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Abstract 

This dissertation presents a modelling framework that will be useful for decision 

makers at federal and state levels to establish efficient resource allocation schemes to 

transportation infrastructures on both strategic and tactical levels. In particular, at the 

upper level, the highway road network carries traffic flows that rely on the performance 

of individual bridge infrastructure which is optimized through robust design at lower 

level. A system optimization model is developed to allocate resources to infrastructure 

systems considering traffic impact, which aims to reduce infrastructure rehabilitation cost, 

long term economic cost including travel delays due to realization of future natural 

disasters such as earthquakes. At the lower level, robust design for each individual bridge 

is confined by the resources allocated from upper level network optimization model, 

where optimal rehabilitation strategies are selected to improve its resiliency to hedge 

against potential disasters. The above two decision making processes are interdependent, 

thus should not be treated separately. Thus, the resultant modeling framework will be a 

step forward in the disaster management for transportation infrastructure network.  

This dissertation first presents a novel formulation and a solution algorithm of network 

level resource allocation problem. A mean-risk two-stage stochastic programming model 

is developed with the first-stage considering resources allocation and second-stages 

shows the response from system travel delays, where the conditional value-at-risk (CVaR) 

is specified as the risk measure. A decomposition method based on generalized Benders 

decomposition is developed to solve the model, with a concerted effort on overcoming 
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the algorithmic challenges imbedded in non-convexity, nonlinearity and non-separability 

of first- and second- stage variables. 

The network level model focusing on traffic optimization is further integrated into a 

bi-level modeling framework. For lower level, a method using finite element analysis to 

generate a nonlinear relationship between structural performances of bridges and retrofit 

levels. This relationship was converted to traffic capacity-cost relationship and used as an 

input for the upper-level model. Results from the Sioux Falls transportation network 

demonstrated that the integration of both network and FE modeling for individual 

structure enhanced the effectiveness of retrofit strategies, compared to linear traffic 

capacity-cost estimation and conventional engineering practice which prioritizes bridges 

according to the severity of expected damages of bridges. 

This dissertation also presents a minimax regret formulation of network protection 

problem that is integrated with earthquake simulations. The lower level model 

incorporates a seismic analysis component into the framework such that bridge columns 

are subject to a set of ground motions. Results of seismic response of bridge structures 

are used to develop a Pareto front of cost-safety-robustness relationship from which 

bridge damage scenarios are generated as an input of the network level model. 
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Chapter 1 Introduction 

1 Background and motivation 

Transportation infrastructure systems, such as road networks and highway bridges, 

play an essential role in the economy and sustain the economic growth of the United 

States. From 1980 to 2010, the U.S. total number of motor vehicles has increased 92% 

and vehicle-miles of travels has increased 53% while the total highway lane-miles has 

only increased merely 10% (Federal Highway Administration, 2010, 2013).The situation 

is exacerbating due to the limited funding for maintenance. Delayed maintenance has 

resulted in even more degradation to the aging and deteriorating transportation networks.  

In a transportation infrastructure system, bridge structures are crucial components that 

should assure life safety and transport efficiency. However, bridges are extremely 

vulnerable to natural hazards compared to other components in the transportation system, 

such as highway roads. Thus, they are often considered to be the weakest links in a 

network. Physical damages and traffic carrying capacity losses to the bridges in a 

transportation system not only affect short term evacuation and emergency response, but 

also influence long term residential and commercial activities. 

The modelling framework proposed in this dissertation will be useful for decision 

makers at federal and state levels to establish efficient resource allocation schemes to 

transportation infrastructures on both strategic and tactical levels. In particular, at the 



 

2 

upper level, the highway road network carries traffic flows that rely on the performance 

of individual bridge infrastructure which is optimized through robust design at lower 

level. A system optimization model is developed to allocate resources to infrastructure 

systems considering traffic impact, which aims to reduce infrastructure rehabilitation cost, 

long term economic cost including travel delays due to realization of future natural 

disasters such as earthquakes. At the lower level, robust design for each individual bridge 

is confined by the resources allocated from upper level network optimization model, 

where optimal rehabilitation strategies are selected to improve its resiliency to hedge 

against potential disasters.  

 The above two decision making processes are interdependent, thus should not be 

treated separately. Thus, the resultant modeling framework will be a step forward in the 

disaster management for transportation infrastructure network. The proposed bi-level 

modeling framework is novel because it integrates both ideas of top-down and bottom-up 

resources allocation strategies by considering interaction of structure rehabilitation and 

transportation system performance. Research efforts from multiple disciplines are 

integrated in this framework including transportation network modeling, engineering 

economics, and structural engineering.  

 

2 Objectives 

The main objectives of this dissertation are to: (1) improve the fundamental 

understanding of the infrastructure rehabilitation scheme that integrates the effects of 
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networked infrastructures and the structural functionality improvement under budget 

limits; (2) create a novel, interactive bi-level resource allocation modeling framework to 

improve, by the most efficient means, the infrastructure resilience and social welfares. 

 

3. Organization of the dissertation 

This dissertation is organized into chapters described below. 

Chapter 2 describes a novel formulation and a solution algorithm of network level 

problem. A mean-risk two-stage stochastic programming model is developed with the 

first-stage considering resources allocation and second-stages shows the response from 

system travel delays, where the conditional value-at-risk (CVaR) is specified as the risk 

measure. A decomposition method based on generalized Benders decomposition is 

developed to solve the model, with a concerted effort on overcoming the algorithmic 

challenges imbedded in non-convexity, nonlinearity and non-separability of first- and 

second- stage variables.  

Chapter 3 makes the first attempt to integrate models from both levels. For lower level, 

a method using finite element (FE) analysis to generate the nonlinear relationship 

between structural performances of bridges and retrofit levels. This relationship was 

converted to traffic capacity-cost relationship and used as an input for the upper-level 

model. Results from the Sioux Falls transportation network demonstrated that the 

integration of both network and FE modeling for individual structure enhanced the 
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effectiveness of retrofit strategies, compared to linear traffic capacity-cost estimation and 

conventional engineering practice which prioritizes bridges according to the severity of 

expected damages of bridges. 

In chapter 4, I develop a minimax regret formulation of network protection problem 

and integrate with a hazard generation component. At upper level, minimax regret 

formulation, an alternate way of dealing uncertainty compared to chapter 2, will 

determine retrofit decisions to use in lower level. The same reformulation technique used 

in chapter 2 is adopted to reformulate the regret subproblems. The lower level model 

incorporates a seismic analysis component into the framework such that bridge columns 

are subject to a set of ground motions. By developing FE models for parameterized 

retrofit designs, the study captures seismic response of bridge structures. By including a 

robustness dimension into the bi-level infrastructure system protection framework, the 

lower level problem will become a simulation based multi-objective optimization which 

considers cost, safety and robustness. Thereby, a Pareto front can be found in three 

dimensions and a set of preferred retrofit designs are identified from the Pareto front. 

Bridge damage scenarios are then generated using the preferred retrofit designs and used 

as an input of the upper level problem.  

Finally, Chapter 5 summarizes the findings in above chapters. An overview of the 

assumptions and limitations of this work will be included herein, followed by a 

discussion of future directions that may stem from this dissertation. 
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Chapter 2  A Mean-Risk MINLP Model for 

Transportation Network Protection against Disasters 

1. Introduction 

Many highway bridges in the United States (U.S.), especially old bridges, can be 

seriously damaged or can collapse even in relatively moderate natural disasters, e.g., 

earthquakes (Buckle, et al., 2006). In the most recent infrastructure report card issued by 

the American Society of Civil Engineers (ASCE), one in nine of the bridges in U.S. are 

deemed structurally deficient(ASCE, 2013). Since 1960’s, major structural damage has 

caused millions of dollars of economic losses in a number of states, including Alaska, 

California, Washington, and Oregon (Buckle, et al., 2006). To improve this situation, at-

risk bridges must be identified and evaluated and retrofitting programs should be in place 

to strengthen its resilience (Buckle, et al., 2006).  

Highway bridge retrofit is one of the most common approaches undertaken to mitigate 

negative effects of extreme events on highway transportation networks by federal and 

state departments of transportation. Bridge damages due to extreme events, particularly 

seismic hazards, may result in direct social and economic losses as a result of post-

earthquake bridge repair or restoration, as well as indirect impacts on transportation 

networks, due to short-term evacuation and emergency response (L. Chang, et al., 2012) 

and even long-term changes in travel activities (Fan, et al., 2010; C. Liu, et al., 2009). 
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These adverse impacts can be avoided or alleviated if proactive bridge retrofit strategies 

are deployed.  

The Federal Highway Administration (FHWA) estimates that to eliminate all deficient 

bridges backlog by 2028, an annual investment of $20.5 billion is needed while currently 

only $12.8 billion is being spent on. Due to the limited retrofitting resources, it is neither 

practical nor economical to retrofit all bridges to their full health and a prioritized 

retrofitting scheme is expected. In practice, an index based bridge retrofit priority has 

been used, which considers bridge rank, importance, non-seismic deficiencies and 

network redundancy and prioritizes resources to bridges with higher priority indexes 

(Buckle, et al., 2006). However, this method may not yield an optimal solution in terms 

of direct retrofit cost and indirect social losses (e.g., travel delay cost) as this method 

neglects the effects of networked bridges and consequent redistributions of traffic flows. 

In other words, damage to one bridge can redistribute vehicular flows over the entire 

network and affect other at-risk bridges and roadways of the network. It justifies the need 

to consider bridge retrofitting strategies at a network level.  

A network based bridge retrofitting problem is essentially a network design problem 

(NDP), in which the upper-level problem involves optimal retrofit decisions for best 

social welfares (e.g., minimum retrofitting cost and travel delay) while lower-level 

problem accounts for the behaviors of network users which normally presents demand-

performance equilibrium (Nagurney, 2006, 2007; Patriksson, 1994; Peeta & 

Ziliaskopoulos, 2001; Sheffi, 1985). When the problem is under uncertainty, a discrete 
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set of scenarios is used to approximate uncertainty space. It is unrealistic to consider 

scenario-specific solutions (policies), since future events are unknown at the time of 

making decisions and a resulting policy may not even be feasible for other possible 

scenarios. It is necessary to develop a method that can account for all possible decision-

making scenarios. Previous studies use either stochastic programming (SP) (Barbaroso & 

gcaron, 2004; Fan, et al., 2010; C. Liu, et al., 2009) or robust optimization (RO) method 

(Atamtürk & Zhang, 2007; H. Sun, et al., 2011; Yafeng, et al., 2009) to take into account 

all scenarios. In particular, SP takes the expectation of consequences of all scenarios and 

thus is suitable for problems aiming to achieve long-term economic effects; however, it 

may have poor performance under extreme events. RO approach, on the other hand, 

considers worst-case scenario with low occurrence probability, which may lead to too 

conservative and in most cases costly solutions. A plausible method for bridge retrofit 

problem should combine the merits of these two stochastic modeling methods to 

compromise the effects of economics and resilience. In this study, we develop a mean-

risk model that considers all scenarios while penalizing worst-case scenarios.  

Within our research scope, our study, perhaps, is the first study undertaken in the 

specific field of transportation network protection specifies the conditional value-at-risk 

(CVaR) as the risk measure. CVaR is not particularly new; it was first introduced by 

(Andersson, et al., 2001; Rockafellar & Uryasev, 2000, 2002) as a risk assessment 

technique with wide applications in portfolio management to reduce the probability that a 

strategy incurs large losses (D. Huang, et al., 2010). In this study, we develop a mean-risk 

two-stage stochastic programming model. The first-stage decisions indicate the 
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assignments of retrofit strategies to different bridges in an optimized manner, which are 

made simultaneously with second-stage traffic assignment decisions with the goal of 

minimizing the total travel cost where travel time is converted to money value.  The 

CVaR at level 𝛼 is used in the first stage to penalize the worst 1 − 𝛼 scenarios with a 

user-specified confidence level 𝛼. The objective is to minimize the total expected direct 

cost of retrofitting bridges, indirect travel cost and risk consequence by CVaR.  

Our proposed model is closely related to the risk stochastic model proposed in (C. Liu, 

et al., 2009), in which a central semi-deviation is identified as the risk measure. However, 

our study is distinct from this prior study and advances the models in the following 

aspects. First, the semi-deviation can only capture the effects of scenarios that are worse 

than the expectation of second stage costs while the CVaR is flexible to incorporate a 

spectrum of scenarios, depending on the pre-defined confidence level and the weighting 

factors relative to cost terms in the objective. Second, our study relaxes the assumptions 

of the binary damage states (i.e., either no damage or collapse) and binary retrofit 

strategies (i.e., retrofit or no retrofit) in the prior study. Although these assumptions help 

reduce the problem size and consequently the computational challenges associated with 

solving large-scale problems, this simplification may result in less informative solutions 

and overestimate costs. In our study, we enrich our model by considering multiple 

exclusive retrofit strategies and multiple damage states based on a recent study (Y. Huang, 

et al., 2014). From the modeling perspective, it is not a trivial extension to the prior 

efforts, due to the inherent correlations between retrofit strategies, damage states, and 

resulting distributions of traffic flows on the network. In addition, bridge retrofit 
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strategies are subject to a budget limit, which makes the problem essentially a NP-hard, 

knapsack problem (Kellerer, et al., 2004). 

The mean-risk two-stage stochastic programming model is formulated as a non-

convex mixed integer nonlinear programming (MINLP) problem, wherein the bridge 

capacity is a non-convex nonlinear function of retrofit decisions. In general, it is known 

that non-convex MINLPs are notoriously difficult to solve (Burer & Letchford, 2012). 

Thus, another contribution of this study stems from the algorithmic development. In 

particular, we develop a novel decomposition that is based on the generalized Benders 

decomposition (GBD) method. Our decomposition resolves the issues of non-separability 

of first and second stage variables to enable efficient generations of Benders cuts. In this 

decomposition, we present a convex reformulation of the sub-problem. We justify our 

model and decomposition method on a hypothetical nine-node network and then apply 

the model and solution method to solve a stochastic transportation network protection 

problem based on a benchmark network – the Sioux Falls network (LeBlanc, et al., 1975), 

and to explore the effects of risk measures and variations in critical parameters on the 

optimal solutions. The results provide managerial insights for state stakeholders on bridge 

retrofit schemes. 

The remainder of the chapter is organized as follows. A literature review on related 

topics is presented in section 2. The mean-risk two-stage SP model is presented in section 

3, followed by the decomposition in section 4. The numerical results of the two networks 
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are summarized in section 5. This chapter is concluded in section 6 and the future 

research is outlined.  

 

2. Literature review 

The transportation network protection problems can be grouped into two broad 

categories, which depend on if bridges are treated as links (L. Chang, et al., 2012; Fan, et 

al., 2010; C. Liu, et al., 2009) or as paths (Mohaymany & Pirnazar, 2007; Viswanath & 

Peeta, 2003). The problems based on the links are formulated as maximum capacity or 

minimum cost flow network design problems with a focus on long-term economic effect 

of retrofit whereas the studies considering bridges as paths are formulated as maximal 

covering network design problems, which are more focused on short-term emergency 

response or maximal coverage of population centers.  

Uncertainty is naturally embedded in almost all transportation protection problems. 

Engineering methods based on the wait-and-see approach (Birge & Louveaux, 2011) seek 

optimal solutions upon the realizations of uncertainty (or scenario), which are 

deterministic. The resulting scenario dependent solutions are then aggregated in order to 

be implemented. Applications of deterministic models are broad for its easy modeling 

and solutions, for example (Carturan, et al., 2013; L. Chang, et al., 2012; Rokneddin, et 

al., 2013; Rokneddin, et al., 2011; Zhou, et al., 2010). In contrast to the scenario-

dependent deterministic approach, stochastic modeling method yields best anticipative 

decisions with a consideration of entire uncertainty space. Typical method includes SP 
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with recourse (Birge & Louveaux, 2011), which is usually in the form of expectation of 

second-stage cost across all scenarios. Studies based on the SP method are relatively 

limited compared to the deterministic solution applications, including (Barbaroso & 

gcaron, 2004; Fan, et al., 2010; C. Liu, et al., 2009). Another stream of research is based 

on the RO method (Bertsimas & Sim, 2003; Kouvelis & Yu, 1997), which focuses on the 

worst-case scenario and thus results in more conservative, risk-averse solutions. Its 

applications include (Atamtürk & Zhang, 2007; Lou, et al., 2009; Yafeng, et al., 2009).  

In general, the SP approach may yield solution that is good in a long run perspective, 

but may perform poorly under certain circumstances of extreme hazardous events, like 

earthquakes. Though rare, these hazards exert more severe impacts on the system. On 

other hand, the RO based models may be too conservative to yield any economic solution. 

Therefore, neither SP approach nor RO based method is best to capture the variability of 

risk, which motivates this study to seek a new method for economic yet robust solutions. 

As such, risk measures should be incorporated into decision making process of the SP 

approach. In particular, we consider CVaR as the risk assessment in this study. 

In the cost minimization context, value-at-risk ( 𝑉𝑎𝑅𝛼 ) is the 𝛼  -quantile of the 

distribution of the cost; that is, it is the smallest value such that the probability of loss 

exceeds or equals to VaR is greater than or equal to a pre-defined confidence level 𝛼 

(Uryasev, 2000). VaR can be formulated as a mathematical programming problem. 

However, it is hard to solve to optimality because VaR is non-convex and difficult to 

optimize numerically for skewed distribution (Uryasev, 2000). Alternatively, CVaR is a 
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risk statistic to measure risk associated with large losses that exceeds VaR (Rockafellar & 

Uryasev, 2000), which has a good mathematical property that preserves convexity 

(Ahmed, 2006). Particularly, CVaR at 𝛼 level is the expected value of the worst (1 − 𝛼) 

of the scenarios (Hong & Liu, 2009). When the confidence level increases, worse 

scenarios are included so that both the VaR and CVaR increase, leading to a more risk-

averse solution. When all scenarios are considered, the problem is equivalent to a RO 

problem. This risk measure has been in the past decade broaden up and applied to a 

number of engineering fields, including electricity operation decision (Yau, et al., 2011), 

water resources allocation (Shao, et al., 2011), facility location planning for reverse 

logistics (Toso & Alem, 2014), and hazard material routing (Kwon, 2011). On the other 

hand, the inherent computational challenges have motivated numerous algorithmic 

developments. For example, Schultz and Tiedemann (2006) developed a solution 

algorithm based on Lagrangian relaxation of nonanticipativity to solve a mixed-integer 

linear program with CVaR. Fábián (2008) developed decomposition methods for solving 

a two-stage SP linear program with CVaR and Noyan (2012) extended and solved a 

similar but two-stage SP mixed-integer linear program for disaster management. 

 

3. The mean-risk two-stage stochastic programming model 

Let us denote a transportation network by 𝐺(𝑁, 𝐴), where 𝑁 is a set of nodes and 𝐴 is 

a set of links on the network. Denote by 𝑅 and 𝑆 (𝑅 ⊆ 𝑁, 𝑆 ⊆ 𝑁) the sets of origins and 

destinations on the network. Denote 𝐴  (𝐴 ⊂ 𝐴), |𝐴| = 𝑚 , as the set of arcs that are 
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subject to seismic hazards, which mainly are the at-risk bridges. The binary decision 

variable 𝑢𝑎
ℎ = 1 if link or bridge 𝑎 (𝑎 ∈ 𝐴) is retrofitted by strategy h, (ℎ ∈ 𝐻), where 𝐻 

is a finite set of applicable retrofit strategies; otherwise 𝑢𝑎
ℎ = 0. For an origin-destination 

(O-D) pair (𝑟, 𝑠), we denote by 𝑥𝑟𝑠 ∈ ℝ+
𝑚 the link flow vector and 𝑞𝑟𝑠 ∈ ℝ+

𝑛  the vector of 

travel demand between an O-D pair. Denote by 𝑣𝑎 the total flow on link 𝑎. In this model, 

we allow unsatisfied travel demand post-earthquake for various reasons, such as 

shutdown of certain roadways, acute increased traffic congestion in the network, etc. The 

unsatisfied travel demand is captured by decision variable 𝑑𝑟𝑠  in the model with an 

imposed penalty cost in the objective function.  

In transportation network literature, traffic is often assumed to be in a user-equilibrium 

condition, where no traveler can further reduce their travel cost by simply changing their 

own routing decision (Yang & H. Bell, 1998). This assumption holds for a normal 

situation, where travelers have learned and adapted to daily traffic condition. However, 

modeling travelers’ routing behavior in an environment following extreme events, such 

as earthquake, is still arguable (Fan, et al., 2010). In this chapter, it is assumed that traffic 

flow can be controlled to achieve “system optimal” condition and the resulting estimated 

total cost, the objective value, can be considered as a lower bound of the total cost in 

reality. 

In this study, two sets of probabilistic estimates, including seismic damage to a 

structure and the probabilities of various earthquake occurrences, are combined to 

prepare a damage prediction. Let 𝑘  describe an uncertain event or a scenario. Each 
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realization with corresponding probability 𝑝𝑘 defines a scenario. Let 𝐾 denote a set of 

random events, 𝑘 ∈ 𝐾. We assume that if link 𝑎 ∈ 𝐴 is retrofitted, the post-earthquake 

link capacity �̂�𝑎
𝑘 is determined by the selected retrofit decision variable 𝑢𝑎

ℎ = 1; that is 

�̂�𝑎 = 𝑐𝑎 ∑ 𝑢𝑎
ℎ𝜃𝑎

ℎ,𝑘
ℎ∈𝐻 , where 𝑐𝑎 is the link traffic capacity before earthquake, and 𝜃𝑎

ℎ,𝑘
 is 

a parameter describing the post-earthquake link capacity ratio upon receiving retrofit 

strategy h. Note that only one strategy can be applied to an at-risk bridge, including do-

nothing as an option; i.e., ∑ 𝑢𝑎
ℎ

ℎ∈𝐻 = 1,   ∀𝑎 ∈ �̅�. The post-earthquake traffic capacity 

ratio of highway bridge can be determined by using bridge structural assessment (Mackie 

& Stojadinovic, 2004). For other links (𝑎 ∈ 𝐴\𝐴), the capacities are assumed to be 

unchanged after earthquakes.  

We first present a typical two-stage SP model in a general form in (2-1)-( 2-7). The 

retrofit resource allocation is considered in the first stage of the stochastic program, while 

the travel cost based on an explicit traffic assignment model is captured in the second 

stage. 

Two-stage stochastic programming model: 

𝑚𝑖𝑛𝑢∈𝑈𝐸𝑘∈𝐾(𝑓𝑘(𝑢)) = 𝑚𝑖𝑛𝑢∈𝑈𝑐𝑇𝑢 + 𝐸𝑘∈𝐾(𝑄𝑘(𝑢)) (2-1) 

𝑠. 𝑡.   𝑐𝑇𝑢 ≤ 𝐵  (2-2) 

∑ 𝑢𝑎
ℎ

ℎ∈𝐻 = 1,   ∀𝑎 ∈ �̅�, (2-3) 

𝑢 ∈ {0,1}𝑚, 𝜂 ∈ ℝ  
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𝑄𝑘(𝑢) ≔ min𝑣,𝑥,𝑑𝛾[𝑣𝑇𝑡] + 𝑀 ∑ 𝑑𝑟𝑠,𝑘
𝑟∈𝑅,𝑠∈𝑆  (2-4) 

𝑊𝑥𝑟𝑠,𝑘 = 𝑞𝑟𝑠 − 𝑑𝑟𝑠,𝑘,   ∀𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾 (2-5) 

𝑣𝑎
𝑘 = ∑ ∑ 𝑥𝑎

𝑟𝑠,𝑘
𝑠∈𝑆𝑟∈𝑅 ,   ∀𝑎 ∈ 𝐴, 𝑘 ∈ 𝐾 (2-6) 

𝑡(𝑢, 𝑣𝑎) = 𝑡0[1 + 𝛽(
𝑣𝑎

𝑐�̂�
𝑘)4] , ∀𝑎 ∈ 𝐴, (2-7) 

with �̂�𝑎
𝑘 = {

∑ 𝑢𝑎
ℎ𝜃𝑎

ℎ,𝑘𝑐𝑎ℎ∈𝐻 , ∀𝑎 ∈ �̅�

𝑐𝑎, ∀𝑎 ∈ 𝐴\�̅�
, ∀𝑘 ∈ 𝐾 

𝑥𝑟𝑠,𝑘 ≥ 0,   ∀𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾  

𝑣𝑎
𝑘 ≥ 0,   ∀𝑎 ∈ 𝐴, 𝑘 ∈ 𝐾  

𝑑𝑟𝑠,𝑘 ≥ 0,   ∀𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾  

 

The objective (2-1) is to minimize the total expected system cost. Here 𝑓𝑘(𝑢) =

𝑐𝑇𝑢 + 𝑄𝑘(𝑢) is the total cost function for scenario 𝑘, which consists of first stage cost 

𝑐𝑇𝑢 and recourse function 𝑄𝑘(𝑢). The recourse function encompasses the travel cost and 

the penalty cost of unsatisfied demand 𝑑𝑟𝑠,𝑘. Constraint (2-2) is the budget constraint. 𝑐 is 

the cost vector for all bridges and retrofit alternatives, 𝐵  is the total retrofit budget. 

Constraints (2-3) require that for each bridge receive only one retrofit strategy. Recourse 

function is defined in equation (2-4), in which v is a vector of link flow 𝑣𝑎
𝑘 for link a 

scenario k, 𝛾 is a parameter that converts travel time to money value, and M is the penalty 
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for the unsatisfied demand 𝑑𝑟𝑠,𝑘. Constraint set (2-5) assures travel demand is satisfied or 

penalized, where 𝑊  is a node-link adjacency matrix. Constraints (2-6) describe the 

relationship between the total link flow 𝑣𝑎
𝑘 and link flow 𝑥𝑎

𝑟𝑠,𝑘
 for each O-D pair 𝑟𝑠. The 

equation set (2-7) describes the travel time based on a non-decreasing link performance 

function - the Bureau of Public Roads (BPR) function. The travel time relates to link flow 

𝑣 and post-earthquake link capacity. Note that as the post-earthquake link capacity is a 

result of retrofit decisions, the decision variable 𝑢 appears on the denominator of the 

travel time cost function, which results in the non-convexity and nonlinearity. 

 

Observation 1. The general problem (2-1)-(2-7) has relatively complete recourse, i.e., 

subproblem (2-4)-(2-7) is feasible for every 𝑢 ∈ 𝑈. 

By definition, a stochastic program has relatively complete recourse if every feasible 

first-stage solution 𝑢 satisfies  the second-stage problem (Birge & Louveaux, 2011). In 

our problem, all travel demand is satisfied (or penalized for economic concerns) in the 

second stage regardless of the retrofit decisions made in the first stage.   

We now turn to introducing our mean-risk MINLP model, which combines the two-

stage SP model and the CVaR as the risk assessment. The CVaR can be expressed as 

below:  

𝐶𝑉𝑎𝑅𝛼(𝑌): = 𝐸(𝑌: 𝑌 ≥ 𝑉𝑎𝑅𝛼(𝑌)). 
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For a finite probability space K, the objective function of a mean-risk two-stage 

stochastic program is defined as:  

𝑚𝑖𝑛𝑢∈𝑈𝐸(𝑓𝑘(𝑢)) + 𝜆𝐶𝑉𝑎𝑅𝛼(𝑓𝑘(𝑢)),  

where 𝜆 is the tradeoff coefficient associated with the ratio of the total expected cost 

𝐸(𝑓𝑘(𝑢))  to the risk term 𝐶𝑉𝑎𝑅𝛼(𝑓𝑘(𝑢)) . Via simple manipulation arising out of 

translation invariance of CVaR (Noyan, 2012), the mean-risk two-stage SP program is 

equivalent to the following program (2-8):  

 

Mean-risk two-stage stochastic programming model: 

min𝑢∈𝑈(1 + 𝜆)𝑐𝑇𝑢 + 𝐸(𝑄𝑘(𝑢)) + λ(η +
1

1−α
𝐸([𝑄𝑘(𝑢) − 𝜂]+)) (8) 

s.t.  constraints (2)-(7). 

where 𝜂 is the value-at-risk, 𝜂 ∈ ℝ, and [𝑧]+ = max{0, z}, ∀𝑧 ∈ ℝ. 

 

The objective is to minimize the total cost of retrofitting bridges, expected travel cost, 

and risk consequence (𝐶𝑉𝑎𝑅). 𝜆 is a pre-defined weighting factor. A larger 𝜆 value leans 

towards CVaR, which weighs more on scenarios with worse consequences, and thus 

results in a more conservative solution. On the other hand, a smaller 𝜆 value yields a 

solution that weighs more on the expected cost, and thus the solution is more risk neutral.  
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Our mean-risk two-state model yields a non-convex MINLP due to the following 

reasons:  

(a) bilinear expression 𝑣𝑇𝑡 in the objective function (2-5) for 𝑄𝑘(𝑢),  

(b) nonlinear equality constraints (2-7), and  

(c) fractional function 
𝑣𝑎

𝑐�̂�
𝑘 in (2-7).  

For large-scale instances, this non-convex MINLP is intractable with off-the-shelf 

MINLP solvers. As illustrated in section 5.1, the poor performance even on a simple 

nine-node network motivates our algorithmic development as discussed in section 4. 

 

4. Decomposition methods 

Extensive algorithmic efforts have been made to improve the solution efficiency of 

MINLPs, including the widely used branch and bound (Gupta & Ravindran, 1985) with 

its variants - LP/NLP based branch and bound method (Quesada & Grossmann, 1992) 

and spatial branch and bound (Smith & Pantelides, 1999), and Generalized Benders 

Decomposition (GBD) method (Geoffrion, 1972). The branch and bound method is 

essentially an implicit enumeration procedure, which can be computationally expensive 

when the number of integer variables is large. The GBD on the other hand is effective in 

handling large-scale problem by decomposing intractable MINLP to tractable sub-

problems for improved solution efficiency. In this study, we develop a decomposition 
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method based on GBD. Also note that there are other plausible solution methods, 

including Extended Cutting Plane method (Westerlund & Pettersson, 1995), and outer 

approximation (Duran & Grossmann, 1986). Comparisons between these different 

methods in terms of solution quality and performance are worth investigations in future 

works.  

The model (2-8) will be decomposed into a master and sub-problems. The master 

problem is a mixed integer linear program and contains first-stage integer variables u and 

the value-at-risk 𝜂 . The sub-problems are evaluated for travel cost and CVaR at the 

optimum of the master problem. We will discuss the details on decomposition method in 

this section. 

 

4.1 The generalized Benders decomposition method  

The Benders decomposition method (Benders, 1962) was designed to solve mix-

integer linear problems, which was later generalized to solve nonlinear problems 

(Geoffrion, 1972), also known as GBD. When complicating variables are temporally held 

fixed, the method can render the remaining optimization problem that is considerably 

more tractable. As for this study, if bridge retrofit decision variable u and the value-at-

risk 𝜂 , are temporarily fixed, the remaining problem (2-5) – (2-7) becomes a traffic 

assignment problem based on system-optimization condition, which may be effectively 

solved by using commercial non-linear program solvers, such as CONOPT (Drud, 1994). 
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The CVaR value can be obtained by aggregating travel cost function values from the 

traffic assignment problems corresponding to different scenarios. 

Overview of GBD. We first illustrate how GBD works in a general way, followed by 

the development of this method for application to our problem in great details. GBD 

decomposes a problem into two parts by projecting the original problem onto the space of 

complicating variables. Let us take the following general optimization problem as an 

example: 

𝑚𝑖𝑛𝑢,𝑥𝑓1(𝑢) + 𝑓2(𝑢, 𝑥),    𝑠. 𝑡. 𝐺(𝑥, 𝑢) ≤ 0, 𝑥 ∈ 𝑋, 𝑢 ∈ {0,1}𝑚  (2-9) 

Assume that 𝑓1(𝑢) and 𝐺(𝑥, 𝑢) are both convex functions and that 𝑋 is a non-empty 

convex set. Let vector 𝑢 be the complicating variables and 𝑈 be the decision space for u. 

Assume that 𝑓2(𝑢, 𝑥) is a non-convex program on u and x jointly; however, fixing u will 

render it convexity in x. The projection of model (2-9) onto u space is completed as (2-10) 

and (2-11),  

𝑚𝑖𝑛𝑢𝑓1(𝑢) + 𝑣(𝑢),   𝑠. 𝑡.  𝑢 ∈ 𝑈 ∩ 𝑉 (2-10) 

where 

𝑣(𝑢) = 𝑖𝑛𝑓𝑥[𝑓2(𝑢, 𝑥)],     𝑠. 𝑡. 𝐺(𝑢, 𝑥) ≤ 0, 𝑥 ∈ 𝑋 (2-11) 

and  

𝑉 = {𝑢|𝐺(𝑢, 𝑥) ≤ 0, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥 ∈ 𝑋}, 
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Note that 𝑉 is the set of induced constraints, which assures that 𝑣(𝑢) is feasible. Set 𝑉 

is a convex set since it is a projection of a convex set. The 𝑣(𝑢) is the optimal value of 

𝑓2(𝑢, 𝑥) for a fixed 𝑢; in other words, it is the objective value of the optimization problem 

parameterized by 𝑢. The function 𝑣(𝑢) is convex as 𝑓2(𝑢, 𝑥) is convex in 𝑥 for a fixed 𝑢. 

By designation of 𝑢  as complicating variables, evaluating 𝑣(𝑢)  is much easier than 

solving problem (2-9). 

According to Theorem 2.1 in (Geoffrion, 1972), if (𝑢∗, 𝑥∗) is optimal in (2-9), then 𝑢∗ 

must be optimal in (2-10); If 𝑢∗ is optimal in (2-10) and 𝑥∗ achieves the infimum in (2-11) 

with 𝑢 = 𝑢∗, then (𝑢∗, 𝑥∗) is optimal in (9). 

Thus, problems (2-9) and (2-10)-( 2-11) are equivalent and (2-10)-( 2-11) can in turn 

be re-written as 

𝑚𝑖𝑛𝑢,𝜙𝑓1(𝑢) + 𝜙, 𝑠. 𝑡. 𝜙 ≥ 𝑣(𝑢), 𝑢 ∈ 𝑈 ∩ 𝑉, (2-12) 

Problem (2-12) is equivalent to problem (2-9) and can be solved by using cutting-

plane methods to approximate the convex set 𝑉 and convex function 𝑣(𝑢).  

Here, we will demonstrate how to use Lagrangian function to form master and sub-

problems. The function 𝑣(𝑢) in (2-10)-( 2-11) is the sub-problem and according to strong 

duality theory it can be written as, 

𝑣(𝑢) = [𝑖𝑛𝑓𝑥[𝑓2(𝑢, 𝑥)], 𝑠. 𝑡. 𝐺(𝑢, 𝑥) ≤ 0, 𝑥 ∈ 𝑋] = [𝑠𝑢𝑝𝜇≥0[𝑖𝑛𝑓𝑥∈𝑋 𝐿(𝑢, 𝑥, 𝜇)]], ∀𝑢 ∈

𝑈 ∩ 𝑉,  
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where 𝐿(𝑢, 𝑥, 𝜇) = 𝑓2(𝑢, 𝑥) + 𝜇𝑇𝐺(𝑢, 𝑥), is the Lagrangian function. With a scalar 𝜙, 

the master problem is: 

𝑚𝑖𝑛𝑢∈𝑈,𝜙𝑓1(𝑢) + 𝜙, s.t. 𝜙 ≥ 𝑖𝑛𝑓𝑥∈𝑋 𝐿(𝑢, 𝑥, 𝜇), ∀𝜇 ≥ 0 

Based on GBD, we decompose our mean-risk model in (8) into master problem 

described in (2-13) – (2-15) and sub-problems to approximate travel cost function 𝑄𝑘(𝑢) 

in (2-16).  

 

Master problem: 

mininimize (1 + 𝜆)𝑐𝑇𝑢 + 𝜙1 + 𝜆𝜙2 , 𝑢 ∈ 𝑈  (13) 

where  

𝑈 ≔ {𝑢|𝑢 ∈ {0,1}𝑚, 𝑐𝑇𝑢 ≤ 𝐵, ∑ 𝑢𝑎
ℎ

ℎ∈𝐻 = 1,   ∀𝑎 ∈ �̅�}  

s.t. 

optimality cut 1: 𝜙1 ≥ ∑ 𝑝𝑘𝑄𝑘(𝑢)𝑘  (14) 

optimality cut 2: 𝜙2 ≥ 𝜂 +
1

1−𝛼
∑ 𝑝𝑘

𝑘 [𝑄𝑘(𝑢) − 𝜂]+ (15) 

In the objective function (2-13), the recourse function travel cost and CVaR are not 

known explicitly in advance. Thus, the optimality cuts (2-14) and (2-15) are added to 

approximate them. As per Observation 1 in section 3, this problem has relatively 

complete recourse and the feasibility cut constraint can thus be omitted. Let 𝑢, �̅�1, and 
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�̅�2 be the optimal solutions to the master problem. Then each subproblem is solved at the 

optimum of the master problem.  

 

Sub-problem 𝑄𝑘(�̅�), 𝑘 ∈ 𝐾:  

𝑚𝑖𝑛𝑣,𝑥,𝑑𝑄𝑘(�̅�) = 𝑚𝑖𝑛𝑣,𝑥,𝑑𝛾[𝑣𝑇𝑡] + 𝑀 ∑ 𝑑𝑟𝑠,𝑘
𝑟∈𝑅,𝑠∈𝑆  (2-16) 

s.t. constraints (2-5) – (2-7) 

 If �̅�1 < ∑ 𝑝𝑘𝑄𝑘(�̅�)𝑘 , the optimality cut (2-14) will be added to the master problem. 

Similarly, if �̅�2 < 𝜂 +
1

1−𝛼
∑ 𝑝𝑘[𝑄𝑘(�̅�) − 𝜂]+

𝑘 , the optimality cut (2-15) will be added to 

the master problem.   

 

Proposition 1. For every 𝑢 ∈ 𝑈, k ∈ 𝐾 , the subproblem for 𝑄𝑘(𝑢)  is a convex 

minimization problem.  

Proof. For a fixed �̅�, �̂�𝑎
𝑘 is a parameter. For 𝑥, 𝑣, 𝑑 ≥ 0, 𝑣𝑎

𝑘, 
(𝑣𝑎

𝑘)5

(𝑐�̂�
𝑘)4

 and 𝑑𝑟𝑠,𝑘 are all convex 

functions. The objective function (2-16), as a summation of these convex functions, is 

convex. With constraint sets (2-5) and (2-6) being affine, the sub-problem for 𝑄𝑘(𝑢) is a 

convex minimization problem. A lower bound for sub-problem 𝑄𝑘(𝑢)can be obtained 

when the transportation network is intact.  
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The function 𝑄𝑘(𝑢), as stated, is the value function of a convex optimization problem 

where the dependence on u is through the denominator of the objective in (2-16). Due to 

this non-separability between u and the second-stage variables, it is unclear whether 

𝑄𝑘(𝑢) is a convex or a non-convex function. We will exploit the structure of the set U 

and use a reformulation trick to show in subsection 4.2 that 𝑄𝑘(𝑢) is convex in u. 

 

4.2 Reformulation of recourse function  

The reformulation is completed in two steps. First, we eliminate complicating variables in 

the denominator of BPR function by substituting it with a new variable. Second, by using 

logic constraints, we make the formulation linear separable in first and second stage 

variables. The details on the reformulation are discussed in this section. 

We first introduce a new, non-negative continuous variable
k

ay  as: 

𝑦𝑎
𝑘 ≥

(𝑣𝑎
𝑘)

5

[𝑐𝑎 ∑ 𝑢𝑎
ℎ𝜃𝑎

ℎ,𝑘
ℎ∈𝐻 ]

4 , ∀𝑎 ∈ 𝐴. (2-17) 

Note that this inequality only applies to at-risk bridges. We assume that the poster-

disaster capacities of other road links remain unchanged. Through simple manipulations, 

we obtain the inequality set (18): 

(𝑣𝑎
𝑘)5 ≤ 𝑦𝑎

𝑘[∑ 𝑢𝑎
ℎ𝜃𝑎

ℎ,𝑘𝑐𝑎ℎ∈𝐻 ]
4

, ∀𝑎 ∈ �̅� (2-18) 
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Remark 1. Since ∑ 𝑢𝑎
ℎ

ℎ∈𝐻 = 1, ∀𝑎 ∈ �̅� , and 𝑢 ∈ {0,1}|𝐻| , then (𝑢𝑎
ℎ)𝑛 = (𝑢𝑎

ℎ), ∀ℎ ∈

𝐻, 𝑛 = 1,2, … and 𝑢𝑎
ℎ1 × 𝑢𝑎

ℎ2 = 0, 𝑖𝑓 ℎ1 ≠ ℎ2, ∀ℎ1, ℎ2 ∈ 𝐻. 

 

Based on Remark 1, inequality set (2-18) is equivalent to  

  

(𝑣𝑎
𝑘)5 ≤ 𝑦𝑎

𝑘[∑ 𝑢𝑎
ℎ

ℎ∈𝐻 (𝜃𝑎
ℎ,𝑘)4]𝑐𝑎

4, ∀𝑎 ∈ �̅� (2-19) 

To apply GBD to generate optimality cuts, this inequality set should be linearly 

separable in the first-stage variable vector 𝑢  and second-stage variable vector 𝑦 . We 

introduce another non-negative continuous variable 𝑧𝑎
ℎ,𝑘

 and let 𝑧𝑎
ℎ,𝑘 = 𝑦𝑎

𝑘𝑢𝑎
ℎ. Then the 

following equivalency holds. 

 

Proposition 2.  Inequality set (19) is equivalent to the system of inequalities (2-20) – (2-

22) 

(𝑣𝑎
𝑘)5 ≤ ∑ 𝑧𝑎

ℎ,𝑘(𝜃𝑎
ℎ,𝑘)

4

ℎ 𝑐𝑎
4, ∀𝑎 ∈ �̅�, 𝑘 ∈ 𝐾 (2-20) 

𝑧𝑎
ℎ,𝑘 ≤

(�̅�𝑎)5

(𝜃𝑎
ℎ,𝑘)

4
𝑐𝑎

4
𝑢𝑎

ℎ, ∀𝑎 ∈ �̅�, ℎ ∈ 𝐻, 𝑘 ∈ 𝐾 (2-21) 

𝑦𝑎
𝑘 = ∑ 𝑧𝑎

ℎ,𝑘
ℎ , ∀𝑎 ∈ �̅�, 𝑘 ∈ 𝐾 (2-22) 



 

26 

where �̅�𝑎 = 𝛼𝑐𝑎 is the upper-bound traffic volume of link a, and 𝛼 is a sufficiently large 

number. 

Proof: Let 𝑦
𝑎

𝑘
≔

(�̅�𝑎)5

∑ (𝑐𝑎𝜃𝑎
ℎ,𝑘)

4
𝑢𝑎

ℎ
ℎ∈𝐻

. For every 𝑎 ∈ �̅�  and 𝑢 ∈ 𝑈 , the equation 

1

∑ (𝑐𝑎𝜃𝑎
ℎ,𝑘)

4
𝑢𝑎

ℎ
ℎ∈𝐻

= ∑
𝑢𝑎

ℎ

(𝑐𝑎𝜃𝑎
ℎ,𝑘)

4ℎ∈𝐻  holds. It follows that 𝑦
𝑎

𝑘
=

(�̅�𝑎)5

𝑐𝑎
4 ∑

𝑢𝑎
ℎ

(𝜃𝑎
ℎ,𝑘)

4ℎ∈𝐻 . Based on 

Remark 1, 𝑦
𝑎

𝑘
𝑢𝑎

ℎ =
(�̅�𝑎)5

𝑐𝑎
4

𝑢𝑎
ℎ

(𝜃𝑎
ℎ,𝑘)

4 is valid. Thus constraint set (2-21) is equivalent to the 

following inequality: 

𝑧𝑎
ℎ,𝑘 ≤ 𝑦

𝑎

𝑘
𝑢𝑎

ℎ, ∀𝑎 ∈ �̅�, ℎ ∈ 𝐻, 𝑘 ∈ 𝐾. (2-21’) 

Consider a solution (𝑣𝑎
𝑘, 𝑦𝑎

𝑘, 𝑢𝑎
ℎ) that satisfies inequality set (19), then the inequalities 

(𝑣𝑎
𝑘)5 ≤ 𝑦𝑎

𝑘 [∑ 𝑢𝑎
ℎ

ℎ∈𝐻 (𝜃𝑎
ℎ,𝑘)

4
] 𝑐𝑎

4 and 𝑧𝑎
ℎ,𝑘 ≤ 𝑦𝑎

𝑘𝑢𝑎
ℎ hold. Since 𝑧𝑎

ℎ,𝑘 = 𝑦𝑎
𝑘𝑢𝑎

ℎ, one obtains 

inequality (2-20): (𝑣𝑎
𝑘)5 ≤ ∑ 𝑧𝑎

ℎ,𝑘(𝜃𝑎
ℎ,𝑘)

4
𝑐𝑎

4
ℎ  . The inequality (2-21’)  𝑧𝑎

ℎ,𝑘 ≤ 𝑦
𝑎

𝑘
𝑢𝑎

ℎ holds, 

as 𝑦
𝑎

𝑘
 is the upper bound of 𝑦𝑎

𝑘 . Since ∑ 𝑢𝑎
ℎ

ℎ∈𝐻 = 1  and 𝑢𝑎
ℎ ∈ {0,1} , one can obtain 

∑ 𝑧𝑎
ℎ,𝑘

ℎ = ∑ 𝑢𝑎
ℎ𝑦𝑎

𝑘
ℎ = 𝑦𝑎

𝑘 ∑ 𝑢𝑎
ℎ

ℎ = 𝑦𝑎
𝑘, which is (2-22). 

On the other hand, assume that a solution (𝑣𝑎
𝑘, 𝑦𝑎

𝑘, 𝑢𝑎
ℎ, 𝑧𝑎

ℎ,𝑘) satisfies (2-20), (2-21’) and 

(2-22). 

Since ∑ 𝑢𝑎
ℎ

ℎ∈𝐻 = 1 and 𝑢𝑎
ℎ ∈ {0,1}, for ∀𝑎 ∈ �̅�, ∀𝑘 ∈ 𝐾, there is a ℎ = ℎ∗ such that 

𝑢𝑎
ℎ∗

= 1 and 𝑢𝑎
ℎ = 0, if ℎ ≠ ℎ∗. 𝑧𝑎

ℎ,𝑘 = 𝑦𝑎
𝑘𝑢𝑎

ℎ is equivalent to  
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{
𝑧𝑎

ℎ,𝑘 = 𝑦𝑎
𝑘,   𝑓𝑜𝑟 ℎ = ℎ∗

𝑧𝑎
ℎ,𝑘 = 0,     𝑓𝑜𝑟 ℎ ≠ ℎ∗

, 

From (2-21’), one can obtain 𝑧𝑎
ℎ,𝑘 = 0, if ℎ ≠ ℎ∗. From (2-24), 𝑧𝑎

ℎ∗,𝑘 = 𝑦𝑎
𝑘. Therefore, (2-

21’) and (2-22) is equivalent to 𝑧𝑎
ℎ,𝑘 = 𝑦𝑎

𝑘𝑢𝑎
ℎ . By substituting 𝑧𝑎

ℎ,𝑘
 for 𝑦𝑎

𝑘𝑢𝑎
ℎ  in 

inequalities (2-20), inequalities (2-19) hold.  

 

According to proposition 2, 𝑄𝑘(𝑢) is equivalent to (2-23) and (2-24) for each 𝑘 ∈ 𝐾.  

𝑄𝑘(𝑢) = 𝑖𝑛𝑓𝑥,𝑦,𝑧,𝑣[𝑓2
𝑘(𝑢, (𝑥, 𝑦, 𝑧, 𝑣))] (2-23) 

s.t. 𝐺𝑘(𝑧, 𝑢) ≤ 0 (2-24) 

(𝑥, 𝑦, 𝑧, 𝑣) ∈ 𝑋𝑘 ,   

𝑢 ∈ 𝑈  

where  

𝐺𝑘(𝑧, 𝑢) has |𝐴| × |𝐻| components:  

𝐺𝑎
ℎ,𝑘(𝑧, 𝑢) = 𝑧𝑎

ℎ,𝑘 − 𝑦𝑢𝑎
ℎ, ∀ℎ ∈ 𝐻, and  

𝑦 = max{𝑦
𝑎

𝑘
, ∀𝑎 ∈ �̅�, ∀𝑘 ∈ 𝐾}. 

𝑋𝑘 ≔ {(𝑥, 𝑦, 𝑧, 𝑣)|𝑊𝑥𝑟𝑠,𝑘 = 𝑞𝑟𝑠 − 𝑑𝑟𝑠,𝑘, ∀𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 

𝑣𝑎
𝑘 = ∑ ∑ 𝑥𝑎

𝑟𝑠,𝑘
𝑠∈𝑆𝑟∈𝑅 , ∀𝑎 ∈ 𝐴 
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(𝑣𝑎
𝑘)5 ≤ ∑ 𝑧𝑎

ℎ,𝑘(𝜃𝑎
ℎ,𝑘)

4

ℎ (𝑐𝑎)4 , ∀𝑎 ∈ 𝐴 

𝑧𝑎
ℎ,𝑘 = ∑ 𝑦𝑎

𝑘
𝑘 , ∀𝑎 ∈ �̅�, ℎ ∈ 𝐻}, and  

𝑈 ≔ {𝑢|𝑢 ∈ {0,1}𝑚, 𝑐𝑇𝑢 ≤ 𝐵, ∑ 𝑢𝑎
ℎ

ℎ∈𝐻 = 1,   ∀𝑎 ∈ �̅�}. 

Let 𝜇 ≥ 0  be the dual variable vector associated with (2-24). Convexity of the 

subproblem and strong duality theory imply that ∀𝑢 ∈ 𝑈, we have, 

𝑄𝑘(𝑢) = 𝑠𝑢𝑝𝜇≥0 [𝑖𝑛𝑓𝑥∈𝑋[𝑓2(𝑢, (𝑥, 𝑦, 𝑧, 𝑣)) + 𝜇𝑇𝐺𝑘(𝑧, 𝑢)]] (2-25) 

 

Proposition 3. 𝑄𝑘(𝑢) is a convex function in 𝑢. 

Proof: Proposition 2 makes the sub-problem separable in the first and second-stage 

variables. Since subproblem is convex in second-stage variables, strong duality implies 

𝑄𝑘(𝑢) is convex.  

 

The sub-problem is solved at the optimum of master problem �̅� and the optimal value 

𝑄𝑘(�̅�) is attained in (2-25) for scenario k, resulting in a Lagrangian multiplier 𝜇𝑘. 

𝑄𝑘(�̅�) = 𝑖𝑛𝑓(𝑥,𝑦,𝑧,𝑣)∈𝑋 𝑡0 ∑(𝑣𝑎
𝑘 + 𝛽𝑦𝑎

𝑘)

𝑎∈�̅�

+ 𝑡0 ∑ 𝑣𝑎
𝑘 (1 + 𝛽 (

𝑣𝑎
𝑘

𝑐𝑎
)

4

) + (𝜇𝑘𝑙)𝑇(𝑧 − 𝑦�̅�)

𝑎∈�̅�
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= −𝑦(𝜇𝑘)𝑇�̅� + 𝑖𝑛𝑓(𝑥,𝑦,𝑧,𝑣)∈𝑋 [𝑡0 ∑ (𝑣𝑎
𝑘 + 𝛽𝑦𝑎

𝑘)𝑎∈�̅� + 𝑡0 ∑ 𝑣𝑎
𝑘 (1 +𝑎∈𝐴\�̅�

𝛽 (
𝑣𝑎

𝑘

𝑐𝑎
)

4

) + (𝜇𝑘)𝑇𝑧] (2-26) 

 

Proposition 4. Let �̅�𝑙 be the optimum solution of the master problem at 𝑙𝑡ℎ  iteration. 

Then the optimality cuts for the 𝑙𝑡ℎ iteration are: 

𝜙1 ≥ ∑ 𝑝𝑘(𝑄𝑘(�̅�𝑙) − 𝜇𝑘𝑙𝑦(𝑢 − �̅�𝑙))𝑘  (2-27) 

𝜙2 ≥ 𝜂 +
1

1−𝛼
∑ 𝑝𝑘𝜉𝑘

𝑘  (2-28) 

𝜉𝑘 ≥ 𝑄𝑘(�̅�𝑙) − 𝜇𝑘𝑙𝑦(𝑢 − �̅�𝑙) − 𝜂, ∀𝑘 ∈ 𝐾 (2-29) 

𝜉𝑘 ≥ 0, ∀𝑘 ∈ 𝐾. (2-30) 

Proof: From (2-14):  

𝜙1 ≥ ∑ 𝑝𝑘(inf(𝑥,𝑦,𝑧,𝑣)∈𝑋[𝑓2(𝑢, (𝑥, 𝑦, 𝑧, 𝑣)) + 𝜇𝑘𝑙𝐺(𝑧, 𝑢)])𝑘   

= ∑ 𝑝𝑘 (inf(𝑥,𝑦,𝑧,𝑣)∈𝑋 𝑡0 ∑ (𝑣𝑎
𝑘 + 𝛽𝑦𝑎

𝑘)𝑎∈�̅� + 𝑡0 ∑ 𝑣𝑎
𝑘 (1 + 𝛽 (

𝑣𝑎
𝑘

𝑐𝑎
)

4

) +𝑎∈�̅�𝑘

(𝜇𝑘𝑙)𝑇(𝑧 − 𝑦�̅�))  
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= ∑ 𝑝𝑘
𝑘 (−𝑦(𝜇𝑘𝑙)𝑇�̅�𝑙 + 𝑖𝑛𝑓(𝑥,𝑦,𝑧,𝑣)∈𝑋 [𝑡0 ∑ (𝑣𝑎

𝑘 + 𝛽𝑦𝑎
𝑘)𝑎∈�̅� +

𝑡0 ∑ 𝑣𝑎
𝑘 (1 + 𝛽 (

𝑣𝑎
𝑘

𝑐𝑎
)

4

) + (𝜇𝑘)𝑇𝑧𝑎∈𝐴\�̅� ].  

By substitution of 𝑄𝑘(�̅�𝑙) in (2-26), one can obtain (2-27). 

Similarly, from (2-15) and (2-26): 

𝜙2 ≥ 𝜂 +
1

1−𝛼
∑ 𝑝𝑘 (inf(𝑥,𝑦,𝑧,𝑣)∈𝑋[𝑓2(𝑢, (𝑥, 𝑦, 𝑧, 𝑣)) + 𝜇𝑘𝑙𝐺(𝑧, 𝑢) − 𝜂]

+
)𝑘   

= 𝜂 +
1

1−𝛼
∑ 𝑝𝑘 (inf(𝑥,𝑦,𝑧,𝑣)∈𝑋  [𝑡0 ∑ (𝑣𝑎

𝑘 + 𝛽𝑦𝑎
𝑘)𝑎∈�̅� + 𝑡0 ∑ 𝑣𝑎

𝑘 (1 +𝑎∈𝐴\�̅�𝑘

𝛽 (
𝑣𝑎

𝑘

𝑐𝑎
)

4

)] + (𝜇𝑘𝑙)𝑇[(𝑧 − 𝑦�̅�𝑙) − 𝜂]+)  

= 𝜂 +
1

1−𝛼
∑ 𝑝𝑘

𝑘 (−𝑦(𝜇𝑘𝑙)𝑇�̅�𝑙 + inf(𝑥,𝑦,𝑧,𝑣)∈𝑋 [𝑡0 ∑ (𝑣𝑎
𝑘 + 𝛽𝑦𝑎

𝑘)𝑎∈�̅� +

𝑡0 ∑ 𝑣𝑎
𝑘 (1 + 𝛽 (

𝑣𝑎
𝑘

𝑐𝑎
)

4

)𝑎∈𝐴\�̅� ] + (𝜇𝑘𝑙)𝑇[𝑧 − 𝜂]+)  

one can obtain (2-28)-(2-30).  

 

For a better convergence, another optimality cut is added to improve the global lower 

bound of 𝑄𝑘(𝑢). For a given �̅�𝑙 ∈ {0,1}|𝐴|×|𝐻|, define 𝑆(�̅�𝑙) ≔ {𝑖|�̅�𝑖
𝑙 = 1} and the integer 

optimality cut (Laporte & Louveaux, 1993) at �̅�𝑙 is  
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𝜙1 ≥ (∑ 𝑝𝑘𝑄𝑘(�̅�𝑙) − 𝑄𝐿
𝑘 ) (∑ 𝑢𝑖𝑖∈𝑆(𝑢𝑙) − ∑ 𝑢𝑖𝑖∉𝑆(𝑢𝑙) − |𝑆(�̅�𝑙)|) + ∑ 𝑝𝑘𝑄𝑘(�̅�𝑙)𝑘 , (2-31) 

where 𝑄𝐿 ∈ ℝ  is the lower bound on 𝑄𝑘(𝑢), ∀𝑘, 𝑢 , which can be obtained: 𝑄𝐿 =

mink∈𝐾{𝛾[𝑣𝑇𝑡] + 𝑀 ∑ 𝑑𝑟𝑠,𝑘
𝑟∈𝑅,𝑠∈𝑆 }. Note that because ∑ 𝑝𝑘

𝑘 = 1 , 𝑄𝐿  is also a lower 

bound on ∑ 𝑝𝑘𝑄𝑘(𝑢)𝑘 . 

 

Multiple optimality cuts may help improve algorithm efficiency. Readers may refer to 

(Birge & Louveaux, 1988) for details. The corresponding multi-cuts for (2-27) and (2-31) 

are (2-32) and (2-33).  

𝜙1
𝑘 ≥ 𝑄𝑘(�̅�𝑙) − 𝜇𝑘𝑙𝑦(𝑢 − �̅�𝑙) (2-32) 

∑ 𝑝𝑘(𝜙1
𝑘)

𝑘

≥ (∑ 𝑝𝑘𝑄𝑘(�̅�𝑙) − 𝑄𝐿

𝑘

) ( ∑ 𝑢𝑖

𝑖∈𝑆(𝑢𝑙)

− ∑ 𝑢𝑖

𝑖∉𝑆(𝑢𝑙)

− |𝑆(�̅�𝑙)|) + ∑ 𝑝𝑘𝑄𝑘(�̅�𝑙)

𝑘

 

 (2-33) 

Accordingly, we should use the aggregation of cuts ∑ 𝑝𝑘(𝜙1
𝑘)𝑘  to replace 𝜙1  in the 

objective function of master problem (2-13). Note that due to the CVaR function 

definition, optimality cuts (2-28)-( 2-30) are already in multi-cut version. In each iteration, 

there are |𝐾| + 1 constraints added to the master problem, consisting of |𝐾| constraints 

(2-29) and one constraint (2-28).  
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The decomposition algorithm procedure: 

Step 1: Initialization 𝑙 = 0 

Step 2: Solve master problem (2-13)-( 2-15) 

Let (𝑢, 𝜙
1

, 𝜙
2

) be optimal solution, then𝜙 = 𝜙
1

+ 𝜆𝜙
2
 

Step 3: Solve the sub-problems (2-16), (2-18) for all scenarios. Set 𝑙 = 𝑙 + 1:  

Calculate 𝜙∗ = ∑ 𝑝𝑘𝑄𝑘(𝑢)𝑘 + 𝜆𝐶𝑉𝑎𝑅(𝑢).  

Step 4: The procedure terminates if the optimality gap |1 −
𝜙

𝜙∗ | ≤ 𝜀 (𝜀  is a predefined 

small value) is met. Optimal solution is found. Otherwise, add optimality cuts (2-

27)-( 2-30) (or the multi-cut version (2-32)-( 2-33)) and cuts (2-28)-( 2-30) to the 

master problem, and go back to step 2. 

 

5. Numerical examples 

The proposed mean-risk model and decomposition methods are first justified using a 

small nine-node hypothetical network. A well-known Sioux-Falls network (LeBlanc, et 

al., 1975) is then used to explore the impacts of uncertainty, network topology, and 

critical parameters on the strategic decisions on highway bridge retrofits. All numerical 

implementations run on a desktop with 8 GB RAM and Intel Core i5-2500@3.40GHz 
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processor under Windows 7 environment. Note that all algorithm implementations in this 

study stop at 𝜀 = 1%. 

 

5.1 Nine-node network 

The network is shown in Figure 2.1, which consists of nine nodes, 24 directional links, 

and 72 (= 8 9 ) O-D pairs. Assume that three bridges on both directions on the network, 

labeled as A, B, and C, are vulnerable to seismic disasters and their poster-disaster 

capacities may be reduced while other road links are assumed intact.   

 

Figure 2.1 Nine-node network 

 

The bridge post-earthquake capacity ratio 𝜃𝑎
ℎ,𝑘

 depends on the specific scenario, 

location of the bridge, and the retrofit strategy applied. The 𝜃𝑎
ℎ,𝑘

 is based on the structural 

performances and retrofit strategies (Mackie & Stojadinovic, 2004). There are five 
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strategies considered, as shown in Table 2.1, including “do nothing” h0 strategy (Y. 

Huang, et al., 2014). A higher numbered strategy indicates a more robust yet more costly 

strategy, and vice versa. In this numerical experiment, the values are randomly generated. 

For demonstration purpose, Table 2.1 shows such values for only one scenario and there 

are as many such tables as the number of scenarios.  Other critical parameters are: 

= 0.7, 𝛽 = 0.15, 𝛾 = 1000, 𝜆 = 1, and 𝑦 = 1000.  

 

Table 2.1 θ values of a scenario (k) 

Link 
Strategy 

h0 h1 h2 h3 h4 

link5 0.05 0.5 0.5 0.5 1 

link6 0.05 0.5 0.5 0.5 1 

link13 0.5 0.5 0.5 0.75 0.75 

link14 0.5 0.5 0.5 0.75 0.75 

link21 0.17 0.33 0.33 0.67 0.67 

link22 0.17 0.33 0.33 0.67 0.67 

 

To justify the decomposition method, we need obtain benchmark solutions, such as 

from commercial solver BONMIN (Bonami, et al., 2008), which however is a convex 

MINLP solver. Thus we first convexify the non-convex MINLP in (2-8) as the program 

presented in (2-34) – (2-37). 
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min𝑢,η,z,v,x,d,y,w(1 + 𝜆)𝑐𝑇𝑢 + 𝜆𝜂 + ∑ 𝑝𝑘
𝑘∈𝐾 (𝑀 ∑ 𝑑𝑟𝑠,𝑘

𝑟∈𝑅,𝑠∈𝑆 +
λ

1−α
ξ𝑘) +

𝛾𝑡0 ∑ 𝑝𝑘
𝑘∈𝐾 (∑ [𝑣𝑎

𝑘 + 𝛽 ∑ w𝑎
ℎ,𝑘

ℎ∈𝐻 ]𝑎∈�̅� + ∑ [𝑣𝑎
𝑘 + 𝛽

(v𝑎
𝑘)5

c𝑎
4 ]𝑎∈𝐴\�̅� ) (2-34) 

𝑠. 𝑡.   Constraints (2-4) and (2-6)  

ξ𝑘 ≥ 𝛾𝑡0 (∑ [𝑣𝑎
𝑘 + 𝛽 ∑ w𝑎

ℎ,𝑘
ℎ∈𝐻 ]𝑎∈�̅� + ∑ [𝑣𝑎

𝑘 + 𝛽
(v𝑎

𝑘)
5

c𝑎
4 ]𝑎∈𝐴\�̅� ) +

𝑀 ∑ 𝑑𝑟𝑠,𝑘
𝑟∈𝑅,𝑠∈𝑆 − 𝜂,  ∀𝑘 ∈ 𝐾 (2-35) 

(v𝑎
𝑘)5 ≤ ∑ (𝑐𝑎𝜃𝑎

ℎ,𝑘)
4

ℎ∈𝐻 z𝑎
ℎ,𝑘, ∀𝑎 ∈ �̅�, 𝑘 ∈ 𝐾 (2-36) 

z𝑎
ℎ,𝑘 ≤ �̅�𝑎

𝑘u𝑎
ℎ, ∀ℎ ∈ 𝐻, 𝑎 ∈ �̅�, 𝑘 ∈ 𝐾  (2-37) 

ξ, 𝑣, 𝑥, 𝑑, 𝑧 ≥ 0  

In particular, we test the model using four different sizes of scenario sets. In each set, 

scenarios are randomly generated to create variations in uncertainty realizations in order 

to justify the effects of CVaR. The sum of the probabilities of the scenarios in a set equals 

one. We found that the optimal objective values obtained from BONMIN and GBD are 

identical for all scenario sets. In addition, we compare the computing times and report the 

GBD iterations in Table 2.2. From the results, the computing times by using GBD are 

substantially lower than the BONMIN in all cases. The numerical results give us 

confidence in accepting the GBD as an effective solution method. Note also that solving 

times rise with the increase of number of scenarios, although it does not necessarily 

translate to a higher number of GBD iterations. This is because sub-problems become 
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more difficult to solve with more scenarios, which results in longer solving time per 

iteration. This explains why GBD results in almost identical solving time in the case of 

24 scenarios as in the case of 18 scenarios even though GBD finishes with fewer 

iterations in the case of 24 scenarios.   

 

Table 2.2 Comparisons between GBD and exact solutions 

Number of 

scenarios 

Obj. value (106) CPU seconds 

GBD iterations 

BONMIN GBD BONMIN GBD 

6 466.416 466.416 44 7 15 

12 465.074 466.144 121 21 29 

18 462.618 462.063 237 21 21 

24 460.483 460.484 323 22 18 

 

5.2 Sioux Falls network 

The Sioux Falls network as shown in Figure 2 consists of 24 nodes, 76 links, and 552 

O-D pairs.  The trip demands between all O-D demands are adopted from (LeBlanc, et al., 

1975). Assume that there are four bridges, labeled as A, B, C, and D, vulnerable to 

seismic hazards. We adopted critical parameters from (Fan, et al., 2010), including 

β = 0.15, and the peak 2-hour conversion value γ = 2400 to convert peak 2-hour delay 

to a monthly monetary value loss, which is set as 8 30 10 2400   , where 8 is daily 

adjust factor, with 30 days duration, and 10 is value of travel time savings for drivers.  
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Traditional engineering method estimates earthquake damage of structures using 

discrete damage states (Choi, et al., 2004) , that is, the residual post-earthquake capacity 

ratio θa
h,k

, have discrete values. Note that there are possible noises in estimating the post-

earthquake traffic capacity for each structure. Without any existing data from the 

structure assessment, we randomly generate θa
h,k

 such that there are substantial variations 

among different scenarios to justify the use of stochastic programming method in our 

study. The random θa
h,k

,  are generated following the two steps. First, a list of discrete 

numbers are created: {θ̂𝑛 ≔
𝑛

𝑁
, 𝑛 = 1, … , 𝑁}, from which the θa

h,k
 will be assigned. The 

number 𝑁 is user-defined (e.g., 6 in this study). For a given bridge 𝑎 under scenario 𝑘, 

the θa
h,k

 value should be nondecreasing with increasingly enhanced strategy ℎ (i.e., higher 

numbered strategies), such as θa
h4,k ≥ θa

h3,k
. Second, when generating the θa

h,k
 for 

different scenarios 𝑘 , we intend to further increase the variations among different 

scenarios by differentiating three categories of scenarios: the low-, median- and high-

damage scenarios. The higher damage is, the lower θa
h,k

 will be. In particular, we use the 

following simple mechanism to differentiate the θa
h,k

 values as: {θn
𝑙𝑜𝑤 ≔

𝑛

𝑁
, 𝑛 = 1, … , 𝑁}, 

{θn
𝑚𝑒𝑑𝑖𝑎𝑛 ≔

𝑛

𝑁
, 𝑛 = 1, … , 𝑁 − 1}, and {θn

ℎ𝑖𝑔ℎ
≔

𝑛

𝑁
, 𝑛 = 1, … , 𝑁 − 2}, for low-, median- 

and high-damage scenarios, respectively. Further, we specify the occurrences of the three 

categories of scenarios following a predefined ratio, such as 5:3:2 for low-, median- and 

high-damage scenarios, respectively. For example, for a total of 20 scenarios, the low-, 

median- and high-damage scenarios are 10, 6, and 4, respectively. 
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We adopt the same five-strategy scheme and initial point settings from the nine-node 

network example. There are total 534,101 variables including 40 binary variables and 

168,041 constraints. BONMIN fails to find an integer solution within eight CPU hours. 

The results of the Sioux Falls network are thus obtained by using decomposition method. 

In this section, we aim to explore the impacts of uncertainty, network topology, and 

critical parameters on the retrofit strategies using the Sioux Falls network. 

 

 

Figure 2.2 Sioux Falls Network 
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(d) Exp. Travel cost 

Figure 2.3 Model results under different combinations of risk parameters 

 

We first investigate the effects of risk parameters (i.e., α and λ) on model results and 
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objective value) is the summed total expected costs and weighted CVaR. The total 

expected cost is comprised of retrofit cost and the expected travel cost. 

We will discuss the impacts of the risk parameters on the cost effectiveness and CVaR 

separately. Note that the specified α level represents the risk preference, which quantifies 

the mean value of the worst (1 −  α)% of the total costs. Figure 3a shows that when α 

increases the corresponding value-at-risk η  account for the risk of larger scenario 

realizations. Thereby, larger α values would result in more conservative policies, which 

give more weight to worse scenarios. Also increasing the value of λ would leverage the 

weight and increase the relative importance of the risk term in the objective and thus 

would also lead to more risk-averse policies. Therefore, increasing the parameters α and 

λ implies a higher level of risk aversion. CVaR increases as α increases by the definition, 

i.e., a larger value of α accounts for larger realizations of the total cost. However, CVaR 

decreases as λ increases due to the changing trade-off between the expectation and the 

CVaR criterion. The total expected cost shown in Figure 2.3b is comprised of the retrofit 

cost in Figure 2.3c and the expected travel cost in Figure 2.3d. According to the results, 

increasing λ  and α  leads to more risk-averse policy with higher retrofit cost (i.e., 

enhanced retrofit strategies) and lower expected travel cost (implying reduced post-

disaster capacity loss) in general. 

We can also draw important managerial insights from the results. First, we can 

identify best possible parameters that can lead to balanced cost-risk solutions by the 

mean-risk model. For example, from Figure 2.3a and 2.3b, we found that when α = 0.5 
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and λ = 1, both the total expected cost and the CVaR are at the lowest. This parameter 

setting among all tested combinations leads to a policy that best balance the cost and risk. 

Second, it is important to investigate if the mean-risk model provides different solutions 

from the traditional two-stage SP model. For this purpose, we also compare results by the 

mean-risk model with the two-stage SP model in Table 2.2, in which the results of the 

mean-risk SP model are based on the best risk parameter (α = 0.5 and λ = 1). In the table, 

the CVaR value by the two-stage SP model was evaluated with given first-stage solutions 

and retrofit strategies for different bridges are labeled with strategy indexes. The 

inclusion of a risk term makes the solution more risk-averse, which is indicated by the 

difference in retrofit strategies for Bridge D. The mean-risk model adopts a more 

enhanced strategy than the two-stage SP model. As a result, the retrofit cost is higher, but 

the expected travel cost is lower, which also leads to an overall decreased total expected 

cost. 
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Table 2.3 Comparisons between Two-Stage SP and Mean-Risk SP 

  Two-Stage SP α = 0.5, λ = 1 

CVaR 398.6 386.4 

Total Exp. Cost 367.9 365 

Retrofit Cost 49 58 

Exp. Travel cost 318.9 307 

Bridge A Strategy 3 3 

Bridge B Strategy 3 3 

Bridge C Strategy 2 2 

Bridge D Strategy 0 2 

 

In Table 2.4, we present optimality gap, CPU times, and number of iterations for the 

different combinations of risk parameters, i.e., three α =0.5, 0.7, and 0.9 and five λ = 0.01, 

0.1, 1, 10, and 100 for 20 scenarios with y = 1500. The two-stage SP model solution 

performance is also included for comparisons, which is essentially λ = 0 and tolerance 

gap ϵ = 1%. We found that for all combinations of risk parameter values, the problems 

can be solved to optimal within 1% gap. Also, CPU times and the number of iterations 

used are similar across all cases. For the same number of iterations, ends up with 

different computing times, which implies that sub-problem complexity depends on the 

combinations of risk parameters. For a smaller tolerance, we expect improved solutions 

but more iterations and longer computing times. 
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Table 2.4 Solution performance with 20 scenarios 

    Optimality gap CPU time (min) # of iterations 

Two-stage SP (λ = 0) 0.96% 116.3 28 

λ = 0.01 

α = 0.5 0.71% 98.0 24 

α = 0.7 0.71% 95.4 24 

α = 0.9 0.00% 110.5 27 

λ = 0.1 

α = 0.5 0.71% 100.0 25 

α = 0.7 0.00% 114.8 28 

α = 0.9 0.84% 88.5 21 

λ = 1 

α = 0.5 0.00% 105.9 26 

α = 0.7 0.12% 113.8 28 

α = 0.9 0.25% 73.2 18 

λ = 10 

α = 0.5 0.89% 99.4 23 

α = 0.7 0.00% 110.5 27 

α = 0.9 0.00% 88.9 20 

λ = 100 

α = 0.5 0.73% 104.0 24 

α = 0.7 0.00% 110.8 27 

α = 0.9 0.00% 85.3 20 
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Table 2.5 Costs and solution performance for different numbers of scenarios (|K|) 

# of Scenarios 10 20 50 100 

Obj. Value (10
6
) 705.41 762.92 781.54 781.87 

CVaR (10
6
) 360.71 397.91 410.28 407.86 

Total Exp. Cost (10
6
) 344.70 365.01 371.26 374.01 

Retrofit Cost (10
6
) 58.00 58.00 71.50 87.00 

Exp. Recourse func. (10
6
) 286.70 307.01 299.76 287.01 

Optimality Gap 0.03% 0.95% 0.85% 0.44% 

CPU Time (min) 33.20 94.82 215.05 405.30 

# of Iteration 18 23 25 23 

 

We also investigate the impacts of the different sized scenario sets (i.e., |K|  = 

10,20,50,100) on the system costs and solution performances while other model 

parameters remain unchanged, i.e., the same four bridges, λ = 1 , and α = 0.7 . The 

number of low, median and high risk scenarios also has a ratio of 5:3:2. We randomly 

generate scenarios as follows: (1) in all sets, the numbers of low-, median-, high- risk 

scenarios are in the ratio 5:3:2; and (2) the probabilities of scenario occurrences are 

uniformly distributed in each set. We report the model results and solution performance 

in Table 4. With a larger set of scenarios, the CVaR and the total expected costs are 

generally higher as essentially larger realizations are accounted. This is also implied by 

the increased retrofit cost. However, the expected travel cost can increase or decrease, 

partially because of the varied optimality gaps. The computing times increase with the 

number of scenarios. This is because the computing time for solving one iteration is in 
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general proportional to the number of scenarios. Although the numbers of iterations are 

relative steady across different number of scenarios as observed, it takes longer to solve 

one scenario with more scenarios. 

6. Conclusions and future work 

We develop a mean-risk MINLP for transportation network protection (e.g., retrofitting 

highway bridges) hedging against extreme disasters (e.g., earthquakes) on a system level, 

where CVaR is considered as the risk measurement and integrated into the single 

optimization framework. This is the first study that explicitly considers CVaR as the risk 

measure in the field of transportation network protection. The mean-risk formulation is 

not obviously a convex optimization problem. By reformulating of the problem, we show 

that the recourse function is convex in the bridge retrofit variables. We develop a 

decomposition algorithm based on GBD to solve the large-scale MINLP. 

This study demonstrates the applicability of the model and decomposition method 

using two numerical examples, a small nine-node network and the well-known Sioux 

Falls network. The nine-node network is used to justify the solution quality of the 

proposed decomposition method by comparing their performances with the exact 

solutions that are obtained from using the commercial solver BONMIN. The Sioux Falls 

network example demonstrates that the proposed solution method makes the model 

applicable for large-scale problems. We explore the correlations between risk parameters 

and retrofit decisions using the Sioux Falls network. We found that the retrofit strategies 
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are responsive to the risk parameters and scenario set. The computing time for large 

instance is proportional to the number of scenarios of the instance. 

Several future directions would be worth research efforts, which involve both the 

modeling and algorithmic development. From modeling perspective, the traffic 

equilibrium may be a more realistic assumption to model route choices of network users. 

The integration of equilibrium will make the model a Mathematical Program with 

Equilibrium Constraints (MPEC), which is notoriously difficult to solve. Second, more 

algorithmic development (including heuristics) may be worth further exploration to 

prepare the model for real-world scale networks.  
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Chapter 3 A Bi-level Framework for Efficient 

Allocation of Resources for Bridge Retrofit 

1. Introduction 

According to the American Society of Civil Engineers 2013 Report Card (ASCE, 

2013), one in nine of the bridges in the U.S. are structurally deficient and vulnerable to 

extreme events. Many states are facing the challenge of extending the remaining life of 

existing bridges through retrofit programs with limited funding resources. Since it is 

neither practical nor possible to retrofit all the bridges to their full performance, it is 

important to effectively allocate resources to the bridges that are not only the most in 

need of repair but also have significant impacts on the transportation network. 

Conventional engineering practice prioritizes at-risk bridges primarily based on structural 

assessment and neglects the impacts of bridges on transportation network 

(Chandrashekaran & Banerjee, 2014; Wang, et al., 2010). On the other hand, research in 

bridge network protection often simplifies the relationship between the bridge’s traffic 

capacity and the retrofit cost as linear functions (Liang Chang, et al., 2012; C. Liu, et al., 

2009). That is, the more funds spent, the higher bridge traffic capacity will be. We 

propose a new approach to integrate traffic network modeling and individual structure 

enhancement into a bi-level optimization framework and the goal is to minimize the 

retrofit costs and travel delay in the face of extreme events. 
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In this study, both network modeling and structural assessment are integrated into a bi-

level modeling framework, in which the upper-level model determines the optimal 

allocations of retrofit resources to bridges while the lower-level model explicitly 

calibrates the traffic capacity-cost relationship using finite element (FE) models for each 

individual bridge.  

The upper level is a network optimization problem used to minimize the bridge retrofit 

cost and traffic delays. Uncertainty is inevitable in making bridge retrofit decisions in the 

face of extreme events. We develop a mean-risk two-stage stochastic programming 

framework (Lu, et al., 2015) to tackle the uncertainty, in which the uncertainty space is 

approximated by a set of discrete scenarios and the concept of Conditional Value-at-Risk 

(CVaR) (Rockafellar & Uryasev, 2000) is adopted to reduce the probability of a retrofit 

strategy that incurs large losses. This method also extends the capability of handling 

uncertainty in the traditional two-stage stochastic programming method (i.e., expectation 

of outcomes of scenarios) by allowing for flexible risk preferences (i.e., user-specified 

reliability levels).  

The lower level of the framework determines the optimal retrofit alternatives for a RC 

bridge pier to remain serviceable level of shear strength at different funding levels. 

General speaking, RC bridges should avoid brittle failure mode against an extreme 

earthquake event. A satisfactory seismic response for RC bridge is obtained by 

developing ductile inelastic flexural hinging at their plastic hinges. However, locating 

such plastic hinges in bridge superstructures is difficult and it is not desirable (Priestley, 

et al., 1994). Therefore bridge piers become major sources for bridge structural ductility 



 

50 

and energy dissipation. As a function of ductility, the shear strength of piers should 

remain certain level defined by capacity design to avoid brittle shear failure. 

In this chapter, the shear strength of the intentional cracked piers and the damaged 

piers with steel jacket are investigated by using software ANSYS 14.5. A set of models 

with different retrofit parameters is evaluated through the comparison of healthy and 

unrepaired models. The retrofit parameters in this study contains the height and width of 

steel plates used for bridge pier retrofit. We assume that the retrofit cost for a pier can be 

determined by the weight of the material used and number of labor hours for applying the 

retrofit. This study defines the improvement in shear strength as a nonlinear function of 

available funding, then translates the bridge pier shear strength into traffic carrying 

capacity and feed this information into the bi-level modeling framework. In particular, we 

apply robust design principles to investigate the possible trade-off relationships between 

bridge pier performance using different retrofit strategies and the cost of retrofit under the 

threats of uncertain natural disasters. This nonlinear relationship can be reflected by 

Pareto frontier of retrofit design, a collection of optimal retrofit designs that are superior 

to all other retrofit alternatives. The objective of the lower-level optimization problem is 

to ensure that dominated designs, which would indicate inefficient use of resources, are 

avoided. Therefore, the objective of the lower-level optimization problem is to find the 

set of optimal retrofit alternatives considering cost and resilience that forms a Pareto 

frontier for each earthquake scenario. 

This chapter is organized as follows. In Section 2, a review of relevant literature 

details the network protection problem as well as bridge structural enhancement problem. 
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In Section 3, the bi-level modeling framework is discussed in details, followed by a 

numerical study based on the benchmark Sioux Falls network in Section 4. Finally, the 

remarks and future research are briefly summarized in Section 5.  

 

2. Literature review 

Prior studies on bridge protections can be generally grouped into two major categories 

- transportation network protection problems and structural enhancement problems. The 

first category of studies focuses on the long-term impact of bridges on traffic network 

performance while the second category focuses on retrofit strategies on the enhancement 

of individual structure. 

Transportation network protection problem is essentially a network design problem, 

which has been the subject of many extensive studies over the past few decades (LeBlanc, 

1975; Luathep, et al., 2011; Magnanti & Wong, 1984; Yang & H. Bell, 1998). Most prior 

research efforts were based on the assumption that bridge damage is either fixed for a 

specific event (Fan, et al., 2010; Y. Huang, et al., 2014; C. Liu, et al., 2009), or that the 

bridge performance has multiple possible states after a disaster (Liang Chang, et al., 2012; 

Golroo, et al., 2010; Kim, et al., 2008; Peeta, et al., 2010). In the former category, C. Liu, 

et al. (2009) and Fan, et al. (2010) formulated a stochastic programming model to 

minimize the post-disaster network traffic delay and associated risk. Similarly, Y. Huang, 

et al. (2014) developed a retrofit decision scheme where the costs of retrofit strategies are 

certain percentage of new construction costs. In the latter category, discrete damage states 
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that were known a priori or established through the use of fragility curves have been used 

to evaluate structural performance of bridges. For instance, Golroo, et al. (2010) detailed 

a resource allocation optimization problem based on the reliability of the transportation 

infrastructure. Peeta, et al. (2010) developed a two-stage problem to maximize the post-

disaster connectivity that was based on the known link failure probability, and Kim, et al. 

(2008) evaluated the impact of an earthquake on road networks using fragility curves and 

static traffic assignment method. Finally, in a recent study, Liang Chang, et al. (2012) 

maximized network post-disaster evacuation capacities by using established bridge 

fragility curves to determine the damage state of each bridge, then convert them to bridge 

post-earthquake traffic capacities.  

For structural enhancement problem, studies focused on this category primarily 

involved using the FE analysis to determine the structural performance and effectivities 

of retrofit strategies. For example, in their study of Reinforced Concrete (RC) bridge 

piers, Z. Sun, et al. (2008) used a set of experiments on scaled pier specimens to compare 

against simulation models to evaluate the capacity of FE analysis software to model the 

hysteric behavior of RC piers. J. Zhang, et al. (2011) and Xu and Zhang (2011) used the 

shear-flexure interactive behavior of RC bridge piers as structural performance in their 

developed hysteretic models and implemented the models by using FE analysis. In 

another experiment, Lampropoulos and Dritsos (2011) performed FE analysis to examine 

the behavior of RC jacket strengthened columns under monotonic and cyclic loading. 

Chandrashekaran and Banerjee (2014) studied multiple retrofit strategies in terms of the 
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thickness of the column jackets for a multi-span bridge where the structural performance 

is evaluated by FE analysis. 

We integrate the transportation network protection and structural enhancement 

problems into a bi-level modeling framework. Structural enhancement problem involves 

the investigation of the relationship between retrofit levels and the structural 

performances of bridges, which must be obtained through a rigorous yet realistic analysis. 

On the other hand, transportation network protection problem requires traffic capacity-

retrofit cost relationship, which can be converted from relationship between structural 

performances and retrofit levels. To seamlessly integrate the two problems, we must find 

a way to bridge the two relationships in our integrated framework. 

 

3. Bi-level resource allocation modeling framework 

The proposed resource allocation modeling framework at the upper level is 

demonstrated using a well-known example of the Sioux Falls network shown in Figure 

3.1 (LeBlanc, et al., 1975) with 24 nodes and 76 directional links. Let us assume that 

there are four bridges, labeled as A to D in the network, each of which occupies both 

directions of traffic links and is subject to potential disasters.  
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Figure 3.1 Sioux Falls network 

 

The four bridges in the network are not independent of each other. For instance, the 

failure of bridge C would detour the traffic from node #20 to #18, which was originally 

traversed through link #60 to a longer path –of links #61, 58, 52 and 50. As a result, the 

network travel cost may increase due to the detours and resulting congestion caused by 

the redistributed traffic. Thus, at-risk bridges must be retrofitted to avoid undesirable 

consequences to the network. The conventional engineering practice of prioritizing 

bridges primarily based on the structural deficiency, may not guarantee system optimality 

from the perspective of network traffic operations. For instance, consider that i) bridge D 

is in a worse structural condition than bridge C and ii) that there are insufficient funds for 

retrofitting both bridges C and D. According to prioritization based on structural 
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deficiency, bridge D will be the preferred choice for retrofit, leaving bridge C with a 

higher chance of failure in extreme events. This solution is suboptimal, as the failure of 

bridge D would affect fewer links than the failure of bridge C. Thus, from a traffic 

management perspective, bridge C is more important to the network. Consequently, a 

tradeoff must be made between the impacts on traffic network and the need for structural 

enhancement. However, it is impossible to determine which bridge must to be 

rehabilitated until one solves the network optimization problem, which requires 

knowledge (e.g. trade-off relationship between structural performance and retrofit level) 

from the structural level. Through this proposed bi-level modeling framework, it will be 

possible to couple the system-level resource allocation at the upper-level with the 

individual bridge structural performance by the use of FE analysis at the lower level. 

The uncertainties of disruption on different bridges caused by natural or man-made 

disasters further amplify the difficulty. First, the modeling of the uncertain occurrence of 

disruptions to the network needs to integrate the design of the infrastructure rehabilitation 

scheme. Second, at the upper level, uncertainties related to the occurrence of different 

disruptions on different bridges are normally approximated by a set of discrete scenarios 

and must be determined through a stochastic modeling framework (e.g., stochastic 

programming(Birge & Louveaux, 2011) and robust optimization(Kouvelis & Yu, 2013)), 

resulting in risk-neutral or overly conservative solutions. This proposed risk integrated 

stochastic modeling framework offers greater modeling flexibility that can lead to a 

spectrum of risk adverse solutions. 
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In this study, we created a novel methodology to establish infrastructure retrofit 

strategies that operate under uncertainty. The proposed modeling framework integrates 

the retrofit of individual infrastructure with resource allocations to minimize the retrofit 

and travel costs for the entire network. Figure 3.2 depicts the bi-level modeling 

framework for the Sioux Falls transportation network. 

 

Network-level

Objective: minimize retrofit cost and system travel delays

Subject To: limited total budget

traffic flow balance

Results: resource allocation to each bridge (u)

Bridge A

Obj: max performance 

S.T. uncertain disruption

       allocated budget u(A)

Result: post-disruption 

capacity c(A)

Bridge B

Obj: max performance

S.T. uncertain disruption

       allocated budget u(B)

Result: post-disruption 

capacity c(B)

Bridge C

Obj: max performance

S.T. uncertain disruption

allocated budget u(C)

Result: post-disruption

capacity c(C)

Bridge D

Obj: max performance

S.T. uncertain disruption

allocated budget u(D)

Result: post-disruption

capacity c(D)

u(A) c(A) u(B) c(B) c(C) c(D)u(C) u(D)

 

Figure 3.2 Bi-level framework for bridge retrofit 

 

At the upper level, resource allocation (denoted as u) is made based on a network 

optimization problem with an objective to minimize the retrofit and travel costs given a 

fixed amount of available resources. Because individual links within a network are 

interdependent in the way they support the traffic flow, traffic assigned to each bridge is 

dependent on the availability and capacity of the other bridges in the network. This 



 

57 

interdependency is captured by network optimization model at the upper level, which 

determines the resource that each bridge receives (indicated by the red arrows in Figure 

3.2). At the lower level, the framework determines the traffic capacity of each bridge 

under the allocated budget. The resulting performance index of each bridge (denoted as c) 

in terms of traffic capacity, then feeds back to the network level model (indicated by the 

blue arrows in Figure 3.2). In general, a higher budget allows for a more extensive retrofit 

strategy, which results in a more functional structure; In order to get a closed form 

mathematical relationship between the retrofit level and structural performance, we use 

the FE analysis to simulate the levels of retrofit strategy and correspondent structural 

performance. We then obtain the relationship between traffic capacity of bridge and cost 

by using second order least square regression of multiple simulation results.  

In the following subsection, we will first separately discuss the upper and lower levels 

of the problems in sections 3.1 and 3.2, respectively, followed by the discussions of 

solutions to this bi-level problem in section 3.3.  

 

3.1 Upper-level sub-problem: retrofit resource allocation over network 

At network level, we adopted a mean-risk formulation (Lu, et al., 2015) with the 

assumption that traffic flow can be controlled to achieve “system optimal” condition. The 

focus herein is the integration of structural assessment and network modeling. Let 

G(N, A) denotes the transportation network, where N is a set of nodes and A is a set of 

links. Next, R and S (R ⊆ N, S ⊆ N) denote the sets of origins and destinations on the 
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network. Finally, A (A ⊂ A) denotes the set of links that are subject to disruptions, where 

|A| = m,. If bridge a (a ∈ A) is retrofitted by strategy h, (h ∈ H), the binary decision 

variable ua
h = 1; otherwise, ua

h = 0. For an origin-destination (O-D) pair (r, s), xrs ∈ ℝ+
m 

is the link flow vector and qrs ∈ ℝ+
n  is the vector of travel demand between an O-D pair. 

The total flow on link a is va . Unsatisfied travel demand, due to various reasons, is 

captured by decision variable drs  in the model with an imposed penalty cost in the 

objective function. 

Scenarios, defined as the combination of different disruptions to bridges in the 

network, are combined with a set of occurrence probability estimates. Let k describe a 

scenario with corresponding probability pk. Let K denote a set of random events, k ∈ K. 

We assume that the selected retrofit decision variable ua
h = 1  will affect the post-

disruption bridge capacity ĉa
k; that is ĉa = ca ∑ ua

hθa
h,k

h∈H , where ca is the bridge traffic 

capacity before disruption, and θa
h,k

 is a parameter describing the post-disruption link 

capacity ratio. The retrofit strategies are mutually exclusive for an at-risk bridge, 

including do-nothing option. Therefore, ∑ ua
h

h∈H = 1,   ∀a ∈ A̅.  

 

min𝑢∈𝑈(1 + 𝜆)𝑐𝑇𝑢 + 𝐸(𝑄𝑘(𝑢)) + 𝜆(𝜂 +
1

1−α
𝐸([𝑄𝑘(𝑢) − 𝜂]+)) (3-1) 

 

𝑠. 𝑡.   𝑐𝑇𝑢 ≤ 𝐵  (3-2) 

∑ 𝑢𝑎
ℎ

ℎ∈𝐻 = 1,   ∀𝑎 ∈ �̅�, (3-3) 
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𝑢 ∈ {0,1}𝑚, 𝜂 ∈ ℝ. 

𝑄𝑘(𝑢) ≔ min𝑣,𝑥,𝑑𝛾[𝑣𝑇𝑡] + 𝑀 ∑ 𝑑𝑟𝑠,𝑘
𝑟∈𝑅,𝑠∈𝑆  (3-4) 

𝑊𝑥𝑟𝑠,𝑘 = 𝑞𝑟𝑠 − 𝑑𝑟𝑠,𝑘,   ∀𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑘 ∈ 𝐾, (3-5) 

𝑣𝑎
𝑘 = ∑ ∑ 𝑥𝑎

𝑟𝑠,𝑘
𝑠∈𝑆𝑟∈𝑅 ,   ∀𝑎 ∈ 𝐴, 𝑘 ∈ 𝐾, (3-6) 

𝑡(𝑢, 𝑣𝑎) = 𝑡0 [1 + 𝛽 (
𝑣𝑎

𝑐�̂�
𝑘)

4

],   ∀𝑎 ∈ 𝐴, (3-7) 

with  �̂�𝑎
𝑘 = {

∑ 𝑢𝑎
ℎ𝜃𝑎

ℎ,𝑘𝑐𝑎ℎ∈𝐻 , ∀𝑎 ∈ �̅�

𝑐𝑎, ∀𝑎 ∈ 𝐴\�̅�
, ∀𝑘 ∈ 𝐾, 

where 𝜂 is the value-at-risk, 𝜂 ∈ ℝ, and [𝑧]+ = max{0, z}, ∀𝑧 ∈ ℝ. 

 

The objective (3-1) is to minimize the total expected system cost and the 

corresponding monetary value of risk. Here f k(u) = cTu + Qk(u)  is the total cost 

function for scenario k, consisting of first stage cost cTu and recourse function Qk(u). 

The recourse function encompasses the travel cost and the penalty cost of unsatisfied 

demand drs,k. Constraint (3-2) is the budget constraint, c is the cost vector for all bridges 

and retrofit alternatives and B is the total retrofit budget. Constraints (3-3) ensure that 

each bridge receives only one retrofit strategy. The recourse function is defined in 

equation (3-4), in which v is a vector of link flow va
k  for link a scenario k, γ  is a 

parameter that converts travel time to money value, and M is the penalty for the 

unsatisfied demand drs,k. Constraint set (3-5) assures that travel demand is either satisfied 
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or penalized, where W is a node-link adjacency matrix. Constraints (3-6) describe the 

relationship between the total link flow va
k and link flow xa

rs,k
 for each O-D pair rs. The 

equation set (3-7) describes the travel cost function - the Bureau of Public Roads (BPR) 

function. The travel time relates to link flow v and post-disruption link capacity. 

 

3.2 Lower-level subproblem: development of structural performance-retrofit level 

trade-off charts 

The lower-level problem is to derive a relationship between retrofit cost and bridge’s 

traffic capacity through determining a retrofit level and structural performance 

relationship. The relationships between the four components are interconnected and 

described in Figure 3.3.  

 

Retrofit Level
Structural 

Performance

Retrofit Cost Traffic Capacity

 

Figure 3.3 The connections between retrofit level, retrofit cost, structural performance 

and traffic capacity 
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There are several steps to derive the relationship between bridge’s traffic capacity and 

cost. First, we need to decide alternative retrofit strategies and calculate the correspond 

costs, which normally are different. Then, we use nonlinear finite element (FE) models to 

simulate the improved structural performance of the bridge that correspond to the 

different retrofit strategies.  

Note that computationally evaluating structural performance given retrofit strategies is 

a generic process, which can be applied to any bridge or bridge component. One aspect 

that needs attention is the simulation of bridge damages due to disruptions. The 

disruption can be in any form, which varies from a simplified pushover to seismic 

loading. Another important aspect is the indicator for structural performance. In our case 

study, we use shear strength for example. However, one can focus on many other aspects 

of the bridges and use other indicators for the structural performance.  

The next step is to connect structural performance to traffic capacity. We associate the 

structural performance to traffic capacity proportionally. There are some restrictions on 

the value of variables for traffic capacity and structural performance to make them more 

close to reality. We set a minimum traffic capacity for the bridge link and a maximum 

traffic capacity after disruption which is the original traffic capacity of the bridge link. 

Also, there is a maximum allowable structural performance improvement, beyond which 

the improved structural performance has no further impact on link traffic capacity. 
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Finally, we can evaluate relationship between the traffic capacity and retrofit cost and 

use the relationship as an input for upper level framework. 

 

3.3 Solution to the bi-level resource allocation model  

The challenges include establishing connections between the sub-problems at two 

levels in the solution process and equilibrium when the overall system cost is minimized. 

Both sub-problems should be solved simultaneously and often requires converting the bi-

level problem to a single-level problem, which is computationally challenging. We 

instead propose a bottom-up solution. In particular, the lower-level sub-problem yields a 

nonlinear relationship between bridge’s traffic capacity and cost. For each retrofit level, 

the use of FE method will result in the correspondent performance of the structure. We 

convert the structural performance-retrofit level relationship to bridge traffic capacity-

cost relationship. Each bridge has a correspondent nonlinear relationship between traffic 

capacity and cost, which is used in the upper-level network problem as model input. This 

large-scale combinatorial optimization problem is decomposed into a master and sub-

problems where first stage integer variables are temporally fixed, which renders the 

remaining problem tractable. Lagrangian duality is then used to generate cuts for the 

master problem. 
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4. Numerical examples 

Numerical experiments are then used to demonstrate this bi-modeling framework. The 

structural assessment at the lower level is discussed and illustrated by a bridge pier 

example. The nonlinear trade-off traffic capacity-cost assumptions are then used in the 

upper-level network sub-problem for structural assessment. 

 

4.1 Pier structural assessment for lower level model 

In our case study, the disruptions due to natural or man-made disaster happened to the 

bridge pier takes the most simplified form. In particular, we apply lateral loads at the top 

of the bridge piers, which have fixed supports at the bottom to simulate the shear failure 

mode. We assume that all bridges in the network are two-span bridges with a single 

middle pier. Therefore, the pier, which is the critical part of the bridge, should retain a 

certain level of shear strength, a specification of structural performance, to avoid brittle 

shear failure mode during natural disasters. The structural assessment simulates bridge 

piers with cracks, where steel jacketing was selected as retrofit alternatives that represent 

different retrofit levels. Concrete, with nonlinear material properties, and steel, with 

bilinear material properties, are used in the construction of RC bridge piers. To model the 

current condition of the bridges, we assume that there is a horizontal crack in each of the 

bridge pier in the FE model. In this study, we specifically refer retrofit alternatives to the 

steel plates with different thickness. The steel plates are large enough to cover the initial 

crack and are partly glued to the pier to avoid over retrofit. The nonlinear material 
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properties of RC and the intentional cracks makes a convergence of FE analysis difficult. 

We use finer meshing around the cracks and use proper convergence criteria to mitigate 

that difficulty. Finally, we use the least square regression method to form a nonlinear 

curve that best approximate the nonlinear relationship between improved shear strength 

and steel plate thickness. 

Specimen geometry 

We developed a scaled version of typical RC bridge piers model using the ANSYS FE 

analysis software (ANSYS). The cross section of the pier was rectangular with dimension 

of 300 𝑚𝑚 × 400 𝑚𝑚, and a height of 900 𝑚𝑚. The longitudinal reinforcement ratio of 

the pier was set at 2% of the gross cross-section area, and the transverse reinforcement 

ratios for the plastic hinge region and other region were 1% and 0.5%, respectively. The 

positon of the plastic hinge region was assumed somewhere within the bottom 300 𝑚 of 

the pier. 

 

Figure 3.4 Schematic view of bridge pier 
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Model description 

The specimen is modeled using the SOLID65 concrete element that is capable of 

crushing in compression and cracking in tension. The top slice under the load and the 

bottom slice near the support of the pier are modeled as SOLID45 elements to avoid 

cracking at early stage.  

Normally shear transfer coefficients range from 0.0 to 1.0, where 0 represents a 

smooth crack (no shear transfer exists) while 1.0 represents a rough crack (complete 

shear transfer). There would be convergence problem if the shear transfer coefficients are 

set to a small value. In this study, the shear transfer coefficient 𝛽𝑡  for open crack is 

assumed to be 0.6, while for closed cracks, the shear transfer coefficient 𝛽𝑐 is assumed to 

be 1.0.  

The concrete and steel plate material properties are shown in table 3.1. The SOLID65 

element has a smeared rebar option in which the orientation of rebar is defined by three 

angles. The material properties for rebar are also shown in table 3.1. 
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Table 3.1 Material properties 

Material number Material properties Value 

1 Concrete  

 

 

Multi-linear isotropic 

 

 

Modulus of Elasticity 15276 MPa 

 

Poisson’s ratio (PRXY)  0.2 

 

Compressive Strength  19 MPa 

 

Tensile Strength  2.22 MPa 

 

shear transfer coefficient for open 

crack 0.6 

 

shear transfer coefficient for closed 

crack 1 

2 Steel plate and rebar 

 

 

Bilinear isotropic 

 

 

Modulus of Elasticity 200000 MPa 

 

Poisson’s ratio (PRXY)  0.3 

  Yield Strength  420 MPa 
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Using SOLID65 element to define concrete requires obtaining multi-linear isotropic 

material properties to properly model the concrete material. The concrete material 

properties are based on the equation of complete curve for compressive-strain of the 

concrete (Guo, 2014), where dimensionless coordinates  𝑥 =
𝜀

𝜀𝑝
 and 𝑦 =

𝜎

𝑓𝑐
 are used to 

describe the curve mathematically. This description is expressed as 

𝑦 = 𝑎𝑥 + (3 − 2𝑎)𝑥2 + (𝑎 − 2)𝑥3, 𝑥 ≤ 1 (3-8) 

where 𝑎 =
𝐸0

𝐸𝑝
 and  1.5 ≤ 𝑎 ≤ 3.0. Equation (1) shows the ascending branch (𝑥 ≤ 1) of 

the equation and set 𝑎 = 1.7 here. We assume that there is no descending branch in our 

model, that is, when 𝑥 ≥ 1, 𝑦 = 1. 

The uniaxial stress-strain curve is shown in Figure 3.5. 

 

 

Figure 3.5. Constitutive relations for concrete. 
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A bi-linear stress-strain relationship is used for steel material. The stress-strain curve 

is shown in Figure 3.6. 

 

Figure 3.6 Constitutive relations for steel. 

 

Finite element model development  

There are several assumptions that associated with SOLID65 concrete elements. One 

assumption is the base will be fixed and all base nodes are restrained in three directions to 

model a rigid foundation for bridge pier. We apply a displacement controlled lateral load 

on the topside of steel plate placed on the top of the pier to obtain ultimate shear strength. 

To model the current condition of a damaged pier, we assume the pier has an initial 

crack that is horizontal. The initial horizontal crack with different width, length and 

location is generated in the FE model to simulate different damage conditions.  

Also steel plates with different length and thickness are modeled to cover the initial 

crack as a strengthening material. We assume that only parts of the steel plate are glued 
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to the specimen, which is, the upmost potion and bottommost potion of the steel plate are 

glued to bridge pier.  

Figure 3.7 show models’ geometry with and without jacketing. There is a 50 mm thick 

steel plate above the specimen and a 50 mm thick steel plate below the base. A 

hexahedral meshing is used for the RC bridge column with side length of 50 mm. Plastic 

hinge region as well as the steel plate jacket are meshed by using elements with 25 mm 

length. 

  

Figure 3.7 Models for damaged piers with and without 10 mm steel plate jacketing. 

 

The boundary conditions are set to simulate experiment conditions. The base area is 

restrained in three directions while the load is applied on the top area of steel plate. A 

total 24 mm displacement in x direction is applied on the top area.  

 

Nonlinear trade-off for structural performance-cost  
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To obtain the strategies that both reduce the cost and improve the shear strength for 

piers, we tested models with different dimensions of the steel jacket. We assume that the 

thickness of the steel plates 𝑤 ranges from 3 mm to 15 mm. We then record the resistant 

forces in 𝑥 direction for all nodes locating in the bottom area, and then total the nodal 

resistant force to form a single resistant force 𝐹𝑥 for the base. The resistant force at 24 

mm displacement corresponds to the shear strength for the pier. Using the resistant force 

at the bottom and the corresponding displacement in the 𝑥 direction at the top area of the 

pier, we can generate load-displacement diagrams for all specimens. The damaged pier 

without the steel plate jacketing is selected as the control group. The shear strength of 

damage pier without the retrofit is recorded as 𝐹𝑥0. Thus we can attain the shear strength 

improvement Δ𝐹 = 𝐹𝑥  − 𝐹𝑥0 for each specimen. Figure 3.8 shows the pushover results 

for non-retrofit pier and the representative retrofit alternatives. 



 

71 

 

Figure 3.8. Load-displacement diagrams for model with different thickness of steel plate 

jacketing 
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Figure 3.9. Shear strength improvements for different steel jacket thickness 

 

We tested 13 different thickness of steel jacket. A second order least square regression 

is used for these 13 data points. The R squared value equals 0.9941 and sum of squares 

equals 1.9892 which shows the data fits very well for this second order statistic model. 

The regression function can then be used as the Pareto frontier function for this pier. 

In Figure 3.9, gain in structural resilience (improved shear strength, y-axis) will result 

in a higher cost (thickness of steel jacket, x-axis). This trade-off relationship indicates 

that increasing the available project funding leads to a more resilient design. The 

structural resilience increases significant with the increase of steel plate thickness at the 

beginning, but beyond a certain point it becomes much less significant. Using robust 
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design principles will enable us to select the most efficient retrofit designs for a certain 

budget level. Once the Pareto front is obtained, given the available budget from the upper 

level, the lower level can use a ‘lookup’ table and indicate what would be the 

corresponding gain of shear strength and traffic carrying capacity. 

 

4.2 Sioux Falls network analysis 

In this section, we demonstrate the application of the bi-level model through the use of 

the Sioux Falls network shown in Figure 3.1. Based upon comparisons with linear traffic 

capacity-cost relationship that has been widely adopted in prior research studies and 

engineering practice, this integrated FE analysis in our proposed bi-level model can offer 

more cost-effective solutions. 

Conversion of steel plate thickness to monetary cost: The lower-level problem yields 

the relationship between the shear strength improvement and steel plate thickness, which 

is converted to bridge’s traffic capacity and cost relationship through a two-step process. 

The first step involves relating the retrofit cost to the steel plate thickness using equation 

(3-9): 

𝑟𝑐𝑎 = 𝑠𝑎(𝑐𝑙 + 𝑤 ∗ 𝑐𝑚) (3-9) 

where 𝑟𝑐𝑎  denotes the retrofit cost for bridge 𝑎, 𝑠𝑎  denotes the size of bridge 𝑎, 𝑙𝑐 

represents the unit labor cost, w is the steel plate thickness, and 𝑚𝑐 is the unit material 

cost. The retrofit strategies are denoted as “h0”-“h4”, with corresponding steel jacket 

thicknesses of 0, 3 mm, 6 mm, 9 mm, 12 mm thickness of steel jacket (w), respectively. 
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The retrofit costs for different bridges under different strategies are provided in Table 3.2. 

Note that a bridge is represented by two directional links in this study.  

 

Table 3.2 Retrofit cost ($1M) for all bridges 

Bridges 
Strategy 

h0 h1 h2 h3 h4 

link16 0.00 1.96 2.92 3.88 4.84 

link19 0.00 1.96 2.92 3.88 4.84 

link25 0.00 11.76 17.52 23.28 29.04 

link26 0.00 11.76 17.52 23.28 29.04 

link56 0.00 15.68 23.36 31.04 38.72 

link60 0.00 15.68 23.36 31.04 38.72 

link63 0.00 1.96 2.92 3.88 4.84 

link68 0.00 1.96 2.92 3.88 4.84 

 

The second step involves associating different levels of shear strength improvement 

with the post-event traffic capacity of the bridges under study. We use different scenarios 

to describe the consequences of different post disasters and further assume that the shear 

response would be varied under these scenarios. We generated 12 random scenarios, each 

of which is 10% varied from the original nonlinear relationship curve in Figure 3.6. 

Let Δ𝐹𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 be the shear strength improvement using results from lower level. The 

relationship is described as equation (3-10).  

Δ𝐹𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 = −0.0856𝑤2  +  2.8442𝑤 −  0.3227 (3-10) 
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The next step involved connecting the shear strength improvement with the link traffic 

capacity. Denote 𝜃 as the relationships between shear strength improvement and steel 

thickness, which contains a set of traffic capacity ratios that can be obtained by dividing 

the link post-disruption capacity over its original capacity. We assume that the post-

disruption traffic capacity has at least 𝜅% of original capacity (e.g., 𝜅 = 20). Then, the 

parameter 𝜃 is a fractional value between 𝜅% and 1, which can be obtained using shear 

strength improvement Δ𝐹𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟  in equation (3-10). Let ΔF𝑚𝑎𝑥  be the maximum 

allowable shear strength improvement, beyond which the improved shear strength has no 

further impact on link traffic capacity. The shear strength improvement is then connected 

to traffic capacity via equation (3-11). 

𝜃𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 = 𝑚𝑖𝑛(
Δ𝐹𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟

ΔF𝑚𝑎𝑥
∗ 0.8 + 0.2, 1) (3-11) 

A “lookup table” of showing the relationship between 𝜃 and retrofit strategies can be 

obtained. There are 12 lookup tables, each of which describes one of 12 scenarios. 

Baseline results: The results of the baseline study, presented in Table 3.3, includes the 

costs, solution performance, and selected strategies (presented in rows) under different 

budget levels (i.e., $30m, $60m and $90m presented in columns). The top section of the 

table reports various costs. In particular, the objective value is the summation of CVaR 

and the total expected cost, which is further decomposed to retrofit cost and expected 

travel cost. The solution performances of the GBD’s solution time, optimality gap, and 

iterations are reported in the middle section of the table. We used a generalized Benders 

decomposition algorithm to solve the upper level problem as we described in section 3.3. 
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The optimality gap shows the convergence of the algorithm, which reflects the high 

quality solutions by the algorithm. The computing times and iterations indicate the 

efficiency of the algorithm. The bottom section explicitly details the optimal strategies 

applied to different bridges. 

 

Table 3.3 Network level results by integrating both levels 

 

Budget Levels 

$30M $60M $90M 

Obj. Value (10
6
) 732.036 680.703 667.132 

CVaR (10
6
) 368.738 343.099 335.833 

Total Exp. Cost (10
6
) 363.298 337.604 331.299 

Retrofit Cost (10
6
) 29.360 50.560 83.840 

Exp. travel cost (10
6
) 333.938 287.044 247.459 

CPU Time (mins) 9.25 37.22 55.57 

Optimality Gap 0.50% 0.82% 0.57% 

# of Iteration 13 45 74 

Bridge A Strategy h2 h4 h4 

Bridge B Strategy h1 h2 h2 

Bridge C Strategy h0 h0 h1 

Bridge D Strategy h0 h2 h3 

 

We can see that as the increase of the total available budget, the expected travel cost, 

CVaR value and objective value decrease. This is because higher budget allows for the 

use of enhanced retrofit strategies, which are clearly indicated in Table 3.3. As a result, 
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the structural performance is enhanced in support of traffic throughput and the network 

becomes more resilient. The model gets more difficult to solve with the increase of 

budget levels, which requires more CPU times and number of iterations. This is because 

more feasible solutions become available for the first stage variables due to the raised 

budget. 

Comparisons with other cost estimation methods: We compared the results of 

proposed bi-level model with linear cost estimation and engineering practice. Linear cost 

estimation is derived by substituting equation (3-10) into equation (3-11), then taking 

derivative of 𝜃𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟  with respect to w. The slop of linear relationship uses the 

gradient of nonlinear curve at w=0. As link post-disruption traffic capacity cannot exceed 

the maximum traffic capacity, 𝜃𝑙𝑖𝑛𝑒𝑎𝑟  is always less than or equal to 1. In addition, 

engineering practice, an index based method, prioritizes bridges according to the severity 

of expected damages of bridges, which is widely used in reality due to its easy 

implementation. Following different cost estimations, the 𝜃 values vary. For risk-averse 

decision makers, the bridge to receive retrofits is ranked according to the severity of 

damage and the one that is ranked highest may be retrofitted to its maximum possible 

performance within budget. The remaining budget if any will then be used to retrofit 

bridge ranked second highest. It continues until budget is depleted. In this subsection, we 

will explore the effects of cost estimations on the strategic solution and system 

performance.  

The network-level results of engineering practice and solutions based on linear cost 

estimation are provided in Table 3.4, for comparison with the results of our nonlinear cost 
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estimation (copied from Table 3.3). The model will be run separately for both nonlinear 

and linear sets of 𝜃. After obtaining retrofit decisions using linear set of 𝜃, we evaluate 

system performance of the linear cost estimation decisions by re-running the model under 

nonlinear set of 𝜃. For different cost estimations and engineering practice, we consider 

three different levels of budget level at $30M, $60M and $90M. As similarly structured, 

Table 3.4 reports both costs and retrofit strategies. For linear cost estimation, we first run 

the model using 𝜃𝑙𝑖𝑛𝑒𝑎𝑟 values to obtain retrofit decisions (strategies for all bridges), and 

then evaluate the performances of retrofit decisions under the nonlinear estimations. For 

engineering practice, we first rank bridges according to the severity of damages, which is 

in the order of bridges C, B, D, and A, and then determine the appropriate retrofit 

strategies for each bridge within budget. We then evaluate the solutions using the 

nonlinear cost estimations.  
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Table 3.4 Comparisons of proposed model with other methods 

  Nonlinear Linear Engineering Practice 

Budget $30M $60M $90M $30M $60M $90M $30M $60M $90M 

Obj. Value (10
6
) 732.036 680.703 667.132 732.036 680.703 667.705 846.350 979.068 1038.614 

CVaR (10
6
) 368.738 343.099 335.833 368.738 343.099 336.147 426.536 494.207 523.967 

Total Exp. Cost 

(10
6
) 363.298 337.604 331.299 363.298 337.604 331.558 419.814 484.861 514.647 

Retrofit Cost (10
6
) 29.360 50.560 83.840 29.360 50.560 80.000 29.360 56.400 87.120 

Exp. travel cost 

(10
6
) 333.938 287.044 247.459 333.938 287.044 251.558 390.454 428.461 427.527 

Bridge A Strategy h2 h4 h4 h2 h3 h3 h0 h0 h0 

Bridge B Strategy h1 h2 h2 h1 h2 h2 h1 h0 h0 

Bridge C Strategy h0 h0 h1 h0 h0 h1 h0 h2 h4 

Bridge D Strategy h0 h2 h3 h0 h2 h2 h2 h4 h4 
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From the results, the strategies under the budget levels of $30M and $60M are 

identical. However, the strategies for bridge A and bridge D changed under the budget 

level of $90M. As the linear cost estimation is more optimistic compared to the nonlinear 

counterpart, the retrofit cost under linear cost estimation ($80M) is slightly lower than the 

nonlinear cost estimation ($83.84M). However, the less retrofitted bridge network 

because of lower traffic capacity may cause higher travel cost, although the total cost 

(including retrofit, travel, and risk consequence) is almost identical. In general, there are 

trivial changes between the linear and nonlinear estimations under all budget levels. That 

is because the retrofit costs we use may lead to similar retrofit decisions at certain budget 

level for both estimations, and further result in similar network performance. 

A comparison of the differences between linear and nonlinear cost estimations shows 

more substantial than the differences between engineering practice and nonlinear cost 

estimations. The network performance is worse even with a higher retrofit cost. The 

retrofit strategies for all bridges changed at all budget levels, because according to 

engineering practice, bridge C should be retrofitted first, which however, has the most 

expensive retrofit schemes based on Table 3.2. Furthermore, the network performance by 

engineering practice worsens with the increase of budget levels. This degradation in 

network performance is due to an increase in budgets, which will in turn incur the use of 

more expensive strategies on less important bridges and less expensive strategies on more 

important bridges. Therefore, more budgets do not guarantee less total costs in 

engineering practice. The results indicate that using the proposed model will outperform 

engineering practice when considering post-event traffic flow and network impact. 
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5. Conclusions 

We developed a novel, infrastructure-retrofit decision program based on a bi-level 

optimization framework, which simultaneously takes the network effects and individual 

structural enhancement in a single framework. In particular, the upper-level problem was 

essentially a network design problem, which determines the best retrofit resource 

allocations among different at-risk structures and the lower-level problem aims to 

improve the bridge’s traffic capacity under the budget. The resulting retrofit strategy and 

bridge’s traffic capacity were returned to the upper-level problem for determining the 

network performance. 

At the lower level framework, we use different dimension of steel jacketing applied on 

the bridge pier to reflect different retrofit levels. Using bridge pier retrofit as example, we 

established a nonlinear relationship between structural performances and retrofit levels 

for bridge retrofit designs with the help of FE models. This relationship was then 

converted into a traffic capacity-cost relationship and used as a design guide for selecting 

optimal highway bridge retrofit alternatives at upper level framework. The two levels of 

the modeling framework were combined, which in turn yielded different resource 

allocation strategies at the upper level with the different assumptions of bridge traffic 

capacity-cost relationships (e.g. the acquisition of a simple linear relationship and the 

nonlinear relationship from lower level framework). The proposed model was found to 

outperform engineering practice in terms of system costs when considering the overall 

effect of the transportation network. The differences between the engineering practice 



 

82 

and nonlinear cost estimations were more substantial compared to the differences 

between linear and nonlinear cost estimations. Also, increasing budgets does not lead to 

less total costs in engineering practice. 

Consequently, additional research is needed to specify and enhance the realism of the 

lower level structural modeling assumptions. First, our model should be combined with a 

hazard generating component that uses more realistic disaster loading and model the 

rebar elements separately. Next, research should be undertaken to consider the robustness, 

which is a measure of retrofit design parameters uncertainty, to enhance the robust nature 

of the problem. Naturally, our network level modeling established must be combined 

with the new lower level models to achieve that enhanced criteria. 
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Chapter 4 Two-Stage Minimax Regret Robustness of 

Bridge Network Protection Integrating Earthquake 

Simulations 

1 Introduction 

Bridge failures due to disasters such as earthquakes, will affect traffic conditions and 

change traffic patterns dramatically as in the collapse of I-35W Mississippi River Bridge 

and San Francisco-Oakland Bay Bridge. The traffic served by the bridges was diverted to 

alternative routes, causing considerate amount of congestions in nearby areas. The drivers 

had to take routes with longer driving distance and travel time in order to avoid heavy 

traffic congestions.  

Although transportation network protection against uncertain future disasters has been 

a subject of long-lasting interest for researchers and practitioners, the literature has its 

limitation. In the perspective of transportation planners and engineers, traffic user 

behaviors and traffic disruptions due to earthquake are normally considered, but simple 

assumptions are usually made on the bridge retrofit cost and corresponding post-

earthquake structural conditions. On the other hand, in the perspective of structure 

engineers, they consider individual infrastructure retrofit design and rank the priority of 

retrofit decisions by bridge damage conditions, or they only consider retrofit designs for 

simple network configuration without traffic disruptions. Decisions made at network 

level determine a retrofit strategy for each bridge, i.e., determine the amount of resource 
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allocated to each bridge; decisions made at infrastructure level determine how to use the 

resource allocated to a given bridge, i.e., choose a specific retrofit design, which affects 

bridge post-earthquake conditions, thus further affects traffic at network level. Both 

levels decisions should be considered jointly because the two systems interact with each 

other. 

Handling uncertainty is a modeling challenge to the proposed modeling framework. A 

discrete set of scenarios are used to approximate the earthquake events. An engineering 

practice is to examine all possible scenarios and forms a set of scenario-specific solutions 

or policies. Since future events are unknown at the time of making decisions, it would be 

impossible for us to determine which policy to implement. Even if a representative 

scenario could be identified, the best policy for this representative scenario may not 

perform well or even be feasible for other scenarios. Normally, stochastic programming 

and robust optimization methods are applied to generate decisions considering all 

scenarios. Stochastic programming method overlooks extremely low probability 

scenarios, which may have devastating results in disaster management. Robust 

optimization, on the other hand, aims to optimize problem with worst-case scenarios but 

provides solutions that are often considered conservative. In this study, I use a minimax 

regret criterion, an alternate way of making decisions in decision theory that provides less 

conservative solutions compared to robust optimization (Inuiguchi & Sakawa, 1995). 

Regret is measured by total cost deviation between current solution without future 

information and perfect-information solution (we know which scenario will occur in 

future). Minimax regret approach has been applied to a number of engineering fields, 
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including transmission expansion planning (Chen, et al., 2014), wind power unit 

commitment (Ruiwei, et al., 2013), and uncapacitated lot-sizing (M. Zhang, 2011). By 

applying the minimax regret criterion, the solution that maximizes the worst-case regret 

over all possible scenarios can be obtained. 

The contributions for this study are bi-fold. The first contribution is the integration of 

seismic analysis into decision making process. Previously, earthquake scenarios are 

generated using assumed post-earthquake bridge damage conditions (Fan, et al., 2010). 

However, since structures have complex behavior when subject to earthquake excitation, 

it is more realistic to evaluate the bridge damage by considering dynamic response and 

seismic performance. By developing a Pareto front of cost-safety-robustness, one can 

identify a small number of preferred retrofit designs and construct a set of retrofit 

strategies to be used in the network level mode. Another contribution is the development 

of a new formulation using minimax regret criterion, which provides solutions with 

certain level of robustness but less conservative compared to robust optimization method. 

The research efforts lie in the integration of the earthquake simulations for bridge 

seismic response and network resource allocation model, which is essential to make 

realistic and efficient retrofit decisions on both network level and structure level. For the 

earthquake simulations, multiple earthquake ground motions have been used as seismic 

loads to simulate bridge damages due to earthquakes. Finite element analysis at 

infrastructure level will then apply the seismic loads to bridge columns to assess bridge 

damages and provide information on the relationship of bridge damages and retrofit cost. 
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The cost-damage relationship will then be used in network level transportation models to 

reflect the disturbance of earthquakes on traffic. At network level, I developed a two-

stage minimax regret model for transportation network resource allocation problem. 

Multiple retrofit alternatives and multiple bridge damage states are integrated into the 

network level model that would make the decision making process more flexible and 

realistic. 

 

2. Literature review 

Previous research efforts on bridge retrofit studies, based on their goals, can be 

categorized by maximizing network post-disaster capacity, maximizing the reliability of 

the transportation network and minimizing post-earthquake system travel delays. 

Studies that aim to maximize network capacity normally focus on short term economic 

effects for post-disaster evacuations. Lee, et al. (2011) used a non-sampling method to 

estimate post-earthquake network capacity considering bridge deteriorating process. The 

network capacity, indicated by the maximal flow from downtown areas to evacuation 

areas, is estimated using maximal flow analysis. The fragility or the likelihood of damage 

of the bridges was estimated through simulation or bridge columns subject to local 

pseudo-spectral acceleration at bridge locations. Liang Chang, et al. (2012) presented an 

OD-independent method to calculate post-earthquake transportation network evacuation 

capacity. They solve a maximum flow network design problem for each earthquake 
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scenario and aggregate the results to provide a retrofit program by cost effectiveness 

analysis.  

Network reliability is defined as the probability that the network remains its 

connectivity and functionality over a given period of time. Connectivity depends on the 

post-earthquake network completeness, thus is a suitable goal for short term emergency 

response and providing humanitarian aid. A pioneer study, presented by Augusti, et al. 

(1998), provided a reliability based method to prioritize the maintenance strategies for 

deteriorating bridges in a simple series-parallel system. M. Liu and Frangopol (2006) 

provided a bridge network maintenance method that considered time-dependent structural 

reliability prediction, highway user cost and bridge life cycle cost. However, they 

assumed that there is no correlation among bridge failures, and used unrealistic same 

traffic pattern for all scenarios. Bocchini and Frangopol (2011) assessed network life-

cycle performance and used a time variant reliability model for individual bridge. They 

performed transportation network analysis for every combination of bridge service states 

in a small six-node network. System travel delay is one of the most commonly used 

system performance metrics for transportation networks. It provides information on 

highway user costs and is suitable for evaluating long term economic effects. This metric 

has been widely used to assess seismic impacts on transportation networks. 

Many studies fall into the third category more focus on structural engineering 

perspective. They have detailed disaster modeling component but simplified 

transportation network. Shinozuka, et al. (2003) estimated the effects of pre-earthquake 
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retrofit and post-earthquake repair on driver delays. They used probability based fragility 

curves to generate initial damage states of bridges and used hypothetical probability 

curve for repair completion time. The effectiveness of retrofit is reflected by enhanced 

fragility curves with less physical damages. Zhou, et al. (2004) also used bridge fragility 

curves and extended their work through cost-benefit analysis of retrofit different cases. 

Five retrofit cases were presented, each with different percentages of bridges being 

retrofitted. The decision was to select one retrofit case with certain percentage of bridge 

being retrofitted without identifying which bridges receive retrofit. That is because the 

retrofitted bridges were randomly selected by simulation. Sohn, et al. (2003) analyzed the 

economic impact of earthquakes on transportation networks for a single earthquake 

scenario. They used fragility curves to generate bridge damage states and integrated a 

traffic demand loss function. Retrofit priority for links in transportation network was 

established by using benefit-cost analysis. Zhou, et al. (2010) conducted a simulation 

based study to assess social economic effect of seismic retrofit of bridges. They generated 

a set of earthquake scenarios and simulated the damages with and without retrofit. 

Retrofit decision can be made for either retrofit all bridges or not by conducting cost-

effectiveness analysis. 

Determining optimal retrofit decisions needs many assessments of network level 

performance and it would be impossible to find optimal retrofit decisions without 

efficient computational algorithm. Some studies focus more on finding efficient 

algorithms to optimize retrofit decisions with assumed bridge damage conditions after 

earthquake. C. Liu, et al. (2009) developed a generalized Benders decomposition solution 
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method to determine bridge retrofit program with binary retrofit decisions and binary 

damage states for each bridge. Furuta, et al. (2011) used genetic algorithm to optimize 

inspection and repair plan for bridges under seismic risk in a network with multiple 

conflicting objectives. A recent study by Brown, et al. (2013) used dynamic traffic 

assignment algorithm to assess post-earthquake network performance and integrated an 

infrastructure model to evaluate post-event infrastructure condition. More focused on 

short time post-event evaluation, they considered multiple objectives, including total peak 

period travel time, travel time to hospital and retrofit cost, to select optimal retrofit 

strategy.  

 

3. Methodologies 

The objective of this proposed study is to develop a robust modeling framework and 

solution method to improve resilience and sustainability of transportation infrastructure 

system under earthquake uncertainty. First, I will present the methodology framework for 

the whole study in section 3.1. Formulations for network level model will be discussed in 

section 3.2. In sections 3.3, earthquake simulation method will be discussed. 

 

3.1 Methodology framework 

The methodology framework is shown in Figure 4.1. First, a set of earthquake 

scenarios, which are represented by different ground motions, are chosen as inputs for 
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seismic analysis. Then, an infrastructure assessment component is developed using finite 

element models with different retrofit designs. The results of seismic response will be 

aggregated by retrofit designs across different earthquakes to generate a cost-safety-

robustness Pareto front to select a set of preferred strategies for network level model. The 

next step is to generate bridge damage scenarios. Using the preferred strategies, we 

connect the structural system performance to traffic capacity and generate bridge damage 

scenarios which are represented by a parameter called the ratio of post-earthquake link 

capacity 𝜃𝑎
ℎ,𝑘

. A mean-risk network design model using minimax regret criterion will 

aggregate all bridge damage scenarios and provide a retrofit strategy for each bridge in 

the transportation network. If the strategy combinations results in system optimal at 

network level, one can claim that the best retrofit strategies are found, otherwise the 

network model will select another strategy for bridges.  
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Figure 4.1 Methodology framework 
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3.2 Upper level subproblem: resource allocation problem over network 

A spatially distributed transportation network can be represented by a network consists 

of a set of nodes and connecting links. Denote the transportation system by a directed 

network flow graph 𝐺(𝑁, 𝐴). The links in this study are classified as road links and 

bridge links. Bridge links, denoted by 𝐴 (𝐴 ⊂ 𝐴), |𝐴| = 𝑚, are the set of links subjecting 

to seismic hazards, where the link capacities may be reduced after earthquake. Road links, 

denoted by 𝐴\𝐴 , are the links assumed to be intact with post-earthquake capacities 

unchanged. Retrofit decisions are made before uncertainty is revealed. Once the decisions 

are made, they cannot be changed because retrofit decisions are capital intense. The 

retrofit decisions are bi-fold, consisting of the amount of resources to be allocated to each 

bridge and optimal retrofit schemes applied to individual bridge using the allocated 

resource. 

In this study, scenarios are defined as combinations of different bridges damage 

conditions in the network. Each scenario is associated with an occurrence probability. Let 

k describe a scenario with corresponding probability pk. Let K denote a set of earthquake 

events, k ∈ K. We assume that the selected retrofit decision variable (ua
h = 1) will affect 

the post-earthquake bridge capacity ĉa
k, that is ĉa = ca ∑ ua

hθa
h,k

h∈H , where ca is the bridge 

traffic capacity before earthquake, and θa
h,k

is a parameter describing the post-earthquake 

link capacity ratio which is estimated by the maximum lateral displacement of a 

reinforced concrete (RC) bridge pier at center of inertia for a given earthquake ground 

motion k.  
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In the field of transportation system analysis, traffic networks are assumed to follow 

two typical conditions, user-equilibrium (UE) and system-optimization (SO) (Yang & H. 

Bell, 1998). Since the focus of this study is on the long term economic effect of retrofit 

decisions, it is assumed that traffic flow is controlled by a central planner to achieve SO 

condition. 

The network level model is a network design problem that aims to minimize retrofit 

cost and second stage costs. The retrofit cost, which is the first stage cost, is incurred at 

the design of infrastructure rehabilitation schemes. We assume that more robust designs 

are more costly. The retrofit cost determines the money can be spent in retrofit design of 

infrastructure at lower level framework. The second stage cost consist of costs associated 

with system travel delays due to congestion and unmet travel demand cost. The system 

travel time can be estimated by modeling traffic flow distribution and travel time over 

highway networks through the traffic assignment step of four-step transportation 

forecasting process (McNally, 2008). The system travel time can be expressed as 

∑ 𝑣𝑎
𝑘𝑡(𝑣𝑎

𝑘)𝑎∈𝐴 , where 𝑣𝑎  and 𝑡(𝑣𝑎
𝑘) represent post-earthquake travel flow on link 𝑎 and 

travel time on link 𝑎 for scenario 𝑘, respectively. The flow 𝑣𝑎
𝑘 is expressed in passenger 

car unit for daily peak hour. The link travel time 𝑡(𝑣𝑎
𝑘) is expressed in hours. The system 

travel time is estimated in hours for daily peak hour and is converted to money value 

using conversion parameter 𝛽 = 𝑉𝑂𝑇 × 𝑝 , where 𝑉𝑂𝑇 is the value-of-time and 𝑝 is the 

number that convert peak hour flow to average daily traffic. 
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In the network level model, post-earthquake travel demand is allowed to be unsatisfied 

due to high travel cost. There are various reasons for high travel cost, such as totally or 

partially shutdown of certain roadways, and drastic increase of traffic congestion in the 

network. The unsatisfied demand 𝑑 will be penalized by a big 𝑀 factor, thus the cost 

associated with unsatisfied demand can be expressed as 𝑀𝑑𝑘. 

For fixed earthquake scenario k, the network design problem (NDP) can be expressed 

as: 

(NDP) 𝑚𝑖𝑛𝑢,𝑣,𝑥,𝑑 ∑ ∑ 𝑐𝑎
ℎ𝑢𝑎

ℎ
ℎ∈𝐻𝑎∈𝐴 + 𝛾 ∑ 𝑣𝑎

𝑘𝑡(𝑣𝑎
𝑘)𝑎∈𝐴 + 𝑀 ∑ 𝑑𝑟𝑠,𝑘

𝑟∈𝑅,𝑠∈𝑆  (4-1) 

𝑠. 𝑡.   𝑐𝑇𝑢 ≤ 𝐵  (4-2) 

∑ 𝑢𝑎
ℎ

ℎ∈𝐻 = 1,   ∀𝑎 ∈ �̅�, (4-3) 

𝑊𝑥𝑟𝑠,𝑘 = 𝑞𝑟𝑠 − 𝑑𝑟𝑠,𝑘,   ∀𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, (4-4) 

𝑣𝑎
𝑘 = ∑ ∑ 𝑥𝑎

𝑟𝑠,𝑘
𝑠∈𝑆𝑟∈𝑅 ,   ∀𝑎 ∈ 𝐴, (4-5) 

𝑡(𝑢, 𝑣, 𝑘) = 𝑡0[1 + 𝛽(
𝑣𝑎

𝑘

𝑐�̂�
𝑘)4] , ∀𝑎 ∈ 𝐴, (4-6) 

with  �̂�𝑎
𝑘 = {

∑ 𝑢𝑎
ℎ𝜃𝑎

ℎ,𝑘𝑐𝑎ℎ∈𝐻 , ∀𝑎 ∈ �̅�

𝑐𝑎, ∀𝑎 ∈ 𝐴\�̅�
, (4-7) 

𝑢 ∈ {0,1}|𝐴|×|𝐻|, 𝑥 ∈ ℝ+
|𝐴|×|𝑅|×|𝑆|×|𝐾|

, 𝑣 ∈ ℝ+
|𝐴|×|𝐾|

,𝑑 ∈ ℝ+
|𝑅|×|𝑆|×|𝐾|

. 

The objective (4-1) aims to minimize the retrofit cost, travel delays, unsatisfied 

demand penalty and repair cost. Adding unsatisfied term ensures there is no feasibility 
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issues for any first-stage decision u. Constraint (4-2) ensures that the retrofit cost does not 

exceed available budget. Constraints (4-3) and 𝑢 ∈ {0,1}|�̅�|×|𝐻| ensure only one strategy 

can be selected for each bridge. Constraints (4-4) ensure flow balance for all nodes in the 

network. Constraints (4-5) aggregate link flow for each origin-destination (OD) pair to 

actual link flow. Constraints (4-6) are the Bureau of Public Roads (BPR) 

functions(Bureau of Public Roads, 1964) which are conventional functions used in 

transportation engineering that describe link flow and link travel time relationship. 

Constraints (4-7) describe post-earthquake capacity for bridge links and road links, where 

I assume that the roads are intact after earthquake. NDP is mixed integer nonlinear 

program where the nonlinearity comes from the BPR function. Let 𝒬(𝑘) be the optimal 

objective value for NDP. Since the first stage decision 𝑢  is made under a specific 

scenario 𝑘, 𝒬(𝑘) represents perfect-information total cost. 

For brevity, let 𝑢  denote first-stage binary variables,  𝑢 ∈ {0,1}|�̅�|×|𝐻| , I group all 

second-stage continuous variables to be 𝑥  with dimension n, 𝑥 ∈ ℝ+
𝑛 . Let 𝑐(𝑢) be the 

retrofit cost in (4-1). Let 𝑓(𝑢, 𝑥) denotes all other costs in the objective (4-1) except 

retrofit cost. Then, an abstract transportation network protection model for fixed future 

scenario 𝑘 can be expressed as: 

𝒬(𝑘) = min(𝑢,𝑥)∈ℳ(𝑘) 𝑐(𝑢) + 𝑓(𝑢, 𝑥),  (4-8) 

where ℳ(𝑘) ≔ {(𝑢, 𝑥) ∈ {0,1}|�̅�|×|𝐻| × ℝ+
|𝑅|×|𝑆|×|𝐾|

: 

 𝑔𝑘(𝑢, 𝑥) ≤ 0, (4-9) 
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 ℎ𝑘(𝑢, 𝑥) = 0, (4-10) 

 ∑ 𝑢𝑎
ℎ

ℎ∈𝐻 = 1, ∀𝑎 ∈ �̅�. }  

Constraint set (4-9) represents all inequality constraints; Constraint set (4-10) 

represents all equality constraints; ℳ(𝑘) is the feasible region of 𝑢 and 𝑥 fixing scenario 

𝑘.  

For fixed first-stage decision variable u, the maximum regret is defined as: 

𝑅𝑒𝑔(𝑢) ≔ max𝑘∈𝐾{min(𝑢,𝑥)∈ℳ(𝑢,𝑘){𝑐(𝑢) + 𝑓(𝑢, 𝑥)} − 𝒬(𝑘)} (4-11) 

where ℳ(𝑢, 𝑘)  is the feasible region of second-stage variables 𝑥  given fixed 

earthquake scenario 𝑘 and retrofit decision 𝑢. 

By definition, min𝑥∈ℳ(𝑢,𝑘){𝑐(𝑢) + 𝑓(𝑥)}  provides total cost by adjusting second-

stage variables for fixed retrofit decision u and realized earthquake scenario k.  𝒬(𝑘) is 

the total cost of perfect-information solution for scenario k. In this study, the maximum 

regret 𝑅𝑒𝑔(𝑢) is minimized by selecting the best first stage retrofit decision 𝑢 across all 

scenarios. 

(MRP)    min𝑢 𝑅𝑒𝑔(𝑢) (4-12) 

s.t. (4-9), (4-10) and 𝑢 ∈ {0,1}|�̅�|×|𝐻|. 

The above formulation is called Minimax Regret Problem (MRP). 
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3.3 Lower level subproblem: develop a Pareto front for cost-safety-robustness 

relationship and generate bridge damage scenarios 

The lower-level problem is to derive a Pareto front for cost-safety-robustness 

relationship of retrofit strategies using seismic response results. Then we identify a set of 

preferred strategies from the Pareto front to be used in network level model. The 

relationship between retrofit cost and bridge’s traffic capacity is then identified to 

generate bridge damage scenarios.  

There are several steps to derive the Pareto front for cost-safety-robustness 

relationship which is illustrated with a flowchart shown in Figure 4.2. First, we define the 

seismic retrofit problem and classified the design parameters. We specify the design 

domain and choose a set of earthquake scenarios, represented by different ground 

motions, as inputs for seismic analysis. The design domain is specified in discrete 

number for the consideration of construction which consists of a set of M designs. Then, 

for each design, a nonlinear finite element model is developed with a specific 

combination of design parameter values. Each model is then tested with a set of N ground 

motion records in the inner loop to obtain seismic response. The next step represented by 

the outer loop is to repeat the analysis for each of M designs in the design space. In the 

following step, the problem can be seen as a multi-objective optimization considering 

multiple design criteria. There are two different measures, the safety and robustness 

measures, can be generated from seismic response. As each retrofit design is associated 

with a cost, once we obtain the measures, a three dimensional Pareto front for cost-safety-

robustness relationship can be derived. A set of non-dominated solutions may be obtained 
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which means there may be tens of even hundreds of plausible designs. We then use a new 

measure to identify several preferred strategies from the whole design space in order to 

be used by the network level model. 

Note that computationally evaluating structural seismic performance given retrofit 

design is a generic process. It can be applied to any bridge types or bridge component. 

One important aspect that needs attention is the indicator of safety and robustness. In our 

case study, we use max lateral displacement for safety measure and use the standard 

deviation of the max lateral displacement across different earthquake scenarios for 

robustness measure. However, one can always use many other aspects of the bridges and 

choose other indicators for the above measures. 

The next step is to generate bridge damage scenarios. Bridge damage scenarios are 

represented by a ratio of post-earthquake link capacity 𝜃𝑎
ℎ,𝑘

. The generating process 

requires the connection between structural performance and traffic capacity as well as the 

cost structural performance relationship. For the set of preferred strategies, we select 

safety measure to be structural performance. Using the same technique describe in 

chapter 3, we connect structural performance to traffic capacity by associating the 

structural performance to traffic capacity proportionally. We set a minimum traffic 

capacity for the bridge link and a maximum traffic capacity after earthquake which is the 

original traffic capacity of the bridge link. Finally, we can evaluate relationship between 

the traffic capacity and retrofit cost for each earthquake and obtain the ratio of post-

earthquake link capacity which will be used as an input for upper level model. 
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Figure 4.2 Flowchart on the robust design of bridge seismic retrofit problems 
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4. Solution methodology 

In this section, a cutting plane based decomposition method is developed to solve the 

network level problem MRP. First, by using the strong duality theory, one can 

reformulate the maximum regret 𝑅𝑒𝑔(𝑢) in the objective function on which to apply 

cutting plane method. 

Let 𝜇𝑘  and 𝜈𝑘  represent the Lagrangian duals associated with (4-9) and (4-10) 

respectively. 

𝑅𝑒𝑔(𝑢)  

= 𝑐(𝑢) + max𝑘∈𝐾{min𝑥∈ℳ(𝑢,𝑘){𝑓(𝑢, 𝑥)} − 𝒬(𝑘)} (4-13) 

= 𝑐(𝑢) + max𝑘∈𝐾 {max(𝜇𝑘,𝜈𝑘)∈𝒟(𝑢,𝑘){𝑓(𝑢, 𝑥) + (𝜇𝑘)𝑇𝑔𝑘(𝑢, 𝑥) + 𝜈𝑘ℎ𝑘(𝑢, 𝑥)} −

𝒬(𝑘)}  (4-14) 

where (4-13) takes retrofit cost 𝑐(𝑢) out of inner problem, (4-14) takes strong duality, 

𝒟(𝑢, 𝑘) is the dual feasible region. 

By introducing a scalar 𝜙, problem MRP can be written as 

min𝑢   𝜙  

s.t. 𝜙 ≥ 𝑐(𝑢) + 𝑇𝑘, ∀𝑘 ∈ 𝐾  
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𝑢 ∈ {0,1}|�̅�|×|𝐻|. 

where 𝑇𝑘 = max(𝜇𝑘,𝜈𝑘)∈𝒟(𝑢,𝑘){𝑓(𝑢, 𝑥) + (𝜇𝑘)𝑇𝑔𝑘(𝑢, 𝑥) + 𝜈𝑘ℎ𝑘(𝑢, 𝑥)} −

𝒬(𝑘) 

s.t. (4-9) and (4-10) 

Let U ≔ {u|u ∈ {0,1}|�̅�|×|𝐻|, cTu ≤ B, ∑ ua
h

h∈H = 1,   ∀a ∈ A̅} . The regret master 

problem can be written as: 

Regret Master problem (Regret MP) 

min𝑢𝜙  

s.t.  u ∈ U  

Optimality cut 𝜙 ≥ 𝑐(𝑢) + 𝑄𝑘(𝑢) − 𝒬(𝑘), ∀𝑘 ∈ 𝐾, 𝑙 ∈ 𝐿 . 

 

The corresponding regret sub problem for scenario 𝑘 can be written as: 

Regret Sub problem 𝑸𝒌 (Regret SP-k) 

𝑚𝑖𝑛𝑣,𝑥,𝑑𝑄𝑘(�̅�) = 𝑚𝑖𝑛𝑣,𝑥,𝑑𝛾[𝑣𝑇𝑡] + 𝑀 ∑ 𝑑𝑟𝑠,𝑘
𝑟∈𝑅,𝑠∈𝑆   

s.t. 𝑊𝑥𝑟𝑠,𝑘 = 𝑞𝑟𝑠 − 𝑑𝑟𝑠,𝑘,   ∀𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆,  

𝑣𝑎
𝑘 = ∑ ∑ 𝑥𝑎

𝑟𝑠,𝑘
𝑠∈𝑆𝑟∈𝑅 ,   ∀𝑎 ∈ 𝐴,  
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𝑡(𝑢, 𝑣, 𝑘) = 𝑡0[1 + 𝛽(
𝑣𝑎

𝑘

𝑐�̂�
𝑘)4] , ∀𝑎 ∈ 𝐴,  

With �̂�𝑎
𝑘 = {

∑ 𝑢𝑎
ℎ𝜃𝑎

ℎ,𝑘𝑐𝑎ℎ∈𝐻 , ∀𝑎 ∈ �̅�

𝑐𝑎, ∀𝑎 ∈ 𝐴\�̅�
,  

𝑢 ∈ {0,1}|𝐴|×|𝐻|, 𝑥 ∈ ℝ+
|𝐴|×|𝑅|×|𝑆|×|𝐾|

, 𝑣 ∈ ℝ+
|𝐴|×|𝐾|

,𝑑 ∈ ℝ+
|𝑅|×|𝑆|×|𝐾|

. 

The Regret SP-k is a nonconvex nonlinear problem with given first stage variable �̅�. 

By using reformulation technique described in (Lu, et al., 2015), we can get a convex 

formulation of Regret SP-k: 

Convex Regret SP-k 

minv,x,d𝑄𝑘(�̅�) = minv,x,d γ [∑ t0a(va
k + βya

k)

a∈A̅

+ ∑ t0a(1 + β(
va

k

𝑐𝑎
)4

a∈A\A̅

)]

+ M ∑ drs,k

r∈R,s∈S

 

s.t.  (4-4) - (4-5) 

(va
k)5 ≤ ∑ za

h,k(θa
h,k)

4

h ca
4, ∀a ∈ A̅, k ∈ K  (4-15) 

za
h,k ≤ yua

h, ∀a ∈ A̅, h ∈ H, k ∈ K  (4-16) 

ya
k = ∑ za

h,k
h∈H , ∀a ∈ A̅, k ∈ K. (4-17) 
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where y =
(v̅a)5

(θa
h,k)

4
ca

4
 and v̅a = ςca is the upper-bound traffic volume of link a, and ς is a 

sufficiently large number. 

Let u̅l be the optimum solution of the master problem at lth  iteration. Then the 

optimality cut for the lth iteration is: 

ϕ ≥ ∑ ∑ 𝑐𝑎
ℎ𝑢𝑎

ℎ
ℎ∈Ha∈A̅ + ∑ Qk(u̅l) − μkly(u − u̅l)k − 𝒬(𝑘) (4-18) 

where μkl is the dual variable vector associated with (4-16). 

The regret problem decomposition algorithm procedure: 

1. Initialization 𝑙 = 0, obtain perfect information solution (�̅�𝑘, �̅�𝑘) for each scenario k.  

Calculate perfect-information total cost 𝒬(𝑘) using (�̅�𝑘, �̅�𝑘). 

2. Solve the Regret MP. 

Let (𝑢, �̅�) be optimal solution. 

3. Solve the Convex Regret SP-k for all scenarios. Set 𝑙 = 𝑙 + 1:  

Calculate 𝜙∗ = 𝑐(𝑢) + 𝑚𝑎𝑥𝑘(𝑄𝑘(𝑢) − 𝒬(𝑘)).  

4. The procedure terminates if the optimality gap |1 −
𝜙

𝜙∗
| ≤ 𝜀 (𝜀 is a predefined small 

value) is met. Optimal solution is found. Otherwise, add optimality cut to the regret 

master problem, and go back to step 2. 
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5. Numerical examples 

Numerical examples are then used to demonstrate the minimax regret problem by 

integrating earthquake simulations. The structural assessment at the lower level is 

discussed and illustrated by a bridge pier example using a set of ground motion records 

for seismic response. The Pareto front is generated to illustrate the relationship between 

cost, safety and robustness. Preferred strategies are then selected based on the Pareto 

front. The bridge damage scenarios are then generated using the preferred strategies and 

are used as an input for the network level mode. 

 

5.1 Pier structural assessment for seismic response 

In the case study, we consider the dynamic response characteristics of the reinforced 

concrete (RC) bridge pier subject to bilateral seismic excitation. In particular, we use the 

time history analysis and apply bilateral ground motions from different earthquakes at the 

bridge piers to simulate the shear failure mode. A typical bridge pier has fixed support at 

the bottom and consists of a base, a column, and an auxiliary mass at the top. We assume 

that all bridges in the network are RC bridges that consist of two spans and a single 

middle pier. The pier, therefore, can be seen as the critical part of the bridge that should 

retain a certain level of lateral displacement during earthquake to avoid brittle shear 

failure mode. Steel jacketing is selected as retrofit alternative for the bridge piers where 

the thickness of steel jacket and elasticity modulus for steel material varies across 

different retrofit strategies. Bridge pier with a specific retrofit design is subject to 
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different earthquakes results in multiple time history analysis. This process is repeated for 

all retrofit strategies are tested. We choose the maximum lateral displacement of bridge 

pier as the safety measure and choose the standard deviation of the maximum lateral 

displacement across all scenarios as the robustness measure. Once we obtained the 

seismic response of piers with different strategies, a Pareto front for cost-safety-

robustness relationship can be derived. Then we select a set of preferred strategies from 

the Pareto front to be used in network level model. By associating each retrofit design 

with a specific cost, the relationship between retrofit cost and bridge’s traffic capacity can 

be identified to generate bridge damage scenarios. 

Specimen geometry 

We developed a scaled version of a typical RC bridge pier using the ANSYS FE 

analysis software (ANSYS) where the geometry of the RC bridge pier is adopted from 

the work of Nishida and Unjoh (2004). A typical pier consists of a base, a column and a 

steel weight at the top of pier. The column has a square cross-sectional geometry with 

dimension of 600 𝑚𝑚 × 600 𝑚𝑚, and a height of 2000 𝑚𝑚. The base has a rectangular 

cross-section with dimension of 1500 𝑚𝑚 × 2300 𝑚 , and a height of 700 𝑚𝑚 . The 

longitudinal reinforcement ratio for the pier is 0.95%. Steel weight is set up at the top of 

RC column as auxiliary mass such that the axial compressive stress at the bottom of the 

column is 1.0 N/mm2. The height from the bottom of column to the center of inertia is 

3040 𝑚𝑚. The material properties for concrete and steel jacket are shown in Table 4.1.  
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Table 4.1 Material Properties 

Material Material properties Value 

Concrete 

Elasticity Modulus 32.7 GPa 

Poisson’s Ratio 0.2 

Density 2500 kg/m3 

Compressive Strength  27 MPa 

Steel Jacket 

Elasticity Modulus 180 GPa - 220 GPa 

Poisson’s Ratio 0.3 

Density 7850 kg/m3 

Yield Strength  295 Mpa 

 

Finite element model development 

The three-dimensional element of SOLID45 is selected for the FE model. There are 

several assumptions associated with the model. The base of the pier is fixed to model a 

rigid foundation for a bridge pier, that is, all base nodes are restrained in three directions. 

The damping constant is assumed as 2% for all elements. Rayleigh damping is assumed 

for overall damping matrix. We calculate alpha damping and beta damping using the 

modal analysis results from (Nishida & Unjoh, 2004). The values for alpha damping and 

beta damping constants are 0.377171486 and 0.000619, respectively. The geometry of 

the bridge pier is shown in Figure 4.3. We use a hexahedral meshing for the RC bridge 

column with side length of 200 𝑚𝑚 for column and 400 𝑚𝑚 for base and steel mass. 
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Figure 4.3 Bridge pier model 

 

The steel jackets are used as strengthening material where steel plates are used to 

cover all four faces of the column. Different thickness of steel jacket and elasticity 

modulus are used to reflect different strategies. For convenience of construction, the 

design domain is specified in discrete number. The steel jackets have five different 

thickness values and five different values for elasticity modulus. We assume that the steel 

jacket is glued to the column specimen. 

Ground motions 

In our example, a set of 20 ground motions are selected for bridge pier seismic 

analysis. The ground motion set includes 10 records from historic earthquakes and 10 

records from artificially-generated time history data (NISEE). Table 4.2 displays the 

ground motion records considered in this study. 
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Table 4.2 Ground motion considered 

Ground 

Motion # 
Earthquake 

Earthquake 

Magnitude 

Distance 

(km) 

1 Tabas, 1978 7.4 1.2 

2 Loma Prieta, 1989, Los Gatos 7 3.5 

3 Loma Prieta, 1989, Lex. Dam 7 6.3 

4 C. Mendocino, 1992, Petrolia 7.1 8.5 

5 Erzincan, 1992 6.7 2 

6 Landers, 1992 7.3 1.1 

7 Nothridge, 1994, Rinaldi 6.7 7.5 

8 Nothridge, 1994, Olive View 6.7 6.4 

9 Kobe, 1995 6.9 3.4 

10 Kobe, 1995, Takatori 6.9 4.3 

11 Elysian Park 1 7.1 17.5 

12 Elysian Park 2 7.1 10.7 

13 Elysian Park 3 7.1 11.2 

14 Elysian Park 4 7.1 13.2 

15 Elysian Park 5 7.1 13.7 

16 Palos Verdes 1 7.1 1.5 

17 Palos Verdes 2 7.1 1.5 

18 Palos Verdes 3 7.1 1.5 

19 Palos Verdes 4 7.1 1.5 

20 Palos Verdes 5 7.1 1.5 
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Pareto front for cost-safety-robustness relationship 

The next step is to develop the Pareto front for cost-safety-robustness relationship. We 

first identify the design space where feasible design parameter values are determined. 

Different retrofit designs are associated with different retrofit costs. Then, time histories 

of response relative displacement are obtained for models with different retrofit designs 

and using different ground motion records. The safety and robustness measures can be 

generated from the time histories results considering across all ground motions. Thus, a 

Pareto front can be derived for cost-safety-robustness relationship. 

We tested models with different thickness and different elasticity modulus values of 

steel jackets. We assume that the thickness of steel jacket w has five discrete design 

values, ranges from 25 𝑚𝑚 to 125 𝑚𝑚 and the elasticity modulus of steel jacket E𝑠 also 

has five design values, ranges from 180 𝐺𝑃𝑎 to 220 𝐺𝑃𝑎. Each retrofit design consists of 

a combination of a steel jacket thickness value and an elasticity modulus values, i.e. there 

is 25 retrofit designs in total. Each design is associated with a specific cost. We assume 

that the retrofit cost 𝑐𝑟  for a bridge with size 𝑠𝑎 = 1  depends on the thickness and 

elasticity modulus values for steel jacket and the relationship is described in equation (4-

13): 

𝑐𝑟 = 80𝑤(0.005𝐸𝑠 + 0.1) + 𝑐𝑙 (4-13) 

where 𝑐𝑙 is the labor cost and is set to be $2M. 
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For each design and each ground motion, we record the time histories of response 

relative displacement of the two horizontal components at the center of inertia. For each 

response results, we choose the maximum of horizontal displacement at the center of 

inertia for both horizontal directions as the safety measure, i.e., higher maximum 

displacement value means less safety for a structure during earthquakes. The robustness 

measure, accounts for the effect of uncertainties from different earthquakes on the 

maximum displacement values, is defined as the standard deviation of maximum 

displacement for one design across different earthquakes. A smaller standard deviation 

stands for a greater robustness. By taking the maximum of the safety measure across all 

earthquakes, we can obtain the Pareto front for cost-safety-robustness relationship which 

is shown in Figure 4.4. When focusing on two dimensions, Pareto front for cost and max 

displacement relationship is shown in Figure 4.5, Pareto front for cost and standard 

deviation of max displacement relationship is shown in Figure 4.6. 
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Figure 4.4 Pareto front for cost, max displacement and standard deviation of max 

displacement relationship 
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Figure 4.5 Pareto front for cost and max displacement relationship 
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Figure 4.6 Pareto front for cost and standard deviation of max displacement 

relationship 

 

From the Pareto front, four preferred designs are obtained using an overall measure 𝜓 

that accounts for three measures, cost measure 𝑐𝑟 , safety measure 𝑆  and robustness 

measure 𝑅. The measure 𝜓 is defined in equation (4-14): 

𝜓 = √(
𝑐𝑟

𝑐𝑚𝑎𝑥
)2 + 𝑆2 + 𝑅2 (4-14) 
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where 𝑐𝑚𝑎𝑥 is the maximum of cost among all retrofit designs which is $3.5M in our 

case. Each design has a corresponding 𝜓 value. Four preferred designs are thus selected 

by picking lowest four 𝜓  values among 25 retrofit designs. The details of the four 

preferred designs are shown in Table 4.3. The four preferred designs correspond to four 

strategies for each bridge. Together with the “do nothing” strategy, total five strategies 

are chosen to generate bridge damage scenarios used in the network level mode. 

 

Table 4.3 Preferred design details 

Design 

# 

Cost 𝑐𝑟 

($1M) 

Thickness 

𝑤 (mm) 

Elasticity modulus 

𝐸𝑠 (GPa) 

1 4.40 0.025 220 

2 6.00 0.05 180 

3 6.20 0.05 190 

4 6.40 0.05 220 

 

5.2 Sioux Falls Analysis 

In this section, we demonstrate the application of the bi-level model through the use of 

the Sioux Falls network. Four bridges are located in the network, labeled as A, B, C and 

D. 
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Figure 4.7 Sioux Falls Network 

Generate bridge damage scenarios: The lower level problem yields four preferred 

designs from the whole design space where the four designs correspond to four strategies 

for each bridge at network level. Together with the “do nothing” strategy, the total five 

strategies are selected to generate bridge damage scenarios for network level model, 

where their maximum displacement values for different earthquakes are connected to 

traffic capacity. Table 4.4 shows the connection between different θ values for different 

maximum displacement range. 
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Table 4.4 Different θ values for different maximum displacement range 

Max Disp. Range θ Value Max Disp. Range θ Value 

(0.5,1) 0.1 (0.02,0.05) 0.6 

(0.3,0.5) 0.2 (0.01,0.02) 0.7 

(0.2,0.3) 0.3 (0.005,0.01) 0.8 

(0.1,0.2) 0.4 (0.002,0005) 0.9 

(0.05,0.1) 0.5 (0,0.002) 1.0 

 

We assume that the retrofit cost for a bridge is proportional to the size of the bridge. 

The sizes of bridge A and D are set to 1. Bridge B has size 2 and bridge C has size 3. The 

retrofit costs for different bridges under different retrofit strategies are provided in Table 

4.5. Note that each bridge is represented by two directional links in this study.  

Table 4.5 Retrofit cost ($1M) for all bridges 

Bridges 
Strategy 

h0 h1 h2 h3 h4 

link16 0 4.4 6 6.2 6.4 

link19 0 4.4 6 6.2 6.4 

link25 0 8.8 12 12.4 12.8 

link26 0 8.8 12 12.4 12.8 

link56 0 13.2 18 18.6 19.2 

link60 0 13.2 18 18.6 19.2 

link63 0 4.4 6 6.2 6.4 

link68 0 4.4 6 6.2 6.4 
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The results of the baseline study is presented in Table 4.6, include the costs, strategies 

and solution performance under different budget levels ($20M, $30M, and $40M). The 

top section of the table reports different cost items. In particular, the objective value is the 

regret values, 1
st
 stage cost is the retrofit cost, and mean 2

nd
 stage cost is to take average 

of second stage system travel cost across different scenarios. The solution performances 

include the algorithm solution time, optimality gap, and iterations which are reported in 

the middle section of the table. Solution time is decomposed to the time of obtaining 

perfect information solutions and optimal regret solutions. The optimality gap shows the 

convergence of the algorithm. Lower optimality gap reflects higher quality of the 

solutions by the algorithm. The computing times and iterations indicate the efficiency of 

the algorithm. For the bottom section, explicitly details of optimal strategies applied to 

different bridges are reported. 
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Table 4.6 Baseline results under different budget levels 

Items 
Budget Levels 

$20M $30M $40M 

1st stage cost (10
6
) 12.80 29.60 36.00 

Mean 2nd stage cost (10
6
) 329.21 310.16 301.71 

CPU Time 

(min) 

Perfect Info. 54.38 93.72 119.57 

Regret 15.57 25.92 46.62 

Optimality Gap 0.00% 0.00% 0.00% 

# of Iteration 4 7 13 

Bridge A Strategy h4 h2 h2 

Bridge B Strategy h0 h1 h2 

Bridge C Strategy h0 h0 h0 

Bridge D Strategy h0 h0 h0 

 

We can see that the 1
st
 stage cost increases due to increased budget level, which means 

that more costly strategies are selected. Also, as the increase of the total available budget, 

the mean 2
nd

 stage cost decreases which indicate that the increased budget will help 

reduce the loss due to system travel delays. With increasing budget, the solution 

algorithm takes longer time and more number of iterations to find optimal solution, which 

is because the solution space is increased, and the problem becomes more difficult to 

solve when there are more feasible solutions. For all budget levels, the problems are 

solved with 0% optimality gap that indicates the problem is solved to optimality. Notice 

that the CPU times for obtaining perfect information solutions are much longer than the 
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time needed to solve regret problems. The reason for that is the perfect information 

solutions requires the NDP solved for each scenario separately which results in high CPU 

times. Strategies for bridge A and bridge B are changed when budgets are increasing 

while strategies for the other two bridges remain unchanged. 

 

6. Conclusions 

We developed a model framework that integrates seismic analysis into network level 

decision making process. The lower level framework captures the complex behavior of 

bridge structures when subject to earthquake excitation where a multi-objective 

optimization is conducted to find the Pareto front for the cost-safety-robustness 

relationship and further to produce a set of preferred retrofit designs. In particular, FE 

models with different designs are tested for different ground motions records. Safety and 

robustness measures are defined using the time histories results from FE models. At 

upper level, the set of preferred retrofit designs correspond to four strategies. Together 

with “do nothing” strategy, the five strategies are used to produce bridge damage 

scenarios to be used in the network level model. A two-stage minimax regret model is 

developed for transportation network resource allocation problem, which provides 

solutions with some level of robustness but less conservative compared to robust 

optimization method. 

The model framework was demonstrated with a numerical example using 20 ground 

motion records and Sioux Falls network. Our method shows how to find a set of preferred 
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retrofit designs from the whole design space which may contains tens of even hundreds 

of possible designs. The results show that the increased budget will help reducing the loss 

due to system travel delays which requires more costly retrofit strategies. 

There are several extensions to further enrich the context of this study. First, the study 

considers limited retrofit alternatives and bridge components. More enriching findings 

are possible by considering more type of retrofit alternatives and other bridge 

components. Second, future research can incorporate the uncertainty of retrofit outcomes. 

A specific retrofit design subject to the same disaster may have uncertain outcomes. By 

considering retrofit outcome uncertainties, new challenges are brought up to the network 

level modeling. 
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Chapter 5 Conclusions and Future Work 

1. Conclusions 

In Chapter 2, the research effort focuses on development of a novel formulation of 

retrofit resource allocation model at network level under earthquake uncertainty and a 

solution method to solve the model. Uncertainties in earthquakes are represented by 

discrete set of scenarios with made up values of bridge post-earthquake traffic capacities. 

The model captures the uncertainty through a stochastic modeling framework and is 

compromised by adding CVaR risk measure. It extends the existing literature in disaster 

management with multiple damage stages and multiple retrofit alternatives. The resulting 

model falls into a category of MINLP that is difficult to solve by using global solver. A 

decomposition method based on GBD is developed that can efficiently solve problem 

instance of large-scale benchmark network. The research in Chapter 2 can help decision 

makers allocate resources at network level with user-defined risk level. 

In Chapter 3, network level model in Chapter 2 is couple with a lower level FE model. 

The FE model analyses bridge pier shearing performance under lateral loading and 

provides a Pareto frontier that reflects a nonlinear relationship of bridge resilient and cost. 

The Pareto frontier is then used at the upper level. The decisions made at upper level 

model using the nonlinear relationship assumption is compared with the decisions using 

simple linear resilient and cost assumption. It is the first attempt to integrate models from 

both levels which makes the decision making process at network level more realistic. 
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In Chapter 4, a hazard generation component is integrated into modeling framework 

and a formulation using minimax regret approach is developed to capture the earthquake 

uncertainty. In the literature, earthquake damages for bridges in a network are assumed to 

be given. It is not case in reality, where structures have complex behavior when subject to 

earthquake excitation. In Chapter 4, the integration of hazard component takes the 

structural seismic behavior into consideration. The methodology framework uses a set of 

earthquake scenarios represented by a set of ground motion records. By developing FE 

models with parameterized retrofit designs, the study captures the seismic response of 

bridges in the network. The seismic response of FE models are converted to earthquake 

scenarios with correlated damages of bridges in a transportation network. Another 

contribution is from the network modeling perspective. With the consideration of regret 

in each earthquake scenario, the proposed minimax regret approach can generate 

solutions that are robust but not over conservative. The proposed method avoids over 

conservatism by minimizing the worst-case regret. 

The study proposed in this dissertation contributes to the fields of transportation 

infrastructure protection under natural hazard. The proposed work contributes the 

knowledge of modeling and solution algorithm of network level resource allocation 

model as well as robust design of infrastructure level model. Further, the proposed study 

integrates the two levels to obtain a sustainable infrastructure system, where they used to 

be considered and studied separately in the literature and in practice. Also, the proposed 

study will also aid in decision making in the resource allocation in a bridge network as 

well as retrofit decisions for individual infrastructure. Finally, this proposed study can be 
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used as a test bed for future bridge retrofit studies and it can provide baseline information 

for bridge retrofit schemes to be implemented in the real world. 

 

2. Future Work 

Sustainable and resilient infrastructure system development requires efforts from 

multiple disciplines and integration of these efforts. For bridge network protection, 

structural analyses are incorporated successfully into an optimization modeling 

framework to make better retrofit decisions at network and infrastructure level, which 

evokes more interdisciplinary researches that discuss below. 

Develop sustainable energy infrastructure systems 

With the rapid advancement of technology, the market penetration of alternative fuel 

vehicles (e.g. plug-in hybrid electric vehicles, battery electric vehicles) continues to grow. 

While the adoption of new technologies leads to a more efficient and innovative 

transportation system, the increase of alternative fuel vehicles also has imposed a high 

burden on local power grid. Questions such as how to optimize incentives to change 

travelers’ behaviors towards energy conserving are also brought up. I plan to integrate 

travelers’ behavior in sustainable energy infrastructure systems, focusing on the 

optimization of incentives to change travelers’ behavior. The incentives include policy 

incentives as well as infrastructure investment based strategies, like the deployment of 

charging stations and electric highways for alternative fuel vehicles. Given the projected 
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electric vehicle market penetration and travel demands, I plan to combine the behavior 

incentives with infrastructure planning and maintenance optimization model to minimize 

overall cost function including energy consumption and greenhouse gas emission. This 

integrated research approach linking energy system modeling and travel behavior 

consideration will open up new collaborations with researchers across multiple 

disciplines and may attract external funding opportunities from federal agencies such as 

Department of Energy as well as private energy venture companies. 

Improve the resiliency of transportation systems under uncertain disruptions 

The aging of infrastructure increases the risk of infrastructure failure. Combined with 

hazardous weather situations and other disruptions, risky infrastructure would degrade 

traffic capacity, exacerbate congestion, and reduce accessibility to vital services. To 

mitigate the adverse impact of uncertain disruptions, I plan to integrate modeling of 

behavior change with resource allocation models. During disruption events, the travel 

demand may varies drastically because of potential trip cancellation due to high 

congestion levels and the alteration of trip purposes. Driver behavior may change as well 

during these events. The new models would try to capture these behavior changes 

through the exploration of new data collection technologies, mining of existing massive 

datasets, and testing of innovative data analysis methods. 

Network design and applications in climate change adaptation 

Climate change will lead to gradual environmental changes as well as more frequent 

and severe weather events, including hurricanes, heavy precipitation and extremely high 
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temperature. These changes have unclear impacts on demand variation and travel 

behavior, which makes the aforementioned problem more complex. In the past, I have 

worked on stochastic and robust network design problems. I plan to continue this 

research direction for transportation planning in pre-disaster mitigation and post-disaster 

recovery. My research will capture the effects of hurricane and heavy precipitation 

through collaboration with climatologist and developing stochastic programming models 

targeting hazard events to provide efficient retrofit plans.  

Consider vehicle communication and automation technique on development of 

sustainable infrastructure system  

Vehicle communication and automation system enables new capabilities for vehicles. 

Although developed to benefit individual vehicle, the new system may have potential 

influence on the traffic characteristic. The gradually introduction of vehicle 

communication technique will bring up new challenges in traffic management. Route 

guidance under extreme events is an interesting topic when we have partial information 

about network connectivity and road conditions. The coupling of vehicle communication 

systems and highway network systems under extreme events will be another research 

direction. 
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