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ABSTRACT 

 

Antimicrobial food packaging may extend shelf life, reduce spoilage, maintain 

food quality and eliminate foodborne pathogens in ready-to-eat (RTE) deli meat. Nisin is 

a polypeptide with natural antimicrobial activity against gram-positive microorganisms. 

This food additive is generally recognized as safe (GRAS) in the United States. In order 

to combat Listeria monocytogenes, continued good manufacturing practices, continued 

proper handling by food workers, and additional secondary safety measures such as 

antimicrobial packaging are necessary. However, current research for antimicrobial 

packaging is in preliminary stages and is primarily based on theoretical lab scale testing. 

Antimicrobial coatings containing nisin were developed and studied. Diffusion was 

successfully measured by agar well diffusion method and high performance liquid 

chromotography. Microscopy was examined as a new method for tracking nisin diffusion 

in the food and films and found to be useful. A food challenge study on turkey bologna 

demonstrated that the coatings were able to inhibit a L. monocytogenes cocktail compared 

to the control coating. In addition, antimicrobial extruded films containing nisin and 

bovine albumin were developed and tested for antimicrobial activity. The results 

demonstrated that there was significant increased inhibition of M. luteus when the bovine 

albumin was used in combination with the nisin Z. Also, there was a significant 

difference between the type of polymer and the amount of inhibition of M. luteus. This 

research is directed toward the development of an antimicrobial vacuum skin package for 

RTE meat. It provides new and necessary information for future commercialization of 

antimicrobial packaging. 
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CHAPTER I 

INTRODUCTION 

  

Listeria monocytogenes is an ongoing global problem. Outbreaks, recalls, illness 

and death often occur, costing billions of dollars. Current United States regulations state 

that there is a zero tolerance of L. monocytogenes in ready-to-eat foods (such as 

delicatessen meats). This means that all of the food supply would need to be tested in 

order to truly achieve this regulation, leaving no supply for consumption. Therefore, 

other non-destructive measures are required to reduce the presences of L. monocytogenes.  

Approaches to aid in controlling the menace of L. monocytogenes include: good 

manufacturing methods, continued proper handling by food workers, and additional 

secondary safety measures. An antimicrobial packaging (a coating or extruded film) 

would be examples of an additional secondary safety measure to reduce the population of 

L. monocytogenes on the surface of the ready-to-eat food. However, current research for 

antimicrobial packaging is in preliminary stages and is primarily based on theoretical lab 

scale testing.  

Nisin is an antimicrobial that targets gram-positive pathogens such as L. 

monocytogenes. It is food safe, colorless and is currently generally recognized as safe by 

the United States government. For these reasons nisin is an ideal antimicrobial to be 

incorporated into the coating/extrudate for direct ready-to-eat food contact. However, the 

antimicrobial cannot be a stand-alone coating/film due mainly to its cost (approximately 

twenty times more expensive compared to the control, according to the experiment found 

in Section 3.1). Therefore, a carrier is required, such as pectin to develop an antimicrobial 
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coating. Pectin is a food safe carrier that is commonly used in drug delivery coatings, 

which allow for a slow release.   

To date, the research conducted to help commercialize antimicrobial packaging 

has gaps. There is a need for both food challenge studies and diffusion studies for 

antimicrobial packaging (measuring the entire shelf life of the food product). New 

detection methods may be needed to track the antimicrobial’s diffusion. It is necessary to 

understand the safety and potential success for antimicrobial packaging on RTE-foods 

instead of liquid media. Slow release of the antimicrobial packaging such as in common 

methods used in drug release could be studied. It is also important to focus on substrates 

and methods of coating/extrusion that would be common in industry. Targeting foods that 

commonly use packaging in direct contact and do not require sealing would be beneficial. 

In addition, cost and consumer perception (color, flavor etc.) are important factors 

to consider when commercializing a coating/extrudate. As consumers drive demand, a 

product cost that is prohibitive (based on its packaging) would diminish sales. Color or 

haze in packaging can scare consumers, who may feel that the product is unsafe or cause 

them to buy a competing product. If production is feasible, not considering these factors 

will limit the product’s economic potential. The researchers goal is to aid in bridging the 

gap between current literature and the demand needed for commercialization.  
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CHAPTER II 

LITERATURE REVIEW 

 

Foodborne illness is a major concern in the United States as it affects 

approximately 1 in 6 people, according to the Centers for Disease Control  (Centers for 

Disease Control and Prevention (CDC) 2013 C). These estimated 48 million cases occur 

each year in the United States and include 128,000 hospitalizations and 3,000 related 

deaths (Centers for Disease Control and Prevention (CDC) 2013 C). Of these, it is 

estimated that the 31 most pathogenic strains found in foods consumed in the United 

States each year, caused nearly 9.5 million illnesses, nearly 56,000 hospitalizations, and 

1,351 deaths, as seen in Table 1 (Batz et al. 2011). Furthermore, the top seven strains 

accounted for 90% of all illnesses  (Batz et al. 2011). Of those 1,351 deaths, nearly 30% 

were caused by Listeria monocytogenes, which indicates the pathogen’s lethality (Batz et 

al. 2011, Chen 2012), as the pathogen causes about 2,500 cases a year, according to the 

FDA.  
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Table 2.1. Top 10 Pathogen-Food Combinations in Terms of Annual Disease Burden  

Pathogen Food 

Combinations 

Cost of Illness 

(Billions) 

Number of 

Illnesses 

Hospitalizations Deaths 

Campylobacter 

– Poultry 

$1.257 608,231 6,091 55 

Toxoplasma – 

Pork and Beef 

$1.908 55,623 2,041 210 

Listeria – Deli 

Meats and 

Dairy 

$1.810 1,085 992 174 

Salmonella – 

Poultry, 

Produce, Eggs, 

Other 

$2.260 70,1967 13,209 258 

Norovirus – 

Other Foods 

$0.914 2,494,222 6,696 68 

Totals $8.151 386,1128 29,830 765 

Adapted from (Batz et al. 2011). 

L. monocytogenes is the leading cause of death associated with deli meats (Batz et 

al. 2011); in fact 83% of all listeriosis cases in the United States are attributable to deli 

meats  (Food Safety and Inspection Service (FSIS) 2013) and listeriosis is over 15 times 

more likely to be found in deli meats than any other source (Oliver 2013).  Of further 

concern, Listeria has a very high combined public health burden with an economic cost 

of almost two billion dollars, despite the relative lack of comparative occurrences (Batz et 

al. 2011). Oliver (2013), presented that despite massive efforts in the prevention of 

listeriosis, there are still too many confirmed cases since 2004, when a Listeria initiative 

addressed to outline concerns and establish surveillance techniques (Cartwright et al. 

2013). The trend on listeriosis is “flatlining” as opposed to decreasing despite more time 

and effort being put into its prevention (Oliver 2013, Cartwright et al. 2013). 
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Listeria 

Listeria species are non-spore forming, catalase-positive, gram-positive rods, and 

facultative anaerobes that are motile through flagella with the ability to produce lactic 

acid from fermentable sugars, including glucose (Jay, Loessner & Golden 2005, Hitchins, 

Jinnerman 2013, Swaminathan, Gerner-Smidt 2007, Posfay, Wald 2009). Listeria 

monocytogenes became known in 1926, when British scientists discovered what was 

described as “a non-spore forming, Gram-positive rod that infected blood monocytes,” of 

which resulted in rabbit death; “bacterium monocytogenes” was the initial nomenclature 

for the pathogen  (Murray, Webb & Swann 1926). Around the same time, (Pirie 1927) 

whilst investigating gerbil deaths in South Africa, discovered what he referred to as 

“Listerella hepatolytica.” The two researchers sent their results to the National Type 

Collection at the Lister Institute in London, which noticed the strong similarity between 

the two new microorganisms and suggested that Murray and Pirie contact each other: 

after agreeing that the organisms were the same, the tag Listerella monocytogenes was 

bestowed (Rocourt, Buchriser 2007).  The generic name “Listerella” was rejected in 

1939 (due to a previous designation for a mycetozoa), so the current designation and 

genus, Listeria monocytogenes was given to the organism) based on its catalase-positive, 

and gram-positive rods (Rocourt, Buchriser 2007, Pirie 1940, Hof 2003). The pathogen’s 

first outbreak in the USA occurred in 1979, when 23 patients from the Boston area were 

infected with the pathogen, with raw vegetables being implicated (Ho et al. 1986). Two 

years later, a listeriosis outbreak occurred in Canada, with coleslaw being the implicated 

food, along with a fatality rate of 27% (Schlech III et al. 1983). 
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This family of bacteria is closely related to Bacillus, Lactobacillus and 

Streptococcus species. The genus Listeria contains seven identified species: L. 

monocytogenes, L. innocua, L. seeligeri, L. welshimeri, L. martihii, L. ivanovii, and L. 

rocourtiae (Graves et al. 2010, Leclercq et al. 2010, Jay, Loessner & Golden 2005). In 

addition, these different species are distinguished through four different phylogentic 

lineages, yielding 17 different serotypes (Jay, Loessner & Golden 2005, Chatterjee et al. 

2006, Nadon et al. 2001, Roberts et al. 2006, Wagner, McLauchlin 2008, Ward et al. 

2004). The primary species is the pathogen L. monocytogenes that has 13 different 

serotypes that of which, serotypes 1/2a, 1/2b, and 4b have been associated with the vast 

majority of foodborne infections (Chen 2012, Wagner, McLauchlin 2008, Jay, Loessner 

& Golden 2005, Latorre et al. 2007, Swaminathan, Gerner-Smidt 2007, Meloni et al. 

2009).  

In order to grow, Listeria species require four B vitamins (biotin, riboflavin, 

thamine and alpha-lipoic acid) and five essential amino acids (cysteine, glutamine, 

isoleucine, leucine and valine) (Jay, Loessner & Golden 2005). Listeria species’ ideal 

growth happens with pH range of 6-8; however studies have shown growth in a much 

wider range: as low as pH 4.1 and as high as 9.6 (Jay, Loessner & Golden 2005, Camejo 

et al. 2009, Posfay, Wald 2009). Like most pathogens, listeria can grow at body 

temperature (37ºC). However, Listeria has shown the ability to grow at refrigeration 

temperatures and below, as L. monocytogenes is unique due to the bacterium being 

extremely hardy: it is both salt-tolerant and able to survive and even grow in temperatures 

below 1°C, unlike most pathogens (Jay, Loessner & Golden 2005, Posfay, Wald 2009, 
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Camejo et al. 2009). Also L. monocytogenes is second only to staphylococci species as a 

foodborne pathogen being able to grow at Aw values < 0.93. L. monocytogenes can be 

found in many different environments and species, including numerous mammalian 

species, birds, some fish species, soil, farms, decaying vegetation, silage, animal feces, 

sewage, water and various food sources (such as raw vegetables, cheeses, milk and deli 

meats) (Centers for Disease Control and Prevention (CDC) 2013 C, Fenlon 1986, 

Lyautey et al. 2007, Posfay, Wald 2009, Chen 2012).  

The unique pathogenesis of L. monocytogenes is what makes the bacterium 

dangerous, as the organism is able to spread directly from cell to cell in the host (Chen 

2012). When L. monocytogenes enters the host’s “monocytes, macrophages, or 

polymorphonuclear leukocytes”, it quickly reproduces and becomes blood-borne; groups 

of proteins on the L. monocytogenes cell surface allow for survival in phagocytic cells, 

increasing its capability to spread from cell to cell (Chen 2012).   

This bacterium is also the cause of listeriosis, a potentially fatal infection. The 

infective dose is believed to vary with the strain and susceptibility of the host; the food 

matrix involved can also affect the dose-response relationship (Chen 2012). Major 

outbreaks of listeriosis have been caused by a variety of food categories, including soft 

cheeses, fish, poultry, deli meats, and vegetable products (Schlech, Acheson 2000, 

Posfay, Wald 2009). In cases associated with raw or inadequately pasteurized milk, for 

example, it is likely that fewer than 1,000 cells may cause disease in susceptible 

individuals (Chen 2012). Pregnant women, who are disproportionately infected with L. 

monocytogenes, may experience mild, flu-like symptoms; however, their offspring do not 
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fare as well – they may abort or be stillborn, and those born alive may have bacteremia 

and meningitis. One-third of confirmed cases of maternal-fetal L. monocytogenes 

infections lead to abortion or stillbirth. The severe form of the infection has a case-

fatality rate ranging from 15% to 30%, overall. When listerial meningitis occurs, the 

overall case-fatality rate may be as high as 70%; this compares to septicemia with 50% 

case fatality rate, and to perinatal/neonatal infections, which has 80% case fatality (Chen 

2012). L. monocytogenes is an opportunistic pathogen (Mascola et al. 1988) infecting 

neonatal, elderly, or immunocompromised people. Most reported cases of listeriosis are 

life threatening and present one of three clinical syndromes: neonatal listeriosis, blood 

stream infection, or meningoencephalitis (Schlech, Acheson 2000, Swaminathan, Gerner-

Smidt 2007). Listeriosis affects humans in two different ways:  a non-invasive 

gastrointestinal illness, which has a relatively short incubation period, which generally 

does not affect otherwise healthy people, and, a much more serious form of the illness, 

which is known to cause either septicemia or meningitis. This invasive version can have a 

long incubation period, with estimates from 3 days to 3 months (Chen 2012). 

Because of the pathogenicity of L. monocytogenes, and its increasing incidence in 

the 1980’s, the Food Safety and Inspection Service (FSIS), a division of the United States 

Department of Agriculture (USDA), worked to improve safety procedures of processing 

plants to emphasize the zero-level of tolerance (meaning “no detectable level permitted”) 

in RTE products (Shank et al. 1996, Food Safety and Inspection Service (FSIS) 2000). L. 

monocytogenes is considered “detectable” when two separate 25 g samples of food are 

tested and found to have the pathogen, as defined by the Federal Food Drug and 
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Cosmetic Act, 21 U.S.C. 342(a)(1) (Shank et al. 1996). Furthermore, the USDA, through 

the Federal Meat Inspection Act and the Poultry Inspection Act, 21 U.S.C. 601(m), states 

that if meat or poultry products are contaminated with L. monocytogenes, the products are 

considered adulterated, and as such, “unfit for human food” (Food Safety and Inspection 

Service (FSIS) 2003). 

Not only is the loss of life a concern with L. monocytogenes outbreaks, but also 

the huge economic losses that can arise when a company needs to recall a product. The 

USDA has three different recall classifications: I. This is a health hazard situation where 

there is a reasonable probability that the use of the product will cause serious, adverse 

health consequences or death; II. This is a health hazard situation where there is a remote 

probability of adverse health consequences from the use of the product; III. This is a 

situation where the use of the product will not cause adverse health consequences  

(Bagley 2013). In all reported instances, L. monocytogenes is considered a class I recall, 

as the pathogen can be dangerous, as noted previously. In the USA alone, recalls resulted 

in economic costs of nearly two billion dollars; a single, small product recall could lead 

to millions of dollars in loss (Ivanek et al. 2005, Batz et al. 2011).  

For instance, in 2011, there was a recall of nearly 16,000 pounds of deli meats  

(Food Safety and Inspection Service (FSIS) 2011) and in 2010, a recall of nearly 

380,000lbs of deli meats, because of possible L. monocytogenes contamination (Food 

Safety and Inspection Service (FSIS) 2010). There was no illness attributed to either case.  

(Cochran 2013) reports a July 2012 recall of 324,000 lbs of frozen, RTE and poultry 

products from a New Jersey company due to potential L. monocytogenes contamination. 
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Two weeks later, this same company had an additional 72,000 lbs recalled for the same 

reason (Bagley 2013). Table 2 demonstrates other high-volume L. monocytogenes 

incidents. 

Table 2.2. Notable recent recalls for L. monocytogenes. 

Type of Food Amount Recalled Date and 

Company Location 

Source 

RTE Meats & 

Poultry 

15,880 lbs August 2012 

MN 

 (Bagley 2013 B) 

Meat & Poultry 

Salad Products 

13,600 lbs August, 2012 

WI 

 (Bagley 2013 C) 

Fully Cooked Meat 

and Poultry 

products 

33,500 lbs January 2013 

ID 

 (Khan 2013) 

Chicken Sausage 

Products 

6,120 lbs March 2012 

AR 

 (Lindenberger 

2013) 

*RTE: Ready-to-eat  

The 2002 poultry incident in Table 3 had a recall of 27 million lbs of product  

(Burros 2002). Sales reductions of RTE foods due to L. monocytogenes recalls are 

estimated to be approximately 25% for months following the aftermath of the recall  

(Thomsen, Shiptsova & Hamm 2006). Furthermore, all of these incidents have the 

potential for legal action, which could cause exponential economic loss.  
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Table 2.3. Notable incidences of L. monocytogenes outbreaks. 

Cause Year Sickened Deaths Source 

Farmstead Cheese 2013 6 1 (1 miscarriage)   (Centers for Disease 

Control and 

Prevention (CDC). 

2013) 

Ricotta Cheese 2012 22 4 (1 miscarriage)  (Centers for Disease 

Control and 

Prevention (CDC). 

2012) 

Cantaloupe 2011 147 33 (1 miscarriage)  (Centers for Disease 

Control and 

Prevention (CDC). 

2012 B) 

Celery  2010  10  5  (Gaul et al. 2013) 

RTE meat  2008  22    (Gilmour et al. 2010) 

Milk 2007 4 2  (Mcdonald 2007) 

Cheese  2003  12    (Swaminathan, 

Gerner-Smidt 2007) 

Cheese  2002  17    (Swaminathan, 

Gerner-Smidt 2007) 

Cheese  2002  47    (Pagotto et al. 2006)  

Cheese  2002  86    (Pagotto et al. 2006) 

Poultry  2002 46 10 (3 miscarriages)  (Burros 2002) 

RTE Meats 1998 101 21 (6 miscarriages)   (Food Safety and 

Inspection Service 

(FSIS) 2000) 

Chocolate milk  1994  44    (Dalton et al. 1997) 

Soft-style Cheeses 1985 142 47 (29 infant deaths)  (Centers for Disease 

Control and 

Prevention (CDC) 

1998) 

Milk  1983  49    (Flemming 2002) 

Coleslaw  1981  41    (Schlech III et al. 

1983) 

Vegetables  1979  23    (Ho et al. 1986) 

*RTE: Ready-to-eat  
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Microbial Contamination of Food Products 

The food supply can be subject to different types of contamination, caused by 

bacteria, yeasts, viruses and fungi; these microbial reactions deteriorate the flavor, color 

and sensory properties of foods (Appendini, P., Hotchkiss, J.H. 2002, Vermeiren, L., 

Devlieghere, F., van Beest, M, de Kruijf, N., Debevere,J. 1999a, Han 2005). Those 

microorganisms are concerning because they can also cause foodborne illness, (Padgett, 

Han & Dawson 1998, de Oliveira et al. 2007, Davidson, Sofos & Branen 2005, Cha, 

Chinnan 2004). In foods, a variety of intrinsic factors such as pH, Aw, nutrient content, 

natural antimicrobial compounds, energy of activation, biological structure, enzymes and 

natural microbial flora affect microbial growth  (Jay, Loessner & Golden 2005).   

The control of moisture content in foods is one of the oldest preservation 

strategies (United States Food and Drug Administration (FDA) 2013). Water activity is 

defined as the ratio of water vapor pressure of a food to the vapor pressure of pure water 

at the same temperature (Jay, Loessner & Golden 2005). Increasing the acidity of foods, 

either through fermentation or the addition of weak acids, has been used as a preservation 

method since ancient times (United States Food and Drug Administration (FDA) 2013). 

Another important characteristic of a food to consider when using acidity as a control 

mechanism is its buffering capacity; the buffering capacity of a food is its ability to resist 

changes in pH; therefore foods with a low buffering capacity will change pH quickly in 

response to acidic or alkaline compounds produced by microorganisms as they grow 

(United States Food and Drug Administration (FDA) 2013). 
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Microorganisms require basic nutrients for growth and maintenance of metabolic 

functions of which the amount and type of nutrients required range dependent on the 

microorganism. These nutrients include water, a source of energy, protein, vitamins, and 

minerals (Jay, Loessner & Golden 2005, United States Food and Drug Administration 

(FDA) 2013, Mossel et al. 1995). Foodborne microorganisms can derive energy from 

carbohydrates, alcohols, and amino acids although most microorganisms will metabolize 

simple sugars such as glucose; there are certain few that can metabolize more complex 

carbohydrates, such as starch or cellulose found in plant foods, or glycogen found in 

muscle foods (United States Food and Drug Administration (FDA) 2013).  

 Jay, Loessner & Golden (2005), indicates that the extrinsic factors associated 

with growth are temperature, relative humidity, gas concentrations, and presence of other 

microorganisms. Other extrinsic treatments such as heating/pressure (canning, 

pasteurization etc.), salting, acidification, fermenting, drying, oxygen removal and carbon 

dioxide have been used traditionally to control the microbial growth (United States Food 

and Drug Administration (FDA) 2013) Traditional food preservation techniques have 

used combinations of temperature, pH, aw, atmosphere, numerous preservatives, and 

other inhibitory factors. Food microbiologists have often referred to this phenomenon as 

the "hurdle effect" (United States Food and Drug Administration (FDA) 2013). For 

example, certain processed meat products and pickles may use the salt-to-moisture ratio 

(brine ratio) to control pathogens. 

Many scientific studies have demonstrated the antimicrobial activity of gases at 

ambient and sub-ambient pressures on microorganisms important in foods (Loss, 
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Hotchkiss 2002, United States Food and Drug Administration (FDA) 2013). Gases inhibit 

microorganisms by two mechanisms. A first mechanism was that gases could have a 

direct toxic effect that can inhibit growth and proliferation. Carbon dioxide (CO2), ozone 

(O3), and oxygen (O2) are gases that are directly toxic to certain microorganisms (United 

States Food and Drug Administration (FDA) 2013). This inhibitory mechanism is 

dependent upon the chemical and physical properties of the gas and its interaction with 

the aqueous and lipid phases of the food. Oxidizing radicals generated by O3and O2 are 

highly toxic to anaerobic bacteria and can have an inhibitory effect on aerobes depending 

on their concentration. Carbon dioxide is effective against obligate aerobes and at high 

levels can deter other microorganisms. A second inhibitory mechanism is achieved by 

modifying the gas composition, which has indirect inhibitory effects by altering the 

ecology of the microbial environment. When the atmosphere is altered, the competitive 

environment is also altered. Atmospheres that have a negative effect on the growth of one 

particular microorganism may promote the growth of another. This effect may have 

positive or negative consequences depending upon the native pathogenic microflora and 

their substrate. Carbon dioxide replacement of oxygen is an example of this indirect 

antimicrobial activity (Loss, Hotchkiss 2002). 

All microorganisms have a defined temperature range in which they grow, with a 

minimum, maximum, and optimum. An understanding of the interplay between time, 

temperature, and other intrinsic and extrinsic factors is crucial to selecting the proper 

storage conditions for a food product. Temperature has a dramatic impact on both the 

generation time of an organism and its lag period. Over a defined temperature range, the 
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growth rate of an organism is classically defined as an Arrhenius relationship (Mossel et 

al. 1995). 

When considering growth rate of microbial pathogens, time and temperature are 

integral and must be considered together: increases in storage and/or display temperature 

will decrease the shelf life of refrigerated foods since the higher the temperature, the 

more permissive conditions are for microbial growth (Branen 1983).  

Active Packaging 

Over its history, the human population has found ways to preserve freshly 

harvested foods for later use, which utilized some form of heat, cold, drying or 

fermenting treatments  (Branen 1983). Active packaging, which has been in existence for 

decades, has been defined as “a type of packaging that changes the condition of the 

packaging environment after sensing internal or external environmental change and 

responds by changing its own properties or attributes; this can extend shelf-life or 

improve safety or sensory properties while maintaining the quality of the food 

(Vermeiren, L., Devlieghere, F., van Beest, M, de Kruijf, N., Debevere,J. 1999a, Brody, 

Strupinsky & Kline 2001). Active packaging was introduced as a response to the 

demands of consumers for high quality, safety and extended chilled shelf-life of food 

products while accommodating the changes in retail and distribution practices, (for 

instance, online commerce and “retail superstores”), which have pressed logistic limits, 

as distribution distances have increased and longer storage times are required (Vermeiren, 

L., Devlieghere, F., van Beest, M, de Kruijf, N., Debevere,J. 1999a, Quinatavalla, Vicini 

2002). Active packaging applications, including the incorporation of antimicrobials (and 
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subsequent release into the product) has received considerable attention as a means of 

extending the bacterial lag phase, leading to slower growth of microorganisms (Han 

2000, Guerra et al. 2005).  

The direct addition of antimicrobials (organic acids, spice extracts, chelating 

agents, metals, enzymes or bacteriocins, such as nisin) into the food product or its 

packaging have also shown a decrease in antimicrobial growth because of leaching into 

the food matrix, and cross-reaction with other food components such as lipids or proteins 

(Han, Floros 1997, Davies et al. 1999, Hoffman, Han & Dawson 2001). Given that there 

are numerous legal approved antimicrobials, their utilization in food is dependent on a 

variety of factors, including the properties of the food in question, the type of 

preservation system being used, the characteristic of the microorganism that is being 

contested (including type, number of, etc.) and the cost effectiveness of the antimicrobial  

(Branen 1983). An estimated 20% of the world’s food supply is lost due to microbial 

spoilage; antimicrobials that could be applied are needed to provide the appropriate food 

supply levels in the future (Branen 1983, Fulton 1981). Even an additional two or three 

days of microbial prevention (in some instances, if it increases the shelf life of a product) 

could significantly help offset the costs of using an antimicrobial (Davidson, Branden 

1981).  

Antimicrobial packaging is produced to control undesirable microorganisms by 

means of incorporation of an antimicrobial compound into the packaging by various 

methods (Cha, Chinnan 2004). These methods include coating on packaging, extrusion 

where an antimicrobial is included in the packaging or volatizing the compound into the 
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products headspace within the packaging (Lagarón, Ocio & López-Rubio 2011). The 

blending of antimicrobial agents directly to polymeric packaging is a continuingly 

increasing development, including sorbic acid, plant extracts, silver-substituted zeolite, 

lysozyme and chlorine dioxide, successfully incorporated in packaging materials to 

confer antimicrobial activity in food packaging (Vermeiren, L., Devlieghere, F., van 

Beest, M, de Kruijf, N., Debevere,J. 1999b, Appendini, P., Hotchkiss,J.H. 2002, 

Quinatavalla, Vicini 2002). Packaging films containing antimicrobial agents have shown 

improved efficacy by a controlled migration of the compound into the food, allowing for 

initial inhibition of undesirable microorganisms, and subsequent residual activity over the 

course of the distribution stage of the food cycle (Quinatavalla, Vicini 2002). Table 4 

demonstrates that bacteriocins and other biologically derived antimicrobials, including 

nisin, have also been increasingly used in packaging materials (Siragusa, G.R., Cutter, 

C.N., Willett, J.L. 1999a).  
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Table 2.4. Examples of Antimicrobial Packaging. 

Examples of Antimicrobial Packaging 

Author(s) and Year of 

Publication 

Type Polymer / Food 

Incorporated Into 

 Antimicrobials in Coatings  

 (Kim, Y.M., An, D.S., Park, 

H.J., Park, J.M., Lee,D.S. 2002) 

Nisin Acrylic and VAE 

 (Matthews et al. 2010) Rosemary Cellulose 

 (Mangalasary, Cooksey 2009) Chitosan Methyl-cellulose 

 (Brown, Wang & Oh 2008) Lactoferrin Edible Film 

 (Castellan et al. 1993) Hydroquinone HPC 

 (Wong et al. 1992) Fatty Acid Esters  Chitosan Film 

 Direct Contact – 

Antimicrobial is blended 

into extrudate or coating  

 

 (Oral et al. 2009) Oregano Essential Oil Absorbent Pads 

 (Taptim, Sombatsompop 2011) Silver Zeolite Metallic 

Compounds 

 (Camilloto et al. 2010) Triclosan PE / Cellulose 

 (Cutter, C.N., Willett, J.L., 

Siragusa,G.R. 2001a) 

Nisin PEO Resin 

 (Pelissari, Yamashita & 

Grossmann 2011) 

Essential Oregano Oil Extrusion 

Parameters 

 (Taylor, T.M., Bruce, B.D., 

Weiss, J., Davidson,P.M. 2008) 

Encapsulation  Polymer 

 Indirect Antimicrobial 

Packaging – Gases in 

Headspace 

 

 (Daifas et al. 2000) Ethanol Vapor Generator Crumpets 

 (Popa et al. 2007) Chloring Dioxide Gas Blueberries 

 (Gabler et al. 2010) Sulfur Dioxide Gas Generator Grapes 

 (Espitia et al. 2012) Oregano, Lemongrass, 

Cinnamon Essential Oils 

Papaya 

 (Chounou et al. 2013) Oxygen Absorber Ground Meat 

 (Scussel et al. 2011) Carbon Dioxide Gas 

Generator 

Brazillian Tree 

Nuts 
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Nisin 

Nisin is a polypeptide antibacterial substance produced from the fermentation of a 

modified milk medium by strains of the lactic acid bacterium, Lactococcus lactis  

(Delves-Broughton 1990, Jin, T., Liu, L., Zhang., H., Hicks.,K. 2009a). A polypeptide is 

a chain of amino acids that are the basis of proteins (Kimball 2011). 

Nisin is made up of about 34 amino acid residues; the molecule possesses amino 

and carboxyl end groups, and five thio-ether bonds form internal rings (Delves-

Broughton 1990). Figure 1 demonstrates the structure of nisin A. 

 

Figure 2.1. The amino acid residue structure of nisin A. From: (Delves-Broughton 

1990). 

 

History 

 Nisin was discovered in England in 1928, when inhibitory streptococci were 

considered to be a problem in cheesemaking (Jeevaratnam, L., Jamuna, M., Bawa, A.S. 

2005). Streptoccoci are generally gram-positive cocci that grow in chains (Todar 2012b). 

It was first noticed when in certain batches of milk starter development was slow, 

resulting in faulty cheese (Jeevaratnam, L., Jamuna, M., Bawa, A.S. 2005). Initial 

research concerning the properties of nisin was more focused on the potential for either 

veterinary or clinical uses (Delves-Broughton 1990). However, given the comparatively 
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narrow antibacterial spectrum, a low solubility in body liquids and physiological pH 

instability, nisin was deemed unsuitable for those purposes (Hurst 1981).  

 Nisin’s potential in food preservation was first suggested by Hirsch et al. (1951), 

who found that nisin-producing starter cultures could prevent clostridial gas (from the 

bacteria Clostridium tyrobutyricum) formation in cheese. Afterwards, research studies 

showed adverse characteristics such as interference by nisin with starter culture 

performance during cheese formation (Delves-Broughton 1990).  The literature indicates 

that food preservation then became the main research focus of nisin  (Delves-Broughton 

1990, Jeevaratnam, L., Jamuna, M., Bawa, A.S. 2005). Nisin was first used in processed 

cheese, and then expanded to various dairy products, milk, canned foods and alcoholic 

beverages  (Delves-Broughton 1990). As the knowledge and biochemistry of nisin 

increased, a commercially available format was released as Nisaplin®, which possessed 

“a high and consistent antimicrobial activity” (Delves-Broughton 1990). 

Production 

Nisin can be produced in a sterilized medium of non-fat milk solids or of a non-

milk-based fermentation source, such as yeast extract and carbohydrate solids 

(Anonymous 2007). Also, nisin can be recovered from fermentation by various methods, 

“such as injecting sterile, compressed air, membrane filtration, acidification, salting out; 

and spray-drying” (Anonymous 2007). Standard nisin preparation consists of nisin and 

sodium chloride with an activity of not less than 900 units per milligram; the activity can 

be adjusted by the concentration of sodium chloride in the solution  (Anonymous 2007). 

Other non-fat milk solids or solids from other fermentation sources can be present in the 
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preparation, which is stable at ambient temperatures and upon heating under acid 

conditions; maximum stability occurs at pH 3 range  (Anonymous 2007). 

Commercially sold nisin can be produced in a few different ways. As mentioned 

previously, nisin comes from strains of Lactococcus lactis, which is found in abundance 

in dairy products. Nisaplin®, is a brand name for a nisin product made by Danisco, a 

subsidiary of DuPont. Nisaplin® contains approximately 2.5% nisin, the balance 

consisting of milk and milk solids derived from the fermentation of a modified milk 

medium by nisin producing strains of L. lactis  (Delves-Broughton 2005). Handary 

Company, which is based in Belgium, produces nisin slightly differently: they obtain 

fermented Lactococcus lactis from sauerkraut and produce both the A and Z variants of 

nisin  (Handary 2013). Other Suppliers include the Chinese-based Zheijang Silver 

Elephant Bio-Engineering Co., Ltd, who specializes in Nisin A and Sigma-Aldrich 

Company, a merged corporation with both US and Germany Roots, who has their own 

formulation for 2.5% concentrated nisin. 

Safety of Nisin 

Nisin is produced from subspecies of L. lactis, which is a gram-positive lactic 

acid bacterium (LAB) that is used extensively in the production of various dairy products, 

including various cheeses, butter and sour cream (Todar 2012). As this LAB is naturally 

occurring in milk, which has been consumed by both humans and animals for millennia, 

it is indicative of non-toxic nature of nisin (Delves-Broughton 1990). In 1969, nisin was 

approved for use as an antimicrobial in food by the Joint FAO/WHO Expert Committee 

on Food Additives (which is run by the United Nations); nisin has since been given the 
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food additive number 234 and has been approved for use in over 50 countries  (Delves-

Broughton 2005). Nisin is the most abundantly used of all bacteriocins  (Marth 1998), as 

it is an effective antimicrobial  (Jin, T., Liu, L., Zhang., H., Hicks.,K. 2009a). However, 

while nisin is GRAS (generally recognized as safe) by the FDA since 1988  (Marth 

1998), there is a concentration limit of 10,000 IU (international units) in food. Nisin is 

used in a variety of dairy products (primarily cheeses) though its application as an active 

packaging material is still being researched. Nisin has shown to be inactivated by 

enzymes; when consuming a nisin-contained liquid, it cannot be detected in human saliva 

after 10 minutes (Delves-Broughton 1990, Jay, Loessner & Golden 2005). Higher 

international concentrations of nisin probably stem from the fact that nisin is easily 

digested by the upper GI tract of the human digestive system (Bower, C.K., McGuire, J., 

Daeschel, M.A. 1995a, Deshpande 2002). 

Since its discovery, nisin has proven to be an effective inhibitor of gram-positive 

bacteria (Bower, C.K., McGuire, J., Daeschel, M.A. 1995a)and is now approved for use 

in 57 countries around the world and has been affirmed as generally recognized as safe 

(GRAS) in the United States (Jin, T., Liu, L., Zhang., H., Hicks.,K. 2009a). Nisin is 

considered nontoxic to humans because it is inactivated by proteolytic enzymes in the 

digestive tract, and assumed to be safe for use as a food preservative (Bower, C.K., 

McGuire, J., Daeschel, M.A. 1995a).  Barrett, Woessner & Rawlings (2004), describes 

proteolytic enzymes as any group of enzymes that break down protein chains into amino 

acids. 
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Because nisin has non-toxic qualities, is heat stable, and will not create off-flavors 

in food products, it is used in a variety of commercially produced foods, including dairy 

products, meats, fish, and eggs  (Le Blay, G., Lacroix, C., Zihler, A., Fliss, I. 2007, 

Schillinger, U., Geisen, R., Holzapfel, W.H. 1996). While nisin is primarily active against 

gram positive bacteria according to  (Jin, T., and Zhang, H. 2008a), including 

Clostridium, Bacillus, Staphylococcus, and Listeria species, nisin can be effective against 

gram negative bacteria too, but only when used in combinations with other 

antimicrobials, including lysozyme (which is found in egg whites and human tears 

according to (Kimball 2001) and rosemary extract (Matthews et al. 2010).  

Class 

While classification system for lantibiotics has changed over time, the most 

current classification has three classes (I, II, III). This is based on the genetics, 

biochemistry of the compounds, and the pathway by which the peptide is modified and 

whether it demonstrates antimicrobial activity  (Jay, Loessner & Golden 2005, Piper, C., 

Cotter, P.D., Ross, R.P., Hill, C. 2009a, Willey, J.M., van der Donk.,W.A. 2007). Nisin is 

a Class I lantibiotic. Class I lantibiotics are different from other classes as they are made 

up in a more linear structure and by their ability to demonstrate antimicrobial activity; 

some examples include: nisin, subtilin, Epidermin, streptin and Pep5  (Willey, J.M., van 

der Donk.,W.A. 2007, Piper, C., Cotter, P.D., Ross, R.P., Hill,C. 2009a). Class II are 

typically small heat stable peptides that possess only a single large enzyme to carry out 

the dehydration and cyclization duties, including various lactacin strains, cinnamycin, 

and mersacidin  (Willey, J.M., van der Donk.,W.A. 2007, Piper, C., Cotter, P.D., Ross, 
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R.P., Hill,C. 2009a, Jay, Loessner & Golden 2005). Class III lantibiotics are heat stable, 

while containing lanthionine but lack any notable antimicrobial activity  (Willey, J.M., 

van der Donk.,W.A. 2007, Piper, C., Cotter, P.D., Ross, R.P., Hill,C. 2009a, Jay, 

Loessner & Golden 2005). 

Synthesis of Nisin 

 Lantibiotic synthesis is a unique process. At first the unmodified form of the 

structural peptide is ribosomally synthesized and then subjected to extensive post-

translational modifications, which makes the peptide active  (Piper, C., Cotter, P.D., 

Ross, R.P., Hill, C. 2009a). The antimicrobial activity of a lantibiotic is based on the 

“depolarization of energized bacterial cell/plasma membranes, which are originated by 

the establishment of aqueous transmembrane pores” (Bactibase 2013). This post-

translational process uses 2,3-didehydroalanine (Dha), 2,3-didhydrobutyrine (Dhb) to 

form lanthionine or methyl-lanthionine, which explains the name “lantibiotic  (Piper, C., 

Cotter, P.D., Ross, R.P., Hill, C. 2009a, Willey, J.M., van der Donk.,W.A. 2007). Dha 

and Dhb are atypical amino acids generally not found in nature and are formed by the 

dehydration of serine (L-Ser) and threonine (L-Thr) residues then followed by the 

interaction of the cysteine (Rihakova et al. 20009, Willey, J.M., van der Donk.,W.A. 

2007). This is followed by membrane translocation (when the transport of proteins in and 

out of the endoplasmic reticulum occurs, according to (Kimball 2011b). Specifically, the 

double bond in Dha or Dhb interacts with the thiol group in the cysteine group. As 

explained by Figure 2 (Piper, C., Cotter, P.D., Ross, R.P., Hill, C. 2009a), when L-Ser is 

dehydrated and interacts with Dha (where the double bond interacts with thiol on 
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cysteine) Lanthionine is formed (Ala-S-Ala). When L-Thr is dehydrated and interacts 

with Dhb (where the double bond interacts with thiol on cysteine) Methyl-lanthionine is 

formed (Abu-S-Ala). Both of these processes can be seen in Figure 2 after this paragraph, 

which was originally created by (Piper, C., Cotter, P.D., Ross, R.P., Hill,C. 2009a). Both 

lanthionine and methyl-lanthionine are referred to as the “lanthionine bridges”, 

“intramolecular bridges” or simply “rings,” due to the polycyclic structure that is formed  

(Bactibase 2013). These cyclic “rings” increases the stiffness of the peptide and provides 

increased resistance to proteolytic degradation and thermal stress; it has been 

hypothesized that the change in chirality of one of the two alpha carbons involved 

contributes to the activity of the compound (Piper, C., Cotter, P.D., Ross, R.P., Hill, C. 

2009a, Willey, J.M., van der Donk.,W.A. 2007, Suda et al. 2010).  

 

 

 

 

 

 

 

 

Figure 2.2. From (Piper, C., Cotter, P.D., Ross, R.P., Hill, C. 2009b) showing 

Lantibiotic Synthesis 
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Type 

 L. lactis strains produce at least three structural variants of nisin: Nisin A is 

considered the prototype, nisin Z differs by one amino acid, and nisin Q differs at four 

positions: all are 34 residues in length (Willey, J.M., van der Donk.,W.A. 2007). The two 

most studied variations of nisin are nisin A and nisin Z. The different amino acid is at 

position 27; for nisin A, it is histidine and in nisin Z, it is asparagine (De Vos et al. 1993). 

See figure 3 for more detail. This difference between the two strains is shown when 

comparing the solubility between the two: nisin A strains exhibits higher solubility at 

lower pH values, whereas nisin Z is comparatively decreased; At neutral and higher pH 

values, the solubility of both “strains” was comparable (Rollema, H.S., Kuipers, O.P., 

Both, P., de Vos, W.M., Siezen, R.J. 1995). The antimicrobial activity for both was found 

to be comparable during all studies (Rollema, H.S., Kuipers, O.P., Both, P., de Vos, 

W.M., Siezen, R.J. 1995). There are other less studied variants such as: Q, N, U, K etc.  

(Immonen, N., Karp, M. 2007). Streptococcus uberis is known to produce nisin U, which 

has 78% sequence identity to nisin, but lacks the C-terminal three residues, according to  

(Willey, J.M., van der Donk.,W.A. 2007). With relation to packaging, nisin A is more 

ideal for coating to utilize the hurdle concept (as it has greater inhibition at lower pH), 

whereas nisin Z is better for extrusion (has better inhibition at neutral pH) where 

corrosion from low pH is a concern. 
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Figure 2.3. Adapted from (Field et al. 2012) which shows how various nisin strains 

differ from one another, with emphasis on the differences of nisin A and nisin Z.  

2.2.7 Mode of Action of Nisin  

 

 

 Davidson & Branden (1981) postulated that the mode of action of an antimicrobial 

falls into three categories: 1. Reaction with the cell membrane, which causes permeability 

and loss of cellular constituents; 2. Inactivation of essential enzymes; 3. Destruction or 

functional inactivation of genetic material. While many modes of action have been 

proposed for nisin, (Wiedemann, I., Bruekink, E., van Kraaj, C., Kulpers, O.P., 

Bierbaum, G., de Krujiff, B., Sahl, H-G. 2001a, Piper, C., Cotter, P.D., Ross, R.P., Hill,C. 

2009c), it was originally proposed that permeabilization of the bacterial cell membrane 

was mode of action of antibactieral peptides (Jenssen, Hamill & Hancock 2006). A 

combination of theories will be discussed, however. There are many elements that 

determine how nisin causes microbial inhibition. The stage of growth of the bacteria is 

one element that will be discussed. It is known that nisin will react differently depending 
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on the concentration of nisin present and availability of the lipid II molecule (Piper, C., 

Cotter, P.D., Ross, R.P., Hill, C. 2009a), however, it does not always cause inhibition via 

the same mode of action (Wiedemann, I., Bruekink, E., van Kraaj, C., Kulpers, O.P., 

Bierbaum, G., de Krujiff, B., Sahl,H-G. 2001b). Figure 4 shows the Nisin-lipid II 

interaction. 

 

Figure 2.4. Adapted from  (Zendo, Yoneyama & Sonomoto 2010) and shows the 

nisin and lipid II interaction in the cell wall.  

 

 Willey, & van der Donk (2007), stated that nisin is considered a “relatively flexible 

molecule that has two amphiphilic domains consisting of three N-terminal rings (labeled 

A, B ,C)  and the C-terminal D and E rings, which are joined by a flexible hinge region” 

The lipid II molecule consists of bactoprenol-carrier lipid and a monomeric disaccharide-

pentapeptide peptidoglycan subunit  (Wiedemann, I., Bruekink, E., van Kraaj, C., 

Kulpers, O.P., Bierbaum, G., de Krujiff, B., Sahl, H-G. 2001b). 

 Nisin binds to the lipid II molecule through pore-forming activity; in this instance, 

lipid II is a “docking molecule” (Wiedemann, I., Bruekink, E., van Kraaj, C., Kulpers, 

O.P., Bierbaum, G., de Krujiff, B., Sahl, H-G. 2001b). Nisin binds the pyrophosphate 

division of lipid II with one of three N-terminal rings (Willey, J.M., van der Donk.,W.A. 
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2007, Piper, C., Cotter, P.D., Ross, R.P., Hill,C. 2009a), which involves five 

intramolecular hydrogen bonds. It has been demonstrated by (Wiedemann, I., Bruekink, 

E., van Kraaj, C., Kulpers, O.P., Bierbaum, G., de Krujiff, B., Sahl, H-G. 2001b) that 

nisin binds with high affinity to the lipid II molecule; when present; nisin is more 

effective at causing inhibition against gram-positive microorganisms. This is because the 

act of binding allows nisin to be transported to a developing cell and as a result inhibit the 

cell wall from forming (meaning it inhibits peptidoglycan synthesis). If the bacteria cell 

wall is already formed then the lipid II molecule will aid in the pore formation process.  

 For nisin molecules to form a pore complex. Recall the N-terminus of the nisin is 

interacting with the lipid II molecule, seen in Figure 4. Then the hinge region (ring 

clusters) of the nisin is important in pore formation. This allows the nisin to bend in half, 

therefore having the C-terminus end contact the cell wall. The C-terminus end of nisin is 

important for translocation across the cell membrane. This will disrupt the barrier 

function of the bilayer and form pores. The pores are typically 2nm in size. This 

permeabilization of the membrane causes dissipation of vital ions and small metabolites 

and ultimately results in the dissipation of the proton motive force (PMF) leading to the 

cessation of all metabolic and biosynthetic processes leading to cell death (Piper, C., 

Cotter, P.D., Ross, R.P., Hill, C. 2009c). This pore formation process with the presence 

of lipid II molecule can happen at very low concentration of nisin. (Wiedemann, I., 

Bruekink, E., van Kraaj, C., Kulpers, O.P., Bierbaum, G., de Krujiff, B., Sahl, H-G. 

2001b) hypothesizes nM concentrations will allow for pore formation when lipid II is 

present.  
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 If lipid II molecule is not present, nisin must be present in high concentrations in 

order to form pores. This is done in a targeted-independent fashion. The membrane of the 

cell wall should have 50-60% negatively charged phospholipids in order to allow the C-

terminus end to bind to the cell wall. Pores formed under this mode of action are anion-

selective and depend on the membrane potential to support pore formation. This is one 

mechanism in which the nisin may still be able to cause inhibition, when the hinge region 

is mutated. Since the N-terminus does not bind to the lipid II molecule, the nisin is not 

required to bend for the C-terminus to contact the bacteria cell wall.  

 The last mode of action that will be discussed is the disruption of cell division. 

Nisin has been shown to cause cell wall degradation between dividing cells (Piper, C., 

Cotter, P.D., Ross, R.P., Hill, C. 2009c). Nisin releases two cell wall hydrolyzing 

enzymes that are cationic and can bind by electrostatic interactions with negatively 

charged acids in the bacteria cell wall (Suda et al. 2010). Bacteria cell walls contain 

negatively charged acids such as teichoic and teichuronic acids (Mamo 1989). The 

binding alone will not cause cell death, when the displacement of these enzymes occurs it 

will result in cell lysis, however, (Suda et al. 2010) during cell division, large amounts of 

peptidoglycan synthase is organized in helical threads along the longitudinal axis of the 

cell (Piper, C., Cotter, P.D., Ross, R.P., Hill, C. 2009a). If lipid II cannot co-localize with 

peptidoglycan synthesis then cell wall formation is inhibited and bacteria are killed 

(Piper, C., Cotter, P.D., Ross, R.P., Hill, C. 2009a). It is thought that the lipid II molecule 

has a functional location in gram positive bacteria and nisin has the ability to displace this 

molecule (Willey, J.M., van der Donk.,W.A. 2007). Knowledge of the mode of action of 
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antimicrobials, and the ability of the organism to overcome this mode of action can be 

helpful in determining the efficiency and usefulness of an antimicrobial.  

Methods of Testing Inhibition 

The spot-on-lawn assay is one of the most direct (and widely used) methods for 

preliminary screening of large numbers of strains, as it is a relatively simple process  

(Tagg, J.R., Dajani, A.S., Wannamaker, L.W. 1976). In this method a specific quantity of 

the antimicrobial solution is pipetted onto the surface of an agar plate and the resulting 

zones of inhibition are measured after 24-48 hours of incubation. 

A popular variation of this method involves wells cut into agar plates freshly 

seeded with the test organism. A small quantity of the antimicrobial solution is pipetted 

into the well and inhibition zones are measured after 24-48 hours of incubation.  A study 

using the spot-on-lawn or drop assay measured the efficacy of nisin release from a coated 

polyethylene film against Listeria monocytogenes (Grower, J.L., Cooksey, K., Getty, K. 

2004b).  Matthews et al. (2010), used spot on lawn assay to test the efficacy of nisin in 

barrier film with cellulose coating in inhibiting L. monocytogenes. A study conducted by  

(An, D.S., Kim, Y.M., Lee, S.B., Paik, H.D., Lee, D.S. 2000a) measured the efficacy of 

bacteriocins against several bacteria, yeasts and molds using the spot on lawn assay; after 

observing positive initial results, the researchers applied the bacteriocins to low density 

polyethylene (LDPE) films, which was then measured for antimicrobial activity by the 

agar diffusion test.  

 The agar diffusion method has probably been the most widely used method for 

determination of antimicrobial activity throughout recent history (Davidson, Sofos & 
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Branen 2005). In this test, an antimicrobial compound is added to an agar plate on a paper 

disk; the compound diffuses through the agar, resulting in a concentration gradient that is 

inversely proportional to the distance from the disk  (Davidson, Sofos & Branen 2005). 

The degree of the molecule's movement can be related to the concentration of the 

molecule (Tolman 2013). The smallest concentration of an antibiotic (or antimicrobial) 

that inhibits growth of a bacterium after a specified incubation period is called the 

Minimal Inhibitory Concentration, or more commonly known as MIC  (Davidson, Sofos 

& Branen 2005, Wiegand, Hilpert & Hancock 2008). 

 MIC, indicated by a zone of no growth around well, is dependent on the rate of 

diffusion of the compound and cell growth (Barry 1986). An evaluated antimicrobial 

should not be highly hydrophobic because the compound will not diffuse properly and 

little or no inhibition will be detected and a test microorganism must also grow rapidly 

and uniformly (Davidson, Sofos & Branen 2005). The results of the agar diffusion test 

will not give an indication of microbial reduction in terms of cell numbers.  Variations of 

the agar diffusion method exist, including the agar well diffusion method, which provides 

an accurate, rapid, simple and sensitive tool to detect and quantify the antimicrobial 

activity of L. monocytogenes strains without equipment requirements  (Ruiz, Silva & 

Laciar 2009).  

 There have been numerous studies where the researchers used the agar diffusion as 

a method of testing the ability of nisin.  Sebti, I., Ham-Pichavant, F., Coma,V. (2002a), 

added nisin to HPMC based film against L. monocytogenes, Staphyloccocus aureus and 

Micrococcus luteus and tested the efficiency using agar diffusion method.  (Mauriello, 
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G., De Luca, E., La Storia, A., Villani, F., Ercollini, D. 2005) found that nisin-coated 

films were effective in inhibiting M. luteus by using agar diffusion assay. Le Blay, G., 

Lacroix, C., Zihler, A., Fliss, I. (2007), tried to compare pediocin PA-1 versus nisin 

strains inhibitory ability against various common intestinal bacteria (mostly Gram 

positive), and found that nisin was successful in inhibiting the microorganisms, including 

Enterococcus faecium. Neetoo, H., Ye, M., Chen, H., Joerger, R.D., HIcks, D.T., Hoover, 

D.G. (2008), tested the resistance of numerous strains of L. monocytogenes against nisin 

using agar well diffusion to determine the most resistant strain of L. monocytogenes. The 

study then used nisin-coated films on vacuum packaged cold-smoked salmon against 

these nisin resistant strains and found that nisin still had inhibitory success, dependent on 

the concentration of the nisin, the time exposed, and the temperature. In a study to 

determine nisin diffusion in protein films,  Teerakarn. A., Hirt, D.E., Acton, J.C., Rieck, 

J.R., Dawson, P.L. (2002), used agar diffusion for the quantification of nisin activity by 

measuring the response of the nisin against Lactobacillus plantarum 1752.    
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Table 2.5. Summary of Selected Antimicrobial Screening Methods 

Method Author Level of Nisin Organism Tested Reduction 

Spot-on-

Lawn 

 (Grower, J.L., 

Cooksey, K., 

Getty,K. 2004b) 

100000 

IU/cm2 

Listeria 

monocytogenes 

ATCC15313 

7 and 6.75mm 

 (Matthews et al. 

2010) 

5.49 mg/ml Listeria 

monocytogenes 

ATCC15313 

Inhibition 

observed – 

compared to 

control (no 

antimicrobial).  

 (An, D.S., Kim, 

Y.M., Lee, S.B., 

Paik, H.D., 

Lee,D.S. 2000b) 

10% 

bacteriocin 

solution 

Various 

nonpathogenic, 

pathogenic 

bacteria, yeast 

and molds 

+ or - 

Agar 

Diffusion 

 (Sebti, I., Ham-

Pichavant, F., 

Coma,V. 2002a) 

2800IU (used 

40IU nisin 

and 70ul of 

nisin solution) 

M. luteus IP270 

S. aureus IP 

58156 

L. 

monocytogenes 

ATCC 15313 

Not reported 

 (Mauriello, G., 

De Luca, E., La 

Storia, A., 

Villani, F., 

Ercollini,D. 2005) 

1g 2.5% nisin 

in 5 ml 

Micrococcus 

luteus ATCC 

10240 

Tested for 

activity of 

nisin 

 51200AU-1  

 (Teerakarn. A., 

Hirt, D.E., Acton, 

J.C., Rieck, J.R., 

Dawson,P.L. 

2002) 

0.00028 to 

0.0125mg 

purified 

nisin/mL 

L. plantarum 

1752 

Produced a 

standard curve 

 (Neetoo, H., Ye, 

M., Chen, H., 

Joerger, R.D., 

HIcks, D.T., 

Hoover,D.G. 

2008) 

0 (not 

reported), 

625, 1250, 

2500, 5000, 

10000 IU/ mL 

Listeria 

monocytogenes 

PSU1, PSU2, 

PSU 21 

 

PSU1: 8.00+/- 

0.41, 9.58+/-

1.05, 10.73+/-

0.98, 12.52+/- 

0.56, 14.10+/-

0.23 

PSU2: 7.94+/-

0.85, 9.88+/-

1.55, 11.42+/-

1.50, 12.64+/-

1.67, 13.88+/-

1.76 
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PSU21:6.60+/-

1.05, 9.14+/-

1.09, 11.51+/-

1.06, 13.80+/-

1.09, 15.35+/-

0.83 

 (Le Blay, G., 

Lacroix, C., 

Zihler, A., Fliss,I. 

2007) 

Nisin A and 

Nisin Z  

40ul  

Bacteroides sp. 

Fusobacterium 

nucleatum subsp. 

Polymorphum 

ATCC 10953, E. 

coli DSM 5698, 

Bifidobacterium 

sp., Lactoballus 

sp. Clostridium 

sp., Clostridium 

sp. Eubacterium 

biforme DSM 

3989, 

Enterococcus 

faecium DSM 

20477, 

Ruminococcus 

productus DSM 

2950, 

Streptococcus 

salivarius DSM 

20560 

Wide variety 

of inhibition 

 

Table 5 attempts to summarize some of the current literature on screening 

methods used to determine the effectiveness of nisin for eventual incorporation into food 

packaging applications.  Collectively, the research shows that nisin is an effective 

antimicrobial but the methods of measurement, levels of nisin tested, indicator 

organism(s) and method of reporting effectiveness are so varied that it becomes very 

difficult to compare between studies.  For example, of the agar diffusion assays shown in 

table 5, each study reports their data as a measurement of a zone of inhibition, percentage 
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of the packaging material or “wide variety of inhibition”.  If progress is to be made with 

regard to nisin for food packaging, it is important to try and find a way to standardize 

some of the methods and reporting units so that comparisons between studies can be 

made.   

Coating 

Coating refers to the ability to deposit liquid (sometimes air) uniformly onto a 

solid surface or, substrate, and is recognized as a barrier against gases, moisture and 

microorganisms  (Chawengkijwanich, Kopermsub 2012). Coating is commonly used in 

the manufacturing of ink/paint, tapes (adhesives), photographic films, paper plastic, glass 

and metal.  The two key properties that need to be understood when developing coatings 

are rheology and surface chemistry, specifically surface tension. 

 Rheology, in a broad sense, is the study of the physical behavior of all materials, 

specifically liquids or pastes, when placed under stress (Gilleo 2006). Essentially, it is the 

“science of flow and deformation of matter” (Oesterle, Palmer 1969) or the study of 

viscosity over a wide range of conditions (Oil and Colour Chemists Association, 

Australia (OCCA) 1984).  

Surface tension is the measure of attractive or repulsive forces of molecules  

(Gilleo 2006) and can be defined as the excess force per unit length at the surface (Chan, 

Venkatraman 2006); in this case, this measures the liquid-solid interface of the coating. 

The porous network structure of the coating can allow for additional active characteristics 

to be realized as the incorporated active agent can subsequently be released through the 
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pores onto the food surface in a controllable manner  (Chawengkijwanich, Kopermsub 

2012). 

All molecules have forces either attractive or repulsive; these forces are measured 

in force per unit length and noted as dynes per centimeter. This measurement, surface 

tension, is important with respect to coating: when a surface is ideally wetted, there are 

no droplets formed on the substrate. A drop is formed when uneven distribution of forces 

occurs (and typically occurs with liquid with higher surface tensions, such as water); 

molecules are pulled in every direction. There are a few attributes that affect surface 

tension: liquids are not only attracted to other liquid (intramolecular) but when placed on 

a solid, intermolecular attraction can also occur.   

One of the more important rheology characteristics is the resistance to flow, or 

viscosity (Oesterle, Palmer 1969). Mathematically, this is the ratio of shear stress to shear 

rate. Shear stress is the force per unit area (measured in dynes per square centimeter) 

applied to the coating. Coatings can behave differently depending on viscosity (Glass 

1978a, Soules et al. 1998). Newtonian flow is when the coating is unchanged when shear 

is applied, whereas non-Newtonian changes occur when shear is applied (Oesterle, 

Palmer 1969). Two common behaviors are shear thickening (dilatant) or shear thinning 

(pseudoplastic) (Oil and Colour Chemists Association, Australia (OCCA) 1984). In 

addition, the coating can be viscoelastic and develop tensile and compressive elastic 

stresses when sheared or extended. High viscosity coatings need a lot of force to change 

shape and take longer to flow out. The yield point is the minimum amount of shear 

applied to initiate flow (Oil and Colour Chemists Association, Australia (OCCA) 1984). 
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There are many principles that should be considered when developing a coating, 

according to (Harrington 2006, Oil and Colour Chemists Association, Australia (OCCA) 

1984):   

1. What type of substrate is ideal for coating?  

2. Does the coated substrate seal? The substrate will be used on what types of 

products? Is it then food safe? Will it seal through grease or lipid if in contact 

with that type of food product?  

3. Once the substrate is chosen. Will the substrate need to be pretreated?  

a. Or will the coating stick to the substrate without substrate treatment? 

b. If substrate pretreatment is needed, what type of treatment is best? 

Properties of Coating 

Properties of the coating should be considered during development of coatings. 

Physical properties such as viscosity are needed. The coating should be able to flow 

without extreme shear stress or elevated temperature (Oil and Colour Chemists 

Association, Australia (OCCA) 1984). Viscosity of coating can be measured in many 

ways. Brookfield viscometer is a typical lab method of measuring centipoise and torque. 

Zahn cup and Bostwick Consistency Meter are two other commercial ways of measuring 

viscosity (Rolin, de Vries 1990). Time, temperature and volume all affect the viscosity 

and should not be reported without this important information (Oil and Colour Chemists 

Association, Australia (OCCA) 1984). 

Other physical properties of the coating include: corrosion, color and flexibility. 

pH should be measured when developing coatings because a low pH coating may cause 
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corrosion of equipment color should be measured. A colorimeter can be used if the 

coating has color. However, if the coating is transparent, ASTM D1003 can be used to 

measure clarity of haze (ASTM 2013). Depending on the use of the coating, color may be 

unattractive to the consumer. Also percent solids should be measured. A typical 

commercial coating has percent solids between 15-40%. The percent solids should be in 

this range to run on current commercial equipment (Gilleo 2006). Flexibility is important 

for storage shipping and use. Coatings should not break off the substrate when the final 

material is handled. Useful knowledge includes, drying time, curing (such as oven and 

UV treatment) and equipment desired for use in scale up of the coating formula. Finally, 

cost and toxicity are also important for the coating to be commercialized and legally 

approved (Oil and Colour Chemists Association, Australia (OCCA) 1984). 

Mayer rods 

Wire-wound metering rods such as mayer rods have been used for more than 75 

years to apply coating to flexible substrates (Macleod 2006). This coating method is cost 

effective, versatile (with respect to both types of coating and changing of production 

type), and allows for easy cleanup, making this viable for commercial production (Hull 

1991).   Mayer rods are typically used for production of tape, labels and flexible 

packaging. Coating with a wire wound rod is one of the least complex methods for 

applying coatings or adhesives (Hull 1991). The rods are made today of stainless steel 

and are tightly wound to coat exact amounts of liquid/coating onto the substrate. Mayer 

Rods come in many different sizes (which are differentiated by number), and the lay 
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down of the coating is correlated with the number of the Mayer Rod; the higher the 

number of the Mayer Rod, the thicker the lay down of the coating.  

 The coating thickness can be controlled within an accuracy of 0.0001 in (0.1 mil) 

and is controlled by the cross-sectional area between the wire coils  (Hull 1991, Macleod 

2006). Additionally, the coating is in strips from the grooves between the wires in a 

mayor rod. The coating is rapidly pulled together from the surface tension creating an 

unevenly distributed coating. When viscosities are high, the coating can adhere to the 

surface of the mayor rod, which can negatively affect the process. There are other factors 

that commercially affect coating thickness such as web speed and web tension. Mayer 

rods that are shorter are called “lab rods” and can be used in initial development process. 

These “lab rods” can be placed on a flat surface with the substrate attached near the top 

and drawdowns can be completed manually. This flat surface can be called a drawdown 

table. Some drawdown tables have a magnetic strip, which holds the substrate in place. 

See Figure 5 for an example of a drawdown table.   
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Figure 2.5. Drawdown Table utilized in research 

Defects 

Defects that can occur with surface coatings include: Aeration, coagulation, 

gassing, settling, skinning, viscosity increase, viscosity decrease, coverage, sticky 

application or streaking. Aeration is when air bubbles form during mixing and become 

trapped in the coating and are unable to escape. It forms foam that leaves uneven coating. 

Coagulation is when the emulsion breaks from too much shear. Gassing is when an 

ingredient in the coating formulation produces gas. This can be dangerous especially 

during storage. Settling is when an ingredient does not stay in solution and due to density 

falls to the bottom of the solution. Skinning is when the coating develops a thick “skin” 

on the surface that can no longer be mixed into the rest of the coating solution. Viscosity 
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decrease is when the coating is shear thinning. The more the coating is exposed to shear 

the thinner the coating. This will result in a different coverage on the substrate. Viscosity 

increase occurs when the coating is shear thickening. The more shear applied to the 

coating the thicker the coating becomes. This can sometimes be prevented by changing 

solvents. Coverage is the rate of spreading across the substrate. Poor coverage happens 

when the viscosity is too high or when the coating becomes sticky. Sticky application can 

be controlled by changing the viscosity or avoiding high temperatures. Finally streaking 

is when the coverage is uneven. This can happen with the coating itself or with a pigment 

in the coating. This can be prevented with proper mixing and viscosity (Oil and Colour 

Chemists Association, Australia (OCCA) 1984). 

Other issues in coating are more wire rod coating specific: this method of coating 

has a limited viscosity range (the efficacy of metering decreases as viscosity increases) 

and the coating mechanism has issues with change in the dimensional inconsistencies in 

the web  (Hull 1991). Defects that appear from the act of coating include streaks in the 

coating (generally in the direction of the machine), which are caused by particulate matter 

trapped between the rod and the web (Hull 1991). “Rod streaks” are another common 

issue; which are caused by the wire pattern on the rod (Hull 1991).    

Carrier: Pectin 

There are numerous carriers used in antimicrobial coating development research, 

such as methylcellulose, alginate, soy, corn zein, and cellulose. Pectin as a carrier is 

important as it can allow for the slow release of an antimicrobial. Pectin is a naturally 

occurring polymer mainly obtained from the non-woody cell walls of land growing plants 
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(Rolin, de Vries 1990, United States Food and Drug Administration (FDA) 2013b). 

Pectin is a mixture of polysaccharide structures that help those plants grow as shown in 

Figure 6. The chemical structure of pectin is different between plants.  

 

 

 

 

 

Figure 2.6. Chemical Structure of Pectin Adapted from (Anonymous 2012) 

Pectin is a soluble dietary fiber that binds cholesterol and slows glucose 

absorption during digestion (Brown et al. 1999). It is safe for human consumption as it is 

currently part of daily diets and is GRAS approved (United States Food and Drug 

Administration (FDA) 2013b). It has been used successfully for many years in the food 

and beverage industry as a thickening agent, a gelling agent and a colloidal stabilizer  

(Allwyn et al. 2012). In coatings pectin is the carrier agent.  

Commercial pectin production is mainly obtained from citrus fruits (lemons, 

limes, oranges and grapefruits), apple pomace, and various vegetables; the pectin is then 

produced into a dry white or brown powder (Rolin, de Vries 1990, Sriamornsak 2003). 

CP Kelco is the world’s leading producer of pectin, and their pectin is derived from both 

citrus peels and beet pulp (CPKelco 2013). There are many types of commercial pectins. 

However, most pectins are high in galacturonic acid. Therefore the main component in 

the majority of commercial pectin is methanol-esterified 1-4 linked alpha-D-galacturonic 

acid (See Figure 3).  
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In nature about 80% of the carboxyl groups are esterified with methanol. 

However, commercial pectins are produced in a large range from 80% 

methylesterification and trending lower. This percentage varies by production method 

and it imparts changes in the functionality of the pectin. Solutions with more than 1% 

pectin are pseudoplastic.  Commercial pectins are divided into two groups based on the 

degree of methyl esterification (DE): high-methylester pectins (HM) and low-methylester 

(LM) pectins. The DE influences the functional properties of both HM and LM, but in an 

inverse manner.  

The process of manufacturing pectin is confidential for most commercial 

manufactures. However, a common method starts with extraction. Acidified water (pH 2) 

is used to extract pectin from fruits or vegetables at 70ºC. During this process de-

esterification can take place so considerations must be taken depending on manufacturing 

of which type of pectin. Then a vacuum filter removes peel and the peel is sent off as 

animal feed.  

Pectin can be dissolved in warm water with the presence of shear.  Pectin is not 

soluble in ethanol. Pectin is a candidate for pharmaceutical use, due to its capability in 

controlled drug delivery / controlled releases. Sriamornsak, Nunthanid (1998), modified 

drug release patterns by utilizing a pectin/calcium delivery system; there was a delayed 

release of the drug in the colon. According to Marathe (2008), pectin shows better 

dissolving capability at low pH (being 2.5) or below the pka of pectin (3.95), which 

allowed for the better release of nisin. The study concluded that if pH was above the pka, 

then there was not release of nisin. Viscosity can be reduced under low pH conditions. 
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Viscosity increases with increasing pectin solution. Pectin solutions are viscous, but 

pectin is not particularly efficient as a thickener compound compared to other water 

soluble –polymers. The rheological properties of pectin solutions are very dependent on 

the presence of salts, calcium or similar non alkali metals, and on the pH. Other important 

facts are the chemical properties of pectin, including the degree of ester, and the average 

molecular weight.  

Pectin and Calcium 

 High-methylester pectins (DE above 50) form gels in the presence of low pH 

combined with low water activity (such as the addition of sugar). Gelation for low-ester 

pectin relies on calcium being added to the mixture.  Grant et al. (1973), was the first to 

coin the term “egg-box model” in order to describe the gelation of pectin and other 

alginates.  The mechanism involves junction zones created by the ordered, side-by-side 

associations of galacturonans, whereby specific sequences of GalA monomer in parallel 

or adjacent chains are linked intermolecularly through electrostatic and ionic bonding of 

carboxyl groups. The gel structure is a net-like formation of cross-linked pectin 

molecules. The cross-linkages formed by ionic bonds between the carboxyls are strong 

and produce a rather brittle, less elastic than those formed by hydrogen bonding as in 

regular pectin. See Figure 7 for the diagram of the egg-box. With pectins of lower DE, 

there is an increasing probability for the formation of cross-links with a given amount of 

calcium. As the number of reactive carboxyl groups that can form a salt bridge increases, 

the greater the chances are that the bridge will be formed. Because de-esterified  
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molecules are straighter than the esterified ones, they will be more likely to form calcium 

linkages (Thibault, Rinaudo 1985, Sriamornsak 2003). 

 

 

Figure 2.7. Representation of calcium binding to polygalactoronate sequences: egg 

box dimer and egg box model (Allwyn et al. 2012, Axelos, Thibault 1991). 

 

Glycerol 

Glycerol has previously been utilized in food coatings (Marathe 2008, 

Bangyekan, Aht-Ong & Srikulkit 2006) in order to assist in the coating flow of a 

formulation. Glyceryol is a trihydroxy sugar alcohol  (PubChem 2013) and is a plasticizer 

and is colorless syrupy liquid that is miscible in water. Its structure can be seen in Figure 

8 below. A plasticizer is a substance that can be added to a rigid plastic in order to 
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increase flexibility or workability or extensibility. Glycerol, when added to a coating, 

ensures that the coating maintains the properties of the film.  

 

Figure 2.8. Chemical structure of glycerol adapted from (Kousen 2013). 

Nisin in Packaging 

 While nisin has been around for years as an antimicrobial food preservative, there 

has been no commercial implementation into packaging (at least not on a large scale). 

There are a variety of methods used to incorporate antimicrobial agents into food 

packaging materials.  Nisin is a bacteriocin of choice because it is relatively heat stable 

(Le Blay, G., Lacroix, C., Zihler, A., Fliss, I. 2007) and because of its efficacy against 

gram-positive bacteria (Jin, T., and Zhang, H. 2008a). However, as the research indicates, 

progress is being made towards the commercialization of nisin based films, but there is 

still a gap between what can be done in academia (or research laboratories) and what is 

able and willing to be done by current packaging converting firms. The main reason is 

because the research has not yet proven all of the variables needed to get it approved for 

packaging. These variables include the extreme heat used in commercial packaging 

(which could potentially inactive the nisin), and the diffusion of nisin over time (so legal 

concentration levels are not exceeded).  

 



  

  

   

48 

 

Extrusion 

Extrusion of nisin into films is a commercial way of producing antimicrobial 

films.  Jin, T., Liu, L., Zhang., H., Hicks.,K. (2009b), extruded nisin into bio-based 

thermoplastic polylactic acid (PLA), and found that their preparations showed excellent 

antimicrobial activity against L. monocytogenes. Another study, conducted by Cutter, 

C.N., Willett, J.L., Siragusa, G.R. (2001b), used extrusion of nisin with polyethylene or 

polyethylene oxide resin to produce a film. Other authors have encapsulated nisin, in 

order to study if it had a positive effect on nisin natural properties. There have been 

several studies evaluating various properties of nisin-containing films. Nisin, when 

combined into a film, has had varying effects on the films to which it was added. The 

tensile strength of a composite pectin/polyactic acid (PLA) film that was extruded with 

nisin was presented  (Jin, T., Liu, L., Zhang., H., Hicks.,K. 2009a). While the study found 

a resulting decrease in tensile strength (19% decrease and a 40% decrease for fracture 

energy; it was not attributable to the addition of nisin. Rather, it was believed that the 

cause was the reduction of the PLA phase.  Padgett, Han & Dawson (1998), also 

measured the efficacy of nisin based films created through heat press and casting and 

found that both formed excellent films with strong inhibitory capabilities against 

Lactobacillus plantarum.  Taylor, T.M., Davidson, P.M., Bruce, B.D., Weiss, J. (2005), 

used liposomal-encapsulated nisin, to determine the antimicrobial activity of the 

encapsulated nisin. The study showed that encapsulation helped increase the thermotropic 

solubility and release of nisin, although this study did not go through with an actual 
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extrusion.  Taylor, T.M., Bruce, B.D., Weiss, J., Davidson, P.M. (2008), found that 

liposome encapsulated nisin produced inhibition against L. monocytogenes. 

Coating 

The use of nisin-containing containing coatings on the surface of polymeric films 

has the potential for delivery and transfer of nisin to the surface of foods.   

A study incorporated nisin into a food grade packaging material involved a 

methylcellulose blend that was cast coated onto low-density polyethylene (Grower, J.L., 

Cooksey, K., Getty, K. 2004b).  This allowed nisin to be blended in an acidic solution 

prior to blending in hydroxyl propyl methylcellulose, which helped activate the nisin. The 

purpose of coating was to act as a carrier of nisin and dissolve slowly when in contact 

with a semi-wet media (such as agar), which would dissolve and release nisin. This 

method proved to be effective for nisin release but inhibition was not consistent over time 

(Grower, J.L., Cooksey, K., Getty, K. 2004a). Another study, by Sebti, I., Ham-

Pichavant, F., Coma,V. (2002b), used a combination of stearic acid and nisin in a 

hydroxyl propyl methyl cellulose film (HPMC) to develop packaging film that not only 

acts as a moisture barrier and as an antimicrobial, but also biodegrades. Because stearic 

acid is a fatty acid, the combination with nisin caused a high decrease in tensile strength 

of the HPMC.  Among those are coating onto a substrate material such as low-density 

polyethylene (LDPE), heat press, absorb the antimicrobial into a substrate material and 

extrusion.  Of these methods mentioned, only coating and extrusion can be considered 

among the more commercially viable methods (Cooksey 2005). These examples, in 

addition to a study by Cutter, C.N., Willett, J.L., Siragusa, G.R. (2001c), that utilized a 
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nisin-coated PE/PE oxide film on beef, suggest that nisin-coated films potentially also 

have considerable efficacy in environments other than liquid. The reason for the 

preponderance of nisin as antimicrobial in films is perhaps its relatively settled regulatory 

status as a food additive, but the urgent goal of inhibiting L. monocytogenes on foods is 

presumably also a contributing factor. This bacterium is of concern to food safety for a 

number of reasons and, as a Gram-positive bacterium, is sensitive to nisin. 

 Adsorption of nisin into films is another way of increasing their antimicrobial 

activity. A study by (Dawson et al. 2005) looked at the adsorption of nisin in silica and 

starch powders, and found nisin was efficient at both adsorption in the powders and the 

release of antimicrobial activity.  Bower, C.K., McGuire, J., Daeschel, M.A. (1995b), 

looked at how a protein, such as nisin, can adsorb to a food contact surface, giving it the 

potential to prevent against pathogenic growth, including L. monocytogenes; the study 

found that the use of nisin is feasible in this regard. While using nisin solely as an 

antimicrobial agent that was incorporated into both corn zein and gelatin films, (Ku, K., 

Song, K.B. 2007) found that nisin both increased tensile strength and decreased film 

permeability for both film types. Corn zein films were affected much more then the 

gelatin type film. The study also reported increased antimicrobial activity with increased 

nisin concentration.  

Food Challenge Studies 

In order to fully understand nisin’s potential as a reliable antimicrobial, it is 

imperative that a food challenge study be completed, as it can replicate real world 

situations. Fang, Lin (1994), completed a food challenge study that utilized nisin as an 
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antimicrobial. This study was done in conjunction with modified atmosphere packaging 

in cooked pork and tested against L. monocytogenes and Psudomonas fragi. The results 

of this study was that the combination of MAP with nisin was effective at inhibiting both 

organisms, although the study noted that nisin efficacy was increased as nisin 

concentration increased.  Harris et al. (1989), conducted a study to find out if lactic acid 

bacteria were effective L. monocytogenes antimicrobials.  The study found that lactic acid 

bacteria, including some nisin strains were effective in inhibiting L. monocytogenes and 

could be a way to help prevent its abundance in the food system.  (Mangalassary, S., Han, 

I., Rieck, J., Acton, J., Dawson, P.L. 2008) conducted a study that utilized a combination 

of nisin and lysosome in RTE turkey bologna for a 12 week period; the study found that 

the combination of the two antimicrobials were both factors in reducing log counts of L. 

monocytogenes, which was a “hurdle effect” with the in package pasteurization process.  

(Shefet, S.M., Sheldon, B.W., Klaenhammer, T.R. 1995) utilized a nisin-based treatment 

(with EDTA) against Salmonella Typhimurium to extend the shelf life of broiler 

carcasses. The study found that nisin treated chicken had a slightly better prevention than 

against the control. 

 Scannell, A.G.M., Hill, C., Ross., R.P., Marx., S., Hartmeier, W., Arendt,E.K. 

(2000), measured adsorption of Nisaplin® and lacticin 3147 as a bioactive food 

packaging material against Lactococcus lactis, Listeria innocua, and Staphylococcus 

aureus.  Only the Nisaplin® film was able to maintain activity over a three month period 

under refrigeration against sliced cheese and ham store in modified atmosphere 

packaging. 
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Diffusion Studies 

Aly, S., Floury, J., Famelart, M-H., Madec, M-N., Dupont, D., Le Gouar, S., 

Lortal, S., Jeanson,S. (2011), conducted a nisin quantification study to find the diffusion 

coefficient in cheeses.  This study chose nisin Z as the relevant model solute in order to 

investigate mass transfer properties of peptides during ripening within the cheese matrix. 

In order to find the diffusion that this study utilized an enzyme-linked immunosorbent 

assay (ELISA) that model diffusion coefficients for nisin, according to Fick’s law. 

Although successful, modeling would need to be investigated for different nisin variants 

and other food products.  

Hanusova, K., Stastna, M., Votavova, L., Klaudisova, K., Dobias, J., Voldrich, 

M., Marek,M. (2010), measured migration from a dried natamycin solution on a coated 

LDPE film into water. In order to determine diffusion, the study utilized agar well 

diffusion method. Natamycin was released in amounts that inhibited microrganisms, 

however, the study indicated that the natmycin broke down after eight days of exposure 

to light. 

Kim, Y.M., An, D.S., Park, H.J., Park, J.M., Lee, D.S. (2002), incorporated nisin 

into acrylic polymer and vinyl acetate ethylene co-polymer and coated onto paper. The 

study measured (via agar well diffusion) the release of nisin into different contact 

solutions, which included water, 2% sucrose solution, 2% citric acid solution, and a 2% 

NaCl solution; these solutions represented sweet, acidic, and salty foods, respectively. 

The study also measured the inhibition with against Micrococcus flavus in a nutrition 

broth medium; the study showed that there was inhibition against the microorganism.  
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 Jin, T., and Zhang, H. (2008b), in studies utilizing nisin as an antimicrobial in 

polylactic acid polymer, also measured the release of nisin. The standard curve was 

prepared by a seeded lawn overlay spot (also completed by (Siragusa, G.R., Cutter, C.N., 

Willett, J.L. 1999b) with some modifications to the procedure. The nisin was heated 

(100º C for 5 minutes) and then cooled for 144 hours to obtain maximum release. The 

release kinetics from a PLA nisin matrix needs further investigation, the study indicated, 

however their hypothesis follows a Fickian diffusion behavior. The diffusion or 

extraction of nisin from the film was used by (Jin, T., Liu, L., Zhang., H., Hicks.,K. 

2009a) to test the bacterial inhibitions where pectin films or PLA films were placed in 

various liquid mediums (including BHI Broth, preservative free orange juice and 

pasteurized liquid egg whites), and were innoculated with L. monocytogenes. 

Bastarrachea, L., Dhawan, S., Sablani, S.S., Powers,J. (2010),  studied the release 

kinetics of nisin from poly-butylene adipate-co-teraphthalate (PBAT) to distilled water. 

The reseachers utilized agar well diffusion and were able to model using Fick’s second 

law of diffusion, partition coefficient and the Weibull model. The study concluded that 

nisin diffused better with temperature, and in PBAT film when compared to other films.   

A study by (Cha, D.S., Cooksey, K., CHinnan, M.S., Park.,H.J. 2003) measured 

the release of nisin from both heat press and casting-method films. The heat pressed films 

were monolayer films that blended polyethylene powder and biopolymers containing 

nisin, and the casting method used PE film with a biopolymer containing nisin. Both 

methods showed that the films prepared with nisin, exhibited inhibition against the tested 

microbial, in this instance, M. luteus.   
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More studies need to be completed that utilize new diffusion techniques such as 

microscopy or HPLC. In addition, there diffusion studies need to be conducted on food 

(not food simulants) over a longer shelf life. Further research needs to be conducted on 

the breakdown of nisin and its variants during refrigeration over a longer period of time.  

Statement of the Problem 

Current US regulations dictate zero tolerance policy for L. monocytogenes in 

Ready-to-eat foods (Food Safety and Inspection Service (FSIS) 2000). This zero 

tolerance policy is difficult to achieve since testing methods are destructive, training has 

limited success and post process-contamination is common (Oliver 2013). As mentioned 

previously, FSIS risk assessments found that 83% of all identified cases of Listeriosis are 

associated with deli meat sliced at retail delis (Food Safety and Inspection Service (FSIS) 

2013).  

Oliver (2013), demonstrated that training alone is not enough to eliminate food 

safety issues; an example is that it takes about eight hours to properly take apart and clean 

a deli case, which given modern retail food stores, is impractical. In her presented study, 

thirty retail delis were sampled for presence of L. monocytogenes before and after 

employee training. The intervention was not able to statistically decrease L. 

monocytogenes for both low and high prevalence of L. monocytogenes in retail delis. Pre-

intervention food-contact surfaces (deli case, slicer blade etc.) sampled contained 4.5% 

prevalence of L. monocytogenes, while post intervention measured that 4.0% of food 

contact surfaces sampled contained L. monocytogenes. Out of the thirty tested stores, 

eleven demonstrated evidence of persisting L. monocytogenes strains (Oliver 2013). 
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L. monocytogenes is “ubiquitous” and can form biofilms: It is found everywhere 

including food contact sites, soil, consumers, drains, water (Fenlon 1986, Posfay, Wald 

2009, Centers for Disease Control and Prevention (CDC) 2013 C, Valderrama, Cutter 

2012). These studies have indicated that it is nearly impossible to prevent L. 

monocytogenes from entering the food system.  

In addition, both culture and employee’s attitudes are other challenges to 

overcome (Richard et al. 2013). There is a clear need for alternative control measures of 

L. monocytogenes in retail delis (Oliver 2013). In order to combat this ever-present 

menace, L. monocytogenes should be controlled by continuing good manufacturing 

methods, continued proper handling by food workers, and necessary additional secondary 

safety measure such as antimicrobial coating. However, current research for antimicrobial 

coatings is in preliminary stages and is primarily based on theoretical lab scale testing. 

There is a need for both food challenge studies and diffusion studies for antimicrobial 

coatings. It is necessary to understand the safety and potential success for antimicrobial 

coatings on RTE-foods instead of liquid media. There are many current gaps in the 

research including: 

1. Research/food challenge studies with L. monocytogenes are needed instead of 

indicator organisms. The food challenge studies should last the entire shelf life of the 

food to ensure resistance is not occurring. This may require a possible slow release of 

antimicrobial over the course of the shelf life of the food. 

2. It is important to select substrates that would typically be used at retail 

delis/industry and can easily be coated. 
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3. It is also important that the application is such that success can most likely be 

achieved. For example, this would include packaging that does not require sealing, or 

excessive heating. Also, it must be in direct contact with the food.  

4. Research with food safe ingredients that are easily soluble and colorless.  

5. Studies should be cost cognitive and percent loss of antimicrobial during 

processing or storage should be considered.  

6. Coating should be designed to be scaled-up for commercial equipment. 

Coatings should be thin to resemble real world use. 

7. There is a need for effective (measurable) detection methods for diffusion in 

the food. Also methods should be compared since methods are not consistent in the 

literature. 

Research Objectives 

1. To develop antimicrobial coating containing nisin that is opaque, food safe, 

thin, cost effective, and slow release. 

2. To coat two substrates (with intent for food contact without heat and sealing 

properties) with a thin coating using laboratory Mayer Rods to produce a 

uniform coating.  

3. To conduct food challenge studies using a ready-to-eat food (ie. Deli turkey 

meat) inoculated with a cocktail of L. monocytogenes in direct contact with 

the antimicrobial coating over the full chilled shelf life of the product.  

4. To compare agar diffusion, spot on lawn and challenge study results. 
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5. To measure diffusion (the amount leaving the film when in contact with the 

food) by high performance liquid chromatography.   

6. To identify diffusion of nisin intensity in food using confocal microscopy.  
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Abstract 

L. monocytogenes is the leading cause of death associated with deli meats (Batz et 

al. 2011); in fact, 83% of all listeriosis cases in the United States are attributable to deli 

meats (Food Safety and Inspection Service (FSIS) 2013) and listeriosis is over 15 times 

more likely to be found in deli meats than any other source (Oliver 2013).  Antimicrobial 

packaging is produced to control undesirable microorganisms by means of incorporation 

of an antimicrobial compound, such as nisin, into the packaging by various methods 

(Cha, Chinnan 2004). While research indicates that progress is being made towards 

commercialization of nisin-based films, there is still a gap between what can be done in 

academia (or research laboratories) and what current packaging firms are capable of or 

willing to do. Pectin is an excellent carrier of nisin in a coating and may allow for a slow 

release of the antimicrobial. Findings from our current research suggest that the 
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developed coatings demonstrated antimicrobial activity against L. monocytogenes. The 

coatings were found to be food safe, colorless and within the commercial range for 

viscosity/percent solids. Both coating treatments (with and without Calcium Chloride) 

could inhibit L. monocytogenes for the entire shelf life of the turkey bologna and were 

significantly different compared to controls.  

Introduction 

Food-borne illness is a major concern in the United States, as it affects 

approximately 1 in 6 people per year, according to the Centers for Disease Control 

(Centers for Disease Control and Prevention (CDC) 2013 C). An estimated 48 million 

cases occur each year in the United States, and include 128,000 hospitalizations and 

3,000 related deaths (Centers for Disease Control and Prevention (CDC) 2013 C).  

L. monocytogenes is the leading cause of death associated with deli meat-derived 

food-borne illness (Batz et al. 2011); in fact, 83% of all listeriosis cases in the United 

States are attributable to deli meats (Food Safety and Inspection Service (FSIS) 2013) 

while listeriosis is over 15 times more likely to be found in deli meats than any other 

source (Oliver 2013).  Of further concern, Listeria has a very high combined public 

health burden with an economic cost of almost two billion dollars, despite the relative 

lack of comparative occurrences (Batz et al. 2011). Oliver (2013) presented that despite 

massive efforts in the prevention of listeriosis, there are still been a significant number of 

confirmed cases since 2004, when a Listeria initiative addressed to outline concerns and 

establish surveillance techniques (Cartwright et al. 2013) was implemented; the trend on 

listeriosis is “flat-lining” as opposed to decreasing, despite more time and effort being put 
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into its prevention (Oliver 2013, Cartwright et al. 2013).  

Current US regulations dictate a zero-tolerance policy for L. monocytogenes in 

Ready-to-eat foods (Food Safety and Inspection Service (FSIS) 2000). This zero-

tolerance policy is difficult to achieve since testing methods are destructive, training has 

limited success and post process-contamination is common (Oliver 2013). As mentioned 

previously,  (Food Safety and Inspection Service (FSIS) 2013) risk assessments found 

that 83% of all cases of Listeriosis is associated with deli meat sliced at retail delis.  

Oliver (2013) demonstrated that training alone is not enough to eliminate food 

safety issues. For example, it takes about eight hours to properly take apart and clean a 

deli case, which in modern retail food stores, is not impractical. In the study, thirty retail 

delis were sampled for presence of L. monocytogenes before and after training. The 

intervention was not able to statistically decrease L. monocytogenes for either low or high 

prevalence of L. monocytogenes in retail delis. Pre-intervention food-contact surfaces 

(deli case, slicer blade, etc.) contained 4.5% prevalence of L. monocytogenes, while post- 

intervention food-contact surfaces measured that 4.0% prevalence. Of the thirty stores 

tested, eleven demonstrated evidence of persisting L. monocytogenes strains (Oliver 

2013). 

L. monocytogenes is “ubiquitous” and can form biofilms. As such, it is found 

everywhere, including food contact sites, soil, drains, water, and on consumers 

themselves (Fenlon 1986, Posfay, Wald 2009, Centers for Disease Control and 

Prevention (CDC) 2013 C, Valderrama, Cutter 2012). These studies indicate that it is 

nearly impossible to prevent Listeria from entering the food system.  
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Culture and employee’s attitudes are other challenges to overcome (Richard et al. 

2013) in the prevention of Listeria outbreaks. There is a clear need for alternative control 

measures against L. monocytogenes in retail delis (Oliver 2013). In order to combat this 

ever-present menace, L. monocytogenes should be controlled by continued good 

manufacturing methods, proper handling by food workers, and necessary additional 

secondary safety measures, such as antimicrobial packaging coatings. However, current 

research for antimicrobial coatings is preliminary and primarily based on theoretical lab 

scale testing. There is a need for both food challenge studies and diffusion studies for 

antimicrobial coatings. It is necessary to understand the safety and potential success of 

antimicrobial coatings on RTE-foods instead of liquid media. 

Active packaging was first introduced as a response to the demands of consumers 

for high quality, safety and extended shelf life of food products; it has also suited the 

changes in retail and distribution practices, (for instance, online commerce and “retail 

superstores”), which have pressed logistic tensions. For example, as distribution distances 

have increased, the need for longer storage times has also increased(Vermeiren, L., 

Devlieghere, F., van Beest, M, de Kruijf, N., Debevere,J. 1999, Quinatavalla, Vicini 

2002). Active packaging applications, including the incorporation of antimicrobials (and 

subsequent release into the product), have received considerable attention as a means of 

extending the bacterial lag phase, leading to slower growth of microorganisms (Han 

2000, Guerra et al. 2005). Antimicrobial packaging is produced to control undesirable 

microorganisms by means of incorporation of an antimicrobial compound into the 

packaging by various methods (Cha, Chinnan 2004). These methods include coating onto 
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packaging, inside surface extrusion where an antimicrobial is blended into the packaging 

or volatizing the compound into the product headspace within the packaging (Lagarón, 

Ocio & López-Rubio 2011). 

The direct addition of antimicrobials (organic acids, spice extracts, chelating 

agents, metals, enzymes or bacteriocins, such as nisin) has also shown a decrease in 

antimicrobial growth due to leaching into the food matrix, and cross-reaction with other 

food components such as lipids or proteins (Han, Floros 1997, Davies et al. 1999, 

Hoffman, Han & Dawson 2001).  Packaging films containing antimicrobial agents have 

shown improved efficacy through a controlled migration of the agents into the food, 

allowing for initial inhibition of undesirable microorganisms, and subsequent residual 

activity over the course of the distribution stage of the food cycle (Quinatavalla, Vicini 

2002).  

Nisin is a polypeptide antibacterial substance produced from the fermentation of a 

modified milk medium by strains of the lactic acid bacterium, Lactococcus lactis 

(Delves-Broughton 1990, Jin, T., Liu, L., Zhang., H., Hicks.,K. 2009). Nisin is made up 

of about 34 amino acid residues. The molecule possesses amino and carboxyl end groups, 

and five thio-ether bonds which form internal rings (Delves-Broughton 1990). 

 Nisin’s potential in food preservation was first suggested in 1951 (Hirsch, A., 

Grinsted, E., Chapman, H.R., Mattick, A.T), which found that nisin-producing starter 

cultures could prevent clostridial gas (from the bacteria, Clostridium tyrobutyricum) 

formation in cheese (Jung, D.S., Bodyfelt, F.W., Daeschel, M.A. 1991). As the 

knowledge regarding the biochemistry of nisin increased, a commercially available 
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format was released as Nisaplin®, which possessed “a high and consistent antimicrobial 

activity” (Delves-Broughton 1990).  

The use of nisin-containing coatings on the surface of polymeric films has the 

potential for delivery and transfer of nisin to the surface of foods.  A study incorporating 

nisin into a food grade packaging material involved a methylcellulose blend which was 

cast coated onto low density polyethylene (Grower, J.L., Cooksey, K., Getty,K. 2004b).  

This allowed nisin to be blended in an acidic solution prior to blending in hydroxyl-

propyl-methylcellulose, which helped activate the nisin. The purpose of coating was to 

act as a carrier of nisin, which would dissolve slowly when in contact with a semi-wet 

media (such as agar), and subsequently releases the nisin. This method proved to be 

effective for nisin release, but inhibition was not consistent over time (Grower, J.L., 

Cooksey, K., Getty,K. 2004a). 

 Pectin is an excellent carrier of the antimicrobial, nisin, in a coating and may allow 

for slow-release of the antimicrobial. Pectin is a naturally occurring polymer mainly 

obtained from the non-woody cell walls of land growing plants (Rolin, de Vries 1990). 

Commercial pectin production is mainly obtained from citrus fruits (lemons, limes, 

oranges and grapefruits), apple pomace, and various vegetables; the pectin is distributed 

as a dry white or brown powder (Rolin & de Vries 1990, Sriamornsak 2003) Commercial 

pectins are divided into two groups, high methyl ester pectins (HM) and low methyl ester 

(LM) pectins,  based on their degree of methyl esterification (DE) (Rolin & de Vries, 

1990). The DE influences the functional properties of both HM and LM pectins, but in an 

inverse manner. High methyl ester pectins (DE above 50) form gels in the presence of 
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low pH and low water activity (such as the addition of sugar), whereas, the gelation for 

low-ester pectin relies on calcium being added to the mixture (Endress, Christensen 

2009).  For these studies, LM pectin was chosen for its high reactivity to calcium in order 

to get optimum slow-release properties.  

 (Grant et al. 1973) were the first to coin the term “egg-box model” in order to 

describe the structure of the gelation of pectin and other alginates. This gel structure is a 

net-like formation of cross-linked pectin molecules. Cross-linkages are formed by ionic 

bonds between the carboxyl groups and are less elastic than those formed by hydrogen 

bonding as in regular pectin (Sriamornsak 2003). Because de-esterified molecules are 

straighter than the esterified ones, they are more likely to form calcium linkages 

(Thibault, Rinaudo 1985, Sriamornsak 2003). 

 Coating with a wire wound rod is one of the least complex methods for applying 

coatings or adhesives (Hull 1991). Wire-wound metering rods such as Mayer rods have 

been used for more than 75 years to apply coating to flexible substrates (Macleod 2006). 

This coating method is cost effective, versatile (with respect to both types of coating and 

changing of production type), and allows for easy cleanup, making this viable for 

commercial production (Hull 1991). New generation stainless steel rods are tightly 

wound to coat exact amounts of liquid/coating onto the substrate. The coating thickness 

can be controlled within an accuracy of 0.0001 inches (0.1 mil) and is controlled by the 

cross-sectional area between wire coils (Hull 1991, Macleod 2006). 

The objectives of this study were (1) to develop antimicrobial coating 

formulations that were food safe with the intent for future commercialization; (2) to 
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determine the properties and characteristics of the coating formulations;  (3) to identify 

an effective antimicrobial coating formulation for the inhibition of L. monocytogenes 

over the shelf-life of ready-to-eat turkey bologna; and (4) to determine whether calcium 

chloride could enhance the efficacy of the antimicrobial coating by a slow-release of 

nisin. 

Packaging films containing antimicrobial agents have shown improved efficacy 

through a controlled migration of the agents into the food, allowing for initial inhibition 

of undesirable microorganisms, and subsequent residual activity over the course of the 

distribution stage of the food cycle (Quinatavalla, Vicini 2002).  

Materials and Methods 

Preparation of Coating 

Three different coating formulations were used: A pectin-based control coating 

(C), nisin added (A), and nisin & calcium chloride added (B). All coatings originated as 

pectin slurry. Preparation occurred by mixing sterile water (percentage varied with 

treatment to equal end volume of 100%), 2.79% sterile glycerol (Fisher Scientific, USA), 

12% sterile acidified water and 4.62% pectin GENU low methyl ester (LM)-12CG 

degree of methyl esterification (DE) 35 (kind gift from CPKelco a Huber Company). The 

coatings were stirred for 15 minutes at 75ºC, removed from the heat and allowed to cool 

to 50ºC. The antimicrobial, ultra-pure nisin A (>95%)  (Handary, Belgium) was dissolved 

in sterilized acidified water (20% Acetic Acid). The final concentration of nisin was 

10,000IU/g (for properties analysis) or 20,000IU/g (for food challenge study) in wet 

weight (~30% solids) based on Richard et al. 2014 (REF) diffusion studies (note: nisin % 
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not part of formulation). For coating C, no nisin was added; it contained only 12% 

sterilized acid (20% Acetic Acid). For coating B, 18% calcium chloride (0.7% calcium 

chloride solution) (Fisher Scientific, USA) was added. The coatings were stirred for 15 

minutes at 50ºC. Substrates were coated using a sterile 16’’ “lab Mayer rod” (See Figure 

1). The coated substrates were allowed to dry for 24 h (See Figure 1) before being cut 

into 4 x 4 in2 (16 square inches).  

Substrates Coated  

Table 1 summarizes the two substrates used, plastic (P) (gift from Sealed Air 

Corporation) and wax paper (W), with three types of coatings (C, A, B), for a total of six 

treatments (PC, WC, PA, WA, PB, WB). The only difference between treatment A and 

treatment B was the addition of calcium chloride to treatment B. The plastic substrate 

was a laminate coextruded forming web with a polypropylene skin.  A plastomer sealant 

and ethylene vinyl alcohol barrier was used for the plastic treatments (PA, PB, PC). The 

plastic substrate is a low-heat-sealing material (105-180 ºC) with enhanced sealability 

through brines, marinates and sauces. Substrate (W) was a wax parchment paper 

purchased from Ingles Markets, SC, and was used for the wax paper treatments (WA, 

WB, WC). Substrates were treated with UV light for 15 minutes before being coated. 

Both wax paper and plastic substrates were evaluated, as both are industry standards for 

liners of ready-to-eat meats at the deli. 

Properties of coating solutions 

For the coating solutions, (A, B and C), the following properties were measured: 

pH, density, percent solids and viscosity. pH was measured using a pH meter (Model 63, 
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Jenco Electronics CTD China). Density was measured using a specific gravity pyrometer 

(VWR TG-15145-24). Percent Solids was measured by drying the samples in a Fisher 

Isotemp® oven 300 series model 338F (Fisher Scientific, USA) for 24 hr at 100ºC. 

Finally, viscosity was measured using three methods: Brookfield DV-E viscometer 

Model CVDVE115 (Middleboro, MA), Bostwick consistometer No 24925-000 (CSC 

Scientific company Inc., Fairfax, VA) and EZ® Zahn viscosity cup #2 (Garoco, USA). 

Viscosity was measured following ASTM D 4212 (ASTM, 2010). Parameters, (including 

temperature, volume, time) were kept constant between treatments and replications.  

Properties of coated film 

After the films were dried for 24 hours, additional properties could be measured. 

Basis weight was measured by using ASTM F 2217-13 (ASTM, 2013A). Transmittance, 

haze and clarity were measured using a BYK Gardner Haze-gard plus (Germany) at 

Printpack (Marshall, NC) following ASTM D 1003 (ATSM, 2013B). Thickness was 

measured using a Precision Micrometer Series 400 Tester (Amityville, New York). In 

addition, antimicrobial assessments were conducted (film on lawn, agar well diffusion 

and spot on lawn) as described below. 

Film on lawn  

 “P” and “W” substrates each coated with one of the coating formulations, A, B, 

and C, were cut into circles (for a total of 6 circles) by using an X-acto precision 

instruments circle cutter (Elmer’s products, OH, USA). The circles were placed on 

modified oxford agar plates (MOX) inoculated with sterile tweezers. The MOX plates 

were made using Oxford Medium Base (BD-Difco, Detroit, MI, USA) with the addition 
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of the modified oxford antimicrobial supplement (BD-Difco, Detroit, MI, USA). The 

plates were incubated for 48 h at 37ºC. Using a digital caliper (Control company, China) 

inhibition zones were measured in millimeters.  

Standard assay curve of nisin 

The standard assay curve of inhibition by nisin A solution was obtained by the 

method adapted by (Tramer, J., and Fowler, G.G. 1964). The effect of different nisin 

concentrations and the minimum inhibitory concentration (MIC) of nisin was determined 

using a stock nisin solution (concentration?) and serial dilutions ranging from 

20,000IU/mL to 78 IU/mL. The stock solution was obtained by adding 0.05g of Nisin A 

to 100mL of acidified water (20% Acetic Acid).  From the stock solutions, 10,000, 5,000, 

2,500, 1,250, 625, 313, 156, and 78 IU/mL were made. Acidified water (20% Acetic 

Acid) was used as a negative control. 

Estimation of nisin in films  

 After 24 h of drying, the coated films were cut into 4 x 4 square inch squares. The 

coated squares were placed in sterile polyethylene bags and 5mL of sterilized acidified 

water (0.02N Acetic Acid) were added. The bags were sealed with an impulse sealer 

Model FS-400 (Hualian, China) and placed on a Gyrotory® water bath shaker (Edison, 

NJ) and incubated at 4ºC. Samples were collected in test tubes at each sampling time and 

immediately stored at 4ºC until assay (to obtain nisin releasing from coating). Sample 

volume collected was 5mL (10-l needed for spot on lawn testing and 50 l needed for 

well diffusion testing). Time points were collected at 30 minutes, 5 h, 10 h, 24 h, 48 h, 72 

h, and 7 days.  
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Bacterial culture for spot on lawn and agar well release studies 

The Listeria monocytogenes strain (ATCC 43256) used in this study was obtained 

from the Food Microbiology Laboratory at Clemson University. The frozen stock culture 

was stored in brain heart infusion broth (BHI) (Difco, Detroit, MI, USA) with 20% 

glycerol at -80ºC. The working stock cultures were maintained by culturing on slants of 

BHI agar medium (Difco, Detroit, MI, USA) and incubating at 37ºC for 48 h. The 

prepared slants were stored at 4ºC until required for a maximum of 14 days. At the time 

of testing, the growth on the slant culture was streaked on to MOX and grown for 48 h. A 

single colony was isolated from the growth plate, suspended in 10mL of BHI broth and 

grown for 48 h (incubating at 37ºC, while shaking).  

Agar well diffusion assay 

The agar well diffusion method adapted by Barefoot, et al.(Barefoot, 

Klaenhammer 1983) was used to detect the activity of nisin against L. monocytogenes 

(ATCC 43256). MOX agar plates were overlaid with ~8mL of semisoft TSB agar (0.5% 

w/v agar) seeded with 1% broth culture of L. monocytogenes (ATCC 43256). The seed 

density was approximately 1x 106 cfm ml-1 of overlay. Plates were allowed to harden for 

1 h before wells were made. 50-l wells were made using a bore, and 50-l of nisin-

containing release samples were placed in each well. Plates were stored at 4ºC for 24 h 

and then incubated at 37ºC. Plates were evaluated for zones of inhibition in millimeters 

using a digital caliper (control company, China) in both horizontal and vertical directions 

and averaged. The experiment was repeated three times and reported as zones of 

inhibition (mm).  
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Spot on lawn Assay 

The spot on lawn assay was also used to detect the activity of nisin against L. 

monocytogenes (ATCC 43256). A 10-l drop of each nisin-containing release sample 

was placed onto the inoculated MOX agar plates. All plates were incubated at 37ºC for 

48 h and zones of inhibition were measure in millimeters using a digital caliper (control 

company, China) in both horizontal and vertical directions and averaged. The experiment 

was replicated three times and reported as zones of inhibition (mm). 

Culture storage and preparation for challenge study 

Listeria monocytogenes strains: 15313, 43256, 7647, 13932, and Scott A were 

obtained from ATCC (Info here). These five strains were selected because they were 

considered to have real world application as they were obtained from food and/or human 

samples from actual outbreaks of listeriosis. The cultures were grown aerobically in 

Brain Heart Infusion (BHI) broth at 37°C for 24 h (while shaking). The cultures were 

stored at -80ºC in TSB and glycerol as stock cultures until needed for experiments. To 

prepare pathogen cultures for experiments, 100 uL volumes from frozen stock cultures 

were transferred to 10 mL of fresh BHI at 37°C for 24 h. The cultures were later 

transferred to Modified Oxford (MOX) plates (EMD Chemical Inc.), struck to isolation, 

and incubated at 37°C for 24 h. Finally, a single colony of each culture was taken from 

the MOX plate and transferred to a separate 500 mL bottle of BHI and allowed to grow 

statically for 24 h at 37°C to obtain a cell concentration of ~9 log10 CFU/mL. This 

transfer process was done in triplicate for each pathogen. The five pathogen cultures (10 

mL each) were mixed in equal volumes to prepare a non-diluted cocktail for each 
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experiment. Stock cultures were struck on Trypticase soy agar (TSA) slants, stored at 

4ºC, and properly maintained by re-streaking on fresh TSA every 10 days. 

Media and pathogen analyses for challenge study 

Modified Oxford medium was used as selective media for L. monocytogenes 

enumeration and isolation following incubation for 48 h at 37°C. TSA (BD-Difco, 

Detroit, MI) media was used as a non-selective media for background microflora 

enumeration following incubation for 24-48 h at 30°C.  

Cocktail preparation for challenge study 

 The cocktail preparation was made by using Listeria monocytogenes strains: 

15313, 4698, 7647, 13932, and Scott A. After aerobic growth, 25mL of each L. 

monocytogenes strains were centrifuged and the supernatants were discarded. The pellets 

were re-suspended in 25mL Buffered Peptone Water (HiMedia Laboratories, India). 

Then, 10mL of each of the L. monocytogenes strains were combined to yield a 50mL, 

multi-strain cocktail. 

Challenge Study  

Turkey bologna (Oscar Mayer brand) was surface-inoculated with 100 l of a 107 

CFU/ml suspension of L. monocytogenes cocktail. Three pieces of the meat were 

randomly selected, aseptically placed in stomacher bags, weighed, diluted 10 times the 

volume of the meat (25 g per slice) with Buffered Peptone Water (BPW) and stomached 

for 2 min at 230 rpm (Stomacher 400; Seward, England). Samples were serially diluted in 

BPW, and 0.1mL of each sample was spread plated in duplicate onto MOX plates. The 

plates were incubated for 48 h at 37°C to determine initial inoculum level. The remaining 
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inoculated turkey bologna was placed, inoculated side of the meat in contact with coated 

substrates (4x4 in2), inside a Low Density Polyethylene pouch. All pouches were vacuum 

packaged and stored at refrigeration (4-7°C) temperature. The study duration was 63 days 

with sampling taking place on days 0,1,2,7,14,21,28,35,42,49,56 and 63. Each sampling 

day, ten packages (two controls, two PA, two WA, two PB and two WB) were sampled in 

the same manner as described above. Three pieces of the un-inoculated turkey bologna 

were randomly selected, aseptically placed in stomacher bags, weighed, diluted 10 times 

the volume of the meat (25 g per slice) with Buffered Peptone Water (BPW) and 

stomached for 2 min at 230 rpm (Stomacher 400; Seward, England). Samples were 

serially diluted in BPW, and 0.1mL of each sample was spread plated in duplicate onto 

TSA plates to enumerate the background microflora naturally present on the meat.  

Statistical analyses. 

All coating solution parameters (pH, density, percent solids and viscosity 

methods) were conducted for each property in three replicates. Tables 2 and 3 

demonstrate the averages of the results. The averages and standard deviations were 

calculated using Microsoft® Excel 2011 Version 14.1.2.  Statistical differences (P<0.05) 

were analyzed using 1-way analysis of variance (ANOVA), and Tukey’s test (SAS, Cary, 

N.C., USA) was used to compare the three coating treatments (A, B, C). This test was 

completed separately for pH, density, percent solids and viscosity.  

The properties that were measured on the dry coated substrates (basis weight, 

transmittance, haze, clarity and thickness) were conducted only on substrate “P”. Ten 

samples were measured for each treatment.  Three measurements were taken per sample 
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and averaged (Table 4). The averages and standard deviations were calculated using 

Microsoft® Excel 2011 Version 14.1.2. Figure 2 shows photos of the inhibition achieved 

using the film on lawn method. Statistical differences (P<0.05) were analyzed using 1-

way analysis of variance (ANOVA), and Tukey’s test (SAS, Cary, N.C., USA) was used 

to compare the three coating treatments (A, B, C) on “P” for basis weight, transmittance, 

haze, clarity and thickness. 

The log of nisin concentrations was plotted against the average diameter of 

inhibition zone to generate a nisin standard curve. A standard curve was generated for 

both spot on lawn and agar well diffusion methods. Using the standard curve’s “equation 

of the line” unknown nisin concentrations were calculated for each assay. R-squared 

values were all greater than 0.97, where X is log units of nisin and Y is the diameter of 

inhibition. Statistical differences (P<0.05) were analyzed using true repeated measures 

analysis of variance (GLM)  (SAS, Cary, N.C., USA) to compare the coating treatments 

(PA, PB, WA, WB, C). Table 5 compares methods (agar well diffusion vs. spot on lawn) 

for the evaluation of release of nisin from the films. 

For challenge study statistical differences, (P<0.05) were analyzed using 1-way 

analysis of variance (ANOVA), and Tukey’s test (SAS, Cary, N.C., USA) was used to 

compare the five coating treatments (PA, WA, PB, WB and C) over the 63 days shelf life. 

Results 

Tests were conducted on properties of coating solutions and dry coated substrates. 

Table 2 demonstrates the results averaged for the coating solution parameters (pH, 

density and percent solids. Table 3 compares the average viscosity results obtained for 
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the coating solution using three different methods (Brookfield viscometer, Zahn cup and 

Bostwick consistency meter). Table 4 summarizes the averaged data measured on the dry 

coated substrates (basis weight, transmittance, haze, clarity and thickness), which were 

conducted only on substrate “P”. Figure 2 consists of images of the inhibition achieved 

by the film on lawn method on both substrates “P” and “W”. Table 5 compares two 

methods (agar well diffusion and spot on lawn) for the evaluation of the release of nisin 

from the substrates. Challenge study results for reduction of L. monocytogenes over the 

63 days testing period can be found in Figure 3. 

Discussion 

 While nisin has been used for many years as an antimicrobial food preservative, 

there has been no large-scale commercial implementation into packaging. Nisin is a 

bacteriocin of choice because it is relatively heat stable (Le Blay, G., Lacroix, C., Zihler, 

A., Fliss,I. 2007) and is highly efficacious against gram-positive bacteria (Jin, T., and 

Zhang,H. 2008), which makes it a good specimen for potential commercialization. 

However, as the literature indicates, while progress is being made towards the 

commercialization of nisin based films, there is still a gap between what can be done in 

academia (or research laboratories) and what is able and willing to be done by current 

packaging firms. A coating would be a relatively easy way to establish a commercialized 

nisin packaging. 

 When developing a coating, the properties of the coating should be considered 

during its development. Physical properties, such as viscosity, need to be known. The 

viscosity of a coating can be measured in several ways. Using a Brookfield viscometer is 
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a typical method of measuring centipoise and torque in laboratories, while a Zahn cup or 

Bostwick Consistency Meter are generally utilized in commercial settings (Rolin, de 

Vries 1990). The typical commercial range for viscosity of a coating is 35-200 centipoise 

(Argent et al. 1999). A Zahn cup reading that is accurate is in the range from 20-40 

seconds (Argent et al. 1999). Most commercial coatings use Zahn cup #2 and #3. By 

measuring viscosity using all three methods (Brookfield viscometer, Zahn cup and 

Bostwick), the data collected will be useful for both research laboratories and industry. 

Future commercialization will require the formulation to be “scaled up” in order to be run 

on commercial equipment where viscosity testing measure such and Bostwick and Zahn 

cup will be the standard as opposed to the laboratory Brookfield viscometer method.    

Time, temperature and volume all affect coating viscosity. As such, these values 

should be reported in addition to viscosity values (Oil and Colour Chemists Association, 

Australia (OCCA) 1984). Other important physical properties of the coating that should 

be noted include corrosion, color and flexibility. A coating with low pH can cause 

corrosion of costly coating equipment, and depending on the use of the coating, use of 

color may be unattractive to the consumer. Percent solids should be measured as well. A 

typical commercial coating has percent solids between 15-40% (Argent et al. 1999); 

therefore, percent solids of the coating should be in this range to run on current 

commercial equipment (Gilleo 2006). Finally, the flexibility is important for storage, 

shipping and use. Coatings should be flexible enough not to break off the substrate when 

handled. 
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All coating solution properties (density, percent solids, Zahn viscosity), for all 

treatments (A, B and C) were significantly different. Bostwick consistency meter, 

Brookfield viscometer and pH of coating A and coating C were not significantly different 

from one another, but were both significantly different from coating B. This was 

expected, as the addition of calcium chloride in coating B has an effect on the viscosity of 

the coating.  (Marathe, 2008) determined the addition of the nisin and the calcium could 

be added together or in any order without significant different behaviors for the coating. 

In the presence of calcium, pectin forms a gel or “egg box model” structure. Calcium 

chloride also adjusts the pH significantly, as it has a more alkaline pH. Both percent 

solids and viscosity of all the coatings fell in the acceptable commercial range, which 

would aid in future commercialization.  

For dried coating properties: basis weight coating PA and coating PC were not 

significantly different from one another, but were both significantly different from 

coating PB. This may be explained by the differences in density and viscosity of the 

coatings. As expected, there were no significant differences in thickness between 

treatments (PA, PB, PC), indicating that the coatings were all evenly coated. There were 

no significant differences in transmittance amongst the three coatings; however, haze for 

treatments (PA, PB and PC) were all significantly different. For clarity coating B, coating 

A was significantly different from coating C; but coating B was not significantly different 

from coating A or coating C. It is important to note that to the naked eye all treatments 

were completely transparent. Film on lawn studies demonstrated that coatings A and B 

were antimicrobial compared to the control (Figure 2). It can also be observed that 
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coating A appears to have faster release than coating B, resulting in larger inhibition 

zones. It was difficult to see through the wax paper, “W” substrate, and so agar well 

diffusion studies were necessary.  

Overall, the nisin released from the coated substrates containing 10,000IU/mL 

was effective in controlling the growth of L. monocytogenes (Table 5). As expected, 

control coatings (PC, WC), containing no nisin, did not produce zones of inhibition 

regardless of method or substrate coated. The nisin from the coatings (A and B) was 

released into 5mL of acidified water (20% Acetic Acid), which diluted the actual 

concentration of nisin in the coating by 5 fold. Table 5 demonstrates that nisin 

concentration multiplied by a factor of 5 to account for this dilution. Previous research 

demonstrates with low levels of nisin, the effectiveness can be reduced when diluted 

(Grower, J.L., Cooksey, K., Getty,K. 2004b). 

.  There is a significant difference in the nisin leaving the films when comparing 

diffusion methods (agar well diffusion vs. spot on lawn); however, the research 

determined that the agar well diffusion is the more reliable method, which is in 

agreement with the fact that it is the gold standard methodology most often reported in 

the literature. The agar well diffusion standard curve also had a higher R-squared value 

compared to standard curve of spot on lawn. Both methods (spot on lawn and agar well 

diffusion) showed significant differences between the various treatments PA, PB, WA, 

WB compared to the control over time, indicating a reduction of L. monocytogenes 

compared to the control coating for all coatings containing nisin. Either substrate (P or 

W) or coating treatment (A or B) is capable in causing reduction of L. monocytogenes. 
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The newly developed coating did not show the expected slow release with the addition of 

the calcium chloride solution. Higher concentrations of CaCl2 were not optimal for 

commercial coating parameters because viscosity was too high and the coating solution 

did not flow easily. The pH of the coating was designed to be less than the pka of the 

pectin (3.95) in order to achieve a higher percentage release of the nisin (Marathe 2008). 

The low methyl ester pectin used in the coatings was chosen for its high reactivity to 

calcium in order to optimize the slow release of nisin. Despite utilizing previous research 

findings, the percentage of release of nisin leaving the pectin coating remained very low.  

The food challenge study was completed in triplicate. The average of the three 

replicate challenge studies are shown in Figure 3. As expected, all treatments (PA, WA, 

PB and WB) were statistically different from treatment C (control) in the reduction of L. 

monocytogenes. Statistical differences did not exist between treatments PA, WA, PB and 

WB (Figure 3). Therefore the addition of calcium chloride could be removed for cost 

reduction and ease of production. The cost of coating C is $0.005 cents, A is $0.0078 

cents and the cost of coating B is $0.0114 cents. In addition, both substrates were 

successfully coated and achieved reduction of L. monocytogenes.  Both substrates could 

be considered for future commercialization, with the lesser-cost substrate going into 

production.  

The inoculated population of L. monocytogenes remained fairly constant over the 

time course of the study. L. monocytogenes is still able to grow at refrigeration 

temperature; therefore, a slight increase in population was expected. The background 

microflora was suppressed by the inoculation and did not increase over the time course of 



  

  

   

109 

 

the study (data not shown). The meat was not sterilized prior to the study in order to 

mimic a real world, worst-case scenario. Control meat was also sampled throughout the 

study in order to measure the impact of background microflora on inoculated organisms 

(Ceylan 2007).  

Conclusion 

Findings from this research suggest that the developed coatings demonstrated 

antimicrobial activity against L. monocytogenes. The developed coatings were food safe, 

colorless and within the commercial range for viscosity and percent solids. Both coating 

treatments A and B were able to inhibit L. monocytogenes for the entire time course of 

the turkey bologna food challenge study, and were significantly different compared to 

controls. The addition of calcium chloride was not as beneficial as hypothesized, which 

was potentially due to the fact that slow release was not needed in the viscous pectin 

coating.  
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Table 3.1. Summary of Coding for treatments. 

Codes 

(1st Letter) 

Substrates Codes 

(2nd Letter) 

Coating 

P Sealed Air 

laminate 

coextruded 

forming web with 

a polypropylene 

skin, a plastomer 

sealant and EVOH 

barrier 

C Control: No Nisin or 

Calcium Chloride 

W A wax parchment 

paper from Ingles 

A Coating with nisin 

  B Coating with nisin 

and Calcium 

Chloride 

 

Table 3.2. Average pH, density and percent solids of coating solutions (A, B and C). 

Method Treatment 

Average 

Result 

Standard 

Deviation 

Density 

(g/cm3) 

A 2.07a 0.001 

B 2.06b 0.0005 

C 2.06c 0.001 

Percent 

Solids 

A 29.01b 0.11 

B 29.78a 0.15 

C 28.59c 0.06 

pH 

A 2.50b 0.01 

B 2.55a 0.02 

C 2.50b 0.01 

 
aTreatment A: coating C + nisin added 
bTreatment B: coating C + nisin and CaCl2 added 
cTreatment C: control coating 
da-c denote statistical differences (P<0.05) for between treatments for each property 
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Table 3.3. Average viscosity results measured by Bostwick, Zahn cup and 

Brookfield viscometer for coating solutions (A, B and C). 

 

Method Treatment Average Result Standard Deviation 

Bostwick 
time 30sec 

A 18.17 cma 0.29 

B 7.50 cmb 0.50 

C 19.00 cma 0.00 

Zahn Cup 
#2 

A 27.27 seca 0.209 

B N/M N/M 

C 28.43 secb 0.081 

Brookfield 
Time 

90sec, 
Temp:45ºC, 

Volume: 
80mL 

A -Used 
Spindle #2 
RMP: 60% 95.85 CP (mPa*s)a 30.43 torque 0.15 0.08 

B- Used 
Spindle #1 
RPM 12% 66.5 CP (mPa*s)b 16.33 torque 0.30 0.25 

C-Used 
Spindle #2 
RMP: 60% 112.65 (mPa*s)c 36.17 torque 0.90 0.85 

aTreatment A: coating C + nisin added 
bTreatment B: coating C + nisin and CaCl2 added 
cTreatment C: control coating 
da-c denote statistical differences (P<0.05) between treatment for each viscosity measurement. 
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Table 3.4. Dry coated film average properties (basis weight, thickness, 

transmittance, haze and clarity) for coating A, B and C. 

 

Method Treatment 

Average 

Result 

Standard 

Deviation 

Basis Weight 

(g/m2) 

A 422.59b 0.00 

B 578.94a 0.01 

C 415.60b 0.00 

Thickness (mm) 

A 2.61a 0.10 

B 2.79a 0.17 

C 2.76a 0.17 

Transmittance 

A 90.99a 0.10 

B 90.96a 0.05 

C 91.08a 0.48 

Haze 

A 8.63b 2.32 

B 12.41a 0.59 

C 4.62c 3.11 

Clarity 

A 92.81a 0.38 

B 91.90ab 0.69 

C 90.76b 1.68 
aTreatment A: coating C + nisin added 
bTreatment B: coating C + nisin and CaCl2 added 
cTreatment C: control coating 
da-c denote statistical differences (P<0.05) between treatment for each property measurement. 
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Table 3.5. Average nisin leaving the films overtime measured by agar well diffusion 

and spot on lawn, accounting for the acetic acid dilution. 

 

 
aTreatment PA: coating C + nisin added on polymer 
bTreatment PB: coating C + nisin and CaCl2 added on polymer 
cTreatment PC: control coating on polymer 
dTreatment WA: coating C + nisin added on wax paper 
eTreatment WB: coating C + nisin and CaCl2 added on wax paper 
fTreatment WC: control coating on wax paper 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method Treatment 30	minutes 5	hours 10	hours 24	hours 48	hours 72	hours 7	days

PA 0 0 850.73 1245.8 1252.2 1245.8 2617.83

WA 0 0 0 1075 1365.3 1075 1075

PB 0 1297.55 2153.5 2513.45 2591.34 2413.34 1699

WB 0 0 0 0 1925.1 1451.2 1699

PC 0 0 0 0 0 0 0
WC 0 0 0 0 0 0 0

PA 0 0 19.25.1 2100.1 2291 2291 2291
WA 0 0 0 1559.6 1617.6 2291 2291
PB 0 1246 1617.6 1674.9 1925.1 2100.1 2291

WB 0 0 0 0 1925.1 2100.1 2291

PC 0 0 0 0 0 0 0
WC 0 0 0 0 0 0 0

Agar	Well	

Diffusion	

Spot	on	

Lawn

Nisin	Leaving	Films	(IU/mL)	over	time
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Figure 3.1. A. Coating by Draw down method B. Coated Film Drying for 24 hours 
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Figure 3.2. Film on lawn of coatings A, B and C coated on substrate “P”. 

 
a Treatment A: coating C + nisin added 
b Treatment B: coating C + nisin and CaCl2 added 
c Treatment C: control coating 

 d Coated on Sealed Air Corporation Polymer: “P” 

 e Coated on Wax paper: “W” 
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Figure 3.3. Challenge Study on Ready-to-eat Turkey Bologna 
 

aControl : Average of Wax paper and Plastic controls 
bPA: Plastic substrate, Treatment A  
cWA: Waxpaper substrate, Treatment A  
dPB: Plastic substrate, Treatment B  
eWB: Waxpaper substrate, Treatment B 
fTreatment A: coating C + nisin added 
gTreatment B: coating C + nisin and CaCl2 added 
hTreatment C: control coating 
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Abstract 

Listeria monocytogenes should be controlled by continuing good manufacturing 

methods, continued proper handling by food workers, and necessary additional secondary 

safety measure. An example of an additional secondary method is an antimicrobial 

coating. However, current research for antimicrobial coatings is in preliminary stages and 

is primarily based on theoretical lab scale testing. There is a need diffusion studies for 

antimicrobial coatings. It is necessary to understand the safety and potential success for 

antimicrobial coatings to consider being commercialized. An antimicrobial coating 

containing nisin was developed using common commercial methods and studied. 

Diffusion was successfully measured by agar well diffusion method. It was determined 

that approximately 50% of the nisin remained entrapped in the pectin coating. 

Microscopy was examined as a new method for tracking nisin diffusion in the food and 

films and found to be useful. Finally, HPLC results demonstrated that the nisin might 
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have been breaking down when in contact with the turkey bologna. The research is 

necessary in order to fill the gap in the literature to produce a future commercial coating. 

Introduction 

Since its discovery, nisin has proven to be an effective inhibitor of gram-positive 

bacteria, such as Listeria monocytogenes  (Bower, C.K., McGuire, J., Daeschel,M.A. 

1995) and is now approved for use in 57 countries around the world and has been 

affirmed as generally recognized as safe (GRAS) in the United States  (Jin, T., Liu, L., 

Zhang., H., Hicks.,K. 2009). Nisin is considered nontoxic to humans because it is 

inactivated by proteolytic enzymes in the digestive tract, and assumed to be safe for use 

as a food preservative  (Bower, C.K., McGuire, J., Daeschel,M.A. 1995).  (Barrett, 

Woessner & Rawlings 2004) describes proteolytic enzymes as any group of enzymes that 

break down protein chains into amino acids. 

Because of its non-toxic qualities, being heat stable, in that it does not create off-

flavors, nisin is used in a variety of commercially produced foods, including dairy 

products, meats, fish, and eggs  (Le Blay, G., Lacroix, C., Zihler, A., Fliss,I. 2007, 

Schillinger, U., Geisen, R., Holzapfel,W.H. 1996). Given the abundance of legal 

antimicrobials, utilization in food is dependent on a variety of factors, including the 

properties of the food, the type of preservation system being used, the characteristic of 

the microorganism that is being contested and the cost effectiveness of the antimicrobial  

(Branen 1983). An estimated 20% of the world’s food supply is lost due to microbial 

spoilage and antimicrobials are needed to ensure proper food supply is maintained 

(Branen 1983, Fulton 1981). Packaging films containing antimicrobial agents have shown 
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improved efficacy by a controlled migration of the compound into the food, allowing for 

initial inhibition of undesirable microorganisms, and subsequent residual activity over the 

course of the distribution stage of the food cycle  (Quinatavalla, Vicini 2002). 

Current US regulations dictate zero tolerance policy for L. monocytogenes in 

Ready-to-eat foods  (Food Safety and Inspection Service (FSIS) 2000). In order to 

combat this ever-present menace, L. monocytogenes should be controlled by continuing 

good manufacturing methods, continued proper handling by food workers, and necessary 

additional secondary safety measure such as antimicrobial coating. However, current 

research for antimicrobial coatings is in preliminary stages and is primarily based on 

theoretical lab scale testing. There is a need diffusion studies for antimicrobial coatings. 

It is necessary to understand the safety and potential success for antimicrobial coatings to 

consider being commercialized. 

Pectin is an ideal carrier for the antimicrobial nisin in a food safe coating for 

ready-to-eat (RTE) meats. Pectin is a soluble dietary fiber that binds cholesterol and 

slows glucose absorption during digestion (Brown et al. 1999). It is safe for human 

consumption as it is currently part of daily diets and is GRAS approved  (United States 

Food and Drug Administration (FDA) 2013b). It has been used for many years in the 

food and beverage industry as a thickening agent, a gelling agent and a colloidal 

stabilizer, respectively (Allwyn et al. 2012). In coatings, pectin is the carrier agent. Pectin 

is an interesting candidate pharmaceutical use, specifically for its utilization in controlled 

drug delivery / controlled release.  (Sriamornsak, Nunthanid 1998) modified drug release 
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patterns by utilizing a pectin/calcium delivery system; there was a delayed release of the 

drug in the colon. 

High methyl ester pectins (degree of methyl esterification above 50) form gels in 

the presence of low pH combined with low water activity (such as the addition of sugar). 

Gelation for low-ester pectin relies on calcium being added to the mixture.  (Grant et al. 

1973) was the first to coin the term “egg-box model” in order to describe the gelation of 

pectin and other alginates. LM pectin is ideal for slow release antimicrobial coatings 

when it is combined with calcium. 

The objectives of this study were thus to (1) identify the concentration of nisin 

leaving the film by agar well diffusion method to (2) determine whether microscopy 

methods could enhance the understanding of diffusion of nisin and to (3) measure 

diffusion of nisin from coating using high performance liquid chromatography (HPLC). 

Materials and Methods 

Coating Preparation 

Table 1 summarizes the two substrates used plastic (P) and wax paper (WP) with 

three types of coatings (C, A, B) for a total of six treatments (PC, WC, PA, WA, PB, 

WB). Sealed Air Corporation donated substrate (P). It is a Sealed Air laminate 

coextruded forming web with a polypropylene skin, a plastomer sealant and ethylene 

vinyl alcohol barrier was used for the plastic treatments (PA, PB, PC). This substrate is a 

low sealing material with enhanced sealability through brines, marinates and sauces. The 

sealing range is 105-180ºC. Substrate (W) is a wax parchment paper from Ingles Markets, 
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SC. It was used for the wax paper treatments (WA, WB, WC). Substrates were ultraviolet 

light (UV) treated for 15minutes before being coated.  

Coating Preparation 

The coating was prepared semi-commercially according to section 3.1. The 

formulation is the same with various nisin concentrations ranging from 10,000-80,000 for 

initial agar well diffusion studies. Microscopy and high-pressure liquid chromatography 

(HPLC) release studies contained 60,000IU/g of nisin.  

Standard assay curve of nisin 

The standard assay curve of nisin A solution was obtained by the method adapted 

by  (Tramer, J., and Fowler,G.G. 1964). The effect of different nisin concentrations and 

the minimum inhibitory concentration (MIC) of nisin was determined with a stock 

solution and serial dilutions ranging from 80,000IU/mL to 78 IU/mL. A stock solution 

was obtained by adding 0.05g of Nisin A into 100mL of acidified water (0.02N Acetic 

Acid).  From the stock solutions 80,000, 40000, 20,000, 10,000, 5,000, 2,500, 1,250, 625, 

313, 156, 78 IU/mL were made. Acidified water (20% Acetic Acid) was used as a 

negative control. 

Estimation of nisin in films  

 Coated films containing 10,000IU/mL, 20,000IU/mL, 40,00IU/mL and 

80,000IU/mL of nisin (wet concentration) each analyzed separately. After 24 h of drying 

were cut into 4 x 4 square inches. The squares were placed in sterile polyethylene bags 

and 5mL of sterilized acidified water (20% Acetic Acid) was added. The bags were 

sealed with an impulse sealer Model FS-400 (Hualian, China) and placed on a Gyrotory® 
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water bath shaker (Edison, NJ) at 4ºC. Portions of 500ul of nisin- containing release 

samples were collected into test tubes after the stipulated release time and immediately 

stored at 4ºC until assay. The times of collection were 30 minutes, 5 h, 10 h, 24 h, 48 h, 

72 h, and 7 days. Total removal of the coating was completed using 50% ethanol solution 

(See extraction of nisin from coating section, for full method). 

Agar well diffusion assay 

The agar well diffusion method adapted by (Barefoot, Klaenhammer 1983) was 

used to detect the activity of nisin against L. monocytogenes ATCC 4325. Modified 

Oxford (MOX) agar plates were overlaid with ~8mL of semisoft TSB agar (0.5% w/v 

agar) seeded with 1% of broth culture of L. monocytogenes ATCC 4325. The seed 

density was approximately 1x 106 cfm ml-1 of overlay. Plates were allowed to harden for 

1 h before wells were made. 50-ul wells were made using a bore. Then 50-ul of nisin-

containing release samples were placed in each well. Plates were stored at 4ºC for 24 h 

and then incubated at 37ºC.  

Microscopy 

 Coated substrates “W” and “P” were coated cut and super-glued to fit a 

microscope slide. A total of 12 coating microscope slides were prepared by using the 

following treatments in duplicate: PA, WA, PB, WB, PC and WC (Figure 1). Ready-to-

eat Turkey (Ingles, SC) was also cut and glued to a different set of 12 microscope slides 

(Figure 2). The super glue was necessary to hold the substrates and turkey meat in place 

over sampling time period of 63 days.  Each slide containing coating and turkey was 

imaged on day 0 and used as a control. Then each turkey slide was placed ontop of a 
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coating slide so the coating was in contact with the turkey and vacuum packaged. The 

slides were then separated and imaged on days 1, 2, 7, 14, 21, 28, 35, 42, 49, 56 and 63. 

After each imaging session the slides were placed by together, vacuum packaged and 

storage at refrigeration. Nisin A is naturally inherently fluorescent (Figure 2) and the 

objective was to track the nisin leaving the film and entering the turkey meat.  Figure 3 

demonstrates the fluorescence of nisin A in the coated film. Images of the coated film and 

meat were obtained using a Nikon Eclipse Ti Microscope (Nikon Instruments, Melville, 

NY) in wide field fluorescence mode. A 10x dry objective (10X Plan Apo; IM=air; 

NA=0.45; WD=4mm), and a Nikon GFP filter cube (C-FL GFP HC HISN; Exciter= 450-

490 nm; Dichroic= 495 LP; Emitter = 500-550), were used with a camera exposure time 

of 50 msec (Photometrics Cool-Snap HQ2, Photometrics, Tucson, AZ). NIS-Elements 

AR version 3.0 (Nikon Instruments, Melville, NY) was used to analyze the images.  

Extraction of Nisin from Coating 

  The turkey bologna (Ingles, SC) was vacuum packaged in contact with the 4 x4 

square coated films (PA, WA, PB, WB, PC, WC) and stored in the dark at refrigeration 

temperature. Each sampling day 0, 1, 2, 7, 14, 21, 28, 35, 42, 49, 56 and 63 three of 

treatment were sampled. The meat was separated from the coated film. The coating was 

removed from the substrate by using a razor blade and 50% ethanol. The removed 

coating was combined in a test tube containing three coatings for each treatment. Method 

of isolating the nisin was modified from (Xiao et al 2010). The solution was stirred, 

centrifuged and the supernatant was stored at 4ºC with foil to prevent light until analyzed 
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by high-performance liquid chromotography. In addition, the pellet was rehydrated and 

analyzed for remaining nisin after extraction (data not shown).  

High performance liquid chromatography  

 High-performance liquid chromatography (HPLC) was carried out on a Water 

HPLC system with a UV/VIS detector and a Waters XBRIDGE column (inside diameter, 

4.6 mm; length 250 mm; packed with 5-um beads) Method was modified from Liu and 

Hansen, 1990. A gradient elution with water- acetonitrile gradients (0.9 ml/min) 

containing 0.1% TFA were used. The gradient was from 50 to 100% acetonitrile over 40 

minutes. Peaks were monitored at 254 nm, and quantitated by total area obtained by 

integration.  

Statistics 

The log of nisin concentration was plotted against the average diameter of 

inhibition zone to generate a nisin standard curve (See Figure 4). Unknown nisin 

concentrations were estimated using the equation generated for each assay. The R-

squared value was 0.979. Where X is log units of nisin and Y is the diameter of 

inhibition. 

The agar well diffusion experiments were replicated three times. Plates were 

evaluated for zones of inhibition in millimeters with a digital caliper (Control company, 

China) in both horizontal and vertical directions and averaged.  From the standard curve 

(Figure 4) the equation of a line was used to determine the nisin concentration leaving the 

films (Table 2). The calculation were completed in Microsoft® Excel 2011 Version 

14.1.2. Statistical differences (P<0.05) were analyzed using true repeated measures 
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analysis of variance (GLM)  (SAS, Cary, N.C., USA) was completed to compare the four 

coating treatments (PA, WA, PB and WB) and difference of concentration of nisin A.  

Microscopy images were taken in duplicate. The statistical method region of 

interest (ROI) was used to analyze the same area on every image taken. This helped 

removed sampling bias. Then the mean fluorescence intensity was calculated and 

averaged for each treatment on each day. Finally the control fluorescence was subtracted 

on each day for both coating and meat.  Statistical differences (P<0.05) were analyzed 

using 1-way analysis of variance (Anova), Tukey’s test (SAS, Cary, N.C., USA) was 

completed to compare the four coating treatments (PA, WA, PB and WB) and difference 

of fluorescence intensity by microscopy overtime. In addition, same test was completed 

for the meat fluorescence intensity between the four treatments overtime. 

Results 

The method agar well diffusion can be used to estimate the amount of nisin 

leaving the coated substrates. Using the standard curve for agar well diffusion, which can 

be found in Figure 4, the amount of nisin releasing from the coated substrates was 

estimated. Table 2 summarizes the nisin concentration leaving the coated substrates (by 

agar well diffusion method) with four different nisin concentrations (10,000, 20,000, 

40,000 and 80,000).  Another method of measuring diffusion of nisin is HPLC. The 

coated substrates were placed in contact with turkey meat to measure diffusion from 

coated substrates to food. Table 3 summarizes the diffusion of nisin leaving the coated 

substrates and entering the turkey (measured by HPLC) over the first 48 hours.  



  

  

   

133 

 

  Microscopy can be used to visualize the diffusion of nisin from the coated 

substrate to the food. Figure 3A shows nisin fluorescing in the coated substrates (10x 

magnification) day 0 (before in contact with the meat). Figure 3B then shows an image 

take after the coated substrate was in contact with the turkey for 63 days (10x 

magnification). Images were taken over the entire 63 days shelf life of the turkey meat 

with the coated substrates vacuum packaged to the turkey meat. The data is summarized 

in Figure 5 of the nisin leaving the film over 63 days measured by reduction in 

fluorescence intensity. Figure 6 then demonstrates the nisin entering the meat over 63 

days measured by fluorescence intensity. 

Discussion 

There is a demand for food safe commercial antimicrobial coatings. However, 

diffusion studies are necessary to determine the levels of antimicrobials that are effective 

and concentrations of the antimicrobial entering the food system before 

commercialization can occur. Carriers such as pectin can aid in the delivery of 

antimicrobials, by providing viscosity and percent solids in order for the solution to coat 

the packages surface.  

The researchers first objective was to determine the concentration of the nisin 

leaving the pectin coatings by agar well diffusion method. A standard curve seen in 

Figure 4 allowed the researchers to estimate the nisin concentration leaving the coated 

substrates. The results demonstrated that despite high levels of nisin being added to the 

coating solution low levels of nisin was releasing from the substrates after 7 days. 

Meaning a higher concentration of nisin may be incorporated into the pectin coating 
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formulation and the diffusion of nisin from the substrates would still be within the legal 

limit. Approximately half of the nisin added to the coated substrates was measured 

leaving the substrates (Table 2). Therefore, if the nisin added in the coating formulation 

were double the legal limit (20,000IU/g) the release of nisin from the substrates into the 

food would be equal or less than legal maximum (10,000IU/g). The remaining nisin is 

hypothesized to be trapped in the pectin coating and unable to diffuse or breaking down 

and unable to be measured.  

The second objective was to determine if microscopy could assist in the 

understanding of how the nisin diffused from the coated substrate into the food (turkey). 

The research was able to detect the nisin in the coated substrates and in the food by using 

fluorescence microscopy. Figure 2 demonstrates the auto-fluorescence of nisin A (95% 

purity). Although the meat and pectin displayed auto-fluorescent properties, the nisin A 

demonstrated the strongest auto-fluorescence. This allowed the background auto-

fluorescence to be subtracted using controls and only evaluate the nisin. Fluorescence 

microscopy was useful in identifying the dispersion of the nisin through the coated 

substrates. In Figure 3, it is obvious that the nisin is present and dispersed throughout the 

coating.  

Microscopy can be used to measure nisin diffusion as a non-quantitative measure. 

Figure 5 demonstrates the Nisin A leaving the coating by the reduction in fluorescence 

over time. Figure 6 demonstrates an increase in fluorescence intensity over time due to 

the diffusion on the Nisin A into the turkey.  After 28 days, the diffusion was difficult to 

measure because the turkey began to attach to the coated film and was hard to sample.  
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Although statistical results may show statistical significance between treatments (PA, 

WA, PB and WB) and the fluorescence intensity over time, no practical significance was 

observed. There was not a significant difference between meat fluorescence intensity and 

coating treatment in contact with the meat. 

Objective 3 was to measure diffusion of nisin from the coating using HPLC. This 

objective was attained but had limitations. The researchers were able to isolate nisin and 

develop a standard curve. However, the researcher’s collected HPLC data over the entire 

63-day shelf life but after analysis discovered the nisin had a conformational between day 

2 and day 7. This resulted in the remaining sampling days 7,14, 21, 28, 35, 42, 49, 56 and 

63 having values that did not correspond with the original nisin A standard curve. This 

data was discarded. The data from the first 48 hours was used.  

The HPLC peak area data was averaged and, using the standard curve equation of 

a line, concentration was calculated (See Figure 7). Also, the dilution during the 

extraction process was accounted for and adjusted. The control substrates and blank (50% 

ethanol) did not show any peak when using the same HPLC method. The concentration 

calculated was the amount of nisin left in the substrate after storage (in contact with the 

meat). As the nisin left the substrates it was assumed to be diffusing into the meat see 

Table 3. 

HPLC demonstrated similar results to agar well diffusion and microscopy images 

in the diffusion concentration of nisin A leaving the pectin coating.  Approximately half 

the nisin A added to the coating was released after two days. Table 3 demonstrates the 

release of nisin from the coating and therefore theoretically entering the turkey bologna 
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for the first 2 days of storage. The nisin changes confirmation when stored with turkey 

bologna, somewhere between day 2 and day 7. After day 7, the area of the peak was 

unable to be analyzed since it broke down into smaller peaks. Future research should 

investigate this change and whether it effects reduction in antimicrobial activity. The loss 

of nisin was first observed by Hirsch et al. (1951). Enzymes capable of degrading nisin 

include pancreatin, α-chymotrypsin, and subtilopeptidase inactivate (Xiao 2010, 

Heinemann, Williams 1966, Jarvis, Mahoney 1969).  

According to (Marathe 2008) pectin shows better dissolving capability at low pH 

or below the pka of pectin. In this study the pH of the pectin coating was approximately 

2.5, which is below the pka of the pectin (3.95) this allowed for the better release of nisin. 

The Marathe study concluded that if pH was above the pka, then there was not release of 

nisin. Even applying the knowledge from previous research the percentage of release of 

nisin leaving the pectin coating remained very low.  

Viscosity can be reduced under low pH conditions. Viscosity increases with 

increasing pectin solution. Pectin solutions are viscous, but pectin is not particularly 

efficient as a thickener compound compared to other water soluble –polymers. The 

rheological properties of pectin solutions are very dependent on the presence of salts, 

calcium or similar non alkali metals, and on the pH. Other important facts are the 

chemical properties of pectin, including the degree of ester, and the average molecular 

weight. This study did observe release of nisin from the substrates but at low levels. It is 

hypothesized that if the viscosity were reduced by decreasing the pectin levels in the 

formulation then the nisin may release at a higher percentage from the coated substrate. 
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Hanusova, et al., (2010) measured migration from a dried natamycin solution on a 

coated LDPE film into water. In order to determine diffusion, the study utilized agar well 

diffusion method. Natamycin was released in amounts that inhibited microrganisms, 

however, the study indicated that the natmycin broke down after eight days of exposure 

to light. 

Kim, et al., (2002) incorporated nisin into acrylic polymer and vinyl acetate 

ethylene co-polymer and coated onto paper. The study measured (via agar well diffusion) 

the release of nisin into different contact solutions, which included water, 2% sucrose 

solution, 2% citric acid solution, and a 2% NaCl solution; these solutions represented 

sweet, acidic, and salty foods, respectively. The study also measured the inhibition with 

against Micrococcus flavus in a nutrition broth medium; the study showed that there was 

inhibition against the microorganism.  

Jin & Zhang (2008), in studies utilizing nisin as an antimicrobial in polylactic acid 

polymer, also measured the release of nisin. The standard curve was prepared by a seeded 

lawn overlay spot (also completed by  (Siragusa, G.R., Cutter, C.N., Willett,J.L. 1999) 

with some modifications to the procedure. The nisin was heated (100º C for 5 minutes) 

and then cooled for 144 hours to obtain maximum release. The release kinetics from a 

PLA nisin matrix need further investigation, the study indicated, however their 

hypothesis follows a Fickian diffusion behavior. 

Conclusion 

Diffusion was successfully measured by agar well diffusion method. It was 

determined that approximately 50% of the nisin remained entrapped in the pectin coating. 
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Microscopy was examined as a new method for tracking nisin diffusion in the food and 

films and found to be useful. Finally, HPLC results demonstrated that the nisin might 

have been breaking down when in contact with the turkey bologna. Future studies should 

examine the structural change in the protein nisin and if it has an effect on the 

antimicrobial activity of the protein.  
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Table 4.1. Summary of Coding for treatments. 

Codes 

(1st 

Letter) 

Substrates Codes 

(2nd 

Letter) 

Coating 

P Sealed Air laminate 

coextruded forming 

web with a 

polypropylene skin, a 

plastomer sealant and 

EVOH barrier 

C Control: No Nisin 

or Calcium 

Chloride 

W A wax parchment 

paper from Ingles 

A Coating with nisin  

  B Coating with nisin 

and Calcium 

Chloride 
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Table 4.2. Release of nisin (measured by agar well diffusion method) from two 

substrates, two formulations with four different nisin concentrations (10,000IU/g, 

20,000IU/g, 40,000IU/g and 80,000IU/g) overtime. 

 a Formulation B has added Calcium Chloride for slow release compared to formulation A 

b “WA” is wax paper substrate with formulation A  

c PA” is polymer substrate with formulation A 

d “WB” is wax paper substrate with formulation B 

e “PB” is polymer substrate with formulation B  

Treatment 

& Time

PA

Inhibition 

Zone 

(mm)

Nisin 

Release 

IU/mL

Inhibition 

Zone 

(mm)

Nisin 

Release 

IU/mL

Inhibition 

Zone 

(mm)

Nisin 

Release 

IU/mL

Inhibition 

Zone 

(mm)

Nisin 

Release 

IU/mL

30 0.0 0.0 0.00 0.00 2.2 1880.9 2.2 1880.9

5 0.0 0.0 1.8 1534.7 1.8 1534.7 3.3 3291.1

10 0.6 850.7 4.3 5472.9 3.2 3127.9 5.8 11736.6

24 1.4 1245.8 3.0 2825.4 5.4 9576.2 7.0 21607.4

48 1.4 1252.2 3.2 3127.9 5.8 11736.6 7.6 29317.8

72 1.4 1245.8 3.5 3643.5 6.7 18549.7 8.0 35932.3

7 2.9 2617.8 4.8 7057.7 7.0 21607.4 8.3 41855.2

WA

30 0.0 0.0 0.5 792.3 2.5 2191.0 2.8 2552.1

5 0.0 0.0 0.5 792.3 1.2 1131.1 4.0 4698.5

10 0.0 0.0 1.7 1458.6 2.0 1699.0 5.9 12349.0

24 1.1 1075.0 2.2 1880.9 2.2 1880.9 6.9 20535.9

48 1.6 1365.3 2.0 1699.0 3.6 3833.6 6.2 14384.6

72 1.1 1075.0 2.0 1699.0 3.2 3127.9 8.0 35932.3

7 1.1 1075.0 4.0 4698.5 6.5 16755.7 8.1 37807.1

PB

30 0.0 0.0 1.0 1021.7 3.8 4244.0 5.5 10075.8

5 1.5 1297.6 1.5 1317.5 3.1 2972.8 5.7 11154.6

10 2.8 2513.5 2.2 1880.9 5.6 10601.5 7.0 21607.4

24 2.8 2591.3 2.8 2552.1 5.4 9576.2 7.7 30847.5

48 2.7 2425.5 1.9 1614.7 6.9 20535.9 7.7 30847.5

72 2.7 2413.2 3.5 3643.5 7.0 21607.4 8.0 35932.3

7 2.0 1699.0 4.8 7057.7 7.0 21607.4 8.2 39779.7

WB

30 0.0 0.0 1.0 1021.7 4.5 6058.9 3.6 3833.6

5 0.0 0.0 3.5 3643.5 5.8 11736.6 7.3 25169.1

10 0.0 0.0 4.7 6707.7 5.4 9576.2 7.2 23921.0

24 0.0 0.0 5.0 7813.4 7.0 21607.4 8.0 35932.3

48 1.0 996.0 3.3 3291.1 7.0 21607.4 8.2 39779.7

72 1.7 1451.2 4.8 7057.7 7.0 21607.4 8.2 39779.7

7 2.0 1699.0 4.7 6707.7 7.0 21607.4 8.2 39779.7

10,000IU/mL 20,000IU/mL 40,000IU/mL 80,000IU/mL



  

  

   

141 

 

Table 4.3. Diffusion of nisin leaving the coated substrates and entering the turkey 

measured by high performance liquid chromatography over 48 hours. 

 

Day Sample Concentration 
in substrate 

Concentration 
in Meat 

0 PA 59877.15 122.85 

WA 60666.92 -666.92 

PB 60820.96 -820.962 

WB 59817.01 182.99 

1 PA 54778.78 5221.22 

WA 52528.01 7471.99 

PB 50492.87 9507.13 

WB 46410.34 13589.60 

2 PA 31768.041 28231.96 

WA 27812.97 32187.03 

PB 26657.82 33342.18 

WB 23737.29 36262.71 

 

a Formulation B has added Calcium Chloride for slow release compared to formulation A 

b “WA” is wax paper substrate with formulation A  

c PA” is polymer substrate with formulation A 

d “WB” is wax paper substrate with formulation B 

e “PB” is polymer substrate with formulation B  
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Figure 4.1. A: Coated substrates glued to microscopy slides. B: Meat glued to 

microscopy slides. C: Combined substrate and meat slides vacuum packaged and 

stored at 4ºC between sampling.  
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Figure 4.2. Auto-fluorescence of Nisin A (>95%) (10x magnification). 

 

 

 

Figure 4.3. A. Nisin A Fluorescence in the coated substrate (10x magnification) day 

0 (before in contact with the meat). B: Nisin A Fluorescence in the coated substrate 

(10x magnification) after 63 days in contact with the meat. 
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Figure 4.4. Nisin A standard curve for agar well diffusion method. 

 

 

Figure 4.5. Nisin A leaving the substrates over 63 days measured by reduction in 

fluorescence intensity.  

 

a Formulation B has added Calcium Chloride for slow release compared to formulation A 

b “WA” is wax paper substrate with formulation A  

c PA” is polymer substrate with formulation A 

d “WB” is wax paper substrate with formulation B 

e “PB” is polymer substrate with formulation B  
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Figure 4.6. Nisin A entering the meat over 63 days measured by fluorescence 

intensity. 

 

a Formulation B has added Calcium Chloride for slow release compared to formulation A 

b “WA” is wax paper substrate with formulation A  

c PA” is polymer substrate with formulation A 

d “WB” is wax paper substrate with formulation B 

e “PB” is polymer substrate with formulation B 
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Figure 4.7. High-performance liquid chromatography standard curve of nisin A 

(>95%). 
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CHAPTER V 

THE EFFECT OF BOVINE ALBUMIN AND POLYMER TYPE ON NISIN Z 

CONTAINING EXTRUDED FILM 
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Department of Food Nutrition and Packaging Science, B212 Poole & Agricultural 

Building, Clemson University, South Carolina, 29634, USA 

Abstract 

Antimicrobial food packaging may extend shelf life, reduce spoilage, maintain 

food quality and can eliminate foodborne pathogens in ready-to-eat deli meat. Nisin is a 

polypeptide with natural antimicrobial activity against gram-positive microorganisms, 

such as Micrococcus luteus. This food additive is generally recognized as safe (GRAS) in 

the United States. Although nisin is thermally stable, it loses antimicrobial activity at 

high extrusion temperatures. The researchers’ objective was to investigate the effect of 

bovine albumin and polymer type on nisin Z containing extruded films, such as ethylene 

vinyl acetate, metallocene linear low density polyethylene and polypropylene. The 

modified resins were produced using a Micro 15cc twin-screw compounder. In all cases 

the resin was added first and melted at 170ºC. The barrel was then cooled to 140ºC before 

additives were included. The batch was then continually mixed for five minutes before 

passing through the film die. After extrusion, each film type was tested for antimicrobial 

activity using a modified seeded lawn overlay assay. Statistical analysis was performed 

using a two tailed, unequal variance T-TEST’s in Excel. The results demonstrated that 
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there was significant increased inhibition of M. luteus when the bovine albumin was used 

in combination with the nisin Z. Also, there was a significant difference between the type 

of polymer and the amount of inhibition of M. luteus. This research is directed toward the 

development of an antimicrobial vacuum skin package (VSP) for ready-to-eat (RTE) 

meat. It provides new and necessary information on post-extrusion retention of the 

activity of the antimicrobial, nisin. 

Introduction 

The Centers for Disease Control and Prevention estimates that approximately 48 

million cases of foodborne illness occur each year in the United States including 128,000 

hospitalizations and 3,000 related deaths [1].  Active packaging was introduced as a 

response to the demands of consumers for high quality, safe and extended shelf-life of 

food products; it has also suited the changes in retail and distribution practices, (for 

instance, online commerce and “retail superstores”), which have pressed logistic tensions, 

as distribution distances increase and require longer storage times [2,3,4]. Active 

packaging applications (including the incorporation of antimicrobials and subsequent 

release into the product), have received considerable attention as a means of extending 

the bacterial lag phase, leading to slower growth of microorganisms [5,6]. The direct 

addition of antimicrobials (organic acids, spice extracts, chelating agents, metals, 

enzymes or bacteriocins, such as nisin) have also shown a decrease in antimicrobial 

growth because of leaching into the food matrix, and cross-reaction with other food 

components such as lipids or proteins [7,8,9]. 
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Nisin is a polypeptide produced from subspecies of Lactococcus lactis, which is a 

gram-positive lactic acid bacterium (LAB) and is used extensively in the production of 

various dairy products, including various cheeses, butter and sour cream [10,11]. Nisin 

has been approved for use as an antimicrobial in food by the Joint FAO/WHO Expert 

Committee on Food Additives (which is run by the United Nations); nisin has been given 

the food additive number 234, and is approved for use in over 50 countries [4]. Nisin is 

the most abundantly used of all bacteriocins [12], as it is an effective antimicrobial [10]. 

However, while nisin is GRAS (generally recognized as safe) by the FDA since 1988 

[12], there is a concentration limit of 10,000 IU (international units) in food. Nisin is an 

effective antimicrobial against gram-positive microorganisms, such as Micrococcus 

luteus. M. luteus species are non-motile, non-spore forming, aerobic, gram-positive and 

oxidase-positive cocci coming from the genus Micrococcus and family Micrococcaceae 

[13] that can survive halophilic environments.  

The process of extruding nisin has been examined previously, although minimally 

[14,15,16,17,18]. To the author’s knowledge, research in comparing resin type and its 

effect on release of nisin has not been studied. Preliminary studies examined Low density 

polyethylene (LDPE), Linear low density polyethylene (LLDPE), NexxstarTM Low EVA-

00111 7.5 % Va content and Elvax 3120 EVA 7.5% Va content. However the main 

research focuses on resins that are co-polymers. Ultimately, this film could potentially be 

produced by co-extrusion or lamination. This would allow the innermost layer to contain 

the antimicrobial additives. The resins investigated in this study are Ethylene vinyl 

acetate (EVA) Elvax 3124, ExceedTM 1018CA Metallocene polyethylene (mLLDPE) and 
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VersiftyTM 3200 polypropylene (PP). These resins were chosen for their low melting 

index suitable for nisin to retain antimicrobial activity during extrusion. Also, these resins 

are commonly used in ready-to-eat meat packaging. This study also examined the 

addition of bovine albumin, (BA) since previous research demonstrated an increase in 

thermal stability for other additives [19, 20].  

Materials and Methods 

Nisin Z of 2.5% purity was supplied by Handary (Brussels, Belgium). The BA 

had a pH of 5.2 and was supplied by VWR (Radnor, Pennsylvania). Both were stored at 

refrigeration temperature until use. The resin Elvax 3120 EVA (Va content 9%) was 

supplied by DuPont (Fayetteville, North Carolina). The resins mLLDPE and PP were 

supplied by Dow Chemical (Houston, Texas). Preliminary studies in addition examined 

LDPE (Dow Chemical, Houston, Texas), LLDPE (Dow Chemical, Houston, Texas), 

NexxstarTM Low EVA-00111 (7.5 % Va content) (ExxonMobil Chemical, Irving, TX) 

and Elvax 3120 EVA (7.5% Va content) (DuPont, Wilmington, DE). 

Culture storage and preparation.  

Micrococcus luteus ATCC 4698 was obtained from ATCC. The culture was 

grown aerobically in Tryptic Soy Broth (TSB; Difco Laboratories, Detroit, Mich.) at 

30°C for 48 h. The culture was stored at -80ºC in TSB and glycerol as stock cultures until 

needed for experiments. To prepare the culture for experiments, 0.1 mL volumes from 

frozen stock culture was transferred to 10 mL of fresh TSB at 37°C for 48 h. The culture 

was later transferred to Tryptic Soy Agar (TSA; Difco) plates, struck to isolation, and 

incubated at 30°C for 48 h. Finally, a single colony of the culture was taken from the 
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TSA plate and transferred to TSB and allowed to grow statically for 48 h at 30°C to 

obtain a cell concentration of ~6 log10 CFU/mL. This transfer process was done in 

triplicate. 

Preliminary single screw extrusion experiments  

The researchers saw promise in the thermal stability of the antimicrobial nisin 

based on the previous studies. The researchers wanted to determine if nisin would survive 

signal screw extrusion. A mixture of 200 grams of resin and 2 grams of Nisin Z (2.5%) 

were placed in the single screw extruder (Killion, Cedar Grove New Jersey) hopper. The 

operating parameters are shown in Table 1. The die was removed from the single screw 

extruder in these initial trials. This was to ensure back pressure would not build up, 

destroying the rupture disk in the machine. This was repeated with LLDPE using the 

same methods as well. Control film was also extruded for each run. Without the coat 

hanger die on the extruder the appearance of the extrudate can be seen in Figure 1. The 

extrudate was then cut into slices and heat pressed at 122ºC. All of the films were tested 

for antimicrobial activity against Micrococcus luteus ATCC 4698. 

Single screw extrusion with the use of the coat hanger die was then conducted. 

The following polymers were used LDPE, LLDPE, mLLDPE and EVA (3 types). 200 

grams of each of the resins was blended and extruded with 2g of Nisin Z (2.5%). The 

processing parameters can be found in Table 2, Table 3 and Table 4. Control films were 

made for each run and had similar processing parameters. All of the films were tested for 

antimicrobial activity against Micrococcus luteus ATCC 4698. 

Preparation of twin-screw extrusion 



  

  

   

156 

 

Resins were prepared using a batch process. A micro-15cc twin-screw compounder 

(DSM xplore Netherlands) was used with a total volume of 10 g. In all cases the resin 

was added first and melted at 170ºC. Then the barrel was cooled to 140ºC before 

incorporating the additive(s). The batch was continually mixed for 5 minutes before 

passing through the film die. The chill roll parameters were as follows: speed 370 m/min 

and torque 78. This was completed in triplicate for each treatment.  

Treatments 

This experiment has two sets of controls (one for each type of resin (EVA, 

mLLDPE &PP and one for each resin type plus BA). Treatment 1 is the resin type and 

nisin added without BA. Treatment 2 is the resin type, added nisin and BA (See Table 5). 

Preparation of antimicrobial testing 

 After extrusion, each set of samples was tested for antimicrobial activity using a 

modified seeded lawn overlay assay [21]. TSA agar plates were overlaid with ~8mL of 

semisoft TSB agar (0.5% w/v agar) seeded with 1% of broth culture of M. luteus. The 

seed density was approximately 1x 106 cfm ml-1 of overlay. The corresponding control 

was always placed on the same overlaid agar plate. Plates were evaluated for zones of 

inhibition after 24-48 h incubation at 30ºC. The inhibition zones were measured on all 

four sides of the film. Each treatment was plated in duplicate. 

Statistical analysis 

Statistical analysis was performed to determine if there was a statistical difference 

(p<0.05) for the inhibition of M. luteus when nisin was added compared to the control 

film using Control 1 (no nisin) to those with nisin (Treatment 1). Comparisons were also 
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made between nisin without BA (Control 2) and those with nisin and BA (Treatment 2) 

as well as between Treatment 1 and Treatment 2. The inhibition was measured on all four 

sides of the film. A caliper was used to measure from the edge of the film to the outer 

edge of the zone of inhibition. The analysis was performed using a two tailed, unequal 

variance T-TEST’s in Microsoft® Excel® for Mac® version 11.5  (2004, Microsoft 

Corp. Redmond, WA). A p-value of less than 0.05 was considered significant. Every 

plate was also completed in duplicate. The films were tested in triplicate and then the 

average was used to conduct statistical analysis. A control film was always placed on 

each plate to ensure no inhibition was related to the film itself.  

Statistical analysis was performed to compare the type of polymer used (EVA, 

mLLDPE or PP) to see if a significant difference in inhibition of M. luteus exists between 

polymer type. This was completed for Treatment 1 and Treatment 2 for each film type. 

The statistical analysis was performed using ANOVA in excel 2010. A p-value of less 

than 0.05 was considered significant. Then an individual two tailed, unequal variance T-

TEST’s was performed. The analysis was performed in Microsoft® Excel® for Mac® 

version 11.5  (2004, Microsoft Corp. Redmond, WA) in order to determine where the 

significant difference between polymers were occurring. This was completed for 

Treatment 1 and Treatment 2 for each film type. A p-value of less than 0.05 was 

considered significant. 

Results 

First preliminary extrusion studies were conducted. Table 6 show the inhibition 

achieve for the single screw extrusion without the coat hanger die in place. Table 7 
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displays LDPE, LLDPE, EVA and MLLDPE initial trials (with coat hanger die) and the 

inhibition achieved for each.  Then the studies involving bovine albumin on the twin 

screw extruder were completed. Tables 8, shows statistical differences between controls 

and treatments by completion of a T-test. Table 9, shows statistical differences between 

polymer types for both treatment 1 and 2, by completion of an ANOVA. Table 10 shows 

how a T-test to demonstrates statistical difference for comparing type of polymers and 

achieved inhibition for treatment 1. Table 11 uses a T-test to demonstrate statistical 

difference for comparing type of polymers and achieved inhibition for treatment 2. 

Discussion 

The researchers were not sure how nisin would behave when extruded under 

pressure. Since pressure was not investigated in studies from the literature the coat hanger 

die was removed for early experiments. The average inhibition zones for LDPE and 

LLDPE, which were extruded without the coat hanger die on the extruder, can be seen in 

Tables 6. LDPE did not demonstrate activity. LLDPE did demonstrate activity after 

extrusion up to temperature of 170ºC without the coat hanger die.  

After this successful experiment, the coat hanger die could be used for future 

trials (Table 7). Once the coat hanger die was added the LLDPE no longer demonstrated 

antimicrobial activity, however. It should be noted that mLLDPE and EVA did display 

antimicrobial activity. For future studies both mLLDPE and EVA 3124 were selected 

because of the promising preliminary results.  

In the preliminary results limited conclusions can be made with varying time, 

temperature and multiple polymer types (Table 7). It is difficult to compare each trial 



  

  

   

159 

 

with so many changing variables. Also mixing and pressure changes were influential in 

the amount of inhibition achieved. Another concern was sampling bias, as variation 

existed between beginning, middle and end of each run. The goal was to achieve a 

homogenous extrudate with even inhibition throughout the entire run. Future studies were 

conducted on a twin-screw extruder with a smaller hopper and screw to help eliminate 

bias and control variables. 

The researchers were able to produce an antimicrobial film with or without the 

addition of BA for all resin types (EVA, mLLDPE and PP). Antimicrobial activity was 

measured using modified seeded (with M. luteus) lawn overlay assay. The films analyzed 

were tested at the beginning, middle and end of the extrusion run. Table 11 summarizes 

the treatment and controls that were used in this study. There was a significant difference 

(p<0.05) in antimicrobial activity of Treatment 1 to Control 1 (See Table 8). In addition, 

there was also a significant difference (p-value < 0.05) in antimicrobial activity between 

Treatment 1 and Treatment 2 (See Table 8). Only EVA at the end of the run did not have 

a statistical difference (p-value of 0.051).  

As expected, there was a significant difference (p<0.05) between Control 2 and 

Treatment 2. Therefore, it can be observed that BA is beneficial in aiding the nisin for 

inhibition of M. luteus. Nisin has been incorporated into film by extrusion in the past 

[14]. Nisin has also been encapsulated in order to increase the survival of the activity of 

the nisin after extrusion. The objective of this study was to investigate the addition of BA 

in addition to nisin during extrusion. BA is a protein that exhibits multiple mechanisms of 

denaturation [22]. A study by Aoki et al., [23] found that some fractions of BA are 
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denatured by heat; however, the amount of BA resistant to heat denaturation decreases at 

higher temperatures. Aoki et al., [23] also observed that in the presence of fatty acids the 

BA was even more resistant to heat. BA has been used to increase the viability and 

leaching during high-temperature extrusion of: oat hulls, soybean hulls, yeast extract, 

soybean flour and mineral salts [19].  

It is possible that the BA is protecting the nisin during processing at 140ºC. It is 

known that nisin begins to degrade at high processing temperatures. [9] determined that 

extrusion above 140ºC resulted in denaturation of nisin and complete loss of 

antimicrobial activity. However, Siragusa et al., [24] extruded nisin using polyethylene 

resin at 120ºC and found that it had excellent antimicrobial activity of nisin. Although 

nisin may still retain some antimicrobial activity, that activity is reduced at higher 

temperatures. The researchers are suggesting that BA can help protect the nisin at 

extrusion temperatures, however, only within a narrow range (120-160ºC). Studies 

demonstrated loss of inhibition of M. luteus at extrusion temperatures above 160ºC with 

or without the presence of BA. Also, it was observed that with extrusion below 120ºC, 

BA does not provide added benefit when incorporated. This agrees with previous work 

showing nisin has a high percentage of activity below these temperatures [24]. 

This study also investigated the difference between resin type and antimicrobial 

activity of the film. In order to yield a proper comparison, the same parameters that were 

used during extrusion and the same concentrations of additives that were used were 

analyzed. Statistical analysis demonstrates that the type of resin does have a significant 

impact of the antimicrobial activity of the film. ANOVA results demonstrate a p-value of 
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0.025 for treatment 1 and a p-value of 0.04 for treatment 2 (See Table 9). This means at 

least one of the films has a statistical difference in the amount of inhibition occurring 

against M. luteus.  

After further investigation, the significant difference in the achieved inhibition 

was occurring between mLLDPE and PP. Treatment 1 has a p-value of 0.004 (See Table 

10) while treatment 2 had a p-value of 0.046 (See Table 11). There was not a significant 

difference between EVA and mLLDPE or EVA and PP with p-values of greater than 

0.05. PP and mLLDPE are both nonpolar, EVA has 9% VA content (VA content is 

polar).  This demonstrates that polarity is not the main reason for the significant 

difference in inhibition, as was expected. PP had the lowest melting temperature at 85ºC, 

while mLLDPE had the highest melting temperature at 117.7ºC, and EVA melting 

temperature was 99ºC. It is hypothesized that the PP achieved a more-even mixing (due 

to lower melting temperatures) compared to the mLLDPE and this accounts for the 

differences in inhibition. 

Future research should be conducted to see if an encapsulation process of nisin in 

BA could be developed to increase the temperature range at which BA can protect nisin. 

Currently, there is a narrow window in which the BA is providing protection. The 

literature also suggests that adding fatty acids could aid in protection of the BA, possibly 

increasing the protection of the nisin at higher temperatures.  

Conclusion 

In conclusion, BA can be used to protect nisin from temperatures in the extruder 

and help retain antimicrobial activity. The type of polymer that is used to incorporate the 
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antimicrobial during the extrusion process also plays a role. It has been demonstrated that 

lower melting resin is ideal for the extrusion of nisin and can significantly increase the 

inhibition achieved against M. luteus. The production of this antimicrobial film was able 

to extend shelf life, which will help sustainability. This study also provides new and 

necessary information on post-extrusion retention of the activity of the antimicrobial 

nisin.  
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Table 5.1. Processing Parameters for single screw extrusion without coat hanger die. 

Polymer LDPE Trial 1 LLDPE Trial 2 LLDPE Trial 3 LLDPE Trial 4 

Zone 1 256ºF/124.4ºC 225ºF/107.2ºC 225ºF/107.2ºC 240ºF/115.5ºC 

Zone 2 300ºF/148.9ºC 265ºF/129.4ºC 265ºF/129.4ºC 310ºF/154.4ºC 

Zone 3 311ºF/155.0ºC 267ºF/130.5ºC 266ºF/130.0ºC 344ºF/173.3ºC 

RPMs 24.4 21.3 23.1 23.2 

Melt 297ºF/147.0ºC 253ºF/122.8ºC 253ºF/122.8ºC 323ºF/161.0ºC 

 

 

 

Table 5.2. Processing parameters for single screw extrusion for low density 

polyethylene (LDPE) and linear low density polyethylene (LLDPE). 

 

 

 

 

 

 

 

Polymer LDPE  LDPE  LLDPE  LLDPE 

 

LLDPE  

Zone 1 245ºF/118.3ºC 220ºF/104.4ºC 220ºF/104.4ºC 229ºF/109.4ºC 230ºF/110.0ºC 

Zone 2 300ºF/148.8ºC 325ºF/162.8ºC 325ºF/162.8ºC 325ºF/162.8ºC 320ºF/160.0ºC 

Zone 3 370ºF/187.8ºC 344ºF/173.3ºC 344ºF/173.3ºC 345ºF/173.9ºC 343ºF/172.8ºC 

Die 366ºF/185.6ºC 341ºF/171.7ºC 341ºF/171.7ºC 341ºF/171.7ºC 342ºF/172.2ºC 

Adaptor 366ºF/185.6ºC 340ºF/171.1ºC 340ºF/171.1ºC 339ºF/170.6ºC 341ºF/171.7ºC 

Pressure 

(psi) 

800 550 1270 1140 1320 

Screw 

RPMs 

110.9 35.6 35.6 35.7 35.0 

Melt 369ºF/187.2ºC 330ºF/165.6ºC 333ºF/165.6ºC 329ºF/165.0ºC 335ºF/168.3ºC 

F.P.M 80.0 15.2 15.2 15.1 15.2 

Res. 

time 

44 sec 2.5min 2.5min ~2.5mins 2.5 min 
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Table 5.3. Processing parameters for single screw extrusion for Ethylene vinyl 

acetate (EVA). 

 

 

  

Polymer NexxstarTM 

Low EVA-

00111 7.5 % 

Va content  

NexxstarTM 

Low EVA-

00111 7.5 % 

Va content  

Elvax 3120 

EVA 7.5% Va 

content 

 

Elvax 3124 

EVA 9.0% 

Va content  

Elvax 3124 

EVA 9.0% Va 

content  

Zone 1 227ºF/108.3º

C 

230ºF/110.0ºC 230ºF/110.0ºC 230ºF/110.0º

C 

246ºF/118.9ºC 

Zone 2 300ºF/148.8º

C 

300ºF/148.8ºC 280ºF/137.8ºC 280ºF/137.8º

C 

300ºF/148.8ºC 

Zone 3 301ºF/149.4º

C 

301ºF/149.4ºC 286ºF/141.1ºC 287ºF/141.7º

C 

375ºF/190.6ºC 

Die 301ºF/149.4º

C 

301ºF/149.4ºC 285ºF/140.5ºC 285ºF/140.5º

C 

366ºF/185.6ºC 

Adaptor 300ºF/148.8º

C 

299ºF/148.3ºC 285ºF/140.5ºC 285ºF/140.5º

C 

368ºF/186.7ºC 

Pressure 

(psi) 

1140 1140 1000 530 210 

Screw 

RPMs 

33.4 34.9 35.1 35.1 35.0 

Melt 293ºF/145.0º

C 

292ºF/144.4ºC 279ºF/137.2ºC 279ºF/137.2º

C 

365ºF/185.0ºC 

F.P.M 6.1 4.2 3.5 3.5 3.5 

Res. 

time 

 3 min 80 sec 1min 45 sec 2 min 28 sec 2 min 17 sec 2 min 17 sec 
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Table 5.4. Extrusion parameters for Metallocene polyethylene (mLLDPE). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Polymer ExceedTM 

1018CA 

mLLDPE 

 

ExceedTM 

1018CA 

mLLDPE 

 

Zone 1 230ºF/110.0ºC 230ºF/110.0ºC 

Zone 2 300ºF/148.8ºC 300ºF/148.8ºC 

Zone 3 307ºF/152.8ºC 304ºF/151.1ºC 

Die 301ºF/149.4ºC 300ºF/148.8ºC 

Adaptor 300ºF/148.8ºC 300ºF/148.8ºC 

Pressure 

(psi) 

1780 1160 

Screw 

RPMs 

34.9 22.5 

Melt 301ºF/149.4ºC 297ºF/147.2ºC 

F.P.M 4.8 6.0 

Res. 

time 

2 min 4 min 20 sec 
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Table 5.5. List of controls and treatments for bovine albumin experiment. 

Control 1 Film: 

Resin Only 

Control 2 Film: 

Resin + BA 

Treatment Film 1: 

Resin + Nisin Z 

Treatment Film 2: 

Resin + Nisin Z 

+BA 

a. EVA (10.0 g) a. EVA (9.95 g) +  

BA (0.05 g) 

a.EVA (9.8 g) + 

Nisin Z (0.2 g) 

a.EVA (9.75 g) +  

Nisin Z (0.2 g) +  

BA (0.05 g) 

b.mLLDPE 

(10.0 g) 

b.mLLDPE (9.95 g) 

+ BA (0.05 g) 

b.mLLDPE (9.8 g) + 

Nisin Z (0.2 g) 

b.mLLDPE (9.75 g) 

+ Nisin Z (0.2 g) +  

BA (0.05 g) 

c.PP (10.0 g) c.PP (9.95  g) +  

BA (0.05 g) 

c.PP (9.8 g) +  

Nisin Z (0.2 g) 

c.PP (9.75 g) +  

Nisin Z (0.2 g) +  

BA (0.05 g) 

 

BA: bovine albumin 

EVA: Ethylene vinyl acetate 3124 

mLLDPE: ExceedTM 1018CA Metallocene polyethylene 

PP: VersiftyTM 3200 polypropylene 

Nisin Z: Nisin Z at 2.5 % purity  

 

 

 

Table 5.6. Inhibition zones for polymers extruded without the die. 

 

Trial Resin Type Temperature 

ºC 

Average 

Inhibition  

(mm/in) 

Start 

Average 

Inhibition 

(mm/in) 

Middle 

Average 

Inhibition 

(mm/in)  

End 

1 LDPE 147.0 0 0 0 

2 LLDPE 122.8 5.25 4.725 5.1 

3 LLDPE 122.8 3.9 4.6 3.65 

4 LLDPE 161.0 5.2 6.625 7.1125 

 

  



  

  

   

167 

 

Table 5.7. Antimicrobial activity of films after extrusion for low density 

polyethylene (LDPE), Linear low density polyethylene (LLDPE), Ethylene vinyl 

acetate (EVA) and Metallocene polyethylene (MLLDPE). 

 

Resin Type 

 

Residence Time 

 

Temperature (ºC) 

 

Average Inhibition 

(mm/in) 

LDPE 

 

2 min 30 sec 

 

165.6 

 

None 

 

LDPE 44sec 187.2 None 

LLDPE 

 

2 min 33 sec 

 

168.3 

 

None 

 

LDPE 

 

2 min 30 sec 

 

165.6 

 

None 

 

LLDPE 

 

2 min 20 sec 

 

165.0 

 

None 

 

EVA 

Nexxstar 

7.5% 

 

 

2 min 40 sec 

 

145.0 

 

2.1 

 

EVA 

Nexxstar 

7.5% 

 

1 min 45 sec 

 

144.4 

 

2.4 

 

EVA 3124 

9% 

 

2 min 17 sec 

 

185.0 

 

None 

 

EVA 3124 

9% 

 

2 min 17 sec 

 

137.2 

 

3.3 

 

EVA 3120 

7.5% 

 

2 min 28 sec 

 

137.2 

 

2.6 

 

mLLDPE 

 

4 min 20 sec 

 

147.2 

 

3.4 

 

mLLDPE 

 

1 min 45 sec 

 

149.4 

 

6.5 
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Table 5.8. Statistical results (p-value) for differences in inhibition between controls 

and treatments. 

 

Polymer Control 1 

compared to 

Treatment 1 

Control 2 

compared to 

Treatment 2 

Treatment 1 

compared to 

Treatment 2 

Sampling 

position 

B M E B M E B M E 

EVA 0.000* 

 

0.000* 

 

0.012* 

 

0.000* 

 

0.000* 

 

0.001* 

 

0.013* 

 

0.034* 

 

0.051 

 

mLLDPE 0.000* 
 

0.000* 
 

0.000* 
 

0.000* 
 

0.000* 
 

0.000* 
 

0.021* 
 

0.012* 
 

0.032* 
 

PP 0.000* 

 

0.000* 

 

0.000* 

 

0.000* 

 

0.000* 

 

0.000* 

 

0.007* 

 

0.000* 

 

0.021* 

 

EVA: Ethylene vinyl acetate 3124 

mLLDPE: ExceedTM 1018CA Metallocene polyethylene 

PP: VersiftyTM 3200 polypropylene 

Control 1: Resin Only 

Control 2: Resin + Bovine Albumin 

Treatment 1: Nisin Z + Resin 

Treatment 2: Nisin Z + Resin + Bovine Albumin 

B: Beginning of run 

M: Middle of run 

E: End of run 

*: Statistically significant with a p value of <0.05 

 

 

 

 

 

 

Table 5.9. ANOVA results (p-values) for difference inhibition between polymers 

(EVA, mLLDPE & PP). 

 

Treatment for each polymer type P-value for difference inhibition between 

polymer type 

Treatment 1 0.024* 

Treatment 2 0.040* 

 

EVA: Ethylene vinyl acetate 3124 

mLLDPE: ExceedTM 1018CA Metallocene polyethylene 

PP: VersiftyTM 3200 polypropylene  

Treatment 1: Nisin Z + Resin 

Treatment 2: Nisin Z + Resin + Bovine Albumin 

*: Statistically significant with a p value of <0.05 
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Table 5.10. P-value Results for TTEST’s comparing type of polymers achieved 

inhibition for treatment 1. 

 

 mLLDPE PP 

EVA 0.405426128 

 
0.074 

 

mLLDPE ------------------ 0.005* 

 

*: Statistical significant with a p value of <0.05 

EVA: Ethylene vinyl acetate 3124 

mLLDPE: ExceedTM 1018CA Metallocene polyethylene 

PP: VersiftyTM 3200 polypropylene 

Treatment 1: Nisin Z + Resin 

 

 

 

 

 

 

 

Table 5.11. P-value Results for TTEST’s comparing type of polymers achieved 

inhibition for treatment 2. 

 

 mLLDPE PP 

EVA 0.416348363 

 
0.091 

 

mLLDPE ------------------ 0.047* 

 

*: Statistical significant with a p value of <0.05 

EVA: Ethylene vinyl acetate 3124 

mLLDPE: ExceedTM 1018CA Metallocene polyethylene 

PP: VersiftyTM 3200 polypropylene 

Treatment 2: Nisin Z + Resin + Bovine Albumin 

  



  

  

   

170 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Extrudate from initial trials without the coat hanger die. 
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CHAPTER VI 

FUTURE RECOMMENDATIONS 

 

 Developing an extruded antimicrobial film is challenging. However, the following 

are suggestions that the researcher was unable to attempt and may prove successful. The 

major challenges to overcome with respect to extrusion are diffusion and residence time 

in the barrel.  

 A multi-layer blown film should be attempted to aid at the release of the nisin. 

The objective would be an extruded film with a thin layer of concentrated nisin on 

the inside or “food contact side” of the extruded blown film. In theory this would 

decrease the diffusion necessary for the nisin to exit the film.  

 In addition, the nisin should be aided by use of a port to reduce the residence time 

in the barrel and achieve maximum retention of antimicrobial activity.  Ideally, 

nisin would be added using a “wet port”. This would allow the nisin to be mixed 

with a plasticizer and added in liquid form to the barrel. The plasticizer may aid in 

bringing the nisin to the surface of the film as it blooms, potentially increasing 

antimicrobial activity.  

 Previous research demonstrates that PLA is the most ideal polymer for developing 

a nisin-extruded film. This is thought to be due to the breakdown of the PLA 

allowing the nisin to release from the film at a controlled manor.  

 The researcher also suggests using polypropylene and stretching or orienting the 

film to create small pores. Finally, more research using bovine albumin could be 
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conducted in combination with the previous suggestions as it also creates pores in 

the film. 

 Although a successful antimicrobial coating was developed, more research is still 

necessary for commercialization.  

 The concentration of pectin in the formulation could be decreased to aid in release 

of nisin and reduce cost. The current formulation uses double the legal limit of 

nisin (20,000 iu/ml versus limit of 10,000 iu/ml) because of how nisin was 

entrapped in the film. Caution should be taken when decreasing pectin 

concentration since it will also lower the viscosity of the coating and may limit 

possibilities for commercialization.  

 Also, attempting other “food safe” carriers is suggested.  

 Future research does not suggest adding calcium since it did not show a 

significant difference in release of nisin. The pectin alone entrapped too much 

nisin in the coating not allowing it to release. 

If extrusion and coating prove to demonstrate limited success then a spray could 

be developed. 

 The spray could be added immediately prior to packaging the food or directly 

after extrusion of the film.  

 Future studies should exam the shelf life of nisin in warehouses as it may 

breakdown during storage.  This research also raised questions about nisin itself. 

How is the nisin breaking down? Does it still retain its antimicrobial activity? 
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Will it only break down when in contact with the food? These questions are 

important in order for future research to measure diffusion accurately.  

 Finally, nisin is a natural antimicrobial but may prove more successful if used in 

combination with other natural antimicrobials. Especially, if the additional 

antimicrobial added allows for inhibition of gram-negative pathogens. Some 

research suggests that a synergist effect will occur; yielding a higher inhibition 

than either antimicrobial alone would produce. This would allow for the use of 

less nisin in the formula and reduction of cost, which is an important factor in the 

commercialization of a process.  

Appendix 

 Nisin has been studied for years but traditionally its effect on foods.  The 

literature has demonstrated that nisin can survive food-processing temperatures such as 

smoking. However, food processing temperatures are not as extreme as temperatures 

used in extrusion. Nisin is a protein and concerns of denaturation or loss of antimicrobial 

activity need to be examined. 

The following experiments were conducted prior to extrusion or coating. First, 

thermal stability studies of nisin Z (2.5%) were conducted on a hot plate/stirrer (Fisher 

Scientific, USA). In a small vial, 1 mL of polyethylene glycol 400 was combined with 

0.01 gram of nisin Z (2.5%). There were a total of 16 vials. Each vial was then heated in 

an oil bath to the target temperature of: 140ºC, 160ºC, 170ºC, 180ºC, 190ºC, 200ºC or not 

heated (control). This was completed in duplicate. The temperature ranges can be found 

in Table 1 and were monitored with a thermal couple. After heating, each vial was 
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immediately cooled on ice to room temperature. See Figure 1 and 2 for the test-up. The 

solution was then tested for antimicrobial activity using the spot on lawn method against 

L. monocytogenes and M. luteus. 

The heat stability results can be found in Table 2. However, conducting heat 

stability experiments is a complex system. It is not only heat that affects the stability of 

the nisin when extruded. Researchers believe it is a combination of temperature, time in 

barrel and pressure. This experiment only takes into consideration time and temperature. 

In addition, the microorganism examined also has an effect. For example Micrococcus 

luteus is more easily inhibited by nisin than a pathogen such as Listeria monocytogenes. 

Heat press studies were then conducted to determine nisin’s heat resistance in a 

polymer compared to the oil bath. 0.1 grams of Sigma Nisin (2.5%) was mixed with 20 

grams of Low Density Polyethylene (LDPE) resin. The mixture was pressed and folded 

five times inside the carver heat press (Enerpac, USA) (See Figure 3). This was 

conducted at 130 ° C, 140 ° C, 150 ° C, 160 ° C, 170ºC and 180ºC temperatures. This was 

repeated in the same manner for Linear Low Density Polyethylene (LLDPE). Control 

films were pressed for each polymer as well. Control films did not contain nisin. 

All of the heat pressed films were tested for antimicrobial activity against Listeria 

monocytogenes ATCC 15313. The heat pressed films were sampled in duplicate by 

cutting 1” by 1” squares from the center of the film. The squares were then placed under 

an ultra violet (UV) light (Zeta 7400 Loctite Corporation, Newington Connecticut) for 5 

minutes. The UV treatment is to remove any microbial contamination on the film 
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(Growler et al year). The plate overlay method was used  (Siragusa, G.R., Cutter, C.N., 

Willett,J.L. 1999). 

Heat pressed studies measure the effect of time and temperature with the addition 

of examining two types of nisin and multiple polymers. The average inhibition zone for 

the carver pressed heat samples can be found in Figure 4. LLDPE had a trend of having 

slightly larger inhibition zones. In addition nisin Z has determined to generally produce 

larger inhibition zones and better diffusion properties as mentioned in the literature  (De 

Vos et al. 1993).  

Previous research demonstrated that nisin could maintain antimicrobial activity at 

the high temperatures that are needed to produce an extruded film. Then studies on the 

single-screw extruder were conducted (see 5.1). Although some success was achieve the 

researchers quickly realized that the powder nisin created a large dust cloud when it was 

dumped into the “hopper” of the extruder. In order to prevent loss of nisin during 

processing the nisin could not be added to the “hopper” as a powder. One method that 

was examined was compounding the powder nisin into the resin ethylene vinyl acetate 

(EVA). 

A master batch was developed by combining 7g of EVA 3124 resin with 7g of 

Nisin Z (2.5%). The mixture was added to a Micro 15cc twin-screw compounder (DSM 

xplore Netherlands) (See Figure 5) at the processing temperature of 140ºC.The mixture 

was continually mixed for 10 minutes and then extruded with a round die.  The master 

batch was pelletized by using HAAKE PP1 Pelletizer (Figure 6). A second formulation 

was developed for a master batch. This included 7.5 grams of EVA 3124 and 2.5 grams 
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of Nisin Z (2.5%). In this trial the EVA 3124 was placed in the twin-screw compounder 

by itself and melted at 160ºC. Then the twin screwed was cooled to 140ºC. Then the nisin 

was added and mixed for 5 minutes. Then it was extruded without any die and pelletized 

as described above. All the processing parameters can be seen in Table 3.  

The 4 grams of the master-batch #1 was then combined with 200 grams of EVA 

3124. This was placed in the hopper of the single screw extruder and extruded. See Table 

3. The film was then tested for antimicrobial activity as described above. A control film 

was also tested. In addition, the master-batch was tested for antimicrobial activity before 

additional processing. 

Master batch #2 7.6 grams were combined with 192.4 grams of EVA 3124 and 

extruded using the single screw extruder. The process parameter used can be seen in 

Table 4. The film was then tested for antimicrobial activity as described above. A control 

film was also tested. In addition, the master-batch was tested for antimicrobial activity 

before additional processing. 

 Many trials were conducted with varying time, temperature and multiple polymer 

types. It is difficult to compare each trial with so many changing variables. Also mixing 

and pressure changes were influential in the amount of inhibition achieved. Another 

concern was sampling bias, as variation existed between beginning, middle and end of 

each run. The goal was to achieve a homogenous extrudate with even inhibition 

throughout the entire run. In order combat this challenge compounding and pelletizing 

was investigated.  
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Compounding targeted the mixing challenge but added an additional heat 

treatment to the nisin. Master-batch #1 did not demonstrate inhibition after extrusion. 

However, before extrusion it demonstrated an average of 16.1 mm/in of inhibition 

(completed in triplicate). Master-batch #2 did not demonstrate inhibition after extrusion 

against L. monocytogenes. However, inhibition was observed (Figure 7) against M. luteus 

(average inhibition 6.79mm/in). Before extrusion inhibition was 16 mm/in. The added 

heat reduced the antimicrobial activity of the nisin.  

Encapsulation of nisin prior to extrusion was attempted to help create a more 

homogenous film without addition of heat. The researchers also thought it could help 

with the feasibility of adding the nisin to the hopper. Without encapsulation the nisin 

created a power cloud when added, resulting in loss of nisin. The other theory was the 

protection of heat in the barrel with the nisin being encapsulated. The nisin was 

encapsulated with beta cyclodextrin  (Siro, I., Fenyvesis, E., Szente, L., De Muelenaer, 

B., Devlieghere, F., Orgovanyi, J., Senyi, J., Barta,J. 2006). The process was time 

consuming and the yield was low. However, the encapsulation was successful and 

extrusion was attempted. It was determined that a more homogenous blend made it more 

difficult for the nisin to release from the extrudate. Also, the encapsulation did not protect 

the nisin from the heat in the barrel. It produces an “ugly” film: the encapsulated nisin 

was sized too large, creating holes in the film and edge tears. 

The next steps included using alternative methods to help the nisin release from 

the extrudate. Such techniques such as addition of plasticizer were used. However, the 

cast extruder available for experimentation did not have the necessary port that would 
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help in metering the plasticizer. Another challenge with the plasticizer was slip. The 

screws in the barrel were not pushing the polymer forward due to the oily plasticizer. 

Therefore, the plasticizer addition was not feasible to use without a port.  

The literature demonstrated that polylactic acid proved more successful because it 

degraded overtime-creating pores for the nisin to release from the film. Other methods 

such as addition of bovine albumin, salt or sugar were attempted to create small pores to 

help with diffusion. Although bovine albumin demonstrated promise, the thickness of the 

film was correlated with its success. Thick film produced on the cast extruder did not 

show a significant difference in diffusion when bovine albumin was added. If a thin film 

were produced the film would have defects such as large holes in the film and edge tears. 

The same phenomenon existed when the concentration of nisin was increased. 

Finally, addition of ethylenediaminetetraacetic acid (EDTA) another antimicrobial 

was added to the formulation to see if a synergist effect could be achieved. EDTA is a 

liquid and could possibly act as a plasticizer. It was used in low concentration to prevent 

slip. However, the flash point of the EDTA was too low and was unable to be extruded. 

The challenges in coating were minor in comparison to extrusion. The major issue 

was premature gelling when calcium was added. It was important to keep the solution 

warm when coating. Also slow addition of ingredients was necessary to prevent 

clumping. Finally, since the nisin was transparent when dissolved in acidified water it 

was difficult to measure when a homogenous mixture was achieved in solution.  
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Table 6.1. Temperature Ranges 

Target Temperature ºC Temperature Range ºC 

140 135-147 

160 156-170 

170 169-177 

180 176-181 

190 189-200 

200 198-205 

No Heating (control) None 

 

 

 

 

Table 6.2. Nisin thermal stability results 
 

Temperature (ºC) 

 

L. monocytogenes 

Average Inhibition 

zones (mm/in) 

M. luteus 

Average Inhibition 

zones (mm/in) 

140 

 

None 

 

14.6 

 

160 

 

None 

 

14.4 

 

170 

 

None 

 

None measurable but 

spotty 

 

180 

 

None 

 

None measurable but 

spotty 

 

190 

 

None 

 

None 

 

200 

 

None 

 

None 

 

No heating 

 

3.7 

 

11.4 

 

 

*2 minutes 30 sec at each temperature 
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Table 6.3. Master-batch Processing Parameters 

 

Polymer Master- batch #1: Elvax 

3124 EVA 9% Va 

content (7g) 

Master-batch #2: Elvax 

3124 EVA 9% Va 

content (7.5g) 

Nisin Z (2.5%) (7g) Z (2.5%) (2.5g) 

Rear Zones 140/140/139ºC 140/140/139ºC 

Front Zones 140/141/148ºC 140/141/148ºC 

Force 5700-10,000 3000 

Melt 130ºC 140ºC 

Residence Time 10 mins 5mins 

 

 

 

Table 6.4. Processing parameters for master batch extrusion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Polymer Elvax 3124 

EVA 9.0% 

VA content 

(200g) 

Elvax 3124 

EVA 9.0% 

VA content 

(192.4g) 

Master-

batch 

#1 (4.0g) #2 (7.6g) 

Zone 1 230ºF/110.0ºC 230ºF/110.0ºC 

Zone 2 280ºF/137.8ºC 300ºF/148.8ºC 

Zone 3 286ºF/141.1ºC 303ºF/150.6ºC 

Die 285ºF/140.5ºC 301ºF/149.4ºC 

Adaptor 285ºF/140.5ºC 301ºF/149.4ºC 

Pressure 

(psi) 

1090 520 

Screw 

RPMs 

35.1 35.1 

Melt 277ºF/136.1ºC 290ºF/143.3ºC 

F.P.M 3.4 4.2 

Res. 

time 

2 min 17 sec 1 min 45 sec 
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Figure 6.1. (A) Heat Stability Apparatus (B) Thermocouple measuring the 

temperature of the vial during heating. 

 

 

 

 

 
 

Figure 6.2. Carver Heat Press 
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Figure 6.3. Carver heat pressed inhibition results for LDPE and LLDPE containing 

nisin. 

 

 

 

 

 
 

Figure 6.4. Twin Screw Compounder seen in the open position.  
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Figure 6.5. PP1 Pelletizer  

 

 

 

 

 

 
 

Figure 6.6. Plate overlay assay with film demonstrating antimicrobial activity  
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