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ABSTRACT 

There have been tremendous technological advancements in the field of surgery 

with new devices and minimally invasive techniques rapidly being developed. As a 

result, there is a corresponding need to train novice surgeons and residents to use these 

new technologies. Due to new regulations in medical education, an increasing the amount 

of surgical skills training is designed for outside the operation room using surgical 

simulators. 

In this work, a device called the suture platform was conceptualized for assessing 

and training basic suturing skills of medical students and novice surgeons. In the 

traditional approach of “open” surgery, which has not benefitted as much from 

simulation, suturing is one of the most foundational surgical maneuvers.  The specific 

task developed on the suture platform is called radial suturing and was prescribed by 

expert surgeons as one of five core “open” vascular skills. 

In the initial phase of the platform development, a six-axis force sensor was used 

to obtain data on the device and the procedure was video-recorded for analysis. Pilot data 

was analyzed using force-based parameters (e.g. peak force) and temporal parameters 

with the goal of examining if experts were distinguished from novices. During analysis, it 

became apparent that future development of the device should focus on obtaining 

synchronized data from video and other sensors. In the next phase of development, a 

motion sensor was added to capture wrist motion of the trainee and to obtain richer 

information of the suturing process. The current system consists of a graphical user 
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interface (GUI) that captures data during a radial suturing task that can be analyzed using 

force, motion and vision metrics to assess and inform surgical suturing skill training. 
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CHAPTER ONE 

INTRODUCTION 

Sir William Halsted introduced a German-style residency training system at Johns 

Hopkins Hospital in 1889 that laid an emphasis on graded responsibility [1]. This format 

of residency system has remained a keystone of surgical training in North America since 

its inception. However, with the tremendous growth in technical advancement of surgical 

devices and techniques, many are questioning the efficacy in relying on this model of 

training [2].  

In the current surgical training environment, opportunities to work with real 

patients have diminished. In some cases, guidelines and practice patterns in medicine 

have also changed, e.g., surgery to treat peptic ulcer that was on the general surgical list, 

is hardly performed now [3]. There is also considerable discussion regarding optimizing 

the resources allocated to train students in the operating room or labs. This focus is partly 

due to the outcomes-based system of healthcare assessment in current society. 

Consequently, medical errors are highly scrutinized and reported. More patients are 

taking the initiative in becoming better informed of their medical conditions due to 

increased access to medical information. Trainee error is not accepted easily and there 

has being an increase in number of legal claims being made by patients dissatisfied with 

their treatment [4].  

The advancement in medical knowledge has also resulted in new techniques and 

procedure that are less invasive but difficult to learn. Haptic (force) feedback and 3D 

viewing of information are the modes of feedback that are heavily relied upon while 
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gaining new “open” surgical skills. As these senses cannot be used during minimally 

invasive surgeries, surgeons are at a huge disadvantage. As a result, adequate practice is 

required before undertaking minimally invasive surgery in a safe manner. One additional 

consideration is the reduction of working hours (80 hours a week) that limits the time 

available to provide adequate exposure to certain procedures. This has caused residency 

programs to increase in duration and also create a number of subspecialties that require 

further specialized training [4]. As a cumulative consequence of all these factors an 

increasing amount of surgical skills training must now take place outside the operating 

room. Thus, simulators and simulation methods are an exciting new era of surgical 

training [3].  

Although it was believed that surgical expertise is an innate ability of individuals, 

empiric research has confirmed that repeating tasks increases proficiency, and aids in 

maintaining the high level of skill [4]. Deliberate practice requires focus on a well-

defined task to improve performance. It also requires repeated practice along with 

coaching and feedback on performance [2]. 

Simulators can be considered to be instruments that reproduce, under artificial 

conditions, components of surgical tasks that are likely to occur under normal 

circumstances [3]. They have been efficient in the airline industry to train pilots. 

Simulators can be used for practical training before performing supervised operation. 

They can be used to practice complications and surgical emergencies and their 

management [3]. Thus building a simulator device that can be used to train suturing 
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techniques and acquire data to provide feedback has been the motivation of the research 

project.  

The device called the suture platform was conceptualized for training basic 

surgical skills to medical students and novice surgeons. Its targeted area of surgical 

specialty is “open” surgery, which has not benefitted as much from simulation.  The 

specific skill pattern adopted for training is based on radial suturing and is one of the one 

of the five core open vascular skills adopted by the expert vascular surgeons. The 

platform has gone through several iterations starting from a single stamped square suture 

patch held by clips to a more sturdy and robust device with sensors for gathering 

information. The current platform consists of a suture disc mounted inside a cylinder at 

three different levels. The disc holds the suture patch with radial (or a “clock face”) 

pattern marked on it under tension. The cylinder is attached to a custom-designed base 

that is mounted on a force sensor (ATI Mini-40; ATI Industrial, Apex, NC). The trainee 

wears an InertiaCube (v.4; Thales Visionix, Inc., Billerica, MA) device that measures 

hand acceleration while using the needle holder. It is mounted on the dorsum of the hand. 

A camera (Firefly MV, Point Grey Research Inc., Richmond, BC, Canada) records the 

motion of the needle on the suture patch for analysis. The data that is being collected can 

be synchronized using a custom-built GUI (MATLAB v.2014). The GUI also provides 

tools for the analysis of the data, for e.g. average forces, peak forces, finding peaks (local 

maxima).  
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CHAPTER TWO 

LITERATURE REVIEW 

 

There has been a tremendous growth in medical knowledge and a lot of pressure 

in the clinical environment to keep in step with new technologies [2]. The advancement 

in medical knowledge has also resulted in new techniques and procedures that are less 

invasive but difficult to learn. The consequences of constraints of time, money and other 

resources along with the advances in medical knowledge  has resulted in an increasing 

amount of surgical skills training to be taking place outside the theatre and in a simulated 

environment (laboratories) and on simulated patients or tissue [2]–[4]. Simulators can be 

considered as instruments that approximate, under artificial conditions, components of 

surgical tasks that are encountered during surgical procedures. Simulation-based methods 

have been demonstrated to be efficient in the airline industry to train pilots. In surgical 

training, they have been proposed for practical training of residents and novices before 

performing supervised operations [3]. They can be used to practice complications and 

surgical emergencies and their management. In this chapter, a brief overview of the 

various approaches to skill acquisition is provided along with specific aspects for surgical 

skills acquisition.  

1. Theories for skill acquisition  

As can be expected, the ability to perform surgery requires proficiency in many 

domains. Technical skills is one of these skill domains and is very important to surgical 

capability. Various theories have been developed to explain acquisition of skills and they 

are mentioned below 
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Kopta’s theory [4] involves three phases of motor skills acquisition. The first is 

the cognitive phase where one observes new procedures, and gains knowledge by 

reading, listening and asking questions. The second step is the integrative phase, where 

the trainee receives feedback and learns to integrate the knowledge with the appropriate 

motor responses. The autonomous phase is the last phase, where continued practice 

without cognitive inputs results in efficient performance input. Kopta’s theory stresses on 

the importance of observation followed by practice.  

Schmidt’s theory [4] suggests that motor skills are acquired on the basis of 

previous experiences. Hence, the first phase is planning of the movement with respect to 

the current environment. In the second phase, specific muscle commands are generated to 

perform the movement. The third phase is feedback (tactile, visual and auditory), and the 

final phase is knowledge acquisition of the outcome. Both practice and feedback are 

necessary according to Schmidt’s schema theory. 

In the traditional apprenticeship model [4], the student first observes the mentor 

and then begins to practice surgical tasks under the mentor. After initial exposure, 

mentors only provide hints or feedback to trainees. The traditional apprenticeship model 

shows the importance of the gradual attainment of skills.  

In the cognitive apprenticeship model [4], derived from the traditional 

apprenticeship model, the mentor has three roles (modeling, coaching and scaffolding) 

and student has three roles (articulating, reflecting and exploring). In Modeling, the 

mentor explains the process and the trainee begins performing the task while the mentor 

provides feedback and suggestions to improve the student’s performance. The student 
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then replicates from the performance of the expert. Support is provided till independent 

performance is gradually obtained. The mentor’s role is gradually reduced with the 

improving performance of the trainee. Eventually, the student’s knowledge reaches a 

point at which they can synthesize and articulate the information. During reflection, the 

student compares his or her own problem solving ability with an expert or another 

student. Reproduction of the performance (recording video and using it for analysis) can 

help in reflection.  

Ericsson’s model [4] highlights the importance of focused attention and deliberate 

practice in acquiring expert skill.  Ericsson found that time of day was an important factor 

in successful learning of skills (ability to perform complex cognitive activities was the 

highest in morning). Ericsson also recognized the importance of rest (practice > 4 

hours/day causes fatigue). These two points could help in planning the training regime. 

In summary, looking at the various theories we can see that deliberate practice and 

feedback play a vital role in surgical training. Simulators fit into the role very well 

because of the fact that can be used repeatedly to provide feedback essential for training. 

2. Effectiveness of simulator training 

Studies have been conducted by Stefanidis et al. which show that automaticity in 

performing the task and proficiency based training on simulators does result in long-

lasting skills [5]. They also go on to prove that simulators can be used effectively for 

surgical training [6]. At the same time studies also in hint that overlearning and training 

can also lead to skill degradation. There is also skill degradation over the period of time 

and hence practicing skills learnt at regular intervals [6] has been suggested. Simulator 
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training has helped participants to handle their stress in a better manner [5]. We can 

appreciate the fact that simulator requires less human intervention which saves on a 

surgeons time.  

3. Simulator models  

The type of models that can be used for simulations have been summarized below 

along with their advantages and disadvantages 

Bench models are cheap, portable and reusable models with minimum risk and 

supervision. These models are low fidelity models and are meant for novice learners to 

learn basic and discrete skill, e.g., ethylene vinyl acetate (EVA) for suturing techniques. 

Fidelity of a model refers to how realistic can it be with respect to the human body [2]. 

The next type of “simulators” is the use of live animals. They can be used to 

practice homoeostasis and entire surgical procedures. The drawbacks of using animals are 

ethical concerns, costs, maintenance of special facilities, single use and anatomical 

differences. One of their unique uses is to improve knowledge of blood flow and 

dissection skills [2]. 

Cadavers can be considered to be a high fidelity and true anatomy simulators. 

They can be used to practice entire operations. This mode of simulation too faces 

problems of cost, availability and single use. Compliance of tissue and infection risk is its 

other drawbacks. It can be used to gain advanced procedural knowledge and learn about 

dissection [2]. 

Human performance simulators are one of the other types of simulators that are in 

current use. The advantages of these systems are reusability, high fidelity, data capture 
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and interactivity. The cost and maintenance of these simulators is high and there are 

limited applications. They have mostly being used for team management and crisis 

training [2]. 

Virtual reality surgical simulators are reusable, perform data capture and require 

minimal setup time. Cost and maintenance of these devices is high and the three 

dimensions are typically not well simulated. They are not easily accepted by trainees 

because of their lack of realism. These devices have mostly been used in teaching basic 

laparoscopic, endoscopic and transcutaneous skills [2]. 

Looking at these models will help us gain insight on the various approaches that 

can be used for the development of a cheap and efficient simulator. 

4. Current surgical simulators 

The use of minimally invasive surgery (MIS) has been rapidly increasing because 

it offers many advantages over open surgery. More effective and affordable training is 

required due to the complexity of MIS [7]. Simulators like box trainers with motion 

detection and virtual reality trainers have been developed for surgical skill training.  A 

few examples of the simulation devices in the literature are listed below. 

The TrEndo device consists of a gimbal mechanism with three optical computer-

mouse sensors. The gimbal guides the MIS instrument, while optical sensors measure the 

movements of the instrument.  The resolution for the device is 0.06 mm for translation 

and 1.27° for rotation of the MIS instrument around its axis; the angle for rotation around 

incision point is 0.23°. The accuracy of the sensor in TrEndo is higher than 95% [8].  
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Another example of an “augmented reality” simulator is the ProMIS. It consists of 

a torso-shaped metallic mannequin with neoprene cover connected to a computer. The 

mannequin contains three separate camera-tracking systems, arranged to identify any 

instrument inside the simulator from three different angles. The laparoscopic camera 

serves as the main viewing camera displayed on the computer screen for subjects and is 

positioned at the mannequin's pubic region looking towards the head. The camera 

tracking systems capture instrument motion with Cartesian coordinates in the x, y, and z 

planes at an average rate of 30 frames per second (fps). The two pieces of yellow 

electrical tape at distal end of instrument shaft serve as a reference point for the camera 

tracking systems. It has evidence demonstrating some efficacy in differentiating between 

experts and novices, and has been suggested for use in skills training [9].  

The SIMENDO (Simulator for Endoscopy) consists of one instrument handle on a 

box. The training program has exercises designed to train hand–eye coordination using 

abstract tasks without force feedback. The users manipulate a virtual endoscope or 

instruments during laparoscopic surgery and can choose between four different tasks: 

piling up of cylinders, manipulation of a 30° endoscope, clipping an artery, and 

dissecting a gallbladder.  A game called “catch the needles” is also featured in the system 

[10].  

Tim Horeman et al. [11] have developed a force-based system for the assessment 

of laparoscopic skills. For the sake of discussion, the force platform construction can be 

divided into hardware for the platform and software for data acquisition. The software 

consists of a C++ program that records rotation and translation vectors at 60 Hz. The 
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hardware consists of a base plate fixed to the housing of a SpaceNavigator 3D mouse and 

the table (upper plate) is mounted on the cap of the SpaceNavigator. The SpaceNavigator 

is used for 3D movement in virtual environments. Horeman and colleagues modified the 

device by placing springs mounted between the table and the base surrounding the 

SpaceNavigator, which are held using spring holders.  In this setup, the stiffness of the 

springs determines the force range. Calibration of the force platform is done using 

standard weights. A frame was built to exert well-defined force and torques, in all 

directions, at the center of the platform. Each axis was calibrated three times using 

regression-based methods. The accuracy of the platform was also checked using a set of 

forces and torques [11].  

5. Parameters for skill training 

A number of studies have been conducted for finding suitable parameters on 

simulator devices that distinguish between expert and novice skill levels. Several studies 

have explored the possibility of using images, motion and force data on simulators to 

determine these parameters. A few studies are surveyed below that are pertinent to the 

device developed in this work. 

5.1 Force and motion parameters 

Horeman et al. [11] conducted a study where a force-based system was used to 

assess surgical skills. They observed that surgeons mostly used rotation to drive the 

needle while the novices used rotation and translation to drive the needle. Furthermore all 

novices pressed the needle driver against the tissue during the task.  The average 

maximum force and the average mean force for the surgeon was relatively lower that the 
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novices [11]. Similarly, another study conducted by Horeman et al. [12] explored 

whether motion parameters correlated with force parameters moreover if a combination 

of force, time and motion parameters can be used to assess skills of the trainee. Of the 

many parameters that were explored for skill analysis, they found that path length (PL)-

left, PL-right, maximum absolute force (MAF), task time, PL-left, PL-right, max force 

area (MFA) and mean distance between tips (MDBT) were significantly different 

between experts and novices for tissue attachment under traction (task 1). For the specific 

task of placement of silicone wire in the study, task time, PL-left and PL-right and out of 

view time (OVT)-left were significantly different between expert and novices [12].  

Dubrowski et al. [13] conducted a study in which six junior surgical residents 

(novices) and seven faculty surgeons (experts) participated. They were asked to perform 

twenty sutures in an artificial artery tissue model. They novices were given one 

demonstration and verbal instructions before the task. A magnetic marker secured to 

dorsum of hand (right only) and the tissue model was placed on a 6D force/torque sensor. 

The parameters that were identified for skill assessment were peak velocity, roll, peak 

and average forces, roll-force delay and time. The expert’s show greater wrist rotation, 

short roll-force delay, high average forces and short suturing time [13]. 

Pagador et al. [14] also conducted a study with motion parameters using a box 

trainer for knot tying skills. The task was divided into 4 subtasks, i.e. needle puncture, 

first knot, second knot and third knot. The bot trainer has two surgical tools for which 

individual data was collected. In this case, total time, total path length and number of 

movements for each tool were the parameters that differentiated between skill levels. 
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Dosis et al. [15] also used motion analysis for assessing skills using the Imperial College 

Surgical Assessment Device (ISCAD). In a recent study, Sanchez et al. [16] used the 

popular iPhone for capturing the hand motion for skill assessment. 

Trejos et al. [17] used “sensorized” instruments to perform tasks like palpation, 

cutting, tissue-handling, suturing and knot-tying in a box trainer. The instruments were 

able to track force, torque and position data for the task performed. Various parameters 

were explored using the data that was collected from the device including speed peaks 

and speed consistency, acceleration, jerk, minimum and maximum force, velocity and 

acceleration, force derivatives. Combined metric, wherein scaling was used to optimized 

strong correlations, were also constructed. An example of a combined metric would be a 

combination of jerk, difference in MAPR (proportion of time where movement speed was 

25% > max speed) value between the two hands, the total volume, the number of peaks in 

speed, and the integrals and derivatives of the grasping and Cartesian forces. The authors 

report that force-based metrics and combined metrics show a stronger correlation with 

experience level than the position based metrics [17]. 

5.2 Computer vision based parameters  

Image analysis has also been used for quantifying surgical skill. Frischknecht et 

al. [18] used image analysis programs to obtain objective variables for the assessment of 

surgical skills to distinguish experts from novices. Participants for the study performed a 

running suture to close a five-centimeter incision on a foam pad. Sutures were identified 

using color contrast algorithms and using the incision as a reference line. Total bite size 

(B), stitch length (L), number of stitches, travel, symmetry across the incision, total bite-
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size-to-travel ratio (B/T), stitch orientation were some of the variables that were used as 

assessment parameters. It was found that experts used fewer stiches, had shorter bites and 

had longer travel than novices. The value of stitch orientations was more for experts than 

novices. As in this study, image analysis could also be used to assess surgical skills [18]. 

Islam et al. [19] also examined the possibility of using image processing 

algorithms for surgical skill assessment. Participants in their study had to perform the peg 

transfer exercise on the Fundamental of Laparoscopic Surgery (FLS) trainer using purple 

gloves as they stand out from the background. Glove detection was performed by 

programs using open source computer vision (OpenCV) libraries. Movement of the data 

is extracted from the video using motion segmentation to show the change in images over 

time. For every dataset, the pixel values in each frame are normalized with respect to the 

idle frame. The frame having the lowest pixel value is considered to be ideal frame. 

Arithmetic mean and standard deviation is calculated for the all the data. A clear 

distinction between expert, intermediate and novice was reported in their analysis [19]. 

6. Mathematical and computer models for needle tissue interaction 

There has substantial work done in modelling the needle-tissue interaction forces 

using Finite Element-based Models (FEM). 3D models generated using FEM have an 

automated needle path and are difficult to solve in real time [20]. If 2D models are used 

instead of 3D models computational efficiency is increased at the cost of model accuracy. 

In Finite Element modeling, the properties of materials play a vital role in calculations 

and it is known that the properties vary considerably for different tissue types [20]. Some 

studies using this approach are listed below.  
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Frick et al. [21] conducted a study to measure the resistance forces acting on 

suture needles. Different tensile loads were applied to skin and tendon respectively and a 

straight cutting needle was used to penetrate the tissue material at different velocities.  

Load vs displacement graphs were calculated for both materials. The tension was 

proportional to the penetration force required for the needle, while needle displacement 

rate did not affect the resistance to needle penetration. This study offers a simple model 

to measure force-feedback during needle penetration [21]. 

Misra et al. [22] conducted a study wherein a model for needle tissue interaction 

was proposed and the loads on bevel tip of the needle during needle-tissue interaction 

were assessed. The model used for calculation is based on the properties of the tissue 

(gel) and the geometry of the bevel tip. Results indicated that the needle bends more 

when the bevel angle is small due to larger transverse tip forces [22].  

Jackson et al. [20] studied the needle-tissue interaction forces experienced during 

suturing for a rigid suture needle. The forces were modeled as lumped parameters. In 

their case, the parameters were friction, tissue compression and cutting forces. The 

cutting force acts on the needle tip, the frictional force acts along the axis and the tissue 

compression force depends on the area swept by the needle. To validate the model a 

needle is mounted eccentrically on motor disc equipped with a 6D force/torque sensor so 

that it doesn’t follow the natural curve of the needle. The needle is driven through 

artificial tissue model for acquire the needle-tissue interaction forces. The experimental 

setup validates the lumped parameter model [20]. 
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These studies provide a foundation and frame of reference for research in the area 

of suturing skill assessment and training. Further, these models can also be used in 

developing virtual reality simulators. 



 16 

CHAPTER THREE 

CONSTRUCTION OF SUTURING PLATFORM AND ANALYSIS OF PILOT DATA  

 

With a goal of building a suturing device for skill assessment and training the 

construction of the suture platform was taken in hand [23]. The prototypes of the 

platform has gone through several iterations starting from a single stamped square suture 

patch held by clips to a more sturdy and robust device with sensors for gathering 

information. Examining the literature that was present related to suturing, we realized that 

force could be one of the parameters that could be used for training novices [9], [11], 

[12], [15], [17], [24]. We are also aware that surgeons need to apply optimum forces so 

that they do not damage the tissue. For the wound to heal, the dermal components must 

meet and heal together. If the edges are inverted, the wound will not heal as quickly or as 

well as you would like (Figure 1).  Precise placement of the needle and orthogonal needle 

insertion is necessary to obtain ideal wound edge approximation. Excessive forces in 

lateral direction contribute to tearing of the tissue making it difficult to control bleeding. 

Unnecessary punctures are always undesirable and will result in excessive tissue trauma. 

Considering these factors the force sensor was added to the platform. After the platform 

was constructed the data was obtained from experts and novices to check whether it 

would help in skill assessment. 

1. Evolution of the platform 

 The first prototype of the suture platform was introduced as a cylinder with a 

diameter of 6.5 inches, wall thickness of 0.277 inches and height of 4.9 inches. It had 4 

holes with a diameter of 0.213 inches were drilled at a height of 2.5 inches from the 
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bottom of the cylinder. From those 4 holes there were alligator clips attached to an elastic 

chord that held the fabric that was to be sutured (Figure 2). 

The trainees would have to suture on a pattern similar to a clock face but having 

two concentric circles. The distance between the two concentric circles was nearly the 

same distance as a person would have to cover in case he was following a curvature of 

the needle, trying to suture on a human tissue. Participants had to also make sure that 

there was no significant movement in the position of the cylinder. The trainees required 

an experienced surgeon to give their opinions about their performance and objective 

scaled feedback to measure performance or accuracy was unavailable. The objective of 

our group was to develop a method to gather information using the conceptual prototype 

that could help novice medical students in training and improving their suturing with a 

simple and cost efficient suturing platform.  

The second prototype had the same cylinder dimensions and four hooks were 

attached to prevent the cylinder from moving when upward force was applied (pulling the 

needle), additionally the attachments on the base restricts the movement of the cylinder. 

The base was attached to ATI-mini40 sensor that measures forces and torques in all three 

axes (Figure 3). The idea behind using a force/torque sensor was that usually a medical 

suture requires a right amount of force to be applied so that the tissue, excessive force 

could lead to tissue rupture. Figuring the optimal force needed to be applied along all 

axes can assist in training novices force control required whilst suturing. 

Constructing the third prototype improved the design of the platform, making it 

more stable and less bulky. Cylinder dimensions were retained from the first prototype 
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but the amount of holes were doubled (from 4 to 8) to attach the cylinder to the base, 

boosting device stability. These holes were present on the cylinder at a distance of 4.5 

inches from the top .The depth at which the disc holding the suture patch could be held 

was increased to 3 levels. First level is 1 inch from the top, second one is 2 inches from 

the top, and third one is 4 inches from the top. The decreasing height of each level from 

the base reduced the maneuverable area for the novice increasing the difficulty of the 

device. A circular base was cut and mounted on the sensor with central axis of the 

cylinder and the base being the same. The cylinder was screwed in place using the 

grooved components glued to the base. The screw sizes for both the base and the suturing 

platform are 0.157 inches (4mm) (Figure 4). On the first and second prototype of the 

platform, only a piece of fabric with the suturing pattern (suturing patch) was clamped in 

place by the alligator clips (Figures 2 and 3). 

In the third prototype it was vital that the suture patch be secured in place rather 

than holding it using an elastic string, since we were unsure of its effect on the force 

readings. The suture disc was mounted on the cylinder and consisted of 2 parts. The 1
st
 

part was where the disc would be attached to the cylinder, this consists of 2 circular 

hoops with 8 - 0.194 (5mm) holes to screw the material fabric in place (Part 2) and 8 

small rectangles, with holes in the middle of each, joining both hoops and attaching the 

platform to the cylinder. These two hoops had a thickness of 0.118 inches (3mm each), 

5.5 inches outer diameter, 3.95 inches inner diameter and the distance between the hoops 

is 0.6 inches (See Figure 5).  
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The second part consists of another 2 hoops with the same material thickness as 

the first two and the same outer diameter size. The only differences are found in the inner 

diameters, one of the hoops has the same diameter as the previous hoops but an extra 

hoop was glued on top of it. This hoop is 0.1 inches thick and 0.19 inches tall (Figure 6). 

The fabric would be placed on top of this hoop and then secured in place by the 

other hoop with an inner diameter of 4.14 inches. The fabric would be secured in place by 

placing 8 bolts in place (approximately 1.5 inches long with a diameter of 0.187 inches) 

and securing them with 8 nuts. Then this part would be attached to Part 1 and then the 

suture disc would be secured to the cylinder (Figures 7 and 8). Finally the third prototype 

would be mounted on the ATI Mini40 Force sensor to acquire data (Figure 9). 

2. Placement of the force/torque sensor 

The placement of the force sensor is at the center of the base and the axis passing 

through the center of the sensor and the base is the same. This will ensure that the forces 

on the suture patch are equally distributed. (Figure 9) 

3. Reduction in noise 

While testing the platform a lot of unwanted noise was observed from the sensor, 

which was thought to be because of the vibrations of the table.  Thus to reduce noise half 

cut tennis balls were used to dampen the vibrations, but it was difficult to balance the 

platform and it did not yield adequate  results. Consequently a memory foam mat was 

placed below the platform resulting in a significant reduction in noise. 
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4. Placement of the camera 

The sensor used in building the suture platform is very sensitive and susceptible 

to noise. When the data was being collected we envisioned a possibility of trainees 

touching the cylinder whilst the platform was in use and inducing unwanted forces on the 

sensor. Therefore to keep a track of various motions that were performed and to identify 

the unwanted noises during analysis, a camera was mounted on the wall with the top view 

of the suture platform in focus.  

5. DAQ System 

The force/torque sensor (transducer) is a compact, rugged, monolithic structure 

that converts force and torque into analog strain gage signals.  The ATI mini40 has 

electrically shielded integrated cable for transmission protection and to connect to an 

Interface Power Supply (IFPS) box [25]. 

The IFPS box was used with the ATI-mini40 sensor to supply power to the 

transducer and electronics, as well as condition the sensor signals to be used with a data 

acquisition system. The IFPS is equipped with a 12-pin female connector for the 

transducer cable connection and a 26-pin male connector for interfacing with the DAQ 

Device. The IFPS box can be powered using the wall mounted power supply (12V) or 

through the power supply cable (5V) from the Data acquisition device (DAQ). The IFPS 

box only requires one source, if both sources are connected, the IFPS box will only use 

the 12 V source ignoring the 5 V source [25]. 

The data acquisition system converts the analog voltage signals from the sensor 

into digital data that is subsequently processed by ATI software or using Simulink blocks 
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converting it to force and torque values. Since the electronic hardware measures the 

change in resistance, calculations must be performed to obtain the loads being sensed by 

the F/T sensor. The sensor reports the loads as composite values that need to be converted 

into the six Cartesian axes [25]. 

6. Software Algorithm 

The data from the sensor is processed and saved in Simulink. For real time 

acquisition and storage of data a specialized library provided by QUANSER called 

QUARC was used. QUARC seamlessly integrates with Simulink for rapid controls 

prototyping and hardware-in-the-loop testing. It is fully integrated with Simulink coder. 

The steps that are followed during sensor data acquisition are as follows: 

The ‘HIL (Hardware-in-loop) initialize’ block was used to associate a name with 

the DAQ board and was used to connect initialize the various parameter like the number 

of analog input channels, the minimum and maximum value for analog inputs, the initial 

value for the outputs, the frequency at which data is obtained, generate PWM (pulse 

width modulation) outputs etc. [26]. 

Once the board was selected and the channels are determined, the next step was to 

read the data from the analog channels. This was done using the ‘HIL Read Analog 

block’ which immediately reads the specified input channels [26]. The variable 

‘qc_get_step_size’ is the fundamental step size of the sensor data acquisition system.  

This value was used for sampling the data.  

In the next step, the data that is obtained is multiplied by the calibration matrix. 

This converts the values that are obtained from the sensor to six Cartesian axes. 
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Subsequently the values obtained are then used to bias the system to bring it to zero 

value. During bias the offset is calculated using the first 10 samples that were collected 

previously in the system. The offset is then added to the current value. The observed 

values obtained from the sensor directly i.e. an unbiased system will have non-zero 

values (exclude noise), but when biased the values are very close to zero. 

Thereafter the biased values are plotted and saved. The data is saved using the ‘To 

Host File’ block is utilized to stream data to disk on the host machine [26]. The 

advantage of the block is that you don’t need to save variables into MATLAB workspace 

before saving them to disk. The ‘To Host File’ block creates a single variable in the file 

containing the data from the signal attached to its input. Multiple blocks can be employed 

to stream data to disk on the host machine in either normal simulation or external mode. 

7. Hypothesis 

Viewing videos pertaining to suturing [27] we feel that most of the forces applied 

on the tissue are along the z-axis. Therefore, we hypothesized that the force along z-axis 

will contribute significantly in distinguishing skills between and expert and novices. We 

also hypothesized that the surgeons will exert considerably less forces in the lateral plane 

(in x and y directions) and will require significantly less time to complete the task 

compared to novices. 

 

 

 

 



 23 

8. Results 

8.1. Experiment protocol 

Before conducting the experiment, participants were first shown a presentation 

explaining the basics of suturing, a brief description of the study and explanation on how 

to execute the suturing task on the platform. 

When the participants were ready a new suture patch was mounted on the 

platform and were each given a needle holder, forceps and a SH needle (Ethicon, USA) 

to suture.  

 Each participant was given an identification number which was used in the name of 

the data file generated when the sensor data acquisition system was executed. After 

starting the video capture, the execution of sensor data acquisition file was started. 

 The participant had to perform twelve sutures per experiment in clockwise and 

counter-clockwise direction.  

 Everyone had to avoid touching the cylinder supporting the suture disc while 

concurrently trying to insert and exit the suture patch on the intersection of the 

concentric circles and the radial lines on the suture patch. This specific pattern is 

based on radial suturing is designed to be one of the five primary open vascular skills. 

8.2 Participants 

Ethics approval was secured for this study before collecting data. In this pilot 

experiment, three participants were enlisted from a local hospital: a surgeon with 

extensive surgical experience (of cases > 200) was considered to be an expert, a clinical 

fellow was considered to be an intermediate, and a medical student considered to be a 
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novice. Each participant performed the experiment at the lowest and the highest level of 

the platform and both in clockwise and counter clockwise direction, amassing four data 

sets individually.  

8.3. Suture Cycle 

Examining the data from the experiments led to the division of the suturing events 

into subevents (entry, driving, exit and pullout) for better understanding. Executed in the 

fore mentioned order, these subevents are the elements of a suture cycle (figure 10). 

Twelve such suture cycles performed at different locations on the suture patch, 

conforming to the protocol. Let us interpret the phases of the suture cycle with a 

possibility of gleaning parameters required for skill assessment. 

8.3.1. Entry 

A standard suture needle (SH 3-0 prolene) was used to puncture the tissue (Figure 

11). The sharp end of the needle needs to be perpendicular to the plane of the tissue in 

addition to minimum application of lateral forces, to achieve least penetration force and 

reduce tissue trauma. 

8.3.2. Driving 

The needle passes through the tissue, resulting in (Figure 12) forces that are 

proportional to the tissue’s properties during driving phase. The thin suture patch can be 

considered to be a two dimensional object that will hardly offer any resistance, winding 

up with negligible driving force. However, there will be a temporal parameters associated 

with the event. 
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8.3.3. Exit 

The exit event occurs when the needle emerges out of the suture patch from the 

downward direction (Figure13). During exit that lateral forces on the tissue should be 

small and the perpendicular force should be optimum for exit. This can only be 

accomplished if the curvature of the needle is being followed.  

8.3.4. Pullout: 

During the needle pullout phase the needle is extracted from the tissue and there is 

no contact between the needle and tissue. Precaution should be taken to prevent needle 

tip damage in order to ensure that optimum forces are applied on the tissue during the 

entire experiment (Figure 14). 

8.4. Force and time metrics 

Let us now look at the results of the force and time metrics that were used to 

analyze the data that was obtained from the surgeon.  

Location Average 

force (N) 

Absolute 

average 

force (N) 

Peak 

Force 

(N) 

Time per 

suture 

cycle 

(sec) 

1 0.0655 0.3889 2.3634 16.4000 

2 -0.3900 0.5143 -3.4171 11.5000 

3 -0.9953 1.0088 -4.5554 16.9000 

4 -0.2029 0.4787 -2.0136 13.8000 

5 -1.2900 1.4091 -9.5533 22.0000 

6 -0.5779 0.6486 -2.3790 8.2000 

7 -0.9470 0.9803 -5.4059 16.0000 

8 -0.7041 0.7818 -4.5252 14.8000 

9 -0.8573 0.9660 -3.4071 13.7000 

10 0.2244 0.4955 -3.4651 18.1000 

11 0.0447 0.7055 -2.5800 17.0000 

12 -0.5657 0.7832 -7.5150 31.2000 

Table 1.1: Novice: Metrics for force in z-direction 
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Location Average 

force (N) 

Absolute 

average 

force (N) 

Peak 

Force 

(N) 

Time per 

suture 

cycle 

(sec) 

1 -0.7447 0.8382 -1.9751 3.5000 

2 -0.0879 0.2073 -0.5782 2.6000 

3 -0.1531 0.3136 -2.2943 4.7000 

4 -0.1660 0.3808 -2.2458 6.1000 

5 -0.2372 0.4114 -2.2903 4.0000 

6 -0.3137 0.4573 -2.2416 5.1000 

7 -0.2164 0.3084 -1.8827 6.5000 

8 -0.1042 0.2886 -2.0834 4.2000 

9 -0.0484 0.4239 2.1339 5.7000 

10 -0.0500 0.3539 -1.4727 4.9000 

11 -0.3034 0.4003 -3.5326 12.8000 

12 -0.5681 0.6812 -2.3224 3.8000 

Table 1.2: Expert: Metrics for force in z-direction 

The tables (Table 1.1 and 1.2) and graphs mentioned (in Figure 19 and 20) present 

results from z-axis (downward) forces, since they were of primary importance to our 

hypothesis. Observation of the lateral forces indicates difficulty in needle control which 

might be due to the thinness of the suture patch. Consequently the lateral force data might 

be unable to distinguish surgical skill.  Force and video data were approximately 

synchronized using video and force data of the first needle insertion, and the two data 

streams were then correlated based on frame rates and sample rates. The Wilcoxon rank 

sum tests for z-axis forces between the expert and novice were performed in MATLAB 

(r. 2015a). The differences observed (p<=0.05) between the two groups for peak force, 

absolute average force and time per suture cycle for each of the twelve suture locations 

was significant. The total time for the trial for expert was 149.4 seconds while for the 

novice was 459.4 seconds. The lateral (x- and y-) forces did not exhibit any significant 

differences. 
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9. Discussion 

The data provides promising preliminary results and substantiates the use of force 

data to assess suturing skills. These results support similar studies involving the use of 

force data for quantifying surgical skill where force data has been used to quantify 

surgical skills. The device built by Horeman et al. uses a 3D mouse and converts 

acceleration data into forces and the range has to be adjusted by changing springs of 

different stiffness [11]. While in the suturing platform that is developed by us, we are 

able to obtain force results directly and with higher resolution. The design of the suture 

patch could also improve the dexterity of the trainee. Trainees find it difficult to complete 

the task at particular angles on the radial patch and this might be the reason why we 

witness high forces and number of peaks for some suture cycles. We also observe that the 

surgeons require less time than the novices for the task and similar results have been seen 

in various other studies related to suturing [11], [11], [14], [15], [17]. This could be 

attributed to the fact that the surgeon is confident about his needle placement and suturing 

skills and may not require much time to guess where exactly the needle has to be places 

and has a better idea where it will exit. It could also be due to the fact that novices are 

more careful while suturing. Surgeons are observed to have less peaks as compared to 

novices possibly due to  their motion being smoother as compared to novices and can 

corresponds to other studies [17]. The collection of video data can also be used for 

efficient analysis because different people have different ways to perform the same task. 

This would help in analyzing the variability and could help in devising better methods to 

improve skills. However the pilot data was collected for a very small sample population 
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and greater numbers of people need to be enlisted for more conclusive results. Other 

parameters need to be explored for better understanding of the various subevents in the 

suture cycle so that subevents can be targeted individually for better performance training 

[14]. Synchronizing force and video data accurately was laborious and tricky; therefore a 

need to collect data so that it can be easily synchronized was realized. 
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CHAPTER FOUR 

CONSTRUCTION OF SYCHRONIZED PLATFORM AND ANALYSIS OF DATA  

 

Currently the simulator can be divided into two systems, as they run as separate 

files, namely the data acquisition system which acquires data from the force sensor and 

the inertial sensor and the video acquisition system which captures a video of the entire 

experiment for further analysis.  The main goal was to assimilate the lessons from the 

pilot data study and then build a system that could be used for obtaining synchronized 

data for further analysis. The synchronization of data makes it easier to analyze the data 

and correlate it to the video containing the motion of the needle on the suture platform. In 

this chapter we will talk more about the problems that we faced as we went along 

synchronizing data and how we were able to overcome this problems and succeed in 

building a system which could be used to collect and analyze synchronized data. 

1. Sample rate problems with force/accelerometer sensor 

The initial data acquisition system (i.e. Simulink file) for the pilot data was set to 

capture forces at 10Hz. During analysis of the pilot data we realized that the time taken 

by the surgeon to complete the suture cycle was really very small (1-2 secs, resulting in  

small number of data samples obtained for very event which were insufficient to estimate 

and understand the finer nuances and the changes that were happening during the suture 

event. The sample rate was then increased to 200Hz before being raised to 500 HZ in 

order to remove the noise using filters. In this case a high-pass window filter was applied 

and the results were analyzed. Meanwhile, observations of the experiment video revealed 

a possibility of using hand motion for the analysis of surgical skill assessment. Therefore, 
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after careful consideration, the InertiaCube sensor (an inertial measurement unit) was 

used to record the motion of the hand. Using the accompanying software development 

kit, data was obtained from the InertiaCube sensor and was forwarded to MATLAB, 

saving all acquired data using the same timestamp.  Communication between the SDK 

and MATLAB takes place via shared memory protocol. For the sake of preventing data 

losses due to the sensor update rate being 200 Hz and because the execution of the 

Simulink file and the inertia cube code start at different time instants, the sample rate in 

the Simulink file logging data from InertiaCube is increased to 1 kHz. Although, the 

value of the InertiaCube reading is retained and logged unless a new value is received, 

this however does not affect the calculation of the peak value, average and absolute 

average value.   

2. Sample rate problems with video 

Pilot data was collected using a Logitech webcam at 30 fps on the same computer 

using the Logitech software. The quality of the captured video files was not apt for 

analysis of the needle movement; consequently the point grey camera was adopted due to 

its compatibility with the real-time blocks used for image acquisition and high resolution. 

During further testing, video was recorded in a separate Simulink file using normal 

execution mode on the same computer with a different sample rate. As the real-time 

library does not contain blocks to save the video, the normal mode utilizes ‘to 

multimedia’ block which can be used only in normal mode. This resulted in the execution 

time for the data acquisition system and the video acquisition system to be different. 

Hence to minimize this difference; reduction of the resolution, the sample time and the 
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frame rate of 25 fps was implemented. At the same time the  ‘Real-time sync’ block was 

used to achieve synchronization with the data acquisition system by using the same clock 

used in the external mode and thus indirectly running the video capture in real-time.  

3. Video collection problems 

The video acquisition system initially contained the image capture blocks from 

the real time library and were used along with ‘to multimedia’ block to save the video. 

This created issues (in image quality and the frame rate) with saving the video and hence 

the default image capture blocks were used. We think that the execution priority for the 

systems on the computer might be the reason that we obtain different execution times for 

the data acquisition systems. Also increasing the frame rate (fps) also affects the 

execution time, as we need to get more images and store them, which in turn requires 

more execution time.  

Simulink has a few encoding options during video logging, the AVI format 

generates large files while the ‘ffmpeg encoder’ reduced the file size but at cost of drastic 

drop in resolution.  

While collecting the video it was assumed that the ‘host keyboard ‘block would 

read the key press from the keyboard at the same time in both the acquisition systems. 

But during execution we realized that there is a delay for the video acquisition system. 

Similarly, we also tried to stop the systems at the same time using key press from the 

keyboard and here too we observed delay between the two systems. 

The shared memory communication protocol was used to record the video, 

wherein the data acquisition system would send the value of ‘1’ when the data is being 
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collected and the video acquisition system would save the video file only when it receives 

this value.  

After all this the attempts of collect video on the same system were abandoned, 

using visualization markers while collecting video data on a different computer was 

decided. In this case a red led was used to indicate the start of the data collection system. 

This led is connected to the ’q8’ (USB QUANSER board) and is turned on by the user 

using the ‘host keyboard’ block. The ‘FlyCapture2’ software utility provided by Point 

Grey itself was tested. The use of the software resulted in dropped frames which were 

dependent on the built in encoders and were compensated by reducing the frame rate to 

30fps.  If the encoders were not implemented, the files that were being generated were 

too large and therefore were unable to use the camera device up to its full potential and 

hence other options had to be explored.    

Thereafter, we decided to use MATLAB’s ’Image Acquisition’ application which 

could not only record files at 60 fps but also significantly reduced file size. This 

application also allows for preview of data being captured. 

4. Shared Memory Protocol 

Shared memory is memory that may be simultaneously accessed by multiple 

programs with in order to provide communication among them or to avoid redundant 

copies.  While using shared memory one process will create an area in the RAM that can 

be accessed by other processes. QUARC library provides various blocks that use the 

shared memory protocol for communication, identified using ‘shem’ in the URI 

(Universal Resource Identifier; URI's are used to identify resources).  QUARC uses 



 33 

URI's for all of its communications because they provide a uniform, extensible and 

flexible means of identifying the communication medium and protocol to use and 

associated communication parameters.   

The readings from the InertiaCube sensor were obtained using a C program 

provided in the software development kit (SDK). Using the SDK, data from the sensor 

could be logged in a text file, but the timestamp for the sensor was obtained from the  

time the C program starts running. Whereas the timestamp for Simulink file is calculated 

from the time when the model starts to run. Thus to make it easier to synchronize the data 

and video collection it was decided to store the InertiaCube data in Simulink using shared 

memory protocol. The data from the sensor is obtained via USB in the C program and a 

connection between the C program and Simulink is established. After the connection is 

established the data is transmitted to the model which is running as long has the 

communication blocks in the Simulink file have the same URI as the C program. The 

data is written to the shared memory as array. The Simulink block reads the data from the 

block and indicates whether a new value is received. 

5. MATLAB GUI for data analysis 

The data that was obtained during pilot experiments consisted of the video and the 

force sensor readings whose data acquisition files start at different instants of time. The 

best way to make sense of the force readings was to view the video along with the force 

data which called for a simple user interface where in the user could view the force and 

video reading simultaneously making it easier to analyze the data that was acquired. The 

initial iteration of the GUI (graphical user interface) consisted of a window which 
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displayed the video frame by frame, another window to display the force profile for the 

entire experiment and yet another window was added to display a zoomed in graph of the 

area under observation due to the time scale. Buttons to play, stop and load the video 

were added along with buttons to plot the forces in individual direction and together. 

Another window to display video of the graph with respect to time was added to the GUI. 

The videos would be played individually till the appeared to be in sync, after which they 

were run together. The GUI also displayed the execution status of the video, the frame 

number and the time for which the video had been running. The start and end points for a 

particular region could be entered and the area under the graph for the give region could 

be colored so as to distinguish the various events in a suture cycle. At the same time we 

could also calculate the maximum and minimum value of the graph in the given region. 

The second iteration was done while focusing on the force and video 

synchronization. During data acquisition for synchronization, the video and force data 

acquisition files were started one after the other using a MATLAB script. For second 

iteration of the GUI focused on just one window and graph as plotting two graphs made 

the individual graphs smaller on the y-axis. Also the second window that was being used 

to display the graph video was removed, as it seemed unnecessary. Instead a slider was 

used to focus on a given area and the zooming distance in terms of time was input by the 

user. The slider was also used to move through the force data graph for the entire 

experiment and display the corresponding image frames from the video assuming 

synchronization was achieved. The delays for starting the video and force files were 
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manually inserted by the user and so was the frame rate for the video. Icons were added 

to zoom in/out, get value at a point and pan the graph. 

The final iteration of the GUI (Figure 21) was implemented when the InertiaCube 

sensor was integrated and the video acquisition system was being synchronized with the 

data acquisition system. The slider was removed from the system instead a pointer would 

run from the start point to the endpoint on the graph on which forces along each axis and 

resultant can be plotted as per the start and end points input by the user. The user can 

input the initial frame and the initial time the data starts recording which are in turn used 

as starting points for the synchronized system. The GUI display’s either the original data 

or the filtered data for the experiment. There is list of options that you can choose for 

analysis e.g. maximum and minimum values between two points or the peaks that are 

present in the graph. The minimum, maximum and the average value for a given area of 

interest (time-based) are calculated using the min, max and mean function in MATLAB, 

respectively. To select an area of interest from a given matrix in MATLAB we need to 

obtain the indices of the start and end point of the region of interest. Indices are found 

using the find function on the corresponding time matrix associated with the data to be 

analyzed. Likewise to calculate the peaks in the graph we use the findpeaks 

MATLAB function. The find peaks function was used to identify the local maxima and 

works only for positive value. To find negative peaks the negative data is made positive 

using the absolute function following which findpeaks function is applied. The find 

peaks function given the indices with respect to the area of interest and to convert them to 

the global region these indices are added to the index of the lower coordinate input. 
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Analysis option for thresholding the images frames was being developed. Like the 

previous GUI there are options to zoom, get value at a point and pan the window. 

6. Results: 

6.1. Experiment protocol 

Before the experiment the participants were first shown the basics of suturing 

wherein explained how to hold the needle holder and how to place the needle in the 

needle holder. After which they were given hints and demonstrations of how suturing is 

performed and allowed to practice till they got an idea of how it is done. Thereafter a 

brief description of the study and explanation of the task was given. 

The participants were provided with a needle holder and a SH needle to suture. 

Each participant was given a number for identification and this was used in the name of 

the data file that was generated when the sensor data acquisition system was executed. 

After starting the video capture, the execution of sensor data acquisition file was started. 

The participants had to perform twelve sutures per experiment in the clockwise 

direction within  10 minutes At the end of the experiment the suture patch is prodded 

once to indicate the end of suture. 

The participants were instructed not to touch the cylinder supporting the suture 

disc while suturing and a try to insert the needle on the intersection of the concentric 

circles and the radial lines on the suture patch.  

6.2. Participants 

Ethics approval was obtained and five participants with no prior experience in 

suturing were selected for the task. The aim here was to determine whether the system 
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was able to synchronize the force/accelerometer data with the video that was being 

recorded for the experiment. 

6.3. Synchronization Results 

The data logging for the entire system is terminated after approximately 10 

minutes. The time of execution of the sensor data acquisition system is determined 

obtaining the difference between the time when the sensor data acquisition system starts 

and the time when its stops execution. The start time for the sensor data acquisition 

system is obtained by extracting the time stamp for the first non-zero value (start time) 

that is observed in the force data that is being collected, whereas the last reading taken by 

the system is considered to be the time when the system stops executing (end time). 

Similarly for the video acquisition system, we can find the time when the sensor data 

started recording by obtaining the frame number when the LED turns on (first frame 

number). The end time can be found when the LED is no longer blinking (last frame 

number). 

The program for the GUI was written so that the start times for both the video and 

the sensor data are input to synchronize the starting point of the data. After which when 

the video is played it increments and 60 fps while the data increments at 1 KHz. While 

running the GUI interface for synchronized execution for the participants, it was 

observed that the time of execution for the video acquisition system was showing a small 

difference of approximately 0.25 secs more than the sensor data acquisition system for 10 

minutes of data capture (Table 2). 
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Participant 

number 

Start 

frame 

End 

frame 

Total 

time 

Video 

recording 

Start 

time 

End 

time 

Total  

Time 

Sensor 

data 

Total 

time 

delay 

% 

error 

1 229 36735 608.433 3.342 611.528 608.186 0.247 0.041 

2 205 37010 613.417 3.553 616.736 613.183 0.235 0.038 

3 170 36509 605.65 1.271 606.672 605.401 0.249 0.041 

4 167 38463 638.267 2.263 640.271 638.008 0.259 0.041 

5 387 28707 472 2.844 474.682 471.838 0.162 0.034 

 
Table 2: The data required for synchronized system and the error between the sensor and video 

acquisition systems 

 

Hence to compensate for this difference a small increment was added every time sample 

for the video code to increment the frames accordingly. The formula used to calculate the 

approximate value for this increment is given by, 

 Time Increment for every sample= (a-b)/(s*b)  (i)        

Where, 

a=difference between the first frame number/fps and the last frame number/fps 

b=difference in timestamp for the start time and end time 

s=sampling rate of the sensor data acquisition system  

Let us consider participant number 5 and use the formula (i) and the data from 

table (table 2) to calculate the time increment for the given data set. 

Time increment  = [(28707/60-387/60)-(474.682-2.844))] 

       [1000*(474.682-2.844)] 

  = 472-471.78 

    1000*471.78 

  = 3.4*10
-7
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After adding the time increment for every sample (i.e. per millisecond) the results 

that are observed in the GUI are promising. We observe that the pointer on the data plot 

move along with the video data in synchronization and the forces applied on the tissue 

can be associated with the hand movements in the video (Figures 22-25). 

We are aware that the closer the needle is to the perpendicular position, lesser is 

the force required to penetrate the tissue. This can be interpreted by observing the force 

peak value in downward direction after needle entry in the force profile (Figure 36). 

The data obtained from the platform could provide novices a lot of information on 

how the progress through every stage of the suturing cycle. The force data could help 

isolate angles on the suture patch that are difficult to suture, and thus help users to control 

the amount the force that is applied on the tissue (Figures 30-32). The forces applied by 

the trainee for every sub-event of a suture cycle can be compared to surgeons for learning 

(Figure 36). 

The feedback from motion data could help prevent sudden movements and bring 

more finesse to the suturing task. The peaks in motion data indicate sudden movement; 

this could be when the tissue breaks during the needle penetration the resistance 

decreases causing the sudden spike, a similar phenomenon can be observed when the 

needle is pulled out from the tissue (Figures 33-35 and 37). This can be observed looking 

at the graphs of the force and acceleration in z-direction along with videos, it is seen that 

the local peak for the force and acceleration correspond after entry and pullout (Figures 

36 and 37).  
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The following steps are employed to calculate the average, absolute average and 

peak forces/accelerations and the time for each suture cycle. 

1. The video is first studied to obtain the approximate frame number of the entry, exit, 

pick up and pullout points of the needle for each suture cycle. Trainees execute 12 

suture cycles for each experiment and the fore mentioned frame numbers are recorded 

for each suture cycle. 

2.  Similarly, the frame number when the data starts recording is also noted. These 

frame numbers are then converted to time by dividing them by the frame rate of the 

video acquisition system.  

3. The actual time (since the recording started) for each sub-event is then calculated by 

subtracting the time for the first frame form the recorded time for each sub-event. 

4. The value obtained from the above calculation is then added to the start time of 

force/acceleration sensor data acquisition system to get the corresponding 

force/acceleration reading. 

5. As mentioned earlier (Table 2) the video acquisition system captures data slightly 

faster and time increments are added to the force data to get the corresponding frame 

in the video. In this case since frame numbers are used to obtain force values the time 

increment for force values is subtracted from the time obtained from the frame 

number. 

6. The time values are then used to calculate the average, absolute average and peak 

forces/accelerations using the min, max and abs functions available in MATLAB. 
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The findpeaks function was used to plot the local maxima and the average time is 

obtained by subtracting the time for entry and pullout.  

Let’s observe the calculated parametric values for forces and linear acceleration 

for each axis, for a participant (Tables 3.1-3.3 and 4.1-4.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1: Novice:  Force in x-direction for synchronized system 

 
avg. force abs avg. force peak force avg. time 

0.1100 0.1887 -1.3205 15.0500 

0.0251 0.2807 -1.7528 11.6000 

-0.0502 0.3865 -2.9085 9.7000 

-0.0812 0.2533 -2.0147 25.9170 

-0.4861 0.5664 -2.5708 11.8670 

-0.1531 0.3014 1.6541 15.0330 

0.0037 0.2854 2.2003 14.6500 

-0.3337 0.3605 -1.6000 13.6160 

0.1739 0.4734 3.8240 23.4500 

0.2939 0.4381 3.2142 10.4830 

0.1151 0.3783 2.2526 11.9670 

-0.0126 0.2558 -2.2788 20.5000 

 

Table 3.2: Novice:  Force in y-direction for synchronized system 

 

 

 

 

 

 

 

 

 

 

avg. force abs avg. force peak force avg. time 

0.0872 0.3537 3.5835 15.0500 

0.0110 0.3627 2.7663 11.6000 

0.1949 0.3110 2.6485 9.7000 

0.1199 0.2120 1.6489 25.9170 

0.0873 0.2306 1.9611 11.8670 

0.0702 0.2435 -2.4646 15.0330 

-0.4574 0.5439 -2.7967 14.6500 

-0.2685 0.3471 -1.6578 13.6160 

-0.1019 0.3921 4.0269 23.4500 

-0.0699 0.2321 -0.9697 10.4830 

-0.1512 0.2535 1.2390 11.9670 

-0.2039 0.3442 -1.7966 20.5000 
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avg. force abs avg. force peak force avg. time 

-0.1471 0.2274 -2.5029 15.0500 

-0.1163 0.2372 -1.6684 11.6000 

-0.0664 0.1734 -2.4276 9.7000 

-0.1421 0.2090 -1.6083 25.9170 

-0.0767 0.1965 -2.6617 11.8670 

-0.2126 0.2700 -2.4832 15.0330 

-0.0261 0.2480 -2.0078 14.6500 

0.0232 0.2498 -2.4646 13.6160 

-0.5157 0.6155 -8.6340 23.4500 

-0.1330 0.2764 -2.6553 10.4830 

-0.0826 0.2080 -1.7143 11.9670 

-0.3971 0.4232 -4.9656 20.5000 

 

Table 3.3: Novice: Force in z-direction for synchronized system 

 
avg. acceleration abs avg. acceleration peak acceleration avg. time 

-0.0149 0.3155 7.4538 15.0500 

-0.0636 0.3334 -3.9192 11.6000 

0.0111 0.4095 -4.2823 9.7000 

0.0268 0.4099 5.4043 25.9170 

0.0242 0.5632 -8.1555 11.8670 

-0.1376 0.4865 -6.7301 15.0330 

0.0860 0.4727 5.2293 14.6500 

-0.0174 0.5064 7.9396 13.6160 

-0.0336 0.3983 -23.6410 23.4500 

0.0272 0.5628 -18.1008 10.4830 

-0.0506 0.4522 -5.9238 11.9670 

-0.0837 0.3808 7.8347 20.5000 

 

Table 4.1: Novice: Acceleration in x-direction for synchronized system 

 
avg. acceleration abs avg. acceleration peak acceleration avg. time 

0.0418 0.3844 4.5122 15.0500 

0.0326 0.3772 10.3482 11.6000 

-0.0136 0.3998 -6.3635 9.7000 

-0.0294 0.2621 -2.2265 25.9170 

0.0247 0.2921 2.6362 11.8670 

0.0001 0.4590 9.0665 15.0330 

0.1381 0.5086 3.7068 14.6500 

0.0903 0.3637 -2.5731 13.6160 

0.0560 0.2730 21.8144 23.4500 

0.1399 0.3354 18.9100 10.4830 

0.1468 0.2562 7.7241 11.9670 

0.0459 0.2930 -3.7118 20.5000 

 

Table 4.2: Novice: Acceleration in y-direction for synchronized system 
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avg. acceleration abs avg. acceleration peak acceleration avg. time 

-0.0145 0.4352 7.8828 15.0500 

-0.0126 0.4844 6.7705 11.6000 

0.0111 0.5175 -5.5241 9.7000 

0.0021 0.4367 6.9583 25.9170 

-0.0258 0.6276 -8.3375 11.8670 

-0.0961 0.5620 -9.2952 15.0330 

0.1376 0.4517 -4.5534 14.6500 

0.1323 0.3969 -6.4174 13.6160 

0.1067 0.5090 -13.8312 23.4500 

0.1163 0.5072 -26.6289 10.4830 

0.1092 0.5153 -5.4486 11.9670 

-0.0413 0.3267 -7.9836 20.5000 

 

Table 4.3: Novice: Acceleration in z-direction for synchronized system 

 

7. Discussion 

We can see that the video and force data can be displayed and analyzed in 

synchronization (Figures 21-29). Although it was observed that the time of execution for 

the video acquisition system was showing a small difference of approximately 0.25 secs 

more than the sensor data acquisition system for 10 minutes of data capture (Table 3).  

For the synchronization to work we need to know the start frame and the end frame and 

the start time and end time for the video acquisition and sensor data acquisition systems 

respectively. These values can be used to calculate the small time increments in time that 

need to be added while incrementing the frames during execution. These increments are 

significant as the time for which the data is collected increases. After the experiment we 

prodded the tissue before shutting down the data collection (Figure 21). This was done 

because the prodding of the tissue gives a sharp peak that is easier to identify and can be 

used to verify synchronization. Also, when we observe the force data we observe that 

there are vibrations that are introduced after needle is pulled out. The may be tissue 

vibrations that are generated when the needle is pulled out and the tissue under tension 
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tries to regain its position. The capture of video data helps us visit the data anytime for 

analysis. Studies also suggest that every individual has a way of performing a certain task 

and this variability can be better observed using video data along with the sensor data 

[15]. A lot of the systems that are present are developed for minimally invasive surgery. 

The system developed by us is based on basic suturing skills and is developed for “open” 

surgery based skills. Also, most of the systems that are present have not explored the 

possibility of using both forces and motion in the same system [8]–[10], [14], [15]. 

Studies indicate that depending on the task and its complexity force based parameters 

may be the significant parameters while in other cases the motion based parameters may 

be the significant parameters [11]–[17]. Thus having a system that can record both force 

and motion based parameters could be advantageous in assessment of suturing skills. 
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CHAPTER FIVE 

FUTURE WORK  

 

Current the system that we have is able collect data and synchronizes it for 

analysis. But a lot of work needs to be done before it turns in a product.  

1. The system right now is coded in MATLAB/Simulink. Therefore for it to be used on 

any other device will require the MATLAB/Simulink software to be installed, this 

requires a license.  Thus porting the code form MATLAB/Simulink to C++ or any 

other language that makes it stand-alone software would be a better option.  

2. Also the Data Acquisition Card that is being used for this system requires the PCI 

slots that have been replaced by the PCI express slots, due to which we are unable to 

use the computational power provided by the new computers. 

3. The synchronization that we have right now is for post data capture. It would be more 

helpful if the device is able to provide real time feedback while capturing data for 

synchronization. This will help trainees make changes as and when they are 

performing the task.  

4. Development of good metrics for distinguishing surgical skills and that will help train 

novices will also be essential.  

5. Likewise a lot of changes need to be made to the platform so that it is easier to used 

and quicker to replace parts of platform.  Instead of having three levels of height for 

the suture disc, the disc can be mounted on the base of the platform and cylinders can 

be stacked one over the other so that the same level of difficulty is obtained.  This 

will also eliminate the use of the long screws that hold the suture patch and disc 
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together. Another change that can be made is instead of having screws to hold the 

suture platform other methods of securing the platform should be implemented. 

6. During video recording we observe that the hand overlaps the needle making it 

difficult to analyze the needle movement during that time period. Two cameras can be 

mounted opposite each other to overcome this problem. Similarly one can mount a 

small camera that can capture the movement of the needle once it has punctured the 

suture patch and can be used to further analysis (e.g. the distance between the actual 

and supposed needle insertion point could determine the accuracy of the needle 

placement).  

7. It is observed that the trainees usually touch the inner edge of the cylinder while 

performing the task. This induces noise in the sensor readings. Therefore to be aware 

of this type of contact, a circular ring with its outer surface coated with conducting 

material could be mounted inside the cylinder at a small distance from the inner 

surface of the cylinder. The disc could be separated from the cylinder surface with 

help of small springs. The inner surface that can come in contact with the cylinder is 

also coated with conducting material. When the trainee touches the cylinder the inner 

disc will come in contact with the cylinder surface completing an electrical circuit 

making a LED glow to indicate contact.  

8. Various other tasks can be introduced by replacing the suture disk for training other 

skills. 
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Appendix A 

Figures  

 

Figure 1: Suturing Example 

 

Figure 2: First prototype 

 

Figure 3: Second Prototype 
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Figure 4: Third Prototype (Cylinder and Base) 

 

Figure 5: Third Prototype Part 1 of Platform 

 

Figure 6: Third Prototype Part 2 of Platform 
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Figure 7: Part 1 and 2 Attached 

 

Figure 8: Platform and Cylinder 

 

Figure 9: Third Prototype Completed 
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Figure 10 : Suture cycle [27] 

 

 

Figure 11: Needle Entry [27] 

 

 

Figure 12: Needle Driving [27] 
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Figure13: Needle Exit [27] 

 

Figure 14: Needle Pullout [27] 

 

Figure 15: Force in x-direction for expert with events in the 12 suture cycles estimated 
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Figure 16: Force in x-direction for novice with events in the 12 suture cycles estimated 

 

Figure 17: Force in y-direction for expert with events in the 12 suture cycles estimated 

 

Figure 18: Force in y-direction for novice with events in the 12 suture cycles estimated 
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Figure 19: Force in z-direction for expert with events in the 12 suture cycles estimated 

 

Figure 20: Force in z-direction for novice with events in the 12 suture cycles estimated 
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Figure 21: GUI used to synchronize the force/accelerometer data along with the video 

 

 

Figure 22: Suture event for synchronized system (force): Entry 
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Figure 23: Suture event for synchronized system (force): Exit 

 

Figure 24: Suture event for synchronized system  (force): Pick 
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Figure 25: Suture event for synchronized system (force):  Pullout 

 

 

Figure 26: Suture event for synchronized system (acceleration): Entry 
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Figure 27: Suture event for synchronized system (acceleration): Exit 

 

Figure 28: Suture event for synchronized system (acceleration): Pick 
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Figure 29: Suture event for synchronized system (acceleration): Pullout 

 

Figure 30: Novice: Force in x-direction using synchronized system 
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Figure 31: Novice: Force in y-direction using synchronized system 

 

Figure 32: Novice: Force in z-direction using synchronized system 

 

Figure 33: Novice: Acceleration in x-direction using synchronized system 



 61 

 

Figure 34: Novice: Acceleration in y-direction using synchronized system 

 

Figure 35: Novice: Acceleration in z-direction using synchronized system 

 

Figure 36: Novice: Force in z-direction for a suture cycle using synchronized system 
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Figure 37: Novice: Acceleration in z-direction for a suture cycle using synchronized 

system  
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Appendix B 

GUI Code 

 

MATLAB GUI: 

function varargout = vidngraph(varargin) 
% VIDNGRAPH MATLAB code for vidngraph.fig 
%      VIDNGRAPH, by itself, creates a new VIDNGRAPH or raises the 

existing 
%      singleton*. 
% 
%      H = VIDNGRAPH returns the handle to a new VIDNGRAPH or the 

handle to 
%      the existing singleton*. 
% 
%      VIDNGRAPH('CALLBACK',hObject,eventData,handles,...) calls the 

local 
%      function named CALLBACK in VIDNGRAPH.M with the given input 

arguments. 
% 
%      VIDNGRAPH('Property','Value',...) creates a new VIDNGRAPH or 

raises the 
%      existing singleton*.  Starting from the left, property value 

pairs are 
%      applied to the GUI before vidngraph_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property 

application 
%      stop.  All inputs are passed to vidngraph_OpeningFcn via 

varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only 

one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

  
% Edit the above text to modify the response to help vidngraph 

  
% Last Modified by GUIDE v2.5 23-Oct-2015 17:06:06 

  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @vidngraph_OpeningFcn, ... 
                   'gui_OutputFcn',  @vidngraph_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
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if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

  

  
% --- Executes just before vidngraph is made visible. 
function vidngraph_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to vidngraph (see VARARGIN) 

  
% Choose default command line output for vidngraph 
handles.output = hObject; 
% Update handles structure 
guidata(hObject, handles); 

  
% UIWAIT makes vidngraph wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 

  

  

  
% --- Outputs from this function are returned to the command line. 
function varargout = vidngraph_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Get default command line output from handles structure 
varargout{1} = handles.output; 

  

  

  
function vid_delay_Callback(hObject, eventdata, handles) 
% hObject    handle to vid_delay (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of vid_delay as text 
%        str2double(get(hObject,'String')) returns contents of 

vid_delay as a double 
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% --- Executes during object creation, after setting all properties. 
function vid_delay_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to vid_delay (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on button press in load_graph. 
function load_graph_Callback(hObject, eventdata, handles) 
% hObject    handle to load_graph (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
run('vidngraph_global_variables.m') 
global fx fy fz f_res time ; 
tic  
%% Open File 
      %Prompt user for filename 
      [fname, pname] = uigetfile('*.csv');   
       %Create fully-formed filename as a string 
       filename3 = fullfile(pname, fname); 
       %Check that file exists 
       assert(exist(filename3,'file')==2, '%s does not exist.', 

filename3); 
%        %Read in the data, skipping the first row  
%        data = csvread(filename3,1,0); 

  
%% Initialize variables. 
filename = filename3; 
delimiter = ','; 

  
%% Read columns of data as strings: 
% For more information, see the TEXTSCAN documentation. 
formatSpec = '%s%s%s%s%[^\n\r]'; 

  
%% Open the text file. 
fileID = fopen(filename,'r'); 

  
%% Read columns of data according to format string. 
% This call is based on the structure of the file used to generate this 
% code. If an error occurs for a different file, try regenerating the 

code 
% from the Import Tool. 
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dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter,  

'ReturnOnError', false); 

  
%% Close the text file. 
fclose(fileID); 

  
%% Convert the contents of columns containing numeric strings to 

numbers. 
% Replace non-numeric strings with NaN. 
time=str2double(dataArray{1,1}); 
fx=str2double(dataArray{1,2}); 
fy=str2double(dataArray{1,3}); 
fz=str2double(dataArray{1,4}); 
toc 
time(1)=[]; 
fx(1)=[]; 
fy(1)=[]; 
fz(1)=[]; 
f_res=sqrt(fx.^2+fy.^2+fz.^2); 
%plot([1:1:10],sin([1:1:10]),'r') 
toc 
guidata(hObject, handles); 

  
% --- Executes on button press in play. 
function play_Callback(hObject, eventdata, handles) 
% hObject    handle to play (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
set(handles.status,'String','play'); 
guidata(hObject,handles); 
pause(0.1) 
play(hObject,eventdata,handles); 

  
function play(hObject,eventdata,handles) 
global time fx fy fz new_time new_y_hpf; 

  
k1=str2double(get(handles.x1,'String')); 
[~,k1]=ismember(k1,new_time); 
k2=str2double(get(handles.x2,'String')); 
[~,k2]=ismember(k2,new_time); 
s=get(handles.status,'String'); 
init_vid_delay=str2double(get(handles.vid_delay,'String')); 
init_force_delay=str2double(get(handles.force_delay,'String')); 
[~,init_force_delay]=ismember(init_force_delay,new_time); 
pause(0.5) 
%vid_t=(init_vid_delay)*(1e-5); 
hold on 
f=init_vid_delay+round((new_time(k1)+(4.1e-7)*(k1))*60); 
i1=f; 
thres=get(handles.thresh,'Value'); 
X=zeros(524,664); 
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while(1) 
    if(k1<=k2 && strcmpi(s,'play')) 
        %axes(handles.graph) 
        p2=line([new_time(k1+init_force_delay) 

new_time(k1+init_force_delay)],get(handles.graph,'YLim'),'Color','r'); 
        

%p2=plot(handles.graph,new_time(k1+init_force_delay),new_y_hpf(k1+init_

force_delay),'r*'); 
        set(handles.time,'String',new_time(k1)); 
        %set(p2,'visible','on'); 
        f=init_vid_delay+round((new_time(k1)+(3.5e-7)*(k1))*60); 
        if(f>i1 && f>0) 
        i1=f; 
        set(handles.frame_no,'String',round(new_time(k1)*60)); 
        img=read(handles.obj,f); 
        %axes(handles.vid); 
        if(thres==1) 
        X=zeros(524,664); 
        for i=1:524 
            for j=1:664 
                if(  img(i,j,1)>210 && img(i,j,2)>200 && 120>img(i,j,3) 

&& img(i,j,3)>70) 
                   X(i,j)=255; 
                end 
            end 
        end  
        imshow(X,'Parent',handles.vid); 
        else 
            imshow(img,'Parent',handles.vid); 
        end 
        end 
        k1=k1+1; 
        pause(0.001); 
        delete(p2); 
    else 
        set(handles.status,'String','stop'); 
        guidata(hObject,handles); 
        break 
    end 
    guidata(hObject,handles); 
    s=get(handles.status,'String'); 
end 
hold off 

  
% --- Executes on button press in stop. 
function stop_Callback(hObject, eventdata, handles) 
% hObject    handle to stop (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
set(handles.status,'String','stop'); 
guidata(hObject,handles); 
pause(0.1) 
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% --- Executes on button press in load_vid. 
function load_vid_Callback(hObject, eventdata, handles) 
% hObject    handle to load_vid (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
set(handles.status,'String','stop'); 
[fname, pname] = uigetfile('*.mp4');   
%Create fully-formed filename as a string 
filename1 = fullfile(pname, fname); 
%Check that file exists 
assert(exist(filename1,'file')==2, '%s does not exist.', filename1); 
temp_obj1=VideoReader(filename1); 
handles.obj= temp_obj1; 
handles.nframes=temp_obj1.NumberOfFrames; 
guidata(hObject,handles); 
img=read(handles.obj,1); 
set(handles.frame_no,'string',1); 
axes(handles.vid); 
imshow(img,[]); 
handles.frameno=1; 
guidata(hObject,handles); 

  
% --- Executes on button press in x. 
function x_Callback(hObject, eventdata, handles) 
% hObject    handle to x (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global time fx fy fz h_hpf h_lpf new_time new_y_hpf f_res; 

  
axes(handles.graph); 
ylim(handles.graph,'auto') 

  
if (get(handles.orig,'value')) 
plot(time(1:(end-500)),fx(1:(end-500))) 
end 

  
if(get(handles.filt,'value')) 
ylim(handles.graph,'auto') 

  
fx_m = fx; 
ti_x = time; 
temp_mean=mean(fx_m); 
fxm = fx_m- temp_mean; 

  
y_hpf = filter(h_hpf,1,fxm); 

  
new_time=ti_x; 
new_y_hpf=y_hpf; 
new_time((length(ti_x)-498):end)=[]; 
new_y_hpf(1:499)=[]; 
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hold on 
plot(new_time,new_y_hpf,'b'); 
hold off 
ylim([-1 1]); 

  
end 
guidata(hObject,handles); 

  
% --- Executes on button press in y. 
function y_Callback(hObject, eventdata, handles) 
% hObject    handle to x (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global time fx fy fz h_hpf h_lpf new_time new_y_hpf f_res; 

  
axes(handles.graph); 
ylim(handles.graph,'auto') 

  
if (get(handles.orig,'value')) 
plot(time(1:(end-500)),fy(1:(end-500))) 
end 

  
if(get(handles.filt,'value')) 
ylim(handles.graph,'auto') 

  
fx_m = fy; 
ti_x = time; 
temp_mean=mean(fx_m); 
fxm = fx_m- temp_mean; 

  
y_hpf = filter(h_hpf,1,fxm); 

  
new_time=ti_x; 
new_y_hpf=y_hpf; 
new_time((length(ti_x)-498):end)=[]; 
new_y_hpf(1:499)=[]; 

  
hold on 
plot(new_time,new_y_hpf,'b'); 
hold off 
ylim([-1 1]); 

  
end 

  

  
guidata(hObject,handles); 

  
% --- Executes on button press in z. 
function z_Callback(hObject, eventdata, handles) 
% hObject    handle to z (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
global time fx fy fz h_hpf h_lpf new_time new_y_hpf f_res; 

  
axes(handles.graph); 
ylim(handles.graph,'auto') 

  
if (get(handles.orig,'value')) 
new_time=time; 
new_y_hpf=fz; 
plot(time(1:(end-500)),fz(1:(end-500))) 
end 

  
if(get(handles.filt,'value')) 
ylim(handles.graph,'auto') 

  
fx_m = fz; 
ti_x = time; 
temp_mean=mean(fx_m); 
fxm = fx_m- temp_mean; 

  
y_hpf = filter(h_hpf,1,fxm); 

  
new_time=ti_x; 
new_y_hpf=y_hpf; 
new_time((length(ti_x)-498):end)=[]; 
new_y_hpf(1:499)=[]; 

  

  
hold on 
plot(new_time,new_y_hpf,'b'); 
hold off 
ylim([-1 1]); 

  
end 

  

  
% --- Executes on button press in res. 
function res_Callback(hObject, eventdata, handles) 
% hObject    handle to res (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% --- Executes on button press in x. 

  
global time fx fy fz h_hpf h_lpf new_time new_y_hpf f_res; 

  
axes(handles.graph); 
ylim(handles.graph,'auto') 

  
if (get(handles.orig,'value')) 
plot(time(1:(end-500)),f_res(1:(end-500))) 
end 
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if(get(handles.filt,'value')) 
ylim(handles.graph,'auto') 

  
fx_m = f_res; 
ti_x = time; 
temp_mean=mean(fx_m); 
fxm = fx_m- temp_mean; 

  
y_hpf = filter(h_hpf,1,fxm); 

  
new_time=ti_x; 
new_y_hpf=y_hpf; 
new_time((length(ti_x)-498):end)=[]; 
new_y_hpf(1:499)=[]; 

  
hold on 
plot(new_time,new_y_hpf,'b'); 
hold off 
ylim([-1 1]); 

  
end 
guidata(hObject,handles); 

  

  
function x1_Callback(hObject, eventdata, handles) 
% hObject    handle to x1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of x1 as text 
%        str2double(get(hObject,'String')) returns contents of x1 as a 

double 

  

  
% --- Executes during object creation, after setting all properties. 
function x1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to x1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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function x2_Callback(hObject, eventdata, handles) 
% hObject    handle to x2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of x2 as text 
%        str2double(get(hObject,'String')) returns contents of x2 as a 

double 

  

  
% --- Executes during object creation, after setting all properties. 
function x2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to x2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on button press in orig. 
function orig_Callback(hObject, eventdata, handles) 
% hObject    handle to orig (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hint: get(hObject,'Value') returns toggle state of orig 

  

  
% --- Executes on button press in filt. 
function filt_Callback(hObject, eventdata, handles) 
% hObject    handle to filt (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hint: get(hObject,'Value') returns toggle state of filt 

  

  
% --- Executes on button press in clr_data. 
function clr_data_Callback(hObject, eventdata, handles) 
% hObject    handle to clr_data (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
cla(handles.graph) 
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function force_delay_Callback(hObject, eventdata, handles) 
% hObject    handle to force_delay (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of force_delay as text 
%        str2double(get(hObject,'String')) returns contents of 

force_delay as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function force_delay_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to force_delay (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on selection change in analysis_tools. 
function analysis_tools_Callback(hObject, eventdata, handles) 
% hObject    handle to analysis_tools (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: contents = cellstr(get(hObject,'String')) returns 

analysis_tools contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from 

analysis_tools 
global time fx fy fz h_hpf h_lpf new_time new_y_hpf f_res; 

  
contents = get(hObject,'Value'); 
k1=str2double(get(handles.x1,'String')); 
[~,k1]=ismember(k1,new_time); 
k2=str2double(get(handles.x2,'String')); 
[~,k2]=ismember(k2,new_time); 
init_force_delay=str2double(get(handles.force_delay,'String')); 
[~,init_force_delay]=ismember(init_force_delay,new_time); 

  
switch contents 
    case 2 
        temp=new_y_hpf((k1+init_force_delay):(k2+init_force_delay)); 
        [~,cal_results]=max(abs(temp)); 
        cal_results=cal_results+k1+init_force_delay-1; 
        tempstr=strcat('max value = ',num2str(new_y_hpf(cal_results))); 
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        set(handles.cal_results,'String',tempstr); 
        hold on 
        

plot(handles.graph,new_time(cal_results),new_y_hpf(cal_results),'g*') 
        hold off 
     case 3 
        temp=new_y_hpf((k1+init_force_delay):(k2+init_force_delay)); 
        [~,cal_results]=min(abs(temp)); 
        cal_results=cal_results+k1+init_force_delay-1; 
        tempstr=strcat('min value = ',num2str(new_y_hpf(cal_results))); 
        set(handles.cal_results,'String',tempstr); 
        hold on 
        

plot(handles.graph,new_time(cal_results),new_y_hpf(cal_results),'g*') 
        hold off 
    case 4 
        f=new_y_hpf; 
        thresh=0.1; 
        I1=find(f>thresh); 
        I2=find(f<-thresh); 
        t_I1=f(I1); 
        t2_I1=time(I1); 
        [p_I1,loc_I1]=findpeaks(t_I1,'MinPeakDistance',400); 
        t_I2=f(I2); 
        t2_I2=time(I2); 
        [p_I2,loc_I2]=findpeaks(abs(t_I2),'MinPeakDistance',400); 
        hold('on') 
        plot(handles.graph,t2_I1(loc_I1),t_I1(loc_I1),'m*'); 
        plot(handles.graph,t2_I2(loc_I2),t_I2(loc_I2),'m*'); 
        hold('off') 
    otherwise 
end 

         

  
% --- Executes during object creation, after setting all properties. 
function analysis_tools_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to analysis_tools (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on button press in fda_tool. 
function fda_tool_Callback(hObject, eventdata, handles) 
% hObject    handle to fda_tool (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
fdatool 

  

  
% --- Executes on button press in thresh_val. 
function thresh_val_Callback(hObject, eventdata, handles) 
% hObject    handle to thresh_val (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global img; 
img=getimage(handles.vid); 
[~,~,temp]=impixel; 
pause(0.3) 
disp(temp) 
handles.thres=temp; 

  
% --- Executes on button press in thresh. 
function thresh_Callback(hObject, eventdata, handles) 
% hObject    handle to thresh (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hint: get(hObject,'Value') returns toggle state of thresh 
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Appendix C 

Code for parameter calculation and plotting graphs 

 

Menu 

 
try 
prompt=strcat('select one of the following options:\n','[0]clear 

workspace\n','[1]import data\n','[2]change parameters\n','[3]analyze 

data\n','[4]plot data\n','[5]zoom data\n','[6]findpeaks\n','[7]save 

data\n','[8]close all figure window\n','[9]plot(x,y,z) for initial 

points\n'); 
option=input(prompt); 

  
switch option 
    case 0 
        clear 
    case 1 
        run('import_data.m'); 
        run('import_timestamp.m'); 
        pause(0.5) 
        

X={'pname','raw','rawData','regexstr','result','row','invalidThousandsS

eparator','me','numbers','numericData','col','data','dataArray','delimi

ter','fileID','filename','filename3','fname','formatSpec','R','ans'}; 
        clear(X{:});  
    case 2 
        fname=input('input video filename:\n','s'); 
        g_title=input('enter participant skill:\n','s'); 
        init_frame=input('frame no (initial force):\n '); 
        t_init=input('time(initial force):\n '); 
        frame_rate=input('frame rate:\n '); 
    case 3 
        run('analysis_timestamp.m') 
    case 4 
        g_handle=[]; 
        force_g_handle={}; 
        f_handle=[]; 
        zoom=[]; 
        run('plot_timestamp.m') 
    case 5 
        run('zoom_timestamp.m') 
    case 6 
        run('findpeaks_timestamp.m') 
    case 7 
        run('save_timestamp.m') 
    case 8 
        close(findall(0,'Type','figure')); 
        g_handle=[]; 
        force_g_handle={}; 
        f_handle=[]; 
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        zoom=[]; 
    case 9 
        run('plot_test.m') 
    otherwise 
        disp('execute the code and enter the right value') 
end 
catch 
    warning('enter right integer value'); 
end 

 

Functions 

 
function 

[t_init_v,t_in_v,t_out_v,t_pick_v,t_cout_v]=f_get_indices_timestamp(t_i

nit,init_frame,frame_rate,time,t_in,t_out,t_pick,t_cout) 
t_vinit=init_frame/frame_rate; 
tdiff=t_vinit-t_init; 
t_in=t_in-tdiff; 
t_out=t_out-tdiff;  
t_pick=t_pick-tdiff; 
t_cout=t_cout-tdiff; 
for i=1:length(t_in) 
    t_in(i)=str2double(sprintf('%.3f',t_in(i))); 
end 

  
for i=1:length(t_out) 
    t_out(i)=str2double(sprintf('%.3f',t_out(i))); 
end 

     
for i=1:length(t_pick) 
    t_pick(i)=str2double(sprintf('%.3f',t_pick(i))); 
end 

  
for i=1:length(t_cout) 
    t_cout(i)=str2double(sprintf('%.3f',t_cout(i))); 
end 
[~,t_init_v]=ismember(t_init,time); 
[~,t_in_v]=ismember(t_in,time); 
[~,t_out_v]=ismember(t_out,time); 
[~,t_pick_v]=ismember(t_pick,time); 
[~,t_cout_v]=ismember(t_cout,time); 

 
function 

f_findpeaks_timestamp(i,force_g_handle,g_handle,fx,fy,fz,time,thresh) 
f=eval(force_g_handle{i}); 
I1=find(f>thresh); 
I2=find(f<-thresh); 
t_I1=f(I1); 
t2_I1=time(I1); 
[p_I1,loc_I1]=findpeaks(t_I1,'MinPeakDistance',200); 
t_I2=f(I2); 
t2_I2=time(I2); 
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[p_I2,loc_I2]=findpeaks(abs(t_I2),'MinPeakDistance',200); 
hold(g_handle(i),'on') 
plot(g_handle(i),t2_I1(loc_I1),t_I1(loc_I1),'m*'); 
plot(g_handle(i),t2_I2(loc_I2),t_I2(loc_I2),'m*'); 
hold(g_handle(i),'off') 

 
function 

f_save_analysis_timestamp(fname,avg_force_sec,abs_avg_force_sec,peak_fo

rce_sec,avg_time_sec,time_total) 

  
fileID = fopen(strcat(fname,'_analysis.txt'),'wt'); 
fprintf(fileID,'%0s %17s %15s %12s\n','avg force','abs avg force','peak 

force','avg time'); 
fprintf(fileID,' %.4f \t\t %.4f \t\t %.4f \t\t %.4f\n',[avg_force_sec 

abs_avg_force_sec peak_force_sec avg_time_sec]'); 
fprintf(fileID,'%0s\n','time_sec'); 
fprintf(fileID,'%.4f',time_total); 
fclose(fileID); 

 
function 

[avg_force_sec,abs_avg_force_sec,peak_force_sec,avg_time_sec,time_total

]=f_analyze_timestamp(f,time,t_in_v,t_cout_v) 
len=length(t_in_v); 
avg_force_sec=zeros(len,1); 
abs_avg_force_sec=zeros(len,1); 
peak_force_sec=zeros(len,1); 
avg_time_sec=zeros(len,1); 

  
for i=1:len 
    avg_force_sec(i)=mean(f(t_in_v(i):t_cout_v(i))); 
end 

  
for i=1:len 
    abs_avg_force_sec(i)=mean(abs(f(t_in_v(i):t_cout_v(i)))); 
end 

  
for i=1:len 
    [~,j]=max(abs(f(t_in_v(i):t_cout_v(i)))); 
    peak_force_sec(i)=f(t_in_v(i)+j-1); 
end 

  
for i=1:len 
    avg_time_sec(i)=time(t_cout_v(i))-time(t_in_v(i)); 
end 

  
time_total=time(t_cout_v(len))-time(t_in_v(1)); 

 

Import data 

 
%% Initialize variables. 
filename = filename3; 
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delimiter = ','; 

  
%% Read columns of data as strings: 
% For more information, see the TEXTSCAN documentation. 
formatSpec = '%s%s%s%s%[^\n\r]'; 

  
%% Open the text file. 
fileID = fopen(filename,'r'); 

  
%% Read columns of data according to format string. 
% This call is based on the structure of the file used to generate this 
% code. If an error occurs for a different file, try regenerating the 

code 
% from the Import Tool. 
dataArray = textscan(fileID, formatSpec, 'Delimiter', delimiter,  

'ReturnOnError', false); 

  
%% Close the text file. 
fclose(fileID); 

  
%% Convert the contents of columns containing numeric strings to 

numbers. 
% Replace non-numeric strings with NaN. 
raw = repmat({''},length(dataArray{1}),length(dataArray)-1); 
for col=1:length(dataArray)-1 
    raw(1:length(dataArray{col}),col) = dataArray{col}; 
end 
numericData = NaN(size(dataArray{1},1),size(dataArray,2)); 

  
for col=[1,2,3,4] 
    % Converts strings in the input cell array to numbers. Replaced 

non-numeric 
    % strings with NaN. 
    rawData = dataArray{col}; 
    for row=1:size(rawData, 1); 
        % Create a regular expression to detect and remove non-numeric 

prefixes and 
        % suffixes. 
        regexstr = '(?<prefix>.*?)(?<numbers>([-

]*(\d+[\,]*)+[\.]{0,1}\d*[eEdD]{0,1}[-+]*\d*[i]{0,1})|([-

]*(\d+[\,]*)*[\.]{1,1}\d+[eEdD]{0,1}[-+]*\d*[i]{0,1}))(?<suffix>.*)'; 
        try 
            result = regexp(rawData{row}, regexstr, 'names'); 
            numbers = result.numbers; 

             
            % Detected commas in non-thousand locations. 
            invalidThousandsSeparator = false; 
            if any(numbers==','); 
                thousandsRegExp = '^\d+?(\,\d{3})*\.{0,1}\d*$'; 
                if isempty(regexp(thousandsRegExp, ',', 'once')); 
                    numbers = NaN; 
                    invalidThousandsSeparator = true; 



 80 

                end 
            end 
            % Convert numeric strings to numbers. 
            if ~invalidThousandsSeparator; 
                numbers = textscan(strrep(numbers, ',', ''), '%f'); 
                numericData(row, col) = numbers{1}; 
                raw{row, col} = numbers{1}; 
            end 
        catch me 
        end 
    end 
end 

  

  
%% Replace non-numeric cells with NaN 
R = cellfun(@(x) ~isnumeric(x) && ~islogical(x),raw); % Find non-

numeric cells 
raw(R) = {NaN}; % Replace non-numeric cells 

  
%% Allocate imported array to column variable names 
t_in = cell2mat(raw(:, 1)); 
t_out = cell2mat(raw(:, 2)); 
t_pick = cell2mat(raw(:, 3)); 
t_cout = cell2mat(raw(:, 4)); 

  
t_in(1) = []; 
t_out(1) = []; 
t_pick(1) = []; 
t_cout(1) = []; 

 

Analyze data 
 

[t_init_v,t_in_v,t_out_v,t_pick_v,t_cout_v]=f_get_indices_timestamp(t_i

nit,init_frame,frame_rate,time,t_in,t_out,t_pick,t_cout); 
[avg_force_sec,abs_avg_force_sec,peak_force_sec,avg_time_sec,time_total

]=f_analyze_timestamp(fx,time,t_in_v,t_cout_v); 
f_save_analysis_timestamp(strcat(fname,'_fx'),avg_force_sec,abs_avg_for

ce_sec,peak_force_sec,avg_time_sec,time_total); 

  
%[t_init_v,t_in_v,t_out_v,t_pick_v,t_cout_v]=f_get_indices_timestamp(t_

init,init_frame,frame_rate,time,t_in,t_out,t_pick,t_cout); 
[avg_force_sec,abs_avg_force_sec,peak_force_sec,avg_time_sec,time_total

]=f_analyze_timestamp(fy,time,t_in_v,t_cout_v); 
f_save_analysis_timestamp(strcat(fname,'_fy'),avg_force_sec,abs_avg_for

ce_sec,peak_force_sec,avg_time_sec,time_total); 

  
%[t_init_v,t_in_v,t_out_v,t_pick_v,t_cout_v]=f_get_indices_timestamp(t_

init,init_frame,frame_rate,time,t_in,t_out,t_pick,t_cout); 
[avg_force_sec,abs_avg_force_sec,peak_force_sec,avg_time_sec,time_total

]=f_analyze_timestamp(fz,time,t_in_v,t_cout_v); 
f_save_analysis_timestamp(strcat(fname,'_fz'),avg_force_sec,abs_avg_for

ce_sec,peak_force_sec,avg_time_sec,time_total); 
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Plot data 
 

figx=figure(); 
hfigx=gca; 
p1=plot(time,fx,'k'); 
title(strcat(g_title,': Applied acceleration in x-direction')); 
xlabel('Time (sec)');  
ylabel(' Acceleration (m/s^2)'); 
hold on 
p2=plot(time(t_init_v),fx(t_init_v),'ro'); 
p3=plot(time(t_in_v),fx(t_in_v),'ro','MarkerFaceColor','r'); 
p4=plot(time(t_out_v),fx(t_out_v),'mo','MarkerFaceColor','m'); 
p5=plot(time(t_pick_v),fx(t_pick_v),'go','MarkerFaceColor','g'); 
p6=plot(time(t_cout_v),fx(t_cout_v),'bo','MarkerFaceColor','b'); 
%plot(time(1:(end-1)),diff(fx),'r') 
hold off 
%legend([p1 p2 p3 p4 p5 p6],'force data','initial force','start 

suture','needle out','pick needle','end suture'); 
set(figx,'Units', 'Normalized', 'OuterPosition', [0 0 1 1]); 

  
set(hfigx,'LineWidth',2.5,'FontWeight','bold','FontSize',14); 
figtitle=get(hfigx,'Title'); 
set(figtitle,'FontWeight','bold','FontSize',16); 
figxlabel=get(hfigx,'XLabel'); 
figylabel=get(hfigx,'YLabel'); 
set(figxlabel,'FontWeight','bold','FontSize',16); 
set(figylabel,'FontWeight','bold','FontSize',16); 

  

  
figy=figure; 
hfigy=gca; 
p1=plot(time,fy,'k'); 
title(strcat(g_title,': Applied acceleration in y-direction')); 
xlabel('Time (sec)');  
ylabel(' Acceleration (m/s^2)'); 
hold on 
p2=plot(time(t_init_v),fy(t_init_v),'ro'); 
p3=plot(time(t_in_v),fy(t_in_v),'ro','MarkerFaceColor','r'); 
p4=plot(time(t_out_v),fy(t_out_v),'mo','MarkerFaceColor','m'); 
p5=plot(time(t_pick_v),fy(t_pick_v),'go','MarkerFaceColor','g'); 
p6=plot(time(t_cout_v),fy(t_cout_v),'bo','MarkerFaceColor','b'); 
%plot(time(1:(end-1)),diff(fy),'r') 
hold off 
%legend([p1 p2 p3 p4 p5 p6],'force data','initial force','start 

suture','needle out','pick needle','end suture'); 
set(figy,'Units', 'Normalized', 'OuterPosition', [0 0 1 1]); 

  
set(hfigy,'LineWidth',2.5,'FontWeight','bold','FontSize',14); 
figtitle=get(hfigy,'Title'); 
set(figtitle,'FontWeight','bold','FontSize',16); 
figxlabel=get(hfigy,'XLabel'); 
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figylabel=get(hfigy,'YLabel'); 
set(figxlabel,'FontWeight','bold','FontSize',16); 
set(figylabel,'FontWeight','bold','FontSize',16); 

  

  
figz=figure; 
hfigz=gca; 
p1=plot(time,fz,'k'); 
title(strcat(g_title,': Applied acceleration in z-direction')); 
xlabel('Time (sec)');  
ylabel(' Acceleration (m/s^2)'); 
hold on 
p2=plot(time(t_init_v),fz(t_init_v),'ro'); 
p3=plot(time(t_in_v),fz(t_in_v),'ro','MarkerFaceColor','r'); 
p4=plot(time(t_out_v),fz(t_out_v),'mo','MarkerFaceColor','m'); 
p5=plot(time(t_pick_v),fz(t_pick_v),'go','MarkerFaceColor','g'); 
p6=plot(time(t_cout_v),fz(t_cout_v),'bo','MarkerFaceColor','b'); 
%plot(time(1:(end-1)),diff(fz),'r') 
hold off 
%legend([p1 p2 p3 p4 p5 p6],'force data','initial force','start 

suture','needle out','pick needle','end suture'); 
set(figz,'Units', 'Normalized', 'OuterPosition', [0 0 1 1]); 

  
set(hfigz,'LineWidth',2.5,'FontWeight','bold','FontSize',14); 
figtitle=get(hfigz,'Title'); 
set(figtitle,'FontWeight','bold','FontSize',16); 
figxlabel=get(hfigz,'XLabel'); 
figylabel=get(hfigz,'YLabel'); 
set(figxlabel,'FontWeight','bold','FontSize',16); 
set(figylabel,'FontWeight','bold','FontSize',16); 

  
zoom=horzcat(zoom,[0 0 0]); 
force_g_handle=vertcat(force_g_handle,{'fx';'fy';'fz'}); 
f_handle=horzcat(f_handle,[figx figy figz]); 
g_handle=horzcat(g_handle,[hfigx hfigy hfigz]); 
clear('p1','p2','p3','p4','p5','p6') 

 

Find peaks 
 
for i=1:length(g_handle) 
    f_findpeaks_timestamp(i,force_g_handle,g_handle,fx,fy,fz,time,0.2); 
end 

 

Zoom graph 
 

range=input('input range [x1 x2]: '); 
run('plot_timestamp.m') 
pause(0.5) 

  
zoom(end-2:end)=[figx figy figz]; 
set(hfigx,'Xlim',range) 
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set(hfigy,'Xlim',range) 
set(hfigz,'Xlim',range) 

 

Save graphs 
 

for i=1:length(f_handle) 
    fig.PaperPositionMode = 'auto'; 
    if zoom(i)~=0 
        

savefig(f_handle(i),strcat(fname,'_',force_g_handle{i},'_zoom')); 
        

print(f_handle(i),strcat(fname,'_',force_g_handle{i},'_zoom'),'-

dpng','-r0'); 
    else 
        savefig(f_handle(i),strcat(fname,'_',force_g_handle{i})); 
        print(f_handle(i),strcat(fname,'_',force_g_handle{i}),'-

dpng','-r0'); 
    end 
end 



84 

REFERENCES 

[1] B. N. Carter, “The fruition of Halsted’s concept of surgical training,” Surgery,

vol. 32, no. 3, pp. 518–527.

[2] R. K. Reznick and H. MacRae, “Teaching Surgical Skills — Changes in the

Wind,” N. Engl. J. Med., vol. 355, no. 25, pp. 2664–2669, Dec. 2006.

[3] J. Torkington, S. G. Smith, B. I. Rees, and A. Darzi, “The role of simulation in

surgical training.,” Ann. R. Coll. Surg. Engl., vol. 82, no. 2, pp. 88–94, Mar. 2000.

[4] J. A. Wong and E. D. Matsumoto, “Primer: cognitive motor learning for teaching

surgical skill[mdash]how are surgical skills taught and assessed?,” Nat Clin Pr. Urol, vol.

5, no. 1, pp. 47–54, Jan. 2008.

[5] D. Stefanidis, M. W. Scerbo, P. N. Montero, C. E. Acker, and W. D. Smith,

“Simulator Training to Automaticity Leads to Improved Skill Transfer Compared With

Traditional Proficiency-Based Training: A Randomized Controlled Trial,” Ann. Surg.,

vol. 255, no. 1, pp. 30–37, 2012.

[6] D. Stefanidis, J. R. Korndorffer Jr., R. Sierra, C. Touchard, J. B. Dunne, and D. J.

Scott, “Skill retention following proficiency-based laparoscopic simulator training,”

Surgery, vol. 138, no. 2, pp. 165–170, Aug. 2005.

[7] R. E. Glasgow, K. A. Adamson, and S. J. Mulvihill, “The benefits of a dedicated

minimally invasive surgery program to academic general surgery practice,” J.

Gastrointest. Surg., vol. 8, no. 7, pp. 869–873, Nov. 2004.

[8] M. K. Chmarra, N. H. Bakker, C. A. Grimbergen, and J. Dankelman, “TrEndo, a

device for tracking minimally invasive surgical instruments in training setups,” Sens.

Actuators Phys., vol. 126, no. 2, pp. 328–334, Feb. 2006.

[9] K. R. Van Sickle, D. A. M. III, A. G. Gallagher, and C. D. Smith, “Construct

validation of the ProMIS simulator using a novel laparoscopic suturing task,” Surg.

Endosc. Interv. Tech., vol. 19, no. 9, pp. 1227–1231, Sep. 2005.

[10] E. G. G. Verdaasdonk, L. P. S. Stassen, L. J. Monteny, and J. Dankelman,

“Validation of a new basic virtual reality simulator for training of basic endoscopic

skills,” Surg. Endosc. Interv. Tech., vol. 20, no. 3, pp. 511–518, Mar. 2006.

[11] T. Horeman, S. Rodrigues, F.-W. Jansen, J. Dankelman, and J. van den

Dobbelsteen, “Force measurement platform for training and assessment of laparoscopic

skills,” Surg. Endosc., vol. 24, no. 12, pp. 3102–3108, Dec. 2010.

[12] T. Horeman, J. Dankelman, F. W. Jansen, and J. J. van den Dobbelsteen,

“Assessment of Laparoscopic Skills Based on Force and Motion Parameters,” Biomed.

Eng. IEEE Trans. On, vol. 61, no. 3, pp. 805–813, Mar. 2014.

[13] A. Dubrowski, R. Sidhu, J. Park, and H. Carnahan, “Quantification of motion

characteristics and forces applied to tissues during suturing,” Am. J. Surg., vol. 190, no.

1, pp. 131–136, Jul. 2005.

[14] J. B. Pagador, F. M. Sánchez-Margallo, L. F. Sánchez-Peralta, J. A. Sánchez-

Margallo, J. L. Moyano-Cuevas, S. Enciso-Sanz, J. Usón-Gargallo, and J. Moreno,

“Decomposition and analysis of laparoscopic suturing task using tool-motion analysis

(TMA): improving the objective assessment,” Int. J. Comput. Assist. Radiol. Surg., vol. 7,

no. 2, pp. 305–313, Mar. 2012.



 85 

[15] A. Dosis,  r Aggarwal,  f Bello, and et al, “Synchronized video and motion 

analysis for the assessment of procedures in the operating theater,” Arch. Surg., vol. 3, 

no. 140, pp. 293–299, Mar. 2005. 

[16] A. Sánchez, O. Rodríguez, R. Sánchez, G. Benítez, R. Pena, O. Salamo, and V. 

Baez, “Laparoscopic Surgery Skills Evaluation: Analysis Based on Accelerometers,” 

JSLS, vol. 18, no. 4, p. e2014.00234, 2014. 

[17] A. Trejos, R. Patel, R. Malthaner, and C. Schlachta, “Development of force-based 

metrics for skills assessment in minimally invasive surgery,” Surg. Endosc., vol. 28, no. 

7, pp. 2106–2119, Jul. 2014. 

[18] A. C. Frischknecht, S. J. Kasten, S. J. Hamstra, N. C. Perkins, R. B. Gillespie, T. 

J. Armstrong, and R. M. Minter, “The Objective Assessment of Experts’ and Novices’ 

Suturing Skills Using An Image Analysis Program,” Acad. Med., vol. 88, no. 2, 2013. 

[19] G. Islam, K. Kahol, J. Ferrara, and R. Gray, “Development of Computer Vision 

Algorithm for Surgical Skill Assessment,” in Ambient Media and Systems, vol. 70, S. 

Gabrielli, D. Elias, and K. Kahol, Eds. Springer Berlin Heidelberg, 2011, pp. 44–51. 

[20] R. C. Jackson and M. C. Cavusoglu, “Modeling of Needle-Tissue Interaction 

Forces During Surgical Suturing,” Robot. Autom. ICRA 2012 IEEE Int. Conf. On, pp. 

4675–4680, May 2012. 

[21] T. . Frick, D. . Marucci, J. . Cartmill, C. . Martin, and W. . Walsh, “Resistance 

forces acting on suture needles,” J. Biomech., vol. 34, no. 10, pp. 1335–1340. 

[22] S. Misra, K. B. Reed, B. W. Schafer, K. T. Ramesh, and A. M. Okamura, 

“Observations of Needle-Tissue Interactions,” Robot. Autom. 2009 ICRA 09 IEEE Int. 

Conf. On, pp. 2687–2692, May 2009. 

[23] R. Singapogu, T. Kavathekar, J. Eidt, R. Groff, and T. Burg, “A Novel Platform 

for Assessment of Surgical Suturing Skill: Preliminary Results.” 

[24] S. Yamaguchi, D. Yoshida, H. Kenmotsu, T. Yasunaga, K. Konishi, S. Ieiri, H. 

Nakashima, K. Tanoue, and M. Hashizume, “Objective assessment of laparoscopic 

suturing skills using a motion-tracking system,” Surg. Endosc., vol. 25, no. 3, pp. 771–

775, Mar. 2011. 

[25] “Six-Axis Force/Torque Sensor System Installation and Operation Manual.” ATI 

industrial Automation. 

[26] “QUARC User’s Guide.” Quanser Inc., 29-Aug-2013. 

[27] T. Raman, \iBasic Knotting and Suturing Using a Needle Holder. 

https://www.youtube.com/watch?v=HD6mll1wN0I. 

 


	Clemson University
	TigerPrints
	12-2015

	Development of a Suturing Simulation Device for Synchronous Acqusition of Data
	Tanmay Kavathekar
	Recommended Citation


	tmp.1474033691.pdf.luWY7

