Clemson University

TigerPrints

All Theses Theses

8-2015

A Scalable and Low-Cost Interactive Shape-
Changing Display

Amith Mysore Vijaykumar

Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/all theses

Recommended Citation

Vijaykumar, Amith Mysore, "A Scalable and Low-Cost Interactive Shape-Changing Display" (2015). All Theses. 2498.
https://tigerprints.clemson.edu/all_theses/2498

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized

administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2498&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2498&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2498&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2498&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/2498?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2498&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

A SCALABLE AND LOW-COST INTERACTIVE SHAPE-CHANGING
DISPLAY

A Thesis
Presented to
the Graduate School of

Clemson University

In Partial Fulfillment
of the Requirements for the Degree
Master of Science

Electrical Engineering

by
Amith Mysore Vijaykumar
August 2015

Accepted by:
Dr. Ian D. Walker, Committee Chair
Dr. Keith E. Green
Dr. Richard E. Groff

Abstract

Research in new display technologies has garnered great interest in the recent years. Curved
screens and foldable displays have already been commercialized. However a relatively new field of
research is in dynamic shape-changing or shape-shifting displays. These displays utilize the ability
to change their shape dynamically as another dimension of representing visual data. These displays
potentially augmented with colors, can help visualize three dimensional data such as terrains, city
and building plans, and medical data. They can also be used in new ways of Human-Computer
Interaction by developing user interfaces that transform physically based on the scenario.

While there is research being done on new ways of using shape displays for interaction and
manipulation, not much focus has been given to the issue of cost and scalability. The general shape
displays which are currently being developed have individual pixels which need to be actuated. The
commercial linear actuators which are used in these displays are extremely expensive and are not
meant for such purposes. This thesis presents a design for a dynamic pixel-based shape changing
display which focuses on cost and scalability by using custom designed modular actuators and sensor

packages.

ii

Dedication

I dedicate this to my parents Vijayakumar and Jayashree, and my brother Rohith.

iii

Acknowledgments

First and foremost I offer my sincerest gratitude to my academic and research advisor,
Professor Dr. Tan D. Walker, who has supported me thoughout my thesis with his patience and
knowledge whilst allowing me the room to work in my own way. I attribute the level of my Masters
degree to his encouragement and effort and without him this thesis, too, would not have been
completed or written. One simply could not wish for a better or friendlier advisor.

I would also like to thank (Professors) Dr. Keith E.Green and Dr. Richard E. Groff for
accepting to be my committee members and providing me with helpful suggestions for improving
the thesis.

I would also like to thank Mr. Scheen Thurmond from the Bioengineering lab for helping
me get acquainted with the laser cutter system and, Ms. Esther Kaufmann and Ms. Lillian Burns
for keeping up with the large number of purchases that were made during the last two years.

I would like to thank my parents and brother for instilling in me the importance of hard
work, honesty, integrity and free thinking through the way they have lived their lives. Finally, I
thank my girlfriend Vandita, for all her love and support during the most hectic part of my life and

keeping me company even while being on the other side of the world.

iv

Table of Contents

Title Page« o 0 i i i e e e e e e e e e e e e e e e e e e e i
Abstract e ii
Dedication i i i i it e iii
Acknowledgments L L e e e e e e e e e e iv
List of Tables« 0 i i i i e vii
List of Figures o o i i i i i e viii
1 Imtroduction @ @ i i i i i it e e e e e e e e e e e e e e 1
1.1 Background L e 4
2 Research Design and Methods 0. 8
2.1 Background on Linear Actuators L . 8
2.2 First Prototypeo 9
2.3 Second Prototype 11
2.4 Construction of the final prototype L o 11
2.5 Servo motor assembly 21
2.6 Pressure sensoro e e e e e e 22
2.7 System block diagram Lo 28
2.8 Assembly 35
2.9 Software e 41
2.10 Materials used 42
3 Results 0 0 i e 45
3.1 Linear actuator characteristics 45
3.2 Pressure sensor characteristics L Lo 48
3.3 Power consumption Lo L e 48
3.4 Data Visualization 49
3.5 Object Transfer and Manipulation 52
3.6 Gesture control 53
3.7 Cost compariSOn e e e e 54
4 Conclusions and Suggestions for Future Research 55
Appendices o e 59
A Calibration data e 60
B MATLAB, Arduino and Processing Code for the system 61

References i i i i i i i i i i e i e... 86

vi

List of Tables

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4

Comparison of properties of different mechanisms of linear actuation 8
Comparison of Springs Lo 18
Servo motor specifications 21
Material list e e 44
Measurements of maximum force L 0oL 46
Absolute regression coefficients for position feedback 46
Upward and downward speeds of actuators 47
Average characteristics of the linear actuator 47
Servo motor position values for calibration positions 60

vii

List of Figures

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30
2.31

MIT’s shape changing display 2
Low cost shape changing display 3
Second generation of FEELEX [15] 4
Lumen device [21] e 4
Relief device [16] o oo o 5
inFORM by MIT Media Labs [11] 5
Terrain table by Northrop Grumman [6] 6
ShapeClips by Lancaster University, UK [13] 6
EMERGE by Lancaster University, UK [22] 7
Example of a commercially available linear actuator 9
3D rendering of the first prototype oL o oo 10
Prototype modified with extra servo motors 10
Second prototype 11
Details of the actuator container wall 12
Actuator container after gluing 12
Details of the container cap 13
Actuator container with theend cap 13
Dimensional details of the actuator shaft 13
Schematic of a linear potentiometer Lo oL 14
Actuator shaft with conductive ink painted on one side. 14
Actuator shaft with copper tape L o 15
Details of the electrical joints L o 15
Photograph of the acrylic pieces used to hold the contacts 16
Sliding contact soldered to copper tape Lo 16
Sliding contacts mounted on the actuator container 17
Actuator container with the contacts fully mounted 17
Photograph of the spring L 17
Close up photograph of the fishing line attached to the actuator shaft 18
Dimensional details of the pulley oL 19
Pulley mounted to the servo motor Lo oo 19
Block diagram of a servo motor Lo 20
Servo motor with the potentiometer removed 21
Gearbox of the servo motor 22
3D rendering of the servo assembly Lo oo 23
Servo motor blockso 24
Dimensional details of the top plate of the servo assembly 25
Dimensional details of the bottom plate of the servo assembly 26
Conductive foam used to protect ICs 26
Dimensional details of the pressure sensor holder 27
Pressure sensor inserted into the 3D printed piece 27

viii

2.32 Pressure sensor with touch plate mounted on the actuator shaft 28

2.33 Block diagram of the system Lo 29
2.34 Schematics of the DAQ board 30
2.35 PCB Layout of the DAQ board 31
2.36 Schematics of the actuator and sensor board 32
2.37 PCB layout of the actuator and sensor board, 33
2.38 16 channel servo controller L L o 34
2.39 Power supply 34
2.40 Arduino e e 35
2.41 Arduino communication chain L. 0L 0L L 35
2.42 Dimensional details of the group of four blocks 36
2.43 Servo group during assembly L. 37
2.44 Servo group after full assembly L oL oo 38
2.45 3D rendering of the contacts separator L L. 39
2.46 Contact separator attached to the actuators 39
2.47 Pixel display with the projection system o000 40
2.48 Microsoft kinect used to detect gestures L. 41
2.49 Screenshot of the GUIL 42
2.50 Gesture detection from Kinect data 0oL 43
2.51 Materials before assemblyo 43
2.52 Materials before assembly L 44
3.1 Setup for measuring speed of actuators Lo 47
3.2 Plot of raw pressure sensor output with varying weights 48
3.3 Plot of raw and thresholded sensor output 49
3.4 Visualization of a sine wave L oL 50
3.5 Visualization of a bar graph L o 50
3.6 Visualization of a sinc function oL 51
3.7 Visualization of a pyramid oL oL o 51
3.8 Transfer of object L 52
3.9 Manipulation of heavy object 53
3.10 Example of gesture control for quadrant 2 53
3.11 Example of gesture control for quadrant 3 L. 54
3.12 Details of the cost comparison o 54
4.1 Example of 3D projection mapping [7] 57
4.2 Example of NURBS modeling o 58
4.3 Rendering of remote diagnosis scenarioo Lo 58

ix

Chapter 1

Introduction

The two dimensional screen has been ubiquitous for many years. Its found almost everywhere
from the smartphones we carry in our pockets to large wall mounted displays. The whole computing
world is designed based on this two dimensional visual representation of data, and it has worked
wonderfully and will continue to do so for a long time. Stereo displays have also become quite
common, especially in the movie industry as they simulate the sense of depth in images and videos.
Other forms of data visualization such as Augmented and Virtual Reality glasses have moved out of
the research labs and turned into commercial products such as the Oculus Rift [19] and Microsoft
Hololens [17]. However we are still yet to fully utilize the third dimension for such purposes, at least
commercially.

One of the ways that the current display technology could be extended to the third dimension
is by developing dynamic shape changing displays. In recent years there has been a sharp increase in
the research on such technology, the most relevant to the work in this Thesis being the inFORM [11]
project by Massachusetts Institute of Technology (MIT) which is shown in Figure 1.1. It consists of
an array of 30x30 linear actuators which actuate tiles up and down creating a 2.5 dimensional surface.
An overhead projector is used to display images on the surface, thereby creating a dynamic shape
changing display. This type of hardware opens up a lot of areas in Human-Computer interaction
which were not possible before, such as being able to visualize data in 2.5D, actuating physical
objects, and interacting with a tangible platform. Some of the immediate applications for interactive
shape changing displays are terrain viewing, city and building planning, 3D modelling and animation.

However one of the issues with the design of such displays is the use of commercial linear

Figure 1.1: MIT’s shape changing display

actuators. These actuators are generally built to produce a lot of force which goes unused in the
2.5D display application and also take up a lot of space. They are also extremely expensive, ranging
anywhere from $30 to $200 for just the actuators which makes scaling the display commercially
infeasible. This is one of the reasons why such displays are in limited use, even in research labs. By
building custom linear actuators which are designed specifically for the purpose of actuating pixels,
the cost of the whole system can be brought down significantly.

This thesis presents a novel design for a shape changing display with a focus on keeping the
cost of the system low using custom built linear actuators and sensors while maintaining scalability
of the design. A 16x16 shape changing pixel display was built to test the effectiveness of the
actuator and sensor system and the design constraints that have to be considered while building
it. The system also features custom pressure sensors to make the display tangible and an overhead
projector to display images and videos on the surface. Figure 1.2 shows the system and its main
components. The top of the pressure sensors also double as the display surface which is 16 inches
X 16 inches with each pixel being an inch apart. There are a total of 256 pixels which are actuated
by 256 servo motors through tendons. The motor assembly and the pixel array is divided into 16
blocks, each of which contains 16 motors and controls 4x4 pixels. This was done to improve the ease
of assembly/disassembly and improve scalability, as more actuator blocks can be easily added to
increase the size of the display. The servo motor assembly is slightly wider than the display surface
at 24 inches X 24 inches and the total height of the system is 40 inches. This was due to restrictions
on the maximum size of the PCB which could be fabricated at a reasonable price. If it were to be

manufactured commercially, the servo motor blocks and the pixel array could be the same size.

Projector

Pressure sensors/
Display Surface

16x16
Linear actuators

Assembly of 256
Servo motors

Figure 1.2: Low cost shape changing display

Over the years, different actuation mechanisms have been implemented in shape changing
displays. These mechanisms were reviewed and is available in Section 1.2. Our system is inspired
by some of these designs, but the designs of the linear actuators and pressure sensors are novel.
The design considerations and the constraints for the new linear actuator are described in Chapter
2. This Chapter also provides the construction details of the actuator as well as the whole system
describing every aspect in detail including CAD models, fabrication techniques and a list of materials
that were used.

Several applications for the system were developed such as using the display for data visu-
alization, object manipulation, interaction through a gesture interface and a basic touch input. The
results of these applications are discussed in Chapter 3. The Chapter also includes details about
some of the preliminary experiments done to assess the linear actuators and the pressure sensors.
Chapter 4 presents the conclusions and the summary of the Thesis and also provides suggestions for

future work based on the results of the system.

1.1 Background

One of the earliest dynamic shape changing display was the FEELEX developed by Iwata
et al. [15], which involves 36 motorized pins that actuate the shape of a soft surface. The second
generation of the device is shown in Figure 1.3. While it improved on the resolution compared to
the first generation device, it involved complex mechanical linkages which could not be easily scaled.
Its main application was to be used as a medical haptic device and as such is not suitable for general

purpose data visualization and interaction.

Figure 1.3: Second generation of FEELEX [15]

Figure 1.4 shows the Lumen device created by Poupyrev et al. [21] It consists a 5x5 array
of moveable light guides actuated through shape memory alloy (SMA) wires. SMA wires contract
when current passes through them and return to the original length when the current stops flowing.
Although the actuation was fast, the amount of actuation (travel) which was produced was very low

which is an inherent limitation of using SMA wires for actuation.

Figure 1.4: Lumen device [21]

The relief system [16] which was developed at MIT Media Labs is shown in Figure 1.5. Tt
is a tabletop surface which is actuated by an array of 120 motorized pins built upon open-source
hardware and software. This is probably the most effective shape-changing display to date in terms
of cost and scalability. However, it still uses commercially available linear actuators which tend to
be expensive as mentioned earlier. Since it also used DC motors, this system required motor drivers

which again adds to the cost and complexity.

Figure 1.5: Relief device [16]

N
Kinect | Projector
E—

Shape Display

shape output

Computer . - —

Figure 1.6: inFORM by MIT Media Labs [11]

The inFORM [11] shape changing display built by MIT Media labs is shown in Figure 1.6.

It is an improvement of the relief display but uses the same actuator mechanism, the only difference

being that the pins are connected to the actuators through push-pull rods. This increases the ability
to build displays with higher resolution but increases the cost and complexity per pixel.

One of the few commercially available shape changing displays is manufactured by Northrop
Grumman [6] and is used in terrain viewing for military applications (see Figure 1.7). It is a fairly
high resolution display created by 4600 pins with a spacing of 0.72 inches between pins. It also has
a silicone skin for image projection. However, as it was built for terrain viewing, it is not a dynamic

display and takes around 15 seconds to change the terrain.

i
(i
(AR

:‘.':Wﬂ (RN

iy
O
IW:':""- |

|'|'=‘|=i

Figure 1.7: Terrain table by Northrop Grumman [6]

ShapeClip
Software Stack

AppA | | AppB

ARl

1 ShapeClip Graphics
API Application

- _,/‘I Operating System
I

Figure 1.8: ShapeClips by Lancaster University, UK [13]

ShapeClips [13] is a very innovative prototype developed at the Lancaster Unversity, UK

and is shown in Figure 1.8. It consists of modular clips which can move up and down based on

6

the input from an LDR (Light Dependent Resistor) at the bottom. This allows the shapeclip to be
used without any programming and can be used in conjunction with any device which is capable of
displaying colors. However, because of the modular and independent nature of the shapeclips, they
involve a large number of components with each module which increases the cost.

Another shape changing display produced by the Lancaster University, UK is the EMERGE [22]
which is shown in figure 1.9. It is very similar to inFORM [11] in terms of the actuation mechanism
as well as the use of push-pull rod to control the pins. There are however, RGB LEDs embedded
within the rods to illuminate them and help visualize data in a different way which does not use
projection. Since the actuation mechanism is the same as inFORM [11], this display also has similar

limitations on cost and scalability.

Figure 1.9: EMERGE by Lancaster University, UK [22]

The above review suggests that in order to make the shape-changing display more com-
mercially feasible and scalable, we need a better design for the actuator mechanism. The use of
commercial linear actuators in previously developed displays help in keeping the prototype complex-
ity low but add to the cost of the systems. By designing and building custom linear actuators which
meet the requirements of the system, the cost of the system can be brought down significantly while
increasing scalability. The design of such a linear actuation mechanism and the actuator assembly
is a key contribution of this Thesis, and is explained in detail in the next Chapter. To validate the
effectiveness of the new mechanism, a 16x16 shape-changing display was built. The demonstration
of the effectivenes of the system in a seriees of novel application scenarios is another key contribution

of this Thesis and the results of these experiments are provided in Chapter 3.

Chapter 2

Research Design and Methods

2.1 Background on Linear Actuators

A linear actuator is an actuator that creates motion in a straight line, in contrast to the
rotary motion of a conventional electric motor. Linear actuation can be achieved through several
different mechanisms and energy sources. However, because of reasons which will be explained in the
next section, the focus will be on electromechanical linear actuators, an example of which is shown
in Figure 2.1. Even with this subset there are several different methods by which the actuation
can be achieved. They can be broadly divided into three categories which are Screw type, Wheel
and axle, and Cam. The screw type linear actuator operates on the principle of a simple screw.
By rotating the actuator’s nut, the screw shaft moves in a linear motion. The wheel and axle type
produce linear motion by rotating a wheel which moves a cable, rack, chain or belt. Cam actuators
work on a principle similar to a wedge, they produce linear actuation by rotating an eccentric shaped
wheel which moves a shaft up and down. Table 2.1 shows the comparison of some properties of these

mechanisms [10].

’ Mechanism \ Speed \ Force \ Travel ‘

Screw Slow High | Medium
Wheel and Axle Fast | Medium High
Cam | Medium | Medium Low

Table 2.1: Comparison of properties of different mechanisms of linear actuation

Figure 2.1: Example of a commercially available linear actuator

Since the purpose of the linear actuator in the project is to represent the height of a pixel,
the force required is considerably low. The important parameters would be speed and travel as it is
desirable to have the pixel quickly change heights and also have sufficient play in the linear motion.
Keeping this in mind it can be easily seen that the screw type linear actuator can be eliminated as

an option. The other two options however, required more careful consideration.

2.2 First Prototype

The first option which was explored was the Cam mechanism. Even though the cam mech-
anism did not offer fast speeds with a single actuator, the idea was to control several shafts with a
single actuator. The prototype was built out of laser cut acrylic sheet and a 3D rendering of it is
shown in Figure 2.2.

The prototype consists of a shaft which has teeth and is able to move vertically up and
down in a slot. An acrylic piece of 2cm width and 10cm length was connected to a servo motor to
act as the Cam. The solenoid was to be used to lock the shaft in place once it was in the correct
position. Although this design would have worked, it was quickly realized that it would not allow
for tight spacing between the shafts. Therefore the Cam was modified with two extra servo motors
to attach multiple arms as shown in Figure 2.3.

The modified design worked and would allow for tighter spacing between the shafts. The

problem however was that it would not allow for fast actuation of multiple shafts.

Figure 2.2: 3D rendering of the first prototype

‘ -
T : .

sampenal
-

)

——

Figure 2.3: Prototype modified with extra servo motors

10

Servo motor

Actuator container

Actuator
Shaft

Figure 2.4: Second prototype

2.3 Second Prototype

The next mechanism which was tried was the wheel and axle. The basic idea was to use a
servo motor as a winch and pull the shaft. But this would only allow for movement in one direction
as the shaft would not move up again. Therefore the shaft had to be spring loaded to allow for
bidirectional movement. To test this, a square tube was built out of laser cut acrylic sheet to be
used as the container for the actuator. The shaft was also a piece of acrylic sheet which was cut to
fit inside the container. The prototype is shown in Figure 2.4. Although the prototype worked well,
there was no way to control the position of the shaft. The next section describes the final prototype,

which has position feedback, in full detail.

2.4 Construction of the final prototype

The above prototype was further refined and the constructional details are provided in
this section. All 3D renderings and CAD models were created using Autodesk Inventor [2] and all

dimensions in CAD models are in mm.

11

‘ 301.63

k—25.40——i

’———‘— 10.29
=318

|:I—I—l—l—l—\—ll—l
I e I o e e Y A |

|

Lzz.?z -

Figure 2.5: Details of the actuator container wall

Figure 2.6: Actuator container after gluing

2.4.1 Actuator container

The actuator container was constructed from four interlocking pieces of acrylic which were
cut as shown in Figure 2.5. The interlocking pattern was created because it would strengthen the
container. The four pieces were then glued together using super glue as shown in Figure 2.6. An
additional piece was cut to close the bottom of the container using the slots created. This piece
served two purposes, one was to hold the spring in place and the other was to guide a cable through

the container.

2.4.2 Actuator shaft

The actuator shaft was a simple rectangular piece of acrylic whose dimensions are given in
Figure 2.9. The area in the red was not cut but scored to a depth of 0.5mm. This purpose of this is
to keep the cable flush with the surface of the shaft and reduce friction between the actuator shaft

and container.

12

R

13.46

13.46 —r——

@2.38]

1.974

28 -

Figure 2.7: Details of the container cap

Figure 2.8: Actuator container with the end cap

279.40

—- =556

Figure 2.9: Dimensional details of the actuator shaft

13

—
Rso L—-—

Wiper

Resistive strip

Voltage
Source

Figure 2.10: Schematic of a linear potentiometer

Figure 2.11: Actuator shaft with conductive ink painted on one side

2.4.3 Linear potentiometer

Since it was essential to detect the position of the shaft with respect to the container, some
sort of a sensor had to be implemented. Since space and cost was a constraint, external sensors were
avoided. The most obvious way to sense the position of the shaft was to convert it into a linear
potentiometer. A linear potentiometer is a device which consists of a resistive strip and sliding
contact which touches the resistive strip at one point. If an electric current is passed through the
resistive element then the sliding contact acts as a voltage divider. By measuring this voltage, the
position of the slider can be determined (see Figure 2.10). Therefore, if there was a resistive strip
on the shaft and the point of contact was constant, the position of the shaft could be measured.

To develop the resistive strip different materials were tested. The first was to use a com-
mercially available conductive ink and coat one side of the shaft with it. The ink had a resistivity
of 150 Q / inch for a width of 0.25 inches. Even though the ink worked as intended, it would have
been difficult to apply the ink to all the actuators the same way without automation. Figure 2.11
shows the actuator shaft with the conductive ink painted on one of the sides.

The second material tested was a plastic film which was coated with Indium Tin Oxide(ITO).

14

Figure 2.12: Actuator shaft with copper tape

Figure 2.13: Details of the electrical joints

The film was flexible and could easily be cut and it had a resistivity of 50 £ / square inch. The
film came in sheets of 100mmX200mm and it was cut to strips of 5mmX200mm using a laser cutter.
This strip was then glued to the side of the shaft. To supply the voltage required for the resistive
strip to function, copper tape was used to form continuous contact on the sides perpendicular to the
resistive strip.

A smaller piece of copper tape was used to make contact with the two ends of the resistive
strip. To ensure good contact, the joint between the copper tapes was soldered and conductive ink
was spread on the joint between the copper tape and the resistive strip.

To establish constant electrical contact between the actuator shaft and the container, it was
essential to find a contact which would not destroy the resistive strip when the shaft was in motion.
The best option was to use a sliding spring contact [14]. To mount the contacts four pieces of acrylic
of size 25.4mm X 7.6mm were cut and glued to the top end of the container as shown in Figure 2.14.

The sliding contacts were then soldered to the ends of copper tapes and taped as shown.

The copper tapes were then extended to the outside of the actuator container. This would serve as

15

Figure 2.14: Photograph of the acrylic pieces used to hold the contacts

Figure 2.15: Sliding contact soldered to copper tape

external contacts for the actuator is shown in Figure ?? along with all the various components.

2.4.4 Spring selection

As described earlier, the actuator can only move in one direction with a cable. Therefore a
spring has to be inserted into the actuator container to allow it to come back to its original position.
Several different springs were tested and their information is shown in Table 2.2. The criteria for
selection was that the spring was to be able to compress at least 150mm and the diameter was to be
less than or equal to 6.35mm. It was also desired that the force required to compress the spring was
to be less than 30N as this was the maximum force capable of being produced by the servo motor
actuator after taking into account the diameter of the pulley attached (see section 2.4.6).

The second spring was found to best satisfy the specifications and Figure 2.18 shows the

spring which was selected.

16

Figure 2.16: Sliding contacts mounted on the actuator container

Spring

L e Cable External
Internal attachment contacts
contacts

Figure 2.17: Actuator container with the contacts fully mounted

Figure 2.18: Photograph of the spring

17

Outer Wire Force required to Mazimum
Diameter(mm) | Diameter (mm) | compress 10mm(N) | Compression(mm)

6 0.71 1.96 100
6.35 0.55 0.65 160
3 0.7 4.1 50

Table 2.2: Comparison of Springs

Figure 2.19: Close up photograph of the fishing line attached to the actuator shaft

2.4.5 Cable selection

To pull the shaft of the actuator down, a cable had to be connected to the base and routed
through the spring to the outside. Since the force required to compress the spring was known, any
cable with a breaking strength of at least twice that amount could be considered. Since fishing lines
are easily available and are very thin, a fishing line with a breaking strength of 30lb was selected

and is shown in Figure 2.19.

2.4.6 Pulley

To connect the fishing line to the servo motor, a pulley had to be fabricated to reel it in
and keep it in place. The diameter of the pulley was chosen to be such that the actuation would be
fast enough while maintaining enough torque. The details of the pulley are shown in Figure 2.20. It
consists of a small disc sandwiched between two bigger discs. This was then mounted to the servo

motor using one of the accessories with screws as shown in Figure 2.21.

18

—27.00 —~

$63.50

$76.20

Figure 2.20: Dimensional details of the pulley

Figure 2.21: Pulley mounted to the servo motor

19

Motor

Error Amp

Pulse width to voltage converter

Control Pulse

Figure 2.22: Block diagram of a servo motor

2.4.7 Actuation mechanism

The winding action needed for the linear actuation can be achieved through rotary mecha-
nisms such as stepper motors, geared DC motors and servo motors. Several factors influenced the
choice of servo motors over the others. Unlike stepper motors and geared DC motors, servo motors
have built in motor drivers which eliminates the need to use external drivers making it cost effective
(see Figure 2.22). They also have a feedback control system required for position control which
makes it easier to control through simple PWM (Pulse Width Modulation) signal.

The details of the particular servo motor used in the project is given in Table 2.3. This
motor was chosen based on the size, torque, availability and cost requirements. It is capable of
rotating 180 degrees and has a rotary potentiometer to sense the position. If this potentiometer is
replaced with the output from the linear actuator, then it is possible to control the linear position
of the actuator with regular PWM servo control. To achieve this, the servo motor was disassembled
and the potentiometer (see Figure 2.23) was removed and the leads were desoldered. An external
wire was soldered to the middle pin of the control board which is the input for position feedback.
The motor also has a safety mechanism for protecting the potentiometer by limiting the travel of the
shaft to 180 degrees. This is achieved through a metallic pin inserted in the gear connected directly
to the shaft (see Figure 2.24). Since the servo motor is being modified to rotate continuously, this

pin was removed.

20

Servo Size Weight Stall Working Stall Speed
model (mm)*(mm)*(mm) | (grams) | Torque Voltage | Current | (s/60°)
(kg-cm) (V) (A)
TowerPro
MG-995 [25] 40.7 * 19.7 * 42.9 55 13 5to 7.2 2 0.2

Table 2.3: Servo motor specifications

Figure 2.23: Servo motor with the potentiometer removed

2.5 Servo motor assembly

Since the display was to have a resolution of 16x16, it needed 256 of the linear actuators
that were described in the previous section. Since space was a constraint, it was essential that the
servo motors were packed as tightly as possible. It was also necessary that the packing would allow
for easy assembly and disassembly. After considerations of various alternatives, it was decided that
the best design choice would be to divide the assembly into 16 blocks each of which contained 16
motors. Each block was then further divided into four levels which contained four motors each.
The motors were arranged in a staggered configuration both in plane and between levels as shown
in Figure 2.25 to increase packing density. The structure is supported by four threaded steel rods
which are two feet in length and a quarter inch in diameter. Figure 2.26 shows all the servo motor
blocks placed next to each other.

The external and internal dimensions of the top and bottom plate are shown in Figures 2.27
and 2.28. Figure 2.28 also shows some of the key features of the design. The guides for the fishing

line as well as the cables were slotted towards the inside so that the blocks could be placed flush

21

Figure 2.24: Gearbox of the servo motor

with one another thereby reducing the space required.

2.6 Pressure sensor

To make the display tangible it was necessary to have pressure sensors embedded in the
actuators. Since cost was a factor, commercially available pressure sensors were out of reach. Several
different materials were tested for their effectiveness in sensing pressure and the most effective was
found to be a conductive foam which is used to protect ICs [20].

This low density foam is made of electrically conductive polyurethane fibers and as pressure
is applied to the material, the fibers move closer together and the electrical conductivity increases.
By measuring the resistance between two opposite surfaces of the material (along which pressure is
applied), the applied pressure can be determined.

The material was cut into a square of 10mmx10mm and a 3D printed plastic piece was used
to hold the foam in place. The details of the 3D printed piece are shown in Figure 2.30. To establish
electrical contact with the foam, copper tape was attached to the top and bottom surface. The
copper tapes were then routed outside the plastic piece through the thin slits at the bottom. This
was then attached to the top of the actuator shaft with super glue. A plastic piece was printed to
act as the sensor surface and to enable the application of pressure evenly to the foam. This also

acted as the display surface for the projected image. The complete assembly is shown in Figure 2.32.

22

Figure 2.25: 3D rendering of the servo assembly

23

Figure 2.26: Servo motor blocks

24

127.00

8 ~—24.41—~

4.

20.00

149.23

SIS
L32.@i

O O

149.23

Figure 2.27: Dimensional details of the top plate of the servo assembly

25

Holes for support rods

Guides for fishing line

Guides for servo cables

Slot for pulley

Slot for servo motor

Figure 2.28: Dimensional details of the bottom plate of the servo assembly

Figure 2.29: Conductive foam used to protect ICs

26

9.9
8.47

!
¢19.054>““‘/ l,
9.53 == o

Figure 2.30: Dimensional details of the pressure sensor holder

Figure 2.31: Pressure sensor inserted into the 3D printed piece

27

=

Figure 2.32: Pressure sensor with touch plate mounted on the actuator shaft

2.7 System block diagram

Figure 2.33 shows the overall block diagram of the whole system. Each block will be ex-
plained in detail in the following sub-sections. The blocks which are contained within the red outline
are for one block and there are 16 such blocks. The Arduino [1] is an open source Hardware and
Software platform for using AVR microcontrollers. It is used as a communication interface between
the PC and the servo controllers and sensor boards. The PC generates the required servo commands
based on the user input which are then transmitted to the Arduino via serial communication. The
Arduino then transmits the servo commands to the specified servo controller via 12C to control the
servos. The position feedback of the actuators is received through the actuator and sensor board
which is connected to the Data acquisition board (DAQ) board through a 40 pin data cable. The
individual servo motors then receive this input from the DAQ board. Power to the servo motors in
each block is provided by a computer power supply. The pressure sensor values are also received at
the DAQ board which converts the analog singal to digital values and transmits them via 12C to
the Arduino.

The Microsoft Kinect sensor [5] is a horizontal bar connected to a small base with a motorized
pivot and is designed to be positioned lengthwise above or below the video display. The device
features an RGB camera, depth sensor and multi-array microphone running proprietary software,
which provide full-body 3D motion capture, facial recognition and voice recognition capabilities. It
is used to track the user and detect gestures which are then used to control the pixel display. An

overhead projector is mounted on a metal frame, vertically above the system and pointing down on

28

Projector

HDMI
Arduino Actuator and
UsB usB i Sensor board
) S
1 1
1
: Power Servo !
1
! Supply Controller !
1 1
1 1

Figure 2.33: Block diagram of the system

it, to enable images to be displayed on the pixel display and make it easier for complex shapes to

be visualized.

2.7.1 Data acquisition board(DAQ)

The schematic of the DAQ board is shown in Figure 2.34. The pressure sensor values and the
position feedback from the linear actuators are multiplexed using CD4067 [24] which is a 16 channel
Multiplexer. Since there are 16 actuators and 16 pressure sensors per block, two Multiplexer ICs are
required. The multiplexed output is received by ATMEGAS [9] which is an 8 bit microcontroller.
The microcontroller is bootloaded with Arduino for ease of programming. The microcontroller
(slave) performs analog to digital conversions of the inputs and transmits them via 12C when the
Arduino (master) requests the data.

Since the servo motor’s feedback works at a voltage of 2.5V, a voltage regulator IC, LM317 [23],
is used to generate the required voltage. The analog reference of the microcontroller is also given
the same voltage to ensure maximum resolution. Figure 2.35 shows the board layout which was used
for the PCB. The board size was 10cmX10cm and was designed using EAGLE Schematic and PCB

design software [3].

29

b Em
N o
o =
1a3an 3L —=— 07 LX
e =
= = Y -
oS3 NZoor ——/ELX
NY2T2 E s 9e-1X
VX |77 ge-LX
o Pe-LX
ZX a7 €e-LX
WX 2 ze-LX
0X |7 Le-LX
b bl x = Seix
8x -
_ _m g x 8Z-1X
“Slels = NN X |5 121X
- X | 9z-LX
e = §z-LX
X |5 ¥Z-LX
X | €2-LX
X |5 zz-LX
— x X |5 LZ-LX
4
= OL%Z S
= O I
arm
Vo Ior
HNI 7
el No_,_ C
_ﬂ (9s)sad _ _M _M _M =
] (O s . =
9]
mw (8100/58)z8d eBs p adrg © o = ©
s (vioo)iad = o
T (donoad Zhsh O oo —— om.fx
(LNIV)20d - m_r ,ﬁx
$ (oNIv)9ad NZo0r —e——tpe e ——
T (sad 00A 7 SIX 5T 9L-LX
—5{ (owmoxivad riX 7T SL-LX
——{ (WiNDead aNg | O T L-LX
——{ (oLNDzad [0 €L-LX -3
= (axuiad WX o7 (45454 ISEN
= (ax¥oad (20s0L/2TvLX)L8d ﬂ_l|=| 0kX Tz Lb-LX
= NpQ 6X |2z ob-LX
N
(10SOL/LTVIX)98d m|L|_|I.mT=| X |z 61X
2= 870 X = 8-LX 2y
5z (10s/50av)$0d = 3, X | 271X AN
7z (vaswoavyod Q0N |7 SX > 91X Joee
b Mmoo<wmon_ EERL Tz (24 5 wwm
—— (zoav)zod ano £X -
ww MGD<W51 H) o (41| X w €-1X Ivo tms_._8< Imo
= (00av)ood 13534/)90d O——MWW—— [5%¢ X Tl .
e b o — x ox = L-LX 00 _Lino Tanvo
d-8vo3n -0pSZ
9 I
m BT
v I
or
HNI g
1Ol

Schematics of the DAQ board

Figure 2.34

N4

i mrammn!&{a

”
NN Sy e * 1 AP~
NIEAT X 22 ’
SNt oz ed (. m
l3”“% 9@%)
\ o T QOO Ieo

oca

Figure 2.35: PCB Layout of the DAQ board

31

Pressure vce Position
sensor feedback P

= — 5 = - 6 [- 7 — 8 =
= [[[|
= [I I |
= 9 10 1 12
- [[|]
[I | |
13 14 15 16

Figure 2.36: Schematics of the actuator and sensor board

2.7.2 Actuator and sensor board

The schematic of the actuator and sensor board is shown in Figure 2.36. This board provides
a structural platform for the actuators and establishes electrical contacts. Each actuator has 4
contacts - VCC, Ground, Position feedback output and pressure sensor output. All the contacts
from the 16 actuators are routed to the 40 pin cable connector for easy connection. Figure 2.37
shows the PCB layout of the board. The actuators are spaced an inch apart from each other and

the connector is placed in between two rows to keep the board size below 10cmX10cm.

2.7.3 Servo controller board

To control the servo motors in each block, a commercially available 16 channel servo motor
controller [18] from Adafruit was used and is shown in Figure 2.38. The servo motor controller also
worked on 12C and 16 such boards were used to control 256 actuators. Each board was given a

different 12C address and were daisy chained along with the control boards which is explained in

32

@ @
@ @
o] oo V)
G oo -

Figure 2.37: PCB layout of the actuator and sensor board

33

Figure 2.38: 16 channel servo controller

subsection 2.7.5.

2.7.4 Power supply

The stall current of the servo motors is rated at 2A at 5V. Therefore the power supply
needs to handle a maximum of 32A as there are 16 motors per block. The most cost effective way
to handle such a large amount of power was to use a computer power supply. The specific power
supply used in the project was rated at 36A at 5V and 16 such power supplies were used. The power

supply is in Figure 2.39.

Figure 2.39: Power supply

2.7.5 Arduino

An Arduino Uno [8] was the main interface between the PC and all the control boards (see

Figure 2.40). It was responsible for receiving the servo commands from the PC and transmitting them

34

to the right servo control boards as well as requesting sensor data from the DAQ boards and sending
them to the PC. The Arduino communicated through I2C which is a multi-master, multi-slave,
single-ended, serial computer bus. It requires only two data lines for establishing communication,
a clock line (SCL) and a data line (SDA). Figure 2.41 shows how the Arduino was connected to
the DAQ and Servo control boards through 12C. The area inside the dotted rectangle makes up one

block and the communication lines are connected serially from one block to the next to all 16 blocks.

vce
Arduino DAQ CSertvo | To
Uno Board I':n r;) GND Next
(Master) (Slave) e SDA Block

(Slave)

SCL

Figure 2.41: Arduino communication chain

2.8 Assembly

To make assembly easier, the 16 blocks were divided further into groups of 4. The details
of one such group are shown in Figure 2.42. The PCBs were arranged on one of the corners of an
acrylic plate of dimensions 304.8mm x 304.8mm. The holes which are highlighted in blue (dotted)
are for the steel support rods and the ones highlighted in red (thicker) are for mounting the PCBs.
All other holes are for the fishing lines which are connected to the actuators. Figure 2.43 show the

groups during Assembly and Figure 2.44 shows the all the groups after complete assembly.

35

o o o o o o o o
o o o o
o o o o o o o o
o o o o o o o o
o o o o
o o o o o o o o
&
g
o o o o o o o o
o o o o
i o o o~ o o o o o
«
<+
a
o e o o o o o o
o o o o
o o o o o o o o
201.93
- 304.80 -‘

Figure 2.42: Dimensional details of the group of four blocks

2.8.1 Actuator contact separator

Figure 2.44 shows the actuators after they were mounted and soldered to the PCBs. To keep
the copper tapes of the actuators from touching each other and to keep them at the right distance,
a plastic separator was 3D printed which is shown in Figure 2.45. For easy insertion, the ridges on

the piece were tapered. Figure 2.46 shows the actuator system with the separator.

36

Figure 2.43: Servo group during assembly

37

Pressure sensors

Actuator shafts

Actuator containers

Actuator and sensor
PCB

40 pin cables

Servo Motors

DAQ and servo
boards

Figure 2.44: Servo group after full assembly

38

Figure 2.46: Contact separator attached to the actuators

2.8.2 Kinect and projection system

To enable images to be displayed on the surface, a projection system was constructed. A
metallic structure was built out of Bosch frames to support the projector as shown in Figure 2.47.
The projector was connected to the PC through an HDMI cable and the location of the projector
was adjusted to get a full image on the display.

A Microsoft Kinect was used to make the display interactive by detecting gestures made by
the user and using it to move the pixels on the display. The software used to detect the gestures as

well as the gesture mapping will be explained in subsequent sections.

39

Projector

Metal
Structure

Display

Figure 2.47: Pixel display with the projection system

40

Figure 2.48: Microsoft kinect used to detect gestures

2.9 Software

2.9.1 Calibration

Since the actuators were put together by hand, there were slight differences in the way they
behaved. Specifically, the conductive ink which was used to join the copper tape to the resistive
strip exhibited different resistance values. Because of this, each linear actuator had slightly different
range of values for the position feedback. To overcome that, the servo commands which were sent
to the actuators had to be calibrated for each individual actuator. The actuators were calibrated
for 8 positions in increments of half an inch. To simplify the process, a graphical user interface
(GUI) was built using ”Processing” [12] which is an integrated development environment for Java.
A screenshot of the GUI is shown in Figure 2.49.

To calibrate, a specific block had to be selected using the 4x4 matrix after which the specific
linear actuator was selected using the left and right arrow keys. Then, the top most and the bottom
most positions were calibrated by moving the actuator up/down using the up/down arrow keys. Since
the position feedback was linear, the servo commands for the rest of the positions were interpolated
using these values and stored in a data file. This process was repeated for all of the 256 actuators

and the calibration file was created.

2.9.2 Gesture detection

Gesture detection was implemented by using a software called FLEXIBLE ACTION AND
ARTICULATED SKELETON TOOLKIT (FAAST) [4] which was developed at the University of
Southern California. This program enabled the use of Kinect to detect gestures and map them to
key combinations which were then sent to the GUI to be processed. A square region was defined

using the length of the users arm around the left side of the body (see Figure 2.50 and note that the

41

- guiCalibrationNew © = [=

Calibration

4
SERVO NUMBER

184
CURRENT POSITION

1
CALIBRATION POSITION

6
BLOCK NUMBER

RESET
CALCULATE LEVELS . CALIBRATE

PLAYBACK

KINECT

Figure 2.49: Screenshot of the GUI

image is flipped). By moving the wrist to different quadrants of this square, the specific quadrant
of the pixel display could be selected. Four levels were defined towards the user’s right side of the
body and by moving the right wrist up and down, the height of the pixels could be controller. By
using a combination of both hands, the user could select the specific quadrant to be controlled and

use the right hand to control the height.

2.10 Materials used

The list of materials used to build the pixel display, their quantity and where they were
used in detailed in Table 2.4. The quantity indicated is to build all the 256 actuators. Figures 2.51

and 2.52 shows some of the components of the system before assembly.

42

Actuator shafts

Figure 2.50: Gesture detection from Kinect data

Actuator Containers

Servo assembly
plates

Pulley Discs

PCBs

12" Ruler

e Ee—

Figure 2.51: Materials before assembly

43

Figure 2.52: Materials before assembly

Material | Size/Specs | Quantity | Use |
Acrylic sheet | 30.48cmX30.48cmX3.175 37 | Actuator container
Acrylic sheet | 30.48cmX30.48cmX6.35 6 Actuator shaft
Acrylic sheet | 30.48cmX30.48cmX3.175 32 Servo assembly
Acrylic sheet | 30.48cmX30.48cmX3.175 45 Pulley assembly
Acrylic sheet | 30.48cmX30.48cmX3.175 8 PCB Support
ITO Coated Plastic 10cmX20cm 13 Position feedback
Copper tape 3mmX50m 3 | Electrical contacts
Sliding contacts 3mm 1024 | Electrical contacts
Fishing line 0.5mmX250m 1 Actuation cable
Servo motors 13kg-cm Torque 1 Actuation
Threaded Steel rods 6.35mmX60.9cm 64 Support
PLA Spool 3mm,lkg 1 Pressure sensors

Table 2.4: Material list

44

Chapter 3

Results

This Chapter presents the results of experiments which were conducted to validate the ef-
fectiveness of the new actuator design, the sensor used and the overall system. The next section
discusses experiments performed to assess some of the physical characteristics of the linear actuator,
such as the maximum force which can be produced, the linearity of the position feedback and the
speed of the actuation. The characteristics of the custom built pressure sensor were also deter-
mined and the results are provided section 3.2. The second part of the Chapter(sections 3.4 to 3.6)
deals with developing novel applications for the shape-changing display such as using it for data

visualization, object transfer and manipulation and controlling it through gestures.

3.1 Linear actuator characteristics

Since the linear actuator is spring loaded, there is no force being produced by the servo
motor to push the shaft up. Therefore the force for the shaft to resist the change in position when it
is pushed down comes from the spring and the friction between the shaft and the sliding contacts. To
determine the force required to get the shaft to move, the top of the actuator was loaded with blocks
of increasing weight until it started to move and the total weight was recorded. The experiment was
performed on 10 randomly selected actuators and the results were recorded and are tabulated in
Table 3.1. The average weight was calculated to be 308g, which is 3 times more than the commercial
actuators which are used in the relief [16] and inFORM [11] shape displays.

As mentioned in the previous Chapter in section 2.9.1, the position feedback of the linear

45

| Actuator | Total weighi(g) |

1 300
300
320
270
300
320
300
350
320
300

© 0O U W

—_
o

Table 3.1: Measurements of maximum force

| Actuator | Absolute regression coefficient(|r|) |

1 0.9992
0.9999
0.9993
0.9992
0.9997
0.9998
0.9869
0.9999
0.9984
0.9986

© 00O Uk W

[
o

Table 3.2: Absolute regression coefficients for position feedback

actuators needed to be calibrated. Before they were calibrated, the position feedback was tested
for linearity. This was performed by manually adjusting the height of the shaft in steps of half
an inch. The experiment was performed for 10 randomly selected actuators and the results were
recorded. The coefficient of regression for the recorded data was calculated and is shown in Table
3.2 and the data set used to calculate them are given in Appendix A for reference. It can be seen
that the position feedback mechanism is linear to a good extent and the rest of the actuators can
be calibrated on this assumption.

To determine the speed of the actuator, a camera was set up perpendicular to the actuator
array. A sheet of paper with the calibrated positions was placed as shown in Figure 3.1. The actuator
was made to move from the top most position to the bottom and the motion was recorded at 60fps
(frames per second). The recorded video was then analyzed for the time taken for the actuator to
cover the specified distance which was used to calculate the speed. The experiment was performed

for 5 different actuators and the results are tabulated in Table 3.3 and it was found that the speed

46

Figure 3.1: Setup for measuring speed of actuators

| Actuator | Upward Speed(cm/s) | Downward Speed(cm/s) |

1 14.22 11.85
2 12.19 10.16
3 17.78 11.85
4 12.9 12.7
5 13.2 12.1

Table 3.3: Upward and downward speeds of actuators

of the actuation was slower than similar actuators. This is due to the fact that the actuator can
withstand more weight than them. However, the speed could be easily increased through two ways.
One way is to make the diameter of the pulley which is attached to the servo motor larger, this
would make the winding of the cable faster thereby increasing the speed of the actuator. However,
by doing this the size of the overall system would increase as well which is not desirable. Another
way to increase the speed of the actuation is to use a spring with lower spring constant that could
handle lesser force and using a faster servo motor. The summary of the characteristics of the linear

actuator is given in Table 3.4.

| Mazimum force(g) | Upward Speed(cm/s) | Downward Speed(cm/s) | linearity(r) |
| 308 | 14.05 | 11.73 00981 |

Table 3.4: Average characteristics of the linear actuator

47

3.2 Pressure sensor characteristics

The response of the pressure sensor was tested by loading the top with varying weight blocks
and recording the output. The graph of one such measurement is shown in Figure 3.2 where the
weight loaded is shown by the red markers. As it can be seen, there is a significant amount of
high frequency noise present in the measurement and therefore it cannot be used directly. Since
the system only needed a touch sensor in our experiments, the output of the pressure sensor was
thresholded at particular value which corresponded to a light touch. This graph and the response
are shown in Figure 3.3. However, if needed, higher resolution in sensing can be obtained by filtering

the measurement through various filtering techniques.

200 .

— Sensor output

—_
o]
o

Og 30g 709 80g 30g

N

[o)]

o
|

ADC Value
=
o

-
N
o

1000 2000 3000 4000
Time(ms)

—_
o
o

o]
OO

Figure 3.2: Plot of raw pressure sensor output with varying weights

3.3 Power consumption

Each actuator is controlled through a servo motor capable of drawing 2A of current at
maximum load. However, the current drawn by each motor was found to be somewhere around
600mA to 1.5A in practice. Therefore for a total of 256 motors the current draw would be in the
range of 150A to 380A and at a voltage of 5V this would equate to a maximum power consumption
of 1920W. With such a huge power draw heating is a major concern. However, since each of the servo

assembly blocks have their own power supply with cooling, this did not prove to be a significant

48

350 : :
—Sensor output

300¢f — Thresholded output}

il
§150WJWJ\\A r/\ f”\ m

]
]

I i
100
MW N L e
50/ 1
Coouulu
0 500 1000 1500 2000
Time(ms)

Figure 3.3: Plot of raw and thresholded sensor output

issue in our use of the system.

3.4 Data Visualization

The first application for the shape changing display which was developed was to use it as
a tool for data visualization. As mentioned in the introduction, one of the obvious applications
is to utilize the dynamic shape-changing ability of the system to visualize an extra dimension of
data. Specifically, the system was used to visualize 2.5D data. The 3D point cloud data required for
creating the shapes was produced in MATLAB for a variety of mathematical functions. These were
then scaled to match the output of the system and stored in data files. The same functions were
also used to create depth map images to be displayed using the projector on the surface for better
visualization.

To capture the output, two cameras were setup. One was oriented to be pointing horizontally
towards the surface and another to obtain a perspective view. The captured images along with the
plots and depth maps generated through MATLAB are shown in Figures 3.4 through 3.7. As it can
be seen, the system works very well as a tool for 2.5 dimension data visualization. The following
link contains the video showing the system being used for data visualization:

Video link: https://youtu.be/WN4-IgyEf-k

49

https://youtu.be/WN4-IgyEf-k

Figure 3.4: Visualization of a sine wave

o
A

1))
LI

TEH SV

dib HsAAYY
PTI

Figure 3.5: Visualization of a bar graph

50

i —

Wt ==

N1 ,.m Y |
=0 817 J:.:uﬂ._!

__.s.. ,c ..«...mﬂn
B

:._....,.wﬂ.f&...iz.:..l;

Figure 3.6: Visualization of a sinc function

Figure 3.7: Visualization of a pyramid

o1

:E“l i%s |

ﬂiiﬁg& %_Egr

Figure 3.8: Transfer of object

3.5 Object Transfer and Manipulation

One of the ways to utilize the dynamic and tangible aspect of the shape-changing display is
to use it to transfer and manipulate objects. To demonstrate this, the system was programmed to
move a ball from one corner of the array to the center. Figure 3.8 shows snapshots taken when the
ball was being moved. The top row of the figure is from the perspective camera and the bottom row
is from the horizontal camera. This application can be extended (through cameras and Computer
Vision algorithms) and the system can be used to sort objects based on color, size or any other
characteristics on a platform. Because of the enhanced capability to withstand more weight than
similar commercial actuators the system can also be used to manipulate relatively heavy objects.
This is demonstrated in Figure 3.9 where the system was programmed to manipulate a heavy box.
The box was filled with metal pieces and the total weight of the box was 5kg (11 pounds). The
system was then programmed to tilt it towards the four corners as shown in Figure 3.9. As it can
be seen the system was able to withstand a significant amount of weight. This could be used in
cases where there is need to manipulate heavy objects either through automation or human control.
Some examples include rocking of containers used for chemical processes and using it as a tilt bed for
engraving and scoring at different angles. The following link contains the video showing the system
being used for object transfer and manipulation:

Video link: https://youtu.be/WN4-IgyEf-k7t=27s

52

https://youtu.be/WN4-IgyEf-k?t=27s

Figure 3.9: Manipulation of heavy object

3.6 Gesture control

To make the system interactive, a gesture based interface was developed as described in the
previous Chapter. Figures 3.10 and 3.11 show the system responding to the gesture commands as
well as the output from the Kinect sensor. Even though the interface is basic, it demonstrates the
use of gestures to control the array. The gestures can be made more intuitive by mounting the kinect
overhead the display looking down on it as shown in the inFORM [11] project. This would allow for
tracking hands of the user and be able to control the display in a more comfortable manner. The
following link contains the video showing the system being controlled through gestures:

Video link: https://youtu.be/WN4-IgyEf-k?7t=53s

Figure 3.10: Example of gesture control for quadrant 2

53

https://youtu.be/WN4-IgyEf-k?t=53s

Figure 3.11: Example of gesture control for quadrant 3

3.7 Cost comparison

To analyse the cost effectiveness of the system, a cost comparison was performed with other

similar systems.!

The comparison includes only the cost associated with the actuators as other

hardware is either similar of the cost reduction is negligible. Figure 3.12 shows the details of the

comparison. The main component of the cost reduction comes from not using commercial linear

actuators as well as not using push-pull rods for linkages. The cost per actuator was reduced by a

factor of four which could be further improved if these actuators were manufactured in bulk.

Others*

This display

Actuator

ALPS RSAON11M9A07
Linear actuator
Bulk price - $29.95

Servo motor - $6
Fabricated actuator - $4

Actuation link

Gold-N-Rods Nylon rods

30lb Monofilament

Price - $7 to §10 Fishing line
Price — 0.01
Total cost per actuator $37 to $40 S10

Figure 3.12: Details of the cost comparison

L Actuators used in inFORM][11], Relief [16] and EMERGE [22]

54

Chapter 4

Conclusions and Suggestions for

Future Research

In this Thesis, a new design for shape-changing displays which focused on scalability and
commercial feasibility was introduced, constructed, and evaluated. This was achieved through novel
actuator and sensor designs and packages and by making use of rapid prototyping tools. The
resulting built system performed satisfactorily as detailed in the previous Chapter. The new design,
which is unique in being scalable and commercially feasible, can allow researchers in various labs to
quickly build and develop new applications for shape-changing displays in a way which has not been
feasible till now.

During the process of designing new actuators, various mechanisms were considered and
tested for their feasibility. This was discussed in Chapter 2 and the design for the final prototype
was explained in detail. The new actuator design was used to build a 16x16 shape-changing display
and the construction details were also presented in Chapter 2. The choice of using the servo motor
as part of the actuation mechanism significantly reduced the complexity and cost. This was because
the servo motors have their own control system as well as a motor driver which eliminated several
external components. The choice of using the ITO plastic as the resistive strip helped in making
sure that the actuator prototypes that were produced were uniform and robust. The modular design
helped in the assembly of the servo blocks and improved their scalability as well. The system can

be easily expanded by adding more servo assembly blocks to increase the display area. The use of

55

12C as a communication protocol allows for the electronics to be scaled up to 64 blocks (each block
requires two I12C addresses and 7-bit 12C supports 128 addresses) and if more blocks are needed
then only an extra Arduino board has to be added to the system. The resolution of the display can
also be increased easily because of the cable mechanism which is used to control the actuators. This
means that the actuator area can be shrunk in size while keeping the same servo assembly.

Various characteristics of the actuator and the pressure sensor were determined through
experiments described in Chapter 3. The actuator’s speed, maximum force which it can withstand
and the linearity of its position feedback were calculated and presented. While the maximum force
was found to be three times that of similar commercial actuators, the speed was found to be less
than originally hoped. However, the speed can be easily increased by using springs which can handle
lesser force. This is a result of the inevitable trade-off that has to be made between speed and force
of the actuator. The pressure sensors were found to have high frequency noise associated with the
signal and they were used as a binary touch sensor. However the resolution of the sensor can be
increased by filtering the output.

Characteristics of the actuators and sensors was followed by a series of application oriented
experiments which were developed to show the capabilities of the shape-changing display and how
they could be used. The applications included data visualization, object manipulation and control-
ling the system through a gesture interface. These experiments demonstrate the versatility of the
system, and highlight its potential for supporting future research in multiple directions.

The system could be improved in several different areas to increase performance. One of the
problems encountered during the construction of the actuator was intermittent electrical contact with
the resistive strip. This was solved by using conductive ink to form electrical joints, which resulted in
uneven resistance. By using other conductive inks which are metal based or by completely replacing
the resistive strip better response can be achieved. As mentioned above, the speed of the actuators
was fairly low. One way to increase this is by using a spring of lower spring constant which would
result in lesser force. Another way is to increase the diameter of the pulley so the speed of the
motor is increased, but this would also increase the size of the overall system. A servo motor with a
slightly lower torque and higher speed could also be used, as the current motors do not run at their
full power.

Currently the DAQ boards read the position of the actuators along with the pressure sensor

values, but these values are not utilized. By incorporating the position feedback into the control

56

system a more tangible way to interact with the system can be developed. The top of the display
can also be covered, for example by an elastic silicone sheet to allow for better projection of images
and thereby providing better visualization of data. A design change which could be made to provide
better visualization is to 3D print the pressure sensor holder with black material so that it blends
into the background and the touch plate becomes more visible.

The current shape changing display could be modified for specific applications in future
iterations. The most immediate application could be to use it as a 3D screen by covering the display
with an elastic material and using 3D projection mapping technology. An example of this is shown in
Figure 4.1. It could be also be used for NURBS (Non-Uniform Rational Basis Spline) modeling where
the user could create a shape by carefully pushing and pulling on the display surface as shown in
Figure 4.2. This could be used to decrease the time required for modeling 3D characters and models
where natural curves are involved. A system can also be developed for remote communication
between people by having pairs of such screens and using the Kinect to relay human faces for more

natural interaction.

the virtual boxes »
as seen by the virtual projector

Figure 4.1: Example of 3D projection mapping [7]

The system can also be used in remote medical diagnosing by constructing two human-sized

displays. The patient could just walk into a center having one of these units and lie down on it and

57

Figure 4.2: Example of NURBS modeling

the physician could diagnose tumors, abnormal growth or any other palpable medical conditions
even while being on the other side of the world. A rendering of such a scenario is shown in Figure

4.3.

Patient ; /

Shape changing
device

Shape projection
of patient

Diagnostician

Figure 4.3: Rendering of remote diagnosis scenario

58

Appendices

59

Appendix A Calibration data

y |Position | 1 | 2 | 3 [4 [5] 6] 7] 8]
Actuator

1 514 [474 | 438 [404 | 370 | 336 | 298 | 273
501 | 468 | 433 | 400 | 365 | 330 | 293 | 257
156 | 187 | 228 | 269 | 300 | 335 | 368 | 411
492 | 457 | 424 | 391 | 362 | 335 | 306 | 275
515 | 480 | 441 | 408 | 371 | 332 | 293 | 253
485 | 441 | 399 | 357 | 317 | 275 | 229 | 183
458 | 420 | 382 | 348 | 320 | 278 | 242 | 251
457 | 424 | 391 | 358 | 325 | 292 | 259 | 223
159 | 182 | 205 | 230 | 255 | 282 | 305 | 341
490 | 453 | 420 | 385 | 360 | 329 | 288 | 249

S0 ®u > e oo

Table 1: Servo motor position values for calibration positions

60

Appendix B MATLAB, Arduino and Processing Code for

the system

B.1 MATLAB Code for generating shapes and depth maps

%Code for generating sinc function
[X,Y] = meshgrid(—8:.5:8);
R =sqrt(X."2 + Y."2) + eps;
Z = (sin(R)./(R.%2));
figure
colormap hsv
surf(X,Y,Z, 'FaceColor’, ’interp’ ,...
’EdgeColor’, ’none’ ,...
10 "FaceLighting ’, >gouraud ’)
11 daspect ([5 5 1])
12 axis tight
13 view(—50,30)
14 camlight left
15
16 %Code for generating sine wave
17
18 [X,Y] = meshgrid(—8:.5:8);
19 Z = (sin((Xxpi/4)— pi/2));
20 figure

Bw N e

© o N o wu

21 map = [1,1,1
22 0,1,0
23 1,0,0];

24 colormap (map)

25 surf(X,Y,Z, FaceColor’, ’interp’ ,...
26 ’EdgeColor’, ’none’ ,...

27 "FaceLighting ’, ’gouraud ’)

28 daspect ([5 5 1])

29 axis tight

30 view(—50,30)

31 camlight left

32

33 %Code for generating pyramid

34

35 [X,Y] = meshgrid(—8:0.5:8);

36 Z = ((4—abs(X)) + (4—abs(Y)))/8;
37 Z(Z < 0) = NaN;

38 figure

39 colormap hsv

40 surf(X,Y,Z, FaceColor’,’interp’ ,...
41 ’EdgeColor’, ’none’ ,...

12 ’FaceLighting ’, >gouraud’)

43 daspect ([5 5 1])

44 axis tight

45 view(—50,30)

46 camlight left

48 %Code for generating bar chart
50 A = importdata(’pillar.txt’);

[X,Y] = meshgrid(—8:1:7);
53 Z =A./3;

61

© 0 N U oA W N e

e
ST S .

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

42
43
44
45
46
47
48
49
50
51

map = [0,1,0
1,0,0];

colormap (map)

surf(X,Y,Z, 'FaceColor’,’interp’ ,...
’EdgeColor’, ’none’ ,...
’FaceLighting ’, >gouraud ’)

daspect ([65 5 1])

axis tight

view (—50,30)

B.2 Arduino Code(Slave) for reading sensor values

#include <Wire.h>

const int sensorPin = AO; // Analog input pins the multiplezer is attached
const int servoPin = Al; // Analog input pins the multiplexer is attached
int sensorval[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

int servoval[l16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

byte semnsorvalout[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

byte servovalout[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

byte tempout[32] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32};

int sensorValue = 0;

int servoValue = 0;

int outputValue = 0;
int state = LOW;

void setup () {
// initialize serial communications at 9600 bps:
Serial.begin (9600);
analogReference (EXTERNAL);

DDRB = B00111111;

PORTB= B00000000 ;

Wire. begin (2); // join i2c bus with address #2,
//different address for each block

Wire.onRequest (requestEvent); // register event

}

void loop () {
// read the analog in wvalue:

for (byte i=0;i<16;i++)

{

PORTB= i

sensorValue = analogRead(sensorPin);

servoValue = analogRead (servoPin);

sensorval [i] = sensorValue;

servoval [i] = servoValue;

sensorvalout[i] = map(sensorval[i], 0, 1023, 0, 255);

sensorvalout [i+16] = map(servoval[i], 0, 1023, 0, 255);
delay (2);

}

// map it to the range of the analog out:
// print the results to the serial monitor:

62

E N VR

© o N o wu

10

12
13
14

15

for (int i=0;i <32;i++)

{

Serial.print (”sensor.”);
Serial.print (i);

Serial.print (7 .=.");
Serial.println (sensorvalout[i]);

}

Serial.println ();

// wait 2 milliseconds before the next loop
// for the analog—to—digital converter to settle
// after the last reading:

}

void requestEvent ()

{

Wire. write (sensorvalout ,32);

}

B.3 Arduino Code(Slave) for reading sensor values

#include <Wire.h>
#include <Adafruit_.PWMServoDriver.h>

byte sensorval[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

byte boardAddress|[] = {0x49,0x48,0x47,0x45,0x4b,0x4a,0x46,
0x44,0x43,0x42,0x4d,0x4f,0x41,0x40,0x4c,0x4e };

int servoArray][] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

int sp=0;

int dir[] = {1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1};

Adafruit_ PWMServoDriver pwmArray[16];

uint8_t servonum = 0;

int servoNum=0;
int pos=0;
int syncl=0;
int sync2=0;
int reset = 0;
int boardNum=0;
int overshoot=0;
void setup () {
Serial.begin (9600);
Serial . println(”16_channel_Servo._test!”);

for (int 1=0;i<16;i++)
pwmArray[i] = Adafruit_.PWMServoDriver (boardAddress[i]);

pwmArray [i]. begin ();
pwmArray [i].setPWMFreq(60);

}

void loop () {
// Drive each servo ome at a time

for (int i=0;i <16;i++)
{

63

43
44
45
46

Wire.requestFrom (i, 32); // request 6 bytes from slave device #2
int i =0;
while (Wire. available ()) // slave may send | than requested
{
if (i<32)
sensorval [i] = Wire.read (); // receive a byte as character
i++;

{

for (1=0;i <32;i++)

Serial.print(”sensor.”);
Serial.print (i);

Serial.print (7 .=.");
Serial.println(sensorval[i]);

}
}

while (Serial.available() > 0) {

syncl = Serial.parselnt ();
if (syncl = 97)

sync2 = Serial.parselnt ();
if (sync2 = 76)

sp = Serial.parselnt ();

if (sp==1)
boardNum = Serial.parselnt ();
servoNum = Serial.parselnt ();

pos = Serial.parselnt ();

}
else if(sp==2)
boardNum = Serial.parselnt ();

for (int i=0;i<16;i++)
servoArray [i] = Serial.parselnt ();

}
}
}
if (Serial.read() = ’\n’) {

break;
}

if ((boardNum>0)&& (boardNum<17))
{

64

© 0 N A W N e

AR A A R A R W W W W W W W W W WNNNDNNNNNNNE BB B e e e e
S A W RN RO O O IO A LR ~O®O®O N0 A WNRO®©O®ONO A WN R O

if (sp==1)
pwmArray [boardNum — 1] .setPWM (servoNum, 0, pos);
else if(sp==2)

for (int i=0;i<16;i++)
pwmArray [boardNum — 1] .setPWM(i, 0, servoArray[i]);

}

else

{
for (int 1=0;i<16;i++)
pwmArray [boardNum — 1] .setPWM(i, 0, 0);
}
}

B.4 Processing code for GUI and control

import controlP5.x;

ControlP5 cpb;

int nx = 4;
int ny = 4;
int servoStep = 2;

int defServoVal=275;

int servoMin = 100;
int servoMax = 600;

int servoNum = 0
int servoPos = 0
int calPos = 0;
int blockNum = 0
int calPlayselect = 0;
int overshoot = 0;

int kinectlevel =0;

int kinectquad = 0;

int maxCalPositions = 8§;

int [][] calPosMatrix = new int [16][8];

int [][] playMatrix = new int [16][16];

int [][] kinectplayMatrix = new int[16][16];
int [][] gridMatrix = new int[16][16];

int [][] newPlayMatrix = new int [16][16];

int [][] outputMatrix = new int [16][16];

int [][][] calfullMatrix = new int [16][16][8];

int[] dir = {1,1,1,-1,-1,1,1,1,1,-1,—-1,-1,—-1,1,1,1};
RadioButton r;
RadioButton calPlay;

String textValue =

[IRIEN
)

65

47
48

50

51

65
66
67
68
69
70
71
T2
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

93
94
95
96
97
98
99

101
102
103
104
105
106

108
109
110

void setup () {
size (1000,600);

initialize ();
seriallnit ();

PFont font = createFont(”arial” ,24);
cp5 = new ControlP5(this);

cp5.addTextfield (” Servo_Number”)
.setPosition (40,100)
.setSize (100,40)
.setFont (font)
.setFocus(false)
.setColor (color (255,255,255))

.getCaptionLabel ().setFont(createFont (”arial” ,16))

cp5.addTextfield (” Current.Position”)
.setPosition (40,180)
.setSize (100,40)
.setFont (createFont (” arial” ,20))
.setAutoClear (false)

.getCaptionLabel ().setFont(createFont(” arial” ;16))

cp5.addTextfield (” Calibration._Position”)

.setPosition (40,260)

.setSize (100,40)

.setAutoClear (false)

.setFont (createFont (” arial” ,20))

.getCaptionLabel ().setFont(createFont (” arial” ,16))

)

cpb5.addTextfield (” Block .Number”)
.setPosition (400,350)
.setSize (100,40)
.setFont (font)
.setAutoClear (false)

.getCaptionLabel ().setFont(createFont (”arial” ,16))

)

cp5.addBang(”save”)
.setPosition (40,360)
.setSize (100,40)

.getCaptionLabel (). align (ControlP5.CENTER, ControlP5.CENTER).setFont(createFont(”arial” ;16))

)

cp5.addBang(” play”)
.setPosition (550,350)
.setSize (100,40)

.setLabel (” Play”)

.getCaptionLabel (). align (ControlP5.CENTER, ControlP5.CENTER).setFont(createFont(”arial” ;16))

)

cp5.addBang(” stop”)
.setPosition (550,500)
.setSize (100,40)
.setLabel (”Stop”)

.getCaptionLabel (). align (ControlP5.CENTER, ControlP5.CENTER).setFont (createFont(”arial” ;16))

3

66

cp5.addBang(” reset”)
.setPosition (550,425)
.setSize (100,40)

.setLabel (” Reset”)
.getCaptionLabel (). align (ControlP5

)

cp5.addBang(” calculatelevels”)
.setPosition (40,440)
.setSize (180,40)
.setLabel (” Calculate_Levels”)
.getCaptionLabel (). align (ControlP5

)

cp5.addBang (”shapel”)

.setPosition (650,100)

.setSize (40,40)

.setLabel (”1”)

.getCaptionLabel (). align (ControlP5

3

cp5.addBang(” shape2”)

.setPosition (690,100)

.setSize (40,40)

.setLabel (72”)

.getCaptionLabel (). align (ControlP5

cp5.addBang(” shape3”)
.setPosition (730,100)
.setSize (40,40)
.setLabel (”3”)
.getCaptionLabel (). align (ControlP5

cp5.addBang(” shaped”)
.setPosition (770,100)
.setSize (40,40)
.setLabel (74”)
.getCaptionLabel (). align (ControlP5

cp5.addBang(” shape5”)
.setPosition (650,140)
.setSize (40,40)
.setLabel (757)
.getCaptionLabel (). align (ControlP5

)

cp5.addBang(” shape6”)

.setPosition (690,140)

.setSize (40,40)

.setLabel (76”)

.getCaptionLabel (). align (ControlP5

)

cp5.addBang(” shape7”)

.setPosition (730,140)

.setSize (40,40)

.setLabel (777)

.getCaptionLabel (). align (ControlP5

.CENTER,

.CENTER,

.CENTER,

.CENTER,

.CENTER,

.CENTER,

.CENTER,

.CENTER,

.CENTER,

67

ControlP5

ControlP5

ControlP5

ControlP5

ControlP5

ControlP5

ControlP5

ControlP5

ControlP5

.CENTER) ..

.CENTER) .

.CENTER) .

.CENTER) .

.CENTER) .

setFont (createFont (” arial”

setFont (createFont (” arial”

setFont (createFont (7 arial”

setFont (createFont (7 arial”

setFont (createFont (7 arial”

setFont (createFont (7 arial”

setFont (createFont (7 arial”

setFont (createFont (7 arial”

setFont (createFont (7 arial”

:16))

116))

:16))

:16))

:16))

:16))

:16))

:16))

:16))

)

cp5.addBang(”shape8”)
.setPosition (770,140)
.setSize (40,40)
.setLabel (78”)

.getCaptionLabel (). align (ControlP5.CENTER, ControlP5.CENTER).setFont(createFont(” arial”

r = cp5.addRadioButton(”radioButton”)
.setPosition (400,100)
.setSize (40,40)
.setColorForeground (color (120))
.setColorActive(color (255))
.setColorLabel (color (255))
.setItemsPerRow (4)

.setSpacingColumn (1)

.addItem (7
.addItem (7
.addItem (7
.addItem (7
.addItem (7
.addItem (7
.addItem (7
.addItem (7
.addItem (”
.addItem (7
.addItem (
.addItem (
.addItem (7
.addItem (7
.addItem (
.addItem (

”

”»

”»

”»

)

calPlay = cp5.addRadioButton(” CalSelect”)

177
2”
377
4”
5?1
6?7
7”
877
9”
107

177

277
137

47,
157
16”

© 00 N D T o N

1

NN AN AN NN

—_
o
~

J11)

,12)
,13)
14)
,15)
,16)

.setPosition (400,450)
.setSize (40,40)
.setColorForeground (color (120))
.setColorActive(color (255))
.setColorLabel (color (255))
.setItemsPerRow (1)

.setSpacingColumn (1)
.addItem (” Calibrate”
.addItem (” Playback” ,2
.addItem (” Kinect” ,3)

)

)

1)
)

for (Toggle t:r.getltems()) {

}

t.captionLabel ().
.captionLabel ().
.captionLabel ().
.captionLabel ().
.captionLabel ().

[o S

style
style
style
style

Py

). moveMargin (

setColorBackground (color (0,0));

7790»0’73);

). movePadding (7,0,0,3);
). backgroundWidth = 1;
).backgroundHeight = 1;

for (Toggle t:calPlay.getltems()) {

t.captionLabel ().setFont(createFont(” arial”

68

;16));

:16))

243 textFont (font);
244}

246 void draw () {
247 background (0);

248 fill (255);

249 //text (cp5.get(Textfield. class,” Servo Number”).getText(), 360,130);

250 text (” Calibration”, 325,50);

251

252 cp5.get (Textfield.class,” Servo_.Number”).setValue(str (servoNum+1));

253 cpb5.get (Textfield.class ,” Current_Position”).setValue(str (servoPos));

254 cp5.get (Textfield.class,” Calibration._.Position”).setValue(str (calPos+1));
255

256}

257
258 public void save() {
)

259 writecalMatrix ();
260 }

261

262

263 public void play () {
264 loadPlayMatrix1 ();
265 playPMatrix ();

266

267 //delay (3000);

268

269

270 J/reset ();

271

272}

273 public void shapel () {
274 loadshapel ();

275 playPMatrix ();

276

277}

278

279 public void shape2 () {
280 loadshape2 ();

281 playPMatrix ();

282

283}

284

285 public void shape3 () {
286 loadshape3 ();

287 playPMatrix ();

288

289}

290

201 public void shaped () {
292 loadshape4 ();

293 playPMatrix ();

204

205 }

296

207 public void shape5() {
208 loadshape5 ();

299 playPMatrix ();

300

301}

302

69

303 public void shape6 () {

304 loadshape6 ();
305 playPMatrix ();
306

307}

308

309 public void shape7() {
310 loadshape7 ();
311 playPMatrix ();
312

313}

314

315 public void shape8() {
316 loadshape8 ();

317 playPMatrix ();

318

319

320 public void reset () {
321 loadResetMatrix ();
322 playPMatrix ();

323 delay (500);

324

325 stop ();

326

327

328}

329

330 public void stop () {
331 sendstopall ();
332 // sendstoplast ();

333}

335 public void calculatelevels () {
336 //writecalMatriz ();
337 calcLevels ();

338
339

3s0 void controlEvent (ControlEvent theEvent) {

341 if (theEvent.isAssignableFrom (Textfield.class)) {

342 println (" controlEvent:._accessing._a_string._from_controller.’”

343 +theEvent .getName()+” ’:.”

344 +theEvent . getStringValue ()

345);

346 }

347

348 if (theEvent.isFrom(r)) {

349

350 //myColorBackground = color (int (theEvent.group (). value ()x50),0,0);
351 blockNum = (int)theEvent.group (). value();

352 cp5.get (Textfield. class ,” Block_.Number”).setValue (str (blockNum));
353 loadcalMatrix ();

354 }

355

356 if (theEvent.isFrom (calPlay)) {

357

358 //myColorBackground = color (int(theEvent.group ().value ()x50),0,0);
359 calPlayselect = (int)theEvent.group (). value();

360 }

361

362}

363

364

365 public void input(String theText) {

366 // automatically receives results from controller input

70

367 println ("a_textfield _event_for_controller._’input’_:."4+theText);

368}

369

370 void keyPressed () {

371

372

373 int keyIndex = 0;
374 if (key >= ’1’7 && key <= ’87) {
375 keyIndex = key — '17;
376 calPos = keylndex;
377 servoPos = calPosMatrix [servoNum][calPos |;
378

379 if (calPlayselect==2)
380

381 sendServoPos ();

382 }

383 }

384

385

386 if (calPlayselect==3)
387

388

389 if (key = ’h’)

390

391 kinectlevel = 1;

392 updatekinectMatrix ();
393 }

394

395 else if(key = 7j)
396 {

397 kinectlevel = 2;

398 updatekinectMatrix ();
399 }

400

401 else if(key = ’k’)
402 {

403 kinectlevel = 3;

404 updatekinectMatrix ();
405 }

406

407 else if(key = ’17)
108 {

409 kinectlevel = 4;

410 updatekinectMatrix ();
411 }

412

413 else if(key = ’a’)
414 {

415 kinectquad = 1;

416 updatekinectMatrix ();
417 }

418

419 else if(key = ’b’)
420 {

421 kinectquad = 2;

422 updatekinectMatrix ();
423 }

424

425 else if(key = ’'c¢’)
426 {

427 kinectquad = 3;

428 updatekinectMatrix ();
429 }

430

71

431 else if(key = ’d’)

432 {

433 kinectquad = 4;

434 updatekinectMatrix ();
435 }

436

437 }

438

439 else

440 {

441

142 kinectlevel = 0;
443 kinectquad = 0;

144

445 updatekinectMatrix ();
446

447

448 }

449

450 if (key = CODED)

451

452

453 if (keyCode = UP)

454 {

455

456 servoPos+=dir [servoNum|* servoStep ;
457

458 if (servoPos<servoMin)

459 servoPos=servoMin ;

460 if (servoPos>servoMax)

461 servoPos=servoMax;

462

163 calPosMatrix [servoNum | [calPos| = servoPos;
464

465 sendServoPos ();

466

167 }

468 else if (keyCode = DOWN)

469 {

470

471 servoPos—=dir [servoNum|* servoStep ;
472

473 if (servoPos<servoMin)

474 servoPos=servoMin;

475 if (servoPos>servoMax)

476 servoPos=servoMax;

477

478 calPosMatrix [servoNum | [calPos| = servoPos;
479 sendServoPos ();

480

481 }

482

483 else if (keyCode = LEFT)

484 {

485 if (servoNum>0)

486 servoNum—=1;

487

488 servoPos = calPosMatrix [servoNum | [calPos |;
489

490

491 }

492

493 else if (keyCode = RIGHT)

494 {

72

495 if (servoNum<15)

496 servoNum+=1;

407

498 servoPos = calPosMatrix [servoNum | [calPos |;
499

500 }

501

502

503 else if (keyCode =— 16) {
504

505 sendResetAll ();

506 }

508 }

509

510

511}

512 void initialize ()

513

514 {

515 for(int i=0;i<16;i++)

516 for(int j=0;j<maxCalPositions; j++)
517 calPosMatrix [i][j]=defServoVal;
518

5190 for(int i=0;i<16;i4++)

s20 for(int j=0;j<16;j++)

521 {

522 kinectplayMatrix [i][j]=0;

523 playMatrix [1][j]=0;

s24 gridMatrix [i][j]=0;

525 newPlayMatrix [i][]j]=0;

526 outputMatrix [i][]j]=0;

s27 for(int k=0;k<8;k++)
il

s28 calfullMatrix [i][]j][k]=0;
520 }

530 loadgridMatrix ();

531 loadfullcalMatrix ();

532
533

534}

535 void writecalMatrix ()

536 {

537

538 String [|] lines = new String[16];

539 for (int i = 0; 1 < 16; i++) {

540 lines [i] = str(i);

541 for (int j = 0;j<8;j++)

542 lines[i] 4= ”\t” + calPosMatrix[i][]j];
543 }

544 String filename = str (blockNum) + 7 .txt”;
545 saveStrings (filename , lines);

546

547

548}

549 void writenewPlayMatrix ()

550 {

551

552 String [| lines = new String[16];

553 for (int i = 0; i < 16; i++) {

554 lines [i] = ””4newPlayMatrix[i][0];

555 for (int j = 1;j<16;j++)

556 lines [i] 4+= ”\t” 4+ newPlayMatrix[i][j];
557 }

558 String filename = ”playout.txt”;

73

559
560
561
562
563

565
566
567
568
569
570

572
573
574
575
576
577

579
580
581
582
583
584

586

615

saveStrings (filename , lines);

void writeoutputMatrix ()

{

String [|] lines = new String[16];
for (int i = 0; 1 < 16; i++) {

lines[i] = ””4outputMatrix[i][0];

for (int j = 1;j<16;j++)

lines [i] 4+= 7"\t” 4+ outputMatrix[i][]j];
}

String filename = ”output.txt”;
saveStrings (filename , lines);

}

void writefullcalMatrix ()

{

String [] lines = new String[16];
for (int i = 0; 1 < 16; i++) {

lines [i] = "74calfullMatrix[i][0][0];

for (int k = 1;k<8;k++)

lines [i] 4= "\t” 4+ calfullMatrix[i][0][k];
}

String filename = ” fullcal.txt”;
saveStrings (filename , lines);

}

void loadcalMatrix ()

{
String [] input;
String filename = str (blockNum) + ”.txt”;
input = loadStrings (filename);

if (input!=null)

for (int 1=0;i<16;i++)

String [| pieces = split (input[i], ’'\t’);
print (pieces.length);

for (int j=0;j <8;j++)

calPosMatrix [i][j] = int(pieces[j+1]);

}
}

servoPos = calPosMatrix [servoNum][calPos |;

}
void loadfullcalMatrix ()
{

int newi=0;
int newj=0;
for (int i=0;i <16;i++)

74

623 {
624 blockNum=i+1;
625 loadcalMatrix ();

628 for (int j=0;j <16;j++)

629 {

630 newi = 4x(i/4) + j/4;
631 newj = 4x(i%4) + (j%4);

633 for (int k=0;k<8;k++)
634 {

636 calfullMatrix [newi][newj][k] = calPosMatrix[j][k];

o

@

©
——

645 void loadPlayMatrix1 ()

646 {

647 String [] input;

648 String filename = ”sinl.txt”;
649 input = loadStrings (filename);

651 if (input!=null)

655 for (int 1=0;i<16;i++)

657 String [| pieces = split (input[i], ’'\t’);
658 //print (pieces.length);

660 for (int j=0;j <16;j++)

662 playMatrix [i][j] = int(pieces[j]);
665 }

666 |

668 //servoPos = calPosMatriz [servoNum][calPos];

670

671 void loadPlayMatrix2 ()

672 {

673 String [| input;

674 String filename = ”"bowl.txt”;
675 input = loadStrings (filename);
676

677 if (input!=null)

678 {

679

680 for (int 1=0;i<16;i++)

681

682 String [| pieces = split (input[i], ’'\t’);
683 //print (pieces.length);

684

685 for (int j=0;j <16;j++)

686

75

705

735

750

playMatrix [i][j] = int(pieces[j]);

}
}

//servoPos = calPosMatriz [servoNum][calPos];

void loadshapel ()

{
String [| input;
String filename = ”sinl.txt”;
input = loadStrings (filename);

if (input!=null)

for (int i=0;i <16;i++)

String [] pieces = split (input[i], '\t’);
//print (pieces.length);

for (int j=0;j <16;j++)
playMatrix [i][j] = int(pieces[j]);

}
}

//servoPos = calPosMatriz [servoNum] [calPos];

void loadshape2 ()

{
String [] input;
String filename = ”sin2.txt”;
input = loadStrings (filename);

if (input!=null)

for (int 1=0;i<16;i++)

String [| pieces = split (input[i], ’'\t’);
//print (pieces.length);

for (int j=0;j <16;j++)
playMatrix[i][j] = int(pieces[j]);
}
}

//servoPos = calPosMatriz [servoNum][calPos [;

void loadshape3 ()

String [] input;

76

759

785

String filename = ”pyramid.txt”;
input = loadStrings (filename);

if (input!=null)

for (int i=0;i <16;i++)

String [| pieces = split (input[i], ’'\t’);
//print (pieces.length);

for (int j=0;j<16;j++)

playMatrix [i][j] = int(pieces[j]);

//servoPos = calPosMatriz [servoNum] [calPos];

}

void loadshape4 ()

{
String [] input;
String filename = "bowl.txt”;
input = loadStrings (filename);

if (input!=null)

for (int 1=0;i<16;i++)

String [| pieces = split (input[i], ’\t’);
//print (pieces.length);

for (int j=0;j <16;j++)
playMatrix[i][j] = int(pieces[j]);

}
}

//servoPos = calPosMatriz [servoNum][calPos|[;

void loadshape5 ()
{

String [] input;
String filename = ”balll.txt”;
input = loadStrings (filename);

if (input!=null)

for (int i=0;i<16;i++)

String [] pieces = split (input[i], '\t’);
//print (pieces.length);

7

835

855
856

858

865

for (int j=0;j <16;j++)
playMatrix [i][j] = int(pieces[j]);

}
}

//servoPos = calPosMatriz [servoNum] [calPos];

void loadshape6 ()

{
String [] input;
String filename = ”"ball2.txt”;
input = loadStrings (filename);

if (input!=null)

for (int 1=0;i<16;i++)

String [| pieces = split (input[i], ’'\t’);
//print (pieces.length);

for (int j=0;j <16;j++)
playMatrix[i][j] = int(pieces[j]);

}
}

//servoPos = calPosMatriz [servoNum][calPos |[;

}

void loadshape7 ()

{
String [| input;
String filename = ”"ball3.txt”;
input = loadStrings (filename);

if (input!=null)

for (int 1=0;i<16;i++)

String [| pieces = split (input[i], ’'\t’);
//print (pieces.length);

for (int j=0;j <16;j++)
playMatrix[i][j] = int(pieces[j]);

}
}

//servoPos = calPosMatriz [servoNum][calPos|[;

78

882

935
936
937
938
939
940
941
942

}

void loadshape8 ()

{
String [] input;
String filename = ”"balld.txt”;
input = loadStrings (filename);

if (input!=null)

for (int 1=0;i<16;i++)

String [| pieces = split (input[i], ’'\t’);
//print (pieces.length);

for (int j=0;j <16;j++)
{

playMatrix [i][]j] = int(pieces[j]);

void loadgridMatrix ()

{
String [|] input;
String filename = 7grid.txt”;
input = loadStrings (filename);

if (input!=null)

for (int i=0;i<16;i++)

String [| pieces = split (input[i], ’'\t’);
//print(pieces.length);

for (int j=0;j <16;j++)
{

gridMatrix [i][j] = int(pieces[j]);

//servoPos = calPosMatriz [servoNum][calPos|[;

}

void convertMatrix ()

{

int newi = 0;
int newj 0;

for (int i=0;i<16;i++)
{

79

944 for (int j=0;j<16;j++)

945

946 newi = 4x(i/4) + (gridMatrix[i][j] — 1

947 newj = 4x(j/4) + (gridMatrix[i][]j] — 1)%4;

949 if (playMatrix[i][j]>0)
951 newPlayMatrix [newi | [newj] = playMatrix [i][]];

952 }
953 else

955 newPlayMatrix [newi][newj] = 0;
956 }

962}

964 void loadResetMatrix ()
965 {

967 String [] input;
968 String filename = 7reset.txt”;

969 input = loadStrings (filename);

971 if (input!=null)

975 for (int 1=0;i<16;i++)

977 String [| pieces = split (input[i], ’'\t’);
978 //print (pieces.length);

980 for (int j=0;j <16;j++)

982 playMatrix [i][j] = int(pieces[j]);

985 }
986 |

988}

990 void loadOutputMatrix ()
991 {

994 for (int i=0;i <16;i++)
995 {

997 for (int j=0;j<16;j++)

999 if (newPlayMatrix[i][j]>0)

1000 outputMatrix [1][j] = calfullMatrix [i][j][newPlayMatrix[i][]j]—1];
1001 else

1002 outputMatrix [i][j]=0;

1003 }

1004

1005 }

1006

80

1007}

1008

109 void calcLevels ()

1010

1011 int base = 0;

1012 int step = O0;

1013 int top = 0;

1014

1015 for(int 1=0;i <16;i++)
116 {

1017

1018 base = calPosMatrix[i][0];
1019 top calPosMatrix [1][7]
1020

1021 step = (top—base)/T;

1022

1023 for (int j=1;j<7;j++)

1024 calPosMatrix[i][j] = base + j*step;
1025

1026}

1027

1028}

1029

1030 void updatekinectMatrix ()

1031

1032 {

1033

1034 if(kinectquad > 0)

1035

1036 {

1037

1038 int iOff = 8x((kinectquad —1) % 2);
1039 int jOff = 8x((kinectquad—1) / 2);

)

1040
1041 for (int 1=0;i<8;i++)
1042 for (int j=0;j<8;j++)
1043 {

1044

1045 kinectplayMatrix [1iOff+i][jOff+j] = kinectlevel;

1046

1047 }

1048

1049 playMatrix = kinectplayMatrix;

1050 playPMatrix ();

1051

1052}

1053

1054 String [|] lines = new String[16];

1055 for (int i = 0; 1 < 16; i++) {

1056 lines [i] = ””+4kinectplayMatrix[i][0];

1057 for (int j = 1;j<16;j++)

1058 lines[i] 4= ”\t” + kinectplayMatrix[i][]j];
1059

1060 String filename = ”kinectplayMatrix.txt”;
1061 saveStrings (filename , lines);

1062

1063}

81

B.5 XML Data for gesture mapping in FAAST

<sensor>
<tracker>Microsoft</tracker>
<mode>Full Body</mode>
<mirrormode>true</mirrormode>
<smoothing>true</smoothing>
<smoothingfactor>0.5</smoothingfactor>
<correction>0.5</correction>
<prediction>0.5</prediction>
<jitter>0.05</jitter>
<deviation>0.04</deviation>
</sensor>
<server>
<transformations>Global coordinates</transformations>
<automaticassignment>true</automaticassignment>
</server>
<display>
<showviewerwindow>true</showviewerwindow>
<background>RGB</background>
<foreground>Depth</foreground>
<showconsolewindow>true</showconsolewindow>
<movechildwindows>true</movechildwindows>
<savewindowlayout>false</savewindowlayout>
</display>
<gestures>
<gesture name="Block2” timeout="0" enabled="true” outputloop="false”
<input type="1">
<descriptor>left wrist</descriptor>
<descriptor>to the left of</descriptor>
<descriptor>head</descriptor>
<descriptor>at most</descriptor>
<descriptor>40</descriptor>
<descriptor>centimeters</descriptor>
</input>
<input type="1">
<descriptor>left wrist</descriptor>
<descriptor>above</descriptor>
<descriptor>left shoulder</descriptor>
<descriptor>at least</descriptor>
<descriptor>10</descriptor>
<descriptor>centimeters</descriptor>
</input>
<output type="0">
<descriptor>press</descriptor>
<descriptor>b</descriptor>
<descriptor>for</descriptor>
<descriptor>0</descriptor>
</output>
</gesture>
<gesture name="Block4” timeout="0" enabled="true” outputloop="false”
<input type="1">
<descriptor>left wrist</descriptor>
<descriptor>to the left of</descriptor>
<descriptor>head</descriptor>
<descriptor>at most</descriptor>
<descriptor>40</descriptor>
<descriptor>centimeters</descriptor>
</input>
<input type="1">
<descriptor>left wrist</descriptor>

82

outputtimeout="0">

outputtimeout="0">

63
64

65

116

118

<descriptor>below</descriptor>
<descriptor>left shoulder</descriptor>
<descriptor>at least</descriptor>
<descriptor>10</descriptor>
<descriptor>centimeters</descriptor>
</input>
<output type="07">
<descriptor>press</descriptor>
<descriptor>d</descriptor>
<descriptor>for</descriptor>
<descriptor>0</descriptor>
</output>
</gesture>
<gesture name="Blockl” timeout="0”" enabled="true” outputloop="false’
<input type="1">
<descriptor>left wrist</descriptor>
<descriptor>to the left of</descriptor>
<descriptor>head</descriptor>
<descriptor>at least</descriptor>
<descriptor>40</descriptor>
<descriptor>centimeters</descriptor>
</input>
<input type="1">
<descriptor>left wrist</descriptor>
<descriptor>above</descriptor>
<descriptor>left shoulder</descriptor>
<descriptor>at least</descriptor>
<descriptor>10</descriptor>
<descriptor>centimeters</descriptor>
</input>
<output type="0">
<descriptor>press</descriptor>
<descriptor>a</descriptor>
<descriptor>for</descriptor>
<descriptor>0</descriptor>
</output>
</gesture>
<gesture name="Block3” timeout="0" enabled="true” outputloop="—false’
<input type="1">
<descriptor>left wrist</descriptor>
<descriptor>to the left of</descriptor>
<descriptor>head</descriptor>
<descriptor>at least</descriptor>
<descriptor>40</descriptor>
<descriptor>centimeters</descriptor>
</input>
<input type="1">
<descriptor>left wrist</descriptor>
<descriptor>below</descriptor>
<descriptor>left shoulder</descriptor>
<descriptor>at least</descriptor>
<descriptor>10</descriptor>
<descriptor>centimeters</descriptor>
</input>
<output type="0">
<descriptor>press</descriptor>
<descriptor>c</descriptor>
<descriptor>for</descriptor>
<descriptor>0</descriptor>
</output>
</gesture>
<gesture name="Levell” timeout="0" enabled="true” outputloop="~false’
<input type="1">
<descriptor>right wrist</descriptor>

83

}

)

}

outputtimeout="0">

outputtimeout="0">

outputtimeout="0">

<descriptor>below</descriptor>
<descriptor>right hip</descriptor>
<descriptor>at least</descriptor>
<descriptor>l</descriptor>
<descriptor>centimeters</descriptor>
</input>
<input type="1">
<descriptor>right wrist</descriptor>
<descriptor>to the right of</descriptor>
<descriptor>head</descriptor>
<descriptor>at least</descriptor>
<descriptor>10</descriptor>
<descriptor>centimeters</descriptor>
</input>
<output type="0">
<descriptor>press</descriptor>
<descriptor>l</descriptor>
<descriptor>for</descriptor>
<descriptor>0</descriptor>
</output>
</gesture>
<gesture name="Level2” timeout="0" enabled="true” outputloop="—false’
<input type="1">
<descriptor>right wrist</descriptor>
<descriptor>above</descriptor>
<descriptor>right hip</descriptor>
<descriptor>at least</descriptor>
<descriptor>10</descriptor>
<descriptor>centimeters</descriptor>
</input>
<input type="1">
<descriptor>right wrist</descriptor>
<descriptor>to the right of</descriptor>
<descriptor>head</descriptor>
<descriptor>at least</descriptor>
<descriptor>10</descriptor>
<descriptor>centimeters</descriptor>
</input>
<input type="1">
<descriptor>right wrist</descriptor>
<descriptor>below</descriptor>
<descriptor>right shoulder</descriptor>
<descriptor>at least</descriptor>
<descriptor>20</descriptor>
<descriptor>centimeters</descriptor>
</input>
<output type="07">
<descriptor>press</descriptor>
<descriptor>k</descriptor>
<descriptor>for</descriptor>
<descriptor>0</descriptor>
</output>
</gesture>
<gesture name="Level3” timeout="0" enabled="true” outputloop="—false’
<input type="1">
<descriptor>right wrist</descriptor>
<descriptor>above</descriptor>
<descriptor>right hip</descriptor>
<descriptor>at least</descriptor>
<descriptor>40</descriptor>
<descriptor>centimeters</descriptor>
</input>
<input type="1">
<descriptor>right wrist</descriptor>

84

”

)

outputtimeout="0">

outputtimeout="0">

195

<descriptor>to the right of</descriptor>
<descriptor>head</descriptor>

<descriptor>at

least</descriptor>

<descriptor>10</descriptor>
<descriptor>centimeters</descriptor>

</input>
<input type="1">

<descriptor>right wrist</descriptor>
<descriptor>below</descriptor>
<descriptor>head</descriptor>

<descriptor>at

least</descriptor>

<descriptor>10</descriptor>
<descriptor>centimeters</descriptor>

</input>
<output type="0">

<descriptor>press</descriptor>
<descriptor>j</descriptor>
<descriptor>for</descriptor>
<descriptor>0</descriptor>

</output>
</gesture>

<gesture name="Level4” timeout="0" enabled="true”

<input type="1">

outputloop=""false”

<descriptor>right wrist</descriptor>
<descriptor>above</descriptor>
<descriptor>head</descriptor>

<descriptor>at

least</descriptor>

<descriptor>10</descriptor>
<descriptor>centimeters</descriptor>

</input>
<input type="1">

<descriptor>right wrist</descriptor>
<descriptor>to the right of</descriptor>
<descriptor>head</descriptor>

<descriptor>at

least</descriptor>

<descriptor>10</descriptor>
<descriptor>centimeters</descriptor>

</input>
<output type="0">

<descriptor>press</descriptor>
<descriptor>h</descriptor>
<descriptor>for</descriptor>
<descriptor>0</descriptor>

</output>
</gesture>
</gestures>
<plugins />

85

outputtimeout="0">

References

Arduino. https://www.arduino.cc/. Accessed: 2013-09-15.

Autodesk Inventor. http://www.autodesk.com/products/inventor/overview. Accessed:

2013-09-15.

EAGLE. http://www.cadsoftusa.com/eagle-pcb-design-software/about-eagle/. Ac-

cessed: 2014-06-12.
FAAST. http://projects.ict.usc.edu/mxr/faast/. Accessed: 2015-04-10.

Microsoft Kinect. https://www.microsoft.com/en-us/kinectforwindows/. Accessed: 2015-

04-10.

Northrop Grumman Terrain Table. http://www.is.northropgrumman.com/products/

terraintable/index.html. Accessed: 2014-09-10.

vvvv - a multipurpose toolkit. http://vvvv.org/. Accessed: 2015-06-15.
Arduino CC. Arduino Uno Reference Design, 2010. Rev. 3.

ATMEL Corporation. ATMEGAS 8-bit AVR Microcontroller, 2013. Revision AA.

Bosch Rexroth AG. Linear motion technology handbook.

http://www.aapautomation.com/wp-content /uploads/2014/12/LM-Handbook.pdf, 2000.

Sean Follmer, Daniel Leithinger, Alex Olwal, Akimitsu Hogge, and Hiroshi Ishii. inform: Dy-
namic physical affordances and constraints through shape and object actuation. In Proceedings
of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST ’13,
pages 417-426, New York, NY, USA, 2013. ACM.

86

https://www.arduino.cc/
http://www.autodesk.com/products/inventor/overview
http://www.cadsoftusa.com/eagle-pcb-design-software/about-eagle/
http://projects.ict.usc.edu/mxr/faast/
https://www.microsoft.com/en-us/kinectforwindows/
http://www.is.northropgrumman.com/products/terraintable/index.html
http://www.is.northropgrumman.com/products/terraintable/index.html
http://vvvv.org/

[12]

[13]

[21]

[22]

Ben Fry. A Processing: Programming Handbook for Visual Designers and Artists. MIT Press,
2007.

John Hardy, Christian Weichel, Faisal Taher, John Vidler, and Jason Alexander. Shapeclip:
Towards rapid prototyping with shape-changing displays for designers. In Proceedings of the
38rd Annual ACM Conference on Human Factors in Computing Systems, CHI ’15, pages 19-28,
New York, NY, USA, 2015. ACM.

Harwin Inc. Technical Drawing/Datasheet for S1791-42R Spring Contact, 2011. Rev. 3.

Hiroo Iwata, Hiroaki Yano, Fumitaka Nakaizumi, and Ryo Kawamura. Project feelex: Adding
haptic surface to graphics. In Proceedings of the 28th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH 01, pages 469-476, New York, NY, USA, 2001. ACM.

Daniel Leithinger and Hiroshi Ishii. Relief: A scalable actuated shape display. In Proceedings
of the Fourth International Conference on Tangible, Embedded, and Embodied Interaction, TEI

'10, pages 221-222, New York, NY, USA, 2010. ACM.

Microsoft. Hololens.

https://www.microsoft.com/microsoft-hololens/en-us, 2015.

NXP Semiconductors. PCA9685 16-Channel,12-bit PWM Fm+ I2C-bus LED Controller, 2015.
Rev. 4.

Oculus VR. Rift.

https://www.oculus.com/en-us/, 2015.

Hannah Perner-Wilson, Leah Buechley, and Mika Satomi. Handcrafting textile interfaces from
a kit-of-no-parts. In Proceedings of the Fifth International Conference on Tangible, Embedded,
and Embodied Interaction, TEI "11, pages 61-68, New York, NY, USA, 2011. ACM.

Ivan Poupyrev, Tatsushi Nashida, Shigeaki Maruyama, Jun Rekimoto, and Yasufumi Yamayji.
Lumen: Interactive visual and shape display for calm computing. In ACM SIGGRAPH 2004
Emerging Technologies, SIGGRAPH 04, pages 17—, New York, NY, USA, 2004. ACM.

Faisal Taher, John Hardy, Abhijit Karnik, Christian Weichel, Yvonne Jansen, Kasper Hornbak,

and Jason Alexander. Exploring interactions with physically dynamic bar charts. In Proceedings

87

of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI ’15, pages

3237-3246, New York, NY, USA, 2015. ACM.
[23] Texas Instruments. LM317 3-Terminal Adjustable Regulator, 1997. Rev. SLVS044W.

[24] Texas Instruments. CMOS Analog Multiplezers/Demultiplexers CD4067B, CD4097B Types,

2003. Datasheet acquired from Harris Semiconductor.

[25] TowerPro. MG995 High Speed Metal Gear Dual Ball Bearing Servo.

88

	Clemson University
	TigerPrints
	8-2015

	A Scalable and Low-Cost Interactive Shape-Changing Display
	Amith Mysore Vijaykumar
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Background

	Research Design and Methods
	Background on Linear Actuators
	First Prototype
	Second Prototype
	Construction of the final prototype
	Servo motor assembly
	Pressure sensor
	System block diagram
	Assembly
	Software
	Materials used

	Results
	Linear actuator characteristics
	Pressure sensor characteristics
	Power consumption
	Data Visualization
	Object Transfer and Manipulation
	Gesture control
	Cost comparison

	Conclusions and Suggestions for Future Research
	Appendices
	Calibration data
	MATLAB, Arduino and Processing Code for the system

	References

