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ABSTRACT 

 

Pressure to improve spark-ignition (SI) engine fuel economy has driven the 

development and integration of many control actuators, creating complex control 

systems. Integration of a high number of control actuators into traditional map based 

controllers creates tremendous challenges since each actuator exponentially increases 

calibration time and investment. Model Predictive Control (MPC) strategies have the 

potential to better manage this high complexity since they provide near-optimal control 

actions based on system models. This research work focuses on investigating some 

practical issues of applying MPC with SI engine control and testing.  

Starting from one dimensional combustion phasing control using spark timing 

(SPKT), this dissertation discusses challenges of computing the optimal control actions 

with complex engine models. A nonlinear optimization is formulated to compute the 

desired spark timing in real time, while considering knock and combustion variation 

constraints. Three numerical approaches are proposed to directly utilize complex high-

fidelity combustion models to find the optimal SPKT. A model based combustion 

phasing estimator that considers the influence of cycle-by-cycle combustion variations is 

also integrated into the control system, making feedback and adaption functions possible.  

An MPC based engine management system with a higher number of control 

dimensions is also investigated. The control objective is manipulating throttle, external 

EGR valve and SPKT to provide demanded torque (IMEP) output with minimum fuel 

consumption. A cascaded control structure is introduced to simplify the formulation and 
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solution of the MPC problem that solves for desired control actions. Sequential quadratic 

programming (SQP) MPC is applied to solve the nonlinear optimization problem in real 

time. A real-time linearization technique is used to formulate the sub-QP problems with 

the complex high dimensional engine system. Techniques to simplify the formulation of 

SQP and improve its convergence performance are also discussed in the context of 

tracking MPC.  

Strategies to accelerate online quadratic programming (QP) are explored. It is 

proposed to use pattern recognition techniques to “warm-start” active set QP algorithms 

for general linear MPC applications. The proposed linear time varying (LTV) MPC is 

used in Engine-in-Loop (EIL) testing to mimic the pedal actuations of human drivers who 

foresee the incoming traffic conditions. For SQP applications, the MPC is initialized with 

optimal control actions predicted by an ANN. Both proposed MPC methods significantly 

reduce execution time with minimal additional memory requirement.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Motivation 

1.1.1 Landscape of Internal Combustion Engine Control 

More than 95% of production vehicles are and will be powered by IC engines, 

with the consideration of Hybrid Electric Vehicles (HEVs) and Alternative Fuel Vehicles 

(AFVs), for the foreseeable future (International Energy Agency). The reasons for the 

dominating role of IC engines include low cost (around $25/kW), high power density (> 

60 kW/L) and high overall energy conversion efficiency (compare to electricity 

generation from fossil fuel). The efficiency of IC engines is still improving with new 

technologies like Variable Valve Timing (VVT), Direct Injection (DI), Homogeneous 

Charge Compression Ignition (HCCI) (Stanglmaier et al. 1999), downsizing and 

turbocharging (Yi et al. 2009) and external Exhaust Gas Recirculation (EGR) (Pfeifer et 

al. 2003). In addition to the improvement of IC engine design, other renewable fuel 

sources have been explored to replace gasoline and diesel. Some OEMs have been 

developing IC engines that can automatically adapt to multiple types of fuel (Nakajima et 

al. 2007). All these technologies increase the degrees of freedom, and therefore 

significantly complicate the design and calibration of the engine control algorithms. It is 

realized that traditional map and Single Input Single Output (SISO) feedback based 

engine control structures can no longer efficiently provide good enough performance 
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because of the exponentially increased calibration time and cost. In response to this 

challenging situation, OEMs are forced to transfer effort from calibration of simple 

control algorithms to execution of complex model-based feedback control algorithms. 

Recently, Model Predictive Control (MPC) has drawn strong attention in the IC engine 

control field for its constraints handling capability, superior transient performance and 

low calibration effort.  

1.1.2 Advantages of Model Predictive IC Engine Control 

The term Model Predictive Control (MPC) refers to a range of control methods 

that explicitly use mathematical models of the controlled systems to predict future 

response. Control laws are generated to optimize the tracking performance, control effort 

and other interested factors for the future horizon with respect to actuators and system 

constraints. 

The most important advantage of MPC engine control is that it can save 

significant calibration and tuning resources compared to traditional map based engine 

controllers, particularly for transient operation conditions. Any new actuator added to the 

engine could easily increase the map calibration time of traditional engine controllers by 

an order of magnitude. In the case of MPC, only minor updates of the objective function 

and constraints are needed along with the new system model that has been integrated with 

the new actuator dynamics. Although it is not realistic to construct a system model 

capable of perfectly describing behavior of an IC engine, MPC is able to keep the model 

prediction error from growing with feedback of system states at each step. Therefore, it 

can tolerate a certain amount of modeling error. Tracking performance during transient 



3 

 

state scenarios is one of the many reasons for considering MPC in the first place. 

Provided with future references, the MPCs can optimize control sequence for the entire 

prediction horizon instead of only responding to the current and prior tracking error, 

which is the concept of traditional feedback control. Therefore, it can compensate for 

most of system delays and overshoots, making it desirable to control systems with high 

order and non-minimum phase dynamics. During the optimization process, constraints 

can be imposed to the control actions and system states. This grants MPCs the ability to 

compensate for actuator saturations ahead of time. This is a beneficial factor in engine 

control applications, where control actions are constantly restricted with mechanical 

limitations and complex combustion phenomena. 

1.1.3 Challenges of Applying MPC to IC Engine Control 

Although MPC has great potential for modern IC engine control, its 

computational complexity is still a barrier keeping it from being accepted by the 

automotive industry. In particular, the additional cost of faster ECUs with large memory 

is the most challenging one. The MPC based engine controller has to be comprehensively 

superior to the traditional map based engine controllers in order to justify the extra cost. 

After implementing MPC into the ECU, there will not be many computation and memory 

resources left for other control tasks. Therefore, the MPC has to work in all engine 

operation conditions including idling, tipping-in, coasting and many other transient and 

steady state scenarios. Furthermore, this situation requires the MPC to handle 

comprehensive control objectives, including fuel economy, torque delivery, emissions 

and drivability. These demands lead to complicated optimization algorithms with 
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nonlinear system models. Few articles about MPC engine control focus on 

comprehensive control objectives over a wide engine operation range. Vermillion et al. 

(2010) proposed a MPC engine control strategy considering fuel economy, emission and 

drivability in the objective function. The control scheme was evaluated under 

comprehensive operation conditions with a driver-in-the-loop simulation. Unfortunately, 

the MPC strategy was not implemented with prototype engine controllers due to its 

complex optimization algorithm.  

The prediction model of the controlled system plays an important role during the 

design and execution of the MPC algorithm. Most control applications have 

nonlinearities in the system models. The original Linear Time Invariant (LTI) model 

based MPC has certain tolerance for model nonlinearities and inaccuracy due to the states 

feedback. Therefore, they are the most commonly used MPC strategies for IC engine 

control applications (e.g. Li et al. 2010). For systems with high nonlinearities, the 

approximated linearized model diverges quickly from the original nonlinear dynamics 

when the optimal control actions strays away from the nominal point, reducing the 

optimality and feasibility of the calculated control actions. There were two general ways 

to treat systems with high nonlinearities. One group focuses on directly solving nonlinear 

programming with improved versions of Nonlinear Programming (NLP) algorithms 

(Vermillion et al. 2010, Lee et al. 2011, Murayama et al. 2009 and Zhou et al. 2001). 

However, most of these algorithms take too many iterations to find the optimal solutions, 

making them not realistic for real time implementation. The other set of literature tries to 

modify the parameters of the linear MPC formulation so that some nonlinearities of the 
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original models could be captured. These MPCs are referred to as the Linear Time 

Varying (LTV) or Linear Parameter Varying (LPV) MPCs, with some literature 

discussing their applications with engine control (e.g. Sharma et al. 2010). These 

“suboptimal” approaches are proven to be more feasible with current engine ECUs. 

However, they require real time linearization of the system dynamics. For IC engine 

applications, the control oriented models with decent accuracy are extremely complex. 

The modeling of some engine dynamics, like the turbulent combustion related systems, 

are very ad hoc for specific engine designs. Linearizing these models costs a significant 

amount of execution time in addition to the solving of MPCs.  

MPC controllers are essentially discrete event controllers with units as “steps”. 

The most instinctive way to formulate a MPC engine controller is letting each step 

represent an engine cycle. This was the case for MPC applications with HCCI 

combustion phasing control (Widd et al. 2013 and Bengtsson et al. 2006), in which cyclic 

dynamics have to be considered. However, the computational time is too short to 

complete the online optimization during engine operation, especially for high speed 

operation. Therefore, most MPC engine control researchers discretize their system model 

by fixed sampling time, which is commonly from 10 to 50 Hz. This large time scale 

arouses many application issues with engine systems. The most obvious one is waste of 

actuation bandwidth. A very representative example is Spark Timing (SPKT) control, 

which can be updated for every engine cycle. Therefore, it has the capability to stabilize 

cyclic dynamics providing better Covariance (COV) of Indicated Mean Effective 

Pressure (IMEP) performance and avoidance of knock and misfire. 
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Even with complicated nonlinear prediction models, it is still not possible to 

capture all the detailed engine dynamics with explicit mathematical equations. The 

traditional map based controller has the capability to fine tune the control actions 

experimentally to account for these detailed factors(e.g. different pressure wave tuning 

and coolant temperature for each cylinder). It is possible, yet very difficult, to consider 

these factors in the MPC algorithms. Li et al. (2010) demonstrated the possibility of using 

MPC to control Air-to-Fuel Ratio (AFR) of a SI multiple-cylinder engine with focus on 

different delay of individual cylinders. The engine model used in this application has a 

high number of dimensions to account for discrepancy of different cylinder dynamics.  

Some of the MPC application issues discussed above were addressed by previous 

research work. A detailed literature review is presented later in this dissertation. It is an 

important finding of this research that most MPC application issues can be solved by 

properly designed control hierarchy in the first place. The advantage of this methodology 

is that it reduces the model complexity for the upper level controllers by transferring the 

tasks of managing the high frequency dynamics to the lower level controllers. As a result 

of this frequency separation, the upper level controller has more execution time to run 

more advanced control algorithms generating reference/target signals for the faster 

controllers to track with the lower level control loops. However, the interface between the 

two layers should be explicitly addressed. Ample amount of MPC researchers have 

exploited the benefits from cascaded control strategies. Zhu et al. (2014) designed an 

active suspension control system with a low speed MPC vehicle body motion control and 

a high speed LQG wheel motion control, utilizing the time scale separation between these 
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two dynamics. Raffo et al.(2009) presented a multi-layer MPC based control structure of 

autonomous vehicles. The control levels (from high to low) included route planning, 

vehicle guidance, dynamics and subunits control. The higher level controller had slower 

update frequency and more complicated control algorithms compared to lower level 

controllers. There are only two research publications focused on MPC engine control that 

discuss control cascade organization for IC engine applications, which is far from 

sufficient. The control structure proposed by Vermillion et al. (2010) included a MPC 

upper level controller manipulating AFR, Air Mass Flow (AMF), VVT and SPKT, while 

two lower level controllers tracked the AFR and AMF reference generated by the MPC 

manipulating fuel Injection Pulse Width (IPW) and throttle respectively. Huang et al. 

(2013) applied MPC to control diesel engines with external EGR and a Variable 

Geometry Turbocharger (VGT). By applying lower level controllers for the EGR valve 

and VGT position with a partial inversion technique, a significant amount of 

nonlinearities were removed from the MPC loop. Experimental results indicated 

considerable improvement of MPC calculation efficiency. 

1.1.4 Research Scope 

The previous section summarized the challenges of applying MPC to IC engine 

control application from previous literature. This research work focuses on investigating 

three fundamental issues of applying MPC with SI engine control: 1) a new SI engine 

control framework that can maximize the MPC’s potential to optimize engine 

performance and exploit the control bandwidth of actuators; 2) optimization algorithms 

that are able to utilize complex engine models to compute optimal control actions; 3) 
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strategies to reduce the computation, calibration and memory demand of the MPC 

controllers. 

1.2 Dissertation Outline 

Chapter two of this dissertation introduces the engine that is used for this research 

work. Experimental setup is also discussed in this chapter including data acquisition and 

the prototype engine control system. Starting from the simple one dimensional 

combustion phasing control with SPKT in chapter 3, challenges from the complexity of 

IC engine modeling are discussed. The control objective is to find the SPKT of next 

engine cycle that can generate close to reference combustion phasing without inducing 

knock and excessive cycle-by-cycle combustion variation. The models to predict 

combustion phasing, knock and combustion stability are semi-physical in nature. After 

the analysis of these models, Section 3.2 introduces three optimization approaches that 

are able to directly use these complex models to find the optimal SPKT for the next 

engine cycle with several iterations. The final section of chapter 3 introduces a model 

based combustion phasing estimation technique to improve the quality of cylinder 

pressure sensor measurement, making the feedback and adaption functions possible for 

the proposed combustion phasing controller.  

Chapter four expands the number of control dimension of the MPC based engine 

management system by including the air-path dynamics of a SI engine with external 

EGR. The control objective is to provide demanded torque output while minimizing fuel 

consumption. The control actions are constrained by knock, combustion stability, 
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actuator operation range and air-path dynamics. Section 4.2 discussed the cascaded 

control structure, which is identified as the first issue of applying MPC to engine control. 

Some models used in the one-dimensional combustion phasing control are transferred 

into the model predictive IMEP control framework. Section 4.3 investigates MPC 

strategies that are able to find the optimal control actions with the complex high 

dimensional system.  

Chapter five focuses on the third MPC application issue with engine control by 

discussing the strategies to solve the optimization problems in real time. Specifically, 

methods to accelerate online quadratic programming (QP) are explored, since QP is the 

most common optimization problem faced by MPC applications. Chapter six introduces 

an Engine-in-Loop (EIL) testing method that can evaluate engine performance with 

realistic driver actuation and powertrain behavior. The proposed MPC strategy is 

implemented as the “driver” of the EIL test. The MPC is able to mimic the actual human 

drivers who foresees the incoming speed profile. Finally, chapter seven summarizes the 

contributions of the dissertation and lists possible future extension of this research work.  
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1.3  Literature Review of MPC Application in IC Engine Control 

Developed in late 1970s, MPC was firstly applied to chemical plants for slow 

processes control (Richalet et al. 1976 and Richalet et al. 1978). As microprocessors 

became faster, MPCs were widely applied to robots, autonomous vehicles and other 

systems with fast dynamics (e.g.Raffo et al. 2009). The earliest attempt of applying MPC 

to engine control can be traced back to the early 1990s (Garcia et al. 1989). However, 

only simulation results were presented in most research works by then since the engine 

ECUs at that time were not fast enough to meet with the computational requirements of 

MPCs. The processor situation of automotive industry was significantly improved since 

2000s. Numerous attempts were made to exploit possibilities of using MPCs to solve 

control challenges facing various vehicle systems, including IC engine (Hrovat et al. 

2012) and other powertrain and chassis control systems, like HEV energy management 

(Yan et al. 2012) and active suspension (Zhu et al. 2014).  

Idle Speed Control (ISC) is the most fundamental engine control problem (Hrovat 

et al. 1997). OEMs pay considerable amount of attention to ISC since vehicles consume 

significant amount of time and fuel on idle operation. In order to reduce Friction Mean 

Effective Pressure (FMEP) and fuel consumption, the idle speed should be controlled as 

low as possible without losing stability and stall the engine. Strict constraints are imposed 

to actuators for ISC to avoid nonlinear dynamics and combustion instability. Sharma et 

al. (2010) applied MPC to regulate idle speed of a hydrogen IC engine with throttle, 

Spark Timing (SPKT) and Air-to-Fuel Ratio (AFR). The nonlinear effect was considered 
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through the approximation of Linear Time Varying (LTV) state space model, which 

requires update for every step along the prediction horizon. Stability of this approach was 

proved using Lyapunov method. Simulation results showed remarkable performance of 

speed reference tracking. Di Cairano et al. (2012) and Hrovat et al. (1996) focused on 

ISC of conventional gasoline SI engine with by-pass valve and SPKT. The prediction 

model used in MPC is a Linear Time Invariant (LTI) state space model. Piecewise Affine 

(PWA) equivalence of the original MPC was applied in the experiment. Both simulation 

and test results indicated superior disturbance rejection performance with less actuation 

effort compared to original Proportional Derivative (PD) and Proportional Integral (PI) 

ISC controller. It was also concluded by these research works that preview of known 

torque disturbance, e.g. power steering and air conditioner could greatly improve the 

MPC based ISC performance. With these preview information, it could be possible to 

maintain engine speed without altering SPKT.  

AFR control of SI engine is another basic yet challenging control problem that 

needs to be considered for all engine operation conditions. The dead time delay between 

actuators and lambda sensor feedback leads to difficulties of modeling and design of 

traditional feedback controller. Another challenge of AFR control is the coordination of 

multiple actuators (usually throttle, injectors and VVT) with different bandwidth, which 

causes large amount of time on calibration of maps and tuning of SISO feedback 

controllers (Cristofaro et al. 2003). Li et al. (2010) discussed possibility of using LTI 

MPC for controlling AFR of multi-cylinder SI engine during steady state. The focus of 

this research work was on balancing different dynamics of each cylinder caused by the 
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location of lambda sensor. Zhai et al. (2011) and Sardarmehni et al. (2013) proposed to 

model the AFR dynamics using ANN. Secant Method (Rao 1996) was applied to find the 

optimal solution in (Zhai et al. 2011). Experiment results are available. Sardarmehni et 

al. (2013) recommended using Multi-Layer Perceptron Neural Network (MLPN) directly 

to calculate optimal solution instead of optimizing objective function online. Only 

simulation results were available for this research work.  

Torque delivery is the main function of IC engine. In spite of the difficulties 

associating coordination of various actuators, feedback control on torque output is 

challenging because real time measurement of engine torque output is difficult and 

expensive. Ali et al.(2006) demonstrated potential of using LTI MPC to track torque 

reference with simulation results. Lee et al. (2011) applied Nonlinear MPC (NMPC) on 

SI engine with VVT to track torque reference and reduce NOx emission. Simulation 

results were presented. Both of these research works did not include further discussion of 

torque measurement. Using an empirical model to map engine torque to MAP (or AMF) 

and SPKT can generate reasonably good estimation of torque output (Livshiz et al. 2004), 

until recent powertrain technologies, like torque vectoring (Thang Truong et al. 2013) 

and transmission with dog clutch (Gaetner et al. 2013), rise the demand. Grünbacher et 

al. (2005) suggested using Extended Kalman Filter (EKF) to estimate diesel engine 

torque with measurement of engine speed, injection fuel rate, injection timing and air/fuel 

ratio. Experiment results are promising. Market available cylinder pressure sensor for SI 

engines makes direct measurement of IMEP possible. Using IMEP as feedback can 

significantly improve the torque tracking performance of MPC engine control. 
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Constructing explicit Mean Value Model (MVM) of engines with VVT actuation 

is a very challenging topic. The existing publications were often focused on dual equal 

variable cam timing technology with highly nonlinear coupled dynamics model 

(Stefanopoulou et al. 1998). These factors make the MPC design even more difficult. The 

independent VVT model of (Vermillion et al. 2010) is from Toyota, and classified to be 

presented in the paper. Nonlinear programing with 1 dimensional search was used to find 

optimal solution. Colin et al. (2005) and Lee et al. (2011) used ANN model to capture 

effects of VVT. Nonlinear programming with terminal penalty was applied in by Lee et 

al. (2011). Colin et al.(2007) formulated a QP scheme by linearizing the ANN model at 

specific operation point. Experiment results were provided in this paper. More recently, 

Feru et al. (2012) suggested using MPC with Lyapunov based constraint to control 

engine with dual equal variable cam timing. The VVT model was still highly nonlinear, 

though it is greatly simplified from (Stefanopoulou et al. 1998). The LP optimization was 

formulated using ∞−∞ norm technique to improve robustness and reduce computation 

effort. Flexible Control Lyapunov function (CLF) constraint was added to guarantee 

system stability. Simulation results shows better settling time along with other 

performances compared to traditional controllers.  

Down size turbo charged engine has been proven to be more fuel economic 

compared to natural aspirated engine with similar power. Considering its potential in 

MPG boosting, many research works demonstrated that turbo charged engine control 

could be a great application for MPC for its unique non-minimum phase, nonlinear and 

unstable dynamics (Karnik et al 2012). There are two reasons causing the difficulties of 
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controlling non-minimum phase systems with conventional linear or nonlinear feedback 

controller. The first reason is that there are positive zeroes of non-minimum phase 

dynamics, leading to unstable controllers based on the inversion of the system dynamics. 

The second reason of the difficulty is high frequency manipulation of actuators will lead 

to negative response of the system. In comparison to the extensive discussion of non-

minimum phase dynamics control found in literatures about traditional feedback control 

of turbocharged engine, most research works of MPC based controller did not 

specifically address this issue since the negative response was predicted by the system 

model and compensated ahead of time. Therefore, the MPC controller could significantly 

reduce turbo lag during transient scenarios. For SI turbo charged engine control, Colin et 

al. (2007) and Santillo et al. (2013) suggested using LTI MPC based on QP with 

linearized model at specific operation point. There were more research papers focused on 

MPC based turbo charged CI engine control with external EGR device, since it is a very 

good demonstration of multi-actuators coordination ability and reference tracking 

performance of MPC. LTI MPC with QP is applied in the following articles. Ortner et al. 

(2006), Langthaler et al. (2007) and Ferreau et al. (2007) simplified the MPC execution 

with Piecewise Affine approximation, making it possible to run on prototype engine 

controllers. Experimental results were available. Maruyama et al. (2012) explicitly 

addressed issues with dead time modeling and steady state offset compensation. 

However, the necessity of the offset compensation was questionable since the references 

of most real application are smoothed continuous signal instead of a step function.  
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There are some other published applications of MPC in engine control field.  

Giorgetti et al.(2006) proposed using MPC to control Direct Injection Stratified Charge 

(DISC) engines. The switch dynamics of two different operation modes required Mixed 

Integer Quadratic Programming (MIQP) to calculate optimal solution. Murayama et al. 

(2009) discussed application of NMPC to control engine speed with variable valve lift. 

Controlling engine speed during coast down scenario with LTI MPC was the focus of Di 

Cairano et al. (2012). Application of MPC in HCCI combustion phasing control was 

discussed by Widd et al. (2013) and Bengtsson et al. (2006). Caruntu et al. (2011) and 

Balau et al. (2011) suggested driveline oscillation damping control with 1 step horizon 

∞−∞ norm MPC. Flexible CLF constraint was imposed on the LP formulation. 

Caruntu et al. (2011) approximate the control law with PWA technique, and conducted 

test bench validation. 
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CHAPTER TWO  

TEST ENGINE AND EXPERIMENTAL SETUP 

 

2.1 Test Engine Description 

The test engine is a naturally-aspirated 3.6 L port fuel injected V-6 with two 

intake valves and two exhaust valves per cylinder and a pent-roof shaped combustion 

chamber (see Figure 2.1). The engine is equipped with oil-driven dual-independent valve 

phasing on both banks.  A special flywheel (see Figure 4) was designed at Clemson 

University to connect the engine to the dynamometer driveshaft as to hold the crank angle 

encoder disk (AVL 365X). A summary of basic engine geometry is given in Table 2.1. 

Table 2.1: Engine parameters 

Fuel Gasoline (87 Pump Octane) 

Max Engine Speed 6400 RPM 

Bore  96 mm 

Stroke 83 mm 

Compression Ratio 10.2 

Connecting Rod Length 156.5 mm 

Intake Valve Diameter 39 mm 

Exhaust Valve Diameter 30 mm 
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Figure 2.1: Approximate CAD drawing of the combustion chamber 

 

Figure 2.2: A custom flywheel was designed and built to connect the engine to the dynamometer driveshaft a hold the 

crank encoder disk. 
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2.2 Data Acquisition Setup 

Combustion and gas exchange processes are the primary focus of experimental 

data collection to aid control model/algorithm development. Combustion analysis will be 

performed using a 32 channel AVL 671 crank-angle resolved data acquisition system and 

AVL GH12D piezoelectric cylinder pressure sensors. The sensors were located in the 

cylinder head to maximize accuracy according to Patterson et al. (2009), and were 

equipped with flame guards to minimize thermal shock errors. The system is capable of 

sampling data in 0.25 crank angle degree intervals to properly capture all relevant 

combustion characteristics. Piezoresistive Kulite sensors are used for both intake and 

exhaust pressure measurements. The exhaust sensors are cooled using a Miller TIG torch 

cooling system to minimize signal drift when exposed to high temperatures. AVL 

Indicom® software is used to monitor measured sensor signals from the data acquisition 

system cycle-by-cycle and record measured data. AVL Concerto® software is used for 

combustion data analysis to provide in-cylinder temperatures, rate of heat release and 

other parameters.  Crank angle resolved measurements of intake and exhaust port 

pressures are used with cylinder pressure for gas exchange analysis. A one-dimensional 

gas dynamic model of the combustion chamber, intake, and exhaust ports was built using 

AVL BOOST®.  This model was then imported into AVL Gas Exchange and Combustion 

Analysis® (GCA) software for mass flow calculations across the intake and exhaust 

valves. The GCA software uses the experimentally measured intake and exhaust 
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pressures as boundary conditions and calculates many difficult to measure gas exchange 

characteristics, such as internal residual gas fraction, and total in-cylinder mass. 
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2.3 Engine Control 

INTECRIO® system is used to override the stock GPEC2 control system on an as-

needed. The system allows for adjustment of engine actuators and is programmed using 

MATLAB/Simulink®. The prototype controller is ETAS ES910 system. The cylinder 

pressure measurement was sent to a Cylinder Pressure Development Controller (CPDC) 

unit to compute CA50 and IMEP (Schten et al. 2007). The communication between the 

CPDC and ES910 was established via a CAN communications link. 
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CHAPTER THREE 

ONE DIMENSIONAL COMBUSTION PHASING OPTIMAL CONTROL 

 

The combustion phasing of Spark Ignition (SI) engines is traditionally regulated 

with map-based spark timing (SPKT) control. The calibration of these maps consumes 

tremendous amount of time and resources making it less favorable for SI engines with a 

high number of control actuators. This chapter of the dissertation introduces a model 

based optimal combustion phasing control strategy for SI engines. The entire combustion 

phasing optimal control system is described in Figure 3.1.  

 

Figure 3.1: Block diagram of the entire model based combustion phasing control system. Green dot indicates the 

models that will be extensively discussed in this chapter. Models with blue dot will be briefly introduced. Model 

adaptation with red dot is not discussed in this document. 

The first section of this chapter introduces a high-fidelity combustion stability 

model. Since the combustion stability model requires the information of the combustion 
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states at TDC, it must be accompanied with a crank resolution combustion model. 

Section 3.2 discussed approaches to find the optimal SPKT that can generate close to 

target combustion phasing without violating the knock and COV of IMEP constraints. 

Since these high-fidelity combustion models are very complex in nature, the conventional 

gradient based search methods cannot be implemented with this application. This 

research analyzes the characteristics of the SPKT optimization problem and provides 

three efficient optimization strategies, which are validated with extensive dynamometer 

and proving ground tests. The final section introduces a model based estimation 

technique that is able to significantly improve the combustion phasing feedback signal 

quality. This combustion phasing estimator makes it possible for feedback SPKT control 

and combustion models adaptation.  

3.1 Covariance of IMEP Model 

Engine cycle-by-cycle combustion variation is a potential source of emissions and 

drivability issues in automobiles, and has become an important concern for engine 

control engineers. This research proposes a control oriented approach for estimating the 

Covariance of Indicated Mean Effective Pressure (COV of IMEP). One fundamental 

cause of COV of IMEP is turbulent combustion variation, which is analyzed with flame 

regime analysis in this research. In-cylinder thermodynamics are then evaluated to reveal 

how the changes of heat release transform into the variation of cylinder pressure, 

producing COV of IMEP. A range of model input parameters are assessed to determine 

the set that produces the most accurate prediction of IMEP variation with minimal 
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computational requirements. An Artificial Neural Network is applied to capture the 

nonlinear coupled correlations between COV of IMEP and model inputs. The ANN is 

combined with a regression pretreatment to reduce network size and improve 

extrapolation stability. The single-layer three-neuron ANN that is computationally 

efficient achieved a 99% R2 for COV of IMEP. Dynamometer tests shows that the model 

performs well outside the training region. 

3.1.1 Introduction 

Combustion variations in Internal Combustion (IC) engines induce mechanical 

design and control issues. These variations shift the combustion phasing and increase the 

chance of the engine running outside of the designated operation range. Covariance of 

Indicated Mean Effective Pressure (IMEP) is commonly used to indicate the level of 

combustion variation in the IC engine field. For spark-ignition (SI) engines, the risk of 

knock and misfire are critical issues related to combustion variation. Most knock control 

considers this effect and further retards the spark timing to reduce the chance of knock 

(Bozza et al. 2014) .This also results in lower thermal efficiency of the engine. A high-

fidelity prediction of combustion variation can reduce the conservativeness of spark 

retard during knock limited operation. Unintentionally late combustion phasing can lead 

to reduction in torque output, risk of misfire and increased CO and HC emissions. 

Finally, IMEP variation leads to engine speed fluctuation and powertrain vibrations, 

worsening vehicle NVH (Noise, Vibration and Harshness) performance and causing 

engagement issues in modern transmissions with interlocking mechanisms.  
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The nature of turbulent combustion in IC engines means that COV of IMEP 

cannot be eliminated completely. Furthermore, it is inevitable for the engine to run at 

conditions with high combustion variations in most vehicle applications. For example, 

during gear shifts spark timing can be changed dramatically to help track the fast 

transitions of torque demand, often resulting in high COV of IMEP. Under these 

circumstances, the control engineers have to weigh between combustion variation and 

other performance demands (i.e. fast torque tracking). An accurate online estimation of 

COV of IMEP can be beneficial to this process. A calibrated map of COV of IMEP 

versus engine operating conditions can be an option for engines with few control 

actuators. As the number of control actuators is increased, physics based models of 

combustion variation becomes favorable due to their potential for reduced calibration 

effort.  

Most previous research investigating the cause of IMEP variation is founded upon 

the theories of turbulent combustion stability. It can be summarized that the cyclic 

combustion variation is caused by charge composition variation (Aleiferis et al. 2004) 

and in cylinder flow variation (Le Coz et al. 1992) . Some of these researchers concluded 

that stochastic properties of the flame kernel development stage affect the rest of the 

combustion propagation significantly, so it should be the primary consideration for 

investigation of COV of IMEP (Lee et al. 2001, Mantel 1992 and Galloni 2009). The 

reasoning and logic of these approaches are without questions. However, most of these 

works explain the cause of COV of IMEP at a concept level without giving an accurate 

prediction model for COV of IMEP. This situation is a result of modeling COV of IMEP, 
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a stochastic value, with other stochastic variables (e.g. in-cylinder charge motion, fuel-air 

distribution, etc.). Available measurements are for experiments where the engine can be 

controlled to run at steady states for multiple cycles, which is not a common situation for 

actual driving scenarios.  

Research has been published relating combustion variations to deterministic 

properties. High Speed Particle Image Velocimetry (HSPIV) was applied by Long et al. 

(2008) to capture real time turbulence levels in cylinder. It was concluded that high 

frequency turbulent motion contributed to the COV (Covariance) of IMEP. Abdi Aghdam 

et al. (1989) incorporated this concept to his quasi-dimensional combustion model by 

adding a cyclic random factor K to the calculation of turbulence intensity. The simulation 

results showed cylinder pressure variations close to experimental observation. Without 

further discussion that correlated the random factor K to measureable engine parameters, 

extending this concept to other engine platforms may be limited. Furthermore, relating 

the IMEP variation to only one contributing factor, turbulence intensity, is considered an 

over-simplification of the issue. Galloni (2009) proposed to estimate the COV of IMEP 

with laminar flame speed (𝑆𝐿), turbulence intensity (𝑢′) and magnitude of the mean flow 

velocity in the spark region. These three variables were calculated at the spark timing. 

CFD methods were applied to estimate U making this method unlikely to be applied 

online for real-time applications.  

Combustion regime diagrams are generally utilized to categorize flame 

propagation of premixed turbulent flames (Abdel-Gayer et al.1989, Abraham et al. 1985, 

Peters 1986 and Russ et al. 1999). These diagrams show that different time scale 
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combinations of turbulent motion and flame propagation can significantly affect 

combustion stability. These diagrams are separated into several zones with different 

flame patterns. Zones with continuous laminar flame sheets tend to have stable 

combustion, while others indicates possible combustion instability (flame quench). Russ 

et al. (1999) related the COV of IMEP to the Leeds diagram inputs, 𝑢′/𝑆𝐿  and 𝐿/𝛿𝐿 

(turbulent integral length scale/laminar flame thickness). Results of this work indicated 

that COV of IMEP is high when the engine is operated close to the “flame quench” zone. 

Another important conclusion that can be drawn from this research is that the beginning 

of combustion is the most unstable phase of the entire reaction process. Once the flame 

kernel is developed inside the cylinder, the combustion is going to become more stable 

because of the formulation of a continuous laminar flame sheet. Dai et al. (1998) stated 

similar conclusions with slightly different explanations. Even though combustion stability 

is the fundamental reason of IMEP variation, treating COV of IMEP as an extension 

topic of combustion stability does not yield reasonably good prediction of its exact value 

over a wide range of engine operating conditions.  

Although COV of IMEP is used as an indicator of combustion variation, these 

two concepts are not equivalent to each other. It is not reasonable to use models and 

variables directly from studies of turbulent combustion variation to predict COV of IMEP 

without considering how combustion affects cylinder pressure. The exact quantification 

of combustion variation is ambiguous to some extent since combustion can be considered 

as a series of heat release events in the crank angle or time domains. For each event, the 

released heat is then transformed into cylinder pressure corresponding to the current in-
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cylinder air states (e.g. volume and pressure). This synchronization between piston 

motion and the combustion process significantly affects how sensitive the COV of IMEP 

is to the combustion variation. Lee et al. (2009) suggested that the COV of IMEP has 

strong correlation with combustion phasing. By regression analysis, this research work 

identified clear ascending tendency of COV of IMEP as the duration between CA10 and 

CA90 increases. The significance of combustion phasing on COV of IMEP is discussed 

in this document.  

Many methods were proposed to capture combustion variation by adding 

randomness to the combustion model (Brehob et al. 1992, Matthews et al. 1991 and 

Sjeric et al. 2014). These models are designed to regenerate the stochastic behavior of the 

IC engines through Monte Carlo simulations instead of estimate the COV of IMEP 

directly. Few researchers demonstrated models with COV of IMEP as an output. Young 

(1980) applied linear regression methods to predict COV of IMEP. A polynomial model 

was proposed by Dai et al (1998). By introducing combustion phasing as an input, the 

model demonstrates good performance. However, the reasoning and physics for selecting 

the model inputs were minimally discussed. Galloni (2009) employed a nonlinear 

regression model to predict COV of IMEP. Although the accuracy is satisfying for all the 

test points, validation results shows that the model can captures only the tendency of 

COV change with different engine operation conditions.  

This research proposes a prediction model for COV of IMEP that combines 

combustion phasing information and premixed turbulent combustion stability theory. The 

3.1.2 and 3.1.3 section discuss the effects of combustion phasing and turbulent 
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combustion parameters on the IMEP variation. Then, this information is utilized to 

construct a COV of IMEP prediction model that can be executed in ECUs. Finally, results 

of both offline and online validations are presented and conclusions are drawn. 

3.1.2 Effects of Combustion Phasing on IMEP variation 

To derive the relationship between cylinder pressure and heat release the open 

thermodynamics of the cylinder are evaluated. From the ideal gas law: 

𝑃𝑉 = 𝑚𝑅𝑇 (3.1) 

Considering 𝑝, 𝑉,𝑚  and 𝑇 as time-variant variables, differentiate Equation (3.1) 

and rearrange: 

�̇� = −
𝑃

𝑉
�̇� +

𝑅𝑇

𝑉
�̇� +

𝑚𝑅

𝑉
�̇� (3.2) 

Internal energy of the gas is: 

𝐸 = 𝑚𝑐𝑉𝑇 (3.3) 

Differentiate Equation (3.3): 

�̇� = �̇�𝑐𝑉𝑇 +𝑚𝑐𝑉�̇� (3.4) 

From conservation of energy: 

�̇� = �̇�𝑖𝑐𝑃𝑇𝑖 − �̇�𝑜𝑐𝑃𝑇 + �̇� − 𝑃�̇� (3.5) 

Equalize Equation (3.3) and Equation (3.4), and rearrange: 
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�̇� =
1

𝑚
[�̇�𝑖(𝛾𝑇𝑖 − 𝑇) + �̇�𝑜𝑇(1 − 𝛾) +

�̇�

𝑐𝑉
− �̇�

𝑃

𝑐𝑉
] 

𝑐𝑉 =
𝑅

𝛾 − 1
 

(3.6) 

Substitute Equation (3.6) into Equation (3.2): 

�̇� = −
𝛾𝑃

𝑉
�̇� +

𝛾 − 1

𝑉
�̇� +

𝑅𝛾

𝑉
(�̇�𝑖𝑇𝑖 − �̇�𝑜𝑇) (3.7) 

Equation (3.7) is the ODE for cylinder pressure dynamics. During the combustion 

process, the in cylinder mass change is small and neglected. It is important to observe 

that variation in heat release rate (�̇�) propagates to the cylinder pressure. During this 

process, the cylinder volume determines how much of pressure variation is produced. 

Figure 3.2 shows the IMEP change after adding 100 J/CA deg energy from -20 to 50 deg 

CA to a typical engine cycle. It can be seen that the IMEP is more sensitive to the heat 

release at TDC than other CA due that location having the minimum cylinder volume. 

Therefore, it can be inferred that high variation of heat release around TDC will result in 

increased COV of IMEP.  
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Figure 3.2: IMEP change after adding 100 J/CA deg energy from -20 to 50 deg CA to a typical engine cycle 

Late combustion phasing can affect IMEP variation by enhancing cycle-by-cycle 

coupling. For instance, a late combustion engine cycle increases the exhaust temperature 

and reduces IMEP. According to ideal gas law (Equation 3.1), the Residual Gas Mass 

(RGM) for next engine cycle is reduced (for the same volume fraction). This leads to a 

faster combustion and increase of IMEP. The cycle-by-cycle return plot of IMEP can 

show this phenomenon clearly with the off-diagonal points.  
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Figure 3.3: IMEP return plot showing cycle-by-cycle coupling at late combustion phasing. RPM=1000. MAP=70 kPa. 

Although it is reasonable to argue that the cyclic coupling induced IMEP 

variations are no longer stochastic and does not agree with a normal distribution, most 

current engine research and tests do not consider this effect separately and include it in 

the computation of COV of IMEP. Therefore, it can be concluded that retarding 

combustion phasing also leads to higher COV of IMEP. 

3.1.3 Effects of Turbulent Combustion Parameters on IMEP Variation 

The interaction between flame propagation and turbulent motion (visualized in 

Figure 3.4) creates many different combustion characteristics. The flame propagates from 

right to left in this figure, creating a pre-heated zone ahead of the flame front. At the 

meantime, the turbulent motion of the unburnt gas, characterized as a rotating eddy ball, 

feeds low temperature reactants into the reaction zone while taking pre-heated mass 

away. When the flame thickness (𝛿𝐿) is thin or the laminar flame speed (𝑆𝐿) is high, the 
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reaction zone has a higher energy. In this case, the turbulent motion accelerates the 

combustion process by transporting unburnt mixture to the flame front. On the other 

hand, the turbulent motion may “blow out” the flame if it takes away too much energy 

before the flame can prorogate through the reaction zone and feed in more energy. This 

phenomenon causes instability of combustion.  

 

Figure 3.4: Visualization of flame front. 

Combustion regimes that produce high variability are often characterized on a 

Leed’s diagram (Abdel-Gayer et al. 1989).  The diagram contains  log10 (
𝑢′

𝑆𝐿
) on the y-

axis and log10 (
𝐿

𝛿𝐿
) on the x-axis (Figure 3.5). The shaded area is identified regimes of 

the normal operation of the 3.6L engine under this research.  
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Figure 3.5: Leed’s diagram with identified regimes for the 3.6L engine. 

The following briefly discusses the important boundaries between regimes.  

Letting 𝑥 = 𝐿/𝛿𝐿 and 𝑦 = 𝑢′/𝑆𝐿, the constant turbulent Reynolds number (𝑅𝑒) 

results in a straight line with slope -1 since: 

𝑅𝑒 =
𝑢′𝐿

𝑣
=
𝑢′𝐿

𝛿𝐿𝑆𝐿
= 𝑥𝑦 (3.8) 

Where: 

Kinematic viscosity 𝑣 = 𝛿𝐿/𝑆𝐿 

 

The constant Karlovitz number also leads to a straight line, whose slope is 1/3. 
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𝐾𝑎 =
𝛿𝐿𝑢

′

𝑆𝐿𝜆
= 0.157(

𝑢′

𝑆𝐿
)

2

𝑅𝑒−0.5 = 0.157𝑥−0.5𝑦1.5 (3.9) 

Taylor micro-scale for gasoline engines is approximated with  

𝜆 = (
15

0.371
)
−0.5

 𝑅𝑒0.5𝐿 

 

For constant 𝐾𝑎𝑅𝑒−0.5: 

𝐾𝑎𝑅𝑒−0.5 = 0.157𝑥−1𝑦 (3.10) 

The risk of misfire is high when the engine is operated near the flame quench 

region. A continuous laminar flame sheet is developed toward the bottom right corner of 

the Leed’s diagram, leading to stabilized combustion. It is expected that combustion 

stability is closely related to the variation of heat release (�̇�). Considering the practicality 

and computational burden of the combustion stability model, it is critical to choose a 

point of the entire combustion process to analyze the relationship between Leeds diagram 

inputs and heat release. The instantaneous heat release rate can be calculated from the 

measured mass fraction burnt profile 𝑥𝑏(휃): 

𝑄(휃) = 𝐿𝐻𝑉 ∙ 𝑚𝑓𝑢𝑒𝑙

𝑑𝑥𝑏
𝑑휃

 (3.11) 

In order to investigate at which point of the combustion the heat release rate has 

the largest variation, heat release data for 354 unique engine operation points were 

analyzed, with 300 consecutive engine cycles recorded for each point. Figure 3.6 shows 

the standard deviation of normalized heat release per CA through the entire combustion 

process. The four curves have the same engine speed and load, but different combustion 
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phasing. It can be observed from this plot that the maximum amount of heat release 

variation happens close to TDC at crank domain. After changing the x-axis into MFB, the 

maximum heat release variation occurs at the point where about 20% of fuel is burnt. In 

fact, retarding the SPKT moves the peak heat release variation closer to the TDC. 

Therefore in addition to the conclusion from previous section, the heat release analysis 

reveals another reason suggesting the important correlation between COV of IMEP and 

heat release variation at TDC.   

 

Figure 3.6: Standard deviation of normalized heat release per CA. RPM=1000, MAP=70 kPa 

The standard deviation of normalized heat release at TDC is superimposed as a 

contour plot on the Leed’s diagram in Figure 3.7. The Leed’s diagram inputs, 𝑢′, 𝑆𝐿, 𝐿 

and 𝛿𝐿, are also calculated at TDC. It can be observed that variation of heat release agrees 

with the tendency of combustion stability. Therefore, it can be inferred that the inputs of 

Leed’s diagram can be used to estimate the magnitude of heat release variation.  
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Figure 3.7: Leed’s diagram with standard deviation of normalized heat release at TDC. 

3.1.4 Modeling of the IMEP Covariance 

It can be concluded from previous sections that the COV of IMEP is strongly 

related to the heat release variation at TDC and combustion phasing. Selecting the inputs 

to the COV of IMEP model should consider which variables are available for the 

application. In the proposed combustion phasing control framework, the COV of IMEP 

model is used together with a crank angle resolution semi-physical combustion model. 

The combustion model is used to compute CA50 with given SPKT. Thus, COV of IMEP 

model inputs that reflect the impact for combustion phasing is selected as the SPKT and 

CA50. The combustion model is also able to provide the 𝑢′ and 𝑆𝐿 at TDC, which are 

used to estimate the heat release variation at TDC. The inputs of Leed’s diagram also 

requires the turbulent integral length scale, which can be approximated as the distance 

between cylinder head piston (Filipi et al. 2000) at TDC. The laminar flame thickness 

(𝛿𝐿) can be calculated with laminar flame speed (𝑆𝐿) and the gas kinematic viscosity (𝑣) 
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(Equation 3.8). For gasoline engines, the viscosity is sensitive to temperature but not to 

the gas composition (Heywood 1988). A simple nonlinear regression model is applied to 

calculate the viscosity according to unburnt gas temperature: 

𝑣(𝑘𝑔/𝑚 ∙ 𝑠) = 3.3 × 10−7 × 𝑇0.7  (3.12) 

The unburnt gas temperature at TDC is determined by the cylinder gas 

temperature at IVC and the energy balance between IVC and TDC. The residual gas 

dominates the mixture’s temperature at IVC. The energy input during this period include 

the mechanical work done by the upward motion of piston and the portion of combustion. 

The energy output is the heat transfer to coolant. The manifold pressure (MAP) affects 

the compression work of the piston. It also determines the amount of fuel inside the 

cylinder since the SI engines mostly operates at stoich AFR conditions. SPKT also 

influences both the energy input sources. Advancing SPKT increases the cylinder 

pressure and heat release between IVC and TDC. Thus it results in higher unburnt gas 

temperature. Figure 3.8 shows the effects of residual gas fraction and SPKT on the 

unburnt gas temperature at TDC.  
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Figure 3.8: Contour plot of unburnt gas temperature vs. residual gas fraction (RGF) and spark timing (SPKT).  

Unburned gas temperatures increase as SPKT is advanced and internal RGF increases. 

The heat transferred to coolant between IVC and TDC is determined by the 

engine speed. Higher speed results in less time for heat transfer, leading to higher unburnt 

gas temperature. However, the engine speed is included as an model input because of its 

almost linear relationship with 𝑢′. Figure 3.9 plots the RPM against 𝑢′ at TDC of the 3.6L 

engine in this research. The model output makes no noticeable difference after removing 

the RPM from the model inputs. The mean value of IMEP has significant impact the 

COV of IMEP, which is calculated as the standard deviation of IMEP divided by the 

mean value. The mean value of IMEP is determined by many variables like MAP, RPM 

and CA50. Most of these variables are already included as the model inputs.  
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Figure 3.9: Linear relationship between turbulence intensity at TDC and RPM. 

The above analysis shows that the correlations between COV of IMEP and other 

measureable (or estimated in a model-based control architecture) engine operating 

parameters are highly nonlinear and coupled. Artificial Neural Networks (ANNs) are an 

efficient “black box” modeling method for systems with nonlinear inter-correlation 

characteristics. However, the robustness of ANN prediction outside the training region is 

not guaranteed. Although it is difficult to find techniques to ensure extrapolation stability 

with strict mathematical proof, it has been acknowledged that decreasing number of 

hidden layers and neurons can improve the stability of ANN outside the training region. 

The inevitable cost of reducing neural network size is loss of accuracy in terms of 

capturing nonlinear correlations. To simplify the ANN structure in this case polynomial 

regression based nonlinear conversion is applied to the original model inputs, 

transforming them into intermediate variables. These variables are then used as inputs to 

the ANN, which only has 1 hidden layer and 3 neurons (Figure 3.10).  
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Figure 3.10: Block diagram of the proposed COV of IMEP model. 

 

Figure 3.11: Comparison between measured COV of IMEP and ANN. Left is training data and right is validation with 

different data set. 

The ANN is trained and validated with 248 and 106 data points correspondingly. 

It can be observed from Figure 3.11 that the model performs well with data other than the 

training set with RSME of 0.35%, 0.14% more than the training data. This model was 

implemented within a prototype ECU and tested over a FTP drive cycle, during which the 

engine operates frequently outside the training region of the ANN. Figure 3.12 shows that 

the predicted COV of IMEP from the model is within a reasonable range. Figure 3.13 
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plots the contour of the predicted COV of IMEP on top of CA50 and MAP. It shows that 

the high COV of IMEP occurs at low MAP and late combustion phasing situations.  

 

Figure 3.12: COV of IMEP model predictions from real-time dynamometer testing over a section of the FTP drive 

cycle. 
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Figure 3.13: A contour plot of COV of IMEP vs. CA50 and MAP from test data during the FTP drive cycle. 

The COV of IMEP is essentially a statistical quantity that is computed from 

certain amount of consecutive engine cycles with the same operation conditions. Thus 

validating the model in terms of transient engine operation conditions are not possible. 

However, the COV of IMEP is treated as an indication of combustion stability for most 

automotive OEMs, making the representation of this statistical quantity to have exact 

physical meaning. Similar to the proposed model based combustion phasing control 

framework, the COV of IMEP is treated as the limit for combustion phasing retard to 

avoid misfire and worse emission quality. This fact makes the cyclic prediction of COV 

of IMEP has significant importance.  

3.1.5 Conclusions 

This section of the dissertation provides a pragmatic modeling method for the 

COV of IMEP based on flame regime analysis of combustion stability and the 

thermodynamics of in-cylinder mass. Although variation of turbulent combustion is the 
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cause of COV of IMEP, these two concepts are not equivalent to each other. This paper 

illustrates that the combustion variation can be considered as the heat release variation. 

The synchronization between heat release variation and cylinder volume determines how 

much of the variation propagates to cylinder pressure resulting in COV of IMEP. It is 

concluded that the combustion variation at TDC has significant influence of COV of 

IMEP since the cylinder volume is the smallest. Furthermore, the highest heat release 

variation is usually close to TDC. The heat release variation of the entire combustion 

process can be inferred by examining the combustion stability at TDC. The analysis of 

correlations between different engine operation parameters was used to narrow the COV 

of IMEP model inputs into combustion phasing related terms (SPKT and CA50), 

combustion stability terms (TI at TDC, LFS at TDC and RGF) and IMEP terms (MAP 

and RGF). The inputs are treated with nonlinear regression polynomial functions to 

convert them into intermediate variables. This process allows an ANN with few hidden 

layers and neurons to accurately predict the COV of IMEP. Furthermore, the simple 

structure of the ANN improves the robustness of the model in untrained regions. 

Although this model is implicit, it is proven to be fast enough to run within one engine 

cycle. Its computational efficiency makes it favorable for use with control applications. 
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3.2 Cycle-by-cycle Model Predictive Spark Timing Control 

The combustion phasing of Spark Ignition (SI) engines is traditionally regulated 

with map-based spark timing (SPKT) control. The calibration of these maps consumes 

tremendous amounts of time and resources making it less favorable for SI engines with a 

high number of control actuators. This paper proposes three online SPKT optimization 

algorithms that can utilize control oriented physics based combustion models making the 

SPKT control algorithm more adaptive to different engine designs. Model inversion and 

derivative information are not required by these three SPKT optimizers considering the 

complex nature of physics based combustion models. These methods also preserve the 

dependence between combustion phasing, knock and COV of IMEP models to avoid 

evaluating combustion models multiple times within one iteration. The 2-Phase and 

constraint relaxation methods are derived from direct search optimization theories. The 

Recursive Least Square (RLS) polynomial fitting method can be considered as a virtual 

Extreme Seeking process that converts the original “black” box nonlinear constrained 

optimization into the solution of three low order polynomial equations. Although these 

three online SPKT optimization approaches have unique properties making them 

preferable with certain types of combustion models, simulation and test results show that 

all of them can find the optimal SPKT with less than 10 evaluations of the combustion 

model. This fact makes it possible to implement the proposed model based SPKT control 

strategy in future engine ECUs. 
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3.2.1 Introduction 

Calibration time and effort has become an important limiting factor to further 

increasing the number of control degrees of freedom of modern IC engines. Model based 

engine controllers that can more easily adapt to different engine designs and are 

becoming favorable as the cost of calibration increases and the online computation load 

shrinks with the development of faster micro-processors. Controlling Spark Timing 

(SPKT) to achieve optimal combustion phasing without violating the constraints of 

normal combustion is critical for SI engines to improve efficiency while maintaining 

stable operation. Many computationally efficient control oriented combustion models 

have been proposed to potentially replace the mapping process of SPKT calibration 

(Ghojel 2010, Bonatesia et al. 2010, Hall et al. 2012, Lee et al. 2010 and Bougrine et al. 

2009). The fundamental challenge of computing SPKT online using these models is that 

the SPKT is mostly an input to the combustion model rather than an output. The complex 

structure of these high-fidelity physics based models makes them difficult to invert and 

compute SPKT based on target combustion phasing. This paper proposes to employ 

iterative optimization techniques to find the optimal SPKT with control-oriented 

combustion models. This approach exploits the computational efficiency of these models 

while avoiding the necessity to invert them.  

Before the existence of control oriented combustion models, optimization routines 

for SPKT were researched in the context of Extreme Seeking (ES) control (Hellström et 

al. 2013, Popovic et al. 2006, Scotson et al. 1990, Dorey et al. 1994, Larsson et al. 2008, 

Haskara et al. 2006 and Draper et al. 1954). ES control is an important class of adaptive 
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optimal controllers that consists of model identification and optimization processes (Teel 

et al. 2001, Wellstead et al. 1990, Blackman 1962 and Krstić et al. 2000). The 

optimization process searches for the extreme value of a specific cost function. Although 

dependence of the cost function on the control variables is unknown, the relationship is 

required to be convex to avoid local minimum issues that could terminate the search for 

the global optimum. The cost functions were often defined as fuel consumption 

(Hellström et al. 2013, Popovic et al. 2006 and Haskara et al. 2006), torque output 

(Larsson et al. 2008 and Draper et al. 1954) or combustion phasing (Dorey et al. 1994) 

when the ES approach was applied to SPKT control. It has been observed from several 

previous researchers that the relationship between most engine performance parameters 

and spark timing can be approximated with a quadratic function while the engine 

operating conditions are fixed. However, if the engine operating condition changes, ES 

methods must update this quadratic dependency using online identification methods 

based on real time measurement feedback. Therefore, cylinder pressure sensors are 

usually necessary if the control objectives are to track a combustion phasing reference 

and/or maximize IMEP. The coefficients of the quadratic dependence are estimated 

iteratively with Recursive Least Square (RLS) methods (Ljung, 1999). In order to 

maximize the potential of the optimal solution to improve engine performance, the 

identification process should be converged before the engine operating conditions change 

significantly. RLS algorithms can be altered with forgetting factors and exponential 

weighting to accelerate this identification process (Scotson et al. 1990). Both of these 

methods make the RLS estimation sensitive to measurement noise, leading to instability 
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of ES based engine controllers. Regardless of the quadratic dependence assumption, non-

parametric ES algorithms (Blackman 1962) have been applied to control SPKT for flex-

fuel engines (Hellström et al. 2013). This method required the constant addition of SPKT 

perturbations to identify its relationship with the proposed cost function. The magnitude 

of these perturbations is critical to the operation of this SPKT controller. Small 

perturbation results in slow convergence rates while large perturbation induces drivability 

issues and degenerated stability.  

ES SPKT control algorithms have also been extended to include other actuators 

such as Exhaust Gas Recirculation (EGR) (Haskara et al. 2006), flex-fuel (Hellström et 

al. 2013), Variable Valve Timing (VVT) (Popovic et al. 2006) and Air-to-Fuel Ratio 

(AFR) (Scotson et al. 1990). Although results indicated that the optimization converged 

after certain intervals of engine cycles, rigorous proof of the global optimum was not 

addressed extensively. Most of these previous research publications indicated that the 

slow convergence rate of an ES SPKT control approach made it more suitable for steady 

state calibration or adaptation rather than completely replacing the map based SPKT 

control. 

This paper focuses on manipulating SPKT to track a designated combustion 

phasing reference, specifically CA50, from an upper level controller. Instead of 

measuring the CA50 with cylinder pressure sensors, many control oriented combustion 

phasing models have been proposed to estimate the combustion phasing with other 

sensors (Ghojel 2010, Bonatesia et al. 2010, Hall et al. 2012, Lee et al. 2010 and 

Bougrine et al 2009). These methods were proven to be reasonably accurate with 
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acceptable complexity for online computation. The combustion phasing models can be 

categorized into Wiebe Function based models (Ghojel 2010 and Bonatesia et al. 2010) 

and simplified flame entrainment models (Hall et al. 2012, Lee et al. 2010 and Bougrine 

et al 2009). The common trait of these models is that they are required to be 

computationally efficient so they can be carried out one or more times within one engine 

cycle. However, the drawback is that most of these models are difficult to invert, making 

them difficult to use to compute SPKT with a given combustion phasing target. Since 

these models are constructed to be computationally efficient, iterative optimization 

methods can be applied to search for the SPKT that generates the desired combustion 

phasing. This strategy can be considered as a virtual ES process. Unlike the traditional ES 

SPKT control that applies these SPKTs to the engine through many engine cycles and 

measures the response with cylinder pressure sensors, the proposed SPKT control 

employs combustion models to simulate the CA50s for multiple SPKTs within one 

engine cycle. The mathematical tools used in ES SPKT control literature can be 

transferred to this application. Cylinder pressure sensing is not required for this SPKT 

control approach since it is feed forward based. However, it does not exclude the 

possibility of model adaptation if combustion phasing feedback information is available. 

The most important advantage compared to the traditional ES method based methods is 

that the proposed method can generate the optimal SPKT within one engine cycle. 

Therefore, it is capable of handling highly transient engine operating conditions. 

It is challenging for the traditional ES SPKT control algorithms to account for 

combustion constraints like auto-ignition (or knock), COV of IMEP and misfire. This 
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issue is caused by the dilemma that the algorithms require the engine to run at, or close 

to, the unstable conditions to identify limits, which is usually not allowed during normal 

engine operation. As for the proposed “virtual” ES method that completes the seeking 

process virtually with combustion models, it is possible to incorporate high-fidelity 

control oriented knock and COV of IMEP models to guarantee the optimal SPKT 

solution will not violate combustion constraints. Previous researchers have proposed that 

engine knock can be accurately predicted by integrating the Arrhenius function output for 

the end gases (Livengood et al. 1955 and Xiao et al. 2013). Misfire is often considered as 

a more relaxed constraint compared to the COV of IMEP requirement. The limit for 

SPKT retard is determined by the COV of IMEP, which is considered as an indicator of 

combustion stability. The extreme case of instable combustion corresponds to the misfire 

phenomenon.  Researchers have illustrated that combustion variation is the main cause of 

COV of IMEP (Ozdor et al. 1994 and Lacour et al 2011). Lee et al. (2009) suggested that 

the COV of IMEP has strong correlation with combustion phasing. Finally, regression 

models of COV of IMEP have been proposed by (Young 1980, Dai et al. 2000 and 

Galloni 2009). Most of these models are computationally efficient and implicit, making 

them ideal for implementation as constraints of non-gradient based direct search 

optimization algorithms.  

As a general class of optimization solvers, the direct search methods can find the 

optimal solution utilizing only the information of each numeric evaluation of objective 

and constraint functions. Compared to the gradient based algorithms, direct search 

methods do not require first and second derivatives of both objective functions and 
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constraints. This unique property makes the direct search methods favorable for SPKT 

optimization with complex combustion models. Many powerful direct search solvers 

were developed for different types of applications, including Hook Jeeves (Hooke et al. 

1961), Cyclic Heuristic Direct (Li et al. 1995), Leapfrogging (Rhinehart et al. 2012), 

Particle Swarm (Banks et al. 2007) and genetic algorithm. The analysis of the SPKT 

optimization problem reveals that not all of these algorithms are efficient for this 

application.  

Considering the short computation time of engine cycle based SPKT control, 

modifications are added to the real-time versions of the selected solvers to reduce 

iteration number and improve stability considering some practical issues in this research. 

One of these issues is handling infeasible start scenarios. Some direct search algorithms 

cannot find feasible search directions when the start point is infeasible and the improving 

direction of the objective function furthers this violation. This research discusses 

solutions to this dilemma. Inspired by ES SPKT control, the complex combustion phasing 

model and constraints can be approximated by simple polynomial functions, which are 

constantly updated with the RLS algorithm. The optimal solution can be explicitly 

computed with these approximated functions. This “virtual” ES approach is explored in 

this research and compared with the direct search methods.  

This research proposes a SPKT control method based on online optimization with 

combustion constraints. The optimization iteration process is able to finish within one 

engine cycle utilizing control oriented high-fidelity combustion phasing, auto-ignition 

and COV of IMEP models. The next section discusses the optimization problem 
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formulation and convexity analysis of SPKT control. The third, fourth and fifth sections 

illustrate three different optimization approaches to solve this optimization problem, 

including direct search, constraint relaxation and RLS polynomial fitting. Finally, 

simulation and experimental results are presented and discussed. 

3.2.2 Optimization Problem Formulation and Analysis 

3.2.2.1 Semi-physics Based Combustion Model 

The objective of this optimization is to find the SPKT that will generate the 

desired combustion phasing (CA50) without inducing knock and excessive COV of 

IMEP. The combustion phasing is modelled by a quasi-dimensional flame entrainment 

combustion model. The combustion model was originally proposed by Blizard et al. 

(1974) and then refined by Tabaczynski et al (1980). This turbulent flame entrainment 

based combustion model assumes that the fresh mixture at the flame front is; (1) 

entrained into small eddies, and then (2) burned up in a characteristic time. Based on 

these assumptions, the flame entrainment and burned up processes are shown below as 

Equation (3.13) and (3.14) respectively.  

𝑑𝑚𝑒

𝑑𝑡
= 𝜌𝑢𝑛𝑏𝑢𝑟𝑛𝑒𝑑𝐴𝑓𝑙𝑎𝑚𝑒(𝑢

′ + 𝑆𝐿) (3.13) 

𝑑𝑚𝑏

𝑑𝑡
=
𝑚𝑒 −𝑚𝑏

𝜏
+ 𝜌𝑢𝑛𝑏𝑢𝑟𝑛𝑒𝑑𝐴𝑓𝑙𝑎𝑚𝑒𝑆𝐿 (3.14) 

Equation (3.13) describes the unburned mass entrainment rate at the flame front. 

It is assumed the flame propagates through unburned charge along Kolmogorov scale 
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vortices entraining turbulent eddies. The unburned mass entrainment rate is determined 

by unburned mixture density, flame front area, laminar flame speed and turbulence 

intensity. After unburned mixture entrainment, mass burn-up occurs at a rate described by 

Equation (3.14). Burn-up occurs at a characteristic time, 𝜏, which is defined as the time to 

burn up an eddy at laminar flame speed. The eddy size is assumed to be Taylor 

microscale (𝜆) (Tabaczynski et al. 1977). 

3.2.2.2 Knock Constraint Model 

Knock in an SI engine occurs as the unburned end gases auto-ignite before the 

spark ignited flame reaches them. This occurs from the expanded burned gas 

compressing the unburned end gas to auto-ignition. Knock is likely when cylinder 

pressures and temperatures are high (combustion phasing is advanced). Varieties of auto-

ignition characteristic modeling methods are available, from comprehensive chemical 

kinetic based simulations (Westbrook et al. 1988), to a global single step Arrhenius 

function describing all hydrocarbon oxidation reactions (Livengood et al. 1955). Reduced 

chemical kinetics descriptions are available (Glassman 1977) as well. Among the 

methods above, the single step Arrhenius function is recognized as a practical way of 

predicting the ignition delay for control purposes due to its simplicity and relatively good 

physical representation (Kasseris 2011). It is widely studied based on experimental data 

for auto-ignition prediction in constant volume bombs, steady flow reactors, rapid 

compression machines and IC engines (Assanis et al. 2003 and Douaud et al. 1978). 

Phenomena for ignition delay are observed both experimentally, in rapid compression 
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machines (RCM) (Wo 1998) and in detailed chemical kinetics simulations (Kee et al. 

1989).  

A typical commercial automotive gasoline contains approximately seven hundred 

types of molecules (Viljoen et al. 2005). For highly detailed chemical kinetic modeling 

ignition characteristics of each individual molecule in the temperature and pressure 

domain is required. This information is rarely available and time consuming to calculate, 

so a global reaction that describes all the hydrocarbon oxidation processes in a single-step 

Arrhenius function is favored in this research. The equation relates the rate of reaction of 

an auto-ignition process as a function of pressure and temperature, assuming single-step 

chemical kinetics: 

𝑑[𝑥]

𝑑𝑡
= 𝐴′𝐺[𝑥]𝑝

𝑛exp (−
𝐵𝐺
𝑇
) (3.15) 

The ignition delay, in milliseconds, can be expressed as the inverse of the reaction 

rate of the global single-step mechanism: 

𝜏𝐺 = 𝐴𝐺𝑝
−𝑛exp (

𝐵𝐺
𝑇
) (3.16) 

Equation (3.16) is developed to represent the ignition delay in a RCM with 

coefficients extracted from experimental data. In a RCM, the pressure is assumed 

approximately constant until combustion occurs. However, for a spark-ignited engine, the 

end gas is compressed by the propagating flame and the temperature rises following a 

polytropic process. Livengood et al. (1955) proposed that the end gas auto-ignition 

chemistry is cumulative and can be predicted by integrating the reaction rate of the end 



54 

 

gas at discretized pressure and temperature time steps until the critical time when the 

integral value is equal to one (L-W knock integral). 

3.2.2.3 Optimization Problem Analysis 

The real time optimization of SPKT is finished within a single engine cycle.  The 

other engine actuators and states are assumed to be constant during this period of time 

(e.g. RPM, MAP and VVT). Therefore, the CA50, L-W knock integral and COVIMEP 

models described in previous sections can be expressed as (𝑆𝑃𝐾𝑇) ,𝑔(𝑆𝑃𝐾𝑇) and 

ℎ(𝑆𝑃𝐾𝑇). The optimization problem can be written as the following: 

min
𝑆𝑃𝐾𝑇

|𝑓(𝑆𝑃𝐾𝑇) − 𝐶𝐴50𝑡𝑎𝑟𝑔𝑒𝑡| 

𝑠. 𝑡.       𝑔(𝑆𝑃𝐾𝑇) ≤ 𝐾𝐼𝑚𝑎𝑥 

ℎ(𝑆𝑃𝐾𝑇) ≤ 𝐶𝑂𝑉𝑚𝑎𝑥 

(3.17) 

Where:  

𝐾𝐼𝑚𝑎𝑥 : specified upper bound of L-W knock integral. 

𝐶𝑂𝑉𝑚𝑎𝑥: specified upper bound of COV of IMEP. 

 

It is commonly acknowledged that advancing SPKT will advance CA50 and 

increase the knock integral. Therefore, the objective function and the first constraint are 

convex if the combustion and knock models are reasonably accurate. Although the 

relationship between COV of IMEP and SPKT is not monotonic, it is observed that 

ℎ(𝑆𝑃𝐾𝑇) takes a quadratic like shape for the admissible SPKT range. Thus the second 

constraint can be considered as convex. Table 3.1 illustrates the engine operation 

condition ranges that are used to generate the combustion phasing, knock and COV of 
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IMEP models. Figure 3.14 to 3.16 show some examples of 𝑓(𝑆𝑃𝐾𝑇), 𝑔(𝑆𝑃𝐾𝑇) and 

ℎ(𝑆𝑃𝐾𝑇) from the recorded data. 

Table 3.1: Range of test data 

 Min Max 

RPM 900 4500 

MAP (kPa) 30 100 

ICL (deg aTDC intake) 78 128 

ECL(deg bTDC intake) 69 117 

CA50 (deg aTDC spark) 0 39 

RGF 0.02 0.44 
 

 

Figure 3.14: Relationship between COV of IMEP and SPKT for various engine operation conditions. This relationship 

is mostly convex. 
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Figure 3.15: Relationship between CA50 and SPKT for various engine operation conditions. This relationship is mostly 

convex. 

 

Figure 3.16: 𝑔(𝑆𝑃𝐾𝑇) for various engine operation conditions. The engine is very likely to knock if KI is greater 1. 

This relationship is mostly convex. Knock is likely to happen when the knock integral is larger than 1 (red horizontal 

line). 

The above analysis indicates that there is a unique solution to the optimization 

problem (3.17). Thus algorithms designed to solve local optimum issues, like genetic 

algorithm and particle swarm, are less favorable for this application. The physics based 
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combustion model is computationally intensive for online applications, so iterations 

should be minimized. The ES910 system is able to compute the proposed combustion 

model 10 times per engine cycle on average when the engine speed at 2000 RPM. 

Production engine ECUs are slower than the ES910 system currently and occupied with 

many other computation tasks. Therefore, each function evaluation is considered 

extremely “expensive”. This fact leads to another consideration of the algorithm selection 

that it should evaluate both the objective function and constraints together within each 

iteration since the COV of IMEP and knock models are dependent on the intermediate 

outputs of the combustion phasing model. Handling constraints and objective functions 

separately will increase the number of evaluations of the combustion phasing model. This 

research proposes three approaches to solve this optimization problem. Each approach 

has unique advantages for certain types of applications. 

3.2.3 2-Phase Direct Search Method 

The problem described in Equation (3.17) is a single dimension constrained 

optimization. Since the objective function and constraints are complex and implicit, 

direct search methods provide the most straightforward solutions. Gradient based 

methods utilize first and second order derivatives of the objective and constraint 

functions to compute searching directions, whereas direct search methods rely only on 

the evaluation of these functions to find the feasible descending directions (for 

minimization problems) of the manipulated variables.  Many existing algorithms can be 

employed directly to this application (e.g. Hooke et al. 1961 and Rhinehart et al. 2012). 
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However, some knowledge about the combustion models can be utilized to improve 

algorithm performance.  

A feasible initial guess of the SPKT enables interior point methods that keep the 

search point confined in the feasible region and guarantees decreasing objective function 

values. This method can significantly reduce the number of iterations. Another advantage 

of the interior point method is that the solution will always be feasible and better than the 

starting point even if the optimization is terminated prematurely due to the lack of 

computation time. The feasible initial guess can be generated with calibration and stored 

as a map in the ECU. Since this initial guess only requires the SPKT to be feasible 

instead of optimal, this calibration process should be much faster than that of generating 

the traditional SPKT control map. The feasible initial guess can also be generated using a 

phase 1 optimization program. The added phase of optimization only needs to evaluate 

the constraint functions (knock and COV of IMEP). However, since these functions are 

correlated with the combustion phasing model, the 2-phase solution will significantly 

increase computation load.  

After a feasible start point is acquired, the second phase of the optimization will 

start. The descending direction of the SPKT optimization problem (Equation (3.17)) is 

easily decided due to the monotonic relationship between CA50 and SPKT. The search 

step size is computed iteratively after every objective and constraint function is 

evaluated. The following is the pseudo code of the proposed 2-phase direct search 

approach: 

Run physics based combustion phasing model; 
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Calculate objective function value; 

Calculate constraint function value; 

If iteration=1 

 Assume the “previous iteration” is in phase 1; 

 STEP=-STEP if violate knock constraint;    // the initial STEP is 
positive 

 feval = sufficiently large initial value; 

End if; 

If violate constraints and previous iteration is in phase 1   // phase 1 

 If the violated constraint is the same as previous iteration 

  STEP=k
1
STEP; 

 Else 

  STEP=-k
2
STEP; 

 End if; 

 SPKT
i
=SPKT

i-1
 +STEP 

 feval=feval; 

Else         // phase 2 

 If objective function < feval and no violation of constraints 

  STEP=k
3
(CA50

i
-CA50

i-1
); 

  SPKT
i
=SPKT

i-1
 +STEP; 

  feval=objective function value; 

 Else 

  SPKT
i
=SPKT

i-1
 -STEP+k

4
STEP; 

  STEP=k
4
STEP; 

  feval=feval; 
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 End if; 

End if; 

Go to the beginning; 

Terminate the loop if 1) reach maximum number of iterations; or 2) STEP is less than α ; or 3) 

feval is less than 𝛽 and no violation of constraints. 

The step multipliers k1, k2, k3 and k4 are critical to the efficiency and stability of 

the algorithm. In order to accelerate the program to recover from an infeasible start point, 

k1 is greater than 1. However, the step size should decrease (0 < k2 < 1) once the search 

point has left the original infeasible region. Otherwise, it is possible that the algorithm 

will cycle between knock and COV limits without finding the feasible region between 

them. Traditional direct search algorithms usually increase search step size if the previous 

iteration is feasible and objective function decreases. This method could cause issues near 

the optimal solution. It is likely that a large step size will overshoot the optimal point, 

increasing the number of iterations. Figure 3.15 shows that the relationship between 

CA50 and SPKT are very similar for different engine operation conditions. The slopes of 

these curves are almost identical. Therefore, the adjustment of SPKT of each iteration can 

be approximated with the difference of CA50 (i.e. a one-to-one SPKT to CA50 

relationship is assumed). The multiplier k3 is added to fine tune this approximation. The 

step size shrinks by the factor of k4 if the last iteration results in an increase of objective 

function or violation of constraints during phase 2.  

This method generates an overall decreasing tendency of the search step sizes as 

the searching point converges to the optimal solution.  This characteristic reduces error to 
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the optimal solution. Another advantage of this approach is that the step size can serve as 

an indication of convergence. Thus the optimization process can be terminated once the 

step size is smaller than a certain threshold. The 2-phase SPKT optimization approach 

does not require the objective and constraint functions to be continuous. This could make 

this approach favorable for applications with low resolution models. For instance, the 2-

phase approach can utilize a misfire model as a constraint.  

3.2.4 Constraint Relaxation Method 

It is acknowledged that constraint handling can the most challenging aspect of 

optimization algorithms. Constraint relaxation methods modify the original objective 

function to approximate the effects of constraints. Thus the algorithm will not have to 

handle the constraints explicitly. The converted objective function is not unique. It is 

proposed here that the optimization problem described in Equation (3.17) can be 

approximated with the following problem: 

min
𝑆𝑃𝐾𝑇

[|𝑓(𝑆𝑃𝐾𝑇) − 𝐶𝐴50𝑡𝑎𝑟𝑔𝑒𝑡| + max(0, 𝑐1(𝑔(𝑆𝑃𝐾𝑇) − 𝐾𝐼𝑚𝑎𝑥))

+ max(0, 𝑐2(ℎ(𝑆𝑃𝐾𝑇) − 𝐶𝑂𝑉𝑚𝑎𝑥))] 
(3.18) 

It is easy to prove that the new objective function in Equation (3.18) is convex, 

resulting in a unique optimal solution. However, parameters 𝑐1 and 𝑐2 have to be 

sufficiently large to penalize the violation of the original constraints for Equation (3.18) 

to generate similar results as Equation (3.17). Solving Equation (3.18) is much easier than 

Equation (3.17)  since it does not have any explicit constraints. The algorithm used to 

solve the phase 2 problem described in last section can be directly applied to solve 
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Equation (3.18). The disadvantage of the constraint relaxation method is that the solution 

may slightly violate the constraints if the target CA50 is not feasible.  

3.2.5 RLS Polynomial Fitting Method 

Both the 2-phase and constraint relaxation methods are non-gradient based 

optimization. They are chosen for this application since the objective and constraints 

functions are implicit and complex. Although these functions cannot be solved 

analytically, they can be approximated with low order polynomial functions whose 

solutions can be calculated easily. The optimization can be considered as a simple 

process that compares the SPKT solution for the target CA50, COV limit and knock 

limit.  

 

Figure 3.17: Demonstration of SPKT optimization process. The optimal SPKT can be identified if SPKT(COVlimit), 

SPKT(KIlimit) and SPKT(CA50target) can be solved. 
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However, Figure 3.14 and Figure 3.15 show that the effects of SPKT on CA50, 

COV of IMEP and knock integral vary with engine operation conditions. Furthermore, 

the linear and quadratic approximation of some curves are only valid for a narrow range 

of SPKT. Therefore, the low order polynomial approximation needs to be adapted for 

each iteration during the optimization.  

The Recursive Least Square (RLS) method is selected to fit these polynomial 

functions since it can update the estimation results iteratively during the optimization 

process. Another advantage of the RLS algorithm is that it is very robust under the 

influence of noise. For this application, the source of noise is from model inaccuracy. The 

combustion phasing and knock integral models discussed previously are essentially 

numerical integration processes. The integration step size (i.e. model resolution) can 

create discontinuity in the model outputs. The RLS is still capable of fitting the 

polynomial functions in this situation with a minimum number of additional iterations. 

Figure 3.18 shows the information flow for the RLS SPKT optimization algorithm.  
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Figure 3.18: Block diagram of the RLS polynomial fitting based SPKT optimization algorithm. 

The SPKTOPT converges to the actual optimal value as the polynomial 

approximation improves with more iterations. The original nonlinear function 𝑓(𝑆𝑃𝐾𝑇), 

𝑔(𝑆𝑃𝐾𝑇) and ℎ(𝑆𝑃𝐾𝑇) may not be perfectly fitted with a low order polynomial. 

However, this assumption becomes more reasonable as the optimization converges to a 

small region around the optimal solution. The objective and constraint functions have 

small curvature in this region, and can be approximated with linear or quadratic 

functions. Furthermore, this SPKT optimization approach preserves the dependence of 

the COV and knock constraints on the combustion model. Therefore, each iteration only 

requires a single execution of the combustion model. The algorithm can be terminated 

when the variation of SPKTOPT or the coefficient estimation covariance 𝑃 is smaller than 
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a certain threshold which can be determined by the available computation power of the 

ECU.  

The polynomial functions that approximate the original 𝑓(𝑆𝑃𝐾𝑇), 𝑔(𝑆𝑃𝐾𝑇) and 

ℎ(𝑆𝑃𝐾𝑇) are parameterized as: 

𝑌 = 𝑋𝑇휃 (3.19) 

Where: 

𝑌 ∈ ℝ1×1 is the output CA50, COV of IMEP or knock integral. 

𝑋 ∈ ℝ𝑚×1is the input vector 

[𝑆𝑃𝐾𝑇0, 𝑆𝑃𝐾𝑇1, 𝑆𝑃𝐾𝑇2…𝑆𝑃𝐾𝑇𝑚] 

휃 ∈ ℝ𝑚×1 is the coefficient vector to be estimated.  

 

Define positive definite covariance matrix 𝑃 ∈ ℝ𝑚×𝑚 as: 

𝑃𝑘 =∑𝑋(𝑖)𝑋𝑇(𝑖)

𝑘

𝑖=1

 (3.20) 

Where:  

k is the current number of iterations.  

 

Then: 

𝑃𝑘
−1 = 𝑃𝑘−1

−1 + 𝑋(𝑘)𝑋𝑇(𝑘) (3.21) 

Using the Matrix Inversion Lemma and rearrange: 

𝑃𝑘 = 𝑃𝑘−1 −
𝑃𝑘−1𝑋(𝑘)𝑋

𝑇(𝑘)𝑃𝑘−1
1 + 𝑋𝑇(𝑘)𝑃𝑘−1𝑋(𝑘)

 (3.22) 
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The estimation is recursively updated with new output  𝑌(𝑘) and input data 

𝑋(𝑘) after evaluating 𝑓(𝑆𝑃𝐾𝑇𝑂𝑃𝑇), 𝑔(𝑆𝑃𝐾𝑇𝑂𝑃𝑇) and ℎ(𝑆𝑃𝐾𝑇𝑂𝑃𝑇) during each iteration.  

휃(𝑘) = 휃(𝑘 − 1) − 𝐾𝑘[𝑌(𝑘) − 𝑋
𝑇(𝑘)휃(𝑘 − 1)] (3.23) 

Where the estimation gain 𝐾𝑘 can be calculated as:  

𝐾𝑘 =
𝑃𝑘−1𝑋(𝑘)

1 + 𝑋𝑇(𝑘)𝑃𝑘−1𝑋(𝑘)
 (3.24) 

It was proven by previous researchers that the estimation results of the RLS 

algorithm minimizes the sum of accumulated squared estimation error and weighted 

squared distance from the initial guess, 휃(0). 

휃(𝑘) = argmin
𝜃

1

2
{∑[𝑌(𝑘) − 𝑋𝑇(𝑘)휃(𝑘 − 1)]2 

𝑘

𝑖=1

+ [휃 − 휃(0)]𝑇𝑃0
−1[휃 − 휃(0)]} 

(3.25) 

A good initial guess of 휃 will no doubt reduce the number of iterations over 

which the RLS algorithm and the entire optimization program converges. Therefore, 휃(0) 

can be calibrated and tabulated under various engine operation conditions to reduce 

online computational burden. This will also result in a smaller 𝑃0, which represents a 

higher confidence level of the initial guess.  

The order of the polynomial functions can be freely chosen. Linear or quadratic 

functions are recommended for the simplicity. It is also possible to parameterize other 

forms of nonlinear functions to fit the original 𝑓(𝑆𝑃𝐾𝑇), 𝑔(𝑆𝑃𝐾𝑇) and ℎ(𝑆𝑃𝐾𝑇). 

However, similar to high order polynomial functions, some parameters may have high 
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sensitivity leading to robustness and stability issues. This issue can be observed even with 

quadratic fitting since the shape of the quadratic curve is much more sensitive to the 

second order term than the other two. While the RLS algorithm does not weight these 

parameters separately, noise (model inaccuracy) can significantly alter quadratic 

coefficient estimation and impact the performance of the first  few iterations. One 

solution to the sensitivity issues caused by model quality is to apply linear fitting. 

However, a forgetting factor technique is recommended since the original 𝑓(𝑆𝑃𝐾𝑇), 

𝑔(𝑆𝑃𝐾𝑇) and ℎ(𝑆𝑃𝐾𝑇) are nonlinear. RLS with a forgetting factor minimizes the 

exponentially decaying weighted squared error.  

휃(𝑘) = argmin
𝜃

1

2
{∑𝛼𝑘−1[𝑌(𝑘) − 𝑋𝑇(𝑘)휃(𝑘 − 1)]2
𝑘

𝑖=1

+ [휃 − 휃(0)]𝑇𝑃0
−1[휃 − 휃(0)] }, 

 0 < 𝛼 ≤ 1 

(3.26) 

The estimation gain and error covariance matrix can be calculated as: 

𝐾𝑘 =
𝑃𝑘−1𝑋(𝑘)

𝛼 + 𝑋𝑇(𝑘)𝑃(𝑘−1)𝑋(𝑘)
 

(3.27) 

𝑃𝑘 =
1

𝛼
[𝑃𝑘−1 −

𝑃𝑘−1𝑋(𝑘)𝑋
𝑇(𝑘)𝑃𝑘−1

𝛼 + 𝑋𝑇(𝑘)𝑃(𝑘−1)𝑋(𝑘)
] (3.28) 

𝛼 is the forgetting factor in this equation. Asmaller 𝛼 results in less impact from 

the historic data. Equation (3.26)  returns to the original RLS algorithm when 𝛼 = 1. 

Figure 3.19 shows the effect of the forgetting factor on fitting 𝑓(𝑆𝑃𝐾𝑇) with a linear 



68 

 

function 𝐶𝐴50 = 𝑎𝑆𝑃𝐾𝑇 + 𝑏. It can be seen that the convergence rate is much faster 

with 𝛼 = 0.5 than 𝛼 = 1. 

 

Figure 3.19: RLS fitting the function CA50 (SPKT) with linear functions. The forgetting factor significantly accelerates 

the convergence rate. 

Despite the sensitivity issues, the quadratic fitting has one unique advantage that 

it can capture the lower bounds of the admissible CA50, COV of IMEP and knock 

integral. For instance, the minimum achievable COV of IMEP at 1000 RPM and 0.7 bar 

MAP (green dashed line in Figure 3.14) is 2%. The fitted quadratic function can capture 

this point and terminate the optimization immediately if the COV limit is set as 1%.  

3.2.6 Simulation and Experimental Results 

The three proposed SPKT online optimization approaches were tested together in 

simulation. The RLS polynomial approach uses quadratic fitting without a specifically 

tailored initial guess. Figure 3.20 shows a section of the results where the optimizers must 
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handle active COV limits (160 ~ 170 s and 180 ~ 190 s) and KI limits (200 ~ 210 s). 

During these situations, the optimizers find the SPKT that generates CA50 closest to the 

target without violating COV and KI constraints. It can be seen that these three 

optimizers calculate a similar SPKT proving that all of the approaches achieved their 

objective. However, it is also observed that the RLS polynomial approach has a 

significant advantage in terms of the number of iterations. This comparison could not be 

carried out online since the ETAS ES910 system can only compute the high-fidelity 

combustion model around 10 times per engine cycle (depending upon engine RPM).  
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Figure 3.20: Comparison between the three proposed SPKT online optimization methods. The results are generated by 

simulation with model input data from dyno testing. 

Figure 3.21 shows the dyno test results of the 2-Phase SPKT optimizer. The 

section from 7000 ~ 8000 engine cycles shows the optimizer handling the COV of IMEP 

limit while the KI limit compromises the original CA50 target during the section from 
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10000 ~ 12000 engine cycles. The black dashed line in the number of iterations plot 

shows the iterations for phase 1. The difference between the total number of iterations 

and that of phase 1 is the iterations required to run phase 2. It can be inferred that the 2-

Phase algorithm can be very computationally efficient if provided with a feasible start 

point eliminating phase 1 optimization.  

 

Figure 3.21: Dyno test results of the 2-Phase SPKT optimizer. 
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3.2.7 Conclusions 

This research work proposes three online optimization methods for generating a 

SPKT to achieve a target combustion phasing without violation of knock and COV of 

IMEP constraints. These approaches can be integrated with complex and accurate 

combustion models. Online model based SPKT determination can significantly reduce 

calibration effort relative to traditional map-based SPKT control. Both simulation and 

real-time experimental results indicate that these three algorithms can find the optimal 

SPKT with relatively few iterations, making them candidates for implementation in 

future engine ECUs.  

Table 3.2 compares the three proposed online SPKT methods. The unique 

advantages of each algorithm makes each preferable for certain types of combustion 

models. The RLS polynomial fitting method can find the optimal SPKT in the least 

number of iterations compared with the other two methods by solving three low order 

polynomial equations. The convergence rate of this method depends on how fast the RLS 

algorithm can identify the parameters of these polynomial equations to match the original 

complex combustion models. This process can be finished within a minimal number of 

iterations if the combustion models have a continuous and smooth correlation with 

SPKT.  

There are two advantages of the 2-Phase approach although generally it requires 

more iterations. The first advantage is that the optimal solution does not violate any 

constraints if the program is terminated normally, whereas the other two algorithm permit 

slight violation of constraints. The interior point algorithm guarantees a feasible search 
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region and strictly decreasing objective function values. Although it may be possible to 

manipulate the termination rules to keep the algorithm running until finding a feasible 

solution, many more iterations will be added since the algorithm has already converged 

and the current step size is very small. The second advantage of the 2-Phase algorithm is 

that it does not require strict convexity and continuity of the objective and constraint 

functions. The constraint relaxation method integrates the original constraints into the 

objective functions with high penalties, demanding absolute convexity of the knock and 

COV of IMEP models. The most important advantage of the constraint relaxation method 

is that it does not need to handle constraints explicitly. Thus the program is more 

compact. The RLS algorithm has a slow convergence rate to fit the combustion models 

with coarse model resolution and inaccurate initial guesses. This advantage of the 2-

Phase algorithm makes it favorable if one wants to reduce computational burden by 

decreasing the numeric integration step size of the combustion model. 

Table 3.2: Comparison between the three proposed SPKT optimization algorithms 

 2 phase 
Constraint 

Relaxation 

RLS Polynomial 

Fitting 

Mean number of 

iterations 
7 6 3 

Algorithm Complexity Medium Low High 

Slight violation of 

constraints 
No Yes Yes 

Requirement of obj. and 

const. function continuity 
No Yes Suggested 
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3.3 Model Based Combustion Phasing Estimation 

The highly transient operational nature of passenger car engines makes cylinder 

pressure based feedback control of combustion phasing difficult.  The problem is further 

complicated by cycle-to-cycle combustion variation.  A method for fast and accurate 

differentiation of normal combustion variations and true changes in combustion phasing 

is addressed in this research.  The proposed method combines the results of a feed 

forward combustion phasing prediction model and “noisy” measurements from cylinder 

pressure using an iterative estimation technique. A modified version of an Extended 

Kalman Filter (EKF) is applied to calculate optimal estimation gain according to the 

stochastic properties of the combustion phasing measurement at the corresponding engine 

operating condition. Methods to improve steady state CA50 estimation performance and 

adaptation to errors are further discussed in this research. Finally, the proposed CA50 

observer was applied to a SI engine and validated with simulation and dynamometer tests 

using a prototype engine controller. The new method provides more responsive and 

accurate CA50 estimation performance than discrete low pass filter techniques. 

3.3.1 Introduction 

Control of combustion phasing with cylinder pressure feedback is difficult due to 

cycle-by-cycle variations and the highly transient operational nature of passenger car 

engines. The phasing of combustion, generally defined by crank angle location at which 

certain portion of the fuel energy is released (e.g. CA10, CA50 and CA90), has a 

significant impact on the engine performance (Caton 2014 and Zhu et al. 2003). Real-
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time calculation of these combustion phasing variables is possible using the Rassweiler 

and Withrow method (Caton 2014 and Rassweiler 1938) on measured cylinder pressure. 

However, cycle-by-cycle combustion variations make it difficult to determine if a shift in 

mean combustion phasing occurs in a very small sample set of engine cycles. To 

demonstrate the effectiveness of the proposed methodology, this research uses the 

example of CA50 estimation. Although the proposed approach can be used with different 

types of IC engines with a corresponding combustion phasing model, its application with 

SI engines is primarily discussed in this document.  

Applying a moving average, or discrete low pass filter (treating each engine cycle 

as an event k), is the most intuitive and common solution to the CA50 estimation 

problem. With this approach, filter design inevitably involves a tradeoff between 

accuracy and responsiveness. For most applications, the moving average filter order n is 

from 10 to 20 engine cycles to generate a reasonably accurate estimation of CA50. This 

response time is considered very slow for most real world driving situations, where there 

are not many steady-state events that last more than a few engine cycles. 

𝐶𝐴50𝑒𝑠𝑡(𝑘) =
1

𝑛
∑𝐶𝐴50(𝑘 − 𝑖)

𝑛

𝑖=0

, 𝑘 = 1,2… (3.29) 

Although most simplified models developed for feed-forward CA50 control suffer 

from accuracy issues, these models can be implemented as a “virtual CA50 sensor”. This 

additional prediction can be combined with the cylinder pressure based CA50 feedback, 

generating a fast and accurate estimation of the combustion phasing. Previous researchers 
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(Song et al. 2001, Shrestha et al. 1999, Lafossas et al. 2005, Richard et al. 2009, Le Berr 

et al. 2006, Lee et al. 2010, Bougrine et al. 2009 and Hall et al. 2012) presented models 

that can be used to predict CA50 for a SI engine. Most of these models are physics based 

and control oriented, so they can be run online within each engine cycle. These models 

ignore cycle-by cycle dynamics since they are difficult to predict for most operating 

conditions.  

A Kalman Filter (KF) method was developed to estimate linear system states 

under the influence of measurement noise and actuation disturbance (The Analytic 

Sciences Corporation 1974). If the noise\disturbance is Gaussian distributed and the 

system dynamics are Linear Time Invariant (LTI), the KF has proven to provide the 

optimal estimation of system states (Kalman 1960). The KF based estimation approach is 

especially favorable for systems whose states are affected by their time history. These 

dynamics help to converge steady state estimation error. Ghazimirsaied et al. (2009) and 

Ravi et al. (2006) identified that the CA50 of Homogeneous Charge Compression 

Ignition (HCCI) engines is strongly affected by the engine states of previous engine 

cycles. These dynamics were exploited by (Ravi et al. 2007, Chiang et al. 2005, Shaver et 

al. 2005 and Bengtson et al. 2006), who applied EKF based techniques on nonlinear 

CA50 dynamics models for HCCI engine control. Most of these methods calculate their 

estimation gain using the stationary solution of the algebraic Riccati equation. The 

proposed method considers the dynamics of estimation variance. This approach improves 

the steady state estimation accuracy and transient state responsiveness. Previous 

combustion research has shown that the variation of combustion phasing can be very 
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different according to IC engine operating conditions (Lee et al. 2009). Therefore, the 

estimation gain should be calculated according to the combustion stochastic 

characteristics of current engine operation conditions. To achieve this goal with 

stationary KF, one can either solve the Riccati equation online or store pre-calibrated 

values in a look up table. Both approaches cost either additional computation power or 

memory demand and calibration time. As for the proposed approach, the variance of 

combustion can be conveniently included with recursive calculation of estimation gain. 

Applying a KF to the CA50 estimation of SI engines is rarely discussed due to the lack of 

cyclic dynamics that helps converge the estimation error. This document demonstrates 

that applying a KF to SI engine CA50 estimation can also significantly reduce the impact 

of measurement noise and modeling errors. The proposed approach utilizes steady and 

transient state switching operation modes to reduce steady state error without sacrificing 

transient response. The KF based combustion phasing estimator was augmented with a 

forgetting factor to guarantee observability for situations with significant modeling 

errors.  

This chapter of the dissertation presents a generalized KF based CA50 estimation 

method which can be used for applications with and without consideration of cyclic 

dynamics. Methods to improve steady state estimation performance and response to un-

modeled dynamics are also discussed. It is shown by this research work that the optimal 

estimation gain of a KF should be calculated considering the stochastic properties of 

combustion variation. Basic model assist filter algorithm is described in the next section. 

This section is followed by a discussion of methods to improve KF performance with an 
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adaptive switching mode structure, forgetting-factor, and determination of weighting 

based on combustion variation analysis. Finally, simulation and test results are presented 

and conclusions are drawn. 

3.3.2 Model Assist Filtering 

Most explicit models of CA50 consist of exogenous terms relating combustion 

phasing to current engine operation conditions and 𝑛𝑡ℎ order homogeneous or auto-

regression terms reflecting the cyclic dynamics of CA50 (Ravi et al. 2007, Chiang et al. 

2005, Shaver et al. 2005 and Bengtson et al. 2006). The generalized canonical form of 

the CA50 model presented in this research is expressed as the following:  

𝐶𝐴50𝑒𝑠𝑡
(𝑛)(𝑘) = 𝑓[𝐶𝐴50𝑒𝑠𝑡

(𝑛)(𝑘 − 1)]

+ [
1
0
⋮
] [𝑔(𝑅𝑃𝑀,𝑀𝐴𝑃, 𝑆𝑃𝐾𝑇… ) + 𝑤(𝑘)] 

𝐶𝐴50𝑒𝑠𝑡(𝑘) = [1 0 …]𝐶𝐴50𝑒𝑠𝑡
(𝑛)(𝑘) 

𝑤(𝑘)~𝑁[0, 𝑄(𝑘)] 

(3.30) 

The existence of 𝑤(𝑘) is due to the modeling error and measurement noise of 

engine operating conditions. While the homogeneous term 𝑓is often constructed linearly 

or it can be approximated with a 1st order Taylor series expansion and linearized at any 

specific operating point. Therefore, equation (3.30) can be transformed into: 
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𝐶𝐴50𝑒𝑠𝑡
(𝑛)(𝑘) = 𝐴(𝑘) 𝐶𝐴50𝑒𝑠𝑡

(𝑛)(𝑘 − 1)

+ 𝐻𝑇[𝑔(𝑅𝑃𝑀,𝑀𝐴𝑃, 𝑆𝑃𝐾𝑇… ) + 𝑤(𝑘)] 

𝐶𝐴50𝑒𝑠𝑡(𝑘) = 𝐻 𝐶𝐴50𝑒𝑠𝑡
(𝑛)(𝑘) 

with     𝐻 = [1, 0, … 0] 

(3.31) 

The CA50 measurement at the 𝑘𝑡ℎ cycle can be considered as the  “true” CA50 

corrupted with white noise 𝑣: 

𝐶𝐴50𝑚(𝑘) =  𝐻𝐶𝐴50𝑡
(𝑛)(𝑘) + 𝑣(𝑘) 

with     𝑣(𝑘)~𝑁[0, 𝑅(𝑘)] 

(3.32) 

The recursive estimation of CA50 can be formulized as the following: 

𝐶𝐴50𝑒𝑠𝑡
(𝑛)(𝑘)+ = 𝐶𝐴50𝑒𝑠𝑡

(𝑛)(𝑘)−  + 𝐿(𝑘)[𝐶𝐴50𝑚(𝑘) − 𝐻 𝐶𝐴50𝑒𝑠𝑡
(𝑛)(𝑘)−] 

With 𝐶𝐴50𝑒𝑠𝑡
(𝑛)(𝑘)− Prior state estimate at step k 

Where 𝐿(𝑘) is estimation gain 

(3.33) 

The determination of estimation gain 𝐿(𝑘) is to minimize the covariance of 

estimation error 𝑃(𝑘). With the information of disturbance and noise variance [𝑄(𝑘) and 

𝑅(𝑘), will be discussed in a later section], the estimation gain can be optimally obtained 

by the KF method. Prior and post estimate errors and corresponding covariance are 

defined as:  
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𝐶𝐴50𝑒
(𝑛)(𝑘)+ = 𝐶𝐴50𝑒𝑠𝑡

(𝑛)(𝑘)+ −  𝐶𝐴50𝑡
(𝑛)(𝑘) 

𝐶𝐴50𝑒
(𝑛)(𝑘)− = 𝐶𝐴50𝑒𝑠𝑡

(𝑛)(𝑘)− −  𝐶𝐴50𝑡
(𝑛)(𝑘) 

𝑃(𝑘)± = 𝐸 [(𝐶𝐴50𝑒
(𝑛)(𝑘)± )(𝐶𝐴50𝑒

(𝑛)(𝑘)± )
𝑇

] 

(3.34) 

Then, substitute equations (3.32) and (3.34) into (3.33) and rearrange: 

𝐶𝐴50𝑒
(𝑛)(𝑘)+ = [𝐼 − 𝐿(𝑘)𝐻]𝐶𝐴50𝑒

(𝑛)(𝑘)− + 𝐿(𝑘)𝑣(𝑘) (3.35) 

The post estimation error covariance can be updated from prior error covariance 

by substituting equation (3.35) into (3.34): 

𝑃(𝑘)+ = [𝐼 − 𝐿(𝑘)𝐻]𝑃(𝑘)−[𝐼 − 𝐿(𝑘)𝐻]𝑇 + 𝐿(𝑘)𝑅(𝑘)𝐿𝑇(𝑘) (3.36) 

The prior error covariance is calculated from the post covariance of the previous 

engine cycle according to the linear system errors propagation theorem: 

𝑃(𝑘)− = 𝐴(𝑘 − 1)𝑃(𝑘 − 1)+𝐴𝑇(𝑘 − 1) + 𝑄(𝑘 − 1) (3.37) 

The optimal estimation gain 𝐿∗(𝑘) is used to minimize the post estimation error 

covariance 𝑃(𝑘)+ in equation (3.36). This can be achieved by finding the 𝐿(𝑘) that 

minimizes 𝐽(𝑘) = trace[𝑃(𝑘)+]: 

𝜕 𝐽(𝑘)

𝜕 𝐿(𝑘)
= 0 

(3.38) 

The solution of equation (3.38) is: 

𝐿(𝑘) = 𝑃(𝑘)−𝐻𝑇[𝐻𝑃(𝑘)−𝐻𝑇 + 𝑅(𝑘)]−1 (3.39) 
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The update between prior and post error covariance can be simplified by 

substituting equation (3.39) into (3.36): 

𝑃(𝑘)+ = [𝐼 − 𝐿(𝑘)𝐻]𝑃(𝑘)− (3.40) 

In the cases that cycle-by-cycle dynamics are neglected (e.g. SI engines), the KF 

can be greatly simplified as 𝐴(𝑘) = 0 and 𝐻 = 1. Equation (3.31) is transformed into a 

stationary model: 

𝐶𝐴50(𝑘) = 𝑔(𝑅𝑃𝑀,𝑀𝐴𝑃, 𝑆𝑃𝐾𝑇… ) + 𝑤(𝑘) (3.41) 

It can be inferred from equation (3.37) that the prior estimation error covariance is 

constant: 

𝑃(𝑘)− = 𝑄(𝑘 − 1) (3.42) 

From equation (3.39), the optimal estimation gain can be calculated from the 

variance of noise 𝑅(𝑘) and disturbance 𝑄(𝑘), which is the same as the least square 

estimation gain for a stationary system.  

𝐿(𝑘) =
𝑄(𝑘 − 1)

𝑄(𝑘 − 1) + 𝑅(𝑘)
 

(3.43) 

 

3.3.3 Adaptive Filtering 

As a general concept, adaptive filtering represents a class of estimation techniques 

whose algorithm or involved models evolve with real time measurement. The application 

of adaptive filtering can reduce accuracy demands of modeling, improve robustness of 
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the control algorithm and generate better steady state results. The exogenous function 

𝑔(𝑅𝑃𝑀,𝑀𝐴𝑃, 𝑆𝑃𝐾𝑇… ) can be extremely complex and highly nonlinear due to the 

dynamics of charge motion and flame propagation. Since adaptive filtering can update 

the system model through identification techniques, it is possible to use a fast yet less 

accurate model in the observer without sacrificing too much performance. A single layer 

Artificial Neural Network (ANN) with 10 neurons is used in this research to relate CA50 

to RPM, intake manifold absolute pressure (MAP), intake camshaft centerline (ICL), 

exhaust camshaft centerline (ECL) and spark timing (SPKT).  Test results indicate that 

the computational time for the proposed EKF approach with an ANN model is negligible 

for the prototype controller. Figure 3.22 shows the steady state performance of the ANN 

model. Though the model captures most of the tendencies, non-trivial steady state errors 

are present in some cases, which could be corrected by online ANN identification.  
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Figure 3.22: Steady state performance of the CA50 ANN model. The ANN has a single layer and 10 neurons. 

Significant error can be observed in this plot which is intentional to illustrate the benefits of the correction approach. 

The online identification of 𝑔(𝑅𝑃𝑀,𝑀𝐴𝑃, 𝑆𝑃𝐾𝑇… ) can be a large computational 

burden on the engine ECU. Rather than identifying the entire model, this research 

proposes using a switching mode observer to adapt the system while in steady state 

conditions. Figure 3.23 shows a block diagram of the switching mode estimator.  
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Figure 3.23: Flow chart of switching mode CA50 estimation. The dashed line is for estimation with cycle-by-cycle 

dynamics. 

For steady state mode, by definition, the CA50 of this engine cycle should be the 

same as the previous engine cycle. Based on this assumption, 𝐴(𝑘) = 1,𝐻 = 1, 𝑄 = 0 

and the exogenous term is eliminated . Equation (3.31) is transformed into: 

𝐶𝐴50(𝑘) = 𝐶𝐴50𝑒𝑠𝑡(𝑘 − 1) (3.44) 

The estimation gain and covariance can be calculated as: 

𝑃(𝑘)− = 𝑃(𝑘 − 1)+ (3.45) 

𝐿(𝑘) =
𝑃(𝑘)−

𝑃(𝑘)− + 𝑅(𝑘)
 

(3.46) 

𝑃(𝑘)+ = [𝐼 − 𝐿(𝑘)]𝑃(𝑘)− (3.47) 

After the system switches to steady state mode (𝑘 ≥ 1), the optimal observer gain 

can be solved analytically in this case:  
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𝐿(𝑘) =

𝑃(0)
𝑅(𝑘)

1 +
𝑃(0)
𝑅(𝑘)

𝑘
 (3.48) 

The system is still at transient state at 𝑘 = 0. Therefore, the estimation error 

covariance is 𝑃(0) = 𝑄(0). Upon the system switching to steady state mode (𝑘 = 1) 

equation (3.48) returns to equation (15), which is the optimal estimation gain for transient 

operation. As 𝑘 increases, the estimation gain 𝐿(𝑘) will be close to zero. Therefore, the 

new measurement will affect estimation results less, yielding to constant steady state 

results with negligible error from the mean value. The steady state estimation result is 

equivalent to a moving average method with infinite order. However, it does not require 

large memory space to store previous measurements due to the recursive nature of this 

algorithm. 

3.3.4 Kalman Filter with Forgetting Factor 

One risk of a switching mode observer is that it can fail to identify that the system 

is in a transient state under some rare occasions, including very slow state transitions, 

sensor failure, and in the case of significant modeling error. In order to enable the 

observer to adapt to these situations, it is necessary for the iterative estimation algorithm 

to “forget” some previous measurement information. This can be achieved by adding a 

“forgetting factor” 𝛼 to equation (3.47). A similar concept has been discussed by Zhu 

(1999) and Bicer et al. (2012). 
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𝑃(𝑘)+ =
1

𝛼
[𝐼 − 𝐿(𝑘)]𝑃(𝑘)−,   0 < α < 1 

(3.49) 

Figure 3.24 shows that in the case of steady state, single variable estimation, the 

estimation gain with forgetting factor decays to a nonzero number (1 − 𝛼), instead of 

zero resulting in loss of observability. This indicates that the new measurement can still 

affect the estimation results even if the observer is in steady state mode. 

 

Figure 3.24: Comparison between estimation gains with and without a forgetting factor. 

3.3.5 Determination of Weighting Parameters 

Variance of the CA50 model (𝑄) is caused by variation in model inputs. 

Assuming reasonable sensor quality, the variance of model output is usually very small. 

On the other hand, the variance of CA50 measurement error (𝑅) is significantly affected 

by combustion variability. Lee et al.(2009) focused on modeling stochastic combustion 
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characteristics providing a possible solution to predict CA50 variance using measurable 

engine operation conditions. In this research work, the variance of CA50 measurement is 

mapped to combustion phasing (CA50) and manifold pressure (Figure 3.25), which could 

be replaced with an advanced model with better accuracy as desired (Refer to Section 

3.1). The accurate estimation of CA50 variance will help the EKF weigh the confidence 

between measurement and model prediction, resulting in a more reasonable estimation 

gain.   

 

Figure 3.25: Surface plot of CA50 measurement variance corresponding to CA50 and intake MAP. 

3.3.6 Results and Discussion  

Figure 3.5 shows simulation results of the KF approach with and without the 

switching mode function. The spark timing is changed at 22s and 27s. The ANN, 

discussed previously, is used as a CA50 prediction model, and does not utilize an 

adaptive training function.  The ‘true’ value is the average of the measured CA50 that 
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would occur over 500 consecutive cycles, which is the reference of a perfect estimation. 

From this plot, the KF method successfully filtered measurement noise (mostly from 

cycle-by-cycle combustion variation) and tracks the change of the true value. With the 

switching mode function, the steady state performance is further improved and 

demonstrates less oscillation and steady state error. It can also be observed from Figure 

3.26 that for specific engine operation conditions the optimal estimation gain 𝐿 of the 

stationary KF is constant, which is calculated according to the variance of CA50 

measurement and the ANN CA50 prediction model. In comparison, the estimation gain 

of the KF with switching mode decays to zero (for a sufficiently long time) when the 

system stays in steady state.  

 

Figure 3.26: Comparison between the KF with and without the switching mode function. 
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Figure 3.27 shows a comparison between the switching mode KF with and 

without a forgetting factor. An un-modeled change of engine operating condition is 

intentionally added at 35s. Neither KF observes the change and both remain in steady 

state mode. However, since the KF with a forgetting factor has a higher estimation gain, 

it is still responsive to the new measurement and converges to the new true CA50 within 

4 engine cycles.  

 

Figure 3.27: comparison between the switching mode KF with and without a forgetting factor (FF). 

The switching mode KF with a forgetting factor of 0.7 was validated in real-time 

on the engine dynamometer (Figure 3.28 to 3.30). The proposed CA50 observer can 
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method requires reasonable computational and memory resources, which enables it to be 

integrated within a production-intent engine ECU. The data demonstrates the proposed 

KF based approach can generally produce an accurate CA50 estimate within two engine 

cycles of a mean combustion phasing change, which is significantly faster than mean 

CA50 estimation with a 10-cycle moving average. This advantage is further demonstrated 

with actual driving cycle test data in Figure 3.30. The KF based method can quickly 

determine the mean CA50 change among measurements with poor signal to noise power 

ratios. Negligible steady state error is observed during real-time experiments. Compared 

to a moving average (10 engine cycles), the RMS of steady state estimation error for the 

KF estimation is one order of magnitude lower under both transient and steady state 

engine operating conditions.  

 

Figure 3.28: Real-time model validation with an intake manifold pressure change at 1500 rpm. The proposed KF 

method responds faster than a 10 cycle moving average, and creates similar steady-state errors. 
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Figure 3.29: A spark timing step change at 3000 rpm shows that that proposed Kalman Filter based CA50 estimation 

strategy responds significantly faster than a 10-cycle moving average. 

 

Figure 3.30: Comparison between proposed KF approach and 10 cycle moving average during driving cycle test. 
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Figure 3.31 compares the discrete low pass filter (Moving Average) technique and 

switching mode KF with forgetting factor approach in terms of steady state variance 

versus transient response time. As the filter order increases the moving average approach 

generates better steady state estimation of the true CA50 while losing responsiveness 

during transient scenarios. The KF based approach “breaks off” the moving average 

curve since it is able to achieve less “noisy” steady state estimation without sacrificing 

transient response time. The forgetting factor ranged from 0.5 to 1. A lower forgetting 

factor will increase the RMS of steady state estimation and lead to instability (the EKF is 

not stable when 𝛼 < 0.5). However, lower forgetting factors grant the switching mode 

KF the ability to recognize un-modeled changes of CA50.  

 

Figure 3.31: Plot of steady state variance versus delay to true CA50. 
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3.3.7 Conclusions 

This research demonstrates an extended Kalman filter based approach to 

conditioning the CA50 measurement from cylinder pressure sensor feedback. By 

employing a CA50 prediction model as a “virtual sensor”, the Kalman Filter effectively 

solves the conflict of signal processing between responsiveness and accuracy. The 

proposed CA50 estimation method was applied to a SI engine and validated with both 

simulation and real-time transient dynamometer tests. The contributions of this research 

include: 

 The KF based approach can respond to CA50 changes within one engine 

cycle. Because of this unique property, the approach can be applied to 

different engine types where strong cycle-by-cycle dynamics are present.  

 For applications in SI engines where cycle-to-cycle dynamics can be 

neglected, steady state error is inevitable since the CA50 model is not 

perfectly accurate. Instead of adapting the model, it is proposed to use a 

switching mode estimation adapting to whether the engine is in steady-

state or transient operation. Negligible steady state error is observed 

during real-time experiments. Compared to a moving average (10 engine 

cycles), estimation error RMS of the KF approach is one order of 

magnitude lower under both transient and steady state situations.  

 The application of a forgetting factor in the switching mode KF 

significantly improves estimation performance when the CA50 prediction 

model is very inaccurate or fails to capture certain engine dynamics.  
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A responsive and reasonably accurate estimation of CA50 makes it possible to 

employ feedback controllers to regulate combustion phasing. This could potentially 

reduce amount of calibration work during the development of an IC engine significantly. 

The estimation results can also be integrated with model based feed forward algorithms 

to adapt models online. 
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CHAPTER FOUR 

MULTIPLE INPUT MULTIPLE OUTPUT SI ENGINE IMEP OPTIMAL CONTROL 

 

4.1 Introduction 

One of the most fundamental control objective of modern IC engine management 

systems is to provide engine torque output as demanded. At the same time, the control 

system should minimize fuel consumption while prevents abnormal combustion 

phenomena that could damage the mechanical components and interrupt the normal 

operation of the engine. This control objective favors the application of model based 

optimal control strategy with its clearly stated cost function and constraints. While many 

articles discussed the possibility of applying MPC to control engine air path (e.g. Colin et 

al. 2007 and Santillo et al. 2013)  and speed (Di Cairano et al 2012 and Hrovat et al. 

1996), using MPC to directly regulate torque while reducing fuel consumption and 

respecting combustion constraints is neither adopted by the industry nor extensively 

discussed by academic research. Ali et al. (2006) demonstrated potential of using LTI 

MPC to track torque reference. Lee et al. (2011) applied Nonlinear MPC (NMPC) on SI 

engine with VVT to track torque reference and reduce NOx emission. Both papers were 

supported by simulation results. There are three reasons contributing to this dilemma:  

 It is difficult to directly measure engine torque output and some 

combustion related engine states on production vehicles. Without these 



97 

 

feedback information, the prediction models in the feed forward loops are 

required to be very accurate to guarantee engine performance.  

 Calibrating these accurate models costs significant amount of time and 

resources, especially with increasing number of engine actuators. Most of 

these models cannot be integrated with the modern optimal control 

theories because of their complex structure and heavy computational 

burden.  

 The optimization program that computes the optimal control actions based 

on these complex models can be very challenging to solve in real time 

operation. Each evaluation of the high-fidelity engine models takes 

significant amount of time for current engine ECUs. This requires the 

optimizer to find the optimal solution with few number of iterations. 

Furthermore, the non-convexity of these complex models makes the 

optimization problem to have multiple local optimums. Some optimization 

algorithms can find the global optimal solution among these local optimal 

points like dynamic programming, genetic algorithm and particle swarm. 

However, the price of these algorithms is that they need to evaluate the 

objective and constraint functions for thousands of times.  

The development of low cost cylinder pressure sensors makes it possible to 

directly measure IMEP and combustion phasing (Bertola et al 2015 and Schten et al 

2007). This provides the opportunity to apply model based estimation techniques to 

improve the calculation of both measurable and unmeasurable engine states (Zhu et al. 



98 

 

2015 and Arsie et al. 2015). Therefore, the first challenging factor preventing optimal 

engine torque control can be solved. Numerous control oriented engine combustion 

models were developed recently (Ghojel 2010, Bonatesia et al. 2010, Hall et al. 2012, 

Lee et al. 2010 and Bougrine et al. 2009). Although their physics based nature makes 

them more adaptive to different engine designs and easier to calibrate, these models are 

generally more complex and difficult to compute than the traditional look up tables. This 

chapter of the dissertation focuses on developing a model predictive IMEP control 

strategy that can utilize these control oriented engine models. Both optimization strategy 

and control structure are investigated to reduce the computational load during execution. 

The research focuses on SI engine IMEP control manipulating the air mass flow through 

throttle, external EGR and combustion phasing. Together with constraints from the 

system dynamics, the COV of IMEP and auto-ignition are also considered during the 

optimization of control actions.  

Control oriented engine air path and torque generation models are well 

established (Guzzella et al. 2009). Most of these models are constructed in time domain 

making them favorable to be integrated with controllers of fixed sampling time. The most 

important drawback of this control strategy is that the IC engine is an inherently discrete 

event system with its cyclic operation characteristics. If the sampling time scale is finer 

than the engine cycle, delays caused by the four stroke operation pattern must be 

considered. For example, the period between induction and power stroke determines that 

there is a dead time delay of 2𝜋/𝜔𝑒 between torque generation and any air path actuation. 

On the other hand, some important cyclic dynamics will be neglected if the sampling 
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time is coarser than the engine cycle. It can be concluded that modeling the engine 

systems in time domain conflicts with the natural rhythm of the engine and increase the 

model dependency on the engine speed. The SI engine system is modelled and controlled 

in the engine cycle domain in this research. While this approach solves the issues 

discussed previously, it also benefits from the fact that most control oriented combustion 

models were constructed in the engine cycle domain. This advantage makes it convenient 

to impose abnormal combustion constraints like auto-ignition and combustion stability 

during the calculation of optimal control actions. Previous researchers have proposed that 

engine knock can be accurately predicted by integrating the Arrhenius function output for 

the end gases (Livengood et al 1955 and Xiao et al 2013). Most automotive OEMs 

adopted empirical and map based knock model in the engine controllers. The limit for 

SPKT retard is determined by the COV of IMEP, which is considered as an indicator of 

combustion stability. The extreme case of unstable combustion corresponds to misfire 

phenomenon.  Researchers have illustrated that combustion variation is the main cause of 

COV of IMEP (Ozdor et al. 1994 and Lacour et al. 2011). Lee et al.(2009) suggested that 

the COV of IMEP has strong correlation with combustion phasing. Finally, regression 

models of COV of IMEP have been proposed by Young (1980), Dai et al. (2000) and 

Galloni (2009).  

In the context of discrete model predictive control, the control objective and 

constraints of a certain horizon 𝑁 into the future are correlated to the control action 

sequence as functions via the discretized system models. These objective and constraints 
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functions are employed to formulate an optimization problem (Equation 4.1), the solution 

of which contains the desired control sequence.  

min
𝑢
ℎ(𝑥(𝑁)) + ∑ 𝑔(𝑥(𝑘), 𝑢(𝑘))

𝑁−1

𝑘=0

 

𝑠. 𝑡.     {

𝑥(0) = 𝑥0
𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘))

0 ≥ 𝑙𝑘(𝑥(𝑘), 𝑢(𝑘)), 𝑘 = 0,1,2…𝑁 − 1

 

(4.1) 

where 𝑥 ∈ ℝ𝑛, 𝑢 ∈ ℝ𝑚.  

Due to the complex nonlinear nature of turbulent combustion, this optimization 

problem described in (4.1) is nonlinear for the proposed optimal IMEP control. It is 

straight forward to apply nonlinear programming techniques to solve this optimization 

problem. Many research papers discuss the possibility of using nonlinear programming 

algorithms in the context of MPC (e.g. Vermillion et al. 2010 and Benson et al. 2006). 

Most of these attempts were not supported by experiment results due to the heavy 

computational burden of numerous evaluations of system and constraints models. The 

most practical method to handle this nonlinear optimization problem is to linearize the 

system dynamics and constraint functions at a specific operating point (𝑥0, 𝑢0). Often the 

control objective is correlated to the first and second order terms of the system states 𝑥 

and control action 𝑢. Therefore, the nonlinear optimization (Equation 4.1) renders to a 

Linear Time Variant (LTV) quadratic programming problem, which has more 

computationally efficient solvers than other nonlinear programming problems. Choosing 

an efficient linearization method for the originally nonlinear models are not a trivial 
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question. The plant and constraint models are evaluated many times during this process, 

which takes significant amount of time to complete. Most LTV MPC applications 

commonly select first order Taylor series expansion to generate the linear version of their 

plant models. If the models are complicated, Algorithmic Differentiation (AD) can be 

applied to efficiently evaluate derivatives (Quirynen et al 2014 and Griewank et al 2008). 

Both methods rely on the original nonlinear model to be explicit and differentiable. 

Numeric differentiation methods like Euler methods are favorable if the nonlinear models 

cannot be linearized analytically. This situation is highly possible in the IC engine control 

applications where numerous look-up tables are used to model different dynamics. 

The LTV MPC technique was successfully applied to many control systems (e.g. 

Zhu et al 2015 and Sharma et al. 2010). There is a critical disadvantage of applying LTV 

MPC to control systems with nonlinear dynamics and constraints. The linear 

approximation of the original models diverges from the true nonlinear behavior as the 

search for the optimal solution progress further away from the operating point (𝑥0, 𝑢0). 

The controller performance evaluated by the control objective decreases if the divergence 

occurs at the objective functions. It is more critical if the divergence happens at the 

constraint functions. This will make the calculated control action to be infeasible to be 

applied to the actual nonlinear system interrupting the operation of the system. For the 

proposed optimal IMEP control, violating the knock and combustion stability constraints 

can damage the engine and cause misfire. Furthermore, these constraints are highly 

nonlinear making the LTV MPC less desirable for this control application.  



102 

 

Sequential Quadratic Programming (SQP) is one of the most successful methods 

for the numerical solution of constrained nonlinear optimization problems like (4.1). The 

original SQP was developed by Wilson (1963). SQP is an iterative numerical solver of 

nonlinear constrained optimization. During each major iteration 𝑘, the search step ∆𝑢𝑘  is 

calculated by solving a QP sub-optimization problem (with minor iterations).  

min
𝑝

1

2
∆𝑢𝑘

𝑇𝐻𝑘∆𝑢𝑘 + ∇𝐽𝑘
𝑇∆𝑢𝑘 

𝑠. 𝑡.    𝑙𝑒𝑞(𝑢𝑘) + ∇𝑙𝑒𝑞(𝑢𝑘)
𝑇∆𝑢𝑘 = 0 

𝑙𝑖𝑛𝑒𝑞(𝑢𝑘) + ∇𝑙𝑖𝑛𝑒𝑞(𝑢𝑘)
𝑇∆𝑢𝑘 ≤ 0 

(4.2) 

where 𝐽 is the objective function in (4.1). 𝐻𝑘 is the Hessian of 𝐽 at 𝑢𝑘. 𝐺𝑒𝑞 and 𝐺𝑖𝑛𝑒𝑞 are 

functions that complies the equality and inequality constraints in (4.1). 

The solution of (4.2) converges to a local optimal solution of (4.1) near the start 

point 𝑢0 as 𝑘 → ∞ (Bertsekas 1982, Fletcher 1981 and Goodman 1985) if 𝐻𝑘 is the exact 

Hessian at 𝑢𝑘. In practice, 𝐻𝑘 is often approximated with first order derivatives to reduce 

computational burden. Quasi-Newton methods are well discussed by Dennis et al (1983) 

and Fletcher (1987). The Broyden-Fletcher-Goldfarb-Shanno (BFGS) rank-two update 

method is widely used in SQP applications (Broyden 1970 and Nocedal 2000). The 

Hessian was estimated iteratively (major iterations) using the following equation: 

�̂�𝑘+1 = �̂�𝑘 −
�̂�𝑘𝛿𝛿

𝑇�̂�𝑘

𝛿𝑇�̂�𝑘𝛿
+
휀 휀𝑇

휀𝑇𝛿
 (4.3) 
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𝛿 = 𝑢𝑘+1 − 𝑢𝑘  

휀 = ∇𝑢𝐽(𝑢𝑘+1) − ∇𝑢𝐽(𝑢𝑘) 

There are other approaches to compute or approximate the Hessian matrix. 

Goldsmith (1999) proposed disaggregated Hessian approximation approach, which is 

more computational effective than the BFGS method. Quirynen et al. (2014) proposed to 

use algorithmic differentiation approach to calculate the exact Hessian. It was claimed 

that this computation can be fast enough to be considered for real time MPC applications.  

Another challenge for SQP approach is that currently efficient QP solvers can 

only handle convex problems. However, the exact Hessian for the nonlinear 

programming problem may not be positive definite, making the sub-QP problem non-

convex. Goldsmith (1999) developed a non-convex QP solver to work with the 

disaggregated Hessian approximation method. Although the solver was proved to 

converge within finite iterations, finding the solution of the sub-QP problem is still not 

efficient enough to make it a viable option for MPC application. The BFGS methods 

artificially guarantees the estimated Hessian to be positive definite. However, conflicts 

arises when the exact Hessian is not positive definite, making the BFGS SQP to have 

slow convergence rate. Quirynen et al. (2014) proposed to use mirrored version of 

Hessian from eigenvalue decomposition to replace the original indefinite Hessian. 

Although this method guarantees the Hessian to be positive definite and the sub-QP to be 

convex, its impact on SQP convergence rate is not well discussed in the literature.  
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The SQP was developed to solve general continuous nonlinear programming 

problems. The most important advantage of SQP is that it transformed complex nonlinear 

programming problems in a sequence of quadratic programming (hence the name), which 

has computationally efficient solvers. Thus the original nonlinear models are only 

evaluated during each major iterations, saving significant amount of computation time 

compared to other nonlinear programming solvers that completely rely on the evaluation 

of the nonlinear models. The calculation of Hessian is the most critical process of the 

SQP, which still cost precious time to complete for fast MPC applications. For MPCs 

designed to track designated references, the objective function takes a specific least 

square format. Knowledge of this format can be utilized to simplify the SQP formulation 

and solution. The control objectives of the proposed IMEP optimal control makes it an 

obvious “tracking” MPC strategy. While SQP is the approach to solve the nonlinear 

programming in real time, concept of LTV MPC is borrowed to accelerate the 

conventional SQP algorithm. Methods to improve convergence rate are also discussed in 

this document.  

The reset of this chapter is organized as follows: Section 4.1 introduces the 

cascaded control structure of the proposed optimal SI engine IMEP management system. 

The SQP MPC is place at a control tier that can greatly simplify the prediction model 

without losing control authority completely. The next section discusses the cycle-by-

cycle model predictive IMEP control. This section includes sub-sections of modeling and 

analysis, optimization problem formulation and modified SQP algorithm for tracking 

MPC applications. Section 4.3 presents some simulation results of the proposed control 
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system. Finally Section 4.4 concludes the contribution of this chapter and possible future 

extension.  
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4.2 Cascaded Control Structure 

There are two reasons to place the SQP MPC at the higher control level with 

slower update frequency. The first reason is to simplify the modeling process by 

transferring nonlinear and fast dynamics to lower level controllers. Although the SQP is 

able to solve nonlinear programming problems, the formulation of the sub-QP problem 

during each major iteration takes a significant portion of the computation time since it 

often requires numerous evaluations of the system and constraint models. Simple models 

can significantly reduce the computational load of entire control system. It is almost 

impossible to construct perfectly accurate models for IC engine systems, especially 

considering the turbulence combustion characteristics. Therefore, it is not reasonable to 

believe that the control action calculated using these models are perfect. Automotive 

OEMs need simple and effective ways to correct for modelling errors. Therefore, it is 

desirable for the MPC controller to relinquish some control authority to the simpler fast 

controllers downstream the control hierarchy. These map or simple feedback controllers 

provide the abilities to fine tune the controller performance. They are also fast enough to 

fully exploit the actuators’ bandwidth.  

Figure 4.1 shows the block diagram of the SI engine system with external EGR. 

This document focuses on the optimal IMEP controller manipulating throttle air mass 

flow per cycle, EGR mass flow per cycle and CA50 (Figure 4.1labelled in green). These 

variables are sent to lower level controllers as references to track. The manipulated 

variables of the lower level controllers are represented by yellow in Figure 4.1.  
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Figure 4.1: Block diagram of the SI engine system with external EGR. Variables in red are measured by sensors. Blue 

represent system states that need to be modelled. Green variables are manipulated by the proposed optimal IMEP 

controller. Variables in yellow are controlled by lower level controllers. 

 The throttle and EGR valve opening are controlled in time domain with sampling 

rate much faster than one engine cycle. The correlation between the flow rate and valve 

opening can be accurately modelled with orifice flow equations:  

�̇� = 𝐶𝐷𝐴
𝑃𝑖

√𝑅𝑇𝑖

{
  
 

  
 

√𝛾 (
2

𝛾 + 1
)

𝛾+1
𝛾−1

,    𝑃𝑜 < 𝑃𝑐𝑟

(
𝑃𝑜
𝑃𝑖
)

1
𝛾
√
2𝛾

𝛾 − 1
[1 − (

𝑃𝑜
𝑃𝑖
)

𝛾−1
𝛾
] , 𝑃𝑜 ≥ 𝑃𝑐𝑟

 (4.4) 
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with 𝑃𝑐𝑟 = 𝑃𝑖 (
2

𝛾 + 1
)

𝛾
𝛾−1

 

where 𝐶𝐷 is discharge coefficient. 𝐴 is effective valve opening area. 𝑃𝑖 and 𝑃𝑜 are the 

pressure of the inlet and outlet of the valve. 𝑅 is gas constant. 𝛾 is heat capacity ratio. 𝑇𝑖  

is the inlet air temperature. Although the orifice model is highly nonlinear, the 

relationship between flow rate and valve opening is primarily static without dependence 

on time history. Therefore, tracking the accumulated air mass flow for one engine cycle 

can be easily achieved by a look-up table and PI controller.  

 The CA50 is widely used as an indicator of combustion phasing, which has 

important influence on the engine efficiency, combustion stability and emission. The 

combustion phasing physically describes the synchronization between the combustion 

process and piston movement regardless of the engine operation conditions, making it to 

have a more definitive correlation with engine performance related variables than using 

SPKT directly. However, the demanded combustion phasing must be translated into 

SPKT. A lower level controller is used to track the CA50 output from the SQP MPC 

IMEP controller, avoiding the necessity to incorporate combustion phasing model with 

optimization process. This lower level controller can be a simple version of one 

dimensional combustion phasing optimal control described in Chapter 2. Since the CA50 

target generated by the MPC controller has already consider the knock and combustion 

stability constraints, the number of iterations to find the desired SPKT can be greatly 

reduced. Furthermore, the MPC control loop includes a model based estimator for most 

engine states including the CA50, it is convenient for the lower level combustion phasing 
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controller to maintain its adaptive and feedback functions. Figure 4.2 illustrates the 

control hierarchy of the proposed MPC oriented IMEP management system for SI engine 

with external EGR.  

 

Figure 4.2: Block diagram of the control hierarchy of the proposed optimal IMEP control. Variables in red are 

measured by sensors. Blue represent system states that need to be modelled. Green variables are manipulated by the 

proposed optimal IMEP controller. Variables in yellow are controlled by lower level controllers. 
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4.3 Cycle-by-cycle model predictive IMEP control 

4.3.1 Control Oriented Cycle-by-cycle SI Engine System Modelling and Analysis 

The air path dynamics contributes most of time history dependency of the IC 

engine systems. The air path dynamics were modelled in time domain to work with 

controllers of fixed sampling time. In order to generate engine cycle based air path 

dynamics model, one can discretize the time domain model (Guzzella, 2009 page 161-

163). Similar result can generated by considering the cyclic mass balance. The proposed 

IMEP controller focuses on one cylinder and applies the same control action to the other 

cylinders. Thus, the sampling time is 4𝜋 of crank angle, one cycle of a single cylinder. 

Assuming the air mass inside the intake manifold is constant during one engine cycle, the 

combined air and exhaust gas mass flow into the engine 𝑚𝛽 can be calculated as: 

𝑚𝛽(𝑘) =
휂𝑉(𝑘)𝑉𝑑𝑚𝑚(𝑘)

𝑉𝑚
 

(4.5) 

where 휂𝑉 is volumetric efficiency. 𝑉𝑑 is engine displacement. 𝑉𝑚 is manifold volume. 

𝑚𝑚 is the air mass inside the manifold.  

From the mass balance of the manifold, we have: 

𝑚𝑚(𝑘 + 1) = 𝑚𝑚(𝑘) + 𝑚𝛼(𝑘) + 𝑚 (𝑘) − 𝑚𝛽(𝑘) (4.6) 

where 𝑚 (𝑘) is the external EGR mass flow into the manifold. For SI engine that often 

operate at close to stoichiometric AFR, the air and fuel content in the exhaust gas are 

minimal. They can be treated as external disturbance sources that are neglected under the 



111 

 

discussion of the prediction model for the optimal IMEP controller. From equation (4.5) 

and (4.6), the air mass flow into the engine during next cycle is: 

𝑚𝛽(𝑘 + 1) =
1

𝐾 + 1
𝑚𝛽(𝑘) +

𝐾

𝐾 + 1
𝑚𝛼(𝑘) +

𝐾

𝐾 + 1
𝑚 (𝑘) 

with 𝐾 =
휂𝑉(𝑘)𝑉𝑑
𝑉𝑚

 

(4.7) 

Equation (4.7) can be separated according to air and exhaust gas species: 

𝑚𝛽𝑎𝑖𝑟
(𝑘 + 1) =

1

𝐾 + 1
𝑚𝛽𝑎𝑖𝑟

(𝑘) +
𝐾

𝐾 + 1
𝑚𝛼(𝑘) 

𝑚𝛽𝑒𝑔
(𝑘 + 1) =

1

𝐾 + 1
𝑚𝛽𝑒𝑔

(𝑘) +
𝐾

𝐾 + 1
𝑚 (𝑘) 

(4.8) 

Both equations in (4.8) describes zero order hold discrete equivalent of a 

continuous first order lag dynamics of air and exhaust gas flow into the engine. 

Comparing to air-path models in time domain that is strongly depended on engine speed, 

it is remarkable that the air-path dynamics are invariant in engine cycle domain 

considering the slow change of volumetric efficiency 휂𝑉. Since the air-path dynamics is 

the slowest in the focused SI engine system, the prediction horizon of the MPC should be 

determined by the time constant of the first order lag 𝜏 described in engine cycle domain 

with (4.8), which is: 

𝜏 ≈
𝑉𝑚
𝑉𝑑
= 2.29 

with 휂𝑉 ≈ 1 

(4.9) 
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Therefore, the prediction horizon for the MPC is selected as 2 engine cycles 

ahead. In time domain, this corresponds to 0.2 ~ 0.02 s (600 RPM to 6000 RPM) preview 

of the IMEP reference. For modern vehicles with drive-by-wire system and integrated 

powertrain control, this preview time is not an unreasonable demand.  

The manifold pressure can be calculated as: 

𝑃𝑚(𝑘) =
𝑚𝛽(𝑘)𝑅𝑇𝑚

휂𝑉(𝑘)𝑉𝑑
 

(4.10) 

The manifold pressure cannot be higher than the ambient pressure since the 

engine is naturally aspirated. This is a potential constraint during the formulation of the 

optimization problem.  

The gas composition inside cylinder includes air, exhaust gas, fuel and other 

minor species that are neglected in this research. The amount of air and fuel can be 

determined by 𝑚𝛽𝑎𝑖𝑟
 assuming stoichiometric AFR. The amount of exhaust gas inside 

cylinder is the summation of 𝑚𝛽𝑒𝑔 and RGM. This research adopts the semi-empirical 

methods proposed by Fox and et al. 1993. The Fox model separates the RGM into two 

parts: 1) exhaust gas backflow into the cylinder and intake runner during the valve 

overlap period and 2) from trapped residual at exhaust valve closing (EVC) due to un-

swept cylinder volume.  

𝑅𝐺𝑀 = 𝑚𝑡𝑟𝑎𝑝𝑝𝑒𝑑 +𝑚𝑏𝑎𝑐𝑘𝑓𝑙𝑜𝑤 
(4.11) 

The trapped mass 𝑚𝑡𝑟𝑎𝑝𝑝𝑒𝑑 can be calculated from the engine clearance volume 

𝑉𝑐 and burned gas density 𝜌𝑏: 



113 

 

𝑚𝑡𝑟𝑎𝑝𝑝𝑒𝑑 = 𝐶1𝜌𝑏𝑉𝑐 
(4.12) 

where 𝐶1 is a fitting constant.  

The burned gas density 𝜌𝑏 can be estimated with exhaust gas temperature 𝑇𝑒𝑥ℎ 

and pressure 𝑃𝑒𝑥ℎ according to ideal gas law: 

𝜌𝑏 =
𝑃𝑒𝑥ℎ
𝑅𝑇𝑒𝑥ℎ

 
(4.13) 

The backflow happens during the valve overlap period. The air mass flow for the 

backflow process is determined by the pressure difference between intake and exhaust 

manifold, effective flow area, piston motion and engine speed. The original Fox model 

proposed to use the following equation to compute the backflow mass 𝑚𝑏𝑎𝑐𝑘𝑓𝑙𝑜𝑤: 

𝑚𝑏𝑎𝑐𝑘𝑓𝑙𝑜𝑤 = 𝐶2√𝜌𝑏(𝑃𝑒𝑥ℎ − 𝑃𝑚)𝐴𝑓𝑙𝑜𝑤
𝑂𝐿𝑉

𝜔𝑒
 

(4.14) 

Where 𝐶2 is a fitting constant.  

𝐴𝑓𝑙𝑜𝑤 in equation (4.14) is the effective flow area during the valve overlap period, 

which can be calculated as: 

𝐴𝑓𝑙𝑜𝑤 = ∫ 𝐷𝑖𝐿𝑖𝑑휃
𝑂𝐿𝐶

𝐼𝑉𝑂

+∫ 𝐷𝑒𝐿𝑒𝑑휃
𝐸𝑉𝐶

𝑂𝐿𝐶

 
(4.15) 

where IVO is the crank angle of intake valve open. OLC is the crank angle location 

where the intake and exhaust valves have the same lift. EVC is the crank angle of exhaust 

valve close. 𝐷𝑖 and 𝐷𝑒 are the intake and exhaust valve diameter. 𝐿𝑖 and 𝐿𝑒 are the lift of 

intake and exhaust valve. 휃 is crank angle.  



114 

 

OLV in equation (4.14) stands for overlap volume, which is employed to capture 

the impact of piston motion on the backflow mass. The OLV is calculated according to: 

𝑂𝐿𝑉 = 𝑉𝐸𝑉𝐶 − 𝑉𝐼𝑉𝑂 
(4.16) 

The future extension of this research work will discuss the optimal IMEP control 

with VVT actuation. This document assumes fixed camshaft position, resulting in 

constant 𝐴𝑓𝑙𝑜𝑤 and 𝑂𝐿𝑉.  

Wang et al. (2014) proposed to add correction factors ∆𝑃𝑒𝑥ℎ and ∆𝑃𝑚 to the 

pressure of intake and exhaust manifold to account for pressure wave dynamics. The 

same technique is also adopted by this research work to model RGM. The complete 

RGM model is: 

𝑅𝐺𝑀(𝑘) = 𝐶1
𝑃𝑒𝑥ℎ

𝑅𝑇𝑒𝑥ℎ(𝑘)
𝑉𝑐 

+𝐶2√
𝑃𝑒𝑥ℎ

𝑅𝑇𝑒𝑥ℎ(𝑘)
((𝑃𝑒𝑥ℎ + ∆𝑃𝑒𝑥ℎ(𝑘)) − (𝑃𝑚(𝑘) + ∆𝑃𝑚(𝑘)))𝐴𝑓𝑙𝑜𝑤

𝑂𝐿𝑉

𝜔𝑒(𝑘)
 

(4.17) 

The rest of the engine dynamics are combustion related and cannot be modelled 

as compact as the air-path system. Although complicated and highly nonlinear physical 

models exist for some combustion related variables, most combustion related engine 

states are modelled with thousands of maps in reality. The physics based control oriented 

combustion models can significantly reduce the calibration effort compared to the 

traditional map based modelling approach. However, most of these models still have 

numerous tuning factors that are generated with “black box” methods like look-up tables 
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and ANNs. These factors are selected to account for neglected dynamics from the main 

physics, leading to improved model accuracy. In summary, most combustion related 

models with reasonable accuracy are complicated and contain “black box” factors 

because of the complex nature of turbulent combustion. The optimal IMEP controller 

must be able to utilize these accurate models so that the calculated solution is truly 

optimal. In this research the combustion related states are calculated with complex 

physics models, look-up tables and ANNs. Simulation results prove that the proposed 

optimal IMEP control frame work is able to handle the selected complex combustion 

models. It is suggested that other forms of combustion models should be compatible with 

this control frame work including the currently prevailing map based models.  

For the many high-fidelity complex combustion models, the quasi-dimensional 

flame entrainment models are the most computationally efficient and potentially applied 

with control applications. A brief introduction of the quasi-dimensional flame 

entrainment model is presented in Section 3.2 of this dissertation, Cycle-by-cycle Model 

Predictive Spark Timing Control. With the accurate estimation of the mass fraction burnt, 

the heat release can be calculated, leading to precise modelling of cylinder pressure and 

exhaust gas temperature. Although the one dimensional combustion phasing optimal 

control discussed in Chapter III utilizes the quasi-dimensional combustion model and 

demonstrates that the model is fast enough for several iterations with the prototype ECU, 

there are some drawbacks to apply it with the Multiple Input Multiple Output (MIMO) 

optimal IMEP control. The first issue is that it is required to compute the combustion 

model for the entire combustion process in order to generate IMEP and exhaust gas 



116 

 

temperature. The computational time is almost doubled comparing to the computation of 

CA50 which only requires to run the combustion model until MFB reaches 50%. The 

quasi-dimensional combustion model is a nonlinear ODE system, which requires numeric 

integration methods (often in crank angle resolution) to generate its results. Like all other 

numeric integration applications, the error accumulates as the integration progresses. 

Therefore, the prediction of heat release for the second half of the combustion process is 

not as accurate as the first half, leading to worse estimation of the IMEP and exhaust gas 

temperature. Finally, the optimization problem formulated for the MIMO IMEP control is 

much more complicated than the one dimensional combustion phasing control. Not only 

does the MIMO problem have higher dimensions with more control actuators and further 

prediction horizon, the constraint system is also more complicated considering the air-

path dynamics. Therefore the MIMO IMEP control needs much more number of 

iterations than the 1D combustion phasing control, making the quasi-dimensional 

combustion model less favorable with its heavy computation burden. Instead of switching 

to completely empirical models, the combustion related engine states are modelled 

considering the engine energy balance in this research. During one engine cycle, the 

chemical energy stored in the injected fuel are transformed into three types of energy: 

mechanical work, exhaust enthalpy and heat transfer to coolant. The heat radiation and 

incomplete combustion also takes away small portion of the energy. Their effects are 

neglected in this research. 

Firstly, the mechanical work is estimated among the three aspects of the energy 

balance. The relationship between mechanical work and IMEP is: 
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𝑊 = 𝐼𝑀𝐸𝑃 ∙ 𝑉𝑑 
(4.18) 

Willians approximation were applied to estimate engine IMEP output in many 

articles (Greene, 1969 and Guzzella, 2009 page 64 – 76). The advantages of this 

approach includes simple model structure, separating the impact of different engine 

dynamics on IMEP output and decent accuracy. For this research, the IMEP can be 

estimated with the following affine function: 

𝐼𝑀𝐸𝑃 = 𝑒(𝜔𝑒 , 𝐶𝐴50, 𝑥𝑒𝑔𝑟)𝑃𝑓 − 𝑃0 
(4.19) 

Where 𝑥𝑒𝑔𝑟 is the portion EGR of the total in-cylinder mass.  𝑃𝑓 is fuel effective pressure 

that can be calculated as (assuming stoich AFR 𝜎0): 

𝑃𝑓 = 𝐿𝐻𝑉 ∙
𝑚𝑓

𝑉𝑑
= 𝐿𝐻𝑉 ∙

𝑚𝛽𝑎𝑖𝑟

𝜎0𝑉𝑑
 

(4.20) 

𝑃0 is the PMEP without FMEP in this research since the control objective is to 

track IMEP reference instead of BMEP. The reason to exclude friction effects is that both 

PMEP and IMEP can be measured directly with cylinder pressure sensor. This approach 

allows the IMEP and PMEP models to serve for model based engine state estimation. The 

PMEP can be simply calculated as the pressure difference between intake and exhaust 

manifolds: 

𝑃0 = 𝑃𝑒𝑥ℎ − 𝑃𝑚 ≈ 1.1 𝑏𝑎𝑟 − 𝑃𝑚 
(4.21) 

The slope factor 𝑒 in equation (4.19) determines the portion of the fuel chemical 

energy transferred into mechanical work. For SI engines with stoich AFR, this slop factor 
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𝑒 is affected primarily by engine speed 𝜔𝑒, combustion phasing CA50 and fraction of 

EGR 𝑥𝑒𝑔𝑟. The Willians approximation separate these effects as individual slope factors: 

𝑒(𝜔𝑒 , 𝐶𝐴50, 𝑥𝑒𝑔𝑟) = 𝑒𝜔(𝜔𝑒)𝑒 (𝐶𝐴50)𝑒𝑒𝑔𝑟(𝑥𝑒𝑔𝑟, 𝜔𝑒) (4.22) 

Figure 4.3 ~ 4.5 depicts these individual slope terms for the engine in this 

research. Figure 4.6 shows the IMEP model has decent accuracy with 𝑅2 = 99.23%.  

 

Figure 4.3: Engine speed effect on slope term e. 
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Figure 4.4: Combustion phasing effect on slope term e. 

 

Figure 4.5: EGR fraction effect on slope term e. It is noticed that this effect varies with engine speed. The EGR faction 

greatly reduces engine efficiency when the engine speed is high. 
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Figure 4.6: Validation of the IMEP model. 

After subtracting the mechanical work from the chemical energy stored in the 

injected fuel, the rest of the chemical energy transformed into rejected heat. This portion 

of the energy dissipates through exhaust enthalpy and coolant heat transfer, both of which 

are not usually measured in production vehicles. In order to calculate exhaust gas 

temperature for the RGM model, at least one of the heat sink source needs to be 

modelled. Since most engine test laboratory are equipped to monitor both exhaust gas 

enthalpy and coolant heat transfer, selecting which one to model is not a critical issue. 

This research chose to model the portion of the rejected heat transferred to coolant 

considering the future integration with advanced engine thermal management system. 

While the engine heat transfer to coolant is determined by coolant temperature, engine 

load and speed for production vehicles (Arici et al. 1999, Cortona et al, 2002 and Shibata 

et al. 1993), the coolant temperature is controlled by dynamometer management system 
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in our engine test environment. Thus, the ratio of transferred heat 𝜗(𝑘) (in terms of the 

total rejected heat) is modelled as map of engine speed and load: 

 

Figure 4.7: Map of coolant heat transfer ratio 𝜗 versus cylinder air mass flow and engine speed. The black dots are the 

calibration data points. 

After subtracting the coolant heat transfer from the total rejected heat, the exhaust 

temperature is calculated using the following equation: 

𝑇𝑒𝑥ℎ(𝑘) =
𝑉𝑑 (𝑃𝑓(𝑘) − 𝐼𝑀𝐸𝑃(𝑘)) (1 − 𝜗(𝑘))

𝑐𝑝𝑚𝛽𝑎𝑖𝑟
(1 + 1/𝜎0)

 (4.22) 

where 𝑐𝑝 is constant pressure heat capacity of air.  

Figure 4.8 shows that the exhaust temperature model has decent accuracy with 

𝑅2 = 97.82%. 
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Figure 4.8: Validation of the exhaust temperature model. 

The combustion stability is indicated with COV of IMEP in this research. Section 

3.1 of this dissertation detailed describes an approach that can accurately predict the COV 

of IMEP. However, this approach requires SPKT, 𝑢′ and 𝑆𝐿 at TDC information, which 

are not available without quasi-dimensional combustion model. A simplified version of 

the COV of IMEP models discussed in Section 3.1 is applied for the optimal IMEP 

control. Section 3.1 analyzes the critical impact of combustion phasing on COV of IMEP. 

It can be observed from Figure 4.9 that the COV of IMEP can be estimated using only 

CA90 and cylinder air mass flow 𝑚𝛽𝑎𝑖𝑟
. 
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Figure 4.9: Contour plot of COV of IMEP vs. 𝑚𝛽𝑎𝑖𝑟 .and CA90 

The CA90 is estimated with an artificial neural network of 1 hidden layer and 10 

neurons. The inputs to the ANN are CA50, RPM and 𝑚𝛽_𝑎𝑖𝑟. The performance of the 

simplified COV model is demonstrated in Figure 4.10. Although not as accurate as the 

original COV model discussed in Section 3.1, the simplified model has a reasonable 

accuracy with 𝑅2 = 88.34% 
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Figure 4.10: Validation of simplified COV of IMEP model. 

Knock modelling is not the focus of this research work. Since the optimal IMEP 

control does not utilize the quasi-dimensional combustion model, crank angle resolution 

cylinder pressure and temperature are not available. Therefore, the Arrhenius function 

based knock model discussed in Section 3.2 cannot be applied with the optimal IMEP 

control. A simple 3D map is used to correlates the knock intensity 𝐾𝐼 with engine speed, 

CA50, 𝑚𝛽𝑎𝑖𝑟
 and 𝑚𝛽𝑒𝑔. The 𝐾𝐼 is normalized so that 𝐾𝐼 ≥ 1 indicates a likely knocking 

engine cycle.  

4.3.2 Formulation of model predictive IMEP control 

The previous section introduces the control oriented SI engine modelling. 

Although the modelling process and structure can be very complex, the entire engine 

model can be summarized as a nonlinear state space model with four states: 
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𝑥(𝑘 + 1) = 𝑓𝑥(𝑥(𝑘), 𝑢(𝑘)) 

𝑦(𝑘) = 𝑓𝑦(𝑥(𝑘)) 

with 𝑥 ∈ ℝ𝑛, 𝑥(𝑘) = [𝑚𝛽𝑎𝑖𝑟
(𝑘),𝑚𝛽𝑒𝑔

(𝑘), 𝑅𝐺𝑀(𝑘), 𝑥𝐶𝐴50(𝑘)]
𝑇

 

𝑢(𝑘) ∈ ℝ𝑚, 𝑢(𝑘) = [𝑚𝛼(𝑘),𝑚 (𝑘), 𝐶𝐴50(𝑘)] 

𝑦(𝑘) ∈ ℝ𝑝, 𝑦(𝑘) = 𝐼𝑀𝐸𝑃(𝑘) 

(4.23) 

The state 𝑥𝐶𝐴50(𝑘) is the MPC demanded CA50 from previous engine cycle 

(𝐶𝐴50(𝑘 − 1)). The reason for this additional delay is because the control action 

computed by MPC optimizes the performance for future prediction horizon. This fact 

implicitly determines the computed control action cannot affect the system output within 

the same step.  

The objective of the optimal IMEP control is to track the IMEP target while 

minimize fuel consumption for the prediction horizon. The fuel consumption is 

determined by engine air mass flow since the stoich AFR operation is discussed in this 

research work. According to the intake manifold mass balance, air mass come through 

the throttle will eventually end up entering the cylinders with certain lag. It is reasonable 

to penalize the throttle air mass flow 𝑚𝛼 to account for fuel consumption. Thus for each 

step into the horizon, a weighted summation of the IMEP least square error and 𝑚𝛼 are 

penalized. The prediction horizon is selected as 2 engine cycles according to the time 

constant of the air-path dynamics. The complete cost function combines the cost of each 

prediction step into the future: 
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𝐽(𝑥(𝑘), 𝑈(𝑘)) = ∑ 𝑟 (𝑦(𝑘𝑖) − 𝑦𝑟𝑒𝑓(𝑘𝑖))
2

+ �̃�𝑢(𝑘𝑖 − 1)

𝑘+𝑁

𝑘𝑖=𝑘+1

 

with 𝑈(𝑘) = [𝑢(𝑘), 𝑢(𝑘 + 1),…𝑢(𝑘 + 𝑁 − 1)]𝑇 

�̃� = 𝑠 [
1 0 0
0 0 0
0 0 0

] 

𝑁 = 2 

(4.24) 

where 𝑟 and 𝑠 are weighting factors.  

 Equation (4.24) can be written in a more compact form: 

𝐽(𝑥(𝑘), 𝑈(𝑘)) = (𝑌(𝑘) − 𝑌𝑟𝑒𝑓(𝑘))
𝑇

𝑅 (𝑌(𝑘) − 𝑌𝑟𝑒𝑓(𝑘)) + 𝑆𝑈(𝑘) 

with 𝑌(𝑘) = [𝑦(𝑘), 𝑦(𝑘 + 1),… 𝑦(𝑘 + 𝑁 − 1)]𝑇 

𝑅(𝑝×𝑁)×(𝑝×𝑁) = [
𝑟 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑟

] , 𝑆(𝑚×𝑁)×(𝑚×𝑁) = [
𝑠 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑠

] 

(4.25) 

 

The constraints that needs to be considered for the optimization problem can be 

categorized into states and actuation constraints. The MPC control actuation is bounded 

by the dynamics of the lower level control loop. In this case, the throttle and EGR valve 

air mass flow is limited between zero and maximum allowable mass flow per engine 

cycle at current speed and pressure difference. Fortunately, the size of the throttle and 

EGR valve on a production engine are normally so large that the maximum air mass flow 
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is rarely restricted by them. As for the CA50 demanded by the MPC, the physical 

limitation is much more relaxed than the combustion limitations. Therefore, the 

constraints on control actuation are only the non-negativity constraints on throttle and 

EGR air mass flow per engine cycle 𝑚𝛼(𝑘) and 𝑚 (𝑘). The constraints on engine states 

are more complex than that of control actuations. The first constraint is that the manifold 

pressure cannot exceed ambient pressure for naturally aspirated engines. Since the 

discrete air-path dynamics described in (4.8) do not include the orifice flow model, the 

throttle air mass flow is not determined by pressure difference between manifold and 

ambient. Thus the model by itself cannot maintain manifold pressure to be less than the 

atmosphere. According to the relationship between engine air mass flow 𝑚𝛽 and 

manifold pressure 𝑃𝑚 from (4.10), the summation between engine states 𝑚𝛽𝑎𝑖𝑟
 and 𝑚𝛽𝑒𝑔 

must be restrict with an additional constraint to guarantee the reasonable manifold 

pressure. Finally, COV of IMEP and knock intensity are modelled with engine states 𝑥 as 

inputs in the previous section. The complete optimization problem is: 

min
𝑈(𝑘)

𝐽(𝑥(𝑘), 𝑈(𝑘)) 

s. t.      

{
 
 

 
 
𝑃𝑚(𝑘𝑖) ≤ 𝑃𝑎𝑚𝑏𝑖𝑒𝑛𝑡
𝑚𝛼(𝑘𝑖) ≥ 0

𝑚 (𝑘𝑖) ≥ 0

𝐶𝑂𝑉(𝑘𝑖) ≤ 𝐶𝑂𝑉𝑢𝑏
𝐾𝐼(𝑘𝑖) ≤ 𝐾𝐼𝑢𝑏

,     𝑘𝑖 = 𝑘 + 1, 𝑘 + 2,…𝑘 + 𝑁 

(4.26) 

The equation (4.25) can be written in a more compact form: 

min
𝑈(𝑘)

𝐽(𝑥(𝑘), 𝑈(𝑘)) 
(4.27) 
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s. t.      𝑙(𝑥(𝑘), 𝑈(𝑘)) ≤ 𝟎 

The convexity of this optimization problem is difficult to prove analytically with 

the complex structures of the models. However, it is easy to find an example to show that 

the objective function is not convex. The relationship between IMEP and CA50 is 

concave from Figure 4.4 (so is the relationship between IMEP and 𝑥𝑒𝑔𝑟.). Assuming the 

𝑥𝑒𝑔𝑟 and engine speed is constant, Figure 4.11 shows the surface of the cost function with 

𝑚𝛽𝑎𝑖𝑟
 and CA50 as input. It can be observed that the surface is neither convex nor 

concave. Thus it cannot be proved that the optimization problem (4.26) has a unique local 

minimum.  

 

Figure 4.11: Surface of the optimization cost function vs. engine air mass flow and CA50. 
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4.3.3 Modified SQP algorithm for tracking MPC applications 

It is discussed in the introduction of this chapter that the nonlinear programming 

algorithms capable of handling multiple local minimum problems are not realistic to be 

implemented with MPC application due to their astronomical number of function 

evaluations. Sequential quadratic programming has a great potential with MPC 

applications for each of its iterations is relatively faster to compute compared with other 

NLP algorithms. However, the SQP algorithm can only find a local minimum near the 

start point. For proposed optimal IMEP control application, this disadvantage is not 

critical. Although the local minimum point has worse fuel economy and IMEP tracking 

performance than the global optimal solution, the performance is still better than the 

starting point which can be generated with benchmark calibration. Furthermore, the 

performance difference from global optimal solution can be negligible if the calibration 

of the starting point has good quality, i.e. it is close to the global optimal solution.  

In order to further improve the computational efficiency of the MPC IMEP 

control, the original SQP algorithm is modified considering the specific structure of 

tracking MPC applications with least square cost functions. Some concepts from the LTV 

MPC are applied to the SQP MPC algorithm. Firstly, let us consider solving the 

optimization problem (4.27) in the context of LTV MPC. The state space model 

described in (4.23) and constraints in (4.26) needs to be linearized with the initial guess 

of control actions 𝑈0(𝑘). Applying first order Taylor series expansion to (4.23): 

𝛿𝑥(𝑘 + 1) = [
𝜕𝑓𝑥
𝜕𝑥
]|
𝑥(𝑘),𝑢0(𝑘)

𝛿𝑥(𝑘) + [
𝜕𝑓𝑥
𝜕𝑢
]|
𝑥(𝑘),𝑢0(𝑘)

𝛿𝑢(𝑘) + 𝐻.𝑂. 𝑇. 
(4.28) 
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𝛿𝑦(𝑘) = [
𝜕𝑓𝑦

𝜕𝑥
]|
𝑥(𝑘)

𝛿𝑥(𝑘) 

Or 

𝛿𝑥(𝑘 + 1) = 𝐴(𝑘)𝛿𝑥(𝑘) + 𝐵(𝑘)𝛿𝑢(𝑘) 

𝛿𝑦(𝑘) = 𝐶𝑦(𝑘)𝛿𝑥(𝑘) 
(4.29) 

In order to linearize the models for the next step, the updated system states needs 

to be calculated, which is the summation of linearized state variation and the nominal 

value of the original nonlinear state equation: 

𝑥(𝑘 + 1) = 𝛿𝑥(𝑘 + 1) + 𝑓𝑥(𝑥(𝑘), 𝑢0(𝑘)) 

𝑦(𝑘) = 𝛿𝑦(𝑘) + 𝑓𝑦(𝑥(𝑘)) 
(4.30) 

The first order partial differential of 𝑓𝑥 and 𝑓𝑦 can be approximated with Euler 

approach with an intentional perturbation of the inputs ∆𝑥. The following is an example 

of one element in [
𝜕𝑓𝑥

𝜕𝑥
]|
𝑥(𝑘),𝑢0(𝑘)

 

𝜕𝑓𝑥
𝜕𝑥𝑖

|
𝑥(𝑘),𝑢0(𝑘)

=
𝑓𝑥([𝑥1(𝑘), 𝑥2(𝑘),… 𝑥𝑖(𝑘) + ∆𝑥𝑖, … 𝑥𝑛(𝑘)], 𝑢0(𝑘)) − 𝑓𝑥(𝑥(𝑘), 𝑢0(𝑘))

∆𝑥𝑖
 

(4.31) 

The MAP, COV of IMEP and knock intensity can be considered as the outputs of 

the state-space engine model. Thus the original state-space model becomes: 
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𝑥(𝑘 + 1) = 𝑓𝑥(𝑥(𝑘), 𝑢(𝑘)) 

𝑧(𝑘) = 𝑓𝑧(𝑥(𝑘)) 

with 𝑧(𝑘) ∈ ℝ𝑞 , 𝑧(𝑘) = [ 𝑃𝑚(𝑘), 𝐶𝑂𝑉(𝑘),𝐾𝐼(𝑘)] 

(4.32) 

The unknown parameters in the linear state-space equation are in the 𝐶𝑧(𝑘) and 

the third row of 𝐴(𝑘). These parameters can be calculated with the Euler technique by 

running the original nonlinear engine model (together with COV and KI models) five 

times for each prediction step.  

Since the original nonlinear dynamics are evaluated during the numeric 

linearization process, this document proposed to compute the nominal points with the 

original nonlinear state-space model instead of integrated from initial states 𝑥0 through 

the entire prediction horizon, which was adopted by conventional LTI and LTV MPC 

formulation. Let us consider the state update first. From (4.30) 

𝑥(𝑘 + 1|𝑘) = 𝛿𝑥(𝑘 + 1) + 𝑓𝑥(𝑥(𝑘), 𝑢0(𝑘))  

                   = 𝐴(𝑘)𝛿𝑥(𝑘) + 𝐵(𝑘)𝛿𝑢(𝑘) + 𝑓𝑥(𝑥(𝑘), 𝑢0(𝑘))  

𝑥(𝑘 + 2|𝑘) = 𝛿𝑥(𝑘 + 2) + 𝑓𝑥(𝑥(𝑘 + 1), 𝑢0(𝑘 + 1))  

                   = 𝐴(𝑘 + 1)𝐴(𝑘)𝛿𝑥(𝑘) + 𝐴(𝑘 + 1)𝐵(𝑘)𝛿𝑢(𝑘) + 𝐵(𝑘 + 1)𝛿𝑢(𝑘 + 1) +

𝑓𝑥(𝑥(𝑘 + 1), 𝑢0(𝑘 + 1)) 

⋮ 

(4.33) 
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𝑥(𝑘 + 𝑁|𝑘) = 𝐴(𝑘 + 𝑁 − 1)…𝐴(𝑘)𝛿𝑥(𝑘) + 𝐴(𝑘 + 𝑁 − 1)…𝐴(𝑘 + 1)𝐵(𝑘)𝛿𝑢(𝑘) + ⋯+

𝐵(𝑘 + 𝑁 − 1)𝛿𝑢(𝑘 + 𝑁 − 1) + 𝑓𝑥(𝑥(𝑘 + 𝑁 − 1), 𝑢0(𝑘 + 𝑁 − 1))  

Since 𝑥(𝑘) is the feedback of the current system states whose variation 𝛿𝑥(𝑘) is 

0, the system states of the future prediction horizon is determined by nominal states 

computed by the initial guess of control action sequence 𝑈0(𝑘) and its variation 𝛿𝑈(𝑘). 

Equation (4.33) is transformed into: 

𝑥(𝑘 + 1|𝑘) = 𝛿𝑥(𝑘 + 1) + 𝑓𝑥(𝑥(𝑘), 𝑢0(𝑘))  

                   = 𝐵(𝑘)𝛿𝑢(𝑘) + 𝑓𝑥(𝑥(𝑘), 𝑢0(𝑘))  

𝑥(𝑘 + 2|𝑘) = 𝛿𝑥(𝑘 + 2) + 𝑓𝑥(𝑥(𝑘 + 1), 𝑢0(𝑘 + 1))  

                   = 𝐴(𝑘 + 1)𝐵(𝑘)𝛿𝑢(𝑘) + 𝐵(𝑘 + 1)𝛿𝑢(𝑘 + 1) + 𝑓𝑥(𝑥(𝑘 + 1), 𝑢0(𝑘 + 1)) 

⋮ 

𝑥(𝑘 + 𝑁|𝑘) = 𝐴(𝑘 + 𝑁 − 1)…𝐴(𝑘 + 1)𝐵(𝑘)𝛿𝑢(𝑘) +⋯  

+𝐵(𝑘 + 𝑁 − 1)𝛿𝑢(𝑘 + 𝑁 − 1) + 𝑓𝑥(𝑥(𝑘 + 𝑁 − 1), 𝑢0(𝑘 + 𝑁 − 1))  

(4.34) 

The computation of the nominal conditions 𝑓𝑥(𝑥, 𝑢0) has already been completed 

during the linearization process. Similarly, the linearized engine IMEP output of the 

prediction horizon can be computed as: 

𝑦(𝑘 + 1|𝑘) = 𝐶𝑦(𝑘 + 1)𝐵(𝑘)𝛿𝑢(𝑘) + 𝑓𝑦(𝑥(𝑘 + 1))  

𝑦(𝑘 + 2|𝑘) = 𝐶𝑦(𝑘 + 2)𝐴(𝑘 + 1)𝐵(𝑘)𝛿𝑢(𝑘) + 𝐶𝑦(𝑘 + 2)𝐵(𝑘 + 1)𝛿𝑢(𝑘 +

1) + 𝑓𝑦(𝑥(𝑘 + 2))  

(4.35) 
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⋮ 

𝑦(𝑘 + 𝑁|𝑘) = 𝐶𝑦(𝑘 + 𝑁)𝐴(𝑘 + 𝑁 − 1)…𝐴(𝑘 + 1)𝐵(𝑘)𝛿𝑢(𝑘) +⋯  

+𝐶𝑦(𝑘 + 𝑁)𝐵(𝑘 + 𝑁 − 1)𝛿𝑢(𝑘 + 𝑁 − 1) + 𝑓𝑦(𝑥(𝑘 + 𝑁))  

Equation (4.35) can be written in a more compact form: 

𝑌(𝑘) = 𝜙𝑦(𝑘)𝛿𝑈(𝑘) + 𝑌0(𝑘) 

with 𝑍0(𝑘) = [𝑓𝑦(𝑥(𝑘 + 1)), 𝑓𝑦(𝑥(𝑘 + 2)),… 𝑓𝑦(𝑥(𝑘 + 𝑁)) ]
𝑇

 
(4.36) 

If we consider the manifold pressure, COV of IMEP and KI as outputs, then 

equation (4.36) becomes: 

𝑍(𝑘) = 𝜙𝑧(𝑘)𝛿𝑈(𝑘) + 𝑍0(𝑘) 

with 𝑍0(𝑘) = [𝑓𝑧(𝑥(𝑘 + 1)), 𝑓𝑧(𝑥(𝑘 + 2)), … 𝑓𝑧(𝑥(𝑘 + 𝑁)) ]
𝑇

 

𝜙𝑧  is formulated similar to 𝜙𝑦, by replacing 𝐶𝑦 with 𝐶𝑧 in (4.34). 

(4.37) 

After substituting these linearized results into the original nonlinear programming 

problem (4.27), the optimization becomes a quadratic programming problem with linear 

constraints: 

min
𝛿𝑈(𝑘)

1

2
𝛿𝑈𝑇(𝑘)𝐻(𝑘)𝛿𝑈(𝑘) + 𝛿𝑈𝑇(𝑘)𝐹(𝑘) 

s. t.      𝑀(𝑘)𝛿𝑈(𝑘) − 𝑏(𝑘) ≤ 𝟎 

 

(4.38) 
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with                  𝐻(𝑘) = 2𝜙𝑦
𝑇(𝑘)𝑅𝜙𝑦(𝑘) 

𝐹(𝑘) = −2𝜙𝑦
𝑇(𝑘)𝑅(𝑌𝑟𝑒𝑓(𝑘) − 𝑌0(𝑘)) + 𝑆 

𝑀(𝑘) = [𝜙𝑧(𝑘),−𝜙𝑧(𝑘), 𝐼
𝑚×𝑁 , −𝐼𝑚×𝑁]𝑇 

𝑏(𝑘) = [𝑍𝑢𝑏 − 𝑍0(𝑘), −𝑍𝑙𝑏 + 𝑍0(𝑘), 𝑈𝑢𝑏 − 𝑈0(𝑘),−𝑈𝑙𝑏 + 𝑈0(𝑘)]
𝑇 

The optimal control action sequence for the prediction horizon is summation of 

the solution to (4.38) and the initial guess of control sequence: 

𝑈∗(𝑘) = 𝛿𝑈(𝑘) + 𝑈0(𝑘)  (4.39) 

At this point one may apply the first step of the optimal control sequence to the 

system, which concludes the proposed LTV MPC formulation. The most critical 

drawback of LTV MPCs is that the linearized system model becomes invalid if the 

optimal solution 𝑈∗(𝑘) is very different from 𝑈0(𝑘). This factor influences the optimality 

and even feasibility of the calculated control action. Let us solve the original NLP (4.27) 

in the context of SQP. The SQP is an iterative numeric algorithm to solve general 

nonlinear optimization problem. During each major iteration 𝑖 (compared to minor 

iterations in the sub-QP algorithm), the original nonlinear cost function is approximated 

as a quadratic surface around the start of search point 𝑈0(𝑖). Furthermore, the nonlinear 

constraints are linearized at the start point. Then a quadratic programming problem is 

formulated as : 

min
𝛿𝑈(𝑖)

1

2
𝛿𝑈𝑇(𝑖)�̂�(𝑖)𝛿𝑈(𝑖) + 𝛿𝑈𝑇(𝑖)�̂�(𝑖) 

(4.40) 
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s. t.      �̂�(𝑖)𝛿𝑈(𝑖) − �̂�(𝑖) ≤ 𝟎 

 

with                  �̂�(𝑖) =
𝜕2𝐽

𝜕𝑈2
|
𝑥(𝑘),𝑈0(𝑖)

 

�̂�(𝑖) =
𝜕𝐽

𝜕𝑈
|
𝑥(𝑘),𝑈0(𝑖)

 

�̂�(𝑖) = [
𝜕𝑍

𝜕𝑈
|
𝑥(𝑘),𝑈0(𝑖)

, −
𝜕𝑍

𝜕𝑈
|
𝑥(𝑘),𝑈0(𝑖)

, 𝐼𝑚×𝑁 , −𝐼𝑚×𝑁]

𝑇

 

�̂�(𝑖) = [𝑍𝑢𝑏 − 𝑍0(𝑖),−𝑍𝑙𝑏 + 𝑍0(𝑖), 𝑈𝑢𝑏 − 𝑈0(𝑖), −𝑈𝑙𝑏 + 𝑈0(𝑖)]
𝑇 

The solution of (4.40) is the of the optimal solution variation, which can also be 

considered as the search step of the major iterations. The start point of the next major 

iteration is: 

𝑈0(𝑖 + 1) = 𝛿𝑈(𝑖) + 𝑈0(𝑖)  (4.41) 

For the next major iteration, the QP described in (4.40) is reformulated around the 

latest start point 𝑈0(𝑖 + 1) and so forth. The iteration stops under certain termination 

conditions. The most common one is to compare the norm of solution variation 𝛿𝑈(𝑖) 

with certain threshold.  

It can be observed that the QP in (4.40) is very similar to the QP formulated for 

the LTV MPC. In fact, it can be shown that the �̂�(𝑖), �̂�(𝑖) and �̂�(𝑖) are exactly the same 

as the 𝐹(𝑘), 𝑀(𝑘) and 𝑏(𝑘) if 𝑈0(𝑖) = 𝑈0(𝑘). It is straight forward to see that equation 
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(4.36) and (4.37) is actually the first order Taylor series expansion of the system outputs 

𝑌(𝑘) and 𝑍(𝑘). Therefore, we have: 

𝜙𝑧(𝑖) =
𝜕𝑍

𝜕𝑈
|
𝑥(𝑘),𝑈0(𝑖)

 

𝜙𝑦(𝑖) =
𝜕𝑌

𝜕𝑈
|
𝑥(𝑘),𝑈0(𝑖)

 

(4.42) 

Thus: 

�̂�(𝑖) = 𝑀(𝑘) 

�̂�(𝑖)  = 𝑏(𝑘) 

with 𝑖 = 𝑘 

(4.43) 

Differentiate equation (4.25) with respect of 𝑈(𝑘): 

�̂�(𝑖) =
𝜕𝐽

𝜕𝑈
|
𝑥(𝑘),𝑈0(𝑖)

= 2
𝜕𝑌

𝜕𝑈
|
𝑥(𝑘),𝑈0(𝑖)

𝑅𝑌(𝑘) − 2
𝜕𝑌

𝜕𝑈
|
𝑥(𝑘),𝑈0(𝑖)

𝑅𝑌𝑟𝑒𝑓(𝑘) + 𝑆 
(4.44) 

Substitute (4.42) into (4.44): 

�̂�(𝑖) = −2𝜙𝑦
𝑇(𝑖)𝑅(𝑌𝑟𝑒𝑓(𝑖) − 𝑌0(𝑖)) + 𝑆 

(4.45) 

Thus: 

�̂�(𝑖) = 𝐹(𝑘) 

with 𝑖 = 𝑘 
(4.46) 
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The quadratic coefficient matrix 𝐻 is different between SQP MPC and LTV 

MPC. For the SQP algorithm, the 𝐻 is the Hessian of the original nonlinear objective 

function, which can be calculated as: 

�̂�(𝑖) =
𝜕2𝐽

𝜕𝑈2
|
𝑥(𝑘),𝑈0(𝑖)

 

       = 2 (
𝜕𝑌

𝜕𝑈
|
𝑥(𝑘),𝑈0(𝑖)

)

𝑇

𝑅
𝜕𝑌

𝜕𝑈
|
𝑥(𝑘),𝑈0(𝑖)

+ 2
𝜕2𝑌

𝜕𝑈2
|
𝑥(𝑘),𝑈0(𝑖)

𝑅 (𝑌0(𝑖) − 𝑌𝑟𝑒𝑓(𝑖)) 

(4.47) 

Substitute (4.42) into (4.47): 

�̂�(𝑖) = 2𝜙𝑦
𝑇(𝑖)𝑅𝜙𝑦(𝑖) + 2

𝜕2𝑌

𝜕𝑈2
|
𝑥(𝑘),𝑈0(𝑖)

𝑅 (𝑌0(𝑖) − 𝑌𝑟𝑒𝑓(𝑖)) 
(4.48) 

It can be observed that the first term in the system’s Hessian (4.48) is the same as 

the 𝐻(𝑘) with 𝑘 = 𝑖. There are two reasons strongly suggesting to neglecting the second 

term of the Hessian calculation for tracking SQP MPC applications. The first reason is 

that the second term is usually very small if the MPC has a decent initial guess and a 

reasonable tracking reference, i.e. 𝑌0(𝑖) ≈ 𝑌𝑟𝑒𝑓(𝑖). In this case, the approximated Hessian 

is very close to the exact value, resulting excellent global convergence performance of 

the SQP algorithm. The second reason is that the first term of the Hessian calculation (or 

𝐻 from LTV MPC) is guaranteed to be positive definite. Thus the sub-quadratic 

programming has a unique global minimum making it possible to apply many existing 

efficient QP solvers. Geometrically, the sub-quadratic programming with the 

approximated Hessian simplifies the objective function surface into the summation of a 
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plane and a quadratic surface. The plane is the supporting plane of the original nonlinear 

surface at 𝑈0(𝑖), described with 𝛿𝑈𝑇(𝑖)�̂�(𝑖). The quadratic surface is described by 

𝛿𝑈𝑇(𝑖)𝜙𝑦
𝑇(𝑖)𝑅𝜙𝑦(𝑖)𝛿𝑈(𝑖), which penalizes any excessive solution variation from the 

initial guess 𝑈0(𝑖). Figure 4.12 shows the tendency of the normalized optimal solution 

variation ‖𝛿𝑈(𝑖)‖ as number of iterations increases for a 100 consecutive engine cycles 

simulation. In order to improve the visualization of the tendency, the SQP is forced to run 

150 iterations regardless of the termination conditions. It can be observed from Figure 

4.12 that the proposed SQP algorithm has global convergence tendency.  

 

Figure 4.12: Tendency of normalized optimal solution variation. 

There are some local period that ‖𝛿𝑈(𝑖)‖ increases with SQP progression from 

Figure 4.12. The reason for this phenomenon is caused by SQP search skipping a local 

minimum point without proper termination conditions. This situation means that the SQP 
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could terminate at different local minimum points for similar engine states 𝑥(𝑘) and 

initial guess 𝑈0(𝑘). Therefore it could lead to control action chattering, which is not 

desirable for it could excite the un-modeled dynamics. Figure 4.13 shows the results of 

the section from 0 to 30 cycles from the 100 consecutive engine cycles simulation 

discussed before. The chattering happens at CA50 output between 10 to 20 engine cycles.  

 

Figure 4.13 a: Engine performance of the SQP MPC with simplified Hessian approximation. 
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Two modifications are applied to the SQP discussed previously to ensure the SQP 

terminates at the local minimum that is the nearest to the starting point. The first 

modification is to penalize the control variation with a cost that is increasing as the SQP 

progresses. This artificial cost can have exponential correlation with the number of 

iterations 𝑖 so that it does not interfere with the original QP during the beginning phase of 

the SQP. As the number of iteration increases, the solution variation 𝛿𝑈(𝑖) shrinks 

quickly to accelerate the convergence rate. The original sub-QP is transformed into: 

min
𝛿𝑈(𝑖)

1

2
𝛿𝑈𝑇(𝑖) (�̂�(𝑖) + 𝑄(𝑖)) 𝛿𝑈(𝑖) + 𝛿𝑈𝑇(𝑖)�̂�(𝑖) 

s. t.      �̂�(𝑖)𝛿𝑈(𝑖) − �̂�(𝑖) ≤ 𝟎 

(4.49) 

Figure 4.13b: Control actuations of the SQP MPC with simplified Hessian approximation. 
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with                 𝑄(𝑖) ∝ 𝑖 

The termination condition is also improved to prevent the SQP from skipping 

local minimum points. In addition to the ordinary termination conditions that stops the 

iteration when the search step is smaller than certain threshold, it is proposed to monitor 

the objective function value after each major iteration (i.e. sub-QP) to determine if the 

SQP should be terminated. The increase of objective function is often accompanied with 

skipping local minimums. The SQP should be terminated prematurely when the objective 

function value increased by certain amount. However, this termination condition should 

be neglected if the calculated solution is infeasible, which could also increase the 

objective function value. Figure 4.14 shows the effects of these two proposed techniques 

on the convergence performance of the SQP model predictive IMEP controller. The 

result is generated from a 10,000 consecutive engine cycle simulation with random IMEP 

reference. Compared to Figure 4.12, the new SQP MPC has a much faster convergence 

rate. Although there are still some local increase of the step size, they are mostly caused 

by compromising constraints and significantly less dominant. The simulation results 

demonstrated next section will show that the control chattering phenomenon does not 

present with the proposed SQP model predictive IMEP control.  
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Figure 4.14: Tendency of normalized optimal solution variation with modified SQP MPC to improve convergence 

performance. 
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4.4 Simulation Results 

Figure 4.15 shows the engine performance and control actuation of the proposed 

SQP model predictive IMEP controller. In general, the engine IMEP output follows the 

IMEP reference for most of the time. The COV, KI and manifold pressure do not violate 

the constraints for the entire simulation. Furthermore, the control action is free of 

chattering phenomenon during the simulation. It can be concluded that the proposed 

IMEP control is generating reasonable control actions.  

 

Figure 4.15 a: Engine performance of the proposed SQP model predictive IMEP control. 
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For the situation of “tipping in” (around 10s, 40s and 60s), the throttle air mass 

flow output 𝑚𝛼 spikes at the instance of IMEP reference steps. This maneuver is to 

compensate for the manifold delay and quickly increase the IMEP output. When 

magnitude of the spike is limited (around 10s), the MPC will open the throttle earlier 

while retard the combustion phasing to maintain torque output. At the instance of 

reference step, the combustion phasing will be advanced to quickly increase torque 

output. However, the combustion phasing is not fully advanced to MBT due the knock 

limit at 10s. During “tipping out” situation (around 30s, 50s, 70s and 90s), the throttle air 

mass is reduced to zero initially to compensate for manifold delay. Then it converges to 

steady state value with no oscillation. It can be observed that the EGR flow is shut down 

before the throttle in order to prevent excessive RGF and meet with the COV of IMEP 

constraint. When the IMEP demand is not high (30~40s and 50~100s), the MPC asks for 

Figure 4.15b: Control actuations of the proposed SQP model predictive IMEP control. 
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MBT combustion phasing and maximum amount of EGR without violating COV 

constraints. If the IMEP demand is very high (10~30s and 40~50s), the MPC reduces 

EGR to maximize engine air mass flow. All these observations agrees with calibration 

rules for traditional map based IMEP controls. Therefore, the proposed IMEP 

management system successfully achieved its control objectives.  

Figure 4.16 compares the engine performance and control actuation between the 

SQP MPC with the proposed LTV MPC IMEP control with real time linearization. This 

LTV MPC can considered as a special case of the SQP MPC with 1 major iteration. It can 

be observed from Figure 4.16 that the LTV MPC has a worse IMEP tracking 

performance. Furthermore, COV of IMEP violates the constraints during some transient 

situation, when the optimal solution is very different from the initial guess.  
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Figure 4.16 a: Engine performance comparison between LTV MPC and SQP MPC IMEP control. 
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The proposed SQP model predictive IMEP controller is also evaluated for 10,000 

consecutive engine cycles with random IMEP tracking reference. Table 4.1 summarizes 

the execution time statistics of the proposed IMEP controller. The simulation is carried 

out on a desktop computer with 4.2 GHz 64 bit CPU and 16 GB of RAM.  

Table 4.1: Statistics of the proposed SQP model predictive IMEP controller. 

 Mean Max Min 

Number of major iterations 42 108 2 

Execution time per engine cycle 26.00 ms 53.50 ms 1.70 ms 

Execution time per major iteration 0.63 ms 0.76 ms 0.41 ms 

Execution time for model evaluation per iteration 0.39 ms 0.42 ms 0.38 ms 

Figure 4.16b: Control actuation comparison between LTV MPC and SQP MPC IMEP control. 
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Execution time for QP per iteration 0.23 ms 0.32 ms 0.02 ms 

It can be observed from Table 4.1 that the evaluation of the nonlinear engine 

models and solving the sub-QP problems takes 62% and 36% of the total execution time 

respectively. Improving the computational efficiency of either one can greatly reduce the 

execution time of the SQP. While the engine model can be simplified by replacing 

physics with maps, the next chapter of this dissertation introduces methods to accelerate 

the solving of QP and reduce the number of major iterations.  
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4.5 Conclusions 

This chapter of the dissertation introduces a model predictive IMEP control frame 

work and algorithm. Compared to traditional feed forward based IMEP control, the 

optimal IMEP control has great potential of improving IMEP reference tracking 

performance and reduce calibration effort.  

The proposed IMEP control frame work is designed to maximize the feasibility 

and potential of MPC strategies. The cascaded control structure fully exploit the 

frequency separation of different engine dynamics to simplify the optimization of MPC 

and maximize the actuators bandwidth potential. The main MPC controller is chose to 

operate in engine cycle domain instead of in time domain with constant sampling time. 

By doing this, the air path dynamics are greatly simplified and many combustion models 

developed in engine cycle domain can be directly integrated into this IMEP control 

structure. The lower level controllers can use simple feedback or look-up tables, 

providing easy tuning of the control performance.  

In this research, the SI engine system is modelled with physics based methods and 

empirical approaches, representing a very typical ad hoc modeling process of a 

production engine. The two MPC algorithms, LTV and SQP MPC, discussed in this 

dissertation are able to utilize this complex engine model to compute optimal control 

actions for the future horizon. Both LTV and SQP algorithms utilizes real time 

linearization technique to approximate the original highly nonlinear engine model. The 

proposed SQP algorithm exploit the characteristics of tracking MPCs, leading to much 
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easier computation of the system’s Hessian at the nominal point. This advantage reduces 

the number of evaluating the nonlinear engine model saving significant amount of 

execution time. Although the proposed SQP has global convergence behavior, 

exponential step size penalty and additional termination conditions are applied to 

improve the convergence rate and avoid control chattering. Simulation results proves that 

the SQP model predictive IMEP controller successfully meets with its design objectives. 

The engine is able to track the IMEP reference without violating combustion and other 

constraints.  

The LTV MPC can be considered as a special case of the proposed SQP MPC 

with one major iteration. Without more iterations to converge the quadratic surface to the 

nonlinear objective function and constraints, the LTV MPC could have bad tracking 

performance and constraints violation, as the simulation results have demonstrated. 

However, the execution time of the LTV MPC is almost one magnitude lower than that of 

the SQP MPC. With good initial guess of the optimal control sequence, the LTV model 

predictive IMEP control may be a viable option. 
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CHAPTER FIVE 

EFFICIENT QP BASED MPC ALGORITHMS 

 

5.1 Pattern recognition technique based QP strategy 

Application of constrained Model Predictive Control (MPC) to systems with fast 

dynamics is limited by the time consuming iterative optimization solvers. This chapter of 

the dissertation proposes a fast and reliable Quadratic Programming (QP) strategy to 

solve MPC problems. While the optimal control action is calculated with a fast online 

dual QP algorithm, a “warm start” technique is adopted to reduce iterations of the online 

search process. The warm start solution is calculated from a predicted active constraint 

set generated by a pattern recognition function (Artificial Neural Network, ANN, is 

discussed). This function is calibrated with data from Monte Carlo simulation of the MPC 

controller over finite sampling points of the state-space. The proposed MPC strategy can 

adapt to applications with long prediction/control horizons, Linear Parameter Varying 

(LPV) dynamics and time varying constraints with balance between computation time, 

memory requirement and calibration effort. This concept is expanded to SQP and LTV 

applications where the system Hessian and Jacobean is identified in real time. Simulation 

results show that the ANN assisted SQP can achieve close to optimal control action with 

much less number of iterations, making the SQP algorithm fast enough to be 

implemented with systems of fast dynamics such as cycle-by-cycle engine IMEP control.  
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5.1.1 Introduction 

Applications of MPC in the automotive industry are being discussed intensively 

for its ability to improve system transient performance, manage constraints and reduce 

control effort (e.g. Hrovat et al. 2012, Junmin et al. 2012 and Zhu et al. 2014). However, 

for systems with fast dynamics, the heavy computation burden of constrained MPC is a 

big challenge for hardware implementation. Although microprocessors are getting faster, 

most MPC methods for mechanical system control are difficult to implement into 

prototype controllers and validate with hardware. The automotive industry has very 

restrictive control of product cost due to its production volume. Therefore, choosing more 

expensive processors are not favored over improving MPC algorithm efficiency.  

Receding horizon constrained linear MPC controllers are the most common and 

fundamental design applied to systems with fast dynamics. These controllers optimize 

their control sequence for the future horizon using Quadratic Programming (QP). Since 

the development of active set QP algorithms in the 1980s, this solver has been the fastest 

option for online operation (Gill et al. 1984, Goldfarb et al. 1983, and Schmid et al. 

1994). This active set algorithm is based on the fact that QP problems have closed form 

solutions if the active constraint set of the optimal solution is known. In the research 

work of Gill et al. (1984), active set algorithm based on the primal QP problem is 

proposed. The advantage of this method versus dual active set methods is that it keeps the 

solution feasible during the search for the optimal solution. However, because of the 

formulation of MPC, the primal QP problem usually contains large number of 

constraints. It requires a time consuming Phase I optimization to find a feasible initial 
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solution. The dual of the original QP problem with Lagrange multipliers as independent 

variables, on the other hand, has a much more uniformed constraint set (λ>0). The search 

for the dual feasible initial solution can be done by calculating the optimal solution of the 

primal problem without any constraints. Dual active set QP methods (e.g. Goldfarb et al. 

1983, and Schmid et al. 1994) exploit this speed advantage, making them favorable for 

online operation with fast update frequency. Bartlett et al. (2006) employed the Schur-

complement dual active set QP method to the MPC application. Most dual QP methods 

can be applied to MPC and tested with fast prototype controllers. However, they are still 

not fast enough to be implemented into the ECUs of a production vehicle or other 

common industry level microprocessors. In addition to these two types of active set 

methods, the primal-dual (or interior point) method is another option to solve QP for 

MPCs (Goncalves 1972). It is not widely considered for fast MPCs since it requires more 

computational effort to complete each iteration. Furthermore, the difficulty of finding a 

“warm” start point is another reason that makes it not suitable for fast online operation.  

Computational effort of QP can be greatly reduced with a reasonable guess of the 

initial search point (Bartlett et al. 2006 and Ferreau et al. 2008). All active set QP 

methods can benefit from a reasonable guess of which constraints may be active. Ferreau 

et al. 2008 proposed the online active set QP based MPC strategy. Based on the 

assumption that the active set of constraints does not vary a lot between consecutive 

control steps for most MPC applications, this approach utilized the active set information 

of previous the control step to formulate the warm start point for the QP problem of 

current control cycle. Then the QP is solved using a parametric programming method, 
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which generates a suboptimal solution if terminated prematurely. This MPC approach 

was tested experimentally with the application of diesel engine EGR and VGT control 

(Ferreau et al. 2007). The disadvantage of this approach is the assumption on which it is 

based. For some MPC applications, especially with nonlinear system models, time 

varying dynamics and constraints, the active constraint set can change dramatically 

between each control update, leading to an increased number of iterations to find the 

optimal solutions.  

It has been discussed in literature that the QP searching for optimal solution of 

MPC could be completed offline, while the online execution of MPC was transformed 

into a fast state and reference based control law (Piece-Wise Affine, PWA, function) 

(Bemporad et al. 2002). This approach was applied to multiple automotive related MPC 

research applications (Cairano et al. 2012, Alberer et al. 2008, Ortner et al. 2006, 

Langthaler et al. 2007, Corona et al. 2008 and Caruntu et al. 2011). The fast and straight 

forward execution process made it possible to validate these results with hardware tests. 

The calibration and execution process of this MPC approach shares some similarities 

with that of dynamic programming, including its disadvantages. In the cases with long 

prediction horizon and a large number of constraints, the calibration time and memory 

required to store the PWA function gain matrices become less acceptable. On the other 

hand, the stability of MPC controllers often relies on long prediction / control horizons 

(Lee et al. 2011) and a high number of constraints (Herceg et al. 2006). For Linear Time 

Invariant (LTI) MPC applications, it is possible to examine the Karush – Kuhn – Tucker 

(KKT) conditions for all constraint combinations to guarantee the validity of the control 
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action calculated with the PWA function. However, for MPC with time varying dynamics 

and constraints this process may be difficult even impossible to complete. Although the 

PWA gain matrices can be interpolated or extrapolated from stored values in these cases, 

the control action may not be optimal or feasible for the control horizon.  

In this chapter of the dissertation, the proposed MPC strategy can be considered 

as a combination between online active set methods and a similar concept of the PWA 

approach. For the execution process, a fast dual active set QP solver is selected to search 

for the optimal solution from the warm start point that is calculated according to current 

system states and future reference. Since the start point is not used directly to compute 

the control action, a pattern recognition function is used to estimate the initial guess of 

the active constraint set with reasonable accuracy. For the offline calibration process, 

instead of checking the KKT condition of all possible constraint combinations, a pattern 

function is trained with data from objective oriented Monte Carlo simulation. In addition 

to reducing calibration time, this pattern recognition method can improve active set 

identification accuracy for time varying dynamics and constraints. The memory 

requirement of this approach is also greatly reduced since it only needs to store a function 

instead of numerous PWA gain matrices. Compared to using the active constraint set of 

the previous control step as a warm start, the pattern function can generate a better 

“guess” of the start point and reduce the number of iterations to find the optimal solution.  

5.1.2 Pattern Recognition Technique Based Active Set QP Strategy 

The previous chapter introduces the formulation of a special case of LTV MPC 

and SQP MPC. This chapter discusses an efficient QP strategy designed for general MPC 
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application. The most common MPCs focus on systems whose dynamics can be 

linearized and discretized into state-space formation. Without loss of generality, the state-

space matrices can be different for each step, describing a LPV system whose states 𝑥 ∈

𝑅𝑛, control inputs 𝑢 ∈ 𝑅𝑚 and outputs 𝑦 ∈ 𝑅𝑝.  

𝑥(𝑘 + 1) = 𝐴(𝑘)𝑥(𝑘) + 𝐵(𝑘)𝑢(𝑘)  

𝑦(𝑘) = 𝐶(𝑘)𝑥(𝑘) 

(5.1) 

with     𝐴(𝑘) ∈ ℝ𝑛×𝑛, 𝐵(𝑘) ∈ ℝ𝑛×𝑚 , 𝐶(𝑘) ∈ ℝ𝑝×𝑛  

With the information of current system states 𝑋0, the sequence of future system 

outputs 𝑌𝑁 of the prediction horizon 𝑁𝑝 can be considered as an affine function of the 

future control action sequence 𝑈𝑁 of control horizon 𝑁𝑐. The gain matrices 𝐹𝑁 and 𝐺𝑁 are 

formulated with the LPV state space function (5.1) (refer to Appendix A).  

𝑌𝑁 = 𝐹𝑁𝑋0 + 𝐺𝑁𝑈𝑁 (5.2) 

with     𝑌𝑁 = [𝑦(𝑘 + 1),⋯𝑦(𝑘 + 𝑁𝑝)]
𝑇

 

𝑋0 = 𝑥(𝑘) 

𝑈𝑁 = [𝑢(𝑘), 𝑢(𝑘 + 1),⋯𝑢(𝑘 + 𝑁𝑐)]
𝑇 

 

For the convenience of discussion, we dropped the step index 𝑘 of the most 

variables that is stacked for the future horizon. If the control objective is to minimize 

tracking error and control effort, the optimal control action sequence can be calculated by 

solving the optimization problem whose cost function penalizes the sum of weighted 
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quadratic norm of both tracking errors and control action. The constraints that are 

commonly encountered in MPC include control magnitude, control changing rate and 

state magnitude. These constraints can be integrated and transformed into one linear 

inequality constraint system that is imposed on the future control action sequence 𝑈𝑁. 

min
𝑈𝑁

[(𝑌𝑁 − 𝑌𝑟𝑒𝑓)
𝑇
𝑅𝑦(𝑌𝑁 − 𝑌𝑟𝑒𝑓) + 𝑈𝑁

𝑇𝑆𝑢𝑈𝑁]   

𝑠. 𝑡.  𝑀𝑐𝑜𝑛𝑠𝑈𝑁 − 𝑏𝑐𝑜𝑛𝑠 ≤ 𝟎 

(5.3) 

with     𝑀𝑐𝑜𝑛𝑠 ∈ 𝑅
𝑗×𝑝, 𝑏𝑐𝑜𝑛𝑠 ∈ 𝑅

𝑗 

𝑌𝑟𝑒𝑓 = [𝑦𝑟𝑒𝑓(𝑘 + 1),⋯𝑦𝑟𝑒𝑓(𝑘 + 𝑁𝑝)]
𝑇

 

𝑅𝑦 and 𝑆𝑢 are symmetrical positive definite weighting matrices 

of reference tracking error and control effort. 

 

The above process transfers the equality constraints of system dynamics into the 

objective function, accelerating the search for an optimal solution. After substituting (5.2) 

into (5.3), the original optimization problem can be transformed into a QP form. 

𝑚𝑖𝑛
𝑈
(
1

2
𝑈𝑁
𝑇𝐻𝑈 + 𝑈𝑁

𝑇𝐹)   

𝑠. 𝑡.  𝑀𝑐𝑜𝑛𝑠𝑈𝑁 − 𝑏𝑐𝑜𝑛𝑠 ≤ 𝟎 

(5.4) 

with     𝐻 = 2(𝐺𝑁
𝑇𝑅𝑦𝐺𝑁 + 𝑆𝑢) 

𝐹 = −2𝐺𝑁
𝑇𝑅𝑦(𝑌𝑟𝑒𝑓 − 𝐹𝑁𝑋0) 
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Equation (5.4) is referred to as the primal QP problem of the MPC. The primal 

QP algorithms can be applied at this point to solve (5.4) and obtain the optimal control 

action sequence. However, the primal QP has multiple linear inequality constraints, 

which make it difficult to find a feasible initial solution. A phase one optimization is 

usually required to identify a feasible start point. Instead of conducting a two phase 

optimum search for the primal optimization problem, this work employs dual QP 

algorithms to find the optimal solution. The conversion of the primal QP into a dual QP 

with Lagrange multipliers 𝜆 as independent variables is demonstrated by:  

min
𝜆
(
1

2
𝜆𝑇�̂�𝜆 + 𝜆𝑇�̂�)   

𝑠. 𝑡.  𝜆 ≥ 0 

(5.5) 

Where: 

�̂� = 𝑀𝑐𝑜𝑛𝑠𝐻
−1𝑀𝑐𝑜𝑛𝑠

𝑇  

�̂� = 𝑏𝑐𝑜𝑛𝑠 +𝑀𝑐𝑜𝑛𝑠𝐻
−1𝐹 

 

Since the weighting matrices 𝑅𝑦 and 𝑆𝑢 are positive definite and constraints are 

linearly independent for most MPC applications, �̂� is strictly positive definite for most 

cases. Therefore, the QP represented by (5.5) is convex. The initial solution 𝑈0 of this QP 

can be easily obtained by solving the primal QP without any constraints (equivalent to 

letting 𝜆 = 0). 

𝑈0 = −𝐻
−1𝐹 (5.6) 
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Once the optimal solution (𝜆∗) of the dual problem is found, the optimal control 

action 𝑈∗can be calculated according to:  

𝑈∗ = 𝑈0 − 𝐻
−1𝑀𝑐𝑜𝑛𝑠

𝑇 𝜆∗ (5.7) 

5.1.2.1 Pattern Recognition Based Active Set Identification 

The warm start of the dual QP is a semi-positive vector  𝜆0 that is close to the 

optimal solution 𝜆∗. If it is known which constraints are active for the optimal solution, 

the constraint system of the primal and dual QP can be separated as the following: 

                         Primal                           Dual  

𝑀𝑎𝑐𝑡𝑈𝑁 = 𝑏𝑎𝑐𝑡                  𝜆𝑎𝑐𝑡 > 0 (5.8) 

𝑀𝑖𝑛𝑎𝑈𝑁 < 𝑏𝑎𝑐𝑡                  𝜆𝑖𝑛𝑎 = 0 (5.9) 

Equation (5.8) shows active partition of the constraint system while (5.9) shows 

the inactive partition. After dropping the inactive constraints and substituting the primal 

active constraints partition into the objective function (5.4), the primal-dual problems 

have the closed form solutions as: 

𝜆𝑎𝑐𝑡
∗ = −(𝑀𝑎𝑐𝑡𝐻

−1𝑀𝑎𝑐𝑡
𝑇 )−1(𝑏𝑎𝑐𝑡 +𝑀𝑎𝑐𝑡𝐻

−1𝐹) 

𝜆𝑖𝑛𝑎
∗ = 0 

(5.10) 

𝑈∗ = 𝑈0 −𝐻
−1𝑀𝑎𝑐𝑡

𝑇 𝜆𝑎𝑐𝑡
∗  (5.11) 
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Substituting 𝐹 from (5.4) into (5.10), 𝜆𝑎𝑐𝑡
∗  can be transformed into a PWA 

function corresponding to 𝑋0 and 𝑌𝑟𝑒𝑓 with three gain matrices. For LTI MPC, these gain 

matrices are constant.  

𝜆𝑎𝑐𝑡
∗ = 𝐾𝑋𝑋0 + 𝐾𝑅𝑌𝑟𝑒𝑓 + 𝐾0 (5.12) 

with      𝐾𝑅 = 2(𝑀𝑎𝑐𝑡𝐻
−1𝑀𝑎𝑐𝑡

𝑇 )−1𝑀𝑎𝑐𝑡𝐻
−1𝐺𝑁

𝑇𝑅𝑦 

𝐾𝑋 = −𝐾𝑅𝐹𝑁 

𝐾0 = −(𝑀𝑎𝑐𝑡𝐻
−1𝑀𝑎𝑐𝑡

𝑇 )−1𝑏𝑎𝑐𝑡 

(5.13) 

 

Figure 5.1: Visualization of active constraint set for MPC applied to driving cycle tests with 1 step prediction horizon. 

Orange dots represent sampling points for Monte Carlo simulation. 

Similar to the primal PWA methods, it is possible to check the KKT conditions 

for all possible scenarios and store the corresponding gain matrices into the memory. The 

initial guess 𝜆0 can be exactly the same as the optimal solution 𝜆∗ . For LTI MPCs with 

single state (𝑛 = 1) and one step prediction horizon (𝑁𝑝 = 1), the active constraint sets 
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can be visualized as 2D polyhedra in the state space (Figure 5.1). This plot is generated 

using the MPC controller designed for the driving cycle application (discussed in next 

chapter) with 1 step prediction horizon and constant dynamics and constraint 

assumptions. In this case, 𝑌𝑟𝑒𝑓 is the speed reference for the next step while 𝑋0 is the 

current vehicle speed. One drawback of the PWA calibration is that the calibration time 

grows exponentially for control applications with long horizons and a large number of 

constraints. Furthermore, almost all matrices in (5.13) can be varying for Nonlinear MPC 

(NMPC) and non-constant constraint applications. For instance, if the limitation of 

engine power and quadratic aerodynamic drag are considered, the edge of active 

constraint set polyhedra are curved making the calibration of PWA gain matrices by 

checking KKT conditions difficult (Figure 5.2).  

 

Figure 5.2: Visualization of active constraint set for MPC applied to driving cycle test with varying dynamics and 

constraints. 

The identification of active constraint sets in the state-space can be considered as 

a pattern recognition process. Let 𝜉 be a binary vector that has the same length 𝑝 as 𝜆. 
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Elements of 𝜉 represent that the corresponding constraint is active with 1 and inactive 

with 0:  

{
𝜉(𝑖) = 0,   𝑖𝑓 𝜆(𝑖) = 0

𝜉(𝑖) = 1,   𝑒𝑙𝑠𝑒
, for i = 1,2, …  𝑗 (5.14) 

Therefore, different 𝜉 vectors can uniquely represent active constraint sets. Then 

the identification problem can be reduced to the fitting of the pattern function: 

𝜉 = ℎ(𝑋0, 𝑅𝑁) (5.15) 

The training data to fit the pattern function can be generated using Monte Carlo 

simulation with a sufficient finite number of state-space samplings (Figure 5.1 and 5.2). 

The selection of sampling resolution and range can be practical operation oriented to 

reduce calibration time. Many pattern recognition techniques can be applied to this 

application, including ANN (Bishop 1995), fuzzy logic (Bezdek 1999) and optimal 

margin classification (Boser 1992). For this research work, an ANN with scaled 

conjugate gradient training algorithm is selected because of its fast execution and 

calibration with MATLAB® Neural Network ToolboxTM.  

Table 5.1: ANN pattern function with different hidden layer size. 

Hidden layer size Max 𝝃 diff. Mean 𝝃 diff. Memory (KB) 

5, 0 10 1.79 7.2 

5, 5 10 1.78 8.2 

10, 0 8 1.14 11.3 

10, 5 7 1.11 12.0 

10, 10 5 1.08 13.4 
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20, 0 5 0.83 19.3 

50, 0 5 0.80 33.8 

The most obvious advantage for the proposed active set method is the reduction in 

memory requirements. Storage of the pattern function ℎ is usually negligible compared to 

hundreds of gain matrices for the traditional PWA methods. In order to better evaluate 

the proposed approach, the MPC applied to the driving cycle test is evaluated under 

random step inputs for 106 consecutive control cycles with prediction and control horizon 

expanded to 50 and 20 steps, resulting in 80 control constraints (𝑝 = 80). The traditional 

PWA cannot be evaluated with this case since it requires checking of the KKT conditions 

of 1024 points. The resulting gain matrices take GBs of memory to store. It is arguable 

that many of the constraints combination is infeasible and can be removed with a pre-

process program. The magnitude of memory requirement is still not acceptable for 

current microprocessors. Table 5.1 compares the performance and memory requirement 

of the ANN pattern function with different hidden layer sizes. It can be observed that a 

simple double-layer ANN can predict the active sets with reasonable accuracy and 

memory demand. The rest of the analysis focuses on the ANN with 10 neurons on the 

two hidden layers.  

Table 5.2: Comparison between cold start and different warm start techniques. 

 Cold start 
Warm start 

Previous cycle ANN 

Constant system Max 𝜉 diff. 80 13 5 
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Mean 𝜉 diff. 74 5 1 

Max iter. #. 59 11 8 

Mean iter # 41 7 3 

Varying system 

Max 𝜉 diff. 80 27 8 

Mean 𝜉 diff. 70 9 1 

Max iter. #. 59 23 9 

Mean iter # 3 14 3 

The performance of active set prediction methods is measured with 𝜉 difference, 

which is defined as the number of  𝜉 elements that is different from the 𝜉∗ of the optimal 

solution. Most optimization algorithms takes more iterations to find the optimal solution 

with larger 𝜉 difference although this relationship may not be exactly linear. Table 5.2 

shows that the two warm start techniques generate close to optimal initial guesses of 

active sets. Comparing to the warm start technique that uses active set information of 

previous control cycle (traditional online active set method), the proposed ANN pattern 

function can provide more accurate initial guesses of active sets. This significantly 

reduces the number of online iterations to find the optimal solution. Figure 5.3 shows that 

the 𝜉 predicted ANN has two elements different from the optimal 𝜉∗  for more than 90% 

of control updates. Another important characteristic of the new approach is that it does 

not rely on the active sets to be straight polyhedra (Figure 5.2) and accuracy of active sets 

prediction is not as sensitive to varying dynamics and constraints as the traditional online 

active set method (Figure 5.2 and 5.3). However, identifying active sets for varying 
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system applications can benefit from training data with higher resolution of the state-

space.  

 

Figure 5.3: Cumulative distribution function of 𝜉 prediction error between different warm start techniques. Both 

constant and varying system dynamics/constraints are evaluated. 

Depending on the control objectives, the pattern function can include other inputs 

to capture non-state dependent variation of dynamics and constraints. For instance, the 

vehicle mass 𝑚 can alter the vehicle longitudinal dynamics. The pattern function inputs 

are augmented by including the vehicle mass to predict the active sets with consideration 

of vehicle loading conditions: 

𝜉 = ℎ(𝑋0, 𝑌𝑟𝑒𝑓, 𝑚) (5.16) 

5.1.2.2 Hildreth Search Method for 𝜆∗ 

Without using the predicted active sets to compute control actions directly, the 

online optimal search process increases tolerance to initial guess error. Therefore, it is 

possible to use training data with coarser resolution to calibrate the pattern function. For 
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applications with long prediction and control horizons, this trait of the proposed MPC 

strategy allows for faster calibration and more robustness against system variations than 

PWA methods.  

The dual QP methods of Hildreth and D’Espo (Luenberger 1969 and Wismer et 

al. 1978) are applied to search for optimal solution 𝜆∗ for computational efficiency. 

Without matrix inversions during each iteration, the algorithm is fast and reliable (Wang 

2009). The following are the important steps of the Hildreth approach: 

Step 1: The unconstrained optimal solution of dual QP (5.5) can be calculated by 

finding the point with zero gradients for all directions (stationary points): 

𝜕 (
1
2 𝜆

𝑇�̂�𝜆 + 𝜆𝑇�̂�)

𝜕𝜆
= 0 

(5.17) 

From (5.17), linear equations can be obtained for the dual QP with 𝑝 non-negative 

constraints as shown in the following: 

�̂�𝑖 +∑�̂�𝑖𝑘𝜆𝑘

𝑗

𝑘=1

= 0, 𝑘 = 1,2, … 𝑗 (5.18) 

Step 2: during each iteration, solve (5.18) for   𝜆𝑖 with 𝜆𝑘 (𝑘 ≠ 𝑖) from previous 

iteration. Then 𝜆�̃� = max(0, 𝜆𝑖).  

Step 3: go back to Step 2, if the new Lagrange multiplier 𝜆�̃� is different from the 

previous iteration (by some tolerance). Otherwise, solution has converged to the optimal 

value 𝜆∗. 
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5.2 Extension to SQP applications 

The proposed pattern recognition based active set MPC strategy is based the 

assumption that the QP can be formulated explicitly with the linearized state space model 

of the system. For most MPC applications this is assumption is valid. However for the 

SQP MPC applications, the Hessian and Jacobean for the system depends on the nominal 

control action 𝑈0, which is different for every major iteration. The proposed LTV MPC 

has the similar situation that the nonlinear state-space model has to be linearized 

according to the nominal control action. If the nominal control 𝑈0 is very different from 

the optimal solution 𝑈∗, the linearized model is not a reasonable approximation of the 

original nonlinear system. This could impact the optimality and feasibility of the solution. 

Therefore for both of the SQP and LTV MPCs with real time system Hessian and 

Jacobean identifications, providing decent guess of Lagrange multiplier 𝜆∗ along is not 

sufficient to properly initialize the QP. A decent guess of the optimal control action 𝑈0 

that is close to the optimal solution is necessary to reduce the computation burden of 

these nonlinear MPC options.  

The tracking MPC controllers can be considered as functions of optimal control 

actions 𝑈∗(𝑘). The inputs to this function are the current system states 𝑥(𝑘) and future 

reference for the prediction horizon 𝑌𝑟𝑒𝑓(𝑘). There are some literature proposed to use 

ANNs to imitate these “MPC functions” to approximate optimal control actions (Gómez 

1994 and Piche 2000). Although the ANNs trained with offline Monte Carlo simulation 

were able to generate control actions that are very close to the optimal solution, they 
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often relied on real time adaptation and learning to account for fitting errors. Thus the 

stability and robustness could not be proved analytically. In this research, we employ the 

ANN approximated control action as the initial guess of optimal control action. This 

initial guess initializes the SQP and LTV algorithms with real time linearization 

techniques. The ANN used in this research has 50 neurons on two hidden layers. Figure 

5.4 shows the validation result of the ANN approximated optimal control against the 

exact SQP MPC solution discussed in previous chapter. The training data of the ANN is 

from a 106 consecutive engine cycles Monte Carlo simulation with random IMEP 

reference. The R2 is 99.84%, indicating that ANN prediction of the optimal control is 

reasonably accurate.  

 

Figure 5.4: Validation of the optimal control action calculated by ANN. 
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However, it can be observed that the ANN is not perfectly accurate in some cases. 

Since the exact MPC solution is applied to the system instead of the ANN approximation, 

online training is no longer necessary to guarantee the stability and robustness of the 

controller. The sub-QP is solved by Hildreth algorithm, which is discussed in previous 

section. The Hildreth algorithm is a dual active set solver that requires an initial guess of 

Lagrange multiplier 𝜆, which can also be calculated knowing the active constraint set 

index 𝜉 (equation 5.10). 𝜉 can be generated with another ANN like the approach discussed 

in previous section. It can also be easily calculated with the initial guess of 𝑈∗ and the 

constraint matrices 𝑀𝑐𝑜𝑛𝑠 and 𝑏𝑐𝑜𝑛𝑠, which are available after the real time linearization 

at 𝑈0. 

𝜉0 =𝑀𝑐𝑜𝑛𝑠𝑈0 − 𝑏𝑐𝑜𝑛𝑠 > 0 (5.19) 

Figure 5.5 shows the engine performance and control actuation of the ANN 

assisted SQP model predictive IMEP control. This IMEP controller generate equivalent 

results as the SQP MPC discussed in previous chapter.  
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Figure 5.5 a: Engine performance of the ANN assisted SQP model predictive IMEP control 
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Figure 5.5b: Control actuation of the ANN assisted SQP model predictive IMEP control 

However, Simulation results show that the initial guess generated by ANN can 

significantly reduce the number major iterations of the SQP. Furthermore, the number of 

minor iterations to solve the sub-QP is also reduced by around 50%. These advantages 

results in an execution time 1 magnitude less than that of the SQP without ANN assist, 

making it possible to implement the proposed ANN assist SQP model predictive IMEP 

control with prototype engine controllers.  

Table 5.3: Computation time comparison between ANN assisted SQP and the SQP discussed in Chapter 4. The values 

are the mean of 106 engine cycles Monte Carlo simulation. 

 SQP ANN SQP 

Number of major iterations 42 3.6 
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Execution time per engine cycle 26.00 ms 1.91 ms 

Execution time per major iteration 0.63 ms 0.53 ms 

Execution time for model evaluation per iteration 0.39 ms 0.40 ms 

Execution time for QP per major iteration 0.23 ms 0.13 ms 

Number of minor iteration per QP 43 21 
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5.3 Conclusions 

In this chapter of the dissertation, efficient strategies to solve QP in the MPC 

context is discussed. Firstly, a pattern recognition based active set QP strategy is 

proposed to solve general MPC problems. These MPCs are solved by means of an online 

QP based on the Hildreth algorithm, a dual search method. Without matrix inversions 

each iteration, this algorithm is fast and reliable. The initial point of the online search is 

calculated from current system states and future reference with a pattern function. The 

recognition of the pattern function is complete with data generated from Monte Carlo 

simulation. The pattern function can also include non-state dependent variables as input 

to further improve the adaptive-ness of nonlinearities. Compared to a traditional PWA 

approach, the pattern function requires less memory space, making it possible to handle 

problems with long prediction/control horizons and a large number of constraints. The 

online search process guarantees the robustness against pattern function fitting error. 

Simulation results indicate that it may be possible to employ a simple ANN to reasonably 

predict the active constraint sets for MPC with a long control horizon and varying 

dynamics and constraints. The prediction accuracy is better than using the previous active 

set directly. As a result, the warm start point generated by the pattern function can 

significantly reduce iterations when finding the optimal solution. 

The similar concept is expanded to the SQP MPC applications. Instead of 

guessing the index of active constraint set, an ANN is used to directly estimate the 

optimal control action, which is then used to initialize the sub-QP formulation and 
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algorithm. Like the pattern recognition based general MPCs, the ANN results are only 

used to provide the warm start to the MPC instead of generating control actions directly. 

Thus the accuracy of the ANN is not critical to the stability and optimality of the solution 

to the optimization. Simulation results proves that the SQP can have much less major and 

minor iterations with the ANN predicted optimal solution. The execution time is one 

magnitude less than the SQP without ANN making it possible to be applied to prototype 

engine controllers.  
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CHAPTER SIX 

ENGINE-IN-LOOP DRIVING CYCLE TEST WITH MPC DRIVER MODEL 

 

Driving cycle tests are a comprehensive evaluation of vehicle powertrain 

performance. Filipi et al. (2006), Shidore et al. (2005) and Nabi et al. (2004) discussed 

Hardware-in-Loop (HIL) or Engine-in- Loop (EIL) setups to complete driving cycle tests 

on the engine dynamometer. While the actual engine and control system was installed in 

the dyno test environment, the rest of the powertrain and vehicle longitudinal dynamics 

were simulated with real time models. These test methods allow testing of powertrain 

component design and control before building the prototype vehicle. Since it is unlikely a 

human driver would be utilized for this type of testing, most previous work used classical 

controllers (e.g. PID) to track the designated speed profile. It is speculated that using 

MPC in this application could solve many potential tuning issues and provide better 

speed tracking performance. Furthermore, the MPC can “foresee” the incoming speed 

profile. This predictive behavior can mimic a real driver response to the incoming traffic 

conditions. Thus the MPC is able to generate smooth throttle and brake actuation, which 

is close to real driver actuation. The vehicle model embedded with the “MPC driver” 

considers the quadratic aerodynamic drag and engine torque reserve, making the MPC a 

LTV controller. The pattern recognition technique based QP strategy is applied to solve 

for the optimal control action.  
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6.1 HIL Driving Cycle Test Setup and Modeling 

Figure 6.1 shows a block diagram of the HIL driving cycle test setup. Other than 

the engine and dynamometer (red dash circle), the rest of the components are simulated 

with real time models in dSPACE prototype control system. The engine dyno speed is 

determined by current vehicle speed and gear ratio. Through the software interface the 

throttle and engine speed are sent to the dyno, while the engine torque measured by the 

dyno is sent back to the software interface. 

 

Figure 6.1: Schematic diagram of engine-in-loop driving cycle testing. 𝑉𝑟𝑒𝑓 is the reference speed. 𝑇𝑒 and 𝑇𝑓 

are torque output from engine and final drive, respectively. 

The entire system of Figure 6.1 is shown to work in simulation. Both engine and 

dyno are replaced with mathematical models currently. The engine model is the control 

oriented model described in Section 4.3.1. This engine model can generate reasonable 

torque response and steady state fuel consumption (assuming stoichiometric air-to-fuel 
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ratio), which were validated with experiment data. The dyno is assumed to be able to 

measure engine torque instantaneously. Its delay to RPM command is considered as a 

first order delay with time constant of 0.7s. 

A MPC controller is implemented as the “driver”. The MPC control objective is 

to mimic a real driver on actual roads, who foresees the desired vehicle speed several 

seconds ahead of time. The update frequency of the MPC is set to be 0.5s. Both 

prediction and control horizons are selected as 10 steps during the simulation. The 

optimization problem is formulated as described in Section I. Both speed tracking error 

and control effort are being minimized with respected weightings. The gas and braking 

pedal actuation are interpreted as demand of traction force and braking force ranging 

from 0 to the maximum value. While the maximum braking force is assumed to be 

constant, the maximum of traction force is limited by the maximum engine power at the 

specific vehicle speed. The following equation is used as the vehicle model implanted to 

the MPC “driver”.  

𝜇𝑚𝑔 +
1

2
𝐶𝐷𝐴𝑓𝑟𝑜𝑛𝑡𝜌𝑉𝑒

2 +𝑚𝑉�̇� = 𝐹𝑡 − 𝐹𝑏 (6.1) 

where 𝐴𝑓𝑟𝑜𝑛𝑡 is frontal area. 𝐶𝐷 is aerodynamic drag coefficient. 𝐹𝑡  and 𝐹𝑏 are traction and 

braking force respectively. 𝑉𝑒 is vehicle speed. 𝜇 is the coefficient of rolling resistance.  

The longitudinal vehicle dynamics in equation (6.1) are linearized at each step 

according to reference velocity along the prediction horizon. Therefore, both control 

constraints and system dynamics are time varying within the horizon, making MPC a 
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LTV controller. The proposed pattern recognition QP strategy is applied to solve for the 

optimal control action in real time.  

The powertrain control system coordinates the throttle voltage and gear shifting. 

Throttle voltage is mapped to the desired engine torque output, which is calculated 

according to the driver’s traction force demand and current gear ratio. Target RPM is 

defined as the engine speed at which the power demand line intersects with the best 

BSFC curve (Figure 6.2). Finally, the gear is selected as the one that can match the target 

RPM closest for the current vehicle velocity. 

 

Figure 6.2: Target RPM calculation from power demand and engine BSFC map. 
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6.2 Simulation Results 

Simulations are conducted implementing the proposed MPC strategy within the 

HIL driving cycle test using the following main parameters. 

Table 6.1: Important parameters for the simulation 

Engine 

Displacement 3.2 L 

Max torque 287 Nm 

Max power 157 kw 

Powertrain 
Gear ratio 4.1/2.4/1.6/1.2/0.9/0.7 

Final drive 2.8 

Vehicle 
Mass 1800 kg 

𝐶𝐷 × 𝐴 0.25 × 2.1 

FTP Driving Cycle 
Max/Average speed 91/34 km/h 

Max accel./decel. 3/-3 m/s2 

The performance of two MPC “drivers” is compared to a PID controller. Figure 

6.3 is a snap shot of vehicle speed and normalized driver actuation from a portion of the 

drive cycle. Both MPC “drivers” demonstrate the ability to optimize control actions 

according to future reference and constraints. The first MPC (MPC 1 in the figures) has 

small weighting on the control effort (𝑆𝑢). Therefore, it tends to change the control 

actuation aggressively to match the speed profile. The mean speed tracking error (MSTE) 

is 3.8%. The second “economical” MPC (MPC 2 in the figures) has a larger 𝑆𝑢 resulting 

smooth pedal actions. Although its speed tracking performance (MSTE 6.5%) is slightly 

worse than the “aggressive” MPC, the “economical” MPC still follows the speed profile 

better than the PID “driver”, whose MSTE is 11.6%.  
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Figure 6.3: Performance comparison between aggressive MPC (MPC1), economical MPC (MPC 2) and PID 

“drivers” 

Figure 6.4 shows the comparison of engine torque, speed and instantaneous fuel 

flow rate between the three controllers. Since the MPCs generate gas pedal action with 

lower magnitude, the power demand of MPCs is less than the PID controller. Therefore, 

the engine speed and torque are lower, with fewer gear changes. This results in lower 

instantaneous fuel flow rate. 
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Figure 6.4: Engine behavior comparison between three controllers. 

Table 6.2 shows the MPG calculation for three drivers over the entire driving 

cycle. Although the MPCs are designed to mimic realistic driver reaction, an 

unintentional result is improved fuel economy of the evaluated vehicle from smooth 

pedal actuation. The difference in fuel economy may be larger between these three 

controllers if transient fuel consumption were accurately captured (the engine map is 
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based on steady-state data), which can be realized with a more detailed engine model or 

actual hardware testing. 

Table 6.2: Fuel economy comparison between the three controllers. 

 PID Aggressive MPC 1 Economical MPC 2 

MPG 24.39 25.81 26.62 
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CHAPTER SEVEN 

SUMMARY AND CONCLUSIONS 

 

7.1 Dissertation Summary 

This dissertation investigates the challenges of applying model predictive control 

to SI engine management and testing. Compared to traditional engine control based on 

feed forward and simple feedback strategies, the model predictive engine control requires 

much less effort to calibrate, making it favorable for engines with high number of degrees 

of control freedom. The MPC predicts system behavior for the prediction horizon, 

making it possible to calculate the optimal control actions that compensate for system 

delays and incoming constraints. Therefore, the MPC usually has superior transient 

performance than the classic feedback controllers. However, there are some application 

issues keeping MPC based engine control from being adopted by automotive industry. 

This research work focuses on investigating three of them: 1) a new SI engine control 

framework that can maximize the MPC’s potential to optimize engine performance and 

exploit the control bandwidth of actuators; 2) optimization algorithms that are able to 

utilize complex engine models to compute optimal control actions; 3) strategies to reduce 

the computation, calibration and memory demand of the MPC controllers. 

The one dimensional model predictive combustion phasing control is challenged 

by the complexity of the SI engine combustion modeling. The control objective is to find 

the SPKT that generates close to target combustion phasing without inducing knock and 
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combustion instability. Although the control objective is very straight forward, achieving 

this objective requires iterative numeric nonlinear programming algorithms. Three 

proposed SPKT optimization strategies can find the optimal SPKT with few number of 

iterations. These three algorithms are proven to be efficient with certain types of 

combustion models using both simulation and dynamometer tests.  

The MIMO SI engine optimal IMEP control increases the control dimensions 

compare to the combustion phasing control. Although some models developed for the 

combustion phasing control can be transferred to the IMEP control, the optimization 

problem formulated to obtain desired control action is much more complicated for the 

IMEP controller. Chapter four introduces cascaded control structure to simplify the 

online optimization problem by transferring some nonlinear dynamics to the lower level 

controllers. LTV and SQP MPC strategies with real time system linearization techniques 

are applied to solve the nonlinear optimization considering the complex nature of engine 

models.  

Chapter five focuses on reduce the execution time, calibration effort and memory 

requirement of MPC. This research work proposes to apply pattern recognition 

techniques to capture the correlation between active set of constraint and system states 

(and future reference). This technique is able to initialize most LTI and LTV MPC and 

significantly reduce QP iterations with minimal additional memory demand. The EIL 

utilizes this LTV MPC strategy to mimic realistic driver actuation on the throttle and 

brake pedals with preview of the target speed profile. For SQP MPC applications, the 

MPC can be fully initialized with a decent guess of optimal control actions, which is 
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approximated by an ANN. Training data of the ANN is generated by offline Monte Carlo 

simulation of the exact MPC.  

The following section of this dissertation lists the most important findings of this 

research work. 
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7.2 Significant Conclusions and Findings 

7.2.1 Covariance of IMEP Model 

The COV of IMEP model is based on flame regime analysis of combustion 

stability and the thermodynamics of in-cylinder mass. The model was validated with data 

from steady state engine operation tests. Simulation and experiments were conducted to 

test the model. The important finds of this section includes: 

 The COV of IMEP is used as an indication of combustion instability. 

However, these two concepts are not exactly equivalent to each other. The 

synchronization between the combustion process and piston motion should be 

consider when modeling the COV of IMEP. Therefore, variables related to 

combustion phasing are included as the inputs to the COV of IMEP model.  

 This research work proposes to use the inputs of Leed’s diagram to capture 

the heat release variation during the combustion. These inputs are computed 

at TDC for two reasons. The first reason is that the instantaneous heat release 

rate variation peaks around TDC. Furthermore, cylinder volume is the 

smallest at TDC, making the variation of heat release more influential to 

cylinder pressure.  

 ANN is applied to model the IMEP. A nonlinear conversion model is added 

before the ANN to reduce the size of the network. This method can reduce 

the over fitting phenomena, improving extrapolation stability.  
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7.2.2 Cycle-by-cycle Model Predictive Spark Timing Control 

This research work proposes three online optimization methods to search for 

desired SPKT, which achieves close to target combustion phasing without violation of 

knock and COV of IMEP constraints. These approaches can be integrated with high-

fidelity combustion models. Both simulation and real-time experimental results indicate 

that these three algorithms can find the optimal SPKT with few number of iterations, 

making them possible to be implemented with future engine ECUs. The important finds 

of this section includes: 

 The SPKT optimization is a nonlinear programming problem, which cannot 

be solved analytically. The gradient based optimization methods cannot be 

applied to this application due the complexity of the combustion models.  

 The SPKT optimization is convex for most admissible range of SPKT. 

Therefore the problem has a unique global optimal solution.  

 The direct search methods are favorable to this application since they find the 

search direction based on function evaluations instead of gradient 

information. The 2-Phase direct search method applies interior point 

technique that guarantees feasibility and descending objective function even 

if the program is terminated prematurely due to lack of computational time. It 

is the least demanding option among the three proposed SPKT optimization 

strategies in terms of the continuity of the objective and constraint functions. 

 The constraint relaxation method is also a direct search methods that 

integrates the original constraints into the objective. The most important 
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advantage of this method is that it is easy to program since it does not handle 

constraints explicitly. The lack of phase 1 optimization results in fewer 

number of iterations compared to the 2-Phase. However, the constraint 

relaxation methods requires the original constraint functions to be convex, 

making it not compatible with knock and COV of IMEP models of low 

resolution. 

 The proposed RLS polynomial fitting SPKT optimization method finds the 

optimal SPKT by solving a sub-level optimization during each iteration. The 

sub-level optimization approximates the original complex objective and 

constraints functions with low order polynomials using RLS approach. This 

research work also discusses forgetting factor technique to accelerate the 

convergence rate of the RLS algorithm, which is particularly important if 

linear functions are used to approximate nonlinear objective and constraints 

functions. Simulation and test results shows that the RLS polynomial fitting 

method has a much less number of iterations than the direct search methods. 

However, its convergence rate is sensitive to the initial guess of the 

polynomial function and the continuity of the combustion model output.  

7.2.3 Model Based Combustion Phasing Estimation 

This research demonstrates an extended Kalman filter based approach to improve 

the CA50 measurement from cylinder pressure sensor feedback. By employing a CA50 

prediction model as a “virtual sensor”, the Kalman Filter effectively solves the conflict of 

signal processing between responsiveness and accuracy. The proposed CA50 estimation 
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method was applied to a model based combustion phasing control and validated with 

both simulation and real-time transient dynamometer tests. The contributions of this 

section include: 

 The KF based approach can respond to CA50 changes within one engine 

cycle. Because of this unique property, the approach can be applied to 

different engine types where strong cycle-by-cycle dynamics are present.  

 For applications in SI engines where cycle-to-cycle dynamics can be 

neglected, steady state error is inevitable since the CA50 model is not 

perfectly accurate. Instead of adapting the model, it is proposed to use a 

switching mode estimation adapting to whether the engine is in steady-state 

or transient operation. Negligible steady state error is observed during real-

time experiments. Compared to a moving average (10 engine cycles), 

estimation error RMS of the KF approach is one order of magnitude lower 

under both transient and steady state situations.  

 The application of a forgetting factor in the switching mode KF significantly 

improves estimation performance when the CA50 prediction model is very 

inaccurate or fails to capture certain engine dynamics.  

 A responsive and reasonably accurate estimation of CA50 makes it possible 

to employ feedback controllers to regulate combustion phasing. This could 

potentially reduce amount of calibration work during the development of an 

IC engine significantly. The estimation results can also be integrated with 

model based feed forward algorithms to adapt models online. 
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7.2.4 MIMO SI Engine IMEP Optimal Control 

This chapter of the dissertation introduces a model predictive IMEP control frame 

work and strategy. The proposed frame work can significantly reduce the complexity of 

the online optimization solving for the optimal control actions. The proposed MPC 

strategy is able to utilize the complex engine models. The model predictive IMEP control 

is validated with simulation. The important finds of this chapter includes: 

 The cascaded control structure removes orifice flow and combustion phasing 

models from the MPC loop, significantly reducing the complexity of the 

online optimization. These dynamics are handled with lower level controllers 

with faster sampling time and less computational complexity. These 

controllers maximize the potential of actuators bandwidth. They also provide 

automotive OEMs the ability to fine tune the control actions to account for 

un-modelled dynamics.  

 The MPC is formulated in engine cycle domain. This approach simplifies the 

modeling of air-path dynamic by removing its dependency on engine speed. 

The torque generation modeling is also easier in engine cycle domain since it 

is not necessary to model the delay between intake and power stroke. Finally, 

most existing engine combustion models are developed in engine cycle 

domain. They can be easily integrated with the proposed IMEP control frame 

work.  

 The one dimensional combustion phasing control serves as a lower level 

controller to the model predictive IMEP control. Since the CA50 target 
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generated from the MPC has already considered knock and combustion 

stability constraints, the combustion phasing control have much less number 

of iterations comparing to the complete version discussed in chapter three.  

 The engine is modelled using energy balance approach. This method can 

accurately model the IMEP output, exhaust gas enthalpy and heat transfer to 

coolant. This modelling approach makes it easier to expand the model with 

more actuators. The future expansion of this research work will discuss the 

model based engine states estimation, which can utilize the proposed engine 

model to combine information from different sensors.  

 The SQP MPC is applied with the optimal IMEP control. In order to utilize 

the complex engine models, real time linearization technique is employed to 

compute the Jacobeans of the objective function and constraints. It is 

demonstrated that the Hessian of the SQP can be easily approximated with 

the linearized system model in the context of “tracking” MPC. This 

approximated Hessian is guaranteed to be positive definite and able to ensure 

global convergence tendency.  

 This research work proposes to add increasing control variation penalty to the 

SQP. This method increases the convergence rate of the SQP. The 

termination condition of the SQP is also modified by monitoring the objective 

function value after each iteration. Both these techniques reduces the chance 

of the SQP stopping at different local minimum points during steady state 

operation, reducing control chattering issues.  
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7.2.5 Efficient QP Based MPC Algorithms 

In this chapter of the dissertation, efficient strategies to solve QP in the MPC 

context are discussed. A pattern recognition based active set QP strategy is proposed to 

solve general MPC problems. The similar concept is expanded to the SQP MPC 

applications. Instead of guessing the active set constraints, an ANN is used to directly 

estimate the optimal control action, which is then used to initialize the sub-QP problem. 

These MPC strategies were compared with traditional active set QP algorithm using 

simulation. The important finds of this chapter includes: 

 The Hildreth dual active set algorithm is applied to solve the QP problems. 

Without matrix inversions during each iteration, this algorithm is fast and 

reliable.  

 The active constraints set can be described with a binary pattern vector. The 

correlation between these vectors and corresponding system states are treated 

as a function identified by pattern recognition techniques. ANN is used in this 

research work. But it does not exclude possibilities of other pattern 

recognition techniques to be applied to this application. The ANN pattern 

function can accurately predict the active constraints set. Compared to PWA 

methods, the proposed QP strategy is able to handle LTV MPCs. It also 

requires much less memory space, making it possible to be applied with 

MPCs of long horizons.  

 It is identified that the SQP MPC cannot be fully initialized with information 

of active set of constraints. A decent initial guess of the optimal control action 
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is necessary to reduce the number of major iterations. It is proposed to use 

ANN to approximate the optimal control actions with the current system 

states and future reference. Simulation results show that the ANN assisted 

SQP has much less number of major and minor iterations than the traditional 

SQP. This method significantly reduces the execution time of the model 

predictive IMEP control.  

 The proposed QP strategies utilizes ANN to generate a start of search point 

that is very close to optimal solution. As a result of this warm start approach, 

the effort to search for the optimal control action is greatly reduced. Since the 

ANN results are not directly used to compute control action, the MPC is free 

from the stability and robustness issues caused by fitting errors of the ANN.  

7.2.6 Engine –in – Loop Driving Cycle Test with MPC Driver Model 

This chapter introduces an EIL test setup with MPC driver model based on the 

proposed pattern recognition QP strategy. The system is validated with simulation. The 

important finds of this chapter includes: 

 The MPC successfully mimics the pedal actuation of a real human driver, 

who foresees the incoming traffic conditions and adjust pedal actions 

predictively. For this reason, the MPC tracks the speed profile much than the 

PID “driver”. Compared to real human driver, the MPC can generate 

repeatable driving cycle test results. 

 The MPC can simulate different driving styles of human drivers by simply 

changing the weighting on tracking performance and control effort. 
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Simulation results show that an “aggressive” MPC driver can track the speed 

profile better than the “economical” MPC driver with more fuel consumption.  
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7.3 Future Work 

This research work provides a frame work of model predictive SI engine 

management system. It demonstrates great pragmatic potentials of MPC to be implement 

with modern SI engine controls. The future expansions of this frame work are suggested 

as follows: 

 Development of the model based engine state estimation of the proposed 

IMEP controller. This estimation will utilize the cycle-by-cycle engine model 

and their real time linearization results to converge sensor errors and estimate 

unmeasurable engine states. Since the proposed engine model integrates air-

path dynamics, IMEP, exhaust gas enthalpy and heat transfer to coolant 

together, it is possible to utilize most of the sensors available on modern SI 

engines to estimate the engine states comprehensively.  

 The model predictive engine control frame work can be expanded with other 

actuators, including VVT, AFR and turbo charger. The fact that the MPC is 

formulated in engine cycle domain means that the frame work can also be 

expanded to engines with advanced combustion mode like HCCI.  
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Appendix A 

𝐹𝑁 and 𝐺𝑁 in equation (5.2) 

𝐹𝑁 =

[
 
 
 
 

𝐶(𝑘)𝐴(𝑘)

𝐶(𝑘 + 1)𝐴(𝑘 + 1)𝐴(𝑘)

𝐶(𝑘 + 2)𝐴(𝑘 + 2)𝐴(𝑘 + 1)𝐴(𝑘)
⋮

𝐶(𝑘 + 𝑁𝑝)𝐴(𝑘 + 𝑁𝑝)…𝐴(𝑘) ]
 
 
 
 

 

𝐺𝑁 =

[
 
 
 
 
 
 
 
 

𝐶(𝑘 + 1)𝐵(𝑘) 0 ⋯ 0

𝐶(𝑘 + 2)𝐴(𝑘 + 1)𝐵(𝑘) 𝐶(𝑘 + 2)𝐵(𝑘 + 1) ⋯ 0

𝐶(𝑘 + 3)𝐴(𝑘 + 2)𝐴(𝑘 + 1)𝐵(𝑘) 𝐶(𝑘 + 2)𝐴(𝑘 + 2)𝐵(𝑘 + 1) ⋯ 0
⋮ ⋮ ⋮ ⋮

𝐶(𝑘 + 𝑁𝑐)𝐴(𝑘 + 𝑁𝑐 − 1)…𝐴(𝑘 + 1)𝐵(𝑘) ⋯ ⋯ 𝐶(𝑘 + 𝑁𝑐)𝐵(𝑘 + 𝑁𝑐 − 1)

𝐶(𝑘 + 𝑁𝑐 + 1)𝐴(𝑘 + 𝑁𝑐)…𝐴(𝑘 + 1)𝐵(𝑘) ⋯ ⋯ 𝐶(𝑘 + 𝑁𝑐 + 1)𝐴(𝑘 + 𝑁𝑐)𝐵(𝑘 + 𝑁𝑐 − 1)
⋮ ⋮ ⋮ ⋮

𝐶(𝑘 + 𝑁𝑝)𝐴(𝑘 + 𝑁𝑝 − 1)…𝐴(𝑘 + 1)𝐵(𝑘) ⋯ ⋯ 𝐶(𝑘 + 𝑁𝑝)𝐴(𝑘 + 𝑁𝑝 − 1)…𝐴(𝑘 + 𝑁𝑐)𝐵(𝑘 + 𝑁𝑐 − 1)]
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Appendix B 

Important abbreviations and variables 

𝐴 
State transition matrix 

Area 

𝐴, 𝐵, 𝐶 𝑎𝑛𝑑 𝐷 State space matrices 

𝐴𝐹𝑅 Air-to-fuel ratio 

𝐴𝑓𝑙𝑎𝑚𝑒 Flame front area 

𝐴𝐺  Knock model fitting constant 

𝛼 Forgetting factor 

𝐴𝑁𝑁 Artificial Neural Network 

𝛼 Forgetting factor 

𝑏 Linear interception term of QP constraints 

𝐵𝐺 Knock model constant for activation energy 

𝐵𝑆𝐹𝐶 Brake specific fuel consumption 

𝐶𝐴10, 𝐶𝐴50… Crank angle at 10%, 50%,…  mass burnt fraction 

𝐶𝐷 Discharge coefficient 

𝐶𝑂𝑉 Covariance (of IMEP) 

𝑐𝑉, 𝑐𝑃 Constant volume/pressure heat capacity 

𝐷 Diameter 

𝛿 Variation 

𝛿𝐿 Flame thickness 

𝑒 Slope terms of Willians approximation 

ECL Exhaust camshaft location 

𝐸𝐾𝐹 Extended Kalman Filter 

휂𝑉 Volumetric efficiency 
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𝐸𝑉𝐶 Crank angle of exhaust valve close 

𝐹 
Linear matrix of QP 

Force 

𝐹𝑁 Appendix A 

𝛾 Heat capacity ratio 

𝐺𝑁 Appendix A 

𝐻 Quadratic matrix of QP 

ICL Intake camshaft location 

𝐼𝑀𝐸𝑃 Indicated mean effective pressure 

IVO Crank angle of intake valve open 

𝐽 Objective function of optimization problems 

𝐾0, 𝐾𝑋 𝑎𝑛𝑑 𝐾𝑅 Gain matrices of PWA MPC algorithm 

𝐾𝑎 Karlovitz number 

𝐾𝐹 Kalman Filter 

𝐾𝐼 
L-W knock integral 

Knock intensity (normalized) 

𝐾𝑘 Estimation gain at 𝑘𝑡ℎ iteration 

𝐿 

Turbulence integral length scale 

CA50 estimation gain 

Valve lift 

𝜆 
Taylor micro scale 

Lagrange multiplier 

𝐿𝐻𝑉 Lower heating value 

𝐿𝑇𝐼 Linear time invariant 

𝐿𝑇𝑉 Linear time variant 



200 

 

𝑀 Linear gain of QP constraints 

𝑚 Mass 

𝑀𝐴𝑃 Manifold pressure 

𝑚𝑏 Burnt mass 

𝑚𝑒 Entrained mass by flame 

𝑀𝑃𝐶 Model predictive Control 

𝜇 Friction coefficient 

𝑛 
Knock model pressure fitting constant 

System order 

𝑂𝐿𝐶 Crank angle where intake and exhaust valves have the same lift 

𝑂𝐿𝑉 Overlap volume 

𝜔𝑒 Engine speed in rad/s 

𝑃 
Pressure 

CA50 estimation error covariance 

𝑃𝑘 Estimation error covariance at 𝑘𝑡ℎ iteration 

𝜙 Sensitivity matrix of performance 

𝑄 
Heat 

Variance of CA50 modeling error 

𝑄𝑃 Quadratic Programming 

𝜌 Density 

𝑅 

Gas constant 

Variance of CA50 measurement noise 

MPC weighting on tracking performance 

𝑟 Weighting factor 

𝑅𝑒 Reynolds number 
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RGF Residual gas faction 

𝑅𝐺𝑀 Residual gas mass 

𝑆 MPC weighting on control effort 

𝑠 Weighting factor 

𝑆𝐿 Laminar flame speed 

SPKT Spark timing (deg bTDC) 

𝑆𝑄𝑃 Sequential quadratic programming 

𝜎0 Stoich air-to-fuel ratio 

𝑇 
Temperature 

Torque 

휃 

Coefficient vector in RLS. 

Throttle/EGR valve angle 

Crank angle 

𝜗 Ratio of heat coolant transfer in terms of rejected heat 

𝜏 Time constant 

𝜏𝐺 Ignition delay 

𝑢′ Turbulence intensity 

𝑉 
Volume 

Velocity 

𝑣 
Kinematic viscosity 

CA50 measurement noise 

𝑊 Work 

𝑤 CA50 model error 

[𝑥] Quantification of combustion reactant 

𝑥𝑏 Mass burnt fraction 
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𝜉 Active constraints set index vector 

휁 Combustion phasing 
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