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ABSTRACT 

In this work, the frequency response from two-dimensional polygon and three-dimensional 

geodesic spheres is numerically simulated using a coupled structural acoustic finite element 

model. The model is composed of a submerged thin-walled elastic shell structure 

surrounded by an infinite acoustic air domain.  Infinite elements are used to simulate the 

far-field acoustic radiation condition. Results for the faceted polygon and geodesic sphere 

are compared to their canonical counterpart viz. a circle/ring and a spherical shell.  A 

unique feature of this study is to compare results as the number of facets in the polygon or 

geodesic is increased, such that the surface area converges in the limit of a large number of 

facet sides approaching the geometry of a circle or sphere.   In this work the ratio of acoustic 

wavelength to the local geometric parameter of edge length in 2-D, and facet area in 3-D 

is proposed and varied to quantify the comparison between the faceted shapes with that of 

the corresponding reference circle or sphere. A threshold ratio is proposed, up to which 

scattering response of a polygonal/geodesic spherical scatterer matches the scattering 

response of a circle/sphere which has the same diameter as the circumscribing circle/sphere 

of the polygon/geodesic sphere. This ratio is an approximation and can be considered as a 

guide rule for design. Conversely, this ratio can be used for the inverse scattering problem, 

where from a known scattering response, the faceted geometry can be predicted without 

prior knowledge.   

The geodesic sphere was invented by Buckminster Fuller in the early 1950’s, has 

been of interest in architecture due to the larger open interior spaces which can be 

constructed. Of particular interest in this work is the hierarchical geometric structure of the 
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geodesic sphere which increasingly approximates a spherical surface as the hierarchy 

(degree) increases. The geodesic sphere has been modelled by taking an icosahedron and 

projecting the triangular faces onto a surface of the sphere using vector geometry.  The 

scattering response of elastic structures in the mid-frequency resonance band depends 

strongly on the total mass.  For comparisons, the natural frequency of the hierarchical 

geometries generated in 2-D and 3-D, are designed to have the same total mass.  Using this 

approach, differences in natural frequency and scattering response are driven primarily by 

changes in overall stiffness and stiffness distribution, and to a lesser degree, by changes in 

mass distribution.   To give a wide range of frequency response, natural vibration 

frequencies for the different elastic shells have been extracted up to 3000 Hz  corresponding 

to the nondimensional frequency ka = 55, where k is the wavenumber defined by the 

circular frequency over the acoustic wave speed (speed of sound in air), and a is the 

diameter of the circle/shell which circumscribes the scatterer. Convergence with the natural 

frequencies of ring/sphere is observed as the hierarchy in polygons (number of sides) and 

the geodesic sphere (degree) increases.  

The target strength is calculated at the important front and back locations on the 

surface of the elastic scatterer subject to an incoming plane acoustic wave along the major 

axis aligned with the geometry.  More frequency data points near the natural frequencies 

are used to provide increased resolution needed to capture the peak amplitudes in the 

response at resonance. Target strength at the same location, calculated for the 

circle/spherical scatterer is compared and quantified by the ratio of wavelength to facet 
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dimension. Scattering from rigid bodies has been studied to validate the elastic scattering 

response in air.     
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CHAPTER ONE 

1 INTRODUCTION 

The idea of comparing a polygon domain to a circular domain came from the 

“polygon-circle paradox”. It is well known, that under uniform transverse pressure, flexure 

of a simply supported n-sided polygon plate inscribed in a circle of radius, a starts to 

diverge from a simply supported circular plate of the same radius when n tends to infinity. 

[1]–[3]. H. Uberall predicted the sound-induced resonances of submerged elastic objects 

(sphere and cylinder) using the phase matching of surface waves, in agreement with the 

experimental results[4]. Cureton et al related the eigenvalue problem for the Laplacian on 

regular polygons, with either Dirichlet or Neumann boundary conditions, to the unit circle 

by conformal mapping. The problem was then equivalent to a weighted eigenvalue problem 

on the circle with same boundary conditions. [5] 

In this thesis, acoustic scattering characteristics of n-sided 2-D polygons are 

compared with a circle in a similar way. Later comparison of a 3-D faceted model, the 

geodesic sphere is compared with a sphere. In this case, scattering characteristics are 

expected to follow the intuition and converge as the model approximates a circle/sphere. It 

would be of interest to find a parameter which can relate the side/facet length to the 

wavelength, which can help to predict the scattering characteristics of the faceted 

geometries. Conversely, inverse scattering can be done with the help of this ratio too. 

Inverse scattering is reconstruction of a shape from a knowledge of scattered field patterns. 

Nasit et al [6] studied how the functional representation of the unknown shape affects their 

inversion algorithm and sample reconstruction of polygons and non-convex profiles. Ivan 
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et al examined the problem of estimating the geometry of a room from its room impulse 

response. [7]. Colton et.al developed an inversion scheme for two-dimensional inverse 

scattering problems in the resonance region which does not use nonlinear optimization 

methods and is relatively independent of the geometry and physical properties of the 

scatterer. [8]   

1.1  Previous work done in acoustic scattering from 2-D polygons 

Researchers have shown interest to study the scattering and other acoustic 

characteristics from a 2-D convex polygon. Xiaolin et al. compared the sound-absorption 

capability of 2-D cellular solids. A cellular structure was divided into a tube of a general 

N-sided polygonal cross section and sound absorption capability of it was studied. Then 

sound-absorption qualities of those tubes were studied as a whole in cellular structures. 

They studied the effects of cell shape, shell size and its spatial variation, sample thickness, 

and cavity depth on sound absorption. [9].  Fawcett presented the time signal scattered from 

a triangular rigid facet by means of the Kirchhoff/diffraction method. The solutions had 

some singularity problem for some incident/scattered conditions [10], [11]. Later, Lee et 

al. using the Kirchoff method, came up with a general acoustic impulse response for a 

polygon facet which can be used for modelling the high frequency transient scattering from 

an underwater target or a rough surface, when they are discretized into multiple polygons. 

[11] A study on the low frequency acoustic scattering of a cube was done to understand 

scattering from sediment in marine environments [12]. Scattering characteristics of a cube 

at different orientations were studied and when these are averaged out, the scattering 

characteristic behaves like a sphere. Later, the average projected area of different polyhedra 
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like icosahedron, dodecahedron, octahedron, cube and tetrahedron were compared to that 

of a sphere of the same volume. For the low frequency range, the scattered amplitude is 

expected to be proportional to the average projected area.  

For Standard BEM and FEA, degrees of freedom to achieve accuracy increase 

linearly with the frequency of the incident wave [13][14]. Chandler-Wilde et al.  studied 

the scattering of a time harmonic acoustic incident plane wave by a sound convex polygons 

and proposed a novel Galerkin Boundary Element method in which the degrees of freedom 

required to achieve a prescribed level of accuracy grow logarithmically as the frequency of 

the incident wave increases. This method uses an approximation space consisting of the 

products of plane waves with piecewise polynomials supported on a graded mesh, with 

smaller elements closer to the corners of the polygon as the waves diffracted by the corners 

become more localized near corners especially at higher frequencies [10]. Schmidtke 

presented a multiparametric gradient method for the iterative solution of systems of linear 

equations [15].   

Research has also been done in marine field on Target detection and classification 

from exposed rocks, [16] detection and classification of  Benthic and planktonic shelled 

animals for biological and ecological applications [17]. Properties of sound signals by 

models of Arctic pack ice were studied in [18]. 

In this thesis, faceted geometries both in 2-D and 3-D which are circumscribed into 

a circular ring and a spherical shell respectively, are compared with their counterpart 

canonical shapes viz. ring for 2-D and spherical shell for 3-D. A ratio of wavelength to 

side/facet length is then proposed which can give a threshold up to which a faceted structure 
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can have a scattering behaviour as its counterpart canonical structure. An inverse scattering 

can also be done using that same ratio. For a known scattering behaviour, the dimensions 

of the facet can be approximated.  

1.2 Geodesic Spheres  

 

Figure 1-1 The Montréal Biosphère, formerly the American Pavilion of Expo 67, by R. 

Buckminster Fuller, on Île Sainte-Hélène, Montreal, Quebec [19] 

Geodesic Spheres are R. Buckminster Fuller’s trademark. In architecture, the 

Sphere aimed at maximum efficiency considering the volume to weight, use of materials 

to useful surface, and assembly time to mobility. As sociocultural alternatives to typical 

rectangular architecture, the Spheres crystallized society’s dreams of a life liberated from 

constraints. [20] 
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Ford Rotunda, which was the biggest tourist attraction in the US in 1950’s [13], 

took only 5 weeks to construct. It had 6 different lengths of members and holes were pre 

punched to a tolerance of 1/1000th of an inch. It was mostly made up of triangles combined 

to form an octahedral – tetrahedral repeated system, which created an open faceted 

spherical Sphere shape [14]. It was destroyed by fire in 1962. [13]. The Spheres were used 

as a shelter for helicopters for US Marine Corps in 1959. The lightweight construction 

concept enabled the Spheres to be flown across by helicopters.  

Geodesic Spheres being durable and inexpensive, can be found in places all over 

the world. In Antarctica they have stood for decades and resisted winds of around 200 miles 

per hour. Spheres have also withstood hurricanes, earthquakes, and performed better than 

rectangle-based structures. [21] 

In this thesis for 3-D geometries, geodesic Spheres of different degrees are used. 

These Spheres best approximate a sphere and can effectively give a measure of the 

difference in scattering response due to the presence of the facets. The construction of 

geodesic Spheres is discussed in Chapter 2. 

1.3 Motivation for present work 

As discussed in Section 1.1, work has been done in scattering from 2-D polygons and 

facets. Fawcett and Lee et al. found analytical forms of acoustic impulse response from a 

triangle and later a general polygon [6][7]. New numerical methods have also been 

proposed Chandler-Wilde et al to reduce the computational time and get more accuracy. In 

the literature review, no such parameter study has been done, as presented in this thesis. 

This is a new idea, which can be built upon. As the scattering behaviour of a scatterer 
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depends upon the wavelength/frequency of the incident wave and the geometry of the 

scatterer, the ratio of wavelength to some geometrical parameter (facet/side length in this 

case), seems a valid parameter to compare faceted geometries with their respective 

canonical counterparts.  

For 3-D geometries, the scattering response studies are scarce to find. Chinnery 

et.al. performed experimental scattering analysis from a cube and gave theoretical 

predictions of scattering response different polyhedral like icosahedron, dodecahedron, 

octahedron, hexahedron (cube) and tetrahedron compared to a sphere of the same volume. 

These solids are known as platonic solids. A platonic solid is a regular, convex polyhedron. 

It is constructed by congruent regular polygonal faces with the same number of faces 

meeting at each vertex. [13]. Table 1-1 presents the details of the five platonic solids. These 

solids have been named after the number of faces they have.  

Table 1-1 The platonic solids 

Name Geometry No. of vertices No. of edges No. of faces 

Tetrahedron 

 

4 6 4 

Hexahedron 

(Cube) 
 

8 12 6 
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Name Geometry No. of vertices No. of edges No. of faces 

Octahedron 

 

6 12 8 

Dodecahedron 

 

20 30 12 

Icosahedron 

 

12 30 20 

The tetrahedron, octahedron and the icosahedron have equilateral triangular faces and are 

approximations to the sphere. The icosahedron fits a sphere the best and has hence been 

used to model the geodesic sphere.   

2-D regular polygons with number of sides n, have been compared to their 

circumscribing circle under static pressure load subjected to specific boundary conditions, 

[1] and effects have been studied when n tends to infinity. No such study has been 

performed in 3-D. The geodesic sphere can be considered analogous to a 2-D regular 

polygon in this case. The geodesic Sphere can effectively approximate its circumscribing 

sphere when the degree of the sphere tends to infinity.  

In this thesis, faceted geometries both in 2-D and 3-D which are circumscribed into 

a circular ring and a spherical shell respectively, are compared with their counterpart 
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canonical shapes viz. ring for 2-D and spherical shell for 3-D. A ratio of wavelength to 

facet/side length is then proposed which can give a threshold up to which a faceted structure 

can have a scattering behaviour as its counterpart canonical structure. An inverse scattering 

can also be done using that same ratio. For a known scattering behaviour, the dimensions 

of the facet can be approximated.  

As the waves diffracted by the corners become more localized near corners especially 

at higher frequencies, which needs special handling of mesh densities near the corners and 

edges (in 3-D), a frequency range 1-3000 Hz has been selected (ka < 55), where a is the 

diameter of the circumscribing circle/sphere and /k c is the wavenumber.  is the 

angular frequency and c is the speed of sound in the medium. The parameter ka helps to 

relate the overall dimension of the elastic sphere to the wavelength of interest as 

/ 2 /k c    . ka = 55 corresponds to the smallest wavelength of interest, which gives 

 = 0.11423a. Hence in this case, shortest wavelength is around 1/10th of the overall 

diameter (a) of the circle/sphere.    

1.4 Thesis Objectives 

1) Develop and compare the structural vibrations and acoustic properties of the 

geometries in 2-D and 3-D by calculating their natural frequency and exterior 

scattering response in air.  

2) Develop parameters to compare the acoustic properties of the 2D-polygons and the 

geodesic Spheres with that of a circle and spherical shell respectively. Normalize 

this parameter such that it relates the frequency to the desired facet variable and is 
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independent of the overall dimensions of the structure. Normalize the frequency 

range of interest to relate the wavelength to the scatterer size.  

3) Develop the 2-D and 3-D geometries for numerical analysis. The 2-D geometry is 

a straight forward regular polygon. In case of 3-D, use vector geometry to calculate 

the coordinates of the vertices and then model the Sphere structure.  

4) Develop a Finite Element Model in ABAQUS to extract the natural frequency of 

the structures. Later, use these frequencies and perform structural-acoustic coupling 

analysis with infinite boundary condition. Perform rigid body scattering to validate 

the results.  

5) Compute the Steady-State dynamic response of the structures to the acoustic 

incident wave and obtain the target strength plots for 2-D and 3-D. 

6) Formulate a ratio of wavelength to edge/facet length and compare the plots obtained 

from different geometries with a 2D ring/infinite circular cylinder and a 3-D 

spherical shell.  

1.5 Thesis Outline  

Chapter 1 gives an introduction of the thesis. The Literature review is done in the 

first part of this chapter. Then, history of the Geodesic Sphere is discussed. The motivation 

and objectives are then presented.  

Chapter 2 presents details of the construction of geometries under investigation. 

First construction of the 2-D finite element domain is discussed. The geometrical 

parameters are calculated and the dimensions are presented. Then the construction of the 

acoustic domain in 2-D is discussed. In the next section, the 3-D Finite element domain is 
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discussed. The coordinates of triangular vertices are derived by using vector geometry for 

geodesic Spheres is presented. The parameters are calculated and the dimensions for the 3-

D geometry is presented.     

Chapter 3 presents the theory and equations behind the Natural Frequency. Then 

Natural Frequency of the structures are extracted in ABAQUS. The thickness of the 

geometries are varied so that the mass is constant. The frequency range of interest is 1-

3000 Hz. The natural frequencies of the geometries are then compared. These frequencies 

are then later used in acoustic scattering response.  

Chapter 4 presents the theory and equations relating to acoustics. Then, a finite 

element formulation for the structural acoustic coupling is presented. The 2-D elastic body 

scattering response calculation is done in ABAQUS. A step by step guide is presented for 

setting up the model. Target strength vs ka plots for all the 2D geometries are then plotted, 

and a parameter study is done comparing the 2D polygons with the circular ring/infinite 

cylinder. A similar study is done for the 3-D geometries later. A step by step guide for 

setting up the model in ABAQUS is also presented. In the last section, scattering response 

from rigid body is calculated in ABAQUS for 2-D and 3-D geometries. The rigid body 

scattering is done to compare the results obtained from the elastic body scattering.  

Chapter 5 The conclusions obtained from the results and the possible future works 

which can be derived from this work has been discussed.   
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CHAPTER TWO 

2 GEOMETRY MODELLING OF FINITE ELEMENT DOMAINS 

The acoustic scattering response due to the effect of facets is studied. Both 2-D and  3-

D models have been investigated in comparison to that of a thin-walled circular cylindrical 

(2D) and a spherical shell (3-D).  

2.1 2D Finite Element Domain 

The 2D finite element domain has three parts, the structural domain, the acoustic 

domain and the infinite boundary.  

2.1.1 The structural domain 

In case of 2-D, the thin walled cylinders, having cross sections as regular polygons 

are modelled having an exterior air domain. These polygons can be circumscribed by a 

circle of radius r. Three cases have been investigated against a circular cylinder. These 

cylinders with regular polygonal cross section are identified by the number of sides of the 

polygon or angle ‘ ’, which is subtended by the sides of sectional polygon at the centre 

of the circumcircle inscribing the polygon (Figure 2-1). The side lengths of the polygon L, 

are given by the cosine law of trigonometry as, 2 2cosL r   . The number of sides n 

= 360 /  (where  is in degrees). 
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Figure 2-1 Angle subtended at the circumcentre 

In the thesis, the 2D polygons are referred to as the angle they subtend at the centre 

( ) cases investigated are 450, 300, 150 and Ring as shown in figures below 

 

Figure 2-2 n=8 (450) 

 

Figure 2-3  n = 12 (300) 
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Figure 2-4 n=24 (150) 

 

Figure 2-5 Ring 

The regular polygonal sections are inscribed in a circle of diameter 1m and are 

modelled using the sketch feature of the part module in ABAQUS. Note that as the number 

of sides n, of the polygon increases, its shape starts to resemble a circle. Thus an n-sided 

polygon starts to approximate a circle, when 0 and n   .  Table 2-1 gives a 

comparison of the outer perimeter of the polygons. The difference in the perimeter 

decreases as n increases. This further helps to quantify the convergence geometrically.  
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Table 2-1 Comparison of outer perimeter of the polygons with the circumscribing circle 

Polygon 
Outer Perimeter of 

the Polygons (m) 

Outer Perimeter 

of the Circle (m) 
% Difference 

450 (n = 8) 3.061467459 3.141592654 2.5504642 

300 (n = 12) 3.105828541 3.141592654 1.1384071 

150 (n = 24) 3.132628613 3.141592654 0.2853343 

 

2.1.2 Wall thickness Calculation 

In case of the elastic body scattering, the total mass of the elastic scatterer (the 

polygonal pipes) and the circular cylinder is kept constant, with stiffness being varied. The 

total mass of the geometries are equal, but the mass distribution in the geometries are not. 

The characteristics are controlled by stiffness primarily but the change in the distribution 

of mass also plays a role. The total mass is kept constant by varying the thickness of the 

polygonal sections and keeping the diameter of the circumscribing circle and the depth 

constant.  

 The required condition is  

,   cir poly cir polyM M A d A d       (2.1) 

Where cirM is the mass of the circular cylinder and polyM  is the mass of the polygonal 

cylinder. The densities of the material for both of them is  and the depth of the cylinder 

d is 1m. cirA and polyA are the cross sectional areas of the circular and polygonal cylinders 

respectively.  

Since   and d  are the same for both the geometries, from (2.2), we have 

cir polyA A     (2.2) 
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Where,                   cir cir cirA L t , and     (2.3) 

cirL = 2 r is the circumference of the neutral fibre of the circular beam section an 

cirt  is the thickness of the section. 

 

Figure 2-6 Circular Section of the cylinder 

Thus (2.3) can be written as  

(2 )cir cirA r t      (2.4) 

For the polygonal section,  

poly poly polyA L t      (2.5) 

Where, polyL nL is the perimeter of the neutral fibre of the polygon beam and polyt is the 

thickness. (Figure 2-7) 

cirt
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Figure 2-7 Polygonal Section of the cylinder 

Hence the surface area of the polygon (equation (2.5)),  can be written as  

poly polyA nLt      (2.6) 

Where, 360 /n   gives the number of sides in the polygon, 2 2cosL r    is the 

side length, and polyt is the thickness of the section.  

From equation (2.2), surface area of the circle is equal to the surface area of the 

polygon. Surface area of the circle is given by (2.4) and surface area of the polygon is given 

by (2.6). Hence using (2.4) and  (2.6) and substituting in (2.2),     

(2 ) ,   

(2 ) 

360

2

360 2 2cos

cir poly

cir
poly

poly

cir

r t nLt

r t
t

L

t r

t L



 

 






 

   
     

   

    (2.7) 

Where,   is the angle subtended at the centre in radians. (2.7) shows a very 

important relation between the wall thickness ratio of polygon to the circle. It can be seen 

L

polyt
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that this ratio is independent of the dimensions if the 2-D geometries and depends only on 

the angle subtended at the centre   and the number of sides n = 2 /    .  

In this work, a thin shell model is used with cirt  = 10mm for a circle of diameter         a = 

1m. Thus / 100cira t  .   

We can assume the side lengths of the polygon as a Euler-Bernoulli Beam, as the 

smallest side length corresponds to 15, which is 0.13 m and thickness of the cross section 

is 0.0100286m 

Hence 

0.13
12.96 10

0.0100286poly

L

t
    

Hence Euler-Bernoulli beam theory can be assumed. Table 2-2 gives the aspect 

ratio of all the geometries under investigation and the ratios justify the assumption that 

these geometries are Euler-Bernoulli beams.   

Table 2-2 Aspect ratio of the 2-D polygons to justify the use of Euler-Bernoulli beam theory 

  L (m) 
polyt  (m) / polyL t  

450 (n = 8) 3.826834323650898e-01 1.026172152977031e-02 3.729232285780567e+01 

300 (n = 12) 2.588190451025207e-01 1.011515159927463e-02 2.558726308373677e+01 

150 (n = 24) 1.305261922200516e-01 1.002861507511791e-02 1.301537562688005e+01 

 

2.1.3 Outer air domain 

The outer air domain is modelled with a diameter of 1.5 meter, with the boundary 

truncated by acoustic infinite elements. (Figure 2-8) 
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2.2 3D Finite Element Domain 

To investigate the effect of facets at different orientations in space to a plane incident 

wave, a geodesic Sphere is modelled and is compared to the acoustic scattering of a sphere. 

The diameter of the sphere that encloses the geodesic Sphere is 1m.   

The features of the geodesic are identified by the following,   

1. Triangle face   

The face of an icosahedron (Figure 2-10). The icosahedron is a polyhedron made 

up of 20 equilateral triangular faces, has 12 vertices and 30 edges.  

(a) (b)

(c) (d)

Figure 2-8  2-D outer air domain for (a) 450, (b) 300, (c) 150, (d) Ring  
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2. Sub-Triangle 

The triangle face is divided in smaller triangles to construct the geodesic Sphere. 

These triangles are referred to as sub-triangles. (Figure 2-9) 

 

Figure 2-9 Triangular Surface generated by subdividing the triangle face of an icosahedron into 

sub-triangles and then projecting the vertices onto the surface of a sphere.   

3. Triangular Surface 

After the triangle face is divided into sub-triangles, the vertices are projected onto a 

sphere. This generates a triangular surface (Figure 2-9) which is then assembled, to 

model a geodesic sphere.  

2.2.1 The geodesic sphere 

The Sphere usually consists of equilateral triangular faces of an icosahedron (Figure 

2-10), which then start to mimic the curvature of a sphere by coordinate transformation 

using vector geometry.  
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Figure 2-10 Icosahedron, having 20 equilateral triangle faces, 12 vertices and 20 edges 

A sphere encloses maximum volume as compared to its surface area, hence giving 

the maximum volume at minimum material cost. To make spherical shapes directly by 

machining is an expensive option as most of the construction materials are straight or flat 

pieces. A triangle is a polygon which uses minimum number of struts, and even if the joints 

are not, structures made out of a triangle can be made relatively rigid.    

 Hence a geodesic Sphere is made out of triangles with nearly equal strut lengths, 

which makes uniform distribution of stresses along the struts.  

  The solids which consist of equilateral triangles inclined at equal angles to each 

other are the tetrahedron, the octahedron and the icosahedron. These are also known as 

platonic solids and are approximations to a sphere[22]. The icosahedron fits a sphere best 

and hence it is used to make a geodesic sphere.  

When the Sphere is big in shape, single struts of an icosahedron will not be strong 

enough, hence the triangular facets are divided into a cluster of smaller triangles depending 

upon the degree of the geodesic Sphere. Degree is the number of subdivisions per edge of 

the triangle face. Figure 2-11 shows the division of the icosahedron triangular face into 

smaller triangles. The number of divisions determine the degree of the Sphere.  
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2= N D  

Where, N is the number of sub-divisions and D is the degree of the geodesic. 

 

Figure 2-11 Division of the triangle face 

The triangle face are divided into perfect square numbers as shown in the Figure 2-11. The 

vertex of the sub-divided triangles are then projected onto the surface of the enclosing 

sphere. 

After projection, the resulting triangular surfaces of the reference icosahedron are 

assembled to form the geodesic sphere. The cases investigated are Degree II, Degree III, 

and Degree IV and a Spherical Shell. (Figure 2-12) 

 

Degree II (N = 4) Degree III (N = 9) Degree IV (N = 16)

(a)
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(b)

(c)
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Figure 2-12 3-D Models in SOLIDWORKS (a) Degree II, (b) Degree III, (c) Degree IV, (d) 

Spherical Shell 

Note that the Degree IV geodesic best approximates a sphere amongst the three geodesic 

degrees considered. Table 2-3 shows the comparison of the surface area of the Geodesic 

spheres and the spherical shell under investigation. As the degree of the geodesic increases, 

the difference in the surface area decreases. Thus, the surface area of a geodesic sphere 

starts approaching the surface area of a sphere enclosing it, as the degree of the geodesic 

increases. This comparison of the geodesic spheres and the sphere enclosing it, further 

quantifies the convergence geometrically.  

Table 2-3 Comparison of surface areas of the Geodesic Spheres with a Sphere 

Geodesic  

Degree 

Surface area 

(m2) 
Sphere Surface  

area (m2) 
% Difference 

Degree II 2.916482848 3.1415926 7.165466078 

Degree III 3.037660542 3.1415926 3.308260200 

Degree IV 3.082265697 3.1415926 1.888434003 

 

(d)
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2.2.1.1 Coordinates of the vertices of the sub-triangles  

The radius of a sphere centred at origin enclosing the icosahedron can be 

calculated by  

2 2 2

i i ir x y z        (2.8) 

Where , ,i i ix y z  are the coordinates of the vertices of the icosahedron. Note that the 

vertices of the icosahedron lie on the surface of the sphere.   

Three rectangles are mutually perpendicular to each other can be inscribed into an 

icosahedron (Figure 2-13). The rectangles are golden rectangles, whose sides are in the 

aspect ratio1: . Where  1 5 / 2   , is the golden ratio. Its approximate value thus being 

1.618.      

 

 

Figure 2-13 Golden Rectangles inscribed in an icosahedron 

A set of coordinates given by Table 2-4 can be selected for an icosahedron centred 

at origin. As the vertices of the three mutually perpendicular golden rectangles lie on the 

vertices of the icosahedron (Figure 2-13), the coordinates of the vertices of the rectangle are 
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the coordinates of the vertices of the icosahedron. Thus for rectangles having the aspect 

ratio 1: , a convenient set of coordinates can be given by [16] Table 2-4.  

Table 2-4 Coordinates of the vertices of an icosahedron 

Vertices X Y Z 

A 0 1   

B 0 -1   

C 0 -1 -  

D 0 1 -  

E   0 1 

F -  0 1 

G -  0 -1 

H   0 -1 

I 1   0 

J -1   0 

K -1 -  0 

L 1 -  0 

With the set of coordinates, an icosahedron can be constructed with the radius of 

circumscribing sphere being (from(2.8)) 2 2 20 1 1.902r     . The coordinates are 

thus calculated with the normalized sphere having radius 1.902, and later scaled down to 

the required radius of the sphere.  

Figure 2-14 shows the coordinates of the vertices of the sub-triangles for a typical 

triangle face of an icosahedron. Note that on edge AB, the coordinates of C is zero; on edge 

BC, coordinates of A is zero and on edge AC, the coordinates of B is zero.  
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Figure 2-14 Vertices of the sub-triangles 

For degree III geodesic, assume the coordinates,  

 ( , , ),  B = ( , , ),  C = ( , , )A A A B B B C C CA x y z x y z x y z  

Then, the coordinates from the centre point (1 1 1 ) / 3A B C   can be calculated as 

(1 1 1 ) / 3

(1 1 1 ) / 3

(1 1 1 ) / 3

A B C

A B C

A B C

x x x x

y y y y

z z z z

  

  

  
 

Hence, once these coordinates are obtained, we now can project these points onto 

the surface of the sphere of a required radius r. In this case, the geodesic spheres are 

enclosed in a sphere of radius r = a/2 = 0.5m. Hence,  

The position vector for the normalized coordinates of the geodesic sphere is given by  

 ˆˆ ˆ = i i i iv x i y j z k   
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The radial direction from the origin to the coordinates of the sub-triangles is given by the 

unit vector n̂ as  

ˆ  = 
| |

i
i

i

v
n

v
 

The coordinates of the geodesic sphere can be obtained by rescaling as ˆ = i iv rn , for a 

sphere of radius r = 0.5m. 

Table 2-5 shows the coordinates of the vertices of the sub-triangles in a degree IV 

Geodesic calculated. A precision in the coordinates was used to ensure that there is no 

imprecision in geometry. 

Table 2-5 Coordinates of the vertices sub-triangles in space (Degree IV) 

Sl. X Y Z 

1 0 2.62865556059566E-01 4.25325404176019E-01 

2 7.38104522110815E-02 3.40859177035774E-01 3.58283461207589E-01 

3 1.54508497187473E-01 4.04508497187473E-01 2.50000000000000E-01 

4 2.21431356633244E-01 4.32093913418670E-01 1.19427820402529E-01 

5 2.62865556059566E-01 4.25325404176019E-01 0 

6 1.19427820402529E-01 2.21431356633244E-01 4.32093913418671E-01 

7 2.12662702088010E-01 2.93892626146236E-01 3.44095480117793E-01 

8 2.93892626146236E-01 3.44095480117793E-01 2.12662702088010E-01 

9 3.40859177035774E-01 3.58283461207589E-01 7.38104522110815E-02 

10 2.50000000000000E-01 1.54508497187473E-01 4.04508497187473E-01 

11 3.44095480117793E-01 2.12662702088010E-01 2.93892626146236E-01 

12 4.04508497187473E-01 2.50000000000000E-01 1.54508497187473E-01 

13 3.58283461207589E-01 7.38104522110815E-02 3.40859177035774E-01 

14 4.32093913418670E-01 1.19427820402529E-01 2.21431356633244E-01 

15 4.25325404176019E-01 0 2.62865556059566E-01 

 

Note that in degree IV, N = 16 and the number of vertices is 15.  
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Figure 2-15 Triangular Surface plots generated in MATLAB (a) Degree II (4 Sub-Triangles), (b) 

Degree III (9 Sub-Triangles), (c) Degree IV (16 Sub-Triangles) 

Figure 2-15 shows the triangular surface generated in MATLAB. It is noteworthy to see 

that as the degree of geodesic increases, the resolution becomes better as sub triangles 

increase. Thus a higher degree geodesic fits better on a spherical surface circumscribing it. 

(a)

(b)

(c)
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Just to make this point more clear, Figure 2-16 shows D = 50 geodesic which has 502= 

2500 sub triangles.  

 

Figure 2-16 Triangular Surface of a Degree 50 Geodesic Sphere. 

2.2.1.2 CAD model of the Geodesic Sphere in SOLIDWORKS 

Once the coordinates of a triangular curved surface of a geodesic Sphere is 

obtained, it is used to generate a CAD model of the surface Figure 2-17 

 

Figure 2-17 Triangular Surface of the Sphere modelled in SOLIDWORKS 
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This surface represents one triangular face of an icosahedron subdivided into different 

facets and the vertices of the sub triangles projected onto the sphere enclosing the 

icosahedron. These surfaces are then assembled in SOLIDWORKS assembly module to 

create a Geodesic Sphere of a given degree. Care has to be taken to make sure the origin 

and centre of the sphere circumscribing the Sphere coincide for ease in calculating 

coordinates later.  

 

Figure 2-18 Geodesic Sphere (Degree IV) assembled in SOLIDWORKS 

Figure 2-19(a) shows the imprecision in the geometry due to lesser accuracy in coordinate 

calculation. Table 2-5 shows the precision in coordinates considered. The double lines at 

the interface in (a) show the overlap in the edges of the triangular surfaces while assembly. 

This imprecision can later effect the meshing of the part in ABAQUS. Note that (b) has 

high precision of coordinates and the triangular surfaces can be “knit” at the edges in 

SOLIDWORKS as they lie within the knitting tolerance. Note that the un-knit model is 

imported as a part in ABAQUS. Here knitting is done just to emphasize on the accuracy of 

the model.    
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(a)                                                                             (b) 

Figure 2-19 Mating in SOLIDWORKS done with  Coordinates of the order (a) 3-4 significant 

digits (b)13-14 significant digits.  

To import the model in ABAQUS, the precise assembled CAD model is then saved in .acis 

format. .acis format knits the geometry and keeps it as an enclosed shell. The blue lines at 

the edges of all the triangular surface (Figure 2-18) shows that they are not “knit” at the 

interface. If the surfaces in the geodesic is “knit” in SOLIDWORKS, then importing it to 

ABAQUS in .acis format makes it a solid geometry. Hence, after assembly, the model is 

saved in .acis format and is stitched automatically while importing it to ABAQUS. The 

unit is changed to meters in options for .acis format and the options “Combine into single 

part”, “Merge Solid Regions” and “Retain intersecting boundaries are checked.”  

Figure 2-20 shows the imported model Geodesic Degree II in ABAQUS from 

SOLIDWORKS. Note that the structure is treated as an enclosed shell only when it is 

imported in un-knit .acis format 



32 

 

Figure 2-20 Imported parts in ABAQUS CAE from SOLIDWORKS (a) .acis format, knitted 

geometry, (b) .iges format (c) .acis format, un-knitted geometry 

2.2.1.3 Shell thickness calculation 

Just as in the case of 2-D, the total mass of the geometries is desired to be constant. 

The thickness of the geodesic Spheres is varied so that its mass is equal to that of the 

spherical shell 

The spherical shell is of a outer diameter 1m with thickness 10mm. The total mass 

of the shell can be calculated by 

shell shellM V        (2.9) 

(a) (b)

(c)
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Where,   is the mass density of the material and shell shell shellV A t is the volume of the shell, 

24shell outA r is the outer surface area, 0.5moutr   is the outer radius of the shell  and 

10mmshellt  is the thickness of the shell.   

Similarly, the mass of the geodesic sphere enclosed in a shell of diameter 1 m is 

given by  

geo geoM V               (2.10) 

Where geo geo geoV A t  is the volume of the geodesic sphere. geoA is the surface area of the 

geodesic and geot is the shell thickness of the geodesic.  

Equating (2.9) and (2.10), substituting the equations for the volume, The thickness 

of the geodesic Spheres can be calculated as 

geo shell

shell geo

t A

t A
       (2.11) 

Where, geot  is the thickness of the geodesic Sphere and geoA is the surface area of the 

geodesic.  

The surface area of the geodesic Sphere is calculated by finding out the area of the 

sub-triangles on one of the triangular surfaces of the geodesic Sphere (Figure 2-17). The 

area of each such sub-triangle is then added up to get the entire surface area of the triangular 

surface. Since a geodesic Sphere is made up of 20 such triangular surfaces the total surface 

area is given by multiplying the area of one triangular surface with 20. 
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2.2.1.4 Surface area calculation of the triangular surface 

In previous sections, we have already calculated the coordinates for the sub 

triangles. With these coordinates, the side length of the subdivided triangles can be 

calculated. Then, the area of a triangle with sides lengths a, b and c can be given by 

heron’s formula as 

( )( )( )s s a s b s c         (2.12) 

Where, s is the semi-perimeter of the triangle 
1

( )
2

s a b c    

A MATLAB code is written (Appendix 6.3) to calculate the surface area. An index 

of node connectivity table is created to identify the coordinates connected to particular 

subdivided triangle (Figure 2-21).  

 

Figure 2-21 Numbering Scheme for IEN (DEGREE III) 

Referring Figure 2-1 the following table can be constructed 
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Table 2-6 IEN for degree III 

Triangle 

number 

Vertex 

numbers 

Area (m2) 

a 1 2 5 1.434051608279486e-02 

b 2 6 5 1.814357981154381e-02 

c 2 3 6 1.814357981154381e-02 

d 3 7 6 1.814357981154381e-02 

e 3 4 7 1.434051608279485e-02 

f 5 6 8 1.814357981154380e-02 

g 6 9 8 1.814357981154380e-02 

h 6 7 9 1.814357981154381e-02 

i 8 9 10 1.434051608279486e-02 

  

Table 2-6 shows the IEN for degree III geodesic Sphere.  This helps in identifying the 

coordinates connected to a given subdivided triangle. With this information, the area is 

then calculated. The table also shows the values of calculated area of each sub-triangles. 

Note that the area of the sub-triangles near the vertices of the triangle face is equal.  

2.2.2 The Outer Acoustic Domain  

For the acoustic domain, an enclosing shell is constructed having diameter 1.5m, 

which represents the boundary of the acoustic domain.  

 

Figure 2-22 Sectional View of the outer air domain modelled in SOLIDWORKS 
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Figure 2-22 shows the sectional view of the acoustic domain. When saved in .iges format, 

and imported to ABAQUS, the empty space between the surfaces of Sphere and the shell 

is transformed into solid. 

 

Figure 2-23 Sectional view of the acoustic domain in ABAQUS. Note that .iges format converts 

the section in solid 

Figure 2-23 shows the imported acoustic domain in ABAQUS. The orange coloured 

section is thus the solid section generated during the model import.  

2.2.3 Acoustic Infinite region 

The infinite elements represent the region outside the bounded computational 

domain   by assuming a radial approximation with outgoing wave behaviour [23]. 
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Figure 2-24 Infinite Elements 

Infinite elements replace the non-reflecting boundary condition on , with a single layer 

of elements with infinite extent. These elements are constructed with radial wave functions 

which satisfy the Somerfield Condition at infinity [17].   

lim 0
r

u
r iku

r

 
  

 
      (2.13) 

Where, u(x) is the spatial part of acoustic pressure or velocity potential, k is the 

wavenumber. r is the radius centred near the origin of the sound source. The Sommerfield 

radiation condition allows only outgoing wave proportional to exp (ikr) at infinity. [17] 

In this thesis, Acoustic infinite elements are used to truncate the acoustic boundary. 

There is no interaction in ABAQUS for Infinite boundary unlike Impedance Boundary 

Condition. A separate part thus is created to simulate the behaviour of infinite elements. 

This part is a 2-D wireframe circle for 2-D polygon and is a hollow 3-D revolved shell for 

the 3-D geometries. That part is referred to as acoustic domain. The part is later tied to the 

acoustic domain.      

Scatterer



Infinite Element


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For 2-D, the infinite element needs to be defined as a SOLID SECTION. The 

ABAQUS GUI doesn’t allow a SOLID SECTION assignment to a wire part. Hence the 

assignment is done later in the input file as explained in the Appendix.6.2  

For 3-D geometries, acoustic infinite elements can be assigned in the interface, but the 

reference node for the infinite elements is later defined in the input file.         (Appendix 

6.4 )  

 

Figure 2-25 Acoustic Infinite 
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CHAPTER THREE 

3 NATURAL FREQUENCY EXTRACTION 

In this chapter, the Natural Frequency of the structures is calculated in ABAQUS. 

These frequencies are later used in the acoustic scattering problem. When the structure is 

coupled to air domain, the added mass on the structure is negligible, hence damping is 

negligible and the Natural Frequency of the system remains almost the same. Hence it is 

imperative to calculate the natural frequency of the structure, to obtain resonance peaks 

later in the scattering analysis. 

3.1 Theory   

The equation of motion to describe a vibrating structure with n- degrees of freedom 

can be written as 

    (3.1) 

Where M  is the mass matrix, C is the damping matrix and K is the stiffness matrix and 

x is the harmonic displacement vector.  

Substituting  

       (3.2) 

Where ( )i     

        Substituting (3.2) in (3.1), we get 

 2 0   M C K     (3.3) 
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The natural frequency extraction problem is basically an eigenvalue extraction problem. 

The natural modes are the harmonic solutions of (3.3)with frequency  in the absence of a 

driving term [24] 

  The eigenvalue problem can then be set-up as 

2( ){ } 0   M C K        (3.4) 

Where { }  is the eigenvector, which represents the mode of vibration. 

As,   is complex, (3.4) will yield complex eigenvalues and eigenvectors. When no 

damping is present, C = 0. Which makes the solution real. Hence (3.4) can be rewritten as 

2( ){ } 0  M K          (3.5) 

Spectral analysis theory shows that [18] 

0

0,       

T

m n

T

m n for n m



 

M 

 
   (3.6) 

Hence using the orthogonality properties of the eigenvector it is possible to decouple the 

multi-dof system into single dof systems as the modes are mechanically independent. (The 

uncoupling is done in analytical solutions solve each equation separately. For complex 

geometries numerical approximation like FEA are used) 

The equation can be uncoupled by substituting x u in (3.1) and keeping C  = 0. Then 

we have 

    (3.7) 

Where   is known as the modal matrix , 1 2 3[   ........ ]n     
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Where n  is the 
thn  mode corresponding to the 

thn  natural frequency. Using the knowledge 

from (3.6), and multiplying (3.7) with T we can reduce (3.7) into diagonal matrices 

    (3.8) 

Where,   

1 1

2 2

 0   0   0   0  0   0   0   0

0    0   0   0 0   k  0   0   0

0   0   .    0   0   and  0   0   .    0   0

0   0   0    .   0 0   0   0    .   0

0   0   0   0   0   0   0   0

T T

n

m k

m

m

 
 
 
  
 
 
 
 

M K     

   kn

 
 
 
 
 
 
 
 

 

The decoupled single dof equations can then be written as 

0,   where i = 1,2,3....ni i i im u k u 
..

 

n is the number of modes and the natural frequency for a single dof system without 

damping having a modal stiffness ik  and a modal mass im are related as 

i
i

i

k

m
 

     (3.9) 

3.2 Beam Element Size 

To study the wave behaviour with accuracy, it is imperative to have an element size 

that can approximate a sinusoidal wave of a given wavelength with appreciable accuracy. 

Thompson et. al., [25] suggested at least 10 elements should be considered per smallest 

wavelength in order to capture the nature of wave with reasonable accuracy. 
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Amongst the structural waves (Longitudinal, Shear, and Bending), the bending wave speed 

is a function of  . The bending is the slowest propagating wave amongst the structural 

waves. The relation between wave speed, frequency and wavelength is given as 

2medium mediumc c

f





         (3.10) 

where mediumc is the speed of wave in the medium,   is the frequency in rad/s and 

/ 2f    is the frequency in Hz.  

When a longitudinal wave or a transverse wave is obliquely incident upon a stress-

free surface it generates both reflected longitudinal and transverse waves. This 

transformation process in beam and plate structures produces a hybrid form of wave called 

bending or flexural wave [26]. The effect of bending wave causes the structure to deform 

transversely as well as the cross sections to rotate about their neutral axis. The bending 

wave speed is given as 

2

4
EI

c
A




       (3.11) 

where E is the young’s modulus, I is the moment of inertia of the cross section,  is the 

mass density, A is the cross sectional area.  

Note that the bending wave speed is proportional to the square-root of frequency,  

bendingc   . 

Thus, as mediumc is least in case of bending waves, the smallest wavelengths are 

associated with it.  
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For the rectangular cross sectional area of the geometries, we have eA Dt , which is the 

area of the cross-section of the beam element, where D  is the depth (1m) and et is the 

thickness of the beam element. The area moment of inertia of a rectangular cross section 

about its centroid is given by 
  
I = Dt

e

3 / 12. 

From (3.10) and (3.11), and substituting numerical values for E,   gives  

150.94 e
bending

t

f
 

   

For the maximum frequency considered, 3000 Hz, the smallest wavelength of interest is 

then, 

3.37512bending et 
 

For 10 elements per wavelength, the minimum element size should be 

  
l
e
= 0.337512 t

e  

and depends on the beam element thickness.  

3.3 Natural Frequency 2-D 

After calculating the proper mesh density, the Natural frequency is extracted by 

ABAQUS for all the geometries under investigation. The Model Set-up for the natural 

frequency of the geometries is given by Table 3-1 
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Table 3-1 Model Set-up for Structural Domain 

Domain 2-D Planar – Deformable  

Material Aluminium Density = 2700 kg/m3   

Young’s modulus = 7.1e10 Pa 

Poisson’s ratio = 0.33 

Structural Damping = 0.01 

Section Beam Section  

Beam Profile Rectangle  

D = depth in z-direction = 1m 

te = thickness of beam element, 

varying according to geometry to keep mass constant  

Mesh Beam elements: B22 – A 3 node quad beam element in a plane. 

Step 1) ‘Initial Step’ – default 

2) ‘Linear Perturbation – Frequency’ Step  

– maximum frequency of interest: 3000 Hz 

 

The natural frequency obtained from ABAQUS for the shell geometry is further validated 

with an analytical solution [Thompson: Matlab Program (Appendix 6.5)]:  

2 2 2

4 2

( 1)
2

( 1)

EI n n

AR n
 







 

Where, E is the young’s modulus, 
  
I = Dt

e

3 / 12 is the moment of inertia, where D  is the 

depth (1m) and et is the thickness of the element,  is the mass density, A  is the cross 

sectional area, R  is the radius of the ring, n  is the mode number of vibration.  

Figure 3.1 shows a comparison of the analytical and numerical results obtained. The mesh 

seed size for the natural frequency extraction in ABAQUS is 0.01m.  
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Figure 3-1 Comparison of numerical and analytical values of natural frequency of a ring 

Figure 3-1 shows the comparison between the numerical and analytical values. The 

agreement of the numerical with the analytical values confirm the mesh density to be 

accurate enough. 

Table 3-2 Natural Frequency of the 2-D geometries calculated by ABAQUS 

Mode  

number 

15 30 45 Ring 

1 0 0 0 0 

2 25.57 26.457 27.656 25.28 

3 72.297 74.775 77.87 71.478 

4 138.55 143.19 138.71 136.99 

5 223.92 231.02 160.82 221.4 

6 328.22 327.46 239.81 324.55 

7 451.31 350.18 337.99 446.3 

8 593.07 464.94 357.98 586.55 

9 753.35 606.55 398.02 745.17 

10 931.97 731.18 651.74 922.03 

11 1128.7 758.5 694.69 1117 

12 1332.4 889.18 879.73 1329.9 
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Mode  

number 

15 30 45 Ring 

13 1355.2 895.33 1102 1329.9 

14 1481.4 1400 1271.9 1560.6 

15 1576.6 1428 1432.7 1632.3 

16 1826.3 1671.1 1603.3 1808.9 

17 2077.6 1997.4 1763.6 2074.6 

18 2092.9 2322.3 1805.2 2308.4 

19 2375.6 2645 1854 2357.5 

20 2673.2 2736.2 2558.8 2657.5 

21 2982.8 2898.5 2836.1 2974.2 

 

 

Figure 3-2 Comparison of Natural Frequencies of the 2D Structures 

Figure 3-2 shows a comparison of the Natural Frequencies of the structure up to 3000 Hz 

frequency range. The Natural Frequency of 2D-polygon 15 is following the Natural 

Frequency curve of the ring closely. This is quite intuitive, as 15 approximates a ring the 

best amongst the 2D polygons considered in the thesis.   
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These natural frequencies thus obtained are later used in the scattering analysis. (Chapter 

4) 

3.4 Natural Frequency 3-D 

The natural frequency extraction of 3-D geometries presented in section 2.2.1 is 

discussed in this section.    

3.5 Shell Element Size 

In case of 3-D, the size of the domain increases and the degrees of freedom too. 

Hence computational cost is an important variable to be pondered upon. A trade-off 

between the computational cost and the desired accuracy has to be done.  

A convergence study is done for the homogeneous shell, for seed sizes 0.01m, 0.015m and 

0.02m.  

 

Figure 3-3 Comparison of the natural frequency of the spherical shell with different mesh size. 
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At higher frequencies, the natural frequency for the model starts to differ for different 

element sizes which is as expected (Figure 3-3). Table 3-3 shows the natural frequencies 

of the last 20 modes for comparison.  

Table 3-3 Comparison of the Natural Frequencies of the last 20 modes extracted in ABAQUS 

with different mesh size. 

Seed 

0.01 

Seed 

0.015 

Seed 

0.02 

2762.5 2799.2 2848.1 

2762.7 2799.6 2849.1 

2763.0 2800.1 2849.7 

2763.2 2800.4 2850.5 

2763.5 2800.9 2851.2 

2764.0 2802.0 2851.7 

2764.3 2802.8 2852.3 

2764.4 2803.3 2853.5 

2764.9 2803.5 2853.9 

2765.1 2804.0 2854.8 

2765.3 2804.3 2855.5 

2765.7 2805.2 2855.8 

2766.1 2806.0 2857.3 

2766.6 2806.5 2858.8 

2766.7 2807.4 2858.8 

2767.5 2808.6 2860.7 

2767.7 2809.6 2862.7 

2768.6 2810.0 2863.9 

2770.4 2812.2 2865.0 

2820.5 2822.1 2873.8 

 

At the last mode for the highest frequency, the difference between seed 0.01 and seed 0.02 

is less than 2%. In case of natural frequency extraction the domain is smaller and hence the 

computational time is not a big concern, but in case of acoustic scattering (section 4.12) 

the size of the domain increases. Thus to be consistent with the mesh size chosen for the 



49 

structure in acoustic scattering analysis (section 4.12 ) and in the natural frequency 

extraction, a seed size of 0.02 is considered to be reasonably accurate. (Figure 3-4) 

 

Figure 3-4 Mesh Density (a) Seed 0.02, (b) Seed 0.015 (c) Seed 0.01 

Figure 3-5 shows the mesh density with seed size 0.02 m of the geodesic spheres (Degree 

II, Degree III, Degree IV) under investigation.  

 

(a)             (b)                                         (c) 

Figure 3-5 Mesh Density  (seed size 0.02m)  of the Geodesic Spheres selected for the analysis (a) 

Degree II (b) Degree III (c) Degree IV 

(a) (b) (c)
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3.5.1 Natural Frequency extraction 3D 

The cad model is first imported as a part into ABAQUS from SOLIDWORKS by 

saving it as an “.acis” file. The model setup is given by Table 3-4 

Table 3-4 Model Set-up in ABAQUS for 3D Geometry 

Domain 3-D Planar – Deformable  

Material Aluminium Density = 2700 kg/m3   

Young’s modulus = 7.1e10 Pa 

Poisson’s ratio = 0.33 

Structural Damping = 0.01 

Section Homogeneous Shell   

Thickness 

Value 

Varying according to geometry to keep mass constant. Simpson 

integration rule with 5 integration points.  

Mesh Shell Elements: S3 – A 3-node triangular general purpose shell, finite 

member strains  

Step 1) ‘Initial Step’ – default 

2) ‘Linear Perturbation – Frequency’ Step – maximum frequency 

of interest: 3000 Hz 

 

Table 3-5 lists the natural frequencies of the 3D geometries under investigation. The 

frequencies start to get closer to that of a spherical shell as the degree of the geodesic 

increases. In case of the shell, the frequencies occur in clusters of 3-4 equal values. One 

value is picked from that cluster, and used later in the calculation of scattering response. 

These clusters represent the orientation of the same mode shapes along different axis in the 

space. In case of geodesics, for frequencies higher than around 1500Hz, no such identical 

clusters of frequencies is obtained. Table 3-4 gives the natural frequencies for the 

geometries used for the calculation of the scattering response. All the calculated natural 

frequencies are tabulated in the Appendix.6.7   
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Table 3-5 Natural Frequencies of the 3D geometries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mode 

No. 

Degree 

II 

Degree 

III 

Degree 

IV 

Shell 

1 914.71 1113.30 1166.40 1191.20 

2 933.31 1300.10 1377.00 1416.30 

3 973.44 1370.90 1380.10 1511.60 

4 1002.40 1398.20 1455.10 1568.60 

5 1047.80 1404.20 1472.70 1616.20 

6 1052.30 1420.00 1503.60 1667.60 

7 1076.70 1442.80 1515.80 1729.90 

8 1107.10 1461.00 1541.00 1810.00 

9 1159.30 1475.80 1549.70 1909.40 

10 1167.50 1499.90 1569.50 2001.50 

11 1183.80 1516.20 1586.40 2034.50 

12 1237.80 1521.20 1600.40 2183.50 

13 1250.70 1527.20 1628.90 2358.90 

14 1346.00 1598.50 1651.10 2561.20 

15 1392.30 1603.00 1678.30 2580.50 

16 1438.50 1648.20 1684.60 2789.30 

17 1463.60 1652.90 1709.40 2822.10 

18 1477.20 1659.80 1718.20 3000.00 

19 1527.60 1665.60 1758.70   

20 1552.90 1676.70 1781.90   

21 1587.30 1713.70 1797.40   

22 1610.00 1762.10 1827.40   

23 1766.40 1827.20 1844.90   

24 1824.20 1858.60 1887.70   

25 1842.20 1900.20 1894.10   

26 1851.80 1931.70 1938.30   

27 1882.80 1998.60 1971.70   

28 1930.10 2021.20 2000.30   

29 1983.40 2049.60 2027.00   

30 2049.70 2116.00 2033.80   

31 2083.60 2150.30 2069.50   

32 2135.30 2168.90 2103.60   

33 2210.30 2212.20 2158.10   

34 2232.70 2244.40 2163.30   

35 2267.80 2278.20 2194.70   

36 2331.50 2306.00 2204.80   



52 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6 the mode number v/s natural frequency plot for the structures under 

investigation. The plot shows as the degree of the geodesic increases, it starts to behave 

more and more like a sphere, which is quite intuitive. The plot also shows the degree II 

geodesic is less stiff than the higher degree geodesics at low frequencies, which is 

understood as it has longer struts. But at higher frequency, between 2000-3000 Hz, it shows 

more stiffness than the other models in study, which is interesting to observe. 

37 2379.50 2380.90 2241.10   

38 2415.80 2388.20 2261.20   

39 2475.20 2398.90 2283.60   

40 2531.20 2423.70 2293.30   

41 2615.50 2491.80 2368.00   

42 2706.60 2527.20 2373.50   

43 2723.80 2553.00 2431.80   

44 2743.10 2585.40 2452.60   

45 2772.40 2635.30 2466.90   

46 2825.60 2691.80 2481.80   

47 2861.60 2720.30 2562.60   

48 2870.50 2752.70 2597.70   

49 2908.40 2788.10 2633.00   

50 2922.50 2847.20 2664.70   

51 2957.40 2874.90 2672.60   

52 2979.50 2907.60 2718.70   

53 2981.60 2911.90 2809.90   

54     2823.70   

55     2835.50   

56     2870.50   

57     2879.00   

58     2994.10   
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Figure 3-6 Comparison of Natural Frequencies extracted from ABAQUS of the different 3-D  

Geometries 

3.6 Mode Shapes     

Mode shapes are the characteristic spatial distribution of vibrations associated with 

corresponding natural frequencies natural frequencies. The mode shapes should be 

captured accurately, as they play a significant role in capturing the acoustic scattering 

response. The displacements at the structure boundary is thus directly related to the mode 

shapes. The structural-acoustic coupling couples this displacement at the structure – fluid 

interface such that the structure and the fluid move together. Thus the study of the modes 

shapes is important in analysing and understanding the scattered wave characteristics.  

We observe two kind of mode shapes in modal analysis, 1) Flexural mode and 2) 

Dilatational Mode. During the flexural mode of vibration, the surface deforms in the same 

direction at any point inside or outside the structure. In Dilatational Mode, the entire surface 

expands or contracts compared to its base state (breathing mode).  
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Shows the dilatational and flexural mode of the ring and shell models under investigation 

in this thesis. The flexural mode occurs at the lower natural frequencies and the first 

dilatational mode is observed at higher frequencies. At frequencies beyond the dilatational 

mode, the mode shapes are observed to have more local deformations.   

Table 3-6 Flexural and Dilatational Mode of the Ring and Sphere 

Geometry Base State Dilatational Mode Flexural Mode 

Ring 

 

 

@ 1632.3 Hz 
 

@ 25.280 Hz 

Shell 

 

 

@2001.5 Hz 

 

@ 1191.2 Hz 

 

The figures below present the first five mode shapes and natural frequencies of the 

geometries in 2-D and 3-D. The natural frequencies become closer to the ring/shell, when 
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the number of sides n of the polygon (for 2-D) and the degree of the geodesic increases. 

For 2-D, in case of Figure 3-9 and Figure 3-10, the mode shapes and the natural frequency 

start to converge to that of the ring. For 3-D, in case of  Figure 3-13 and Figure 3-14, the 

mode shapes and the natural frequency start to converge to that of the shell. 
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Figure 3-7 First five mode shapes and natural frequencies of 450 (n = 8). 

 

Figure 3-8 First five mode shapes and natural frequencies of 300 (n = 12). 

 

Figure 3-9 First five mode shapes and natural frequencies of 150 (n = 24). 

 

Figure 3-10 First five mode shapes and natural frequencies of ring. 

 

27.656 Hz 77.870 Hz 138.71 Hz 160.82 Hz 293.81 Hz

26.457 Hz 74.775 Hz 143.19 Hz 231.02 Hz 327.46 Hz

25.570 Hz 72.297 Hz 138.55 Hz 223.92 Hz 328.22 Hz

25.570 Hz 71.478 Hz 136.99 Hz 221.40 Hz 324.55 Hz
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Figure 3-11 First five mode shapes and natural frequencies of Degree II Geodesic. 

 

Figure 3-12 First five mode shapes and natural frequencies of Degree III Geodesic. 

 

Figure 3-13 First five mode shapes and natural frequencies of Degree IV Geodesic. 

 

Figure 3-14 First five mode shapes and natural frequency of the sphere.

 

914.71 Hz 933.31 Hz 973.44 Hz 1002.4 Hz 1047.8 Hz

1113.3 Hz 1300.1 Hz 1370.9 Hz 1398.2 Hz 1404.2 Hz

1164.1 Hz 1373.5 Hz 1451.0 Hz 1467.9 Hz 1497.7 Hz

1191.2 Hz 1416.3 Hz 1511.6 Hz 1568.6 Hz 1616.2 Hz
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CHAPTER FOUR 

4 ACOUSTIC SCATTERING RESPONSE  

Scattering describes waves that are induced due to an abrupt impedance change in 

space, especially when waves are spread out in space [27]. Due to the impedance mismatch, 

the incident waves get disrupted. Hence when a wave is incident onto a surface of a medium 

which has a different characteristic impedance than that of a medium it was travelling in, 

there can exist a scattered wave (along with reflected and diffracted, depending upon the 

impedance mismatch) in all the directions from the surface along with the undisturbed 

incident wave. Scattering depends upon the wavelength and the geometry of the scatterer.  

In this chapter, the scattering response of the different structures (2-D and 3-D) are 

studied and are compared to a reference structure. Later, a value of the ratio of wavelength 

to the characteristic dimension of the facet is proposed which relates their behaviour to the 

reference structure. The Target Strength (TS), which just a scaled form of the acoustic 

pressure is calculated at the near end and far end for all the geometries.  

To get a better understanding of the scattering by an elastic body, first a rigid body 

scattering analysis is performed, in which there is pressure is considered to be zero at the 

structure-fluid interface (rigid boundary condition). The next section shows how the wave 

equation, which is the governing equation for all the waves propagating in space is derived. 

Which is the basis to understand theory behind the scattering from a rigid body and the 

structure-acoustic coupling.  
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4.1 Structural-Acoustic Theory 

The section presents the theory and equations behind the Structural-Acoustic 

Coupling. First, the theory behind the acoustic equations is discussed, later the structural-

acoustic formulation in FEA is discussed.  

4.1.1 The Wave Equation 

Sound results from a time-varying perturbation of dynamic and thermodynamic 

variables. The independent variables that basically govern the wave equation are pressure

( )p , fluid velocity ( )v   and density ( ) .   

We have 

'

0

'

0

'

0

p p p

v v v

  

 

 

 

     (4.1) 

Where, the subscript “0” denotes the quantities appropriate to the ambient medium and 

prime represents the perturbation in the quantity. 

The conservation of mass is described by the partial differential equation as 

.( ) 0v
t





 


    (4.2) 

The governing equation for a fluid is given by the Navier Stokes equation. But, if the 

viscosity, thermal conductivity and gravity are neglected, Navier Stokes equation reduces 

to Euler equation which can be given after linearization as 

v
p

t



 


     (4.3) 
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The differential relation between the thermodynamic coefficients can be given as  

2p
c

t t

 


 
     (4.4) 

 

Using (4.4) in (4.2) we get 

2 0
p

c
t




  


v     (4.5) 

Where 2c K   is the bulk modulus. 

Taking time derivative of (4.5), we have 

2
2

2
0

p
c

t t


 
  

 

v
    (4.6) 

Substituting (4.3) in (4.6), with constant density, gives the wave equation for linear 

acoustics as 

  
2

2

2 2

1
0

p
p

c t


  


    (4.7) 

Where p is the time harmonic acoustic pressure and c is the speed of light in the fluid 

medium.  

4.1.2 Rigid Body Scattering 

Scattering describes waves that are induced due to an abrupt impedance change in 

space, especially when waves are spread out in space [20]. Scattering depends upon the 

wavelength and frequency of the wave. It also depends upon the geometry of the scatterer. 

We aim to find the relation between these three parameters to obtain scattering 

characteristics.  
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Figure 4-1 Scattering from a rigid body. 

The total time harmonic sound pressure is given by the sum of the complex amplitude of 

the incident wave ( ip ) and the complex amplitude of the scattering wave ( scp ).  

t i sc p p p      (4.8) 

Since the boundary is acoustically rigid, vn = 0, thus the boundary condition is given as 

ˆ 0t n  p      (4.9) 

ip  is the incident pressure propagates in the direction of wave number vector k , incident 

wave at position r  can be written as 

    (4.10) 

Where 
0i

p is the complex amplitude of incident wave.  

Taking gradient of (4.8) and multiplying by n̂ and then using (4.9) in (4.8) we have 

   (4.11) 

The linearized Euler equation (4.3)gives  

0

( )i k r t

i i e  p p

scp

n

n̂
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0

i t
scsc i v e   p     (4.12) 

Where scattering velocity ( scv ) is assumed to be harmonic in time and is given by  

0

i t
sc scv v e       (4.13) 

Consider the scatterer to be a sphere in a 2-D plane of radius a (Figure 4-2), with a plane 

wave incident on it in the direction of the wavenumber vector ( k ) then (4.11) can be 

rewritten as  

0

( cos )ˆ cos xi k a t

sc i xp n ip k e
  

       (4.14) 

Where ˆ ˆ ˆˆ (cos sin ) cosx xk n k i i j k         and ˆ ˆ| | cosx xk r k i r n k a       

Where   is the angle between the wavenumber vector k  and the normal vector n̂ .  

 

 

Figure 4-2 Scattering from a rigid sphere in 2-D plane 

 

ˆ
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O



63 

From (4.12) and (4.14),  
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   (4.15) 

 

Thus the normal velocity on the rigid sphere is a function of  . In special case, if size of 

the scatterer is smaller than the wavelength of interest i.e. 1ka   , (4.15) can be expanded 

using Taylor series as (neglecting the higher order terms) and writing xk k , 

0

0
ˆ cos (1 cos )

i

sc

p
v n ika

c
 




      (4.16) 

 

 

Figure 4-3 A velocity profile showing (a) the trembling effect due to first term in the normal 

velocity (b) the breathing effect due to the second term in the normal velocity. 
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From (4.16), the normal velocity has two components, one depends on cos and the other 

on 2cos  . At 00  and =180o   the first term is 0i
p

c


and 0i

p

c
respectively, which shows 

the magnitude of the velocity is the same but the negative sign shows that it is opposite to 

the normal. Thus the first term demonstrates the trembling effect of the sphere (Figure 

4-3(a)) 

The second component on the other hand is 
0

/iika cp which has the same 

magnitude and direction as the normal. Thus the second term demonstrates the breathing 

effect of the sphere. (Figure 4-3 (b))  

If the sphere is smaller than the wavelength of interest, the contribution form the 

second term is much lesser. Hence a small sphere (when compared to the wavelength of 

interest) will display more of a trembling effect.[20] 

4.1.3 Structural Acoustic coupling 

 

Figure 4-4  The Structural-Acoustic Domain 
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ˆ
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The governing differential equations for the structure-acoustic systems is 

presented.[28] The equation of motion for a continuum body assuming small deformations 

is given by (4.17). On the structure domain. Here  is the stress acting at a point in the 

domain, b is the body force,   is the density and u is the displacement. The governing 

differential equation for the structural domain is mainly balancing out forces based on 

Newton’s second law of motion.  

2

2t



  


u
b       (4.17) 

With boundary conditions 

    on  (Dirichlet B.C.)

   on  (Neumann B.C.)

u

t

S FS

S FS

 

 

u u

n t
    (4.18) 

4.2 Finite Element formulation for the coupled problem 

Using weight functions and subsequently the green’s theorem to obtain the weak 

form of the boundary value problem, (4.17), which can be defined as  

Find u  such that traction at 
tFS = t  and for all arbitrary w satisfying the constraint w = 0 

at 
uFS  

2

2
( ) 0

S S FS S

s S s S s FS s FSd d d d
t


   


        

   
T T T Tu

w w w t w b   (4.19) 

 Discretizing using FEA elements and interpolation Shape functions we get discretized 

form as  

( )

S S FS S

eT eT e e eT e e e eT eT eT eT

s s s s s s s s s s s s FS s s Sd d d d
   

           
T

w N N d w N D N d w N t w N b   
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Where D  is the constitutive matrix for an isotropic material. 

Assembling the finite elements in the structural domain s , we get the set of equations in 

matrix form as  

s s s s s M d K d F     (4.20) 

where,

( )
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e e
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 

   
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

T

M N N

K N D N

F f f

f N t
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        (4.21) 

The governing equation for a fluid is based on the linearized wave equation (4.7).. 

Subject to boundary conditions 

                      on  (Dirichlet B.C.)

ˆ               on  (Neumann B.C.)

u

t

FS

n FSn

 

  

s
p p

v p
 

Using weight functions and subsequently the green’s theorem to obtain the weak form of 

the boundary value problem, which can be given as  

 

2
2 2

2
( ) 0

F S FS

F s F s F F FSd c d c d
t

  


        

  
T T Tp

w w p w pn  

Discretizing using FEA elements and interpolation Shape functions we get discretized 

form as 
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2 2( )

F S FS

e e T e e e e e e T T

F F F S F F F S F F F FSd c d c d
  
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Assembling the finite elements in the fluid domain F , we get the set of equations in 

matrix form as  

F F F M p K p F     (4.22) 

2

2

where,
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Structure - acoustic coupling takes place at the interface of fluid and structural boundary

FS . The displacement at the boundary is the same for both fluid and structural domain, as 

they move together. Also, the acoustic pressure can be related to the surface traction on the 

structure. (4.23) show the coupling boundary conditions (  on FS ) 

 

S S F F

S F

 

 

u n u n

n pn
     (4.23) 

let S F  n n n , then 

  

  

S F 



u n u n

n pn
 

 from (4.18) 

t pn       (4.24) 

Thus from (4.21) and (4.24) we get  
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Using Euler’s equation, we have 
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Now,  
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Thus,    
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  (4.25) Shows the coupling of acoustic pressure and structural displacement in the force 

terms. Note that the shape functions are also coupled and the integral terms are basically 

transpose of each other.  
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Hence, we can write  
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Using (4.25) and (4.26) in (4.20) and (4.22), we can write the following structural-

acoustic coupled equations  

2 0

S S S S SF b

T

F F SF Sc

  
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In matrix form, 
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T
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4.3 Scattering from an Elastic Body 2-D 

Before considering 3-D geometries, the scattering behaviour of 2-D geometries is 

first studied. Infinite elements have been used on a surrounding circular boundary to 

truncate the infinite acoustic domain for all analysis present in this thesis. 
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4.3.1 Model set-up in ABAQUS 

 

Figure 4-5 2-D faced polygon surrounded by infinite acoustic domain truncated at outer circle. 

The acoustic wave speed and wavelength is used as a guide in selecting the element 

size in the acoustic region. The incident wave for entire frequency range of 1-3000 Hz has 

constant unit amplitude and scatters back into the acoustic domain. Considering air in the 

outer acoustic domain, speed of sound in air is given by /c K    , where is 

  K =  1.42e5 Pa  is the bulk modulus of air,    = 1.2 kg/m3, is the density of air. Thus, 

speed of sound in air is c = 343.996 m/s. Using relation /c f    , where  is the acoustic 

wavelength and is the f frequency of the sound in Hz. For our analysis, the maximum 

frequency considered is f =3000 Hz, which corresponds to the shortest wavelength. Thus 

the smallest wavelength considered is min = 0.11467 m. For 10 elements per smallest 

wavelength, the maximum element length should be 0.011467m. For a ring of diameter 1 

m, frequency at 3000 Hz, corresponds more than eight wavelengths per diameter,  /a    = 

8.72. Since the medium is the same in 2-D and 3-D, the maximum element size is the same. 
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4.3.1.1 Domain  

The finite element domain is made up of 3 parts for 2-D scattering response 

analysis.  

Air domain is a 2D Planar-Deformable-Shell. Discretized by AC2D8: An 8-node 

quad 2-D acoustic quadrilateral FEA element. This air domain has a diameter of 1.5m and 

a depth of 1m.  The domain has the properties of air as given by  

Table 4-1 and a Solid, Homogeneous section, with a plane stress/strain thickness of 

1. The section is created and assigned in the property module of ABAQUS. 

  The Part for the infinite boundary is a 2D Planar-Deformable-Wire. Discretized by 

ACIN2D3: A 3-node acoustic infinite element with quadratic surface interpolation. This 

domain has the properties of air as given by Table 4-2 and a Solid, Homogeneous section. 

For 2D geometries, wire geometries cannot be assigned a solid section, the section 

assignment is done by editing the input file generated by abaqus. Explained in Appendix 

6.2. The boundary is cylindrical having a diameter of 1.5m and a depth of 1m. The diameter 

of the boundary is set by doing a convergence study.  

The elastic structure is a 2D Planar-Deformable-Wire. Discretized by B22: A 3 

node quad beam in a plane. The part is modelled with varying thickness and has the 

properties as explained in Natural Frequency extraction. (Section 3.3) 

Table shows the summary of the properties of the parts created.  

1. Elastic Domain can be referred from Table 3-1 

2. Acoustic Domain 
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Table 4-1 Model Set-up for Acoustic Domain 

Domain 2-D Planar – Deformable  

Material Air Density = 1.2 kg/m3   

Bulk Modulus = 1.42e5 Pa 

Section Solid Homogeneous, with plane stress/strain thickness 1  

Mesh Acoustic elements: AC2D8 – An 8 node 2D acoustic quad element  

 

3. Acoustic Infinite Domain 

Table 4-2 Model Set-up for Infinite Boundary Domain 

Domain 2-D Planar – Deformable  

Material Air Density = 1.2 kg/m3   

Bulk Modulus = 1.42e5 Pa 

Section Solid Homogeneous, with plane stress/strain thickness 1 (Defined in 

the input file) 

Mesh Acoustic infinite elements: ACIN2D3 – A 3 node acoustic infinite 

element with quadratic surface interpolation  

 

4.3.1.2 Step  

‘Steady State Dynamics – Direct’ analysis is carried out for a frequency range of 1-

3000 Hz. The natural frequencies extracted earlier are then used as frequency sweep input 

with sufficient number of points in between each frequency range and a bias of 2. The bias 

intends to put more points near the natural frequency of the structure for better refinement 

of acoustic response near the structure natural frequency than at a frequency point in-

between two consecutive natural frequencies  

Step 1: Initial – ABAQUS default step 

Step 2: Steady State Dynamics – Direct – Loading step, with linear scale from 1-3000 Hz. 
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4.3.1.3 Interaction Properties 

An interaction property defines the properties of the propagating wave through the 

given medium. Hence, the fluid density, the speed of the wave in that medium is defined.  

4.3.1.3.1 Amplitude 

Amplitude of the incoming plane wave is defined by interpolating between 

frequency values. Amplitude is defined as given by the following Table. A unit amplitude 

is specified since results will be scaled with the incoming wave pressure amplitude.   

Table 4-3 Amplitude Definition 

Span Frequency Amplitude 

Minimum 0 1 

Maximum 3000 1 

 

4.3.1.3.2 Interactions 

The interaction properties are discussed in this section.  

Incident Wave 

As there are two surfaces at the structure-fluid interface, two interaction properties 

need to be specified. To define the incident wave, a source and a stand-off point needs to 

be specified. The reference points created and their coordinates are specified below Figure 

4-6 

RP-1 – Source point – (0.75, 0) 

RP-2 – Stand-off point – (0.5, 0) 
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Then, surface upon which the wave is incident has to be specified. The surfaces at which 

the wave is incident for the two interactions, are the inner surface of the acoustic domain 

and the outer surface of the elastic body.  

 

Figure 4-6 Interaction definition for 2-D geometry. 

The incident wave is defined as a “Pressure” wave, with a Reference magnitude of 1 with 

an amplitude defined earlier. 

The wave properties are defined in the interaction properties, which is given by  

Table 4-4 Wave propagation properties 

Medium Wave 

Definition 

Speed of sound 

in fluid (m/s) 

Density 

(Kg/m3) 

Bulk 

Modulus (Pa) 

Air Planar 343.996 1.2 1.42e5 

 

4.3.1.4 Constraints 

The model has two constraints. One ties the structure to the acoustic domain and 

the other constraint ties the infinite boundary to the outer surface of the acoustic domain. 

Elastic Body Tied to 

the acoustic domain 

Stand-off 

Point

Source 

Point

Outer 

Acoustic 

Domain

Infinite Boundary 

tied to acoustic 

domain
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ABAQUS manual says the coarser mesh to be the master surface and the finer mesh to be 

the slave surface. For all the models present in the thesis, especially in 3-D, care has been 

taken to have the same type of Mesh Controls (i.e. tri for shell and tetrahedron for solids) 

and have the same element size, so that more accuracy can be obtained from the tie 

constraint.  

For coupling structure and acoustic, the structure is made the master and the 

acoustic medium is the slave. The infinite boundary is tied to the outer surface of the 

acoustic domain using tie constraint. As, the inner surface of an infinite element doesn’t 

exist, outer surface of the infinite boundary has to be selected and subsequently tied to the 

outer surface of the acoustic domain.  

4.3.1.5 Field Output Requests 

Acoustic Pressure (POR) is requested as a field output for the node sets mentioned 

in Table 4-5 . This acoustic pressure is later used to calculate the target strength and plotted 

against the frequency. 

Table 4-5Field Output Request on Nodes 

Position X-coordinate Y-coordinate 

Front near node 0.5 0 

Back near node -0.5 0 

4.3.1.6 Job 

After setting up the entire model, a job is created in a desired folder by setting up the 

work directory. As calculations for the numerical problem require more computational 

resources, the input files are created first and then submitted onto the Palmetto cluster.  
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4.4 Target Strength 

Target Strength is a frequency dependent parameter defined by the ratio of magnitude 

of pressure of scattered wave with respect to the magnitude of the pressure of incident wave 

[29]. Mathematically, the target strength is given by 

10

| ( , , ) |
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| ( , , ) |
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i

P r
TS

P r

 

 

 
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 
    (4.27) 

Target strength is a function of position in space and the frequency, as shown by (4.27). 

Here, P0 is the pressure of the scattered wave and Pi is the pressure of the incident wave. 

To enable us to compare the degree of loudness of sound, the Pi is replaced by 

52 10  ParefP   , which is the threshold pressure of human hearing.  

Thus from (4.27) 
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The target strength is a function of position in space and the frequency. The target strength 

has been calculated at the front and the back end of the geometries as shown in Figure 4-7. 

The target strength is calculated at front and the back near end of the geometry. For each 

geometry, same points have been selected for consistency.  
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Figure 4-7 The target strength is calculated at the front and back near node of 2-D  

4.5 Mesh Convergence  

Figure 4-8 and Figure 4-9 show the plots for mesh convergence at the front near 

and back near node.    

 

Figure 4-8 Mesh convergence for Elastic Scattering response of 2-D geometries at front near 

node. 
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Figure 4-9 Mesh convergence for Elastic Scattering response of 2-D geometries at back near 

node. 

Mesh density is convergent for a seed size of 0.01m and 0.02m, but at higher frequencies, 

for better accuracy, the finer mesh with seed size 0.01m is selected.  

4.6 Location of the infinite boundary 

A convergence study is done to truncate the acoustic domain by the infinite boundary 

condition. Two factors have been taken into consideration 1) Convergence (especially 

towards the lower frequency range; 1-2000 Hz (ka = 36.5). 2) Computational cost. The 

acoustic scattering is requested at the same points at the front and the back end of the 

surface of the 1 m circular elastic ring scatterer.  Three different circular outer boundaries 

are investigated 1) Diameter 1.5m 2) Diameter 1.75m 3) Diameter 2m 
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Figure 4-10 Elastic Scattering response at different diameters of the circular infinite boundary at 

the front near node. 

 

Figure 4-11 Elastic Scattering response at different diameters of the circular infinite boundary at 

the back near node. 
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Figure 4-10 and Figure 4-11 show the convergence study to find the ideal location of the 

infinite boundary considering accuracy and computational cost. The curves for all the three 

diameters of the circular infinite boundary are in good agreement to each other.  

Figure 4-12, the bar graphs show the memory required in Gigabytes and the wall 

time in hours. The number of CPUs is 8 for all the cases. It can be seen clearly, that for the 

same number of processors, memory required and the wall time is the least for infinite 

boundary @ 1.5m. Hence the location of the infinite boundary is circle with a diameter of 

1.5 m.   

 

Figure 4-12 Bar Graphs comparing the computational resources utilized for the numerical 

calculations. For all the cases, mesh density is the same with seed size 0.02m and number of cpus 

is 8. 

4.7 Elastic Scattering response of the geometry 2-D 

Figure 4-13 and Figure 4-14 show the target strength plots of scattering from the 2-

D elastic bodies at the front and back near node.  
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Figure 4-13 Elastic Scattering response @ Front near node 

 

Figure 4-14 Elastic Scattering response @ back near node 
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Plots in Figure 4-13 and Figure 4-14 have two y-axes. The left y-axis is a measure of the 

Target strength (black axis) and the y-axis on the right (red) represents the log scale of the 

ratio of wavelength to chord length for different geometries. The x-axis represent the 

frequency range of interest normalized into ka . This non-dimensional frequency is 

calculated as ( / ) (2 / ) (2 / )ka a c a f c a       , where a = 1m, is the diameter of the 

circular ring.  k is the wavenumber,  is the angular frequency in rad/s, f is the frequency 

in Hz, c is the speed of sound in the medium and  is the wavelength of interest. 

As ka is inversely proportional to the wavelength  , the largest value of ka 

corresponds to smallest  . In this case maximum ka = 55. This gives a/ =55/ 2 . 

Which results in a/ = 8.75. Thus, the shortest wavelength of interest is around 9 times 

smaller than the diameter of the spherical shell.  

 The three curves on the bottom half of the plot are interpreted by the red y axis and 

scattering response curves at the top half by the black y axis. 

As the angle subtended by the polygon at the centre decreases, the chord length 

decreases and it takes up more surface area of the circle it was inscribed in. In other words, 

the polygon starts to approximate a circle geometry. This trend is also evident in the 

scattering behaviour. The results show that the polygon with the smallest angle considered, 

15 degrees (24 sides), more closely matches the scattering behaviour of the circular ring, 

as compared to the other polygon scatterers with larger angles (less number of sides).  

The horizontal band in the plot gives a range of the ratio of wavelength to the chord 

length upto which the scattering characteristics of a polygon can be approximated as a ring. 

It is interesting to note that the width of the band is smaller for the target strength calculated 
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at front near node than that of the back near node, showing more variation in the scattering 

characteristics of the model at the back near node. The ratio of wavelength to the chord 

length is expected to be near to the upper band value for larger chord lengths, i.e., the 

polygons which are lesser approximations of a circle, and at the lower band value for 

polygons with shorter side lengths.  

The thick black horizontal line in the plot gives a mean value of the band. This 

value is subjective and can be considered as a rule of thumb for predicting the threshold 

frequency at which the scattering from a polygon matches closely with the circular ring.  

The frequencies at which the line intersects corresponding these curves are considered to 

be points at which the respective geometry deviates from behaving like a circular scatterer. 

From the scattering response of the front node (Figure 4-13), the dotted black line 

intersects the red y axis at around 0.35. Hence for a faceted geometry, when a low 

frequency wave is incident on one of its corners, its response matches closely with a 

circular scatterer if, 

10log 0.35, 2.24
L L

    
     

       (4.28)

 

Hence, the threshold ratio of wavelength to the chord length (facet) is 

approximately 2.5. The bandwidth considering the polygons under consideration, lies 

between 100.25 log ( / ) 0.45L   , which gives  

1.78 ( / ) 2.82L   

For the polygons, which have n > 12, the ratio is expected to be near the lower 1.78 value 

(the lower value of the band), whereas for n<12, the ratio value is expected to be near the 
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higher value 2.82. This is expected to happen, as the polygons which are coarser i.e. they 

are not a good approximation to the geometry of a circle, will have scattering characteristics 

which will deviate from the scattering characteristics of a circular scatterer at lower 

frequencies. This will give them a larger ratio as the threshold wavelength will be longer 

as compared to finer polygons. Note that the ratio of wavelength to chord/side length is 

inversely proportional to the length of the side. Hence for coarser geometries, both the 

wavelength and the chord length will be large. From the trend of the plots, it can be inferred 

that the increase in wavelength has more effect on the ratio than that of the increase in 

chord length. Thus, for lower n-sided polygons, the ratio is expected to be towards the 

higher value of the band.      

It is important to note that this numerical factor is subjective and depends upon the 

tolerance value used.  

Similarly at the back near node (Figure 4-14), the ratio is given by  

10log 0.2, 1.6
L L

    
     

   
 

The range of the band in terms of the ratio of the wavelength to the chord length for the 

back near node is given as 100 log ( / ) 0.4L   which can be written as  

1 ( / ) 2.5L   

For the back near node, it is interesting to note that the bandwidth is more as compared to 

the front near node. In this case also, the coarser polygon will have a ratio towards the 

higher value of the band and the finer will have the ratio towards the lower value. 
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Scattering response at the inner acoustic nodes have also been calculated for 150 

and the ring. Figure 4-15, Figure 4-16 and Figure 4-17 show the polar plots comparing 150 

and ring at different frequencies of interest. 4.15 shows the polar plot at the threshold 

frequency where the scattering behaviour of 15 deviates from that of the ring. 4.16 shows 

the scattering response at first natural frequency after the threshold frequency. The pressure 

disturbances are more prominent along the inner acoustic surface, due to resonance at 

natural frequency. At around 1800Hz (ka = 33) the resonant peaks differ for 150 and the 

ring at the front near node. The difference in the target strength can be seen at the front 

near node in 4.16 ( 00  ).       

 

Figure 4-15 Polar plot comparing ring and the 150 at the threshold frequency (~ 1500 Hz). 
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Figure 4-16 Polar plot comparing the ring and 150 at the first natural frequency after the 

threshold frequency. 

 

Figure 4-17 Polar plot comparing the 150 and ring at ~ 1800Hz, where the resonance peaks 

differ at the front near node. 

  20

  40

  60

  80

  100

30

210

60

240

90

270

120

300

150

330

180 0

node position (degrees)

p
re

s
s
u
re

 (
d
b
)

 

 

15 @ 1.576600e+03 (Hz)

Ring @ 1.560600e+03 (Hz)

  20

  40

  60

  80

  100

30

210

60

240

90

270

120

300

150

330

180 0

node position (degrees)

p
re

s
s
u
re

 (
d
b
)

 

 

15 @ 1.826300e+03 (Hz)

Ring @ 1.808900e+03 (Hz)



87 

The ratio can be used in a converse manner too. If a known scattering response of a 2-D 

regular polygonal structure is compared to a circumscribing 2-D circular cylinder, length 

of the facet of the polygon can be determined by this ratio.  

An example is presented below. 

 

Figure 4-18 Elastic Scattering response of 150 compared to a ring at the front near node 

Figure 4-18 shows an elastic scattering response of a polygon with angle 15 degrees (24 

sides) compared to a ring of the same mass which has a diameter equal to the circle 

circumscribing the polygon. It is desired to calculate the facet length of the 2-D polygon. 

Suppose the angle subtended by the polygon is unknown and the scattering response plot 

is only available. From, (4.28), the threshold ratio is 

2.24
L


  
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From the plot, we can approximate the similarity in the scattering response characteristics 

of the 2-D regular polygon up to a frequency of 1500Hz, which corresponds to a 

wavelength of  

343.996
0.22933

1500

c

f
    m 

  Thus, from the ratio, L = 0.10238 m. 

Once the facet length is obtained, the overall polygon geometry can be approximated if it 

is assumed to be regular, by calculating the value of  from law of cosines. Figure 4-19 

 

Figure 4-19 Law of cosines in trigonometry 

From Figure 4-19, 
2 2 2 2

1 1

2 2

2 2 0.5 0.10238
cos ,  cos 11.75

2 2 0.5

r L

r
       
      

   
  

Thus, number of sides of the polygon can be given as  

360/ 360 /11.75 30.6 31n      

Now, to validate the results from the approximation, as it is known in this case, the angle 

subtended by the polygon at the centre 15    , from law of cosines in trigonometry , 



r

L

r
r

A

C

B

2 2 2

In ABC, 

2 cos ,    = 2 2cosL r r r r L r 



     
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(Figure 4-19) 0.5 2 2cos15 0.13053 mL    , which is quite good approximation when 

compared to 0.1433 m as obtained from the ratio of / L calculated above.  

For 15   , n = 24, which is also a good approximation, considering nothing was known 

about the geometry, apart from the initial assumption of the polygon being regular.  

Table 4-6 Polygon variables: Comparison of the exact values with values obtained from the ratio. 

Polygon 

Variables  

Exact 

values 

Approximate Calculation 

by ratio / 2L   

Length 0.13503 m 0.10238 m 

Number of sides 

of the polygon 

24 31 

 

4.8 Acoustic Scattering by an Elastic Body - 3D 

A faceted geometry (Geodesic Sphere) has been compared to a spherical shell in this 

section. A ratio of wavelength to the diameter of the circle circumscribing the facet (Figure 

4-20) is selected to compare the acoustic scattering characteristics of the geometry. The 

geometric parameter in the ratio is the diameter of the circumcircle, which helps to get a 

sense of the overall size of the facet. 
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Figure 4-20 The circumcircle of a Sub-Triangle in the triangular surface. 

Figure 4-20 shows a circumcircle of the Sub-Triangle. The diameter of a circumcircle is 

given by / 2circumcircled abc A  , where a , b , c  are the length of the sides, and A is the 

area of the triangle.  

Since the sub-triangles are not equal, an averaged diameter of the semi-circle is 

calculated. Which is given as 

,

1

N

circumcircle i

i
avg

d

d
N




    (4.29) 

Where N is the number of subdivisions in the geodesic.  

4.8.1 Model Set-up in ABAQUS 

As the acoustic medium in this case is air too, the speed of acoustic waves remain 

the same (342.996 m/s), which gives the wavelength 0.11467 m corresponding to highest 

frequency of interest (3000 Hz). Thus, the desired element length to achieve sufficient 

accuracy is the same discussed in Section 4.3.1 for the acoustic domain.  

Circumcircle

circumcircled
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4.8.2  Domain 

The domain in 3-D also has three parts similar to the case of 2-DAir domain is 

modelled in SOLIDWORKS and is imported into ABAQUS in .iges format. This makes 

the cross section solid. The 3D Shell Discretized by AC3D4: A 4-node linear acoustic 

tetrahedron. This air domain has an outer diameter of 1.5m and the inner diameter of 1m.  

The air domain is of two types which depends on the geometry. 1) The Geodesic Sphere: - 

The inner surface of the acoustic domain is the outer surface of the geodesic Sphere. Thus 

the inner surface can be enclosed in a shell of dia 1m (Figure 4-21). 2) The Spherical Shell: 

The inner surface of the acoustic domain is the outer surface of the shell. Thus the inner 

surface is a shell of dia 1m (Figure 4-22).  

 

Figure 4-21 The 3-D-acoustic domain for geodesic Sphere. 
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Figure 4-22 The acoustic domain for a spherical shell 

The domain has the properties of air as given by  

Table 4-7 and a Solid, Homogeneous section. The section is created and assigned in the 

property module of ABAQUS. 

The Part for the infinite boundary is a 3D Deformable-Shell. , type revolution, 

modelled in ABAQUS sketch module. The part has an acoustic infinite section of an order 

10, discretized by ACIN3D3: A 3-node acoustic infinite element with linear surface 

interpolation. This domain has the properties of air as given by  

Table 4-8 and an Acoustic infinite section. The reference node for the infinite 

elements is given by editing the input file generated by abaqus. Explained in Appendix.6.4 

The boundary is spherical having a diameter of 1.5m. The diameter of the boundary is set 

by doing a convergence study.  

 The elastic structure is a 3D Shell modelled in SOLIDWORKS and is imported 

into ABAQUS in .acis format. This format keeps the model as an enclosed shell. The part 

is discretized by S3: A 3 node triangular general-purpose shell, finite membrane strains. 
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The part is modelled with varying thickness and has the properties as explained in Natural 

Frequency extraction. (Chapter 3) 

Table shows the summary of the properties of the parts created.  

1. Elastic Domain can be referred from Table 3-4 

2. Acoustic Domain 

Table 4-7 Properties of the acoustic domain 

Domain 3-D Solid – Deformable (Modelled in SOLIDWORKS) 

Material Air Density = 1.2 kg/m3   

Bulk Modulus = 1.42e5 Pa 

Section Solid Homogeneous  

Mesh Acoustic elements: AC3D4 – A 4 - node linear acoustic tetrahedron. 

 

3. Acoustic Infinite Domain 

Table 4-8 Properties of the Infinite Domain 

Domain 3-D Deformable – Shell  

Material Air Density = 1.2 kg/m3   

Bulk Modulus = 1.42e5 Pa 

Section Acoustic Infinite, order 10.  

Mesh Acoustic infinite elements: ACIN3D3 – A 3 node acoustic infinite 

element with linear surface interpolation  

 

4.8.3 Step 

The step definition is the same as in the case of 2-D with the frequency sweep 

from  1-3000Hz.  
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4.8.3.1 Interaction properties 

The properties of the incident wave remain the same as in 2-D, with the amplitude 

defined in Table 4-3. The interaction is defined twice as the structure fluid interface has 

two surfaces.  

For all the geometries, the same source and stand-off point is to be chosen to have 

a fair comparison of the results. The stand-off point is taken as one of the vertex of the 

triangle of the icosahedron. The incident wave is in the radial direction, and the 

corresponding point in the acoustic domain is calculated. The position vector ( inr ) of one 

of the vertices of triangle face is ˆˆ ˆ
inr xi yj zk    , where x, y and z are same for all the 

geodesics. The magnitude is calculated as 
2 2 2| | ( ) ( ) 0.5inr x y z m    , the unit vector 

in that direction is ˆ / | |in inn r r . The source point is in the same direction (radial) and has a 

magnitude equal to the radius of outer boundary of the acoustic domain, which is 0.75m. 

Thus the source point is calculated as ˆ0.75outr n . The calculation done in this thesis is 

presented below. The stand-off point is vertex of the icosahedron triangle face. (Vertex 15 

in Table 2-5) 
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2 2 2

ˆˆ ˆ0.4253254041760199 0 0.2628655560595668

| | (0.4253254041760199) 0 (0.2628655560595668)
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ˆ / | |

| | 0.75m

ˆ0.75
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r
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r

r n

  
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 







 ˆˆ ˆ881062640299 0 0.3942983340893503i j k 

   

Thus, the source and stand-off point selected is exactly the same for all the geometries.   

 

 

Figure 4-23 Interaction definition of the 3-D Model 

4.8.4 Constraints 

In this case too, the structure-acoustic coupling is done by using the TIE constraint. 

The structure is the master surface and the acoustic domain is the slave. The infinite 
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boundary is also tied to the outer surface of the acoustic domain by TIE constraint.  In this 

case the acoustic domain is the master surface and the infinite domain is the slave.  

4.8.5 Field Output Requests 

Acoustic Pressure (POR) is requested as a field output for the node sets mentioned 

Table 4-9. This acoustic pressure is later used to calculate the target strength and plotted 

against the frequency. 

Table 4-9 Field Output Requests at Nodes 

Position X-coordinate Y-coordinate Z-coordinate 

Front near node 0.425325394 0 0.262865543 

Back near node -0.425325394 0 -0.262865543 

 

4.8.6 Job 

After setting up the entire model, a job is created in a desired folder by setting up the 

work directory. As calculations for the numerical problem require more computational 

resources, the input files are created first and then submitted onto the Palmetto cluster. 

4.9 Target Strength  

The target strength is calculated at the front and back near node. The front far node 

is in the same direction as the front near node is from the origin. The source point and the 

nodes at which the target strength is calculated is kept the same for all models for 

consistency in scattering characteristics.  
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Figure 4-24 Front and back near nodes at which the Target Strength is calculated. 

4.10 Mesh Convergence 

Figure 4-25 and Figure 4-26, show the mesh convergence study for the front near 

and the back near node respectively. The scattering response of a spherical shell is 

compared for a seed size of 0.02m and 0.015m.  

 

Front far node (Source Point) 

(0.6379881062640299, 0, 

0.3942983340893503) 

Front near node 

(0.4253254041760199, 0, 

0.2628655560595668) 

Back near node               

(-0.4253254041760199, 

0, -0.2628655560595668) 
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Figure 4-25 Mesh Convergence study for the front near node 

 

Figure 4-26 Mesh convergence study at the back near node 

The seed size is not an accurate measure of the element size, but it gives a guide, which 

can be considered as an approximation for the size of the element. The seed size of 0.02m, 

corresponds to approximately 6 elements per smallest wavelength in the Acoustic Domain, 

whereas 0.015m corresponds to approximately 9 elements per smallest wavelength (i.e. f 

= 3000 Hz) (Figure 4-27) . As, the elements with seed size 0.015m have more number of 

elements per wavelength, they can better approximate a sinusoidal wave and give more 

accurate results at higher frequencies. It should be noted that increasing the number of 

elements, increases the number of nodes, which inturn increases the degrees of freedom. 

This leads to an increase in computational cost. In case of 3D, as size of the finite element 

domain is considerably large than that of the 2D finite element domain, the computational 

cost becomes a big factor in the selection of the element size.    
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Figure 4-27 seed size v/s number of elements for a frequency of 3000 Hz. 

Figure 4-28 shows a bar graph comparison of the computational resources utilized. The 

memory required for seed 0.02 m is almost half of the memory required for seed 0.015 m. 

And comparing the wall time, calculation with the mesh density with seed 0.02 m takes 

around 15 hours and seed 0.015 takes around 43 hours. The considerable computational 

cost for the seed size 0.015m and acceptable error in the scattering response at higher 

frequency makes the seed size 0.02 m as the selected mesh size.   
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Figure 4-28 Bar Graphs comparing the computational resources utilized for the numerical 

calculations. For all the cases number of cpus is 64. 

4.11 Location of the infinite boundary 

A convergence study is done to truncate the acoustic domain by the infinite boundary 

condition. Two factors have been taken into consideration 1) Convergence (especially 

towards the lower frequency range; 1-2000 Hz). 2) Computational cost. The acoustic 

scattering is requested at the same points at the front and the back end for the same spherical 

shell geometry under investigation. Three different boundaries are investigated 1) Diameter 

1.5m 2) Diameter 1.75m 3) Diameter 2m 
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Figure 4-29 Convergence study for the location of the infinite boundary at the front end. 

 

Figure 4-30 Convergence study for the location of the infinite boundary at the back end. 

Figure 4-29 and Figure 4-30 show the convergence study for the location of the infinite 

boundary. The curves show good agreement, especially for the front end. Beyond ka = 35 
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(f ~ 2000 Hz), however, the curves show a good trend but desirable convergence is not 

achieved, especially at the back end, where the scattering response requires more accuracy.   

Figure 4-31, the bar graphs show the memory required in Gigabytes and the wall 

time in hours. The number of cpus is 64 for all the cases. It can be seen clearly, that for the 

same number of processors, memory required and the wall time is the least for infinite 

boundary @ 1.5m. Upto ka = 35, both at the front and back end, good agreement is 

observed for all three locations of the infinite boundary, and considering the computational 

resources required, the spherical acoustic domain is truncated by the infinite boundary at 

1.5m.  

 

Figure 4-31 Bar Graphs comparing the computational resources utilized for the numerical 

calculations. For all the cases, mesh density is the same with seed size 0.02m and number of cpus 

is 64. 
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Figure 4-32 and Figure 4-33 show the target strength plots of scattering from the 3-

D elastic bodies at the front and back near node.  

 

Figure 4-32 Elastic Scattering response at front end (3-D) 

 

Figure 4-33 Elastic Scattering response at back end (3-D) 
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 A similar study has been done like the 2-D case. The left y-axis is a measure of the Target 

strength (black axis) and the y-axis on the right (red) represents the log scale of the ratio of 

wavelength to average circumcircle diameter for different geometries. The x-axis 

represents the frequency range normalized into ka. This non-dimensional frequency is 

calculated in the same way as in the case of 2-D. The shortest wavelength of interest is 

around 9 times smaller than the diameter of the spherical shell.  

The three curves on the bottom half of the plot are interpreted by the red y axis and 

scattering response curves at the top half by the black y axis. 

As the degree of geodesic increases, the number of sub - triangles the triangular 

surface is divided into increases. Hence increasing the resolution and thereby approaching 

the surface area of the circumscribing sphere. The acoustic scattering response trend also 

starts to match closely up to higher frequency limits as the degree of the geodesic increases.    

The horizontal band in the plot gives a range of the ratio of wavelength to the 

average circumcircle diameter upto which the scattering characteristics of a geodesic shell 

can be approximated as a spherical shell. It is interesting to note that the width of the band 

is smaller for the target strength calculated at front near node than that of the back near 

node, showing more variation in the scattering characteristics of the model at the back near 

node.  

The thick black horizontal line in the plot gives a mean value of the band. Just as in 

the case of 2-D, this value is subjective and can be considered as a rule of thumb for 

predicting the threshold frequency at which the scattering from a geodesic sphere matches 

closely with the shell.  The frequencies corresponding to the point at which the line 
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intersects these curves are considered to be the frequency when the respective geometry 

deviates from behaving like a spherical scatterer. 

Hence analogous to 2-D, for a faceted 3-D geodesic sphere, when an acoustic wave is 

incident on one of its corners, its response matches closely with a spherical shell if, 

10log 0.3,   2
avg avgd d

    
        

   

   (4.30) 

The threshold ratio of wavelength to the average circumcircle diameter is approximately 2, 

when the acoustic response from front near node is considered. 

The range of the bandwidth is given as
100.25 log ( / ) 0.35avgd  , which gives  

1.78 ( / ) 2.24avgd   

For a higher degree of geodesic sphere, the ratio is found to be closer to the lower level of 

the band. This is expected, as the threshold frequency is higher for the higher degree of the 

geodesic spheres. Thus, the corresponding wavelength is smaller for higher degree of the 

geodesic, thus giving a smaller ratio. It is important to note that as the degree of geodesic 

increases, the average diameter of the circumcircle decreases. As avgd is inversely 

proportional to the threshold ratio, one could expect it to increase as avgd decreases. From 

the trend of the plots, it can be inferred that the decrease in the average circumcircle 

diameter is less effective than the decrease in the wavelength, which reduces the ratio as 

we move to higher degree geodesics.  

It is important to note that this numerical factor is subjective and depends upon the 

tolerance value used.  
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   Similarly at the back node, the ratio is given by  

10log 0.03,   1.07
avg avgd d

    
        

   

 

The range of the band in terms of the log of the ratio of wavelength to the average 

circumcircle diameter for the back near node is given as 
100.1 log ( / ) 0.3avgd    which 

can be written as  

0.79 / 1.99avgd   

In this case also, the lower degree (<2) will have a ratio towards the higher value of the 

band and the higher degree will have the ratio towards the lower value. 

Acoustic scattering response at the inner surface acoustic nodes have been 

calculated for comparing degree IV geodesic with the spherical shell. The contour plots on 

the surface are presented at some frequencies of interest. Figure 4-34 to Figure 4-37 show 

the contour plots of acoustic pressure at different frequencies. Figure 4-34 shows the 

contour plot at the first natural frequency of the shell (f = 1199 Hz) and geodesic degree 

IV (f = 1166 Hz). The acoustic pressure distribution on the inner front and back surfaces is 

similar for both the cases. The scattering response curves for shell and geodesic degree IV 

in Figure 4-32 and Figure 4-33also matches closely. Further, it was noted in Section 3.6, 

that the mode shapes of shell and geodesic degree IV were similar. Hence this was an 

expected result. Note that the legend in these contour plots show the acoustic pressure and 

not the Target strength.  
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Figure 4-35 Shows the contour plot at a frequency beyond the threshold frequency 

for the front near node. It can be clearly seen, that the pressure distribution varies for both 

the geometries especially at the front surface around the front near node. (Figure 4-35(a)). 

The target strength plot at the back near node for shell and geodesic degree IV matches 

closely, hence the back inner surface does not show much variation in the pressure 

distribution. This further validates the scattering response curves at the front near node and 

back near node.        

 

      Shell (f = 1199 Hz; ka = 21.9)       Degree IV Geodesic (f = 1166 Hz; ka=21.29) 

(a) Front Near Surface 

Front near 

node Front near 

node
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    Shell (f = 1199 Hz; ka = 21.9)         Degree IV Geodesic (f = 1166 Hz; ka = 21.29) 

(b) Back near Surface 

Figure 4-34 Contour plots of Acoustic Pressure (POR) comparing shell and degree IV geodesic 

at the first natural frequency for the (a) front near surface (b) back near surface. 

 

Shell (f = 1338 Hz; ka = 24.4)         Degree IV Geodesic (f = 1338 Hz; ka = 24.4) 

(a) Front near Surface 

Back near 

node
Back near 

node

Front near 

node

Front near 

node
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Shell (f = 1338 Hz; ka = 24.4)         Degree IV Geodesic (f = 1338 Hz; ka = 24.4) 

(b) Back near Surface 

Figure 4-35 Contour plots of Acoustic Pressure (POR) comparing shell and degree IV geodesic 

at a frequency beyond the threshold frequency for the front near node ka ~ 24(~1300 Hz) at (a) 

front near surface (b) back near surface. 

Figure 4-36 now shows the contour plot at a frequency (f = 2710 Hz) beyond the threshold 

frequency at the back near node. The acoustic pressure distribution can be seen to vary at 

both the front and the back inner surfaces. Figure 4-37 shows the acoustic pressure 

distribution for the highest frequency of interest i.e 3000 Hz.  

 

Back near 

node

Back near 

node
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Shell (f = 2710 Hz; ka = 49.5)         Degree IV Geodesic (f = 2711 Hz; ka = 49.5) 

(a) Front near Surface 

 

Shell (f = 2710 Hz; ka = 49.5)         Degree IV Geodesic (f = 2711 Hz; ka = 49.5) 

(b) Back near Surface 

Figure 4-36 Contour plots of Acoustic Pressure (POR) comparing shell and degree IV geodesic 

at the threshold frequency for the back near node (2710 Hz) at (a) front near surface (b) back 

near surface. 
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Front near 
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Back near 

node Back 

near node



111 

 

Shell (f = 3000 Hz; ka = 54.79)     Degree IV Geodesic (f = 3000 Hz; ka=54.79) 

(a) Front Near Surface 

 

 

Shell (f = 3000 Hz; ka = 54.79)     Degree IV Geodesic (f = 3000 Hz; ka=54.79) 

(a) Back Near Surface 

Figure 4-37 Contour plots of Acoustic Pressure (POR) comparing shell and degree IV geodesic 

at the 3000 Hz for the (a) front near surface (b) back near surface. 
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node
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node

Back near 

node Back near 

node
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With this ratio, conversely, knowing the scattering response of an unknown geometry at 

the target point, for low frequencies and comparing it with a shell can help approximately 

determine the facet size of the geometry.  

An example is presented just like the case in 2-D.  

 

Figure 4-38 Scattering response of Degree IV in comparison to the spherical shell 

.On similar lines as in 2-D, if the size of the facet can be determined by the ratio 

2
avgd

 
  

 

 

From , (4.30)we can approximate the similarity in the scattering response characteristics of 

the geodesic sphere up to a frequency of around 1200 Hz, which corresponds to a 

wavelength of  

343.996
0.28633 m

1338

c

f
     
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  Thus, from the ratio, davg = 0.1433m. 

From the MATLAB code attached in the appendix 6.3, for a degree IV geodesic, the 

average diameter of the circumcircle is davg = 0.1726 m.  

Thus, a close approximation to the diameter of the circumcircle is obtained. 

4.13 Rigid body scattering - 2D 

In this section, a layer of complexity is removed by performing a scattering analysis 

from a rigid body. This case is a reference for the scattering from an elastic body and is 

performed to validate the results obtained from the elastic body scattering. The resonance 

peaks will not be observed in the scattering response, as in the case of the elastic body 

scattering, but the trend is expected to be similar.   

To simulate a rigid body condition, the inward normal derivative of pressure per unit 

density of the acoustic medium is zero. Hence in ABAQUS, if no boundary condition is 

specified on any boundary, it is treated as a rigid body.  

4.13.1 Domain 

As there is no boundary condition to be specified, no structural-acoustic coupling 

is required. Hence the elastic part is not modelled in this case. Thus the model has 2 parts. 

The Air domain and the acoustic domain. The domain size is kept the same as in the case 

of scattering by elastic body (section). The model and the properties are the same too.  

4.13.2 Step  

Same step is created, but instead of using the natural frequencies of the model as 

interval points, intervals of 200Hz are made.  



114 

4.13.3 Interaction Properties 

The interaction properties remain the same too. But instead of defining properties 

for two surfaces, property for just the acoustic surface is defined as there is no elastic body 

present.  

 

 

Figure 4-39 Interaction property definition. 

4.13.4 Constraints 

As there is no elastic body, there is only one TIE constraint between the acoustic 

domain and the infinite boundary. 

4.13.5 Field Output Requests 

Acoustic Pressure (POR) is requested at the same points as before.  

4.13.6 Job 

Job is submitted in the same way in the Palmetto Cluster. 

4.14 2-D Rigid Body Scattering response 
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Figure 4-40 and Figure 4-41 show the scattering response from a rigid body at the 

front and back near nodes. The trend is similar to that of the scattering response from the 

elastic body. 

 

Figure 4-40Rigid body scattering response at front end for 2-D.  
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Figure 4-41 Rigid Body scattering response at back end for 2-D.  

The major difference in the rigid and elastic scattering response plots is the peaks observed 

at resonance. This shows the importance in capturing the mode shapes and the natural 

frequencies of the coupled elastic body.  

The bandwidth range falls on the same area in case of rigid body scattering too. The 

range of the threshold ratio for the near node can be given by 100.3 log ( / ) 0.45L   , 

which gives  

1.99 ( / ) 2.82L   

And the mean threshold ratio is approximately the same as obtained in the scattering from 

elastic body.  

10log 0.35,     2.24
L L

    
     

   
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For the back near node too, we can see no resonance peaks present. The threshold frequency 

can be given as,  

10log 0.15,    1.41
L L

    
     

   
 

And the bandwidth range for the back near node is given as 100 log ( / ) 0.3L   which 

can be written as  

1 ( / ) 1.99L   

As the plots follow the same trend, the values of the threshold ratio are approximately in 

the similar range as obtained in the elastic body scattering. 

4.15 Rigid Body Scattering – 3D 

This case also does not have an elastic body and there is an absence of structural-

acoustic coupling 

4.15.1 Domain 

Only 2 parts are created in this case. The Acoustic Domain and the infinite 

boundary. The parts have the same properties and dimensions as in the elastic body 

scattering case.(Section 4.3.1.1) 

4.15.2 Step 

Step is the same as in Section 4.3.1.2 

4.15.3 Interaction Properties  

The properties remain the same, except just one interaction surface is defined. 
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Figure 4-42 Interaction Properties for the rigid body scattering 

4.15.4 Constraints 

TIE constraint is applied only for the acoustic and infinite element.  

4.15.5 Field Output Requests 

Acoustic pressure (POR) is requested at the same points 

4.15.6 Job 

Job is submitted in Palmetto Cluster.  

4.16 Rigid body scattering response for the 3-D geometry.  

From Figure 4-43 and Figure 4-44, it can be seen that the scattering response at the 

front and back end follows a similar trend as seen in the elastic scattering response curves 

of 3-D geometries  
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Figure 4-43 Rigid body scattering response at the front end for 3-D 

 

Figure 4-44 Rigid body scattering response at the back end for 3-D 
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A threshold ratio of / avgd  lies in the similar bandwidth as obtained in elastic scattering 

case. The ratio lies approximately between 
100.25 log ( / ) 0.35avgd  , which gives  

1.77 ( / ) 2.24avgd   

For a mean value of  10log 0.3,   2
avg avgd d

    
        

   

 

This ratio is again a rule of thumb, and can be approximated depending upon the tolerance 

desired. This ratio is expectedly in approximately the same range as that obtained in the 

elastic body scattering response.  

For the back end, the ratio of / avgd  lies in the similar range as in the elastic 

scattering, given by 
100.1 log ( / ) 0.3avgd   , which gives 

0.79 ( / ) 1.99avgd   

The mean value at the back node is approximately around 0.03, which gives,  

10log 0.03,   1.07
avg avgd d

    
        

   

 

The ratio thus obtained is similar to the one obtained in the elastic scattering response at 

the back end.  
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CHAPTER FIVE 

5 CONCLUSIONS AND FUTURE WORK 

Scattering response of different geometries both in 2-D and 3-D has been studied and 

presented in the thesis. The geometries which are being compared, have equal mass and 

the same diameter.   

In Chapter 2, the geometry construction and calculation of the thickness has been 

discussed. The 3-D geometry was made with precision for proper meshing in ABAQUS 

and thickness was varied to keep the mass constant of all the models in case of 2-D and 3-

D.  

In Chapter 3, the Natural Frequency has been extracted in ABAQUS for a frequency 

range of 1-3000 Hz. The natural frequencies were compared in both 2-D and 3-D cases. It 

was observed that the natural frequencies are similar to the 2-D circular cylinder/spherical 

shell when the faceted geometries starts to approximate them. The natural frequencies 

extracted are then used in the acoustic scattering problem.  

In Chapter 4, a full structure-acoustic coupling analysis has been done. Comparison of 

scattering response of the geometries (2-D and 3-D) is done with their respective canonical 

forms. Target strength at the front near and back near nodes are calculated and the threshold 

ratio is obtained as explained in the initial part of the section.  

5.1 2-D Results 

The 2-D circular cylinder is such that it circumscribes the 2-D regular polygonal 

structures. Target strength of 2-D regular polygon structures at the front near and back near 
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node has been calculated using finite elements analysis, and is compared to the Target 

strength of a 2-D circular cylindrical structure at the same nodes. A ratio of acoustic 

wavelength to polygon chord (facet) length ( / L ) is then obtained, which helps to 

quantify the comparison. Here   is the wavelength and L is the facet length of the polygon. 

This ratio determines the threshold of a 2-D regular polygonal cylinder to behave like a 2-

D circular cylinder in terms of acoustic scattering response. Conversely, if a known 

scattering response of a 2-D regular polygonal structure is compared to a 2-D circular 

cylinder, length of the facet of the polygon can be identified by this ratio.  

The / L  ratios obtained for elastic and rigid body scattering at front near and back near 

nodes are summarized in Table 5-1. 

Table 5-1 Summary of the ratios obtained on front and back near node for 2-D geometry. 

 

5.2 3-D Results 

An analogous study has been done for the 3-D geometries of geodesic spheres. 

Comparison of faceted geometries with spherical shells in 3-D has been done. In this case, 

geodesic spheres of different degrees are compared to a circumscribing spherical shell. The 

target strength at front near and back near nodes are obtained, and similar to 2-D scattering 

analysis, a threshold ratio is obtained. The ratio is wavelength to the average circumcircle 

diameter of the facets. The circumcircle diameter gives an overall idea of the surface area 

of the facet in the space, and these have been averaged out because the circumcircle 
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diameter is not equal for each facet of the geodesic sphere. This ratio determines the 

threshold of the faceted geodesic sphere to behave like a spherical shell in terms of acoustic 

scattering response. 

Table 5-2 summarizes the ratios obtained for the 3-D case  

Table 5-2 Summary of the ratios obtained on front and back near node for 3-D geometry. 

 

These ratios are a rule of thumb based on the desired tolerance level. As, the tolerance level 

decreases, the level approximation will also increase, hence the results obtained will have 

a higher error when compared to the exact values.   The ratio of wavelength to local facet 

size used in this thesis also provides a novel and interesting way to compare geometries of 

other shapes with their canonical counterparts.   

5.3 Future Work  

1) The acoustic medium can be changed from air to water, to check the consistency of 

the ratio in different mediums. In water, the bulk modulus (K) and density (  ) of 

the medium changes. The speed of sound in a medium is a function of K and  , 

given by /medium medium mediumc K  . The relation between the geometries 

considering the scattering effect may be different.   

2) For 3-D, finer mesh and location of infinite boundary can be enlarged especially 

for accuracy at higher frequencies (ka>36.5; f = 2000Hz.) At this frequency, the 
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/ 0.1721a  . This means the wavelength is 0.17 times smaller than the diameter 

of the scatterer.   

3) The waves diffracted by the corners become more localized near corners especially 

at higher frequencies (ka>36.5; f = 2000 Hz). Hence, effect of variable meshing can 

be investigated. Mesh being fine at corners and edges, and coarse on the faces. The 

corner effects are expected to be more prominent at coarser models, as the corners 

are more prominent in those cases.  

4) Higher degree of geodesic can be modelled and compared to the spherical shell. 

The variation in the bandwidth of the threshold ratio can be investigated and the 

shift in the mean value of the ratio can be calculated.  

5) Thickness of the models can be increased. This will give a higher mass and stiffness 

to the models. For thick models, instead of using beam and shell elements, plain 

strain/3D - stress elements will have to be used.   
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6 APPENDIX 

6.1 MATLAB code for thickness calculation of 2D polygons.  

clc; 
clear; 
d = 1;                  %depth = 1m. 
rho = 2700;             % material density kg/m^3. 
r_out = 0.5;            % outer raduis m. 
alpha = 45;             % angle subtended at the centre.  
chord = r_out*sqrt(2*(1-cosd(alpha)));  % length of the chord from 

cosine law. 
A_cir = 1e-2;           % surface area of the circular ring. (m^2)  
P_cir = 2*pi*r_out;     % perimeter of the circle. (m) 
vol_cir = P_cir*A_cir;  % volume of the circle. (m^3) 
m_cir = rho*vol_cir;    % mass of the circle. (Kg) 

  
P_poly = (360/alpha)*chord;  % perimeter of the polygon (m).  
format long e 
t_poly = m_cir/(rho*P_poly*d); % beam thickness of the polygon (m^2). 
   

6.2  Infinite Boundary in 2D 

To set up the infinite boundary elements in 2D, the section is defined in the input file of 

ABAQUS. The script for the input file is given below.  

 

*Solid Section, elset=_PickedSet6, material=Air 

1., 0, 0, 0 

 

Solid Section defines the section of the infinite boundary. The solid section cannot 

be assigned to 2-D geometries in ABAQUS GUI, hence it is later assigned in the input 

file.  

elset is the element set of the infinite boundary. The created set is the outer 

surface of the 2-D wireframe modelled for the infinite boundary. It should be noted that 
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the outer surface of the infinite boundary should be selected, as the direction of the 

infinite elements is radially outwards.  

In the second line, the first number 1, gives the depth of the boundary and the 

other three numbers (0, 0, 0) gives the coordinate of the reference node.  

6.3  MATLAB code for calculation of coordinates and the thickness of the Geodesic 

Sphere.  

n = 2;              % degree of the geodesic. 
[A_I] = geodesic(n);%calling the coordinates of the triangular surface.  
A =zeros(n^2,3); 
count = 0; 
IEN =[]; 
c = n; 
for j=1:n           % loop over the degree of geodesic sphere.   
    A =[]; 
    c = c-1; 
    k = 2*n -(2*j-1)-c; %pattern formula to set-up the IEN table 
    count; 
    for i=1:k  
        count = count+1; 
        A((2*i)-1,1) = count; 
        A((2*i)-1,2) = count+1; 
        A((2*i)-1,3) = A((2*i)-1,2)+k; 
        A(2*i,1) = A(2*i-1,2); 
        A(2*i,2) = A(2*i-1,2)+k+1; 
        A(2*i,3) = A(2*i-1,2)+k; 
        if i==k 
            A(2*i,:)=[]; 
        end  
    end 
    count = count + 1; 
    IEN = [IEN;A]; %IEN stored in a matrix.  
end 
T_all = []; 
dia_all =[]; 
Area = 0; 
dia = 0; 
for i=1:n^2        % loop over the number of sub triangles of one 

triangular surface.  
    I = IEN(i,1);  
    J = IEN(i,2); 
    K = IEN(i,3); 
    % picking the coordinates of the triangular surface from the IEN 

table 
    % and calculating the lengths of the sides of the sub-triangle.  
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    a = sqrt((A_I(J,1)-A_I(I,1))^2 + (A_I(J,2)-A_I(I,2))^2 + (A_I(J,3)-

A_I(I,3))^2); 
    b = sqrt((A_I(K,1)-A_I(J,1))^2 + (A_I(K,2)-A_I(J,2))^2 + (A_I(K,3)-

A_I(J,3))^2); 
    c = sqrt((A_I(K,1)-A_I(I,1))^2 + (A_I(K,2)-A_I(I,2))^2 + (A_I(K,3)-

A_I(I,3))^2); 
    s = (a+b+c)/2;  %semi-perimieter of the sub-triangle. 
    T = sqrt(s*(s-a)*(s-b)*(s-c));  %Area of the triangle by heron's 

formula. 
    d = (a*b*c)/(2*T);  %diameter of the circumcircle.  
    dia = dia+d;         
    Area = Area+T; 
    dia_all = [dia_all;d]; 
    T_all = [T_all;T]; 
end 
dia = dia/n^2;          %averaging out the diameter. 
A_t = Area/n^2;         %averaging out the area.     
mass =84.82300166    ; %mass (Kg) of the spherical shell with thickness 

0.01m  
rho = 2700;             % density of the material (kg/m3) 
thickness = mass/(20*Area*rho)  %thickness of the geodesic.  

 

Function [A_I] 

% function to calculate the coordinates of the triangular surface. This 

function also plots the triangular surface.    
function[A_I] = geodesic(n) 
L = 1; 
phi = (1+ sqrt(1+4*L))/2;%golden ratio 

  
% vertices of a triangular face of an icosahedron  
A_1 = [0, L, phi];  
I_1 = [L, phi, 0]; 
J_1 = [phi, 0, L]; 

  
r = 0.5; %radius of the enclosing sphere 
A_I =[]; 
I_J =[]; 
J_A =[]; 
K = 0; 
count = 1;  
%Calculating the coordinates of the vertices of the smaller triangles 
for j = 0:n 
    for i = 0:n-K 
        A_I(count,:) = (0+K)*J_1/n+(n-i-K)*A_1/n+i*I_1/n; 
        count = count+1; 
    end 
    K = K+1; 
end 
%Radial direction 
for i=1:size(A_I) 
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    A_I(i,:) = A_I(i,:)/norm(A_I(i,:)); 
end 
A_I = A_I*r; %%coordinates lying on the surface of the sphere 
K = 0; 
% plotting the triangular surface of the Geodesic dome with vertices 

lying on a sphere 
for i=1:n+1 
    plot3(A_I(i+K:n+1+K,1), A_I(i+K:n+1+K,2), A_I(i+K:n+1+K,3)); 
    I_J(i) = n+1+K; 
    A_J(i) = i+K; 
    hold on 
    K = n+1+K-i; 
end 

  
plot3(A_I(I_J',1),A_I(I_J',2),A_I(I_J',3)) 
hold on 
plot3(A_I(A_J',1),A_I(A_J',2),A_I(A_J',3)) 
hold on 
K = 0; 

  
for i = n:-1:1 
    K = K+1; 
    plot3(A_I((A_J(1:i)+K)',1), A_I((A_J(1:i)+K)',2), 

A_I((A_J(1:i)+K)',3)) 
    hold on 
    plot3(A_I((I_J(1:i)-K)',1), A_I((I_J(1:i)-K)',2), A_I((I_J(1:i)-

K)',3)) 
end 
 hold off 
 axis equal 
 format longe 

 

6.4 Infinite Boundary in 3-D 

To set-up the infinite boundary in 3-D, the reference node of the infinite elements need to 

be specified in the input file. ABAQUS GUI generates a reference node automatically 

and the syntax looks like;  

 

*Solid Section, elset=_PickedSet7, material=Air, ref node=Inf-RefPt_, order=10 

1., 
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The ref node is deleted from the syntax and the coordinates of the reference node are thus 

entered manually in the input file.  

 

*Solid Section, elset=_PickedSet7, material=Air, order=10 

1.,0,0,0. 

 

Where, (0, 0, 0) are the coordinates of the reference node.  

6.5 MATLAB code for calculation of Natural Frequency analytically by Dr. 

Thompson.  

% The natural frequencies calculated are based on thin curved beam 

bending theory 
% Original: Lonny Thompson, Clemson University, March 2014 
R = 0.5; %ring diameter at midline of thickness 
t = 0.01; %ring thickness (meters) 
Young_Modulus = 7.1*(10^10); %aluminum E = 71.9 GPa, Pa = N/m^2 
rho = 2700; %mass density, kg/m^3 
%unit depth b=1; 
Area_Moment_Inertia = t^3/12; 
EI = Young_Modulus * Area_Moment_Inertia; 
Area = t; 
coef = EI / (rho*Area*R^4); 
N = 20; 
omega = zeros(N+1,1); 
for n=0:N 
omega(n+1) = sqrt(coef*(n^2)*(n^2-1)^2 / (n^2+1) ); 
end 
fn = omega/(2*pi) %Hz 
frequencies = sort(fn) %kHz 

 

6.6 Natural Frequencies extracted from ABAQUS of 2-D models.  

Mode  

Number 15 30 45 Ring 

1 25.5700 26.457 27.656 25.280 

2 25.5700 26.457 27.656 25.280 

3 72.2970 74.775 77.870 71.478 
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4 72.2970 74.775 77.870 71.478 

5 138.550 143.19 138.71 136.99 

6 138.550 143.19 160.82 136.99 

7 223.920 231.02 239.81 221.40 

8 223.920 231.02 239.81 221.40 

9 328.220 327.46 337.99 324.55 

10 328.220 350.18 337.99 324.55 

11 451.310 464.94 357.98 446.30 

12 451.310 464.94 398.02 446.30 

13 593.070 606.55 398.02 586.55 

14 593.070 606.55 651.74 586.55 

15 753.350 731.18 694.69 745.17 

16 753.350 758.50 694.69 745.17 

17 931.970 758.50 879.73 922.03 

18 931.970 889.18 879.73 922.03 

19 1128.7 889.18 1102.0 1117.0 

20 1128.7 895.33 1102.0 1117.0 

21 1332.4 895.33 1271.9 1329.9 

22 1355.2 1400.0 1432.7 1329.9 

23 1481.4 1428.0 1603.3 1560.6 

24 1576.6 1428.0 1603.3 1560.6 

25 1576.6 1671.1 1763.6 1632.3 

26 1826.3 1671.1 1805.2 1808.9 

27 1826.3 1997.4 1805.2 1808.9 

28 2077.6 1997.4 1854.0 2074.6 

29 2077.6 2322.3 1854.0 2074.6 

30 2092.9 2322.3 2538.4 2308.4 

31 2092.9 2645.0 2558.8 2308.4 

32 2375.6 2645.0 2558.8 2357.5 

33 2375.6 2736.2 2836.1 2357.5 

34 2673.2 2898.5 2836.1 2657.5 

35 2673.2     2657.5 

36 2982.8     2974.2 

37 2982.8     2974.2 

 

6.7 Natural Frequencies extracted from ABAQUS of 3-D models. 
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Mode  

Number 

Degree 

II 

Degree 

III 

Degree 

IV 
Shell 

1 937.72 1121.6 1164.1 1191.2 

2 938.03 1121.6 1164.2 1191.5 

3 938.33 1121.6 1164.2 1191.6 

4 938.44 1121.6 1164.2 1191.7 

5 938.53 1121.7 1164.2 1192.2 

6 966.11 1311.7 1373.5 1416.3 

7 1006.7 1311.8 1373.5 1417.4 

8 1006.8 1311.8 1373.5 1417.9 

9 1006.9 1311.9 1373.6 1418.4 

10 1031.5 1316.7 1376.9 1418.4 

11 1032.0 1316.8 1376.9 1419.0 

12 1032.1 1316.9 1377.0 1419.7 

13 1032.5 1383.6 1451.0 1511.6 

14 1079.3 1383.7 1451.0 1512.1 

15 1079.3 1383.7 1451.1 1513.3 

16 1079.5 1383.7 1451.1 1513.8 

17 1079.5 1389.9 1467.9 1514.1 

18 1079.7 1390.0 1468.0 1514.3 

19 1081.5 1390.1 1468.0 1514.9 

20 1081.7 1390.3 1468.1 1515.2 

21 1081.9 1390.3 1468.2 1515.9 

22 1081.9 1421.4 1497.7 1568.6 

23 1082.1 1421.5 1497.8 1569.6 

24 1110.5 1421.6 1497.8 1570.4 

25 1110.7 1424.7 1509.9 1570.6 

26 1110.8 1425.0 1510.0 1570.8 

27 1110.9 1425.1 1510.1 1571.1 

28 1111.1 1436.9 1510.1 1571.9 

29 1132.7 1437.0 1510.2 1572.4 

30 1132.9 1437.0 1534.5 1572.9 

31 1133.0 1437.1 1534.8 1574.1 

32 1185.2 1437.2 1534.9 1574.3 

33 1185.6 1453.0 1541.8 1616.2 

34 1185.9 1453.3 1541.8 1617.5 

35 1186.2 1453.5 1541.9 1617.9 

36 1201.3 1470.2 1542.0 1618.5 

37 1201.5 1470.5 1561.4 1618.7 
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38 1201.6 1470.5 1561.6 1619.7 

39 1201.7 1470.6 1561.6 1619.9 

40 1226.5 1470.7 1561.8 1620.4 

41 1226.5 1470.8 1561.8 1620.6 

42 1226.7 1471.0 1577.8 1621.4 

43 1263.2 1471.2 1577.9 1621.8 

44 1263.4 1471.2 1578.2 1622.8 

45 1263.8 1498.2 1589.3 1623.0 

46 1282.6 1498.4 1589.4 1667.6 

47 1282.8 1498.7 1589.4 1668.6 

48 1283.0 1508.3 1589.5 1669.2 

49 1283.1 1508.6 1592.7 1670.2 

50 1382.3 1508.9 1618.6 1671.0 

51 1382.4 1509.0 1619.1 1671.4 

52 1382.7 1509.2 1619.2 1671.9 

53 1383.0 1528.4 1622.1 1671.9 

54 1383.1 1528.6 1622.2 1672.2 

55 1448.3 1528.6 1622.5 1673.0 

56 1448.6 1528.9 1622.6 1673.2 

57 1449.1 1545.1 1622.7 1673.5 

58 1449.4 1555.5 1639.4 1673.9 

59 1487.0 1555.7 1639.4 1674.8 

60 1487.3 1556.0 1639.7 1675.8 

61 1487.4 1556.3 1663.5 1729.9 

62 1487.6 1559.0 1663.5 1731.6 

63 1505.7 1559.2 1663.7 1732.3 

64 1505.8 1559.3 1663.8 1732.5 

65 1506.0 1559.5 1664.0 1733.6 

66 1506.1 1559.6 1669.1 1734.1 

67 1506.3 1562.5 1669.4 1734.7 

68 1510.8 1562.6 1669.4 1734.9 

69 1511.4 1562.8 1694.9 1735.5 

70 1511.9 1628.3 1695.1 1735.8 

71 1583.9 1628.7 1695.4 1736.3 

72 1584.2 1629.0 1695.7 1736.5 

73 1584.7 1647.4 1702.3 1737.6 

74 1587.6 1647.8 1702.3 1737.7 

75 1587.9 1647.9 1702.6 1738.3 

76 1588.4 1648.5 1703.0 1738.5 
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77 1592.6 1678.5 1703.2 1739.6 

78 1592.9 1678.7 1738.0 1810.0 

79 1593.3 1678.9 1738.1 1811.0 

80 1593.5 1679.0 1738.2 1811.6 

81 1593.6 1679.2 1761.4 1812.3 

82 1641.2 1687.9 1761.8 1812.5 

83 1641.6 1688.1 1761.8 1813.6 

84 1641.7 1688.3 1762.1 1814.2 

85 1660.5 1688.5 1762.2 1814.3 

86 1661.1 1688.6 1762.4 1814.6 

87 1661.8 1694.1 1762.5 1815.2 

88 1662.0 1694.6 1762.6 1815.8 

89 1662.3 1694.7 1762.7 1816.1 

90 1822.4 1703.5 1776.5 1817.2 

91 1823.9 1703.7 1776.6 1817.4 

92 1824.9 1703.9 1776.9 1817.7 

93 1879.3 1726.0 1777.3 1819.0 

94 1880.0 1726.3 1806.4 1819.3 

95 1880.9 1726.5 1806.6 1819.8 

96 1881.3 1726.7 1806.8 1820.8 

97 1881.7 1727.0 1816.1 1909.4 

98 1894.8 1761.1 1861.2 1911.3 

99 1894.9 1761.3 1861.3 1912.1 

100 1895.3 1761.6 1861.6 1912.5 

101 1896.0 1823.7 1866.2 1913.2 

102 1913.6 1823.9 1866.7 1914.1 

103 1914.4 1824.0 1866.7 1914.6 

104 1914.6 1824.1 1866.7 1915.1 

105 1941.4 1824.5 1866.8 1915.6 

106 1942.3 1832.8 1869.1 1916.2 

107 1943.8 1833.1 1869.4 1916.2 

108 1984.7 1833.4 1869.5 1916.9 

109 1985.4 1863.6 1869.8 1917.3 

110 1985.7 1863.6 1873.2 1917.6 

111 1986.1 1863.9 1873.2 1918.3 

112 2029.9 1864.1 1873.3 1918.7 

113 2070.0 1883.1 1910.2 1918.9 

114 2070.7 1883.2 1910.5 1920.0 

115 2071.0 1883.2 1910.8 1920.1 
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116 2071.2 1883.3 1911.1 1921.0 

117 2108.0 1883.3 1911.2 1922.2 

118 2108.6 1902.9 1964.1 2001.5 

119 2109.2 1903.1 1964.4 2002.0 

120 2109.4 1903.4 1964.5 2002.4 

121 2110.2 1903.6 1967.4 2003.0 

122 2150.1 1903.8 1967.4 2003.3 

123 2150.3 1919.7 1967.4 2034.5 

124 2151.3 1919.8 1967.4 2035.7 

125 2213.5 1920.2 1967.6 2036.0 

126 2214.5 1920.3 1990.3 2036.4 

127 2215.0 1966.2 1990.6 2036.7 

128 2216.1 1966.2 1990.8 2037.0 

129 2216.6 1966.5 1991.4 2038.2 

130 2291.9 1987.9 1991.6 2038.7 

131 2292.1 1988.2 1998.1 2039.3 

132 2292.8 1988.7 1998.2 2039.8 

133 2293.1 2058.6 1998.5 2040.0 

134 2293.5 2072.1 1998.7 2040.7 

135 2293.7 2072.3 2000.6 2041.3 

136 2294.4 2072.4 2000.7 2041.7 

137 2294.7 2072.6 2000.9 2041.9 

138 2360.3 2079.9 2001.0 2043.0 

139 2360.9 2080.2 2001.3 2043.2 

140 2361.4 2080.4 2037.2 2043.5 

141 2362.4 2080.7 2037.6 2044.3 

142 2415.2 2080.7 2037.7 2044.6 

143 2463.5 2126.2 2070.2 2045.7 

144 2465.5 2126.5 2070.7 2046.2 

145 2465.8 2126.7 2071.2 2047.9 

146 2500.8 2127.0 2116.2 2183.5 

147 2500.9 2195.3 2116.3 2184.0 

148 2502.3 2195.6 2116.6 2184.7 

149 2516.1 2196.1 2118.2 2185.2 

150 2516.3 2196.3 2118.3 2185.9 

151 2516.8 2196.5 2118.3 2186.8 

152 2517.3 2220.8 2118.5 2187.4 

153 2517.6 2221.2 2118.6 2188.7 

154 2619.4 2221.4 2148.4 2189.0 
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155 2620.1 2240.5 2148.6 2189.2 

156 2620.5 2240.8 2148.8 2189.7 

157 2620.6 2241.1 2149.0 2190.6 

158 2621.7 2279.0 2149.3 2190.8 

159 2701.7 2279.4 2162.4 2191.4 

160 2702.6 2280.0 2162.8 2191.6 

161 2703.2 2301.2 2163.3 2192.2 

162 2703.8 2355.1 2163.5 2192.4 

163 2785.3 2355.2 2195.9 2193.1 

164 2785.9 2355.7 2214.5 2193.7 

165 2786.5 2356.1 2214.9 2194.2 

166 2801.8 2396.4 2215.4 2195.2 

167 2802.8 2396.6 2215.6 2195.4 

168 2803.8 2396.8 2239.4 2196.2 

169 2805.5 2396.9 2239.7 2196.9 

170 2806.4 2397.1 2239.8 2198.2 

171 2829.4 2467.1 2240.3 2358.9 

172 2829.7 2467.4 2243.1 2359.7 

173 2830.6 2467.7 2243.3 2360.5 

174 2831.4 2468.1 2243.8 2361.4 

175 2864.4 2468.3 2313.9 2362.5 

176 2864.8 2477.0 2314.1 2362.9 

177 2864.8 2477.2 2314.6 2363.5 

178 2865.7 2477.4 2314.7 2363.8 

179 2865.9 2477.5 2314.9 2364.6 

180 2866.4 2477.9 2318.1 2365.0 

181 2867.1 2478.0 2318.4 2365.5 

182 2867.7 2478.9 2318.4 2366.5 

183 2926.7 2498.5 2377.3 2366.7 

184 2928.0 2498.7 2377.4 2367.0 

185 2928.5 2499.1 2378.0 2367.5 

186 2947.9 2499.5 2378.1 2368.2 

187 2949.8 2587.3 2398.3 2368.5 

188 2950.4 2588.1 2398.5 2369.2 

189 2950.8 2588.6 2399.1 2369.8 

190 2950.9 2589.2 2399.5 2370.4 

191 2952.1 2616.8 2400.2 2370.8 

192 2952.5 2617.5 2400.7 2371.3 

193   2617.9 2401.2 2371.8 
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194   2618.1 2401.9 2372.6 

195   2640.2 2404.8 2372.7 

196   2640.3 2405.0 2374.4 

197   2640.8 2405.3 2376.2 

198   2641.0 2415.9 2561.2 

199   2641.5 2416.0 2563.0 

200   2682.1 2416.1 2563.3 

201   2682.5 2416.2 2564.2 

202   2682.7 2496.2 2565.0 

203   2682.9 2496.4 2565.8 

204   2683.2 2496.5 2565.9 

205   2721.0 2531.5 2566.4 

206   2721.3 2531.6 2566.9 

207   2722.4 2532.0 2567.5 

208   2779.4 2532.2 2568.0 

209   2779.8 2532.4 2568.6 

210   2780.2 2570.1 2568.8 

211   2822.9 2570.2 2569.7 

212   2823.2 2570.9 2570.2 

213   2823.5 2571.1 2570.2 

214   2860.7 2598.7 2571.4 

215   2861.5 2599.1 2571.9 

216   2861.9 2599.5 2573.0 

217   2862.3 2608.4 2573.2 

218   2887.9 2608.7 2574.1 

219   2888.6 2609.0 2574.5 

220   2889.2 2609.3 2575.0 

221   2889.5 2609.7 2575.8 

222   2890.0 2621.0 2576.7 

223   2905.2 2641.5 2577.3 

224   2905.3 2733.0 2577.5 

225   2905.6 2733.0 2578.6 

226   2946.9 2733.5 2580.5 

227   2947.2 2733.8 2789.3 

228   2948.6 2734.1 2790.8 

229   2948.9 2748.1 2792.3 

230   2949.2 2748.3 2792.9 

231   2963.1 2748.6 2794.5 

232   2964.0 2759.3 2794.6 
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233   2964.6 2759.6 2795.1 

234   2965.5 2760.3 2795.8 

235   2971.5 2801.4 2796.6 

236   2976.9 2802.0 2797.3 

237   2977.3 2802.2 2797.5 

238   2977.6 2802.6 2798.8 

239   3002.7 2806.6 2799.2 

240     2807.6 2799.6 

241     2807.9 2800.1 

242     2808.4 2800.4 

243     2808.6 2800.9 

244     2918.7 2802.0 

245     2919.1 2802.8 

246     2919.6 2803.3 

247     2919.8 2803.5 

248     2936.3 2804.0 

249     2937.0 2804.3 

250     2938.0 2805.2 

251     2959.1 2806.0 

252     2961.4 2806.5 

253     2962.5 2807.4 

254     2978.5 2808.6 

255     2978.7 2809.6 

256     2979.2 2810.0 

257     2979.8 2812.2 

258     2980.1 2822.1 

259     2987.8   

260     2988.3   

261     2988.8   

262     2988.9   

263     2989.3   

 

 

 

6.8 MATLAB code for calculating the Target Strength from 2-D elastic body 

scattering, plotting the target strength and the / L  curves.   
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load POR_Scatter_15_Pos.dat 
load POR_Scatter_15_Neg.dat 

  
load POR_Scatter_30_Pos.dat 
load POR_Scatter_30_Neg.dat 

  
load POR_Scatter_45_Pos.dat 
load POR_Scatter_45_Neg.dat 

  
load POR_Scatter_Ring_Pos.dat 
load POR_Scatter_Ring_Neg.dat 

  
P_ref = 2e-5; 
c = 344; 
a = 1; 
%calculating nondimensional frequency ka 
f_15 = (POR_Scatter_15_Pos(:,1).*(2*pi*a)/c); 
f_30 = (POR_Scatter_30_Pos(:,1).*(2*pi*a)/c); 
f_45 = (POR_Scatter_45_Pos(:,1).*(2*pi*a)/c); 
f_ring = (POR_Scatter_Ring_Pos(:,1).*(2*pi*a)/c); 
d = 1;   %m 
% chord length calculation 
l_15 = (d/2)*sqrt(2-2*cosd(15)); 
l_30 = (d/2)*sqrt(2-2*cosd(30)); 
l_45 = (d/2)*sqrt(2-2*cosd(45)); 
% target strength at front near node. 
figure('name','Positive') 
ax1 = gca; 
plot(f_45,20*log10(POR_Scatter_45_Pos(:,2)/P_ref)) 
hold on 
plot(f_30,20*log10(POR_Scatter_30_Pos(:,2)/P_ref),'g') 
hold on 
plot(f_15,20*log10(POR_Scatter_15_Pos(:,2)/P_ref),'k') 
hold on 
plot(f_ring,20*log10(POR_Scatter_Ring_Pos(:,2)/P_ref),'r') 
legend('45','30','15','Ring','Location','east') 
xlabel('ka') 
ylabel('pressure(db)') 
xlim([0 55]) 
hold on 
%plotting the ratio on the other Y-axis on the right side 
ax2 = axes('Position',get(ax1,'Position'),... 
    'YAxisLocation','right',... 
    'Color','none'); 
Y = 0.36*ones(size(f_15)); 
line(f_15,Y,'Parent',ax2,'Color','k','Linewidth',1.5) 
hold on 
x = [0,55,55,0]; 
y = [0.25,0.25,0.45,0.45]; 
line(x,y,'Parent',ax2,'Color','k') 
hold on 
line(f_45,log10(c./(POR_Scatter_45_Pos(:,1)*l_45)),'Parent',ax2,'Color',

'b','Linewidth',1.2) 
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hold on 
line(f_30,log10(c./(POR_Scatter_30_Pos(:,1)*l_30)),'Parent',ax2,'Color',

'g','Linewidth',1.2) 
hold on 
line(f_15,log10(c./(POR_Scatter_15_Pos(:,1)*l_15)),'Parent',ax2,'Color',

'k','Linewidth',1.2) 
hold on 
hold off 
ylabel('log_{10}(\lambda/L)') 
xlim([0 55]) 
set(ax2,'YColor','b') 
hold off 
print -depsc2 -tiff positive.eps 
print -r300 -djpeg90 positive.jpg 

  
%target strength at back near node 
figure('name','Negative') 
ax1 = gca; 
plot(f_45,20*log10(POR_Scatter_45_Neg(:,2)/P_ref)) 
hold on 
plot(f_30,20*log10(POR_Scatter_30_Neg(:,2)/P_ref),'g') 
hold on 
plot(f_15,20*log10(POR_Scatter_15_Neg(:,2)/P_ref),'k') 
hold on 
plot(f_ring,20*log10(POR_Scatter_Ring_Neg(:,2)/P_ref),'r') 
legend('45','30','15','Ring','Location','east') 
xlabel('ka') 
ylabel('pressure(db)') 
xlim([0 55]) 
hold on 
%plotting the ratio on the other Y-axis on the right side 
ax2 = axes('Position',get(ax1,'Position'),... 
    'YAxisLocation','right',... 
    'Color','none'); 
Y = 0.23*ones(size(f_15)); 
line(f_15,Y,'Parent',ax2,'Color','k','Linewidth',1.5) 
hold on 
x = [0,55,55,0]; 
y = [0,0,0.4,0.4]; 
line(x,y,'Parent',ax2,'Color','k') 
hold on 
line(f_45,log10(c./(POR_Scatter_45_Neg(:,1)*l_45)),'Parent',ax2,'Color',

'b','Linewidth',1.2) 
hold on 
line(f_30,log10(c./(POR_Scatter_30_Neg(:,1)*l_30)),'Parent',ax2,'Color',

'g','Linewidth',1.2) 
hold on 
line(f_15,log10(c./(POR_Scatter_15_Neg(:,1)*l_15)),'Parent',ax2,'Color',

'k','Linewidth',1.2) 
hold on 
hold off 
ylabel('log_{10}(\lambda/L)') 
xlim([0 55]) 
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set(ax2,'YColor','b') 
hold off 
print -depsc2 -tiff negative.eps 
print -r300 -djpeg90 negative.jpg 

 

6.9 MATLAB code for calculating the target strength from 2-D elastic body scattering 

at the near inner surface and generating a polar plot.  

clc; 
clear; 
%load the data 
load POR_Polar_15.dat 
load nodes_15.dat 
load coord_15.dat 

  
load POR_Polar_Ring.dat 
load nodes_ring.dat 
load coord_ring.dat 
n_15 = 596; 
n_ring = 590;%row corresponding to the desired frequency  

  
P_ref = 2e-5; 
nodes_15 = nodes_15'; 
for i=1:size(nodes_15) 
    A_2(i,1) = coord_15(nodes_15(i,1),2); 
    A_2(i,2) = coord_15(nodes_15(i,1),3); 
end 
% Converting cartesian to polar.  
[THETA,RHO] = cart2pol(A_2(:,1),A_2(:,2)); 
X_2(:,1) = THETA; 
%Calculating target strength  
for i=1:size(nodes_15) 
    X_2(i,2) = 20*log10(POR_Polar_15(n_15,i+1)/P_ref); 
end 
[Y,I] = sort(X_2(:,1)); 
B_2 = X_2(I,:); 
nodes_ring = nodes_ring'; 
%calculation for ring  
for i=1:size(nodes_ring) 
    A_S(i,1) = coord_ring(nodes_ring(i,1),2); 
    A_S(i,2) = coord_ring(nodes_ring(i,1),3); 
end 
%converting cartesian to polar.  
[THETA,RHO] = cart2pol(A_S(:,1),A_S(:,2)); 
X_S(:,1) = THETA; 
%calculating target strength.  
for i=1:size(nodes_ring) 
    X_S(i,2) = 20*log10(POR_Polar_Ring(n_ring,i+1)/P_ref); 
end 
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[Y,I] = sort(X_S(:,1)); 
B_S = X_S(I,:); 

  
polar(B_2(:,1),B_2(:,2),'.b') 
hold on 
xlabel('node position (degrees)') 
ylabel('pressure (db)') 
h2=polar(B_S(:,1),B_S(:,2),'r'); 
set(h2,'LineWidth',1.2) 
format short e 
a= POR_Polar_Ring(n_ring,1); 
b= POR_Polar_15(n_15,1); 
legend(sprintf('15 @ %d (Hz)',b),sprintf('Ring @ %d (Hz)',a), 

'Location','north') 
hold off 
print -depsc2 -tiff polar.eps 
print -r300 -djpeg90 polar_geo.jpg 

  

 

6.10 MATLAB code for calculating the Target Strength from 3-D elastic-body 

scattering, plotting the target strength and the / avgd  curves.   

clc; 
clear; 
%loading the data 
load POR_Scatter_Geo2_Pos.dat 
load POR_Scatter_Geo2_Neg.dat 

  
load POR_Scatter_Geo3_Pos.dat 
load POR_Scatter_Geo3_Neg.dat 

  
load POR_Scatter_Geo4_Pos.dat 
load POR_Scatter_Geo4_Neg.dat 

  
load POR_Scatter_Shell_Pos.dat 
load POR_Scatter_Shell_Neg.dat 

  

  
a =1; 
c = 343.996; 
%calculating nondimensional frequency ka 
f_4 = (POR_Scatter_Geo4_Pos(:,1).*(2*pi*a))/(c); 
f_3 = (POR_Scatter_Geo3_Pos(:,1).*(2*pi*a))/(c); 
f_2 = (POR_Scatter_Geo2_Pos(:,1).*(2*pi*a))/(c); 
f_shell = (POR_Scatter_Shell_Pos(:,1).*(2*pi*a))/(c); 
P_ref = 2e-5; %N/mm2 
A_3 =  2.288737908239999e-01; %Surface Area of the triangle  (m) 
A_2 = 3.376875231948716e-01; 
A_4 =   1.726255088404506e-01; 
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c = 344; %m/s 
% target strength at front near node 
figure('name','Positive') 
ax1 = gca; 
plot(f_2,20*log10(POR_Scatter_Geo2_Pos(:,2)/P_ref)) 
xlim([0 55]) 
xlabel('frequency (Hz)') 
ylabel('pressure (db)') 
hold on 
plot(f_3,20*log10(POR_Scatter_Geo3_Pos(:,2)/P_ref),'g') 
hold on 
plot(f_4,20*log10(POR_Scatter_Geo4_Pos(:,2)/P_ref),'k') 
hold on 
plot(f_shell,20*log10(POR_Scatter_Shell_Pos(:,2)/P_ref),'r') 
hold on 
legend('Degree II','Degree III','Degree IV','Spherical 

Shell','Location','east') 
grid on 
hold on 
%plotting the ratio on the other Y-axis on the right side 
ax2 = axes('Position',get(ax1,'Position'),... 
    'YAxisLocation','right',... 
    'Color','none'); 
Y = 0.3*ones(size(f_4)); 
line(f_4,Y,'Parent',ax2,'Color','k','Linewidth',1.5) 
hold on 
x = [0,55,55,0]; 
y = [0.25,0.25,0.35,0.35]; 
line(x,y,'Parent',ax2,'Color','k') 
hold on 
line(f_4,log10(c./(POR_Scatter_Geo4_Pos(:,1)*(A_4))),'Parent',ax2,'Color

','k','Linewidth',1.2) 
xlim([0 55]) 
hold on 
line(f_3,log10(c./(POR_Scatter_Geo3_Pos(:,1)*(A_3))),'Parent',ax2,'Color

','g','Linewidth',1.2) 
hold on 
line(f_2,log10(c./(POR_Scatter_Geo2_Pos(:,1)*(A_2))),'Parent',ax2,'Linew

idth',1.2) 
xlabel('frequency') 
ylabel('log_{10} (\lambda/d_{avg})') 
set(ax2,'YColor','b') 
hold on 

  
hold off 
print -depsc2 -tiff 3D_scatter_pos.eps 
print -r300 -djpeg90 positive_rigid.jpg 

  
%target strength at back near node 
figure('name','Negative') 
gca = ax1; 
plot(f_2,20*log10(POR_Scatter_Geo2_Neg(:,2)/P_ref)) 
xlim([0 55]) 
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xlabel('ka') 
ylabel('pressure (db)') 
hold on 
plot(f_3,20*log10(POR_Scatter_Geo3_Neg(:,2)/P_ref),'g') 
hold on 
plot(f_4,20*log10(POR_Scatter_Geo4_Neg(:,2)/P_ref),'k') 
hold on 
plot(f_shell,20*log10(POR_Scatter_Shell_Neg(:,2)/P_ref),'r') 
legend('Degree II','Degree III','Degree IV','Spherical 

Shell','Location','east') 
grid on 
hold off 
%plotting the ratio on the other Y-axis on the right side 
ax2 = axes('Position',get(ax1,'Position'),... 
    'YAxisLocation','right',... 
    'Color','none'); 

  
line(f_4,log10(c./(POR_Scatter_Geo4_Pos(:,1)*(A_4))),'Parent',ax2,'Color

','k','Linewidth',1.2) 
xlim([0 55]) 
hold on 
line(f_3,log10(c./(POR_Scatter_Geo3_Pos(:,1)*(A_3))),'Parent',ax2,'Color

','g','Linewidth',1.2) 
hold on 
line(f_2,log10(c./(POR_Scatter_Geo2_Pos(:,1)*(A_2))),'Parent',ax2,'Linew

idth',1.2) 
ylabel('log_{10}(\lambda/d_{avg}) ') 
Y = 0.033*ones(size(f_4)); 
line(f_4,Y,'Parent',ax2,'Color','k','Linewidth',1.5) 
hold on 
x = [0,55,55,0]; 
y = [-0.1,-0.1,0.3,0.3]; 
line(x,y,'Parent',ax2,'Color','k') 
set(ax2,'YColor','b') 
hold on 
print -depsc2 -tiff 3D_scatter_neg.eps 
print -r300 -djpeg90 negative_rigid.jpg 

 

6.11 MATLAB code for calculating the Target Strength of 2-D rigid bodies, plotting the 

target strength and the / L  curves.   

load POR_15_pos.dat 
load POR_15_neg.dat 

  
load POR_30_pos.dat 
load POR_30_neg.dat 

  
load POR_45_pos.dat 
load POR_45_neg.dat 
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load POR_ring_pos.dat 
load POR_ring_neg.dat 

  
c = 344; %m/s 
a = 1; %m 
f_15 = (POR_15_pos(:,1).*(2*pi*a))/(c); 
f_30 = (POR_30_pos(:,1).*(2*pi*a))/(c); 
f_45 = (POR_45_pos(:,1).*(2*pi*a))/(c); 
f_ring = (POR_ring_pos(:,1).*(2*pi*a))/(c); 
l_15 = 2*(a/2)*sind(15/2); 
l_30 = 2*(a/2)*sind(30/2); 
l_45 = 2*(a/2)*sind(45/2); 

  
P_ref = 2e-5; 
figure('name','Positive') 
ax1 = gca; 
% plot(f_15,20*log10(POR_15_pos(:,2)/P_ref),'k') 
plot(f_45,20*log10(POR_45_pos(:,2)/P_ref)) 
hold on 
plot(f_30,20*log10(POR_30_pos(:,2)/P_ref),'g') 
hold on 
plot(f_15,20*log10(POR_15_pos(:,2)/P_ref),'k') 
hold on 
plot(f_ring,20*log10(POR_ring_pos(:,2)/P_ref),'r') 
 xlim([0 55]) 
legend('45','30','15','Ring','Location','east') 
xlabel('ka') 
ylabel('pressure (db)') 
hold on 
ax2 = axes('Position',get(ax1,'Position'),... 
    'YAxisLocation','right',... 
    'Color','none'); 
Y = 0.36*ones(size(f_15)); 
line(f_15,Y,'Parent',ax2,'Color','k','Linewidth',1.5) 
hold on 
x = [0,55,55,0]; 
y = [0.25,0.25,0.45,0.45]; 
line(x,y,'Parent',ax2,'Color','k') 
hold on 
line(f_15,(log10(c./(POR_15_pos(:,1)*l_15))),'Parent',ax2,'Color','k','L

inewidth',1.2) 
hold on 
 xlim([0 55]) 
line(f_30,log10(c./(POR_30_pos(:,1)*l_30)),'Parent',ax2,'Color','g','Lin

ewidth',1.2) 
hold on 
line(f_45,log10(c./(POR_45_pos(:,1)*l_45)),'Parent',ax2,'Linewidth',1.2) 
hold off 
% xlabel('ka') 
ylabel('log_{10}(\lambda/chord)') 
set(ax2,'YColor','b') 
print -depsc2 -tiff pos_rigid.eps 
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print -r300 -djpeg90 positive.jpg 

  

  
figure('name','Negative') 
ax1 = gca; 
plot(f_45,20*log10(POR_45_neg(:,2)/P_ref)) 
hold on 
plot(f_30,20*log10(POR_30_neg(:,2)/P_ref),'g') 
hold on 
plot(f_15,20*log10(POR_15_neg(:,2)/P_ref),'k') 
hold on 
plot(f_ring,20*log10(POR_ring_neg(:,2)/P_ref),'r') 
legend('45','30','15','Ring','Location','east') 
xlabel('ka') 
ylabel('pressure (db)') 
 xlim([0 55]) 
hold on 
ax2 = axes('Position',get(ax1,'Position'),... 
     'YAxisLocation','right',... 
     'Color','none'); 
line(f_15,log10(c./(POR_15_neg(:,1)*l_15)),'Parent',ax2,'Color','k','Lin

ewidth',1.2) 
hold on 
 xlim([0 55]) 
line(f_30,log10(c./(POR_30_neg(:,1)*l_30)),'Parent',ax2,'Color','g','Lin

ewidth',1.2) 
hold on 
line(f_45,log10(c./(POR_45_neg(:,1)*l_45)),'Parent',ax2,'Linewidth',1.2) 
hold off 
ylabel('log_{10}(\lambda/chord)') 
Y = 0.23*ones(size(f_15)); 
line(f_15,Y,'Parent',ax2,'Color','k','Linewidth',1.5) 
hold on 
x = [0,55,55,0]; 
y = [0,0,0.4,0.4]; 
line(x,y,'Parent',ax2,'Color','k') 
set(ax2,'YColor','b') 
print -depsc2 -tiff neg_rigid.eps 
print -r300 -djpeg90 negative.jpg 

 

6.12 MATLAB code for calculating the Target Strength for 3-D rigid body scattering, 

plotting the target strength and the / avgd  curves.   

load POR_Geo2_Pos.dat 
load POR_Geo2_Neg.dat 

  
load POR_Shell_Pos.dat 
load POR_Shell_Neg.dat 
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load POR_Geo3_Pos.dat 
load POR_Geo3_Neg.dat 

  
load POR_Geo4_Pos.dat 
load POR_Geo4_Neg.dat 

  
figure('name','Positive') 
plot(POR_Geo2_Pos(:,1),POR_Geo2_Pos(:,2)) 
xlabel('frequency') 
ylabel('pressure') 
hold on 
plot(POR_Geo3_Pos(:,1),POR_Geo3_Pos(:,2),'g') 
hold on 
plot(POR_Geo4_Pos(:,1),POR_Geo4_Pos(:,2),'k') 
hold on 
plot(POR_Shell_Pos(:,1),POR_Shell_Pos(:,2),'r') 
legend('Geo_2','Geo_3','Geo_4','Shell','Location','northwest') 
hold off 
print -r300 -djpeg90 positive_geo.jpg 

  
figure('name','Negative') 
plot(POR_Geo2_Neg(:,1),POR_Geo2_Neg(:,2)) 
xlabel('frequency') 
ylabel('pressure') 
hold on 
plot(POR_Geo3_Neg(:,1),POR_Geo3_Neg(:,2),'g') 
hold on 
plot(POR_Geo4_Neg(:,1),POR_Geo4_Neg(:,2),'k') 
hold on 
plot(POR_Shell_Neg(:,1),POR_Shell_Neg(:,2),'r') 
legend('Geo_2','Geo_3','Geo_4','Shell','Location','northwest') 
hold off 
print -r300 -djpeg90 negative_geo.jpg 
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