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Abstract

Research in new display technologies has garnered great interest in the recent years. Curved

screens and foldable displays have already been commercialized. However a relatively new field of

research is in dynamic shape-changing or shape-shifting displays. These displays utilize the ability

to change their shape dynamically as another dimension of representing visual data. These displays

potentially augmented with colors, can help visualize three dimensional data such as terrains, city

and building plans, and medical data. They can also be used in new ways of Human-Computer

Interaction by developing user interfaces that transform physically based on the scenario.

While there is research being done on new ways of using shape displays for interaction and

manipulation, not much focus has been given to the issue of cost and scalability. The general shape

displays which are currently being developed have individual pixels which need to be actuated. The

commercial linear actuators which are used in these displays are extremely expensive and are not

meant for such purposes. This thesis presents a design for a dynamic pixel-based shape changing

display which focuses on cost and scalability by using custom designed modular actuators and sensor

packages.
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Chapter 1

Introduction

The two dimensional screen has been ubiquitous for many years. Its found almost everywhere

from the smartphones we carry in our pockets to large wall mounted displays. The whole computing

world is designed based on this two dimensional visual representation of data, and it has worked

wonderfully and will continue to do so for a long time. Stereo displays have also become quite

common, especially in the movie industry as they simulate the sense of depth in images and videos.

Other forms of data visualization such as Augmented and Virtual Reality glasses have moved out of

the research labs and turned into commercial products such as the Oculus Rift [19] and Microsoft

Hololens [17]. However we are still yet to fully utilize the third dimension for such purposes, at least

commercially.

One of the ways that the current display technology could be extended to the third dimension

is by developing dynamic shape changing displays. In recent years there has been a sharp increase in

the research on such technology, the most relevant to the work in this Thesis being the inFORM [11]

project by Massachusetts Institute of Technology (MIT) which is shown in Figure 1.1. It consists of

an array of 30x30 linear actuators which actuate tiles up and down creating a 2.5 dimensional surface.

An overhead projector is used to display images on the surface, thereby creating a dynamic shape

changing display. This type of hardware opens up a lot of areas in Human-Computer interaction

which were not possible before, such as being able to visualize data in 2.5D, actuating physical

objects, and interacting with a tangible platform. Some of the immediate applications for interactive

shape changing displays are terrain viewing, city and building planning, 3D modelling and animation.

However one of the issues with the design of such displays is the use of commercial linear
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Figure 1.1: MIT’s shape changing display

actuators. These actuators are generally built to produce a lot of force which goes unused in the

2.5D display application and also take up a lot of space. They are also extremely expensive, ranging

anywhere from $30 to $200 for just the actuators which makes scaling the display commercially

infeasible. This is one of the reasons why such displays are in limited use, even in research labs. By

building custom linear actuators which are designed specifically for the purpose of actuating pixels,

the cost of the whole system can be brought down significantly.

This thesis presents a novel design for a shape changing display with a focus on keeping the

cost of the system low using custom built linear actuators and sensors while maintaining scalability

of the design. A 16x16 shape changing pixel display was built to test the effectiveness of the

actuator and sensor system and the design constraints that have to be considered while building

it. The system also features custom pressure sensors to make the display tangible and an overhead

projector to display images and videos on the surface. Figure 1.2 shows the system and its main

components. The top of the pressure sensors also double as the display surface which is 16 inches

X 16 inches with each pixel being an inch apart. There are a total of 256 pixels which are actuated

by 256 servo motors through tendons. The motor assembly and the pixel array is divided into 16

blocks, each of which contains 16 motors and controls 4x4 pixels. This was done to improve the ease

of assembly/disassembly and improve scalability, as more actuator blocks can be easily added to

increase the size of the display. The servo motor assembly is slightly wider than the display surface

at 24 inches X 24 inches and the total height of the system is 40 inches. This was due to restrictions

on the maximum size of the PCB which could be fabricated at a reasonable price. If it were to be

manufactured commercially, the servo motor blocks and the pixel array could be the same size.

2



Figure 1.2: Low cost shape changing display

Over the years, different actuation mechanisms have been implemented in shape changing

displays. These mechanisms were reviewed and is available in Section 1.2. Our system is inspired

by some of these designs, but the designs of the linear actuators and pressure sensors are novel.

The design considerations and the constraints for the new linear actuator are described in Chapter

2. This Chapter also provides the construction details of the actuator as well as the whole system

describing every aspect in detail including CAD models, fabrication techniques and a list of materials

that were used.

Several applications for the system were developed such as using the display for data visu-

alization, object manipulation, interaction through a gesture interface and a basic touch input. The

results of these applications are discussed in Chapter 3. The Chapter also includes details about

some of the preliminary experiments done to assess the linear actuators and the pressure sensors.

Chapter 4 presents the conclusions and the summary of the Thesis and also provides suggestions for

future work based on the results of the system.

3



1.1 Background

One of the earliest dynamic shape changing display was the FEELEX developed by Iwata

et al. [15], which involves 36 motorized pins that actuate the shape of a soft surface. The second

generation of the device is shown in Figure 1.3. While it improved on the resolution compared to

the first generation device, it involved complex mechanical linkages which could not be easily scaled.

Its main application was to be used as a medical haptic device and as such is not suitable for general

purpose data visualization and interaction.

Figure 1.3: Second generation of FEELEX [15]

Figure 1.4 shows the Lumen device created by Poupyrev et al. [21] It consists a 5x5 array

of moveable light guides actuated through shape memory alloy (SMA) wires. SMA wires contract

when current passes through them and return to the original length when the current stops flowing.

Although the actuation was fast, the amount of actuation (travel) which was produced was very low

which is an inherent limitation of using SMA wires for actuation.

Figure 1.4: Lumen device [21]

4



The relief system [16] which was developed at MIT Media Labs is shown in Figure 1.5. It

is a tabletop surface which is actuated by an array of 120 motorized pins built upon open-source

hardware and software. This is probably the most effective shape-changing display to date in terms

of cost and scalability. However, it still uses commercially available linear actuators which tend to

be expensive as mentioned earlier. Since it also used DC motors, this system required motor drivers

which again adds to the cost and complexity.

Figure 1.5: Relief device [16]

Figure 1.6: inFORM by MIT Media Labs [11]

The inFORM [11] shape changing display built by MIT Media labs is shown in Figure 1.6.

It is an improvement of the relief display but uses the same actuator mechanism, the only difference

5



being that the pins are connected to the actuators through push-pull rods. This increases the ability

to build displays with higher resolution but increases the cost and complexity per pixel.

One of the few commercially available shape changing displays is manufactured by Northrop

Grumman [6] and is used in terrain viewing for military applications (see Figure 1.7). It is a fairly

high resolution display created by 4600 pins with a spacing of 0.72 inches between pins. It also has

a silicone skin for image projection. However, as it was built for terrain viewing, it is not a dynamic

display and takes around 15 seconds to change the terrain.

Figure 1.7: Terrain table by Northrop Grumman [6]

Figure 1.8: ShapeClips by Lancaster University, UK [13]

ShapeClips [13] is a very innovative prototype developed at the Lancaster Unversity, UK

and is shown in Figure 1.8. It consists of modular clips which can move up and down based on

6



the input from an LDR (Light Dependent Resistor) at the bottom. This allows the shapeclip to be

used without any programming and can be used in conjunction with any device which is capable of

displaying colors. However, because of the modular and independent nature of the shapeclips, they

involve a large number of components with each module which increases the cost.

Another shape changing display produced by the Lancaster University, UK is the EMERGE [22]

which is shown in figure 1.9. It is very similar to inFORM [11] in terms of the actuation mechanism

as well as the use of push-pull rod to control the pins. There are however, RGB LEDs embedded

within the rods to illuminate them and help visualize data in a different way which does not use

projection. Since the actuation mechanism is the same as inFORM [11], this display also has similar

limitations on cost and scalability.

Figure 1.9: EMERGE by Lancaster University, UK [22]

The above review suggests that in order to make the shape-changing display more com-

mercially feasible and scalable, we need a better design for the actuator mechanism. The use of

commercial linear actuators in previously developed displays help in keeping the prototype complex-

ity low but add to the cost of the systems. By designing and building custom linear actuators which

meet the requirements of the system, the cost of the system can be brought down significantly while

increasing scalability. The design of such a linear actuation mechanism and the actuator assembly

is a key contribution of this Thesis, and is explained in detail in the next Chapter. To validate the

effectiveness of the new mechanism, a 16x16 shape-changing display was built. The demonstration

of the effectivenes of the system in a seriees of novel application scenarios is another key contribution

of this Thesis and the results of these experiments are provided in Chapter 3.
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Chapter 2

Research Design and Methods

2.1 Background on Linear Actuators

A linear actuator is an actuator that creates motion in a straight line, in contrast to the

rotary motion of a conventional electric motor. Linear actuation can be achieved through several

different mechanisms and energy sources. However, because of reasons which will be explained in the

next section, the focus will be on electromechanical linear actuators, an example of which is shown

in Figure 2.1. Even with this subset there are several different methods by which the actuation

can be achieved. They can be broadly divided into three categories which are Screw type, Wheel

and axle, and Cam. The screw type linear actuator operates on the principle of a simple screw.

By rotating the actuator’s nut, the screw shaft moves in a linear motion. The wheel and axle type

produce linear motion by rotating a wheel which moves a cable, rack, chain or belt. Cam actuators

work on a principle similar to a wedge, they produce linear actuation by rotating an eccentric shaped

wheel which moves a shaft up and down. Table 2.1 shows the comparison of some properties of these

mechanisms [10].

Mechanism Speed Force Travel

Screw Slow High Medium
Wheel and Axle Fast Medium High

Cam Medium Medium Low

Table 2.1: Comparison of properties of different mechanisms of linear actuation
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Figure 2.1: Example of a commercially available linear actuator

Since the purpose of the linear actuator in the project is to represent the height of a pixel,

the force required is considerably low. The important parameters would be speed and travel as it is

desirable to have the pixel quickly change heights and also have sufficient play in the linear motion.

Keeping this in mind it can be easily seen that the screw type linear actuator can be eliminated as

an option. The other two options however, required more careful consideration.

2.2 First Prototype

The first option which was explored was the Cam mechanism. Even though the cam mech-

anism did not offer fast speeds with a single actuator, the idea was to control several shafts with a

single actuator. The prototype was built out of laser cut acrylic sheet and a 3D rendering of it is

shown in Figure 2.2.

The prototype consists of a shaft which has teeth and is able to move vertically up and

down in a slot. An acrylic piece of 2cm width and 10cm length was connected to a servo motor to

act as the Cam. The solenoid was to be used to lock the shaft in place once it was in the correct

position. Although this design would have worked, it was quickly realized that it would not allow

for tight spacing between the shafts. Therefore the Cam was modified with two extra servo motors

to attach multiple arms as shown in Figure 2.3.

The modified design worked and would allow for tighter spacing between the shafts. The

problem however was that it would not allow for fast actuation of multiple shafts.
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Figure 2.2: 3D rendering of the first prototype

Figure 2.3: Prototype modified with extra servo motors
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Figure 2.4: Second prototype

2.3 Second Prototype

The next mechanism which was tried was the wheel and axle. The basic idea was to use a

servo motor as a winch and pull the shaft. But this would only allow for movement in one direction

as the shaft would not move up again. Therefore the shaft had to be spring loaded to allow for

bidirectional movement. To test this, a square tube was built out of laser cut acrylic sheet to be

used as the container for the actuator. The shaft was also a piece of acrylic sheet which was cut to

fit inside the container. The prototype is shown in Figure 2.4. Although the prototype worked well,

there was no way to control the position of the shaft. The next section describes the final prototype,

which has position feedback, in full detail.

2.4 Construction of the final prototype

The above prototype was further refined and the constructional details are provided in

this section. All 3D renderings and CAD models were created using Autodesk Inventor [2] and all

dimensions in CAD models are in mm.
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Figure 2.5: Details of the actuator container wall

Figure 2.6: Actuator container after gluing

2.4.1 Actuator container

The actuator container was constructed from four interlocking pieces of acrylic which were

cut as shown in Figure 2.5. The interlocking pattern was created because it would strengthen the

container. The four pieces were then glued together using super glue as shown in Figure 2.6. An

additional piece was cut to close the bottom of the container using the slots created. This piece

served two purposes, one was to hold the spring in place and the other was to guide a cable through

the container.

2.4.2 Actuator shaft

The actuator shaft was a simple rectangular piece of acrylic whose dimensions are given in

Figure 2.9. The area in the red was not cut but scored to a depth of 0.5mm. This purpose of this is

to keep the cable flush with the surface of the shaft and reduce friction between the actuator shaft

and container.
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Figure 2.7: Details of the container cap

Figure 2.8: Actuator container with the end cap

Figure 2.9: Dimensional details of the actuator shaft
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Figure 2.10: Schematic of a linear potentiometer

Figure 2.11: Actuator shaft with conductive ink painted on one side

2.4.3 Linear potentiometer

Since it was essential to detect the position of the shaft with respect to the container, some

sort of a sensor had to be implemented. Since space and cost was a constraint, external sensors were

avoided. The most obvious way to sense the position of the shaft was to convert it into a linear

potentiometer. A linear potentiometer is a device which consists of a resistive strip and sliding

contact which touches the resistive strip at one point. If an electric current is passed through the

resistive element then the sliding contact acts as a voltage divider. By measuring this voltage, the

position of the slider can be determined (see Figure 2.10). Therefore, if there was a resistive strip

on the shaft and the point of contact was constant, the position of the shaft could be measured.

To develop the resistive strip different materials were tested. The first was to use a com-

mercially available conductive ink and coat one side of the shaft with it. The ink had a resistivity

of 150 Ω / inch for a width of 0.25 inches. Even though the ink worked as intended, it would have

been difficult to apply the ink to all the actuators the same way without automation. Figure 2.11

shows the actuator shaft with the conductive ink painted on one of the sides.

The second material tested was a plastic film which was coated with Indium Tin Oxide(ITO).
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Figure 2.12: Actuator shaft with copper tape

Figure 2.13: Details of the electrical joints

The film was flexible and could easily be cut and it had a resistivity of 50 Ω / square inch. The

film came in sheets of 100mmX200mm and it was cut to strips of 5mmX200mm using a laser cutter.

This strip was then glued to the side of the shaft. To supply the voltage required for the resistive

strip to function, copper tape was used to form continuous contact on the sides perpendicular to the

resistive strip.

A smaller piece of copper tape was used to make contact with the two ends of the resistive

strip. To ensure good contact, the joint between the copper tapes was soldered and conductive ink

was spread on the joint between the copper tape and the resistive strip.

To establish constant electrical contact between the actuator shaft and the container, it was

essential to find a contact which would not destroy the resistive strip when the shaft was in motion.

The best option was to use a sliding spring contact [14]. To mount the contacts four pieces of acrylic

of size 25.4mm X 7.6mm were cut and glued to the top end of the container as shown in Figure 2.14.

The sliding contacts were then soldered to the ends of copper tapes and taped as shown.

The copper tapes were then extended to the outside of the actuator container. This would serve as
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Figure 2.14: Photograph of the acrylic pieces used to hold the contacts

Figure 2.15: Sliding contact soldered to copper tape

external contacts for the actuator is shown in Figure ?? along with all the various components.

2.4.4 Spring selection

As described earlier, the actuator can only move in one direction with a cable. Therefore a

spring has to be inserted into the actuator container to allow it to come back to its original position.

Several different springs were tested and their information is shown in Table 2.2. The criteria for

selection was that the spring was to be able to compress at least 150mm and the diameter was to be

less than or equal to 6.35mm. It was also desired that the force required to compress the spring was

to be less than 30N as this was the maximum force capable of being produced by the servo motor

actuator after taking into account the diameter of the pulley attached (see section 2.4.6).

The second spring was found to best satisfy the specifications and Figure 2.18 shows the

spring which was selected.
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Figure 2.16: Sliding contacts mounted on the actuator container

Figure 2.17: Actuator container with the contacts fully mounted

Figure 2.18: Photograph of the spring
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Outer Wire Force required to Maximum
Diameter(mm) Diameter (mm) compress 10mm(N) Compression(mm)

6 0.71 1.96 100
6.35 0.55 0.65 160

3 0.7 4.1 50

Table 2.2: Comparison of Springs

Figure 2.19: Close up photograph of the fishing line attached to the actuator shaft

2.4.5 Cable selection

To pull the shaft of the actuator down, a cable had to be connected to the base and routed

through the spring to the outside. Since the force required to compress the spring was known, any

cable with a breaking strength of at least twice that amount could be considered. Since fishing lines

are easily available and are very thin, a fishing line with a breaking strength of 30lb was selected

and is shown in Figure 2.19.

2.4.6 Pulley

To connect the fishing line to the servo motor, a pulley had to be fabricated to reel it in

and keep it in place. The diameter of the pulley was chosen to be such that the actuation would be

fast enough while maintaining enough torque. The details of the pulley are shown in Figure 2.20. It

consists of a small disc sandwiched between two bigger discs. This was then mounted to the servo

motor using one of the accessories with screws as shown in Figure 2.21.
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Figure 2.20: Dimensional details of the pulley

Figure 2.21: Pulley mounted to the servo motor
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Figure 2.22: Block diagram of a servo motor

2.4.7 Actuation mechanism

The winding action needed for the linear actuation can be achieved through rotary mecha-

nisms such as stepper motors, geared DC motors and servo motors. Several factors influenced the

choice of servo motors over the others. Unlike stepper motors and geared DC motors, servo motors

have built in motor drivers which eliminates the need to use external drivers making it cost effective

(see Figure 2.22). They also have a feedback control system required for position control which

makes it easier to control through simple PWM (Pulse Width Modulation) signal.

The details of the particular servo motor used in the project is given in Table 2.3. This

motor was chosen based on the size, torque, availability and cost requirements. It is capable of

rotating 180 degrees and has a rotary potentiometer to sense the position. If this potentiometer is

replaced with the output from the linear actuator, then it is possible to control the linear position

of the actuator with regular PWM servo control. To achieve this, the servo motor was disassembled

and the potentiometer (see Figure 2.23 ) was removed and the leads were desoldered. An external

wire was soldered to the middle pin of the control board which is the input for position feedback.

The motor also has a safety mechanism for protecting the potentiometer by limiting the travel of the

shaft to 180 degrees. This is achieved through a metallic pin inserted in the gear connected directly

to the shaft (see Figure 2.24). Since the servo motor is being modified to rotate continuously, this

pin was removed.
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Servo Size Weight Stall Working Stall Speed
model (mm)*(mm)*(mm) (grams) Torque Voltage Current (s/60 ◦)

(kg-cm) (V) (A)

TowerPro
MG-995 [25] 40.7 * 19.7 * 42.9 55 13 5 to 7.2 2 0.2

Table 2.3: Servo motor specifications

Figure 2.23: Servo motor with the potentiometer removed

2.5 Servo motor assembly

Since the display was to have a resolution of 16x16, it needed 256 of the linear actuators

that were described in the previous section. Since space was a constraint, it was essential that the

servo motors were packed as tightly as possible. It was also necessary that the packing would allow

for easy assembly and disassembly. After considerations of various alternatives, it was decided that

the best design choice would be to divide the assembly into 16 blocks each of which contained 16

motors. Each block was then further divided into four levels which contained four motors each.

The motors were arranged in a staggered configuration both in plane and between levels as shown

in Figure 2.25 to increase packing density. The structure is supported by four threaded steel rods

which are two feet in length and a quarter inch in diameter. Figure 2.26 shows all the servo motor

blocks placed next to each other.

The external and internal dimensions of the top and bottom plate are shown in Figures 2.27

and 2.28. Figure 2.28 also shows some of the key features of the design. The guides for the fishing

line as well as the cables were slotted towards the inside so that the blocks could be placed flush
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Figure 2.24: Gearbox of the servo motor

with one another thereby reducing the space required.

2.6 Pressure sensor

To make the display tangible it was necessary to have pressure sensors embedded in the

actuators. Since cost was a factor, commercially available pressure sensors were out of reach. Several

different materials were tested for their effectiveness in sensing pressure and the most effective was

found to be a conductive foam which is used to protect ICs [20].

This low density foam is made of electrically conductive polyurethane fibers and as pressure

is applied to the material, the fibers move closer together and the electrical conductivity increases.

By measuring the resistance between two opposite surfaces of the material (along which pressure is

applied), the applied pressure can be determined.

The material was cut into a square of 10mmx10mm and a 3D printed plastic piece was used

to hold the foam in place. The details of the 3D printed piece are shown in Figure 2.30. To establish

electrical contact with the foam, copper tape was attached to the top and bottom surface. The

copper tapes were then routed outside the plastic piece through the thin slits at the bottom. This

was then attached to the top of the actuator shaft with super glue. A plastic piece was printed to

act as the sensor surface and to enable the application of pressure evenly to the foam. This also

acted as the display surface for the projected image. The complete assembly is shown in Figure 2.32.
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Figure 2.25: 3D rendering of the servo assembly
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Figure 2.26: Servo motor blocks
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Figure 2.27: Dimensional details of the top plate of the servo assembly
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Figure 2.28: Dimensional details of the bottom plate of the servo assembly

Figure 2.29: Conductive foam used to protect ICs
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Figure 2.30: Dimensional details of the pressure sensor holder

Figure 2.31: Pressure sensor inserted into the 3D printed piece
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Figure 2.32: Pressure sensor with touch plate mounted on the actuator shaft

2.7 System block diagram

Figure 2.33 shows the overall block diagram of the whole system. Each block will be ex-

plained in detail in the following sub-sections. The blocks which are contained within the red outline

are for one block and there are 16 such blocks. The Arduino [1] is an open source Hardware and

Software platform for using AVR microcontrollers. It is used as a communication interface between

the PC and the servo controllers and sensor boards. The PC generates the required servo commands

based on the user input which are then transmitted to the Arduino via serial communication. The

Arduino then transmits the servo commands to the specified servo controller via I2C to control the

servos. The position feedback of the actuators is received through the actuator and sensor board

which is connected to the Data acquisition board (DAQ) board through a 40 pin data cable. The

individual servo motors then receive this input from the DAQ board. Power to the servo motors in

each block is provided by a computer power supply. The pressure sensor values are also received at

the DAQ board which converts the analog singal to digital values and transmits them via I2C to

the Arduino.

The Microsoft Kinect sensor [5] is a horizontal bar connected to a small base with a motorized

pivot and is designed to be positioned lengthwise above or below the video display. The device

features an RGB camera, depth sensor and multi-array microphone running proprietary software,

which provide full-body 3D motion capture, facial recognition and voice recognition capabilities. It

is used to track the user and detect gestures which are then used to control the pixel display. An

overhead projector is mounted on a metal frame, vertically above the system and pointing down on
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Figure 2.33: Block diagram of the system

it, to enable images to be displayed on the pixel display and make it easier for complex shapes to

be visualized.

2.7.1 Data acquisition board(DAQ)

The schematic of the DAQ board is shown in Figure 2.34. The pressure sensor values and the

position feedback from the linear actuators are multiplexed using CD4067 [24] which is a 16 channel

Multiplexer. Since there are 16 actuators and 16 pressure sensors per block, two Multiplexer ICs are

required. The multiplexed output is received by ATMEGA8 [9] which is an 8 bit microcontroller.

The microcontroller is bootloaded with Arduino for ease of programming. The microcontroller

(slave) performs analog to digital conversions of the inputs and transmits them via I2C when the

Arduino (master) requests the data.

Since the servo motor’s feedback works at a voltage of 2.5V, a voltage regulator IC, LM317 [23],

is used to generate the required voltage. The analog reference of the microcontroller is also given

the same voltage to ensure maximum resolution. Figure 2.35 shows the board layout which was used

for the PCB. The board size was 10cmX10cm and was designed using EAGLE Schematic and PCB

design software [3].
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Figure 2.34: Schematics of the DAQ board
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Figure 2.35: PCB Layout of the DAQ board
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Figure 2.36: Schematics of the actuator and sensor board

2.7.2 Actuator and sensor board

The schematic of the actuator and sensor board is shown in Figure 2.36. This board provides

a structural platform for the actuators and establishes electrical contacts. Each actuator has 4

contacts - VCC, Ground, Position feedback output and pressure sensor output. All the contacts

from the 16 actuators are routed to the 40 pin cable connector for easy connection. Figure 2.37

shows the PCB layout of the board. The actuators are spaced an inch apart from each other and

the connector is placed in between two rows to keep the board size below 10cmX10cm.

2.7.3 Servo controller board

To control the servo motors in each block, a commercially available 16 channel servo motor

controller [18] from Adafruit was used and is shown in Figure 2.38. The servo motor controller also

worked on I2C and 16 such boards were used to control 256 actuators. Each board was given a

different I2C address and were daisy chained along with the control boards which is explained in
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Figure 2.37: PCB layout of the actuator and sensor board
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Figure 2.38: 16 channel servo controller

subsection 2.7.5.

2.7.4 Power supply

The stall current of the servo motors is rated at 2A at 5V. Therefore the power supply

needs to handle a maximum of 32A as there are 16 motors per block. The most cost effective way

to handle such a large amount of power was to use a computer power supply. The specific power

supply used in the project was rated at 36A at 5V and 16 such power supplies were used. The power

supply is in Figure 2.39.

Figure 2.39: Power supply

2.7.5 Arduino

An Arduino Uno [8] was the main interface between the PC and all the control boards (see

Figure 2.40). It was responsible for receiving the servo commands from the PC and transmitting them
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to the right servo control boards as well as requesting sensor data from the DAQ boards and sending

them to the PC. The Arduino communicated through I2C which is a multi-master, multi-slave,

single-ended, serial computer bus. It requires only two data lines for establishing communication,

a clock line (SCL) and a data line (SDA). Figure 2.41 shows how the Arduino was connected to

the DAQ and Servo control boards through I2C. The area inside the dotted rectangle makes up one

block and the communication lines are connected serially from one block to the next to all 16 blocks.

Figure 2.40: Arduino

Figure 2.41: Arduino communication chain

2.8 Assembly

To make assembly easier, the 16 blocks were divided further into groups of 4. The details

of one such group are shown in Figure 2.42. The PCBs were arranged on one of the corners of an

acrylic plate of dimensions 304.8mm x 304.8mm. The holes which are highlighted in blue (dotted)

are for the steel support rods and the ones highlighted in red (thicker) are for mounting the PCBs.

All other holes are for the fishing lines which are connected to the actuators. Figure 2.43 show the

groups during Assembly and Figure 2.44 shows the all the groups after complete assembly.
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Figure 2.42: Dimensional details of the group of four blocks

2.8.1 Actuator contact separator

Figure 2.44 shows the actuators after they were mounted and soldered to the PCBs. To keep

the copper tapes of the actuators from touching each other and to keep them at the right distance,

a plastic separator was 3D printed which is shown in Figure 2.45. For easy insertion, the ridges on

the piece were tapered. Figure 2.46 shows the actuator system with the separator.
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Figure 2.43: Servo group during assembly
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Figure 2.44: Servo group after full assembly
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Figure 2.45: 3D rendering of the contacts separator

Figure 2.46: Contact separator attached to the actuators

2.8.2 Kinect and projection system

To enable images to be displayed on the surface, a projection system was constructed. A

metallic structure was built out of Bosch frames to support the projector as shown in Figure 2.47.

The projector was connected to the PC through an HDMI cable and the location of the projector

was adjusted to get a full image on the display.

A Microsoft Kinect was used to make the display interactive by detecting gestures made by

the user and using it to move the pixels on the display. The software used to detect the gestures as

well as the gesture mapping will be explained in subsequent sections.
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Figure 2.47: Pixel display with the projection system
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Figure 2.48: Microsoft kinect used to detect gestures

2.9 Software

2.9.1 Calibration

Since the actuators were put together by hand, there were slight differences in the way they

behaved. Specifically, the conductive ink which was used to join the copper tape to the resistive

strip exhibited different resistance values. Because of this, each linear actuator had slightly different

range of values for the position feedback. To overcome that, the servo commands which were sent

to the actuators had to be calibrated for each individual actuator. The actuators were calibrated

for 8 positions in increments of half an inch. To simplify the process, a graphical user interface

(GUI) was built using ”Processing” [12] which is an integrated development environment for Java.

A screenshot of the GUI is shown in Figure 2.49.

To calibrate, a specific block had to be selected using the 4x4 matrix after which the specific

linear actuator was selected using the left and right arrow keys. Then, the top most and the bottom

most positions were calibrated by moving the actuator up/down using the up/down arrow keys. Since

the position feedback was linear, the servo commands for the rest of the positions were interpolated

using these values and stored in a data file. This process was repeated for all of the 256 actuators

and the calibration file was created.

2.9.2 Gesture detection

Gesture detection was implemented by using a software called FLEXIBLE ACTION AND

ARTICULATED SKELETON TOOLKIT (FAAST) [4] which was developed at the University of

Southern California. This program enabled the use of Kinect to detect gestures and map them to

key combinations which were then sent to the GUI to be processed. A square region was defined

using the length of the users arm around the left side of the body (see Figure 2.50 and note that the
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Figure 2.49: Screenshot of the GUI

image is flipped). By moving the wrist to different quadrants of this square, the specific quadrant

of the pixel display could be selected. Four levels were defined towards the user’s right side of the

body and by moving the right wrist up and down, the height of the pixels could be controller. By

using a combination of both hands, the user could select the specific quadrant to be controlled and

use the right hand to control the height.

2.10 Materials used

The list of materials used to build the pixel display, their quantity and where they were

used in detailed in Table 2.4. The quantity indicated is to build all the 256 actuators. Figures 2.51

and 2.52 shows some of the components of the system before assembly.
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Figure 2.50: Gesture detection from Kinect data

Figure 2.51: Materials before assembly
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Figure 2.52: Materials before assembly

Material Size/Specs Quantity Use

Acrylic sheet 30.48cmX30.48cmX3.175 37 Actuator container
Acrylic sheet 30.48cmX30.48cmX6.35 6 Actuator shaft
Acrylic sheet 30.48cmX30.48cmX3.175 32 Servo assembly
Acrylic sheet 30.48cmX30.48cmX3.175 45 Pulley assembly
Acrylic sheet 30.48cmX30.48cmX3.175 8 PCB Support

ITO Coated Plastic 10cmX20cm 13 Position feedback
Copper tape 3mmX50m 3 Electrical contacts

Sliding contacts 3mm 1024 Electrical contacts
Fishing line 0.5mmX250m 1 Actuation cable

Servo motors 13kg-cm Torque 1 Actuation
Threaded Steel rods 6.35mmX60.9cm 64 Support

PLA Spool 3mm,1kg 1 Pressure sensors

Table 2.4: Material list

44



Chapter 3

Results

This Chapter presents the results of experiments which were conducted to validate the ef-

fectiveness of the new actuator design, the sensor used and the overall system. The next section

discusses experiments performed to assess some of the physical characteristics of the linear actuator,

such as the maximum force which can be produced, the linearity of the position feedback and the

speed of the actuation. The characteristics of the custom built pressure sensor were also deter-

mined and the results are provided section 3.2. The second part of the Chapter(sections 3.4 to 3.6)

deals with developing novel applications for the shape-changing display such as using it for data

visualization, object transfer and manipulation and controlling it through gestures.

3.1 Linear actuator characteristics

Since the linear actuator is spring loaded, there is no force being produced by the servo

motor to push the shaft up. Therefore the force for the shaft to resist the change in position when it

is pushed down comes from the spring and the friction between the shaft and the sliding contacts. To

determine the force required to get the shaft to move, the top of the actuator was loaded with blocks

of increasing weight until it started to move and the total weight was recorded. The experiment was

performed on 10 randomly selected actuators and the results were recorded and are tabulated in

Table 3.1. The average weight was calculated to be 308g, which is 3 times more than the commercial

actuators which are used in the relief [16] and inFORM [11] shape displays.

As mentioned in the previous Chapter in section 2.9.1, the position feedback of the linear
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Actuator Total weight(g)

1 300
2 300
3 320
4 270
5 300
6 320
7 300
8 350
9 320
10 300

Table 3.1: Measurements of maximum force

Actuator Absolute regression coefficient(|r|)
1 0.9992
2 0.9999
3 0.9993
4 0.9992
5 0.9997
6 0.9998
7 0.9869
8 0.9999
9 0.9984
10 0.9986

Table 3.2: Absolute regression coefficients for position feedback

actuators needed to be calibrated. Before they were calibrated, the position feedback was tested

for linearity. This was performed by manually adjusting the height of the shaft in steps of half

an inch. The experiment was performed for 10 randomly selected actuators and the results were

recorded. The coefficient of regression for the recorded data was calculated and is shown in Table

3.2 and the data set used to calculate them are given in Appendix A for reference. It can be seen

that the position feedback mechanism is linear to a good extent and the rest of the actuators can

be calibrated on this assumption.

To determine the speed of the actuator, a camera was set up perpendicular to the actuator

array. A sheet of paper with the calibrated positions was placed as shown in Figure 3.1. The actuator

was made to move from the top most position to the bottom and the motion was recorded at 60fps

(frames per second). The recorded video was then analyzed for the time taken for the actuator to

cover the specified distance which was used to calculate the speed. The experiment was performed

for 5 different actuators and the results are tabulated in Table 3.3 and it was found that the speed
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Figure 3.1: Setup for measuring speed of actuators

Actuator Upward Speed(cm/s) Downward Speed(cm/s)

1 14.22 11.85
2 12.19 10.16
3 17.78 11.85
4 12.9 12.7
5 13.2 12.1

Table 3.3: Upward and downward speeds of actuators

of the actuation was slower than similar actuators. This is due to the fact that the actuator can

withstand more weight than them. However, the speed could be easily increased through two ways.

One way is to make the diameter of the pulley which is attached to the servo motor larger, this

would make the winding of the cable faster thereby increasing the speed of the actuator. However,

by doing this the size of the overall system would increase as well which is not desirable. Another

way to increase the speed of the actuation is to use a spring with lower spring constant that could

handle lesser force and using a faster servo motor. The summary of the characteristics of the linear

actuator is given in Table 3.4.

Maximum force(g) Upward Speed(cm/s) Downward Speed(cm/s) linearity(r)

308 14.05 11.73 0.9981

Table 3.4: Average characteristics of the linear actuator
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3.2 Pressure sensor characteristics

The response of the pressure sensor was tested by loading the top with varying weight blocks

and recording the output. The graph of one such measurement is shown in Figure 3.2 where the

weight loaded is shown by the red markers. As it can be seen, there is a significant amount of

high frequency noise present in the measurement and therefore it cannot be used directly. Since

the system only needed a touch sensor in our experiments, the output of the pressure sensor was

thresholded at particular value which corresponded to a light touch. This graph and the response

are shown in Figure 3.3. However, if needed, higher resolution in sensing can be obtained by filtering

the measurement through various filtering techniques.

Figure 3.2: Plot of raw pressure sensor output with varying weights

3.3 Power consumption

Each actuator is controlled through a servo motor capable of drawing 2A of current at

maximum load. However, the current drawn by each motor was found to be somewhere around

600mA to 1.5A in practice. Therefore for a total of 256 motors the current draw would be in the

range of 150A to 380A and at a voltage of 5V this would equate to a maximum power consumption

of 1920W. With such a huge power draw heating is a major concern. However, since each of the servo

assembly blocks have their own power supply with cooling, this did not prove to be a significant
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Figure 3.3: Plot of raw and thresholded sensor output

issue in our use of the system.

3.4 Data Visualization

The first application for the shape changing display which was developed was to use it as

a tool for data visualization. As mentioned in the introduction, one of the obvious applications

is to utilize the dynamic shape-changing ability of the system to visualize an extra dimension of

data. Specifically, the system was used to visualize 2.5D data. The 3D point cloud data required for

creating the shapes was produced in MATLAB for a variety of mathematical functions. These were

then scaled to match the output of the system and stored in data files. The same functions were

also used to create depth map images to be displayed using the projector on the surface for better

visualization.

To capture the output, two cameras were setup. One was oriented to be pointing horizontally

towards the surface and another to obtain a perspective view. The captured images along with the

plots and depth maps generated through MATLAB are shown in Figures 3.4 through 3.7. As it can

be seen, the system works very well as a tool for 2.5 dimension data visualization. The following

link contains the video showing the system being used for data visualization:

Video link: https://youtu.be/WN4-IgyEf-k

49

https://youtu.be/WN4-IgyEf-k


Figure 3.4: Visualization of a sine wave

Figure 3.5: Visualization of a bar graph
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Figure 3.6: Visualization of a sinc function

Figure 3.7: Visualization of a pyramid
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Figure 3.8: Transfer of object

3.5 Object Transfer and Manipulation

One of the ways to utilize the dynamic and tangible aspect of the shape-changing display is

to use it to transfer and manipulate objects. To demonstrate this, the system was programmed to

move a ball from one corner of the array to the center. Figure 3.8 shows snapshots taken when the

ball was being moved. The top row of the figure is from the perspective camera and the bottom row

is from the horizontal camera. This application can be extended (through cameras and Computer

Vision algorithms) and the system can be used to sort objects based on color, size or any other

characteristics on a platform. Because of the enhanced capability to withstand more weight than

similar commercial actuators the system can also be used to manipulate relatively heavy objects.

This is demonstrated in Figure 3.9 where the system was programmed to manipulate a heavy box.

The box was filled with metal pieces and the total weight of the box was 5kg ( 11 pounds). The

system was then programmed to tilt it towards the four corners as shown in Figure 3.9. As it can

be seen the system was able to withstand a significant amount of weight. This could be used in

cases where there is need to manipulate heavy objects either through automation or human control.

Some examples include rocking of containers used for chemical processes and using it as a tilt bed for

engraving and scoring at different angles. The following link contains the video showing the system

being used for object transfer and manipulation:

Video link: https://youtu.be/WN4-IgyEf-k?t=27s
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Figure 3.9: Manipulation of heavy object

3.6 Gesture control

To make the system interactive, a gesture based interface was developed as described in the

previous Chapter. Figures 3.10 and 3.11 show the system responding to the gesture commands as

well as the output from the Kinect sensor. Even though the interface is basic, it demonstrates the

use of gestures to control the array. The gestures can be made more intuitive by mounting the kinect

overhead the display looking down on it as shown in the inFORM [11] project. This would allow for

tracking hands of the user and be able to control the display in a more comfortable manner. The

following link contains the video showing the system being controlled through gestures:

Video link: https://youtu.be/WN4-IgyEf-k?t=53s

Figure 3.10: Example of gesture control for quadrant 2
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Figure 3.11: Example of gesture control for quadrant 3

3.7 Cost comparison

To analyse the cost effectiveness of the system, a cost comparison was performed with other

similar systems.1 The comparison includes only the cost associated with the actuators as other

hardware is either similar of the cost reduction is negligible. Figure 3.12 shows the details of the

comparison. The main component of the cost reduction comes from not using commercial linear

actuators as well as not using push-pull rods for linkages. The cost per actuator was reduced by a

factor of four which could be further improved if these actuators were manufactured in bulk.

Figure 3.12: Details of the cost comparison

1Actuators used in inFORM[11], Relief [16] and EMERGE [22]
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Chapter 4

Conclusions and Suggestions for

Future Research

In this Thesis, a new design for shape-changing displays which focused on scalability and

commercial feasibility was introduced, constructed, and evaluated. This was achieved through novel

actuator and sensor designs and packages and by making use of rapid prototyping tools. The

resulting built system performed satisfactorily as detailed in the previous Chapter. The new design,

which is unique in being scalable and commercially feasible, can allow researchers in various labs to

quickly build and develop new applications for shape-changing displays in a way which has not been

feasible till now.

During the process of designing new actuators, various mechanisms were considered and

tested for their feasibility. This was discussed in Chapter 2 and the design for the final prototype

was explained in detail. The new actuator design was used to build a 16x16 shape-changing display

and the construction details were also presented in Chapter 2. The choice of using the servo motor

as part of the actuation mechanism significantly reduced the complexity and cost. This was because

the servo motors have their own control system as well as a motor driver which eliminated several

external components. The choice of using the ITO plastic as the resistive strip helped in making

sure that the actuator prototypes that were produced were uniform and robust. The modular design

helped in the assembly of the servo blocks and improved their scalability as well. The system can

be easily expanded by adding more servo assembly blocks to increase the display area. The use of
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I2C as a communication protocol allows for the electronics to be scaled up to 64 blocks (each block

requires two I2C addresses and 7-bit I2C supports 128 addresses) and if more blocks are needed

then only an extra Arduino board has to be added to the system. The resolution of the display can

also be increased easily because of the cable mechanism which is used to control the actuators. This

means that the actuator area can be shrunk in size while keeping the same servo assembly.

Various characteristics of the actuator and the pressure sensor were determined through

experiments described in Chapter 3. The actuator’s speed, maximum force which it can withstand

and the linearity of its position feedback were calculated and presented. While the maximum force

was found to be three times that of similar commercial actuators, the speed was found to be less

than originally hoped. However, the speed can be easily increased by using springs which can handle

lesser force. This is a result of the inevitable trade-off that has to be made between speed and force

of the actuator. The pressure sensors were found to have high frequency noise associated with the

signal and they were used as a binary touch sensor. However the resolution of the sensor can be

increased by filtering the output.

Characteristics of the actuators and sensors was followed by a series of application oriented

experiments which were developed to show the capabilities of the shape-changing display and how

they could be used. The applications included data visualization, object manipulation and control-

ling the system through a gesture interface. These experiments demonstrate the versatility of the

system, and highlight its potential for supporting future research in multiple directions.

The system could be improved in several different areas to increase performance. One of the

problems encountered during the construction of the actuator was intermittent electrical contact with

the resistive strip. This was solved by using conductive ink to form electrical joints, which resulted in

uneven resistance. By using other conductive inks which are metal based or by completely replacing

the resistive strip better response can be achieved. As mentioned above, the speed of the actuators

was fairly low. One way to increase this is by using a spring of lower spring constant which would

result in lesser force. Another way is to increase the diameter of the pulley so the speed of the

motor is increased, but this would also increase the size of the overall system. A servo motor with a

slightly lower torque and higher speed could also be used, as the current motors do not run at their

full power.

Currently the DAQ boards read the position of the actuators along with the pressure sensor

values, but these values are not utilized. By incorporating the position feedback into the control
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system a more tangible way to interact with the system can be developed. The top of the display

can also be covered, for example by an elastic silicone sheet to allow for better projection of images

and thereby providing better visualization of data. A design change which could be made to provide

better visualization is to 3D print the pressure sensor holder with black material so that it blends

into the background and the touch plate becomes more visible.

The current shape changing display could be modified for specific applications in future

iterations. The most immediate application could be to use it as a 3D screen by covering the display

with an elastic material and using 3D projection mapping technology. An example of this is shown in

Figure 4.1. It could be also be used for NURBS (Non-Uniform Rational Basis Spline) modeling where

the user could create a shape by carefully pushing and pulling on the display surface as shown in

Figure 4.2. This could be used to decrease the time required for modeling 3D characters and models

where natural curves are involved. A system can also be developed for remote communication

between people by having pairs of such screens and using the Kinect to relay human faces for more

natural interaction.

Figure 4.1: Example of 3D projection mapping [7]

The system can also be used in remote medical diagnosing by constructing two human-sized

displays. The patient could just walk into a center having one of these units and lie down on it and
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Figure 4.2: Example of NURBS modeling

the physician could diagnose tumors, abnormal growth or any other palpable medical conditions

even while being on the other side of the world. A rendering of such a scenario is shown in Figure

4.3.

Figure 4.3: Rendering of remote diagnosis scenario
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Appendix A Calibration data

Position 1 2 3 4 5 6 7 8

Actuator
1 514 474 438 404 370 336 298 273
2 501 468 433 400 365 330 293 257
3 156 187 228 269 300 335 368 411
4 492 457 424 391 362 335 306 275
5 515 480 441 408 371 332 293 253
6 485 441 399 357 317 275 229 183
7 458 420 382 348 320 278 242 251
8 457 424 391 358 325 292 259 223
9 159 182 205 230 255 282 305 341
10 490 453 420 385 360 329 288 249

Table 1: Servo motor position values for calibration positions
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Appendix B MATLAB, Arduino and Processing Code for

the system

B.1 MATLAB Code for generating shapes and depth maps

1

2 %Code fo r genera t ing s inc func t i on
3 [X,Y] = meshgrid ( − 8 : . 5 : 8 ) ;
4 R = sqrt (X.ˆ2 + Y.ˆ2 ) + eps ;
5 Z = ( sin (R) . / (R. ∗ 2 ) ) ;
6 figure
7 colormap hsv
8 surf (X,Y, Z , ’ FaceColor ’ , ’ i n t e rp ’ , . . .
9 ’ EdgeColor ’ , ’ none ’ , . . .

10 ’ FaceLight ing ’ , ’ gouraud ’ )
11 daspect ( [ 5 5 1 ] )
12 axis t i g h t
13 view(−50 ,30)
14 caml ight l e f t
15

16 %Code fo r genera t ing s ine wave
17

18 [X,Y] = meshgrid ( − 8 : . 5 : 8 ) ;
19 Z = ( sin ( (X∗pi/4)− pi / 2 ) ) ;
20 figure
21 map = [1 , 1 , 1
22 0 ,1 ,0
23 1 ,0 ,0 ] ;
24 colormap (map)
25 surf (X,Y, Z , ’ FaceColor ’ , ’ i n t e rp ’ , . . .
26 ’ EdgeColor ’ , ’ none ’ , . . .
27 ’ FaceLight ing ’ , ’ gouraud ’ )
28 daspect ( [ 5 5 1 ] )
29 axis t i g h t
30 view(−50 ,30)
31 caml ight l e f t
32

33 %Code fo r genera t ing pyramid
34

35 [X,Y] = meshgrid ( −8 : 0 . 5 : 8 ) ;
36 Z = ((4−abs (X) ) + (4−abs (Y) ) ) / 8 ;
37 Z(Z < 0) = NaN;
38 figure
39 colormap hsv
40 surf (X,Y, Z , ’ FaceColor ’ , ’ i n t e rp ’ , . . .
41 ’ EdgeColor ’ , ’ none ’ , . . .
42 ’ FaceLight ing ’ , ’ gouraud ’ )
43 daspect ( [ 5 5 1 ] )
44 axis t i g h t
45 view(−50 ,30)
46 caml ight l e f t
47

48 %Code fo r genera t ing bar char t
49

50 A = importdata ( ’ p i l l a r . txt ’ ) ;
51

52 [X,Y] = meshgrid ( −8 : 1 : 7 ) ;
53 Z = A. / 3 ;
54

55 figure
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56 map = [0 , 1 , 0
57 1 , 0 , 0 ] ;
58 colormap (map)
59 surf (X,Y, Z , ’ FaceColor ’ , ’ i n t e rp ’ , . . .
60 ’ EdgeColor ’ , ’ none ’ , . . .
61 ’ FaceLight ing ’ , ’ gouraud ’ )
62 daspect ( [ 5 5 1 ] )
63 axis t i g h t
64 view(−50 ,30)

B.2 Arduino Code(Slave) for reading sensor values

1 #include <Wire . h>
2

3

4 const int sensorPin = A0 ; // Analog input p ins the mu l t i p l e x e r i s a t tached
5 const int servoPin = A1 ; // Analog input p ins the mu l t i p l e x e r i s a t tached
6 int s en s o rva l [ 1 6 ] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
7 int s e rvova l [ 1 6 ] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
8

9 byte s en so rva l ou t [ 3 2 ] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
10 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
11 byte s e rvova lout [ 1 6 ] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
12 byte tempout [ 3 2 ] = {1 ,2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 ,
13 16 ,17 ,18 ,19 ,20 ,21 ,22 ,23 ,24 ,25 ,26 ,27 ,28 ,29 ,30 ,31 ,32} ;
14

15 int sensorValue = 0 ;
16 int servoValue = 0 ;
17 int outputValue = 0 ;
18 int s t a t e = LOW;
19

20 void setup ( ) {
21 // i n i t i a l i z e s e r i a l communications at 9600 bps :
22 S e r i a l . begin ( 9600 ) ;
23 ana logReference (EXTERNAL) ;
24

25 DDRB = B00111111 ;
26 PORTB= B00000000 ;
27 Wire . begin ( 2 ) ; // jo in i2c bus with address #2,
28 // d i f f e r e n t address f o r each b l o c k
29 Wire . onRequest ( requestEvent ) ; // r e g i s t e r event
30

31 }
32

33 void loop ( ) {
34 // read the analog in va lue :
35

36 for ( byte i =0; i <16; i++)
37 {
38 PORTB= i ;
39 sensorValue = analogRead ( sensorPin ) ;
40 servoValue = analogRead ( servoPin ) ;
41 s en s o rva l [ i ] = sensorValue ;
42 s e rvova l [ i ] = servoValue ;
43

44 s en so rva l ou t [ i ] = map( s en s o rva l [ i ] , 0 , 1023 , 0 , 255 ) ;
45 s en so rva l ou t [ i +16] = map( s e rvova l [ i ] , 0 , 1023 , 0 , 255 ) ;
46

47 delay ( 2 ) ;
48

49 }
50

51 // map i t to the range o f the analog out :
52 // pr in t the r e s u l t s to the s e r i a l monitor :
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53

54 for ( int i =0; i <32; i++)
55 {
56 S e r i a l . p r i n t ( ” s enso r ” ) ;
57 S e r i a l . p r i n t ( i ) ;
58 S e r i a l . p r i n t ( ” = ” ) ;
59 S e r i a l . p r i n t l n ( s en so rva l ou t [ i ] ) ;
60 }
61 S e r i a l . p r i n t l n ( ) ;
62

63 // wait 2 m i l l i s e c ond s be fo r e the next loop
64 // fo r the analog−to−d i g i t a l conver ter to s e t t l e
65 // a f t e r the l a s t reading :
66

67 }
68 void requestEvent ( )
69 {
70 Wire . wr i t e ( sensorva lout , 3 2 ) ;
71 }

B.3 Arduino Code(Slave) for reading sensor values

1 #include <Wire . h>
2 #include <Adafruit PWMServoDriver . h>
3

4 byte s en s o rva l [ 3 2 ] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
5 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
6 byte boardAddress [ ] = {0x49 , 0 x48 , 0 x47 , 0 x45 , 0 x4b , 0 x4a , 0 x46 ,
7 0x44 , 0 x43 , 0 x42 , 0 x4d , 0 x4f , 0 x41 , 0 x40 , 0 x4c , 0 x4e } ;
8

9 int servoArray [ ] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
10 int sp=0;
11 int d i r [ ] = {1 ,1 ,1 ,−1 ,−1 ,1 ,1 ,1 ,1 ,−1 ,−1 ,−1 ,−1 ,1 ,1 ,1} ;
12 Adafruit PWMServoDriver pwmArray [ 1 6 ] ;
13

14 u i n t 8 t servonum = 0 ;
15

16

17

18 int servoNum=0;
19 int pos=0;
20 int sync1=0;
21 int sync2=0;
22 int r e s e t = 0 ;
23 int boardNum=0;
24 int overshoot=0;
25 void setup ( ) {
26 S e r i a l . begin ( 9600 ) ;
27 S e r i a l . p r i n t l n ( ”16 channel Servo t e s t ! ” ) ;
28

29 for ( int i =0; i <16; i++)
30 {
31 pwmArray [ i ] = Adafruit PWMServoDriver ( boardAddress [ i ] ) ;
32 pwmArray [ i ] . begin ( ) ;
33 pwmArray [ i ] . setPWMFreq ( 6 0 ) ;
34 }
35

36 }
37

38 void loop ( ) {
39 // Drive each servo one at a time
40

41 for ( int i =0; i <16; i++)
42 {
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43

44 Wire . requestFrom ( i , 3 2 ) ; // reque s t 6 by t e s from s l a v e dev i ce #2
45 int i =0;
46 while (Wire . a v a i l a b l e ( ) ) // s l a v e may send l than reques t ed
47 {
48 i f ( i <32)
49 {
50 s en s o rva l [ i ] = Wire . read ( ) ; // r e c e i v e a by te as charac ter
51 }
52 i++;
53 }
54

55

56 for ( i =0; i <32; i++)
57 {
58 S e r i a l . p r i n t ( ” s enso r ” ) ;
59 S e r i a l . p r i n t ( i ) ;
60 S e r i a l . p r i n t ( ” = ” ) ;
61 S e r i a l . p r i n t l n ( s en s o rva l [ i ] ) ;
62 }
63

64 }
65

66 while ( S e r i a l . a v a i l a b l e ( ) > 0) {
67

68 sync1 = S e r i a l . pa r s e In t ( ) ;
69 i f ( sync1 == 97)
70 {
71

72 sync2 = S e r i a l . pa r s e In t ( ) ;
73 i f ( sync2 == 76)
74 {
75

76 sp = S e r i a l . pa r s e In t ( ) ;
77

78

79 i f ( sp==1)
80 {
81 boardNum = S e r i a l . pa r s e In t ( ) ;
82 servoNum = S e r i a l . pa r s e In t ( ) ;
83 pos = S e r i a l . pa r s e In t ( ) ;
84

85 }
86

87 else i f ( sp==2)
88 {
89 boardNum = S e r i a l . pa r s e In t ( ) ;
90

91 for ( int i =0; i <16; i++)
92 servoArray [ i ] = S e r i a l . pa r s e In t ( ) ;
93

94 }
95 }
96 }
97

98 i f ( S e r i a l . read ( ) == ’ \n ’ ) {
99 break ;

100 }
101

102 }
103

104 i f ( ( boardNum>0)&&(boardNum<17))
105 {
106
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107 i f ( sp==1)
108 pwmArray [ boardNum−1] .setPWM(servoNum , 0 , pos ) ;
109 else i f ( sp==2)
110 {
111 for ( int i =0; i <16; i++)
112 pwmArray [ boardNum−1] .setPWM( i , 0 , servoArray [ i ] ) ;
113 }
114 else
115 {
116 for ( int i =0; i <16; i++)
117 pwmArray [ boardNum−1] .setPWM( i , 0 , 0 ) ;
118 }
119 }
120

121 }

B.4 Processing code for GUI and control

1

2 import contro lP5 . ∗ ;
3

4 ControlP5 cp5 ;
5

6

7 int nx = 4 ;
8 int ny = 4 ;
9

10 int servoStep = 2 ;
11

12 int defServoVal =275;
13

14 int servoMin = 100 ;
15 int servoMax = 600 ;
16

17 int servoNum = 0 ;
18 int servoPos = 0 ;
19 int ca lPos = 0 ;
20 int blockNum = 0 ;
21 int c a lP l a y s e l e c t = 0 ;
22 int overshoot = 0 ;
23

24 int k i n e c t l e v e l =0;
25

26 int kinectquad = 0 ;
27

28

29 int maxCalPosit ions = 8 ;
30

31 int [ ] [ ] ca lPosMatr ix = new int [ 1 6 ] [ 8 ] ;
32

33 int [ ] [ ] playMatrix = new int [ 1 6 ] [ 1 6 ] ;
34 int [ ] [ ] k inectp layMatr ix = new int [ 1 6 ] [ 1 6 ] ;
35 int [ ] [ ] gr idMatr ix = new int [ 1 6 ] [ 1 6 ] ;
36 int [ ] [ ] newPlayMatrix = new int [ 1 6 ] [ 1 6 ] ;
37 int [ ] [ ] outputMatrix = new int [ 1 6 ] [ 1 6 ] ;
38 int [ ] [ ] [ ] c a l f u l lMa t r i x = new int [ 1 6 ] [ 1 6 ] [ 8 ] ;
39

40 int [ ] d i r = {1 ,1 ,1 ,−1 ,−1 ,1 ,1 ,1 ,1 ,−1 ,−1 ,−1 ,−1 ,1 ,1 ,1} ;
41

42 RadioButton r ;
43

44 RadioButton ca lP lay ;
45

46 St r ing textValue = ”” ;
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47

48 void setup ( ) {
49 s i z e ( 1000 , 600 ) ;
50

51 i n i t i a l i z e ( ) ;
52 s e r i a l I n i t ( ) ;
53

54 PFont font = createFont ( ” a r i a l ” , 2 4 ) ;
55

56 cp5 = new ControlP5 ( this ) ;
57

58 cp5 . addText f i e ld ( ”Servo Number” )
59 . s e tPo s i t i o n (40 ,100)
60 . s e t S i z e (100 ,40)
61 . setFont ( f ont )
62 . setFocus ( fa l se )
63 . s e tCo lo r ( c o l o r (255 ,255 ,255) )
64 . getCaptionLabel ( ) . setFont ( createFont ( ” a r i a l ” , 16 ) )
65 ;
66

67 cp5 . addText f i e ld ( ”Current Pos i t i on ” )
68 . s e tPo s i t i o n (40 ,180)
69 . s e t S i z e (100 ,40)
70 . setFont ( createFont ( ” a r i a l ” , 20 ) )
71 . setAutoClear ( fa l se )
72 . getCaptionLabel ( ) . setFont ( createFont ( ” a r i a l ” , 16 ) )
73 ;
74

75

76 cp5 . addText f i e ld ( ” Ca l i b r a t i on Pos i t i on ” )
77 . s e tPo s i t i o n (40 ,260)
78 . s e t S i z e (100 ,40)
79 . setAutoClear ( fa l se )
80 . setFont ( createFont ( ” a r i a l ” , 20 ) )
81 . getCaptionLabel ( ) . setFont ( createFont ( ” a r i a l ” , 16 ) )
82 ;
83

84 cp5 . addText f i e ld ( ”Block Number” )
85 . s e tPo s i t i o n (400 ,350)
86 . s e t S i z e (100 ,40)
87 . setFont ( f ont )
88 . setAutoClear ( fa l se )
89 . getCaptionLabel ( ) . setFont ( createFont ( ” a r i a l ” , 16 ) )
90 ;
91

92 cp5 . addBang ( ” save ” )
93 . s e tPo s i t i o n (40 ,360)
94 . s e t S i z e (100 ,40)
95 . getCaptionLabel ( ) . a l i g n ( ControlP5 .CENTER, ControlP5 .CENTER) . setFont ( createFont ( ” a r i a l ” , 16 ) )
96 ;
97

98 cp5 . addBang ( ” play ” )
99 . s e tPo s i t i o n (550 ,350)

100 . s e t S i z e (100 ,40)
101 . s e tLabe l ( ”Play” )
102 . getCaptionLabel ( ) . a l i g n ( ControlP5 .CENTER, ControlP5 .CENTER) . setFont ( createFont ( ” a r i a l ” , 16 ) )
103 ;
104

105 cp5 . addBang ( ” stop ” )
106 . s e tPo s i t i o n (550 ,500)
107 . s e t S i z e (100 ,40)
108 . s e tLabe l ( ”Stop” )
109 . getCaptionLabel ( ) . a l i g n ( ControlP5 .CENTER, ControlP5 .CENTER) . setFont ( createFont ( ” a r i a l ” , 16 ) )
110 ;

66



111

112

113 cp5 . addBang ( ” r e s e t ” )
114 . s e tPo s i t i o n (550 ,425)
115 . s e t S i z e (100 ,40)
116 . s e tLabe l ( ”Reset ” )
117 . getCaptionLabel ( ) . a l i g n ( ControlP5 .CENTER, ControlP5 .CENTER) . setFont ( createFont ( ” a r i a l ” , 16 ) )
118 ;
119

120 cp5 . addBang ( ” c a l c u l a t e l e v e l s ” )
121 . s e tPo s i t i o n (40 ,440)
122 . s e t S i z e (180 ,40)
123 . s e tLabe l ( ” Ca l cu la te Leve l s ” )
124 . getCaptionLabel ( ) . a l i g n ( ControlP5 .CENTER, ControlP5 .CENTER) . setFont ( createFont ( ” a r i a l ” , 16 ) )
125 ;
126

127

128 cp5 . addBang ( ” shape1” )
129 . s e tPo s i t i o n (650 ,100)
130 . s e t S i z e (40 ,40)
131 . s e tLabe l ( ”1” )
132 . getCaptionLabel ( ) . a l i g n ( ControlP5 .CENTER, ControlP5 .CENTER) . setFont ( createFont ( ” a r i a l ” , 16 ) )
133 ;
134

135 cp5 . addBang ( ” shape2” )
136 . s e tPo s i t i o n (690 ,100)
137 . s e t S i z e (40 ,40)
138 . s e tLabe l ( ”2” )
139 . getCaptionLabel ( ) . a l i g n ( ControlP5 .CENTER, ControlP5 .CENTER) . setFont ( createFont ( ” a r i a l ” , 16 ) )
140 ;
141

142 cp5 . addBang ( ” shape3” )
143 . s e tPo s i t i o n (730 ,100)
144 . s e t S i z e (40 ,40)
145 . s e tLabe l ( ”3” )
146 . getCaptionLabel ( ) . a l i g n ( ControlP5 .CENTER, ControlP5 .CENTER) . setFont ( createFont ( ” a r i a l ” , 16 ) )
147 ;
148

149 cp5 . addBang ( ” shape4” )
150 . s e tPo s i t i o n (770 ,100)
151 . s e t S i z e (40 ,40)
152 . s e tLabe l ( ”4” )
153 . getCaptionLabel ( ) . a l i g n ( ControlP5 .CENTER, ControlP5 .CENTER) . setFont ( createFont ( ” a r i a l ” , 16 ) )
154 ;
155

156 cp5 . addBang ( ” shape5” )
157 . s e tPo s i t i o n (650 ,140)
158 . s e t S i z e (40 ,40)
159 . s e tLabe l ( ”5” )
160 . getCaptionLabel ( ) . a l i g n ( ControlP5 .CENTER, ControlP5 .CENTER) . setFont ( createFont ( ” a r i a l ” , 16 ) )
161 ;
162

163 cp5 . addBang ( ” shape6” )
164 . s e tPo s i t i o n (690 ,140)
165 . s e t S i z e (40 ,40)
166 . s e tLabe l ( ”6” )
167 . getCaptionLabel ( ) . a l i g n ( ControlP5 .CENTER, ControlP5 .CENTER) . setFont ( createFont ( ” a r i a l ” , 16 ) )
168 ;
169

170 cp5 . addBang ( ” shape7” )
171 . s e tPo s i t i o n (730 ,140)
172 . s e t S i z e (40 ,40)
173 . s e tLabe l ( ”7” )
174 . getCaptionLabel ( ) . a l i g n ( ControlP5 .CENTER, ControlP5 .CENTER) . setFont ( createFont ( ” a r i a l ” , 16 ) )
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175 ;
176

177 cp5 . addBang ( ” shape8” )
178 . s e tPo s i t i o n (770 ,140)
179 . s e t S i z e (40 ,40)
180 . s e tLabe l ( ”8” )
181 . getCaptionLabel ( ) . a l i g n ( ControlP5 .CENTER, ControlP5 .CENTER) . setFont ( createFont ( ” a r i a l ” , 16 ) )
182

183 ;
184

185 r = cp5 . addRadioButton ( ” radioButton ” )
186 . s e tPo s i t i o n (400 ,100)
187 . s e t S i z e (40 ,40)
188 . setColorForeground ( c o l o r (120 ) )
189 . s e tCo lo rAct ive ( c o l o r (255 ) )
190 . s e tCo lo rLabe l ( c o l o r (255 ) )
191 . setItemsPerRow (4)
192

193 . setSpacingColumn (1)
194 . addItem ( ”1” ,1 )
195 . addItem ( ”2” ,2 )
196 . addItem ( ”3” ,3 )
197 . addItem ( ”4” ,4 )
198 . addItem ( ”5” ,5 )
199 . addItem ( ”6” ,6 )
200 . addItem ( ”7” ,7 )
201 . addItem ( ”8” ,8 )
202 . addItem ( ”9” ,9 )
203 . addItem ( ”10” ,10)
204 . addItem ( ”11” ,11)
205 . addItem ( ”12” ,12)
206 . addItem ( ”13” ,13)
207 . addItem ( ”14” ,14)
208 . addItem ( ”15” ,15)
209 . addItem ( ”16” ,16)
210

211 ;
212

213 ca lP lay = cp5 . addRadioButton ( ” Ca lSe l e c t ” )
214 . s e tPo s i t i o n (400 ,450)
215 . s e t S i z e (40 ,40)
216 . setColorForeground ( c o l o r (120 ) )
217 . s e tCo lo rAct ive ( c o l o r (255 ) )
218 . s e tCo lo rLabe l ( c o l o r (255 ) )
219 . setItemsPerRow (1)
220

221 . setSpacingColumn (1)
222 . addItem ( ” Ca l ib ra t e ” ,1 )
223 . addItem ( ”Playback” ,2 )
224 . addItem ( ”Kinect ” ,3 )
225

226

227 ;
228

229 for ( Toggle t : r . get I tems ( ) ) {
230 t . capt ionLabe l ( ) . setColorBackground ( c o l o r ( 0 , 0 ) ) ;
231 t . capt ionLabe l ( ) . s t y l e ( ) . moveMargin (−7 ,0 ,0 ,−3);
232 t . capt ionLabe l ( ) . s t y l e ( ) . movePadding ( 7 , 0 , 0 , 3 ) ;
233 t . capt ionLabe l ( ) . s t y l e ( ) . backgroundWidth = 1 ;
234 t . capt ionLabe l ( ) . s t y l e ( ) . backgroundHeight = 1 ;
235 }
236

237 for ( Toggle t : ca lP lay . getI tems ( ) ) {
238 t . capt ionLabe l ( ) . setFont ( createFont ( ” a r i a l ” , 1 6 ) ) ;
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239

240 }
241

242

243 textFont ( font ) ;
244 }
245

246 void draw ( ) {
247 background ( 0 ) ;
248 f i l l ( 2 5 5 ) ;
249 // t e x t ( cp5 . ge t ( T e x t f i e l d . c l a s s ,” Servo Number ” ) . ge tText ( ) , 360 ,130) ;
250 t ex t ( ” Ca l i b r a t i on ” , 325 , 50 ) ;
251

252 cp5 . get ( Tex t f i e l d . class , ” Servo Number” ) . setValue ( s t r ( servoNum+1)) ;
253 cp5 . get ( Tex t f i e l d . class , ”Current Pos i t i on ” ) . setValue ( s t r ( servoPos ) ) ;
254 cp5 . get ( Tex t f i e l d . class , ” Ca l i b ra t i on Pos i t i on ” ) . setValue ( s t r ( ca lPos +1)) ;
255

256 }
257

258 public void save ( ) {
259 wr i t eca lMatr ix ( ) ;
260 }
261

262

263 public void play ( ) {
264 loadPlayMatrix1 ( ) ;
265 playPMatrix ( ) ;
266

267 // de lay (3000) ;
268

269

270 // r e s e t ( ) ;
271

272 }
273 public void shape1 ( ) {
274 loadshape1 ( ) ;
275 playPMatrix ( ) ;
276

277 }
278

279 public void shape2 ( ) {
280 loadshape2 ( ) ;
281 playPMatrix ( ) ;
282

283 }
284

285 public void shape3 ( ) {
286 loadshape3 ( ) ;
287 playPMatrix ( ) ;
288

289 }
290

291 public void shape4 ( ) {
292 loadshape4 ( ) ;
293 playPMatrix ( ) ;
294

295 }
296

297 public void shape5 ( ) {
298 loadshape5 ( ) ;
299 playPMatrix ( ) ;
300

301 }
302
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303 public void shape6 ( ) {
304 loadshape6 ( ) ;
305 playPMatrix ( ) ;
306

307 }
308

309 public void shape7 ( ) {
310 loadshape7 ( ) ;
311 playPMatrix ( ) ;
312

313 }
314

315 public void shape8 ( ) {
316 loadshape8 ( ) ;
317 playPMatrix ( ) ;
318

319 }
320 public void r e s e t ( ) {
321 loadResetMatr ix ( ) ;
322 playPMatrix ( ) ;
323 delay ( 5 0 0 ) ;
324

325 stop ( ) ;
326

327

328 }
329

330 public void stop ( ) {
331 s e nd s t opa l l ( ) ;
332 // s end s t o p l a s t ( ) ;
333 }
334

335 public void c a l c u l a t e l e v e l s ( ) {
336 // wr i t e ca lMat r i x ( ) ;
337 c a l cL ev e l s ( ) ;
338 }
339

340 void contro lEvent ( ControlEvent theEvent ) {
341 i f ( theEvent . i sAss ignableFrom ( Tex t f i e l d . class ) ) {
342 p r i n t l n ( ” contro lEvent : a c c e s s i n g a s t r i n g from c o n t r o l l e r ’ ”
343 +theEvent . getName()+” ’ : ”
344 +theEvent . ge tSt r ingVa lue ( )
345 ) ;
346 }
347

348 i f ( theEvent . isFrom ( r ) ) {
349

350 //myColorBackground = co lo r ( i n t ( theEvent . group ( ) . va lue ( )∗50) , 0 , 0 ) ;
351 blockNum = ( int ) theEvent . group ( ) . va lue ( ) ;
352 cp5 . get ( Tex t f i e l d . class , ”Block Number” ) . setValue ( s t r ( blockNum ) ) ;
353 l oadca lMatr ix ( ) ;
354 }
355

356 i f ( theEvent . isFrom ( ca lP lay ) ) {
357

358 //myColorBackground = co lo r ( i n t ( theEvent . group ( ) . va lue ( )∗50) , 0 , 0 ) ;
359 c a lP l a y s e l e c t = ( int ) theEvent . group ( ) . va lue ( ) ;
360 }
361

362 }
363

364

365 public void input ( S t r ing theText ) {
366 // au tomat i ca l l y r e c e i v e s r e s u l t s from c on t r o l l e r input
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367 p r i n t l n ( ”a t e x t f i e l d event f o r c o n t r o l l e r ’ input ’ : ”+theText ) ;
368 }
369

370 void keyPressed ( ) {
371

372

373 int keyIndex = 0 ;
374 i f ( key >= ’ 1 ’ && key <= ’ 8 ’ ) {
375 keyIndex = key − ’ 1 ’ ;
376 ca lPos = keyIndex ;
377 servoPos = calPosMatr ix [ servoNum ] [ ca lPos ] ;
378

379 i f ( c a lP l a y s e l e c t==2)
380 {
381 sendServoPos ( ) ;
382 }
383 }
384

385

386 i f ( c a lP l a y s e l e c t==3)
387 {
388

389 i f ( key == ’h ’ )
390 {
391 k i n e c t l e v e l = 1 ;
392 updatekinectMatr ix ( ) ;
393 }
394

395 else i f ( key == ’ j ’ )
396 {
397 k i n e c t l e v e l = 2 ;
398 updatekinectMatr ix ( ) ;
399 }
400

401 else i f ( key == ’k ’ )
402 {
403 k i n e c t l e v e l = 3 ;
404 updatekinectMatr ix ( ) ;
405 }
406

407 else i f ( key == ’ l ’ )
408 {
409 k i n e c t l e v e l = 4 ;
410 updatekinectMatr ix ( ) ;
411 }
412

413 else i f ( key == ’ a ’ )
414 {
415 kinectquad = 1 ;
416 updatekinectMatr ix ( ) ;
417 }
418

419 else i f ( key == ’b ’ )
420 {
421 kinectquad = 2 ;
422 updatekinectMatr ix ( ) ;
423 }
424

425 else i f ( key == ’ c ’ )
426 {
427 kinectquad = 3 ;
428 updatekinectMatr ix ( ) ;
429 }
430
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431 else i f ( key == ’d ’ )
432 {
433 kinectquad = 4 ;
434 updatekinectMatr ix ( ) ;
435 }
436

437 }
438

439 else
440 {
441

442 k i n e c t l e v e l = 0 ;
443 kinectquad = 0 ;
444

445 updatekinectMatr ix ( ) ;
446

447

448 }
449

450 i f ( key == CODED)
451 {
452

453 i f ( keyCode == UP)
454 {
455

456 servoPos+=d i r [ servoNum ]∗ servoStep ;
457

458 i f ( servoPos<servoMin )
459 servoPos=servoMin ;
460 i f ( servoPos>servoMax )
461 servoPos=servoMax ;
462

463 calPosMatr ix [ servoNum ] [ ca lPos ] = servoPos ;
464

465 sendServoPos ( ) ;
466

467 }
468 else i f ( keyCode == DOWN)
469 {
470

471 servoPos−=d i r [ servoNum ]∗ servoStep ;
472

473 i f ( servoPos<servoMin )
474 servoPos=servoMin ;
475 i f ( servoPos>servoMax )
476 servoPos=servoMax ;
477

478 calPosMatr ix [ servoNum ] [ ca lPos ] = servoPos ;
479 sendServoPos ( ) ;
480

481 }
482

483 else i f ( keyCode == LEFT)
484 {
485 i f ( servoNum>0)
486 servoNum−=1;
487

488 servoPos = calPosMatr ix [ servoNum ] [ ca lPos ] ;
489

490

491 }
492

493 else i f ( keyCode == RIGHT)
494 {
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495 i f ( servoNum<15)
496 servoNum+=1;
497

498 servoPos = calPosMatr ix [ servoNum ] [ ca lPos ] ;
499

500 }
501

502

503 else i f ( keyCode == 16) {
504

505 sendResetAl l ( ) ;
506 }
507

508 }
509

510

511 }
512 void i n i t i a l i z e ( )
513

514 {
515 for ( int i =0; i <16; i++)
516 for ( int j =0; j<maxCalPosit ions ; j++)
517 calPosMatr ix [ i ] [ j ]=defServoVal ;
518

519 for ( int i =0; i <16; i++)
520 for ( int j =0; j <16; j++)
521 {
522 k inectp layMatr ix [ i ] [ j ]=0;
523 playMatrix [ i ] [ j ]=0;
524 gr idMatr ix [ i ] [ j ]=0;
525 newPlayMatrix [ i ] [ j ]=0;
526 outputMatrix [ i ] [ j ]=0;
527 for ( int k=0;k<8;k++)
528 c a l f u l lMa t r i x [ i ] [ j ] [ k ]=0;
529 }
530 l oadgr idMatr ix ( ) ;
531 l o a d f u l l c a lMa t r i x ( ) ;
532

533

534 }
535 void wr i t eca lMatr ix ( )
536 {
537

538 St r ing [ ] l i n e s = new St r ing [ 1 6 ] ;
539 for ( int i = 0 ; i < 16 ; i++) {
540 l i n e s [ i ] = s t r ( i ) ;
541 for ( int j = 0 ; j <8; j++)
542 l i n e s [ i ] += ”\ t ” + calPosMatrix [ i ] [ j ] ;
543 }
544 St r ing f i l ename = s t r ( blockNum) + ” . txt ” ;
545 s aveS t r i ng s ( f i l ename , l i n e s ) ;
546

547

548 }
549 void writenewPlayMatrix ( )
550 {
551

552 St r ing [ ] l i n e s = new St r ing [ 1 6 ] ;
553 for ( int i = 0 ; i < 16 ; i++) {
554 l i n e s [ i ] = ””+newPlayMatrix [ i ] [ 0 ] ;
555 for ( int j = 1 ; j <16; j++)
556 l i n e s [ i ] += ”\ t ” + newPlayMatrix [ i ] [ j ] ;
557 }
558 St r ing f i l ename = ”playout . txt ” ;
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559 s aveS t r i ng s ( f i l ename , l i n e s ) ;
560

561

562 }
563 void writeoutputMatr ix ( )
564 {
565

566 St r ing [ ] l i n e s = new St r ing [ 1 6 ] ;
567 for ( int i = 0 ; i < 16 ; i++) {
568 l i n e s [ i ] = ””+outputMatrix [ i ] [ 0 ] ;
569 for ( int j = 1 ; j <16; j++)
570 l i n e s [ i ] += ”\ t ” + outputMatrix [ i ] [ j ] ;
571 }
572 St r ing f i l ename = ”output . txt ” ;
573 s aveS t r i ng s ( f i l ename , l i n e s ) ;
574

575

576 }
577 void wr i t e f u l l c a lMa t r i x ( )
578 {
579

580 St r ing [ ] l i n e s = new St r ing [ 1 6 ] ;
581 for ( int i = 0 ; i < 16 ; i++) {
582 l i n e s [ i ] = ””+ca l f u l lMa t r i x [ i ] [ 0 ] [ 0 ] ;
583 for ( int k = 1 ; k<8;k++)
584 l i n e s [ i ] += ”\ t ” + c a l f u l lMa t r i x [ i ] [ 0 ] [ k ] ;
585 }
586 St r ing f i l ename = ” f u l l c a l . txt ” ;
587 s aveS t r i ng s ( f i l ename , l i n e s ) ;
588

589

590 }
591

592 void l oadca lMatr ix ( )
593 {
594 St r ing [ ] input ;
595 St r ing f i l ename = s t r ( blockNum) + ” . txt ” ;
596 input = l oadS t r i ng s ( f i l ename ) ;
597

598 i f ( input !=null )
599 {
600

601

602 for ( int i =0; i <16; i++)
603 {
604 St r ing [ ] p i e c e s = s p l i t ( input [ i ] , ’ \ t ’ ) ;
605 pr in t ( p i e c e s . l ength ) ;
606

607 for ( int j =0; j <8; j++)
608 {
609 calPosMatr ix [ i ] [ j ] = int ( p i e c e s [ j +1 ] ) ;
610 }
611

612 }
613 }
614

615 servoPos = calPosMatr ix [ servoNum ] [ ca lPos ] ;
616

617 }
618 void l o a d f u l l c a lMa t r i x ( )
619 {
620 int newi=0;
621 int newj=0;
622 for ( int i =0; i <16; i++)
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623 {
624 blockNum=i +1;
625 l oadca lMatr ix ( ) ;
626

627

628 for ( int j =0; j <16; j++)
629 {
630 newi = 4∗( i /4) + j /4 ;
631 newj = 4∗( i %4) + ( j %4);
632

633 for ( int k=0;k<8;k++)
634 {
635

636 c a l f u l lMa t r i x [ newi ] [ newj ] [ k ] = calPosMatr ix [ j ] [ k ] ;
637 }
638

639 }
640 }
641

642

643

644 }
645 void loadPlayMatrix1 ( )
646 {
647 St r ing [ ] input ;
648 St r ing f i l ename = ” s in1 . txt ” ;
649 input = l oadS t r i ng s ( f i l ename ) ;
650

651 i f ( input !=null )
652 {
653

654

655 for ( int i =0; i <16; i++)
656 {
657 St r ing [ ] p i e c e s = s p l i t ( input [ i ] , ’ \ t ’ ) ;
658 // pr in t ( p i e c e s . l en g t h ) ;
659

660 for ( int j =0; j <16; j++)
661 {
662 playMatrix [ i ] [ j ] = int ( p i e c e s [ j ] ) ;
663 }
664

665 }
666 }
667

668 // servoPos = calPosMatrix [ servoNum ] [ calPos ] ;
669

670 }
671 void loadPlayMatrix2 ( )
672 {
673 St r ing [ ] input ;
674 St r ing f i l ename = ”bowl . txt ” ;
675 input = l oadS t r i ng s ( f i l ename ) ;
676

677 i f ( input !=null )
678 {
679

680 for ( int i =0; i <16; i++)
681 {
682 St r ing [ ] p i e c e s = s p l i t ( input [ i ] , ’ \ t ’ ) ;
683 // pr in t ( p i e c e s . l en g t h ) ;
684

685 for ( int j =0; j <16; j++)
686 {
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687 playMatrix [ i ] [ j ] = int ( p i e c e s [ j ] ) ;
688 }
689

690 }
691 }
692

693 // servoPos = calPosMatrix [ servoNum ] [ calPos ] ;
694

695 }
696 void loadshape1 ( )
697 {
698 St r ing [ ] input ;
699 St r ing f i l ename = ” s in1 . txt ” ;
700 input = l oadS t r i ng s ( f i l ename ) ;
701

702 i f ( input !=null )
703 {
704

705

706 for ( int i =0; i <16; i++)
707 {
708 St r ing [ ] p i e c e s = s p l i t ( input [ i ] , ’ \ t ’ ) ;
709 // pr in t ( p i e c e s . l en g t h ) ;
710

711 for ( int j =0; j <16; j++)
712 {
713 playMatrix [ i ] [ j ] = int ( p i e c e s [ j ] ) ;
714 }
715

716 }
717 }
718

719 // servoPos = calPosMatrix [ servoNum ] [ calPos ] ;
720

721 }
722 void loadshape2 ( )
723 {
724 St r ing [ ] input ;
725 St r ing f i l ename = ” s in2 . txt ” ;
726 input = l oadS t r i ng s ( f i l ename ) ;
727

728 i f ( input !=null )
729 {
730

731

732 for ( int i =0; i <16; i++)
733 {
734 St r ing [ ] p i e c e s = s p l i t ( input [ i ] , ’ \ t ’ ) ;
735 // pr in t ( p i e c e s . l en g t h ) ;
736

737 for ( int j =0; j <16; j++)
738 {
739 playMatrix [ i ] [ j ] = int ( p i e c e s [ j ] ) ;
740 }
741

742 }
743 }
744

745 // servoPos = calPosMatrix [ servoNum ] [ calPos ] ;
746

747 }
748 void loadshape3 ( )
749 {
750 St r ing [ ] input ;
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751 St r ing f i l ename = ”pyramid . txt ” ;
752 input = l oadS t r i ng s ( f i l ename ) ;
753

754 i f ( input !=null )
755 {
756

757

758 for ( int i =0; i <16; i++)
759 {
760 St r ing [ ] p i e c e s = s p l i t ( input [ i ] , ’ \ t ’ ) ;
761 // pr in t ( p i e c e s . l en g t h ) ;
762

763 for ( int j =0; j <16; j++)
764 {
765 playMatrix [ i ] [ j ] = int ( p i e c e s [ j ] ) ;
766 }
767

768 }
769 }
770

771 // servoPos = calPosMatrix [ servoNum ] [ calPos ] ;
772

773 }
774

775 void loadshape4 ( )
776 {
777 St r ing [ ] input ;
778 St r ing f i l ename = ”bowl . txt ” ;
779 input = l oadS t r i ng s ( f i l ename ) ;
780

781 i f ( input !=null )
782 {
783

784

785 for ( int i =0; i <16; i++)
786 {
787 St r ing [ ] p i e c e s = s p l i t ( input [ i ] , ’ \ t ’ ) ;
788 // pr in t ( p i e c e s . l en g t h ) ;
789

790 for ( int j =0; j <16; j++)
791 {
792 playMatrix [ i ] [ j ] = int ( p i e c e s [ j ] ) ;
793 }
794

795 }
796 }
797

798 // servoPos = calPosMatrix [ servoNum ] [ calPos ] ;
799

800 }
801 void loadshape5 ( )
802 {
803 St r ing [ ] input ;
804 St r ing f i l ename = ” ba l l 1 . txt ” ;
805 input = l oadS t r i ng s ( f i l ename ) ;
806

807 i f ( input !=null )
808 {
809

810

811 for ( int i =0; i <16; i++)
812 {
813 St r ing [ ] p i e c e s = s p l i t ( input [ i ] , ’ \ t ’ ) ;
814 // pr in t ( p i e c e s . l en g t h ) ;
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815

816 for ( int j =0; j <16; j++)
817 {
818 playMatrix [ i ] [ j ] = int ( p i e c e s [ j ] ) ;
819 }
820

821 }
822 }
823

824 // servoPos = calPosMatrix [ servoNum ] [ calPos ] ;
825

826 }
827 void loadshape6 ( )
828 {
829 St r ing [ ] input ;
830 St r ing f i l ename = ” ba l l 2 . txt ” ;
831 input = l oadS t r i ng s ( f i l ename ) ;
832

833 i f ( input !=null )
834 {
835

836

837 for ( int i =0; i <16; i++)
838 {
839 St r ing [ ] p i e c e s = s p l i t ( input [ i ] , ’ \ t ’ ) ;
840 // pr in t ( p i e c e s . l en g t h ) ;
841

842 for ( int j =0; j <16; j++)
843 {
844 playMatrix [ i ] [ j ] = int ( p i e c e s [ j ] ) ;
845 }
846

847 }
848 }
849

850 // servoPos = calPosMatrix [ servoNum ] [ calPos ] ;
851

852 }
853

854

855 void loadshape7 ( )
856 {
857 St r ing [ ] input ;
858 St r ing f i l ename = ” ba l l 3 . txt ” ;
859 input = l oadS t r i ng s ( f i l ename ) ;
860

861 i f ( input !=null )
862 {
863

864

865 for ( int i =0; i <16; i++)
866 {
867 St r ing [ ] p i e c e s = s p l i t ( input [ i ] , ’ \ t ’ ) ;
868 // pr in t ( p i e c e s . l en g t h ) ;
869

870 for ( int j =0; j <16; j++)
871 {
872 playMatrix [ i ] [ j ] = int ( p i e c e s [ j ] ) ;
873 }
874

875 }
876 }
877

878 // servoPos = calPosMatrix [ servoNum ] [ calPos ] ;
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879

880 }
881

882 void loadshape8 ( )
883 {
884 St r ing [ ] input ;
885 St r ing f i l ename = ” ba l l 4 . txt ” ;
886 input = l oadS t r i ng s ( f i l ename ) ;
887

888 i f ( input !=null )
889 {
890

891

892 for ( int i =0; i <16; i++)
893 {
894 St r ing [ ] p i e c e s = s p l i t ( input [ i ] , ’ \ t ’ ) ;
895 // pr in t ( p i e c e s . l en g t h ) ;
896

897 for ( int j =0; j <16; j++)
898 {
899 playMatrix [ i ] [ j ] = int ( p i e c e s [ j ] ) ;
900 }
901

902 }
903 }
904

905

906 }
907

908

909 void l oadgr idMatr ix ( )
910 {
911 St r ing [ ] input ;
912 St r ing f i l ename = ” gr id . txt ” ;
913 input = l oadS t r i ng s ( f i l ename ) ;
914

915 i f ( input !=null )
916 {
917

918

919 for ( int i =0; i <16; i++)
920 {
921 St r ing [ ] p i e c e s = s p l i t ( input [ i ] , ’ \ t ’ ) ;
922 // pr in t ( p i e c e s . l en g t h ) ;
923

924 for ( int j =0; j <16; j++)
925 {
926 gr idMatr ix [ i ] [ j ] = int ( p i e c e s [ j ] ) ;
927 }
928

929 }
930 }
931

932 // servoPos = calPosMatrix [ servoNum ] [ calPos ] ;
933

934 }
935

936 void convertMatr ix ( )
937 {
938 int newi = 0 ;
939 int newj = 0 ;
940

941 for ( int i =0; i <16; i++)
942 {

79



943

944 for ( int j =0; j <16; j++)
945 {
946 newi = 4∗( i /4) + ( gr idMatr ix [ i ] [ j ] − 1 )/4 ;
947 newj = 4∗( j /4) + ( gr idMatr ix [ i ] [ j ] − 1)%4;
948

949 i f ( playMatrix [ i ] [ j ]>0)
950 {
951 newPlayMatrix [ newi ] [ newj ] = playMatrix [ i ] [ j ] ;
952 }
953 else
954 {
955 newPlayMatrix [ newi ] [ newj ] = 0 ;
956 }
957

958 }
959

960 }
961

962 }
963

964 void loadResetMatr ix ( )
965 {
966

967 St r ing [ ] input ;
968 St r ing f i l ename = ” r e s e t . txt ” ;
969 input = l oadS t r i ng s ( f i l ename ) ;
970

971 i f ( input !=null )
972 {
973

974

975 for ( int i =0; i <16; i++)
976 {
977 St r ing [ ] p i e c e s = s p l i t ( input [ i ] , ’ \ t ’ ) ;
978 // pr in t ( p i e c e s . l en g t h ) ;
979

980 for ( int j =0; j <16; j++)
981 {
982 playMatrix [ i ] [ j ] = int ( p i e c e s [ j ] ) ;
983 }
984

985 }
986 }
987

988 }
989

990 void loadOutputMatrix ( )
991 {
992

993

994 for ( int i =0; i <16; i++)
995 {
996

997 for ( int j =0; j <16; j++)
998 {
999 i f ( newPlayMatrix [ i ] [ j ]>0)

1000 outputMatrix [ i ] [ j ] = c a l f u l lMa t r i x [ i ] [ j ] [ newPlayMatrix [ i ] [ j ] −1 ] ;
1001 else
1002 outputMatrix [ i ] [ j ]=0;
1003 }
1004

1005 }
1006
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1007 }
1008

1009 void c a l cL ev e l s ( )
1010 {
1011 int base = 0 ;
1012 int s tep = 0 ;
1013 int top = 0 ;
1014

1015 for ( int i =0; i <16; i++)
1016 {
1017

1018 base = calPosMatr ix [ i ] [ 0 ] ;
1019 top = calPosMatr ix [ i ] [ 7 ] ;
1020

1021 s tep = ( top−base ) / 7 ;
1022

1023 for ( int j =1; j <7; j++)
1024 calPosMatr ix [ i ] [ j ] = base + j ∗ s tep ;
1025

1026 }
1027

1028 }
1029

1030 void updatekinectMatr ix ( )
1031

1032 {
1033

1034 i f ( k inectquad > 0)
1035

1036 {
1037

1038 int iO f f = 8∗ ( ( kinectquad −1) % 2 ) ;
1039 int jO f f = 8∗ ( ( kinectquad −1) / 2 ) ;
1040

1041 for ( int i =0; i <8; i++)
1042 for ( int j =0; j <8; j++)
1043 {
1044

1045 k inectp layMatr ix [ iO f f+i ] [ jO f f+j ] = k i n e c t l e v e l ;
1046

1047 }
1048

1049 playMatrix = kinectp layMatr ix ;
1050 playPMatrix ( ) ;
1051

1052 }
1053

1054 St r ing [ ] l i n e s = new St r ing [ 1 6 ] ;
1055 for ( int i = 0 ; i < 16 ; i++) {
1056 l i n e s [ i ] = ””+kinectp layMatr ix [ i ] [ 0 ] ;
1057 for ( int j = 1 ; j <16; j++)
1058 l i n e s [ i ] += ”\ t ” + kinectp layMatr ix [ i ] [ j ] ;
1059 }
1060 St r ing f i l ename = ” kinectp layMatr ix . txt ” ;
1061 s aveS t r i ng s ( f i l ename , l i n e s ) ;
1062

1063 }
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B.5 XML Data for gesture mapping in FAAST

1

2

3

4 <s enso r>
5 <t r a cke r>Microso f t</ t r a cke r>
6 <mode>Ful l Body</mode>
7 <mirrormode>t rue</mirrormode>
8 <smoothing>t rue</ smoothing>
9 <smooth ing factor>0 .5</ smooth ing factor>

10 <c o r r e c t i o n>0 .5</ c o r r e c t i o n>
11 <p r ed i c t i o n>0 .5</ p r ed i c t i o n>
12 < j i t t e r>0 .05</ j i t t e r>
13 <dev i a t i on>0 .04</ dev i a t i on>
14 </ senso r>
15 <s e r v e r>
16 <t rans f o rmat i ons>Global coo rd ina t e s</ t rans f o rmat i ons>
17 <automaticass ignment>t rue</ automaticass ignment>
18 </ s e r v e r>
19 <d i sp l ay>
20 <showviewerwindow>t rue</showviewerwindow>
21 <background>RGB</background>
22 <foreground>Depth</ foreground>
23 <showconsolewindow>t rue</ showconsolewindow>
24 <movechildwindows>t rue</movechildwindows>
25 <savewindowlayout> f a l s e</ savewindowlayout>
26 </ d i sp l ay>
27 <g e s tu r e s>
28 <ge s tu r e name=”Block2” timeout=”0” enabled=” true ” output loop=” f a l s e ” outputt imeout=”0”>
29 <input type=”1”>
30 <d e s c r i p t o r> l e f t wr i s t</ d e s c r i p t o r>
31 <d e s c r i p t o r>to the l e f t o f</ d e s c r i p t o r>
32 <d e s c r i p t o r>head</ d e s c r i p t o r>
33 <d e s c r i p t o r>at most</ d e s c r i p t o r>
34 <d e s c r i p t o r>40</ d e s c r i p t o r>
35 <d e s c r i p t o r>cent imete r s</ d e s c r i p t o r>
36 </ input>
37 <input type=”1”>
38 <d e s c r i p t o r> l e f t wr i s t</ d e s c r i p t o r>
39 <d e s c r i p t o r>above</ d e s c r i p t o r>
40 <d e s c r i p t o r> l e f t shou lder</ d e s c r i p t o r>
41 <d e s c r i p t o r>at l e a s t</ d e s c r i p t o r>
42 <d e s c r i p t o r>10</ d e s c r i p t o r>
43 <d e s c r i p t o r>cent imete r s</ d e s c r i p t o r>
44 </ input>
45 <output type=”0”>
46 <d e s c r i p t o r>pre s s</ d e s c r i p t o r>
47 <d e s c r i p t o r>b</ d e s c r i p t o r>
48 <d e s c r i p t o r> f o r</ d e s c r i p t o r>
49 <d e s c r i p t o r>0</ d e s c r i p t o r>
50 </output>
51 </ ge s tu r e>
52 <ge s tu r e name=”Block4” timeout=”0” enabled=” true ” output loop=” f a l s e ” outputt imeout=”0”>
53 <input type=”1”>
54 <d e s c r i p t o r> l e f t wr i s t</ d e s c r i p t o r>
55 <d e s c r i p t o r>to the l e f t o f</ d e s c r i p t o r>
56 <d e s c r i p t o r>head</ d e s c r i p t o r>
57 <d e s c r i p t o r>at most</ d e s c r i p t o r>
58 <d e s c r i p t o r>40</ d e s c r i p t o r>
59 <d e s c r i p t o r>cent imete r s</ d e s c r i p t o r>
60 </ input>
61 <input type=”1”>
62 <d e s c r i p t o r> l e f t wr i s t</ d e s c r i p t o r>
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63 <d e s c r i p t o r>below</ d e s c r i p t o r>
64 <d e s c r i p t o r> l e f t shou lder</ d e s c r i p t o r>
65 <d e s c r i p t o r>at l e a s t</ d e s c r i p t o r>
66 <d e s c r i p t o r>10</ d e s c r i p t o r>
67 <d e s c r i p t o r>cent imete r s</ d e s c r i p t o r>
68 </ input>
69 <output type=”0”>
70 <d e s c r i p t o r>pre s s</ d e s c r i p t o r>
71 <d e s c r i p t o r>d</ d e s c r i p t o r>
72 <d e s c r i p t o r> f o r</ d e s c r i p t o r>
73 <d e s c r i p t o r>0</ d e s c r i p t o r>
74 </output>
75 </ ge s tu r e>
76 <ge s tu r e name=”Block1” timeout=”0” enabled=” true ” output loop=” f a l s e ” outputt imeout=”0”>
77 <input type=”1”>
78 <d e s c r i p t o r> l e f t wr i s t</ d e s c r i p t o r>
79 <d e s c r i p t o r>to the l e f t o f</ d e s c r i p t o r>
80 <d e s c r i p t o r>head</ d e s c r i p t o r>
81 <d e s c r i p t o r>at l e a s t</ d e s c r i p t o r>
82 <d e s c r i p t o r>40</ d e s c r i p t o r>
83 <d e s c r i p t o r>cent imete r s</ d e s c r i p t o r>
84 </ input>
85 <input type=”1”>
86 <d e s c r i p t o r> l e f t wr i s t</ d e s c r i p t o r>
87 <d e s c r i p t o r>above</ d e s c r i p t o r>
88 <d e s c r i p t o r> l e f t shou lder</ d e s c r i p t o r>
89 <d e s c r i p t o r>at l e a s t</ d e s c r i p t o r>
90 <d e s c r i p t o r>10</ d e s c r i p t o r>
91 <d e s c r i p t o r>cent imete r s</ d e s c r i p t o r>
92 </ input>
93 <output type=”0”>
94 <d e s c r i p t o r>pre s s</ d e s c r i p t o r>
95 <d e s c r i p t o r>a</ d e s c r i p t o r>
96 <d e s c r i p t o r> f o r</ d e s c r i p t o r>
97 <d e s c r i p t o r>0</ d e s c r i p t o r>
98 </output>
99 </ ge s tu r e>

100 <ge s tu r e name=”Block3” timeout=”0” enabled=” true ” output loop=” f a l s e ” outputt imeout=”0”>
101 <input type=”1”>
102 <d e s c r i p t o r> l e f t wr i s t</ d e s c r i p t o r>
103 <d e s c r i p t o r>to the l e f t o f</ d e s c r i p t o r>
104 <d e s c r i p t o r>head</ d e s c r i p t o r>
105 <d e s c r i p t o r>at l e a s t</ d e s c r i p t o r>
106 <d e s c r i p t o r>40</ d e s c r i p t o r>
107 <d e s c r i p t o r>cent imete r s</ d e s c r i p t o r>
108 </ input>
109 <input type=”1”>
110 <d e s c r i p t o r> l e f t wr i s t</ d e s c r i p t o r>
111 <d e s c r i p t o r>below</ d e s c r i p t o r>
112 <d e s c r i p t o r> l e f t shou lder</ d e s c r i p t o r>
113 <d e s c r i p t o r>at l e a s t</ d e s c r i p t o r>
114 <d e s c r i p t o r>10</ d e s c r i p t o r>
115 <d e s c r i p t o r>cent imete r s</ d e s c r i p t o r>
116 </ input>
117 <output type=”0”>
118 <d e s c r i p t o r>pre s s</ d e s c r i p t o r>
119 <d e s c r i p t o r>c</ d e s c r i p t o r>
120 <d e s c r i p t o r> f o r</ d e s c r i p t o r>
121 <d e s c r i p t o r>0</ d e s c r i p t o r>
122 </output>
123 </ ge s tu r e>
124 <ge s tu r e name=”Level1 ” timeout=”0” enabled=” true ” output loop=” f a l s e ” outputtimeout=”0”>
125 <input type=”1”>
126 <d e s c r i p t o r>r i g h t wr i s t</ d e s c r i p t o r>
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127 <d e s c r i p t o r>below</ d e s c r i p t o r>
128 <d e s c r i p t o r>r i g h t hip</ d e s c r i p t o r>
129 <d e s c r i p t o r>at l e a s t</ d e s c r i p t o r>
130 <d e s c r i p t o r>1</ d e s c r i p t o r>
131 <d e s c r i p t o r>cent imete r s</ d e s c r i p t o r>
132 </ input>
133 <input type=”1”>
134 <d e s c r i p t o r>r i g h t wr i s t</ d e s c r i p t o r>
135 <d e s c r i p t o r>to the r i g h t o f</ d e s c r i p t o r>
136 <d e s c r i p t o r>head</ d e s c r i p t o r>
137 <d e s c r i p t o r>at l e a s t</ d e s c r i p t o r>
138 <d e s c r i p t o r>10</ d e s c r i p t o r>
139 <d e s c r i p t o r>cent imete r s</ d e s c r i p t o r>
140 </ input>
141 <output type=”0”>
142 <d e s c r i p t o r>pre s s</ d e s c r i p t o r>
143 <d e s c r i p t o r> l</ d e s c r i p t o r>
144 <d e s c r i p t o r> f o r</ d e s c r i p t o r>
145 <d e s c r i p t o r>0</ d e s c r i p t o r>
146 </output>
147 </ ge s tu r e>
148 <ge s tu r e name=”Level2 ” timeout=”0” enabled=” true ” output loop=” f a l s e ” outputtimeout=”0”>
149 <input type=”1”>
150 <d e s c r i p t o r>r i g h t wr i s t</ d e s c r i p t o r>
151 <d e s c r i p t o r>above</ d e s c r i p t o r>
152 <d e s c r i p t o r>r i g h t hip</ d e s c r i p t o r>
153 <d e s c r i p t o r>at l e a s t</ d e s c r i p t o r>
154 <d e s c r i p t o r>10</ d e s c r i p t o r>
155 <d e s c r i p t o r>cent imete r s</ d e s c r i p t o r>
156 </ input>
157 <input type=”1”>
158 <d e s c r i p t o r>r i g h t wr i s t</ d e s c r i p t o r>
159 <d e s c r i p t o r>to the r i g h t o f</ d e s c r i p t o r>
160 <d e s c r i p t o r>head</ d e s c r i p t o r>
161 <d e s c r i p t o r>at l e a s t</ d e s c r i p t o r>
162 <d e s c r i p t o r>10</ d e s c r i p t o r>
163 <d e s c r i p t o r>cent imete r s</ d e s c r i p t o r>
164 </ input>
165 <input type=”1”>
166 <d e s c r i p t o r>r i g h t wr i s t</ d e s c r i p t o r>
167 <d e s c r i p t o r>below</ d e s c r i p t o r>
168 <d e s c r i p t o r>r i g h t shou lder</ d e s c r i p t o r>
169 <d e s c r i p t o r>at l e a s t</ d e s c r i p t o r>
170 <d e s c r i p t o r>20</ d e s c r i p t o r>
171 <d e s c r i p t o r>cent imete r s</ d e s c r i p t o r>
172 </ input>
173 <output type=”0”>
174 <d e s c r i p t o r>pre s s</ d e s c r i p t o r>
175 <d e s c r i p t o r>k</ d e s c r i p t o r>
176 <d e s c r i p t o r> f o r</ d e s c r i p t o r>
177 <d e s c r i p t o r>0</ d e s c r i p t o r>
178 </output>
179 </ ge s tu r e>
180 <ge s tu r e name=”Level3 ” timeout=”0” enabled=” true ” output loop=” f a l s e ” outputtimeout=”0”>
181 <input type=”1”>
182 <d e s c r i p t o r>r i g h t wr i s t</ d e s c r i p t o r>
183 <d e s c r i p t o r>above</ d e s c r i p t o r>
184 <d e s c r i p t o r>r i g h t hip</ d e s c r i p t o r>
185 <d e s c r i p t o r>at l e a s t</ d e s c r i p t o r>
186 <d e s c r i p t o r>40</ d e s c r i p t o r>
187 <d e s c r i p t o r>cent imete r s</ d e s c r i p t o r>
188 </ input>
189 <input type=”1”>
190 <d e s c r i p t o r>r i g h t wr i s t</ d e s c r i p t o r>
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191 <d e s c r i p t o r>to the r i g h t o f</ d e s c r i p t o r>
192 <d e s c r i p t o r>head</ d e s c r i p t o r>
193 <d e s c r i p t o r>at l e a s t</ d e s c r i p t o r>
194 <d e s c r i p t o r>10</ d e s c r i p t o r>
195 <d e s c r i p t o r>cent imete r s</ d e s c r i p t o r>
196 </ input>
197 <input type=”1”>
198 <d e s c r i p t o r>r i g h t wr i s t</ d e s c r i p t o r>
199 <d e s c r i p t o r>below</ d e s c r i p t o r>
200 <d e s c r i p t o r>head</ d e s c r i p t o r>
201 <d e s c r i p t o r>at l e a s t</ d e s c r i p t o r>
202 <d e s c r i p t o r>10</ d e s c r i p t o r>
203 <d e s c r i p t o r>cent imete r s</ d e s c r i p t o r>
204 </ input>
205 <output type=”0”>
206 <d e s c r i p t o r>pre s s</ d e s c r i p t o r>
207 <d e s c r i p t o r>j</ d e s c r i p t o r>
208 <d e s c r i p t o r> f o r</ d e s c r i p t o r>
209 <d e s c r i p t o r>0</ d e s c r i p t o r>
210 </output>
211 </ ge s tu r e>
212 <ge s tu r e name=”Level4 ” timeout=”0” enabled=” true ” output loop=” f a l s e ” outputtimeout=”0”>
213 <input type=”1”>
214 <d e s c r i p t o r>r i g h t wr i s t</ d e s c r i p t o r>
215 <d e s c r i p t o r>above</ d e s c r i p t o r>
216 <d e s c r i p t o r>head</ d e s c r i p t o r>
217 <d e s c r i p t o r>at l e a s t</ d e s c r i p t o r>
218 <d e s c r i p t o r>10</ d e s c r i p t o r>
219 <d e s c r i p t o r>cent imete r s</ d e s c r i p t o r>
220 </ input>
221 <input type=”1”>
222 <d e s c r i p t o r>r i g h t wr i s t</ d e s c r i p t o r>
223 <d e s c r i p t o r>to the r i g h t o f</ d e s c r i p t o r>
224 <d e s c r i p t o r>head</ d e s c r i p t o r>
225 <d e s c r i p t o r>at l e a s t</ d e s c r i p t o r>
226 <d e s c r i p t o r>10</ d e s c r i p t o r>
227 <d e s c r i p t o r>cent imete r s</ d e s c r i p t o r>
228 </ input>
229 <output type=”0”>
230 <d e s c r i p t o r>pre s s</ d e s c r i p t o r>
231 <d e s c r i p t o r>h</ d e s c r i p t o r>
232 <d e s c r i p t o r> f o r</ d e s c r i p t o r>
233 <d e s c r i p t o r>0</ d e s c r i p t o r>
234 </output>
235 </ ge s tu r e>
236 </ g e s tu r e s>
237 <p lug in s />
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