Peer Lookup Protocol for Internet Applications. TON,
11:17–32, 2003.

[110] G. Swamynathan, C. Wilson, B. Boe, K. Almeroth, and B. Y. Zhao. Do Social Networks
Improve E-Commerce? A Study on Social Marketplaces. In Proc. of WOSN, pages 1–6, 2008.

108

[111] D. A. Tran, K. Nguyen, and C. Pham. S-CLONE: Socially-Aware Data Replication for Social
Networks. Computer Networks, 2012.

[112] S. Traverso, K. Huguenin, I. Trestian, V. Erramilli, N. Laoutaris, and K. Papagiannaki. Tail-
Gate: Handling Long-Tail Content with a Little Help from Friends. 2012.

[113] B. Vamanan, J. Hasan, and T. N. Vijaykumar. Deadline-Aware Datacenter TCP (D2TCP).
In Proc. of SIGCOMM, 2012.

[114] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the evolution of user interaction
in facebook. In Proc. of WOSN, 2009.

[115] A. Wang, S. Venkataraman, S. Alspaugh, R. H. Katz, and I. Stoica. Cake: Enabling High-Level
SLOs on Shared Storage Systems. In Proc. of SoCC, 2012.

[116] C. Wang and X. Li. An Effective P2P Search Scheme to Exploit File Sharing Heterogeneity.
TPDS, 18(2):145–157, 2007.

[117] F. Wang, J. Liu, and M. Chen. CALMS: Cloud-assisted Live Media Streaming for Globalized
Demands with Time/region Diversities. In Proc. of INFOCOM, 2012.

[118] Z. Wang, B. Li, L. Sun, and S. Yang. Cloud-based Social Application Deployment using Local
Processing and Global Distribution. In Proc. of CoNEXT, 2012.

[119] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford. DONAR: Decentralized server
selection for cloud services. In Proc. of AMC SIGCOMM, 2010.

[120] A. Wieder, P. Bhatotia, A. Post, and R. Rodrigues. Orchestrating the Deployment of Com-
putations in the Cloud with Conductor. In Proc. of NSDI, 2012.

[121] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron. Better Never than Late: Meeting
Deadlines in Datacenter Networks. In Proc. of SIGCOMM, 2011.

[122] M. P. Wittie, V. Pejovic, L. B. Deek, K. C. Almeroth, and B. Y. Zhao. Exploiting locality of
interest in online social networks. In Proc. of ACM CoNEXT, 2010.

[123] H. Wu, Z. Feng, C. Guo, and Y. Zhang. ICTCP: Incast Congestion Control for TCP in Data
Center Networks. In Proc. of CoNEXT, 2010.

[124] X. Wu, D. Turner, C. Chen, D. A. Maltz, X. Yang, L. Yuan, and M. Zhang. NetPilot:
Automating Datacenter Network Failure Mitigation. In Proc. of SIGCOMM, 2012.

[125] Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, and F. C. Lau. Scaling Social Media Applications Into
Geo-Distributed Clouds. In Proc. of INFOCOM, 2012.

[126] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V. Madhyastha. SPANStore:
Cost-Effective Geo-Replicated Storage Spanning Multiple Cloud Services. In Proc. of SOSP,
2013.

[127] M. Yang and Y. Yang. An Efficient Hybrid Peer-to-Peer System for Distributed Data Sharing.
TC, 59(9):1158–1171, 2010.

[128] P. Yang. Moving an Elephant: Large Scale Hadoop Data Migration at Face-
book. https://www.facebook.com/notes/paul-yang/moving-an-elephant-large-scale-hadoop-
data-migration-at-facebook/10150246275318920, [accessed in Jun. 2015].

[129] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz. DeTail: Reducing the Flow Completion
Time Tail in Datacenter Networks. In Proc. of SIGCOMM, 2012.

109

[130] H. Zhang, Z. Shao, M. Chen, and K. Ramchandran. Optimal Neighbor Selection in BitTorrent-
like Peer-to-Peer Networks. In Proc. of Sigmetrics, pages 141–142, 2011.

[131] M. Zhao, P. Aditya, Y. Lin, A. Harberlen, P. Druschel, W. Wishon, and B. Maggs. A First
Look at a Commercial Hybrid Content Delivery System. http://research.microsoft.
com/apps/video/default.aspx?id=154911, [accessed in Jun. 2015].

[132] R. Zhou, K. Huang, and M. Cai. GossipTrust for Fast Reputation Aggregation in Peer-To-Peer
Networks. TKDE, 20(9):1282–1295, 2008.

110

	Clemson University
	TigerPrints
	12-2015

	An Efficient Holistic Data Distribution and Storage Solution for Online Social Networks
	Guoxin Liu
	Recommended Citation

	An Efficient Holistic Data Distribution and Storage Solution for Online Social Networks

