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ABSTRACT 

Carbon is an extremely versatile element due to the ability of its electronic 

structure to allow strong bonds with many elements including other carbon atoms. This 

allows for the formation of many types of large and complex architectures, such as 

fullerenes and carbon nanotubes, at the nanoscale. One of the most fascinating allotropes 

of carbon is graphene, a two-dimensional honeycomb lattice with carbon in sp
2 

hybridization, which building block for layered graphite and other nanocarbons.[1] 

Because of its unique structure, graphene displays several interesting properties including 

high thermal[2–4] and electrical mobility and conductivity[1,5]. The initial studies on 

graphene were performed on mechanically exfoliated samples, which were limited to few 

microns in size. In the recent years, large areas of single- and few-layer graphene (~few 

cm x cm) are being produced by chemical vapor deposition technique for practical 

applications. However, chemical vapor deposition grown graphene is highly 

polycrystalline with interfaces such as edges, grain boundaries, dislocations, and point 

defects. This inevitable presence of defects in graphene influences its electrical and 

thermal transport. While many studies have previously focused on the influence of 

defects on electrical mobility and conductivity, there is little information on the influence 

of defects on the thermal properties of graphene. This study specifically investigates the 

effect of both intrinsic and extrinsic defects on the in-plane thermal properties of 

graphene using micro-Raman spectroscopy. 

The in-plane thermal conductivity of few-layered graphene (FLG) was measured 

using Raman spectroscopy, following the work of Balandin et al. [4]The thermal 
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conductivity was estimated from a shift of the characteristic G-band of graphene as a 

function of the excitation laser power. The graphene samples were synthesized on nickel 

substrates using chemical vapor deposition, and transferred to copper TEM grids and 

scanned using a micro-Raman spectrometer. The density of defects in the samples was 

controlled using reactive-ion etching with monovalent Ar ions. Thermal conductivities 

were then calculated and compared to previous works. Defect amounts were also 

calculated and catalogued. Defects and thermal conductivities from the two grids used 

were compared to assess the impact of defects, both in the structure of the graphene itself 

and surface contamination, on the in-plane thermal conductivity.  

This work gives preliminary evidences that both intrinsic and extrinsic defects 

have a detrimental effect on the thermal conductivity of graphene. Intrinsic defects 

impede phonon mobility, which carries heat across the structure while extrinsic defects 

such as surface contamination open up more avenues for out-of-plane heat loss. The 

preliminary results presented in this work warrant the need for a detailed theoretical and 

experimental investigation of the influence of different defects (e.g., dopants) on the 

thermal conductivity of single- and few-layer graphene samples.  
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CHAPTER 1: INTRODUCTION 

1.1 GRAPHENE: 

Allotropes of the carbon atom occur throughout nature and can also be 

synthesized in the laboratory. These allotropes include materials known for years such as 

diamonds and graphite and the more recently discovered C60 (Buckministerfullerene) and 

carbon nanotubes. Graphene is a two dimensional, single or few layers of graphite with 

sp
2
 bonded carbon atoms arranged in hexagonal honeycomb lattice structure, as shown in

Fig. 1. [1] In graphene, each carbon atom is about a =1.42 Angstroms from its three in-

plane neighbors. The carbon atom forms three σ bonds with these in-plane neighbors and 

a fourth π-bond, which is oriented in the out-of-plane direction. Each atom has one of 

these π-bonds, which are then hybridized together to form π-band and π*-bands (sp
2

hybri-dization). 

Figure 1. Single-layer graphene. Note the hexagonal structure as well as the Bernal AB stacking of the 

graphene lattice. [6] 
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Figure 2. First Brillouin zone and band structure of graphene. [6] 

 

In the honeycomb lattice of a single layer graphene sheet (SLG), there are two 

different triangular sub-lattice structures. Thus, one can consider graphene to be made up 

of a unit cell with two carbon atoms-one from each sub-lattice. Fig. 2 shows the First 

Brillouin zone and band structure of graphene. The vertical axis is electronic energy (E) 

while the horizontal plane below represents the momentum space. Since graphene is a 2D 

material there are only two dimensions of momentum space. [6] As shown in Fig. 2 

graphene is a zero-gap semiconductor (or a semi-metal) because the conduction and 

valence bands connect at the so-called Dirac points. The Dirac points are locations in 

momentum (or k) space, on the ends of the Brillouin zone. [6] More importantly, 

graphene exhibits a linear E vs. k relation near the Dirac point unlike other the parabolic 

relation in other semiconductors. Because of this unique electronic structure, graphene 

displays a number of interesting electrical[1,5], mechanical[7], and thermal properties[2–

4] and has attracted much attention.  
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1.2 RAMAN SPECTROSCOPY: 

Raman spectroscopy uses the Raman Effect to non-destructively probe many 

types of materials. When most photons are scattered by an object they retain their 

incident frequency (elastic scattering/ Rayleigh scattering). The Raman Effect or Raman 

scattering results from a small amount of inelastic scattering of photons by interacting 

with molecular vibrations, or phonons in the material. This results in the photon having a 

different frequency and energy after scattering. During the Raman scattering process, at 

first an electron is excited by an incident photon from the material’s valence band to a 

virtual or a real state with higher energy level. Secondly, the electron is scattered by 

interacting with phonons. Finally the electron relaxes back to its original state, and emits 

a photon. Due to the inelastic scattering process with phonons involved in the second 

step, the emitted photon exhibits lower (/higher) energy if the phonons are emitted 

(/absorbed), results into two distinct types of Raman scattering, Stokes and Anti-Stokes. 

Fig. 3 visually illustrates the Stokes and Anti-Stokes effects.  

 

Figure 3. Visual representation of the difference between Stokes and Anti-Stokes scattering. 
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A resonance Raman scattering phenomenon occurs, when the photon absorption (or 

emission) forms a real electronic state. Resonance Raman signal is usually much higher 

(by a factor of 10
3
) comparing to that of non-resonance Raman. It is well-known that 

nanocarbons such as single-walled carbon nanotubes and graphene exhibit resonant 

Raman features due to their unique electronic structure which provides real excited 

electronic states for many visible and near-infrared wavelengths.  

 

 

1.3 RAMAN SPECTRA OF GRAPHENE: 

 

             Graphene has a characteristic Raman signature, which allows deep probing of its 

vibrational structure. As mentioned earlier, each unit cell of single layered graphene 

contains two atoms, which yields six different vibration modes, i.e. phonon branches 

(three acoustic and three optical). Fig. 4 displays the phonon dispersion relation of the 6 

branches in SLG: out-of-plane tangential optical phonons (oTO), out-of-plane tangential 

acoustic phonons (oTA), in-plane tangential optical phonons (iTO), in-plane tangential 

acoustic phonons (iTA), longitudinal optical phonons (LO) and longitudinal acoustic 

phonons (LA).[8,9] Due to the small momentum of incident photons and rule of 

momentum conservation, photons usually only interacts with phonons has momentum q ~ 

0 (near the Γ point, or zone center, in the phonon dispersion relation).  In graphene, two 

optical phonon branches degenerate at the Γ point, LO and iTO are Raman active, which 
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result in one of the main feature in its Raman spectroscopy (see Fig. 5), i.e. the G-band 

around 1584 cm
-1

.  

 
Figure 4. The phonon dispersion relation of the phonon branches in SLG. (Adapted from Ref [8]) 

 

 

Figure 5. Raman spectra of multi-layer graphene with the three most apparent Raman peaks notated.  
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Fig.6 shows the schematic of electron-phonon resonance processes. The G-band is 

the only first order doubly degenerate (iTO and LO) phonon mode at the center of 

Brillouin zone. It has been shown that the G-band frequency is sensitive to temperature, 

charge transfer, as well as incident laser energy. However, clearly from Fig. 5 there are 

more features in the Raman spectra, such as the D- or disorder band ~ 1350 cm
-1

 and G’-

band (or 2D-band or an overtone of D-band) ~ 2700 cm
-1

. The peaks arise from a special 

electron-phonon resonance conditions – double-resonance process with phonon modes q 

≠ 0 due to the electronic structure of graphene. As shown in Fig. 6b, the D-band 

originates from a 2
nd

 order process (Double Resonance or inter-valley process) with one 

phonon (iTO) and one defect near the K- or the Dirac point. In the process, the excited 

electron experienced one elastic scattering caused by a defect with no energy loss but a 

non-zero momentum change Δq and another inelastic scattering by a phonon with 

momentum -Δq. Comparing to the phonon dispersion relation (Fig. 4), the frequency of 

D-band corresponding to the frequency of an iTO phonon at K point. The intensity ratio 

of D-band to G-band (ID/IG) is generally used to quantifying the defects in graphene 

structure. The mean in-plane crystal size of graphene could be calculated by the 

following equation: [9,10] 

La (nm) = (2.4 × 10
−10

 nm
-3

)λ
4

laser (nm
4
) (ID/IG)

−1
                     (1) 

The G’-band also originates from double resonance process as seen in Fig. 6c 

involving two iTO phonons near the K point. Therefore the frequency of the G’-band is 

almost double of that of the D-band, and so it is also denoted as 2D-band.  By comparing 
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the intensity ratio of IG’/IG and analyzing the peak components of G’-band, one can 

determine number of graphene layers. [9] 

 

 

Figure 6. Generating processes for Raman peaks in graphene from L.M. Malard et al.[9] 
 

 

1.4 UNIQUE THERMAL PROPERTIES OF GRAPHENE: 

 

Graphene exhibits impressive thermal properties, where heat is carried by 

phonons, which have a high mobility due to strong in-plane sp
2 

bonds. Graphene displays 

very high in-plane sound velocity, close to cphonon ≈ 20 km/s. [6] Using the kinetic theory 

of gases, the thermal conductivity due to phonons is given by κ ~ cphCV (T)λ, where CV 

(T) is the specific heat per unit volume and λ is the phonon mean free path. [6] Hence, a 

large thermal conductivity is anticipated for graphene. This makes graphene a prime 
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candidate for a thermal interface material (TIM), which is used to enhance thermal 

coupling between two components. In addition to high thermal conductivity, graphene 

also exhibits unique mechanical and electrical properties. In case of graphite, thermal 

properties are anisotropic along the in-plane (high thermal conductivity) and out-of-plane 

(low thermal conductivity) direction. Here, we used few-layer graphene for exploring the 

influence of defects with an approximation that the thermal conductivity remains 

isotropic due to its quasi-2D nature.   

 

1.5 DEFECTS: 

Like any other material intrinsic and extrinsic defects can exist in graphene. 

Defects in the graphene structure are inevitable in grown graphene, particularly at the 

grain boundaries. (see Figure 7). In this investigation intrinsic defects are defects that 

occur within the graphene structure (e.g. discontinuities at grain boundaries) while 

extrinsic defects (e.g. dopants) and external defects (e.g. surface contamination) arise 

from heteroatomic elements and impurities (e.g. remnant polymer material used while 

etching graphene). Some of the unique properties of graphene can only be observed at an 

extremely low defect concentration (which is possible because of the high formation 

energies of point defects in graphene). It has been reported that by adding or tuning 

structures such as defects in graphene lattice could interestingly alter the properties of 

graphene, and even improve the performance in the application, such as magnetism[11–

14], energy storage properties[15–17], electrical conductivity[6], and optical 
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properties[18,19]. For example, electrical properties of a perfect graphene sheet can be 

altered by defects, first by the introduction of spatial inhomogeneities in the carrier 

density and, second, by defects acting as scattering sources which reduce the electron 

mean free path.[6] Therefore, it could be both fundamentally and practically important to 

study the role of defects in graphene on its thermal conducting properties.  

 

Figure 7. Grain boundaries of graphene from Huang et al. [20] 

 

The central question of this thesis is how do intrinsic defects in the graphene 

structure, along with extrinsic defects such as surface contamination, specifically affect 

the in-plane thermal conductivity of few-layer graphene? Since defects in the structure of 

graphene decrease the phonon mobility, in effect the heat carrying capacity in-plane, it is 

expected that defects will have a deleterious effect on the thermal conductivity.  
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CHAPTER 2: BACKGROUND, EXPERIMENTAL METHODS, AND DATA 

ANALYSIS 

2.1 BACKGROUND: 

After its discovery, graphene was predicted to exhibit a high thermal conductivity 

(~ 2000 - 4000 Wm
-1

K
-1

) [2,21], which is greater than that of diamond. However, no 

feasible experimental methods existed at the time, to accurately determine the thermal 

conductivity of single layer graphene (SLG). In 2007, Calizo et al.
 
[22] first investigated 

the temperature dependence of the frequency of the G-band peak position of graphene by 

using Raman spectroscopy that subsequently led to the experimental determination of the 

thermal conductivity of single layered graphene. 

Calizo et al.[22] obtained single and bilayer graphene samples via 

micromechanical exfoliation of Kish graphite that were transferred to silicon substrates, 

coated with 300 nm SiO2. In their experiments, a Renishaw micro-Raman spectrometer 

was used to measure the frequency of the G-band position while the temperature at the 

graphene samples was controlled using a liquid nitrogen cold-hot cell. Calizo et al. used 

low laser power (~4.8 mW) at top of cold-hot cell to avoid local sample heating. The 

temperature dependence of the G-band peak was measured for a temperature range of -

190 °C to +100 °C (as shown in Figure 8).  
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Figure 8: Temperature dependence of the G peak frequency for  the single- (a) and bilayer (b) graphene. 

The insets show the shape of G peak. The measured data were used to extract the temperature 

coefficient for G peak (Calizo et al.[22])  
 

As shown in Figure 8, increasing temperature led to the red shift of the G-band 

peak. The temperature dependence of the G-band frequency shift in graphene can be 

represented by the following simple relation:  

ω = ω0 + χT     (2) 

 

where ω0  and ω represent the frequencies of the G-band peak positions extrapolated to 0 

K and at a temperature T respectively, and χ is the first order temperature coefficient. The 

values of χ for several carbon based materials are shown in Table 1.  
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Table 1: Temperature coefficient for Carbon-Based Materials Table from Calizo et. al. [22]

 

 

It is important to note from Table I that the χ values of SLG and HOPG are of 

comparable magnitudes and their difference is quite small ~0.0152 cm
-1

/K. For the 

measurements of multi-layer graphene in this thesis, an average of the two χ values is 

assumed, with appropriate error bars.  

Subsequently, Balandin et al.[4]
 
discovered a method of determining the thermal 

conductivity of graphene using its characteristic Raman signature and in particular its G-

band temperature dependence and also the dependence of the G-peak frequency on the 

excitation laser power. As discovered by Calizo et al., the G-band peak position shifted 

linearly with temperature.[22] The local temperature change produced by the variation of 

the laser excitation power focused on the graphene layer could then be used to calculate 

the thermal conductivity of graphene.  

 In Balandin’s experiments, the exfoliated single layer graphene samples were 

suspended over 3 m wide trenches designed by removing the 300 nm SiO2 coating on Si 

substrate (as shown in Figure 9a) with graphitic heat sinks on either side.  

 

 

https://www.google.com/search?biw=1366&bih=622&q=exfoliated&spell=1&sa=X&ved=0ahUKEwjoyOza0K_NAhVGJiYKHanjAEYQvwUIGSgA
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Figure 9. a. Schematic of the Balandin experiment showing the excitation laser light focused on a graphene 

layer suspended across a trench. The focused laser light creates a local hot spot and generates a heat wave 

inside SLG propagating toward heat sinks. b. Experimental data showing slope of change in G-band peak 

position vs. change in laser power. (Balandin et al. [4]) 
 

Below is a brief description of the Balandin’s experimental setup. The laser beam 

was focused on the middle of the suspended graphene flake (~0.5-1.0 μm spot size) to 

heat the sample. Owing to the high thermal conductivity of graphene and negligible 

thermal conductivity of air (~0.025 W/mK), it could be assumed that the heat generated 

in SLG due to the laser excitation propagated laterally (or along the in-plane direction) 

through the SLG.[4]
   

A small power dissipated in the center of the SLG can result in a 

temperature rise. Using the radial heat flow equation and the independently measured 

temperature dependence of the G-band peak position, and the dependence of the G-band 

frequency on the excitation laser power, the thermal conductivity of graphene was 

estimated using the following equation (see Balandin et al.[4] for further details):  
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(3) 

 

In Eq. 3, κ stands for the thermal conductivity of graphene, χG is the temperature 

coefficient of G-peak of graphene, estimated for different graphene layers as shown in 

Table 1, [22]
 
δω represents a small shift in G-band position as a result of the change δP in 

heating power on sample surface, L stands for the distance of the middle of the suspended 

SLG to the heat sink (graphitic layers) while W stands for the width of the graphene 

sample and h represents the thickness of the SLG. Figure 9b shows measurements of the 

slope (δω/δP) conducted by Balandin. Using this method thermal conductivity of SLG 

was calculated to be ~ (4.84 ± 0.44) × 10
3
 to (5.30 ± 0.48) × 10

3
 Wm

-1
K

-1
. 

Following Balandin’s work, the current study investigates the thermal 

conductivity of FLG suspended on TEM grids. Furthermore, the effect of defects on the 

thermal conductivity of graphene (via the incorporation of intrinsic defects by Reactive 

Ion Etching (RIE)), will be discussed in a later section.  

 

2.2 EXPERIMENTAL METHODS: 

In this work, graphene samples were synthesized using Chemical Vapor 

Deposition (CVD). The CVD of carbonaceous compounds onto transition metals has 

proven to be a most efficient method to synthesis graphene.[23] Not only has this method 
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produced high quality and large scale of graphene films but it also allows the grown 

graphene to be transferred to an arbitrary substrate.  

The two main substrate metals used in the CVD process for synthesizing graphene 

are copper and nickel. Copper has low carbon solubility even at high temperatures and 

thus its surface likely acts as a catalyst for growth of single and bi-layered graphene. 

Nickel on the other hand has ~ppm carbon solubility and relatively high carbon 

diffusivity and therefore give rise of the growth of few-layer graphene (FLG).[24] 

Growth of FLG in nickel films will be highlighted in this thesis.  

Two underlying processes occur in the CVD growth of FLG on nickel. First, 

carbon is thermally decomposed at high temperature from its gaseous precursor (CH4) 

and dissolved into nickel at 800-900 
o
C. Second, carbon is crystallized in the form of 

FLG on the surface of the nickel, as the temperature is decreased to 400 
o
C initially and 

then to room temperature. The second process can occur both during the high temperature 

period or during cooling. A detailed description of the CVD process and the mechanism 

of growth may be found in Ref. [24].  

This crystallization effect allows for purification of solid materials including 

carbon. The effect occurs when a solid (carbon) is placed in a solvent (nickel) that will 

not dissolve the solid unless the temperature is above the critical of phase transition. If 

that temperature is reached the carbon dissolves in nickel as the solvent and after a period 

of annealing as the temperature is reduced the pure carbon solid precipitates while the 
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impurities remain in the nickel solvent. This is what occurs during CVD growth of 

graphene on nickel.  

The method of growing FLGs used in this thesis is as follows.[25] First nickel foil 

was placed inside of a 24 mm quartz tube. The position of the 25-micron thick nickel foil 

was just outside of the CVD tube furnace. As the furnace heats up to a temperature of 

900°C gaseous Ar (230 sccm) and gaseous H2 (120 sccm) is pumped into the furnace. 

Subsequently the Ni foil was moved to the center of the furnace. The furnace is 

maintained at 900°C for an hour in order to anneal the nickel. Then the temperature is 

dropped over a period of five minutes to 850°C. At 850°C gaseous CH4 is introduced at 

15 sccm for twenty-five minutes. Then the CH4 is cut off and the furnace is allowed to 

slowly cool down to 400°C. Once this temperature is reached the H2 is cut off. The 

furnace remains at this temperature for two hours and then is allowed to cool to room 

temperature. After this the nickel substrates were etched out by nitric acid and the FLG 

was transferred to the TEM grid.  

 

2.3 TEM GRID: 

A copper TEM (Transition Election Microscope) grid was used as the substrate 

for the investigation. Each grid has thousands of individual squares (grid points or 

“spots”) of equal size. Graphene samples were suspended over these individual spots. 

Figure 10 shows a close up image of the grid taken through the microscope with an 
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individual “spot” highlighted. Individual spots are square with sides measuring 7.5 μm 

across.  

 

Figure 10. Graphene suspended over a TEM grid 
 

Every individual side of the grid spot is a heatsink. This differs from Balandin’s 

investigation where only two of the four sides were heatsinks. This difference highlights 

one of the benefits of using a TEM grid to measure thermal conductivity of graphene. 

Balandin’s equation is dependent on the geometry of the substrate through the L and W 

variables. Since all sides of a TEM grid point are heatsinks and equal in length the L and 

W terms are reduced to a simple number (0.5) and the substrate geometry dependence of 

the equation is removed. Figure 11 shows examples of Raman spectra from selected spots 

on each TEM grid.  
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Figure 11. Sample Raman spectras from spots on each grid (a. Grid 2 (bf) spot 3 b. Grid 2 (af) spot 6 c. 

Grid 1 spot 5).  All at 100% laser power.  
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2.4 MICRO-RAMAN SPECTROMETER 

 

Figure 12. a. Image of a Renishaw micro-Raman spectrometer with in-Via microcope. b. Example Raman 

spectra from the spectrometer for a spot on the TEM grid 
 

A Renishaw micro-Raman spectrometer was used to record the Raman spectra of 

FLG on TEM grid. For each investigation 3-6 spots on the grid were chosen for analysis. 

The presence of FLG at each spot used in this analysis was confirmed under optical 

microscope. As shown in Figure 12, the Raman signature of FLG is clearly seen by the 

presence of the G-band, D-band, and G’-band peaks.  

Laser light from the spectrometer was then focused on the graphene flakes 

suspended over a spot using a Renishaw inVia Raman microscope with a 50X 

magnification. The spectrometer then performed a 25 second scan of the spot. For each 

spot several different laser power settings were used. Using filters in the spectrometer 

measurements were taken at 5%, 10%, 50%, and 100% laser power. Thus for each spot 

four scans were made at different laser powers.  
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It was determined that the laser light did not have the same power at the sample as 

it had at the source. Therefore the laser power was measured at both the source and the 

sample in order to determine the change in laser power at the sample.  

Two TEM grids (labeled Grid 1 and Grid 2) were used in this experiment. Six 

spots were initially examined on Grid 2 and each spot was photographed after the 

examination. Grid 2 was then subjected to a Reactive Ion Etching (RIE) process (detailed 

below). This cleaned the grid of dirt and other contaminants while simultaneously 

creating defects in the graphene structure. After RIE (performed using Plasmaetch 

RE400) four more spots were examined and photographed on Grid 2. Five spots were 

investigated and photographed in the same manner on Grid 1. This grid was not subjected 

to RIE.  

 

2.5 REACTIVE ION ETCHING: 

 

Figure 13. Picture of Reactive Ion Etching (RIE) equipment 
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Reactive Ion Etching (RIE) is a dry etching process that uses Ar plasma to remove 

material from the surface of a sample. The sample is placed between two electrodes 

which accelerate ions toward the surface of the sample. Applied to graphene suspended 

over a TEM grid the RIE process cleans the surface of the grid and the graphene while 

adding defects into the graphene structure.  

Grid 2 was first investigated and then subjected to 2 minutes of RIE at a power 

level of 80 Watts. This was done to study the difference increased defects in the graphene 

structure can have on its thermal conductivity. The increase in intrinsic graphene defects 

after RIE was confirmed using Raman spectroscopy and the ID/IG ratio.  

 

 

2.6 DATA ANALYSIS: 

The first step in data analysis was the determination of the G-band peak position 

for each data point. This was accomplished by the use of the software program Igor. 

After normalization of the individual spectra the G-band peak position was found using 

the Multipeak function for each measurement. Change in G-peak position was measured 

relative to the value of the G-band peak position at the 5% filter for that individual spot. 

Change in laser power was also measured relative to the 5% laser power measurement. 

All shifts in the G-band position relative to the 5% measurement were obtained and 
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plotted vs. the change in laser power. The slopes obtained from these graphs were used to 

calculate the thermal conductivity using Eq. 3. (Note: In the Balandin investigation the 

graphene was suspended between two heatsinks. On a copper TEM grid every side of 

each individual spot acts as a heatsink. Since the spots are square the length and width for 

each spot will be the same regardless of the orientation of the graphene. Thus L and W in 

the Balandin equation could be calculated from spot images and will always be related by 

a factor of 2) 

Averages of all the G band shift data points for every spot were calculated for 

each value of the change in laser power. This resulted in a single data point for each value 

of change in laser power for each grid. These data points were then graphed with error 

bars ranging from the highest to the lowest values of the previous data points.  

In Eq. 3 h represents the thickness of a single layer of graphene. Since this 

investigation deals with FLG (as analysis of the Raman spectra (intensity of G’-band vs. 

intensity of G-band) indicates) h in this context represents the thickness of the individual 

graphene layers plus the inter-layer spacing. A value of h = 2.4 nm was assumed as a 

midpoint value since each spot would have a different number of graphene layers. 

Also using the Multipeak function on Igor the intensities of the G- and D-bands 

were measured for each data point. This allowed for ID/IG measurements to be taken for 

each spot. ID/IG ratios for individual spots were averaged for each grid. Thus the total 

ID/IG ratio for a grid is an average of all the ID/IG ratios for the individual spots on that 
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grid. These values were then compared to the thermal conductivity’s calculated using Eq. 

2. 

2.7 STUDYING DEFFECT EFFECTS:  

 In order to study the impacts of both intrinsic and extrinsic defects on graphene 

thermal conductivity the two TEM grids used had different amounts of surface 

contamination. Grid 1 had a small amount of visible surface contamination (a “clean” 

grid) while Grid 2 had a larger amount as seen in Figure 14. Grid 2 was subjected to RIE, 

which induced intrinsic defects in the graphene structure and reduced surface 

contamination (as shown in Figure 14). This was done to study the difference in thermal 

conductivity of the same grid due to increased intrinsic defects. This will be shown in the 

results section.  
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Figure 14 a. Close up on an example spot in Grid 1 showing the lack of surface contamination (clean grid). 

b. Close up on an example spot in Grid 2 before RIE showing the large amount of surface contamination. c. 

Close up on an example spot in Grid 2 before RIE showing the large amount of surface contamination. 
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CHAPTER 3: RESULTS, DISCUSSION, AND CONCLUSION 

3.1 ANALYSIS OF IMPACT OF DEFECTS ON THERMAL CONDUCTIVITY: 

The thermal conductivity values of graphene were estimated from Grids 1 and 2 before 

and after RIE (namely, Grid 2 (b) and (a) respectively), as discussed below.  Figure 15 (a) 

exhibits the G-band shift as a function of change in laser power for Grid 1.  As shown in 

Figure 15 (a), the measured slope (/P) of the raw data points taking all spots on the 

TEM grid into account was ~ -0.71959 cm
-1

/mW (inverse slope = -1.39 W/m∙K). This 

negative slope is consistent with slopes found in Balandin’s work (SLG inverse slope = -

0.775 mW/cm
-1

) [4]. To improve goodness of fit all data points for each change in laser 

power were averaged into a single data point. As shown in Figure 15 (b) the measured 

slope value remained unchanged while goodness of fit improved. No initial data points 

were removed. Using the above slope, κ1 = 1906 ± 300 W/m∙K was estimated using Eq. 

1, assuming the layer thickness of graphene (h) equals 2.41 nm (~ 4 layers). For 

comparison the thermal conductivity for HOPG at RT is κHOPG= 1910 W/m∙K [26] while 

the value for SLG from Balandin’s work was κSLG ≈ 5000 W/m∙K. [4]
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Figure 15 a. Graph of change in G-band position vs. change in laser power for all spots on Grid 1. b. Average 

change in G-band position vs. change in laser power for Grid 1. 

 

 

Figure 16 (a) exhibits the G-band shift as a function of change in laser power for 

Grid 2 (b), before RIE, which displayed a negative slope (/P) ~ -3.01 cm
-1

/mW 

(inverse slope = -0.332 mW/cm
-1

). The data showed some outliers, which were removed 

after careful analysis of the Raman spectra. Particularly, three data points (where the 

Raman spectral peaks showed more than 30% deviation) were removed from the initial 

data set due to a high amount of standard deviation as seen in Figure 16 (b). These points 

may be attributed to the drifting samples under the microscope due to the curvature of the 

grid. The change in laser power on this grid was lower than on Grid 1 due to a lower laser 

power incident on the sample. This was unavoidable due to the equipment at that time. 

All data points were averaged into a single data point for the same change in laser power 

as shown in Figure 17. Assuming the same graphene thickness, the thermal conductivity 

of graphene before RIE (Grid 2(b)), κ2 = 456 ± 71 W/m∙K was ~76% lower than κ1.  
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Figure 16  a. Graph of change in G-band position vs. change in laser power for all spots. b. Change in G-band 

position vs. change in laser power with all extraneous points removed. 
 

 

Figure 17. Average change in G-band position vs. change in laser power for Grid 2 before RIE.  

 

Figure 18 (a) exhibits the G-band shift as a function of the change in laser power 

for Grid 2 after RIE, with a negative slope (/P) ~ -4.23 cm
-1

/mW and (inverse slope = 

-0.236 mW/cm
-1

). The averaged G-band shift at each change in laser power is shown in 

Figure 18 (b). All data points from Fig. 18 (a) were included for averaging. The change in 

laser power for this sample was the same as that of Grid 1. The calculated thermal 

conductivity of graphene in Grid 2 (after RIE), κ3 = 324 ± 50 W/m∙K was ~ 29% lower 

(than Grid 2 before RIE and 89% lower than Grid 1, assuming the same thickness of 

graphene. The raw data points are listed in Tables 2, 3 and 4.  
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Figure 18 a. Graph of change in G-band position vs. change in laser power for all spots. b. Average change 

in G-band position vs. change in laser power.  

Thermal conductivity of graphene on Grid 1 was the highest, κ1~ 1906 W/m∙K, 

compared to κ2 on Grid 2 before RIE (where there were visible surface contaminations) 

and κ3 where defects were induced on Grid 2 after RIE. This is possibly due to increased 

phonon scattering, with increase in defects. The κ of single layer graphene (SLG) 

measured by Balandin et al. [4] with the assumption that the heat was forced to propagate 

in the in-plane direction was comparatively higher. Nevertheless, our work shows that 

thermal conductivity values of few layer graphene (FLG), suspended on TEM grids were 

comparable to the previous work.  

 

 



29 
 

3.2 ANALYSIS OF IMPACT OF DEFECTS ON THERMAL CONDUCTIVITY 

             As noted in the Figure 19 (a) thermal conductivity of graphene on Grid 2 

decreases 29% after RIE. Examination of the ID/IG ratio before and after RIE also shows 

a definite increase in the amount of intrinsic graphene defects in Grid 2 after RIE. This 

appears to show thermal conductivity decreasing in the presence of increased intrinsic 

graphene defects. However, Grid 1 displays a higher thermal conductivity than Grid 2 

before and after RIE while also having a larger ID/IG ratio than Grid 2 before RIE, as 

shown in Figure 19 (b). This seems to call into question the conclusion that intrinsic 

defects inhibit thermal conductivity in graphene. Further investigation with carefully 

prepared single- and few-layer graphene samples and transferred without any polymer 

contamination is necessary to address the true influence of intrinsic defects.  

 

Figure 19. a. Red: Grid 2 before RIE, Green: Grid 1, Blue: Grid 2 after RIE. Thermal conductivity vs. ID/IG 

ratios for each individual spot. b. Calculated thermal conductivities for each grid vs. average ID/IG  ratios for 

each grid.  

 

              



30 
 

The explanation for this apparent discrepancy lies in the amount of surface 

contamination on each grid. As noted above, Grid 1 was observed to have very low levels 

of visible surface contamination while Grid 2 before RIE displayed much higher levels of 

surface contamination. Large amounts of surface contaminants (resulting from the 

polymer remnants used for transferring the graphene layers) open numerous out-of-plane 

paths for heat to dissipate through. This kind of non-intrinsic defect lowers the in-plane 

thermal conductivity. In effect if Grids 1 and 2 were equally free of surface 

contamination Grid 2 should have a comparable thermal conductivity to Grid 1.  

The data from these grids shows that intrinsic graphene defects (as well as non-

intrinsic defects like surface contamination) have a detrimental effect on in-plane 

graphene thermal conductivity. A possible follow-on to this study would be to take a 

clean grid and a dirty grid and subject both to RIE. This would show more definitively 

the impact of non-intrinsic defects vs. intrinsic defects on the in-plane thermal 

conductivity.  

 

3.3 SOURCES OF UNCERTAINTY 

 There were several sources of uncertainty in this investigation. The four sided 

heatsink of the TEM grid provided a larger avenue for heat losses than the two sided 

heatsink used by Balandin. Similarly in the Balandin investigation the heat flow could be 

assumed to be in-plane given that there was only one layer of graphene present. Here 

FLG was investigated so that assumption is inaccurate. Also in this work the exact 
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number of layers of graphene in each spot was not determined. Knowing the exact 

number of layers vs. taking an overall estimate for graphene thickness would greatly 

improve the accuracy of the thermal conductivity measurements.  

 Another source of uncertainty was that the laser focus point would drift very 

slightly during a scan with the micro-Raman spectrometer. Thus there is some 

uncertainty in amount of laser power incident on the sample. Also because of the limited 

number of filters on the spectrometer only three data points per spot could be obtained.  

 Even with these sources of uncertainty, the calculated thermal conductivities were 

comparable to previous results. This method also eliminates issues with previous 

measurements such as the geometry dependence of the Balandin equation. With 

refinements this method of measuring graphene thermal conductivity can be made even 

more accurate.   

 

                 Table 2: GRID 1:  

a. Spot # and % 

laser power 

Shift in G-band 

peak (cm
-1

) 

Change in laser 

power (mW) 

 b. Spot # and % 

laser power 

Shift in G-band 

peak (cm
-1

) 

Change in 

laser power 

(mW) 

Spot 2. 5% lp 0 0  Spot 3. 5% lp 0 0 

Spot 2. 10% lp 0.2 0.0475  Spot 3. 10% lp 0 0.0475 

Spot 2. 50% lp -0.3 0.4275  Spot 3. 50% lp -0.4 0.4275 

Spot 2. 100% lp -0.8 0.9025  Spot 3. 100% lp -0.8 0.9025 

       

c. Spot # and % 

laser power 

Shift in G-band 

peak (cm
-1

) 

Change in laser 

power (mW) 

 d. Spot # and % 

laser power 

Shift in G-band 

peak (cm
-1

) 

Change in 

laser power 

(mW) 

Spot 4. 5% lp 0 0  Spot 5. 5% lp 0 0 

Spot 4. 10% lp 0 0.0475  Spot 5. 10% lp 0 0.0475 

Spot 4. 50% lp -0.3 0.4275  Spot 5. 50% lp -0.4 0.4275 

Spot 4. 100% lp -0.3 0.9025  Spot 5. 100% lp -0.9 0.9025 
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e. Spot # and % 

laser power 

Shift in G-band 

peak (cm
-1

) 

Change in laser 

power (mW) 

 f. Average Shift in G-peak 

for all spots (cm
-1

) 

Change in laser 

power (mW) 

Spot 6. 5% lp 0 0  -0.06 0.0475 

Spot 6. 10% lp -0.5 0.0475  -0.4 0.4275 

Spot 6. 50% lp -0.6 0.4275  -0.68 0.9025 

Spot 6. 100% lp -0.6 0.9025    

 

Table 2: a-e. Raw data of G band shifts vs. change in laser power for all spots for Grid 1. f. Average of corrected G 

band shifts vs. change in laser power. 
 

TABLE 3:  GRID 2 BEFORE RIE: 

a. Spot # and % 

laser power 

Shift in G-band 

peak (cm
-1

) 

Change in laser 

power (mW) 
 b. Spot # and % 

laser power 

Shift in G-band 

peak (cm
-1

) 

Change in laser 

power (mW) 

Spot 1. 5% lp 0 0  Spot 2. 5% lp 0 0 

Spot 1. 10% lp -0.2 0.0075  Spot 2. 10% lp 0 0.0075 

Spot 1. 50% lp -0.2 0.0575  Spot 2. 50% lp -0.3 0.0575 

Spot 1. 100% lp -0.5 0.1325  Spot 2. 100% lp -0.5 0.1325 

       
c. Spot # and % 

laser power 

Shift in G-band 

peak (cm
-1

) 

Change in laser 

power (mW) 
 d. Spot # and % 

laser power 

Shift in G-band 

peak (cm
-1

) 

Change in laser 

power (mW) 

Spot 3. 5% lp 0 0  Spot 4. 5% lp 0 0 

Spot 3. 10% lp 0 0.0075  Spot 4. 10% lp 1.2 0.0075 

Spot 3. 50% lp -0.6 0.0575  Spot 4. 50% lp 0.9 0.0575 

Spot 3. 100% lp -0.9 0.1325  Spot 4. 100% lp 0.6 0.1325 

       
e. Spot # and % 

laser power 

Shift in G-band 

peak (cm
-1

) 

Change in laser 

power (mW) 
 f. Spot # and % 

laser power 

Shift in G-band 

peak (cm
-1

) 

Change in laser 

power (mW) 

Spot 5. 5% lp 0 0  Spot 6. 5% lp 0 0 

Spot 5. 10% lp -0.1 0.0075  Spot 6. 10% lp 0 0.0075 

Spot 5. 50% lp 0.2 0.0575  Spot 6. 50% lp -0.3 0.0575 

Spot 5. 100% lp 0.1 0.1325  Spot 6. 100% lp -0.4 0.1325 

    

 g. Average Shift in G-

peak for all spots (cm
-1

) 

Change in laser power 

(mW) 
 

-0.06 0.0075  
-0.24 0.0575  
-0.44 0.1325  
 

Table 3: a-f. Raw data of G band shifts vs. change in laser power for all spots, g. average of corrected G 

band shifts vs. change in laser power 
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TABLE 4:  GRID 2 AFTER RIE: 

a. Spot # and % 

laser power 

Shift in G-band 

peak (cm
-1

) 

Change in laser 

power (mW) 
 b. Spot # and % 

laser power 

Shift in G-band 

peak (cm
-1

) 

Change in laser 

power (mW) 

Spot 1. 5% lp 0 0  Spot 4. 5% lp 0 0 

Spot 1. 10% lp -1.2 0.0475  Spot 4. 10% lp -0.3 0.0475 

Spot 1. 50% lp 0.9 0.4275  Spot 4. 50% lp -3.6 0.4275 

Spot 1. 100% lp -2.4 0.9025  Spot 4. 100% lp -5.5 0.9025 

       
c. Spot # and % 

laser power 

Shift in G-band 

peak (cm
-1

) 

Change in laser 

power (mW) 
 d. Spot # and % 

laser power 

Shift in G-band 

peak (cm
-1

) 

Change in laser 

power (mW) 

Spot 5. 5% lp 0 0  Spot 6. 5% lp 0 0 

Spot 5. 10% lp 0.1 0.0475  Spot 6. 10% lp -0.1 0.0475 

Spot 5. 50% lp -1.2 0.4275  Spot 6. 50% lp -3 0.4275 

Spot 5. 100% lp -3.2 0.9025  Spot 6. 100% lp -4.8 0.9025 

    

 e. Average Shift in G-

peak for all spots (cm
-1

) 

Change in laser power 

(mW) 
 

-0.375 0.0475  
-1.725 0.4275  
-3.975 0.9025  
 

Table 4: a-d Raw data of G-band shifts vs. change in laser power for all spots, e. average of corrected G-

band shifts vs. change in laser power 

 

a. Grid 1. Spot # ID/IG 

ratio 

Thermal conductivity 

(W/m-K) 
 b. Grid 2b. Spot # ID/IG ratio Thermal conductivity 

(W/m-K) 

Spot 2.  0.0288 1175  Spot 1.  0.1070 543 

Spot 3. 0.0813 1469  Spot 2. 0.0251 352 

Spot 4. 0.1521 1301  Spot 3. 0.0275 197 

Spot 5.  0.0976 4069  Spot 4.  0.0319 290 

Spot 6. 0.1814 12204  Spot 6.  0.0213 449 

       

c. Grid 2a. Spot # ID/IG 

ratio 

Thermal conductivity 

(W/m-K) 
 d. Grid # Average 

ID/IG ratio 

Calculated Thermal 

conductivity (W/m-

K) 

Spot 1.  0.5260 841  Grid 1.  0.1082 1906 

Spot 4. 0.3085 229  Grid 2b. 0.0377 456 

Spot 5. 0.0991 253  Grid 2a. 0.2731411 324 

Spot 6.  0.1589 354     

 

Table 5 a-c: ID/IG ratios for each spot vs. thermal conductivities for each spot. d: Average ID/IG ratios for 

each grid vs. calculated thermal conductivities for each spot.  
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3.4 CONCLUSION 

Graphene is a two-dimensional material carbon allotrope made up of a single 

layer of graphite that has many unique properties. The characteristic Raman spectra of 

graphene allowed intense studies to be undertaken. Among graphene’s unique properties 

is a high phonon mobility, which allows heat to be carried easily along the in-plane 

direction. This results in a high-predicted in-plane thermal conductivity. After the 

discovery of graphene, ways to measure its extraordinary predicted properties were 

sought out. To determine the thermal conductivity of single layer graphene A.A. 

Balandin and I. Calizo developed a technique using Raman spectroscopy to measure the 

in-plane thermal conductivity of exfoliated single layer graphene suspended over a two-

sided heat sink. 

In this investigation graphene grown using chemical vapor deposition was placed 

on a copper TEM grid with each side of the grid spots being heatsinks. This eliminates 

the geometry dependence from previous work. The few layer graphene samples were 

investigated using Raman spectroscopy and the thermal conductivity calculated using the 

Balandin equation (Eq. 3). Thermal conductivities were found to be in-line with previous 

work. 

The main goal of the investigation was to uncover the effects of intrinsic and 

extrinsic defects on the thermal conductivity of graphene. It was thought that increased 

defects in the graphene structure would inhibit the in-plane thermal conductivity. The 

ID/IG ratio from the Raman spectra of graphene was used to determine the amount of 
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intrinsic defects in each sample. Grids were selected with low and high surface 

contaminates to investigate effects of such contamination on the thermal conductivity. By 

performing Reactive Ion Etching on a sample (previously investigated) led to increased 

intrinsic defects and a method of reduction of thermal conductivity was uncovered.  It has 

been shown that intrinsic defects do in fact impede the in-plane thermal conductivity. 

Also it was shown that surface contaminants provide an avenue for heat loss, which also 

adversely affects the thermal conductivity. Based on the encouraging preliminary results 

presented in this work, more detailed investigations are necessary to correlate the defect 

configuration and type with the changes in thermal conductivity.  
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