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ABSTRACT 

Sodium carbonate peroxyhydrate (SCP), a granular algaecide containing 

hydrogen peroxide (H2O2), is used to mitigate risks associated with noxious algae. 

Episodic exposures of SCP algaecides in aquatic systems prompt the need for a 

fundamental understanding of exposure-response relationships for aquatic organisms, 

both target and non-target, exposed to H2O2 as SCP. In the first experiment, influences of 

organic carbon on exposures of H2O2 as SCP and consequent responses of a frequent 

problematic alga (cyanobacterium Microcystis aeruginosa) were measured. Results 

indicate that the exposure of H2O2 as SCP necessary to control growth of a noxious alga 

is proportional to the density of the population. Using both density and the concentration 

of algal derived DOC to scale laboratory results to an in situ treatment could improve 

exposure predictions, which could decrease the chance of applying an ineffective 

concentration and maintain margins of safety for non-target organisms. In the second 

experiment, innate sensitivities of M. aeruginosa and non-target organisms including a 

eukaryotic alga (chlorophyte Pseudokirchneriella subcapitata), a microcrustacean 

(Ceriodaphnia dubia), a benthic amphipod (Hyalella azteca), and a fathead minnow 

(Pimephales promelas) were measured in relatively unconfounded, 96-h laboratory 

exposures of H2O2 as SCP. Results were used to interpret potential risks from SCP 

applications in aquatic environments. In terms of sensitivities, M. aeruginosa ≈ C. dubia 

> H. azteca > P. subcapitata > P. promelas to exposures of H2O2 as SCP. These results

can be used to predict the distribution of responses likely to occur in situ, and indicate 

that SCP could mitigate risks associated with noxious cyanobacterial growths (e.g. M. 
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aeruginosa) while providing a margin of safety for non-target species. In the final 

experiment, experiments were conducted in the laboratory to physically model a site-

specific exposure-response relationship and predict H2O2 exposures and target algal 

responses prior to the application of an SCP algaecide in a southeastern U.S. reservoir. 

Portions of the Six and Twenty Creek cove of Hartwell Lake, a man made reservoir 

bordering South Carolina and Georgia, were treated with Phycomycin® SCP (27% H2O2) 

to control an algal assemblage producing taste and odor. By utilizing algae and water 

from the study site in both laboratory and field experiments, differences in potential 

exposure modifying factors (i.e. water characteristics and specific algal sensitivity) were 

minimized, resulting in exposures and responses measured after the in situ application of 

SCP that were comparable to laboratory predictions. Exposures of H2O2 as SCP were 

labile and dynamic, thus an indirect comparison of laboratory and field experiments (i.e. 

responses observed in situ were used to infer the causative exposure based on results 

from the laboratory model) was necessary to corroborate the direct comparison of 

experiments (i.e. exposures eliciting equivalent responses were compared). Data from the 

experiments in this thesis increase our fundamental understanding of exposure-response 

relationships from SCP algaecides, and provide information supporting the effective and 

ecologically sound use of SCP algaecide in water resource management.  
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CHAPTER ONE 

INTRODUCTION 

Despite occupying a critical niche in aquatic systems, some algae can grow to 

densities that are problematic or “noxious,” or produce secondary compounds such as 

toxins that interfere with use of water. Problematic algae are operationally defined here as 

a population or growth of algae that has disrupted or impeded the use(s) of a critical 

water resource such as drinking water, irrigation, and recreation (Pearl, 1988; Hoagland 

et al., 2002; Landsberg, 2002; Briand et al., 2003). Some algal genera (e.g. Anabaena, 

Aphanizomeneon, Cylindrospermopsis, Euglena, Hapalosiphon, Lyngbya, Microcystis, 

Nodularia, Nostoc, Oscillatoria, Prymnesium) produce toxins, which can pose risks for 

humans, domestic pets, livestock, and wildlife associated with fresh water resources 

(WHO, 2003; Falconer, 1999; Carmichael et al., 2001; Zurawell et al., 2005). Chemical 

algaecides are often used by water resource managers as an efficacious, time efficient, 

economically viable, and environmentally sound management technique to mitigate 

problems associated with algal growths (Mastin et al., 2002), particularly when 

immediate action is required. 

Sodium carbonate peroxyhydrate (SCP) is an unstudied compound used as an 

algaecide to control growth of problematic algae. SCP is a granular compound that 

releases H2O2, an oxidant, when added to water. Exposures of H2O2 as SCP cause 

intercellular and extracellular damage that can adversely affect algal cells (Samuilov et 

al., 2001; Bandala et al., 2004; Qiao et al., 2005; Drabkova et al., 2007a,b; Finnegan et 

al., 2010; Mikula et al., 2012). A treatment goal for using an SCP algaecide is to 
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maximize efficacy for target algal species while minimizing risks for non-target species. 

To provide defensible evidence that will facilitate decisions made to achieve this goal, the 

experiments in this thesis were designed to evaluate in situ factors that could affect 

exposures and consequent responses, provide a comparison of the relative sensitivity of 

an array of target and non-target organisms, and demonstrate the predictive capabilities of 

laboratory studies for in situ SCP treatments.    

Conceptually, responses of an algal cell or population at a specific site should be a 

function of the amount of active ingredient in or on each algal cell that will achieve 

control (Murray-Gulde et al., 2002). If this exposure per cell is estimated, then the total 

amount of algaecide required to obtain control of an algal population can be estimated. 

However, because H2O2 is an oxidant (Mallick and Mohn, 2000), it may react with 

organic carbon as well as target and non-target algae, fundamentally changing the 

exposure of SCP reaching each algal cell. In Chapter 2, “Influence of Dissolved and 

Particulate Fractions of Organic Carbon on Exposures of a Sodium Carbonate 

Peroxyhydrate Algaecide and Consequent Responses of Microcystis aeruginosa,” the 

influence of organic carbon (particulate and dissolved) on exposures of an SCP algaecide 

and consequent responses of M. aeruginosa were measured. Estimating the “critical 

burden” for the targeted algae can be used to more accurately predict effective SCP 

algaecide exposures. 

In “Comparative Toxicity of Sodium Carbonate Peroxyhydrate to Freshwater 

Organisms,” responses were measured and compared for a target noxious alga 

(cyanobacterium Microcystis aeruginosa) and non-target organisms including a 



 

 3 

eukaryotic alga (chlorophyte Pseudokirchneriella subcapitata), a microcrustacean 

(Ceriodaphnia dubia), a benthic amphipod (Hyalella azteca), and a fathead minnow 

(Pimephales promelas) exposed to H2O2 as SCP. To use SCP effectively and efficiently 

for controlling noxious algal growths in aquatic systems, comparative toxicity data are 

needed for both target and non-target species, which are anticipated to have different 

sensitivities. Laboratory experiments involve exposing organisms in relatively 

unconfounded situations in order to discern innate sensitivities. Ranking organisms in 

terms of their sensitivity to SCP provides information about types of algae (e.g. 

prokaryotic versus eukaryotic) that are relatively sensitive to SCP exposures, and can be 

used to calculate potential margins of safety for non-target organisms. Additionally, 

exposure-response relationships derived from laboratory experiments can be used to 

estimate and contrast the potency of SCP to different organisms. After relative sensitivity 

information is gained, comparisons of toxicity data for SCP and other algaecides can 

provide context for the relative toxicity of different active ingredients that are available 

for use (i.e. H2O2, copper formulations, endothal, and diquat dibromide). These 

comparative toxicity data provide information necessary for making scientifically 

defensible algal management decisions (Fitzgerald, 1964; Fitzgerald and Jackson, 1979; 

Mastin et al., 2002; Osgood, 2007). 

A primary goal of toxicity testing is to predict responses of organisms in situ. In 

Chapter 3, “Predicting In Situ Responses of Taste and Odor Producing Algae in a 

Southeastern U.S. Reservoir to a Sodium Carbonate Peroxyhydrate Algaecide Using a 

Laboratory Exposure-Response Model,” the use of an SCP algaecide to mitigate a 
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benthic algal assemblage producing taste and odor compounds in the Six and Twenty 

Creek cove of Hartwell Lake provided an opportunity to test hypotheses regarding 

potential convergence of exposures and responses measured in the laboratory and the 

field. 

 

Objectives 

 

“Influence of Dissolved and Particulate Fractions of Organic Carbon on Exposures of a 
Sodium Carbonate Peroxyhydrate Algaecide and Consequent Responses of Microcystis 

aeruginosa” 

 
To further develop and expand information on responses of target species to 

exposures of H2O2, the overall objective of this experiment was to measure the collective 

influence of algal-derived organic carbon (particulate [POC] and dissolved [DOC]) on 

exposures of an SCP algaecide and consequent responses of M. aeruginosa. Specific 

objectives were to: i) measure the relationship between initial cell density and responses 

of M. aeruginosa to 96-h exposures of H2O2 as SCP (in terms of median effect 

concentrations [EC50] for cell densities); ii) measure relationships between dissolved 

organic carbon concentration and responses of M. aeruginosa to 96-h exposures of H2O2 

as SCP (in terms of 96-h EC50 for cell densities); and iii) compare the relative influences 

of POC and DOC on exposures of H2O2 as SCP achieving the 96-h EC50 of M. 

aeruginosa.  
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“Comparative Toxicity of Sodium Carbonate Peroxyhydrate to Freshwater Organisms” 

 

The overall objective of this study was to compare responses of an array of 

freshwater organisms following exposures to H2O2 as SCP in laboratory formulated 

water.  The specific objectives were to (i) measure and compare responses of a 

prokaryotic alga (M. aeruginosa) and a eukaryotic alga (P. subcapitata) in terms of cell 

density and chlorophyll a concentrations to 96-hr exposures of of H2O2 as SCP, (ii) 

measure and compare responses of a vertebrate (P. promelas) and invertebrates (C. dubia 

and H. azteca) in terms of mortality to 96-hr exposures of H2O2 as SCP, (iii) confirm 

exposures of H2O2 resulting from additions of SCP, and (iv) compare measured toxicity 

of SCP to vertebrates, invertebrates, and algae with published toxicity data for copper 

algaecide formulations, endothall, and diquat dibromide. 

 

“Predicting In Situ Responses of Taste and Odor Producing Algae in a Southeastern U.S. 

Reservoir to a Sodium Carbonate Peroxyhydrate Algaecide Using a Laboratory 
Exposure-Response Model” 

 

The overall objective of this study was to evaluate responses of a problematic 

algal assemblage to laboratory exposures of an SCP algaecide and compare responses 

with exposures and responses measured in situ. Specific objectives were to i) measure 

responses (in terms of chlorophyll a concentrations, phycocyanin concentrations, and cell 

densities) of a benthic algal assemblage from Hartwell Lake to 7-d exposures of H2O2 (as 

Phycomycin® SCP) in the laboratory, ii) to measure the exposure of H2O2 introduced to 
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Hartwell Lake (as Phycomycin® SCP) and consequent responses of the algal assemblage 

(in terms of chlorophyll a concentrations, phycocyanin concentrations, and cell 

densities), and iii) compare exposures and responses measured in the laboratory and in 

situ. 

 

 

Organization of Thesis 

This thesis is arranged in subsequent chapters intended for publication in peer- 

reviewed journals. Therefore, chapters two through four are written and formatted for a 

specific journal, and some of the introductory information and materials and methods 

were repeated. Chapter one is in press in the Journal of Ecotoxicology and Environmental 

Safety; chapters two and three are targeted for submission to the Journal of Ecotoxicology 

and Environmental Safety.  
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CHAPTER TWO 

INFLUENCE OF DISSOLVED AND PARTICULATE ORGANIC CARBON ON 

EXPOSURES OF A SODIUM CARBONATE PEROXYHYDRATE ALGAECIDE 

AND CONSEQUENT RESPONSES OF MICROCYSTIS AERUGINOSA. 

Abstract 

Algaecides formulated with sodium carbonate peroxyhydrate (SCP), a granular 

form of the oxidant hydrogen peroxide (H2O2), are used to control the growth of 

problematic algae and restore uses of critical water resources. The amount of H2O2 per 

cell required to control problematic algae (i.e. dose) can be used to scale exposures for 

densities of algae encountered in situ. However, oxidizable constituents in a water 

resource (i.e. dissolved and particulate organic carbon) can alter the dose of H2O2 

reaching each algal cell, increasing the concentration of H2O2 necessary to achieve a 

desired response endpoint (e.g. EC50).  The overall objective of this study was to measure 

the influence of organic carbon (particulate [POC] and dissolved [DOC]) on exposures of 

an SCP algaecide and consequent responses of a frequent problematic alga 

(cyanobacterium Microcystis aeruginosa). To achieve this overall objective, 96-h median 

effects concentrations (96-h EC50 values) for a series of cell densities of M. aeruginosa 

exposed to H2O2 as SCP were measured and compared. As the density of algae increased 

from 9.72x105 to 2.31x107 cells mL-1, measured 96-h EC50 values for M. aeruginosa in 

terms of cell density increased from 0.9 mg H2O2/L to 30.9 mg H2O2/L. The calculated 

dose of H2O2 as SCP achieving these EC50 values increased concomitantly with cell 

density from 8.79 x10-10 mg H2O2 /cell to 1.34x10-9 mg H2O2 /cell. Calculated doses 
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likely increased due to competitive reactions between H2O2 and algal-related DOC, as 

increases in cell density and the dose achieving EC50 values were coupled with an 

increase in DOC from 4±1 mg/L to 24±1 mg/L. When designing in situ treatments for 

problematic algae using an SCP algaecide, both the density of algae and DOC can be 

used to scale exposures of SCP. Based on the mass of SCP that can be applied to a water 

resource, it is conceivable that algae in situ could achieve a density that is essentially 

unmanageable with a single application. Implementing a treatment before this density is 

achieved increases the likelihood of success with a single treatment and decreases the 

amount of product required, decreasing costs associated with treatment and potential risks 

for non-target organisms. Incorporating algal density and DOC concentrations into 

predictions of effective algaecide applications could decrease the possibility of applying 

an ineffective concentration and maintain margins of safety for non-target organisms. 
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Introduction 

Algaecides are commonly used to restore uses of critical water resources impeded 

by growths of problematic algae. Exposures of algaecides and responses of target algae 

can be influenced by site-specific environmental characteristics (Fitzgerald et al., 1964; 

Breault et al., 1996; Deaver and Rodgers, 1996; Borgmann et al., 2005). Sodium 

carbonate peroxyhydrate (SCP) is a relatively unstudied algaecide containing hydrogen 

peroxide (H2O2; USEPA, 2002) that can be used to selectively control cyanobacteria 

(Drabkova et al., 2007; Geer et al., in press). Exposures of H2O2 from applications of an 

SCP algaecide oxidize algal cells (Drabkova et al., 2007a,b) causing intracellular and cell 

membrane damage that leads to cell death (Mallick and Mohn, 2000; Finnegan et al., 

2010). As an oxidant, however, H2O2 may react with organic carbon apart from 

target/non-target algal cells. Therefore, when SCP is applied to an aquatic system as a 

means to control target algae, oxidizable constituents in the system (i.e. density of 

targeted/non-target algae and the concentration of dissolved organic carbon [DOC]) may 

influence the actual exposure of H2O2 as SCP reaching each algal cell (i.e. the dose). The 

present study focuses on laboratory experiments to measure the influence of cell density 

and DOC on concentrations of an SCP algaecide required to elicit mortality. 

 Algal density can influence the performance of copper algaecides (Fitzgerald, 

1964; Nielsen and Kamp-Nielsen, 1970; Moreno-Garrido, 2000; Franklin et al., 2002; 

Murray-Gulde et al., 2002), and may similarly influence the effectiveness of an SCP 

application. Considering potential effects of cell density on an SCP algaecide, the 

exposure of H2O2 as SCP required to control a nuisance algal population could 
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theoretically be calculated as the product of the dose gaining control for one cell and the 

total density of cells: X*Y=Z, where X equals the mass of H2O2 that achieves control for 

one cell (mg H2O2 cell-1) , Y equals cell density (cells mL-1), and Z equals the 

concentration (mg H2O2 L-1) achieving control of the population or assemblage of target 

algae. If algal density increases, then the exposure required to gain control of the 

population should similarly increase in a predictable way. For example, if the density 

were increased by an order of magnitude, e.g. from 105 cells mL-1 to 106 cells mL-1, then 

the total exposure to control the population would necessarily increase by a factor of 10. 

The density-dependent exposure-response model implies a linear relationship 

between cell density and the H2O2 exposure required to elicit mortality of the algal 

population. The assumption is that the mass of active ingredient achieving control for one 

cell is consistent at all cell densities. However, environmental factors competing for the 

oxidant (H2O2) could affect the mass of H2O2 available to achieve control for one cell. 

DOC, the organic fraction that passes through a 0.45-μm filter (Wetzel, 2001), may be 

subject to oxidation by H2O2 as SCP, potentially decreasing the concentration reaching 

each individual algal cell. Algae are a source of DOC (Wetzel, 2001; Nguyen et al., 2005; 

Lee 2008, Mostofa et al., 2012), which is released either by metabolic excretion or when 

cells die and their internal contents are released (Henderson et al., 2008). Furthermore, 

terrestrial organic matter inputs add to concentrations of algal-derived DOC in receiving 

source waters. Typically, dissolved fractions are present at greater concentrations than 

particulate fractions (POC, fraction of organic carbon retained by a 0.45-μm filter 

[Wetzel, 2001]). In lakes across the United States, DOC concentrations range from 2 to 
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10 mg L-1 (Wetzel, 2001), while POC concentrations range from 0.2 to 1.7 mg L-1 

(Wetzel 2001). However, the density of a problematic algal population increases POC, 

potentially in excess of DOC. The total concentration of organic carbon (TOC = DOC + 

POC) associated with a problematic algal population is usually not uniformly distributed 

within a water resource. To control problematic algae with an SCP algaecide, the 

exposure must contact the target algae. Therefore, it follows that algal TOC could have 

the greatest effect on exposures of SCP and consequent target algal responses.  

To test hypotheses regarding density and DOC dependent effects on the 

performance of an SCP algaecide, laboratory experiments were conducted using the 

prokaryotic cyanobacterium Microcystis aeruginosa, a common problematic alga (WHO, 

1993; Falconer, 1999; Carmichael et al., 2001; Zurawell et al., 2005) that is sensitive to 

H2O2 (Drabkova et al., 2007) from SCP exposures (Geer et al., in press). The overall 

objective of this experiment was to measure the collective influence of algal-derived 

organic carbon (particulate and dissolved) on exposures of an SCP algaecide and 

consequent responses of M. aeruginosa. Specific objectives were to i) measure the 

relationship between initial cell density and responses of M. aeruginosa to 96-h 

exposures of H2O2 as SCP (in terms of  96-h median effect concentrations [EC50] for cell 

densities); ii) measure relationships between dissolved organic carbon concentration and 

responses of M. aeruginosa to 96-h exposures of H2O2 as SCP (in terms of 96-h EC50 for 

cell densities); and iii) compare the relative influences of POC and DOC on exposures of 

H2O2 as SCP achieving the 96-h EC50 of M. aeruginosa. 
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Materials and Methods 

Toxicity Testing Procedure 

Unicellular M. aeruginosa was obtained from the Canadian Phycological Culture 

Center (CPCC 300) at the University of Waterloo in Ontario, Canada and cultured in 

COMBO medium (Kilham et al., 1998) at 23±2°C with an 18:6-h light:dark photoperiod, 

illuminated by cool-white fluorescent bulbs (Residential Ecolux 40 W, GE) at 2660 LUX. 

The algaecide Phycomycin® SCP (Arch Chemicals a Lonza Business, Applied 

Biochemists, Alpharetta, GA), was used as the source of SCP. Exposures were prepared 

by dissolving SCP granules (active ingredient 27.6% H2O2; Table 1) in algal growth 

medium. Toxicity experiments used static, non-renewal exposures in which 200 mL of 

COMBO medium containing M. aeruginosa were exposed in 250 mL borosilicate 

beakers to a series of concentrations of H2O2 as SCP, sufficient to capture a 96-h median 

effects concentration [96-h EC50; concentration at which 50% of the population 

responded (in terms of cell densities)]. Toxicity experiments were initiated with targeted 

cell densities between 5x105 and 5x107 cells mL-1. H2O2 concentrations were measured 

spectrophotometrically immediately after dissolution of SCP using the I3
- method 

(MDL=0.1 mg H2O2 L-1, CV= 1.5%) with a 1 cm cuvette and SpectraMax®M2 

Microplate Reader (Molecular Devices Corp. Sunnyvale, CA 94089; Klassen et al., 1994; 

Kinley et al., 2015). Responses of algae to exposures (i.e. cell densities) were measured 

initially and after 96-h. Cell densities were measured using light microscopy and an 

Improved Neubauer hemocytometer (Hausser Scientific Co. Horsham, PA 19044). Water 

characteristics in exposures were measured at test initiation and completion. Dissolved 
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oxygen, pH, and conductivity were measured using a YSI® Model 52 dissolved oxygen 

meter, Orion® Model 250A pH meter and Triode® electrode, and Orion® Model 142 

conductivity meter, respectively. Hardness and alkalinity of samples were measured 

according to Standard Methods for Examination of Water and Wastewater (APHA, 

2005).  

 Initial DOC concentrations were measured in each experiment using high-

temperature combustion (MDL=1.0 mg L-1, CV= ±1%), according to standard method 

5310B (APHA 2005). Aliquots of M. aeruginosa were collected prior to exposure to SCP 

and filtered through a Millipore® 0.45µm nitrocellulose filter to remove algal cells. 

Calibration curves were prepared by dissolving potassium hydrogen phthalate (KHP; 

ACS grade; ACROS Organics) in NANOpure® water. Standards and samples were 

maintained at 4°C prior to analysis (APHA, 2005) and analyzed with a Shimadzu model 

TOC-V total organic carbon/total nitrogen analyzer (Shimadzu Scientific Instruments 

Columbia, MD 21046).   

Statistical Analysis 

For each experiment, 96-h EC50 values for M. aeruginosa were calculated from 

exposure-response relationships in terms of cell densities using non-linear regression with 

a sigmoid and 4P logistic fit function. Inflection points calculated were used as EC50 

values. Calculated EC50 values were compared among different initial cell densities and 

among different initial DOC concentrations. All data were analyzed using JMP v. 11.2.1 

(2013;  = 0.05). 
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Results and discussion 

Relationship Between 96-h EC50 Values and Initial Cell Density  

Measured 96-h EC50 values for M. aeruginosa exposed to H2O2 as SCP increased 

with increasing algal density. As initial density of M. aeruginosa increased from 9.7x105 

to 2.3x107 cells mL-1, measured 96-h EC50 values (in terms of cell density) for M. 

aeruginosa increased from 0.9 mg H2O2 L-1 to 30.9 mg H2O2 L-1  (Table 2, Figure 1). 

EC50 values were linearly related to initial algal density, increasing by 1.4 mg H2O2 L-1 

for each incremental increase in density of 1.0x106 cells mL-1 (R2=0.999; Figure 2). 

 These results support those of Fitzgerald (1964), Murray-Gulde et al. (2002), and 

Bishop and Rodgers (2012), demonstrating that the amount of algaecide controlling a 

problematic algal population is proportional to the amount of algae present. By inverse 

prediction, the relationship can be used to estimate the densities of algae that may be 

treated within an algaecide’s recommended label concentrations. For example, 10.2 mg 

H2O2 L-1 is, at present, the maximum recommended application concentration for the 

SCP algaecide used in this experiment (Table 1). For laboratory cultured M. aeruginosa 

in COMBO medium, the estimated density with an EC50 of 10.2 mg H2O2 L-1 was 

8.1x106 cells mL-1. In the context of an in situ SCP application, multiple treatments could 

increase costs and increase risks for non-target organisms. Risks for non-target organisms 

from exposures to SCP can be estimated by margins of safety, which are a measure of the 

difference between the concentration of SCP used to control a target alga and the 

concentration eliciting toxicity to the non-target organism (Murray-Gulde et al., 2002). 

As demonstrated in the present laboratory experiment, algaecide concentrations necessary 
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to achieve an EC50 were positively related to initial cell density. Therefore, as initial 

density of algae in situ decreases, the amount of algaecide required to achieve control 

will likely decrease proportionally, increasing the potential for margins of safety for non-

target organisms. 

Relationship Between DOC Concentrations and 96-h EC50 Values 

Measured concentrations of dissolved organic carbon associated with each algal 

cell density increased from 4±1 mg L-1 to 24±1 mg L-1 as algal density increased from 

9.7x105 cells mL-1 to 2.3x107 cells mL-1 (Table 2). There was a linear relationship 

between increasing dissolved organic matter and 96-h EC50 values of M. aeruginosa; 96-

h EC50 values increased by 1.6 mg H2O2  L-1 for each mg L-1 increase in DOC (R2=0.994, 

Figure 2).    

Murray-Gulde et al. (2002) and Bishop and Rodgers (2012) concluded that the 

relationship between algal density and algaecide concentrations achieving control could 

be used to predict the exposure required to control any density of algae. For this 

conclusion to be valid in the present study, the critical burden (i.e. concentration of H2O2 

per cell achieving 96-h EC50; Murray-Gulde et al., 2002; Bishop and Rodgers, 2011) 

would need to be constant and independent of population density. Critical burdens were 

calculated mathematically by dividing 96-h EC50 values by the associated cell density. As 

initial densities of M. aeruginosa increased from 9.7x105 cells mL-1 to 2.3x107 cells mL-1, 

calculated critical burdens increased from 8.8 x10-10 mg H2O2 cell-1 to 1.3x10-9 mg H2O2 

cell-1 (Table 2). To determine the relative significance of differences between calculated 

critical burdens, each calculated critical burden was used to predict 96-h EC50 values for 
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the remaining two initial algal densities, and predicted 96-h EC50 values were compared 

with measured 96-h EC50 values. Predicted 96-h EC50 values were on average 

26.8±19.1% different from measured values (Table 3).  

Because calculated critical burdens achieving comparable response endpoints 

increased as initial densities of M. aeruginosa increased, and increasing initial densities 

were coupled with increasing DOC concentrations, calculated critical burdens likely 

differed because of H2O2 reactions with algal DOC. Critical burdens (mg H2O2 cell-1) for 

each initial algal density were derived mathematically, and therefore include 

concentrations of H2O2 reacting with each algal cell and additional H2O2 likely reacting 

with DOC. While calculated critical burdens of both 9.7x105 and 3.1x106 cells mL-1 

underestimated the measured EC50 at 2.3x107 cells mL-1, the percent error was greatest 

when using the critical burden for 9.7x105 cells mL-1 as the predictor. Since there was a 

greater concentration of DOC present at the highest initial cell density (2.3x107 cells mL-

1), the concentration of H2O2 reacting with each cell was likely decreased to a greater 

extent by reactions with DOC at 2.3x107 cells mL-1 than at lower cell densities of 9.7x105 

or 3.1x106 cells mL-1.  

Relative Influence of Cell Density and DOC on 96-h EC50 Values 

Results from this study demonstrate that both density of algae and DOC 

concentrations affect exposures of H2O2 as SCP necessary to achieve a response endpoint 

(i.e. 96-h EC50) for M. aeruginosa. Both density and DOC could be used to predict the 

96-h EC50, however, there was also a correlation between cell density and DOC (Figure 

2). This observation was expected, as algae produce and excrete organic matter 
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(Myklestad, 1995; Henderson et al., 2008; Qu et al., 2012). Because increasing 

production and excretion of organic matter is a function of an increasing number of algal 

cells, measured 96-h EC50 values were influenced primarily by cell density, rather than 

dissolved organic carbon.  

Although density was a stronger predictor of responses of M. aeruginosa to SCP 

exposures, the effect of DOC can be significant. Predicted EC50 values differed from 

measured EC50 values by an average of 26.8 ± 19.1%, or 3.7 ± 5.0 mg H2O2 /L (Table 3). 

Small changes in peroxide concentrations (i.e. 3 mg/L) could affect algaecide 

performance if potency slopes are sufficiently steep such that (1) responses are not 

consistent with the desired level of target algal control, or (2) margins of safety for non-

target organisms decrease without additional control of the target algae.  
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Conclusions 

Impacts of algal density and algal DOC on concentrations of H2O2 as SCP 

required to achieve the 96-h EC50 of M. aeruginosa were evaluated. As algal density and 

DOC increased, 96-h EC50 values for M. aeruginosa exposed to H2O2 as SCP increased 

predictably.  The relationship between algal density and concentration of H2O2 achieving 

the EC50 could be used to predict the maximum density of algae that could be controlled 

with a single application. Implementing a treatment before prolific algal growth increases 

the likelihood of success with a single treatment and decreases the amount of product 

required, decreasing costs associated with treatment and potential risks for non-target 

organisms. The maximum density of cells controllable within recommended label 

concentrations should also be predictable by the concentrations of H2O2 per cell 

achieving the EC50. Estimated critical burdens were not equivalent, and instead were 

concluded to be different due to reactions between H2O2 and algal derived DOC. When 

scaling laboratory results to an in situ treatment with an SCP algaecide, predictions of the 

exposure necessary to achieve control could be enhanced if DOC and algal density are 

known, which could decrease the chance of applying an ineffective concentration and 

maintain margins of safety for non-target organisms. 
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TABLES AND FIGURES 

Table 2.1: Physical and chemical properties of Phycomycin® SCP. 

CAS number 497-19-8a

Formulation SCP and inert ingredients 

Active ingredient 85% SCP 
Maximum application Concentration 36.9 mg L-1 (10.2 mg L-1 H2O2)a 
Physical state Coarse white grainsa 

Water solubility 140g/L at 24ºCa 
pH 10.4-10.6 s.u. (1% solution)a 

Boiling Point Not applicablea (SCP decomposes when heated)b 
Melting point Not applicable (SCP decomposes when heated)c 
Partition coefficient n-octanol/water Not applicable (sodium carbonate peroxyhydrate is an organic salt)b 

aAB (2007) 
bOECD (2006) 
cHERA (2002) 
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Table 2.2: Mean measured DOC concentrations, 96-h EC50 values (in terms of cell density), and calculated critical burdens 
(mg H2O2 cell-1) for three densities of M. aeruginosa exposed to H2O2 as SCP. Critical burdens were calculated as 96-h EC50 

value divided by initial cell density. 

Initial Cell Density 
(cells mL-1) 

DOC 
(mg/L) 

95% CI 96-h EC50

(mg H2O2 L-1) 
95% CI Calculated Critical Burden 

(mg H2O2 cell-1) 

9.7x105 4 3-5 0.9 0.7-1.0 8.8x10-10 

3.1x106 7 6-8 2.9 2.5-3.4 9.3x10-10 
2.3x107 24 23-25 30.9 22.7-39.0 1.3x10-9 

Table 2.3: Comparison of predicted and measured 96-h EC50 values for M. aeruginosa exposed to H2O2 as SCP. Predicted 96-
h EC50 values were determined mathematically by multiplying calculated critical burden (i.e. H2O2 concentration achieving 96-

h EC50) by initial density of algae. Percent error calculated as: (measured 96-h EC50 – predicted 96-h EC50) / measured 96-h 
EC50. 

Density Used 

to Calculate 
Critical 
Burden 

(cells mL-1) 

Calculated 
Critical Burden 
(mg H2O2 cell-1) 

Initial Density of 
Algae Predicted 

(cells mL-1) 

Predicted 

96-h EC50

(mg H2O2 L-

1) 

Measured 

96-h EC50

(mg H2O2 L-

1) 

Measured 96-h EC50

– Predicted 96-h EC50

Percent 
Error 

9.7x105 8.8x10-10 3.1x106 2.7 2.9 0.2 6.9 

9.7x105 8.8x10-10 2.3x107 20.3 30.9 10.6 34.3 

3.1x106 9.3x10-10 9.7x105 0.9 0.9 0.0 0.0 

3.1x106 9.3x10-10 2.3x107 21.5 30.9 9.4 30.4 

2.3x107 1.3x10-9 9.7x105 1.3 0.9 -0.4 44.4 

2.3x107 1.3x10-9 3.1x106 4.2 2.9 -1.3 44.8 
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Figure 2.1: Mean responses of M. aeruginosa to measured exposures of H2O2 as SCP at initial densities of 9.7x105 cells mL-1, 

3.1x106 cells mL-1, and 2.3x107 cells mL-1 (n=3). Error bars represent ±1 standard deviation.  

Figure 2.2: (A) Relationship between initial cell densities (n=3) and 96-h EC50 values, (B) correlation between initial 
concentrations of DOC (n=3) and 96-h EC50 values, and (C) correlation between initial cell densities (n=3) and initial 

concentrations of DOC (n=3). 96-h EC50 values were measured for M. aeruginosa exposed to H2O2 as SCP. Error bars 
represent 95% CI.
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CHAPTER THREE 

COMPARATIVE TOXICITY OF SODIUM CARBONATE PEROXYHYDRATE TO 

FRESHWATER ORGANISMS 

Abstract 

Sodium carbonate peroxyhydrate (SCP) is a granular algaecide containing H2O2

as an active ingredient to control growth of noxious algae. Measurements of sensitivities 

of target and non-target species to hydrogen peroxide (H2O2) are necessary for water 

resource managers to make informed decisions and minimize risks for non-target species 

when treating noxious algae. The objective of this study was to measure and compare 

responses among a target noxious alga (cyanobacterium Microcystis aeruginosa) and 

non-target organisms including a eukaryotic alga (chlorophyte Pseudokirchneriella 

subcapitata), a microcrustacean (Ceriodaphnia dubia), a benthic amphipod (Hyalella 

azteca), and a fathead minnow (Pimephales promelas) to exposures of H2O2 as SCP. 

H2O2 exposures were confirmed using the I3
- method. SCP margins of safety for these 

organisms were compared with published toxicity data to provide context for other 

commonly used algaecides and herbicides (e.g. copper formulations, endothall, and 

diquat dibromide). Algal responses (cell density and chlorophyll a concentrations) and 

animal mortality were measured after 96-h aqueous exposures to SCP in laboratory-

formulated water to estimate EC50 and LC50 values, as well as potency slopes. Despite a 

shorter test duration, M. aeruginosa was more sensitive to H2O2 as SCP (96-h EC50: 0.9-

1.0mg L-1 H2O2) than the eukaryotic alga P. subcapitata (7-d EC50: 5.2-9.2mg L-1 H2O2), 
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indicating potential for selective control of prokaryotic algae. For the three non-target 

animals evaluated, measured 96-h LC50 values ranged from 1.0 to 19.7mg L-1 H2O2. C. 

dubia was the most sensitive species, and the least sensitive species was P. promelas, 

which is not likely to be affected by concentrations of H2O2 as SCP that would be used to 

control noxious algae (e.g. M. aeruginosa). Based on information from peer-reviewed 

literature, other algaecides could be similarly selective for cyanobacteria. Of the 

algaecides compared, SCP can selectively mitigate risks associated with noxious 

cyanobacterial growths (e.g. M. aeruginosa) while providing a margin of safety for non-

target species (e.g. P. promelas).  
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 Introduction 

Sodium carbonate peroxyhydrate (SCP) is a relatively new, hydrogen peroxide 

(H2O2)-based active ingredient (USEPA, 2004) used by water resource managers in 

algaecide formulations to control growths of noxious algae that interfere with critical uses 

of water resources (Gettys et al., 2014). As a granular algaecide, SCP is applied by 

broadcast over a treatment area from a boat or the shore (Bishop and Rodgers, 2011), 

dissolved in site water and sprayed, or mixed and injected into the water column, 

depending on the specific location and distribution of target algae. A treatment goal for 

using an algaecide to control noxious algal growth is to maximize efficacy for target algal 

species while minimizing risks for non-target species. To use SCP effectively and 

efficiently for controlling noxious algal growths in aquatic systems, comparative toxicity 

data are needed for both target and non-target species, which are anticipated to have 

different sensitivities. Comparative toxicity studies often evaluate the toxicity of a single 

constituent to an array of organisms or contrast the toxicity of an array of constituents to 

a select organism(s). Laboratory experiments involve exposing organisms in relatively 

unconfounded situations in order to discern innate sensitivity.  Ranking organisms in 

terms of their sensitivity to SCP provides information about types of algae (e.g. 

prokaryotic versus eukaryotic) that can be effectively controlled by SCP, and can be used 

to calculate potential margins of safety for non-target organisms. After sensitives are 

determined for a range of target and non-target organisms exposed to SCP, comparisons 

of toxicity data for SCP and other algaecides can provide context for the relative toxicity 

of different active ingredients that are available for use (i.e. H2O2, copper formulations, 
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endothal, and diquat dibromide). These comparative toxicity data provide information 

necessary for making scientifically defensible algal management decisions (Fitzgerald 

1964; Fitzgerald and Jackson 1979; Mastin et al., 2002; Osgood 2007). 

Efficacy for target algal populations is central to a successful algaecide treatment 

design. Drabkova et al. (2007) suggested that prokaryotic cyanobacteria were more 

sensitive than eukaryotic green algae to exposures of H2O2. This indicates a potential 

benefit of SCP as a selective algaecide for treating target cyanobacteria, while 

minimizing effects for non-target eukaryotic algal species. Exposure to a series of H2O2 

concentrations from SCP can identify sensitivities (i.e. EC50s) of and potency (i.e. 

potency slopes) to Microcystis aeruginosa Kützing, a prokaryotic cyanobacterium that 

can produce toxins (e.g. microcystins and nodularins; WHO 1993, Falconer 1999, 

Carmichael et al., 2001; Zurawell et al., 2005), and Pseudokirchneriella subcapitata 

Gomont, a eukaryotic green alga that can benefit some water resources as a source of 

food for aquatic animals (USEPA, 2002). Management decisions to minimize risks for 

non-target organisms can be supported by comparative toxicity information (i.e. LC50 

values and potency slopes) for a taxonomic range of animals (i.e. invertebrates and 

vertebrates). Ceriodaphnia dubia Richard (micro crustacean) and Hyalella azteca 

Saussure (amphipod) are invertebrates that inhabit water columns and sediment-water 

interfaces of North American water bodies, respectively (USEPA 2000; USEPA 2002; 

APHA 2005).  Pimephales promelas Rafinesque (fathead minnow) inhabit waters of 

North America and provide a means for contrasting the responses of a vertebrate with 

responses of invertebrates test species (USEPA 2002; APHA 2005) in the present context 
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of exposures to an SCP algaecide. The non-target animal species included in this study 

are common test organisms for evaluating the potencies of pesticides and other toxic 

materials (USEPA 2000; USEPA 2002; APHA 2005). This taxonomic range of target and 

non-target species improves confidence with which toxicity data for SCP can be used for 

risk assessments. 

Algaecide exposure concentrations must be confirmed to evaluate toxicity to 

target and non-target organisms (USEPA, 2002). The analytical method used to confirm 

H2O2 from SCP exposures must be sensitive enough to measure concentrations of H2O2 

within the manufacturer’s recommended application rates. Klassen et al. (1994) 

demonstrated a simple and sensitive as well as accurate method for measuring H2O2 

concentrations as low as ~0.1mg L-1 by reacting samples with acidified potassium iodide 

(KI) and using visible wavelength spectrometry to measure the optical absorbance of the 

triiodide (I3) formed. Kinley et al. (2015) indicated that the attributes of the I3
- method 

(i.e. detection limit and storage stability) are sufficient to confirm concentrations of H2O2

from SCP additions in laboratory toxicity tests.  

The overall objective of this study was to compare responses of an array of 

freshwater organisms following exposures to H2O2 as SCP in laboratory formulated 

water. To achieve this overall objective, specific objectives were to (i) measure and 

compare responses of a prokaryotic alga (M. aeruginosa) and a eukaryotic alga (P. 

subcapitata) in terms of cell density and chlorophyll a concentrations to 96-hr exposures 

of H2O2 as SCP, (ii) measure and compare responses of a vertebrate (P. promelas) and 

invertebrates (C. dubia and H. azteca) in terms of mortality to 96-hr exposures of H2O2 as 
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SCP, (iii) confirm exposures of H2O2 resulting from additions of SCP, and (iv) compare 

measured toxicity of SCP to vertebrates, invertebrates, and algae with published toxicity 

data for copper algaecide formulations, endothall, and diquat dibromide.  
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Materials and Methods 

Preparation of SCP exposures 

The algaecide Phycomycin® SCP (Arch Chemicals a Lonza Business, Applied 

Biochemists, Alpharetta, GA; Table 1), was used as the source of SCP. Exposures were 

accomplished by dissolving SCP granules (27.6% H2O2; AB, 2007) in moderately hard 

water or algal growth medium. H2O2 concentrations were measured 

spectrophotometrically immediately after complete dissolution of SCP using the I3
- 

method (MDL=0.1 mg H2O2 L-1, CV= 1.5%) with a 1 cm cuvette and SpectraMax®M2 

Microplate Reader (Molecular Devices Corp. Sunnyvale, CA 94089; Klassen et al., 1994; 

Kinley et al., 2015). 

Toxicity Testing Procedures 

Static, non-renewal exposures were conducted in 250 mL borosilicate beakers 

(USEPA 1996a, 1996b). All organisms were exposed to a series of H2O2 concentrations 

as SCP to elicit responses ranging from no response to complete animal mortality or 

inhibition of algal growth.  

P. subcapitata was obtained from the University of Texas culture collection

(UTEX 1648, Austin, TX), and M. aeruginosa from the Canadian Phycological Culture 

Center (CPCC 300) at the University of Waterloo in Ontario, Canada. Prior to testing, 

both algae were grown in COMBO medium (Kilham et al., 1998) with an 18:6-h 

light:dark photoperiod at 23±2°C, illuminated by cool-white fluorescent bulbs 

(Residential Ecolux 40 W, GE) at 2660 LUX. Algae were exposed in 250 mL beakers 

containing 200 mL of COMBO medium with a cell density of ~106 cells mL-1. Responses 
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of algae to exposures (i.e. cell densities and chlorophyll a concentrations) were measured 

initially and after 96-h. Cell densities were measured using light microscopy and an 

improved Neubauer hemocytometer (with a gridded sample chamber, MDL=5x104 cells 

mL-1; Hausser Scientific Co. Horsham, PA 19044) and chlorophyll a concentrations were 

measured fluorometrically (MDL=10µg L-1, CV=±10%) using a SpectraMax®M2 

Microplate Reader (Molecular Devices Corp. Sunnyvale, CA 94089; APHA, 2005).  

Freshwater animals (P. promelas, C. dubia, and H. azteca) were cultured at 

Clemson University’s Aquatic Animal Research Laboratory (AARL) according to 

methods of the United States Environmental Protection Agency (USEPA, 2002), and in 

compliance with Clemson University’s Institutional Animal Care and Use Committee 

(IACUC) protocols. All toxicity tests for P. promelas were conducted by exposing 30 

organisms (<24-h old) per concentration (10 organisms per replicate for 3 replicates) in 

250 mL borosilicate beakers. Toxicity tests for C. dubia were conducted by exposing 20 

organisms (<24-h old) per concentration (5 organisms per replicate for 4 replicates) in 15 

mL borosilicate vials. During exposures, C. dubia were fed once daily with 200 μL of a 

1:1 mixture of P. subcapitata and YCT (yeast, cerophyll, trout chow). Toxicity tests for 

H. azteca were conducted by exposing 30 organisms (2-3 weeks old) per concentration

(10 organisms per replicate for 3 replicates) in 250 mL borosilicate beakers. Amphipods 

were fed at test initiation with 2-3 7mm maple leaf disks. At least five exposure 

concentrations were used for each experiment, and untreated controls were moderately 

hard water only. Toxicity tests were conducted with an 18:6-h light:dark photoperiod at 
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23±2°C. After 96-h, the number of live organisms for each exposure concentration were 

counted (ASTM, 2014).  

For quality assurance and quality control confirming the health of test organisms 

and ensuring precision through time, reference toxicity tests were conducted concurrently 

with SCP tests for all test species using a recommended reference toxicant, copper sulfate 

(CuSO4•5H2O; Fisher Scientific; Jop et al., 1986; USEPA, 1991). Exposures as acid 

soluble copper concentrations were confirmed using flame atomic absorption 

spectroscopy and graphite atomic absorption spectroscopy (Agilent PSD 120 atomic 

absorption spectrometer; APHA, 2005). 

Water characteristics in exposures were measured at test initiation and 

completion. Dissolved oxygen, pH, and conductivity were measured using a YSI® Model 

52 dissolved oxygen meter (±0.1 mg/L), Orion® 4-Star pH meter and Triode® electrode 

(±0.01 SU), and YSI® 30 conductivity meter (±1 μS/cm2), respectively. Hardness (±2 

mg/L as CaCO3) and alkalinity (±2 mg/L as CaCO3) of samples were measured according 

to Standard Methods for Examination of Water and Wastewater (APHA, 2005).  

Statistical analyses  

Exposure-response relationships were calculated for each organism.  For algal 

species, cell density and chlorophyll a concentrations were analyzed using non-linear 

regression with a sigmoid and 4-parameter logistic fit function. Inflection points 

calculated are synonymous with EC50 values. For animal species, 96-h median lethal 

effect concentrations (96-h LC50) were calculated using Probit analysis. Potency slopes 

for all organisms were calculated using regression analyses following the logistic (algae) 
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or Probit (animals) procedures. The linear portion of each potency curve was used to 

derive regression equations estimating the potency slopes (Fuentes et al., 2011). 

Calculated median effect concentrations and slopes were used to compare responses of 

target and non-target organisms. All data were analyzed using JMP v. 11.2.1 (2013;  = 

0.05). 

Comparisons with other algaecides  

To provide context for these data and data for other algaecides, a strategic 

literature review was performed to obtain target and non-target toxicity data (i.e. EC/LC50

values) for endothall, diquat dibromide, and formulations of copper based-algaecides. 

Criteria for inclusion of published toxicity data were (i) data were peer-reviewed, (ii) 

relevant response endpoints were measured, and (iii) sufficient information was provided 

for accurate interpretation of data [i.e. exposure duration, product versus active ingredient 

(i.e. diquat dibromide v. diquat cation, endothall salt v. endothall acid), water 

characteristics, age of test organisms]. Median effect concentrations were used to 

compare potencies of each algaecide for target organisms (i.e cyanobacteria). To compare 

toxicity of SCP and other algaecides to non-target organisms, margins of safety (MOS) 

were calculated. A margin of safety is the concentration at which control of target algae 

was obtained compared to concentrations causing adverse effects on non-target species.    
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Results and Discussion 

Responses of target and non-target algae 

At an initial cell density of 9.7x105 cells mL-1, 96-h EC50 values for M. 

aeruginosa in terms of chlorophyll a and cell density were 1.0 and 0.9 mg L-1 H2O2, 

respectively (Table 2). 96-h potency slopes for M. aeruginosa in terms of chlorophyll a 

and cell density were 50.6 percent response/mg H2O2 L-1 and 49.0 percent response/mg 

H2O2 L-1, respectively. Densities of both M. aeruginosa and P. subcapitata increased in 

untreated controls throughout the course of the experiment. 

The non-target green alga P. subcapitata was less sensitive by an order of 

magnitude (in terms of 96-h and 7-d EC50s) than the target cyanobacterium M. aeruginosa 

at initial cell densities of 7.92 x 105 cells mL-1 and 9.72 x 105 cells mL-1, respectively. 

Responses of P. subcapitata (chlorophyll a and cell densities) manifested in 96-h from 

exposures less than 276 mg L-1 H2O2 were insufficient to calculate EC50s. Therefore, the 

experiment duration was extended to 7-d, and the range of responses manifested after this 

duration was used to calculate median effects concentrations. 7-d EC50 values in terms of 

chlorophyll a and cell density were 5.2 and 9.2 mg L-1 H2O2, respectively (Table 2). 

Furthermore, P. subcapitata was less sensitive than M. aeruginosa in terms of potency 

slopes; 7-d potency slopes of P. subcapitata in terms of chlorophyll a and cell density 

were 7.2 percent response/mg H2O2 L-1 and 7.4 percent response/mg H2O2 L-1, 

respectively. 

Often, a goal of an algaecide application is to selectively control a noxious alga or 

assemblage of algae. Supporting results from this study, other studies comparing 
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responses of cyanobacteria and eukaryotic algae reported cyanobacteria were more 

sensitive to H2O2 (Barroin and Feuillade, 1986; Drabkova et al., 2007a, 2007b; 

Barrington and Ghadouani, 2008; Matthijs et al., 2012; Barrington et al., 2013; Burson et 

al., 2014). Wide ranging responses of algae to algaecide exposures have been attributed 

to characteristics of the algae (e.g. structure, Fitzgerald, 1964; Fattom and Shilo, 1984; 

Speziale et al., 1991; Dyck, 1994). Cyanobacteria contain photosynthetic apparatuses in 

the thylakoid membrane and inter membrane space, in proximity to the plasma membrane 

(Barroin and Feuillade, 1986; Baulina, 2012), whereas eukaryotic algae have internalized, 

discrete, membrane bound organelles (i.e. chloroplasts; Barroin and Feuillade, 1986). 

Toxicity of H2O2 has been attributed to formation of hydroxyl radicals and resulting 

general oxidation of biomolecules (Russel et al., 2003; Drabkova et al., 2007; Finnegan et 

al., 2010). Targeted biomolecules include photosynthetic apparatuses as well as 

photosynthetic pigments (Drabkova et al., 2007). Internal, membrane-bound organelles 

may offer additional protection for photosynthetic apparatuses along with the cell’s 

plasma membrane and cell wall when algae are exposed to H2O2.  

Responses of non-target animals 

In terms of both median lethal effect concentrations and potency slopes, 

invertebrates were more sensitive to 96-h exposures of H2O2 than the vertebrate P. 

promelas (Figure 3). The most sensitive invertebrate in this study was C. dubia: the 96-h 

LC50 for C. dubia was 1.0 mg L-1 H2O2 (Table 2) and the potency slope was 28.4 

percentage mortality/mg H2O2 L-1. The amphipod H. azteca was less sensitive than C. 

dubia: the 96-h LC50 was 3.6 mg L-1 H2O2 and the potency slope was 21.2 percentage 
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mortality/mg H2O2 L-1. The vertebrate P. promelas was less sensitive than both 

invertebrates used in this study: the 96-h LC50 was 19.7 mg L-1 H2O2 and the potency 

slope was 5.8 percentage mortality/mg H2O2 L-1.  

Differences in toxicity of H2O2 as SCP to invertebrates and vertebrates are likely 

due to the mechanism of action, as well as organism sizes (Rand, 1995; Wright and 

Welbourn, 2002). The toxicity of H2O2 is attributed to general oxidation of biomolecules, 

including nucleic acids, proteins, lipids, and large polymers (Wright and Welbourn, 2002; 

Russel et al., 2003; Drabkova et al. 2007, Finnegan et al., 2010). Toxicity is likely a 

function of the quantity of H2O2 molecules reaching active sites. Larger organisms (i.e. P. 

promelas) would need to be exposed to a greater concentration compared to a smaller 

organism in order to involve the same concentration per unit weight and manifest similar 

responses (Wright and Welbourn, 2002).  

Water characteristics 

Water characteristics (pH, dissolved oxygen, conductivity, alkalinity, and 

hardness) measured at test initiation and completion were within ranges for tolerances of 

organisms (Table 5; ASTM, 2014). There was a trend of increasing alkalinity, 

conductivity, and pH in comparison with the untreated control with increasing 

concentrations of SCP (Table 3), likely due to adding mg L-1 level concentrations of SCP 

and initial alkalinity of test waters. 

Reference toxicant exposures and responses 

For reference toxicity tests, measured acid soluble copper concentrations from 

additions of copper sulfate were 98% ±8.7% of targeted exposures (Table 5). Water 
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characteristics did not change from test initiation to test conclusion, and were within 

tolerance limits for the organisms tested (Table 3; ASTM, 2014). 

At an initial density of 4.73 x 106 cells mL-1 the 96-h EC50 values for M. 

aeruginosa in terms of chlorophyll a and cell density were 0.245 and 0.086 mg L-1 Cu as 

copper sulfate, respectively (Table 4). At an initial density of 8.0 x 105 cells mL-1 the 96-

h EC50 values for P. subcapitata in terms of chlorophyll a and cell density were 1.65 mg 

L-1 Cu as copper sulfate and 0.692 mg L-1 Cu as copper sulfate, respectively. Potency

slopes for M. aeruginosa in terms of chlorophyll a and cell density were 149.7 percent 

response/mg Cu  L-1 and 77.8 percent response/mg Cu L-1, respectively. Potency slopes 

for P. subcapitata in terms of chlorophyll a and cell density were 12.4 percent 

response/mg Cu L-1 and 12.4 percent response/mg Cu L-1 , respectively. M. aeruginosa 

and P. subcapitata densities in untreated controls increased throughout the course of the 

experiment. Responses of M. aeruginosa and P. subcapitata were consistent with 

reported inter- and intra-laboratory toxicity data (Calomeni et al., 2014; Hadjoudja et al., 

2014). Chlorophyll a and cell density were used to measure algal responses in the present 

study. Chlorophyll a is a reliable aggregate measure of cell viability for an axenic algal 

culture, but assumes that chlorophyll a within non-viable cells breaks down and is not 

solubilized by acetone during extraction. Thus cell density, an individual measure 

allowing for evaluation of cell viability on a cell-by-cell basis, can be a more sensitive 

response measure if chlorophyll a does not degrade within the toxicity test duration 

(Calomeni et al., 2014).   
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The 96-h LC50 for C. dubia was 0.053 mg L-1 Cu as copper sulfate (Table 4). For 

H. azteca, the 96-h LC50 was 0.489 mg L-1 Cu as copper sulfate. The 96-h LC50 for P.

promelas was 0.408 mg L-1 Cu as copper sulfate. C. dubia showed the greatest change in 

response with increasing copper concentrations; the potency slope of C. dubia was 740.9 

percentage mortality/mg Cu L-1, approximately 2.6 times greater than potency slope of H. 

azteca (283.3 percentage mortality/mg Cu L-1) and approximately 3.3 times greater than 

potency slope of P. promelas (223.7 percentage mortality/mg Cu L-1). Copper sulfate 

reference toxicity data in the present study were consistent with reported inter- and intra-

laboratory toxicity data (Suedel et al., 1996; Deaver and Rodgers, 1996; Mastin and 

Rodgers, 2000; Murray-Gulde et al., 2002; Closson and Paul, 2014).  

Comparison of target and non-target organism responses to SCP exposures 

In the present study, median effect concentrations for three non-target species (H. 

azteca, P. subcapitata, and P. promelas) were greater than the median effect 

concentration for the target cyanobacterium, M. aeruginosa. Based on current registered 

application rates of SCP (0.2 to 10.2 mg L-1 H2O2), P. promelas is unlikely to be 

adversely affected by an SCP application; the 96-h LC50 for P. promelas and H2O2 as 

SCP was approximately 1.9 times greater than the maximum registered application rate 

for Phycomycin® SCP. Although results of the present study indicate that a margin of 

safety is not expected for C. dubia, as the 96-h LC50 for C. dubia was nearly equivalent to 

the 96-h EC50 for M. aeruginosa, exposures in this study were more conservative than 

field exposures. Organisms were confined within test chambers to ensure contact with 

exposures, while in aquatic systems, mobile organisms may avoid exposures. Naïve 
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organisms were tested (i.e. P.promelas and C. dubia were < 24-h old, H. azteca were 2-3 

weeks old), and additional testing would be necessary to understand if all life stages 

respond equally to concentrations of SCP controlling M. aeruginosa. A margin of safety 

could exist for C. dubia, depending on site-specific factors, including target algae as an 

active site for oxidation by H2O2, initial concentration of SCP applied, actual exposure 

concentration of H2O2 achieved, proximity of the organisms to the exposure, and age and 

condition of the organism(s). 

Confirmation of H2O2 exposures from SCP 

Measured exposures were 86% ±16% of targeted exposures (Table 5). Detection 

limits of the I3
- method were sufficient to measure concentrations of H2O2 as SCP within 

the recommended application range of SCP. Based on recommendations of Kinley et al 

(2015), exposure concentrations above detection limits and above the recommended 

application range were diluted prior to measurement. To improve accuracy and minimize 

potential interferences of algae, samples were filtered with a 0.45μm cellulose filter paper 

prior to measurement (Kinley et al., 2015). H2O2 measurements made using the I3
- 

method (Klassen et al., 1994) were useful to confirm exposures that elicited responses of 

organisms as a function of increasing H2O2 concentrations. 

Comparison of SCP with other algaecides 

Using potency data for target organisms and margins of safety for non-target 

organisms, relative toxicities of sodium carbonate peroxyhydrate, copper (as copper 

sulfate and chelated copper formulations), endothall, and diquat dibromide were 

contrasted to provide context for the use of these algaecides in the field. In the United 
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States, the Environmental Protection Agency (USEPA) registers products with these 

active ingredients for control or suppression of algae (Gettys et al., 2014). In terms of 

effectiveness against target species, responses of target algae (i.e. cyanobacteria) to SCP 

exposures occurred at mg L-1 level concentrations, whereas target and non-target 

organisms responded to concentrations of copper, endothall, and diquat dibromide that 

were three orders of magnitude lower (i.e. μg L-1).  

 In addition to potencies, margins of safety for non-target species are an important 

factor that should be considered when comparing different algaecides. Margins of safety 

were calculated as the quotient of the maximum recommended application rate for each 

algaecide divided by the toxicity value (i.e. EC/LC50) obtained from the literature review. 

The maximum application rate is the highest concentration registered for application to 

control noxious algae in water of the United States, as determined by the USEPA. Thus, 

these margins of safety are meant to be conservative; the actual concentration at which 

control of algae is obtained may be less than the maximum application rate. The primary 

utility of these margins of safety is for comparison of algaecides that elicit harmful 

effects for non-target organisms at different concentration levels (i.e. mg L-1 vs. μg L-1). 

Values greater than one indicate a clear margin of safety; the concentration eliciting 

adverse effects to non-target species is greater than the highest concentration that could 

be applied to control or suppress a target alga. Values less than one do not indicate a lack 

of a margin of safety, rather that a margin of safety may be minimal, and site-specific 

information is required for accurate evaluation (i.e. site-specific organism sensitivity, 

water characteristics, and algaecide application rate). Margins of safety for non-target 
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organisms exposed to SCP ranged from 0.5 to 2.2 (Table 6). Margins of safety for non-

target organisms exposed to copper-based algaecides ranged from <0.01 to 1.3. For 

diquat dibromide, margins of safety ranged from 0.13 to 37.8 (Table 7), while for 

endothall margins of safety ranged from 0.01 to greater than 0.05.  

Median effect concentrations of non-target eukaryotic algae were greater than 

those for cyanobacteria for all four active ingredients reviewed. Additionally, margins of 

safety for non-target eukaryotic algae were greater than one for SCP (Table 6; Schrader et 

al., 1998) and two copper-based algaecide formulations (i.e. copper sulfate and Cutrine®-

Ultra; present study; Schrader et al., 1998; Calomeni et al., 2014). Thus, these four active 

ingredients could be used selectively against target cyanobacteria (i.e M. aeruginosa). C. 

dubia was the most sensitive animal for both SCP and copper algaecides: margins of 

safety for C. dubia and copper-based algaecide exposures ranged from <0.01 to 0.1, 

while the margin of safety for C. dubia and SCP exposures was 0.13. Diquat dibromide 

may be more potent to H. azteca than both copper and SCP, as the margin of safety (0.13) 

was less than for copper (0.08-0.4) and SCP (0.4). The margin of safety for P. promelas 

exposed to SCP was 2.2, indicating that the LC50 was well above the highest 

concentration of SCP that could be used to control noxious algae. Similarly, the margin 

of safety for diquat dibromide was greater than one for fish P. promelas (20.4) and L. 

macrochirus (32.9-37.8), indicating that diquat dibromide may also be protective of fish 

species. It should be noted, however, that current allowable application concentrations for 

diquat dibromide are intended for suppression of algae only. To achieve control of algae, 

diquat dibromide must be used in conjunction with other registered algaecides (Syngenta 
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Crop Protection, LLC, Greensboro, NC). Copper-based algaecides and endothall products 

may have limited margins of safety for vertebrate fish. Seven of the eight published 

toxicity values included in this study for P. promelas exposed to copper-based algaecides 

resulted in margins of safety below one (0.1-0.7). While no toxicity information for 

vertebrate fish exposed to endothall fit criteria for inclusion in this study, endothall 

product labels include language that urges caution when applying concentrations above 

0.3 mg L-1 due to risk of adverse effects to fish (United Phosphorous, Inc., King of 

Prussia, PA 19406). Compared to copper-based algaecides, diquat dibromide, and 

endothall, use of SCP could provide control of target algae with an enhanced margin of 

safety for non-target fish.  

Considerations for Use of Laboratory Data in the Field 

Results of the present comparative toxicity study can be used to predict the 

distribution of responses likely to occur in the field; however, they are not intended for 

direct translation to field situations. Organism responses in both the laboratory and field 

are a function of exposure, which has components of concentration, duration, form, and 

the frequency at which organisms are exposed (Rand, 1995). Environmental factors may 

influence one of more of these exposure parameters, fundamentally changing the 

exposure. The duration of exposure in a lacustrine environment may be influenced by 

dispersion and dilution. For H2O2 exposures specifically, oxidizable material in site water 

may consume the activity of H2O2, altering exposures for target and non-target species. 

Organisms may actively avoid an exposure, as has been extensively studied with fish and 

copper exposures (Sprague, 1964; Svecevicius, 2012). Further, a surficial algaecide 
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application to control noxious planktonic (free-floating) algae may not achieve sufficient 

exposure in the benthic region to adversely affect sediment-dwelling invertebrates. 

Likewise, exposures of algaecides in benthic areas of aquatic systems may not achieve 

sufficient exposures to adversely affect organisms near the surface. 

In the present laboratory study, factors altering exposures were limited to evaluate 

responses of organisms to unconfounded exposures of H2O2 as SCP. To ensure maximum 

exposure amplitude and duration, naïve laboratory cultured organisms at their most 

sensitive life stage (as opposed to field-collected organisms) were confined within test 

chambers. By controlling toxicity test conditions to limit confounding factors, relative 

sensitivities of a range of organisms could be discerned, supporting predictions of the 

distribution of responses likely to occur in the field. Results of the present study indicate 

that in a field treatment, a noxious cyanobacterium (i.e. M. aeruginosa) is likely to 

respond to an exposure of H2O2 from SCP that is significantly lower than the exposure 

required to adversely affect fish (e.g. P. promelas). Within the constraints of conservative 

laboratory toxicity testing, incorporating site characteristics would provide more site-

specific conditions for predicting exposures and subsequent responses in field situations 

(Fitzgerald and Jackson, 1979; Bishop and Rodgers, 2011; Calomeni et al., 2015).  
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Conclusions 

In this comparative toxicity study, a cyanobacterium and two invertebrates were 

more sensitive than a eukaryotic alga and a vertebrate to exposures of H2O2 from an SCP 

algaecide. 96-h EC50 values ranged from 1.0 to 19.7 mg L-1 H2O2
 for animals, while the 

96-h EC50 for the cyanobacterium M. aeruginosa was 0.9-1.0 mg L-1 H2O2. The 7-d EC50

for the eukaryotic algae P. subcapitata was 5.2-9.2 mg L-1 H2O2, as responses to 

environmentally relevant concentrations of SCP were not manifested in 96-h, while the 

fish P. promelas was not sensitive to exposures within the recommended range of 

application concentrations for the source of SCP used in this study (Phycomycin® SCP; 

0.2 to 10.2 mg L-1 H2O2). SCP is comparable to other algaecides (i.e. copper-based 

algaecides, endothall, and diquat dibromide) and could be used selectively for 

prokaryotic algae. However, SCP may be less potent than diquat dibromide to H. azteca, 

and less potent than copper algaecides to C. dubia, enhancing margins of safety for these 

species. Estimated margins of safety for organisms exposed to SCP in this study are 

conservative, as naïve organisms were used and site-specific factors that could influence 

exposures (e.g. dispersion, dilution, and water characteristics) were constrained in order 

to discern differences in responses of the organisms evaluated. While not directly 

predictive of specific concentrations to which organisms will respond in the field, results 

of this study can be used to predict the distribution of responses likely to occur. Results 

indicate that SCP could mitigate risks associated with noxious cyanobacterial growths 

(e.g. M. aeruginosa) while providing a margin of safety for non-target species.  
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Table 3.1: Physical properties and fate characteristics of Phycomycin® SCP. 

Active ingredient 85% SCP 

Maximum application 
36.9 mg L-1  

(10.2 mg L-1 H2O2)a 

Formulation SCP and inert ingredients 
Physical state Coarse white grainsa 

Water solubility 140g/L at 24ºCa 
Boiling Point Not applicablea 
pH 10.4-10.6 s.u. (1% solution)a 

CAS number 497-19-8a

a
AB (2007) 
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Table 3.2: 96-h and 7-d EC50 values (mg H2O2 L-1) and potency slopes (percent response/mg H2O2 L-1) for M. aeruginosa and 
P. subcapitata, respectively; 96-h LC50 values and potency slopes (percent mortality/mg H2O2 L-1) for C. dubia, P. promelas,

H. azteca, exposed to H2O2 as SCP.

Species Initial Density EC50 (95% CI) Slope 

M. aeruginosa 9.72 x 105 cells mL-1 

Cell Density 0.9 (0.7-1.0) 49.0 
Chlorophyll a 1.0 (0.9-1.0) 50.6 

P. subcapitata 7.92x 105 cells mL-1 

Cell Density 9.2 (7.6-10.8) 7.4 
Chlorophyll a 5.2 (3.2-7.2) 7.2 

Species Age LC50 (95% CI) Slope 

C. dubia < 24-h 1.0 (0.2-1.7) 28.4 
H. azteca 2-3 weeks 3.6 (1.0-6.5) 21.2 
P. promelas < 24-h 19.7 (14.5-31.2) 5.8 
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Table 3.3: Ranges of water characteristics at test initiation and completion for toxicity tests. One replicate measured per 
exposure.   

Organism Time Exposure pH1

(S.U) 

D.O.2

(mg/L)

Conductivity3

(µS/cm) 

Alkalinity4

(mg/L as CaCO3) 
Hardness4

(mg/L as CaCO3) 

C. dubia Initial SCP 8.22-8.82 7.32-8.54 382.3-394.6 70-80 80-90
CuSO4 8.10-8.25 7.11-8.11 378.0-406.4 70-75 80-100

Final SCP 8.17-8.76 8.38-9.34 369.5-402.1 70-80 80-90
CuSO4 8.08-8.23 8.22-8.86 378.0-406.4 70-75 80-100

P. promelas Initial SCP 8.20-9.94 8.37-8.65 367.0-526.1 70-160 80-85
CuSO4 8.08-8.32 7.89-9.23 318.2-328.3 50-65 90-125

Final SCP 8.15-9.85 8.09-8.59 350.2-518.0 70-160 80-85

CuSO4 8.14-8.30 7.02-8.44 405.0-459.0 50-65 90-110
H. azteca Initial SCP 8.15-9.20 7.65-8.20 385.0-415.0 70-90 80-85

CuSO4 7.85-8.27 7.32-8.02 350.0-370.0 65-90 100-125
Final SCP 8.08-9.22 8.26-8.64 366.0-430.3 70-90 80-85

CuSO4 7.89-8.17 8.05-8.26 390.0-410.0 65-75 68-88

P. subcapitata Initial SCP 7.94-10.0 8.32-9.07 417.1-714.0 60-185 72-80
CuSO4 7.46-7.94 9.07-10.4 417.1-420.7 60-80 72-76

Final SCP 7.97-9.23 6.93-8.61 472.0-1471 80-500 65-70
CuSO4 8.16-8.39 6.87-8.04 443.0-470.0 60-70 60-70

M. aeruginosa Initial SCP 8.54-8.84 10.7-11.5 389.8-416.1 70-110 50-55

CuSO4 8.24-8.33 8.00-9.11 440.1-514.6 60-70 60-80
Final SCP 7.95-9.60 8.08-12.6 333.2-397.2 80-115 45-55

CuSO4 8.15-8.40 7.48-8.70 488.0-524.0 60-75 60-80
1pH was measured using an Orion® 4-Star pH meter and Triode® electrode (±0.01 SU) 
2Dissolved oxygen was measured using a YSI® Model 52 dissolved oxygen meter (±0.1 mg/L) 
3Conductivity was measured using YSI® 30 conductivity meter (±1 μS/cm2) 
4Alkalinity and hardness were measured according to standard methods 2320 (±2 mg/L as CaCO3) and 2340 (±2 mg/L as 
CaCO3), respectively (APHA, 2005) 
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Table 3.4: 96-h and 7-d EC50 values (mg Cu L-1) and potency slopes (percent response/mg Cu L-1) for M. aeruginosa and P. 
subcapitata, respectively, and 96-h LC50 values and potency slopes (percent mortality/mg Cu L-1) for C. dubia, P. promelas, H. 

azteca, exposed to copper as CuSO4 in reference toxicity tests 

Species Initial Density EC50 (95% CI) Slope 
M. aeruginosa 4.73 x 106 cells mL-1 

Cell Density 0.245 (0.108-0.382) 77.8 
Chlorophyll a 0.086 (0.00-0.219) 149.7 
P. subcapitata 8.00 x 105 cells mL-1

Cell Density 1.65 (0.774-2.53) 12.4 
Chlorophyll a 0.692 (0.577-0.808) 12.4 

Species Age LC50 (95% CI) Slope 
C. dubia < 24-h 0.053 (0.009-0.180) 740.9 
H. azteca 2-3 weeks 0.489 (0.276-0.664) 283.3 

P. promelas < 24-h 0.408 (0.272-0.669) 223.7 
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Table 3.5: Targeted and mean measured H2O2 (as SCP) and Cu (as CuSO4) concentrations in exposures (n=3). 

Species 

Targeted H2O2

Concentration 

Measured H2O2

Concentration 
Percent Error 

Targeted 

Copper 

Concentration 

Measured 

Copper 

Concentration 

Percent Error 

(mg/L) (mg/L) (mg/L) (mg/L) 

M. aeruginosa 0.0 < 0.2 - 0.000 0.061 - 
0.3 0.3 0.07 0.100 0.101 0.01 

0.6 0.4 0.27 0.200 0.212 0.06 
1.1 0.9 0.18 0.400 0.407 0.02 

1.7 1.1 0.34 0.800 0.836 0.04 
2.2 2.1 0.05 1.500 1.520 0.01 
3.0 3.4 0.12  - - - 

P. subcapitata 0.0 < 0.2 - 0.000 0.020 - 

1.4 1.9 0.36 0.250 0.198 0.21 
2.8 2.5 0.11 0.500 0.514 0.03 

5.5 3.5 0.36 1.000 0.929 0.07 
9.9 8.7 0.12 3.000 2.730 0.09 
13.8 11.3 0.18 7.000 6.280 0.10 

27.6 19.8 0.28 10.00 10.56 0.06 

C. dubia 0 < 0.2 - 0.000 0.008 - 
0.8 0.7 0.13 0.010 0.010 0.00 

1.7 1.2 0.29 0.030 0.024 0.20 
2.5 1.5 0.40 0.050 0.045 0.10 
3.3 3.0 0.09 0.070 0.063 0.10 

4.1 3.5 0.15 0.100 0.116 0.16 

 - -  - 0.150 0.138 0.08 

H. azteca 0 < 0.2 - 0.000 < 0.005 - 
2.8 2.3 0.18 0.300 0.346 0.15 
4.1 3.5 0.15 0.400 0.401 0.00 

4.8 4.0 0.17 0.600 0.559 0.07 
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Table 2.5 continued 

H. azteca 5.5 4.6 0.16 0.700 0.674 0.04 
8.3 6.5 0.22 0.800 0.781 0.02 

P. promelas 0.0 < 0.2 - 0.000 0.036 - 

5.5 5.0 0.09 0.150 0.150 - 
11.0 11.0 0.00 0.250 0.250 - 
16.6 15.4 0.07 0.350 0.396 0.13 

20.7 18.9 0.09 0.450 0.430 0.04 
24.8 20.7 0.17 0.600 0.618 0.03 

29 24.2 0.17 - - - 
35.9 28.7 0.20 - -  - 



62 

Table 3.6: Comparison of measured and reported toxicity values and calculated margins of safety for SCP and copper-based 
algaecides  

Test Species  Toxicant 
Test Species 
Age/Density 

Exposure 
Duration 

Endpoint Initial pH
1 

Toxicity Value (mg L
-1 

SCP)
 Margin of 

Safety
1 Reference 

M. aeruginosa 
Phycomycin

®
 

SCP 
9.72 x 10

5 
cells mL

-1
 96-h Chlorophyll a  8.54 EC50 3.1 - Present Study

M. aeruginosa 
Phycomycin

®
 

SCP 
9.72 x 10

5 
cells mL

-1
 96-h Cell density 8.54 EC50 3.5 - Present Study

O. cf. chalybea SCP (Aldrich) 0.18-0.27 A 96-h
Cell density 
(absorbance) 

7.60-9.00 IC50 8.6 - Schrader et al., 1998 

P. subcapitata
Phycomycin

®
 

SCP 
0.80 x 10

6 
 cells mL

-1
 7-d Chlorophyll a  7.94 EC50 18.9 0.51 Present Study 

P. subcapitata
Phycomycin

®
 

SCP 
0.80 x 10

6 
 cells mL

-1
 7-d Cell density 7.94 EC50 33.8 0.92 Present Study 

S. capricornutum SCP (Aldrich) 0.19-0.26 A 96-h
Cell density 

(absorbance) 
7.60-9.00 IC50 68.0 1.84 Schrader et al., 1998 

C. dubia
Phycomycin

®
 

SCP 
< 24-h 96-h Mortality 8.22 LC50 4.7 0.13 Present Study 

Moina sp.  
H2O2 (Sigma-

Aldrich) 
adult  48-h Mortality n/a LC50 2.0 

(2) 
0.20 

(2)
 Reichwaldt et al., 2011 

H. azteca
Phycomycin

®
 

SCP 
2-3 weeks 96-h Mortality 8.15 LC50 14.5 0.40 Present Study 

Daphnia 

carinata 

H2O2 (Sigma-

Aldrich) 
adult  48-h Mortality n/a LC50 5.6 

(2) 
0.55 

(2)
 Reichwaldt et al., 2011 

P. promelas 
Phycomycin

®
 

SCP 
< 24-h 96-h Mortality 8.20 LC50 80.8 2.21 Present Study 

Test Species  Toxicant 
Test Species 
Age/Density 

Exposure 
Duration 

Endpoint Initial pH
1 

Toxicity Value (mg L
-1

 Cu)
 Margin of 

Safety
1 Reference 

M. aeruginosa CuSO4 10
6
 cells mL

-1
 48-h Chlorophyll a  6.80 EC50 0.050 - Hadjoudja et al. 2009

M. aeruginosa CuSO4 4.73 x 10
6 
cells mL

-1
 96-h Chlorophyll a  8.15 EC50 0.086 - Present Study

P. agardhi Cutrine
®
-Ultra 2.21 x 10

6
 cells mL

-1
 96-h Cell density n/a EC50 0.100 - Calomeni et al. 2014 

P. agardhi CuSO4 1.27 x 10
6
 cells mL

-1
 96-h Cell density n/a EC50 0.180 - Calomeni et al. 2014 

M. aeruginosa CuSO4 4.73 x 106 cells mL-1 96-h Cell density 8.15 EC50 0.245 - Present Study

P. subcapitata CuSO4 8.00 x 10
5 
cells mL

-1
 96-h Chlorophyll a  7.46 EC50 0.692 0.35 Present Study

P. subcapitata Cutrine
®
-Ultra 3.02 x 10

6
 cells mL

-1
 96-h Cell density n/a EC50 1.180 1.20 Calomeni et al. 2014 

P. subcapitata CuSO4  8.00 x 10
5 
cells mL

-1 
96-h Cell density 7.46 EC50 1.650 0.83 Present Study

P. subcapitata CuSO4 3.22 x 10
6
 cells mL

-1
 96-h Cell density n/a EC50 3.000 0.15 Calomeni et al. 2014 

D. magna 
Algimycin

®
-

PWF 
<4h 96-h Mortality 7.70 LC50 0.005 <0.01 Johnson et al., 2008 
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Table 3.6 continued 

C. dubia CuSO4 <4h 96-h Mortality 8.00 LC50 0.004 <0.01 Johnson et al. 2008 

C. dubia
Algimycin

®
-

PWF 
<4h 96-h Mortality 8.00 LC50 0.048 0.05 Johnson et al., 2008 

D. magna CuSO4 <4h 96-h Mortality 7.70 LC50 0.005 <0.01 Johnson et al., 2008 

C. dubia Clearigate
®
 < 24-h 96-h Mortality 7.20-8.00 LC50 0.056 0.06 Murray-Gulde et al., 2002 

C. dubia CuSO4 < 24-h 96-h Mortality 7.20-8.00 LC50 0.06 0.03 Murray-Gulde et al., 2002 

C. dubia CuSO4 < 24-h 96-h Mortality 8.10 LC50 0.061 0.03 Present Study 

C. dubia Cutrine
®
-Plus < 24-h 96-h Mortality 7.20-8.00 LC50 0.092 0.10 Murray-Gulde et al., 2002 

H. azteca CuSO4 2-3 weeks 48-h Mortality 6.50-8.20 LC50 0.158 0.08 Mastin and Rodgers 2000 

P. promelas CuSO4 <24-h 96-h Mortality 7.70 LC50 0.230 0.10 Johnson et al., 2008 

P. promelas Captain
®
 XTR 45d 96-h Mortality 8.10 LC50 0.240 0.24 Closson and Paul 2014 

H. azteca Cutrine
®
-Plus 2-3 weeks 48-h Mortality 6.40-8.00 LC50 0.248 0.25 Mastin and Rodgers 2000 

P. promelas 
Algimycin

®
-

PWF 
<24-h 96-h Mortality 7.70 LC50 0.250 0.25 Johnson et al., 2008 

P. promelas Cutrine
®
-Plus < 24-h 48-h Mortality 6.40-8.00 LC50 0.255 0.26 Mastin and Rodgers 2000 

P. promelas CuSO4 45d 96-h Mortality 8.10 LC50 0.280 0.14 Closson and Paul 2014 

H. azteca
Algimycin

®
-

PWF 
<4h 96-h Mortality 7.80 LC50 0.390 0.40 Johnson et al., 2008 

H. azteca CuSO6 <4h 96-h Mortality 7.80 LC50 0.400 0.20 Johnson et al., 2008 

H. azteca Clearigate
®
 2-3 weeks 48-h Mortality 7.30-8.00 LC50 0.434 0.40 Mastin and Rodgers 2000 

P. promelas CuSO4 < 24-h 48-h Mortality 6.50-8.20 LC50 0.480 0.24 Mastin and Rodgers 2000 

P. promelas Clearigate® < 24-h 48-h Mortality 7.30-8.00 LC50 0.480 0.48 Mastin and Rodgers 2000 

P. promelas Clearigate
®
 < 24-h 96-h Mortality 7.20-8.00 LC50 0.481 0.48 Murray-Gulde et al., 2002 

H. azteca CuSO4 2-3 weeks 96-h Mortality 7.85 LC50 0.508 0.25 Present Study 

P. promelas CuSO4 < 24-h 96-h Mortality 7.46 LC50 0.519 0.26 Present Study 

P. promelas CuSO4 < 24-h 96-h Mortality 7.20-8.00 LC50 0.675 0.34 Murray-Gulde et al., 2002 

P. promelas Captain
®
 45d 96-h Mortality 8.10 LC50 0.690 0.70 Closson and Paul 2014 

P. promelas Cutrine
®
-Plus < 24-h 96-h Mortality 7.20-8.00 LC50 1.115 1.10 Murray-Gulde et al., 2002 

L. macrochirus 
(Blucgill)

CuSO4 10-12 days 96-h Mortality 8.20 LC50 2.640 1.30 Johnson et al., 2008 



64 

1
Margin of safety= toxicity value / maximum recommended application concentration for the control of algae [SCP  = 100lbs SCP per acre-ft, or 36.9 mg L

-1 
SCP (Applied Biochemists Inc., 

Germantown, WI 53022); chelated copper-based algaecides = 1.0 mg L
-1 

Cu (Arch Chemicals a Lonza Business, Applied Biochemists, Alpharetta, GA); copper sulfate = 2.0 mg L
-1 

Cu (Arch 

Chemicals a Lonza Business, Applied Biochemists, Alpharetta, GA)] 

2
Toxicity values from Reichwaldt et al. (2012) have units of mg H2O2 L

-1
, because liquid H2O2 rather than granular SCP was used to create exposures. Margins of safety were calculated with 

the concentration of H2O2 equivalent to the maximum concentration of SCP recommended for control of algae [i.e. 36.9 mg L
-1 

SCP, equivalent to 10.2 mg L
-1 

H2O2 (Arch Chemicals a Lonza 

Business, Applied Biochemists, Alpharetta, GA)] 
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Table 3.7: Comparison of reported toxicity values and calculated margins of safety for diquat dibromide and endothall. 

Test Species Toxicant 
Test Species 

Age/Density 

Exposure 

Duration 
Endpoint 

Initial 

pH
1

Toxicity Value 

(mg L
-1

) 

Correction 

Factor
1

Corrected 
Toxicity Value 

(mg L
-1

 cation)
1
 

Margin 

of Safety
2
 

Referenc 

O. cf. chalybea
Diquat dibromide, 

technical (Chem Service) 
0.18-0.27 A 96-h

Cell density 

(absorbance) 
7.60-9.00 IC50 0.0122

 
0.536 0.01 -- 

Schrader et al., 

1998 

M. aeruginosa Diquat dibromide 
117 x 10

4
 

cells mL-1 
96-h

Carbon 

uptake 
n/a EC50 0.098 0.536 0.05 -- 

Peterson et al., 

1997 

H. azteca
Diquat dibromide, 

technical (Chem Service) 
4-8 mm 96-h Inhibition 6.80-7.00 TLm 0.048 None 0.05 0.13 Wilson 1969 

S. capricornutum Diquat dibromide 
63 x 10

4
 cells 

mL
-1

 
96-h

Carbon 
uptake 

n/a EC50 0.492 0.536 0.26 0.72 
Peterson et al., 
1997  

D. magna n/a First instar 48-h Inhibition n/a EC50 0.77 None 0.77 2.10 USEPA 1995 

S. capricornutum
Diquat dibromide, 

technical (Chem Service) 
0.19-0.26 A 96-h

Cell density 
(absorbance) 

7.60-9.00 IC50 1.73 0.536 0.93 2.50 
Schrader et al., 
1998 

D. magna n/a First instar 48-h Inhibition n/a EC50 1.03 None 1.03 2.80 USEPA 1995 

D. magna n/a First instar 48-h Inhibition n/a EC50 1.19 None 1.19 3.20 USEPA 1995 

P. promelas 
Diquat dibromide (Ortho 

Chemical Company) 
n/a 96-h Survival 7.10-7.40 TLm 14.0 0.536 7.50 20.4 

Surber and 
Pickering 1962 

L. macrochirus 

(Blucgill)
n/a n/a 72-h Mortality n/a LC50 12.1 None 12.10 32.9 USEPA 1995 

L. macrochirus 
(Blucgill)

n/a n/a 96-h Mortality n/a LC50 13.9 None 13.90 37.8 USEPA 1995 

C. idella

(Grass carp)

Diquat dibromide (Ortho 

Chemical Company) 
n/a 96-h Mortality 7.00-7.60 LC50 53.0 0.536 28.41 77.2 

El-Deen and 

Rogers 1992 

Test Species Toxicant 
Test Species 
Age/Density 

Exposure 
Duration 

Endpoint 
Initial 

pH
1

Toxicity Value 
(mg/L) 

Correction 
Factor

1

Corrected 

Toxicity Value 
(mg L

-1
 

endothall acid)
1
 

Margin 
of Safety

2
 

Reference 

M. aeruginosa 
Hydrothol

® 
191 (Elf 

AtoChem) 
1.5 x 10

6
 

cells mL
-1 96-h Cell density n/a EC50 0.065 0.2336 0.015 0.01 

Ruzycki et al., 
1998 

P. inundaium
Hydrothol

® 
191 (Elf 

AtoChem) 
2.2 x 10

5
 

cells mL
-1

 
96-h Cell density n/a EC50 0.099 0.2336 0.023 0.01 

Ruzycki et al., 
1998 

C. meneghiana
Hydrothol® 191 (Elf 

AtoChem) 

5.3 x 105 

cells mL
-1

 
96-h Cell density n/a EC50 0.232 0.2336 0.054 0.02 

Ruzycki et al., 

1998 

S. acuminatus 
Hydrothol

® 
191 (Elf 

AtoChem) 
1.05 x 10

5
 

cells mL-1 
96-h Cell density n/a EC50 0.417 0.2336 0.097 0.03 

Ruzycki et al., 
1998 
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Table 3.7 continued 

C. vulgaris 
Hydrothol

® 
191 (Elf 

AtoChem) 

3x 10
5
 cells 

mL
-1

 
96-h Cell density n/a EC50 >0.6 0.2336 >0.14 >0.05

Ruzycki et al., 
1998 

1
Correction factor used to express toxicity value in terms of active ingredient [diquat  cation and 7-oxabicyclo [2.2.1] heptane-2,3-dicarboxylic acid (i.e. endothall acid) for diquat and 

endothall, respectively]. Assumption is 3.73 lbs of diquat dibromide is equivalent to 2 lbs of diquat cation (Syngenta Crop P rotection, LLC, Greensboro, NC 27419-8300) and the acid 
equivalence of Hydrothol

® 
191 is 23.36% (United Phosphorous, Inc., King of Prussia, PA 19406)  

2
Margin of safety = toxicity value / maximum recommended application rate for suppression (diquat dibromide) or control (endothall) of algae [diquat dibromide = 0.5 gallons of product per 

surface acre for 1 ft  depth, equivalent to 0.368mg L
-1

 diquat cation (Syngenta Crop Protection, LLC, Greensboro, NC 27419-8300); endothall = 3mg L
-1 

endothall acid (based on label for 

Hydrothol
®
 Granular; United Phosphorous, Inc., King of Prussia, PA 19406)] 
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Figure 3.1: Mean responses of M. aeruginosa and P. subcapitata measured by cell 
density to 96-h and 7-d exposures of H2O2 as SCP, respectively (n=3). Error bars 
represent ±1 standard deviation. Initial densities of M. aeruginosa and P. subcapitata 

were 9.7x105 cells mL-1 and 7.9x105 cells mL-1, respectively.  
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Figure 3.2: Mean responses of M. aeruginosa and P. subcapitata measured by 
chlorophyll a to 96-h and 7-d exposures of H2O2 as SCP, respectively (n=3). Error bars 

represent ±1 standard deviation. Initial densities of M. aeruginosa and P. subcapitata 
were 9.7x105 cells mL-1 and 7.9x105 cells mL-1, respectively. 
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Figure 3.3: Mean responses of P. promelas, C. dubia, and H. azteca in terms of mortality 
to 96-h exposures of H2O2 as SCP (n=3). Error bars represent ±1 standard deviation. 
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CHAPTER FOUR 

PREDICTING IN SITU RESPONSES OF TASTE AND ODOR PRODUCING ALGAE 

IN A SOUTHEASTERN U.S. RESERVOIR TO A SODIUM CARBONATE 

PEROXYHYDRATE ALGAECIDE USING A LABORATORY EXPOSURE-

RESPONSE MODEL 

Abstract 

Efficacy of an in situ algaecide treatment can be predicted prior to application by 

physically modeling exposures and responses with laboratory experiments. Use of a 

sodium carbonate peroxyhydrate (SCP) algaecide to control a benthic algal assemblage 

producing taste and odor compounds in a drinking water reservoir (Hartwell Lake, 

Anderson, SC) provided an opportunity to test hypotheses regarding potential 

convergence of laboratory and in situ exposures and responses. Objectives of this study 

were to 1) measure responses (in terms of chlorophyll a concentrations, phycocyanin 

concentrations, and cell densities) of a benthic algal assemblage from Hartwell Lake to 7-

d exposures of hydrogen peroxide (H2O2; as Phycomycin® SCP) in the laboratory, 2) to 

measure the exposure of H2O2 introduced to Hartwell Lake (as Phycomycin® SCP) and 

consequent responses of the algal assemblage (in terms of chlorophyll a concentrations, 

phycocyanin concentrations, and cell densities), and 3) compare exposures and responses 

measured in the laboratory and in situ. Laboratory exposures dissipated within 48 hours, 

with an overall first order rate coefficient of 0.08 h-1, and an overall half-life of 8.6 h. 

Although chlorophyll a measurements did not indicate a response, significant responses 

of the algal assemblage in terms of phycocyanin and cell density were measured 4 days 
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after treatment (4-DAT) following exposures of 453, 615, and 812 mg H2O2 m-2. The 

initial exposure of H2O2 (619±428 mg H2O2 m-2) measured in situ within 0.3m (1 ft.) of 

the sediment-water interface dissipated within 30 hours, with a first order rate coefficient 

of 0.061 h-1, and a half-life of 11.4 h. Chlorophyll a concentrations indicated a 

differential response of target eukaryotic algae compared to target prokaryotes; however, 

significant responses in terms of phycocyanin concentrations, target algal densities and 

decreases in concentrations of 2-methylisoborneol (MIB) and geosmin at the intake of the 

drinking water treatment facility indicated that, relative to an untreated control site, the 

algaecide application provided a beneficial alternative to a no-treatment decision. 

Exposures of H2O2 from SCP are labile and dynamic; the initial in situ exposure had a 

large deviation (i.e. ±428 mg H2O2 m-2) and was an order of magnitude less than the 

targeted exposure. It is likely SCP granules do not settle uniformly, and that some H2O2 

activity was lost due to dissipation as granules settled through the water column. In such 

situations, measured responses can be compared to infer comparable exposures and 

confirm accuracy of the laboratory model. In the present study, inferential evidence 

corroborated the direct comparison of exposures: significant responses measured in situ 

in terms of phycocyanin concentrations and target algal densities were comparable to 

responses obtained from effective laboratory exposures (i.e. 453-812 mg H2O2 m-2), 

corroborating exposures directly comparable in terms of initial exposure and exposure 

duration (i.e. half-life). Data derived from this experiment provide evidence for the 

design and use of a physical laboratory model in predicting responses of algae in the 

field. 
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Introduction 

Benthic algae and periphyton can produce earthy, musty taste and odor 

compounds such as 2-methylisoborneol (MIB) and geosmin (Utkilen and Frøshaug, 

1992; Watson and Ridal, 2004; Vilalta et al., 2004; Ridal et al., 2007). These compounds 

can impair water resources intended for drinking water when concentrations render 

finished water undesirable for consumption. Algaecides can rapidly restore usages when 

problematic algae impair critical water resources and immediate response is required. 

Sodium carbonate peroxyhydrate (SCP) is a relatively new, hydrogen peroxide (H2O2)-

based active ingredient (USEPA, 2004) used by water resource managers in algaecide 

formulations to control growths of noxious algae (Gettys et al., 2014), and is certified by 

the National Sanitation Foundation (NSF) for use in drinking water reservoirs. H2O2 

released by SCP oxidizes algal cells (Drabkova et al. 2007a,b; Finnegan et al., 2010). 

Laboratory experiments can be conducted to measure a site-specific exposure-response 

relationship for SCP and target algae (Rodgers et al., 2010; Bishop and Rodgers, 2011), 

and can predict responses of target algae to an in situ SCP algaecide application, 

decreasing uncertainty about the potential outcome. Confirming laboratory predictions 

with in situ data measured post-application can further decrease uncertainty. Use of an 

SCP algaecide to mitigate a benthic algal assemblage producing taste and odor 

compounds in the Six-and-Twenty Creek cove of Hartwell Lake (Anderson, SC) 

provided an opportunity to test hypotheses regarding potential convergence of laboratory 
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and in situ exposures and responses. MIB and geosmin were identified as the problematic 

taste and odor compounds, and benthic algae known to produce taste and odor 

compounds, including cyanobacteria (Oscillatoria, Anabaena, and Planktothrix) and 

diatoms (Tabellaria and Fragilaria) (Palmer, 1960), were identified as putative sources 

of taste and odor production.  

Efficacy of an in situ algaecide treatment can be predicted prior to application by 

physically modeling exposures and responses with preliminary laboratory evaluations 

(Rodgers et al., 2010; Bishop and Rodgers, 2011; Matthijs et al., 2012; Barrington et al., 

2013; Burson et al., 2014). Laboratory toxicity tests can be designed to capture the range 

of responses of organisms by using a series of exposure concentrations (Rand, 1995). The 

relationship between exposures and responses is typically described by a sigmoidal curve, 

which has distinct features: first, there is a minimum exposure below which no response 

occurs or can be measured (i.e. lower threshold). Second, there is a maximum response at 

which further increases in exposure will not result in increased responses (i.e. upper 

threshold). Third, from the lower threshold to the upper threshold responses typically 

increase proportionally with increases in exposure (i.e. potency slope). In the present 

context, by bounding laboratory SCP exposures within the range of concentrations that 

would be applied in situ (i.e. label recommended range of concentrations), the potency 

slope and upper threshold of the resulting exposure-response curve can be used to predict 

the extent of control that can be achieved from an in situ algaecide application (Fitzgerald 

and Jackson, 1979; Rodgers et al., 2010; Bishop and Rodgers, 2011). Additionally, the 

relationship can be used to interpret exposures achieved in situ.  
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To accurately predict in situ responses, target organisms are exposed in the 

laboratory in a manner comparable to an in situ application. Factors that influence 

organism responses to constituents include both innate organism sensitivity and site 

characteristics (USEPA, 2002). When dissolved in water, SCP dissociates into H2O2, 

which is a reactive oxygen species (Mittler, 2002) and an oxidant (Mallick and Mohn 

2000). Therefore, when SCP is used to control problematic algae, oxidizable constituents 

inherent in the system, such as the density of target algae and the concentration of 

dissolved organic carbon, may influence the exposure of target algae to SCP. 

Incorporating site water and algae in laboratory experiments captures sufficient 

characteristics of the treatment site that exposures and responses comparable to and 

predictive of an in situ SCP application can be obtained.   

Inaccurate translation of the laboratory model can arise from the field site’s 

increased scale and complexity.  The accuracy of laboratory predictions can be assessed 

by measuring and comparing exposures and responses from in situ algaecide applications. 

Because of the fundamental relationship between exposures and responses, in situ results 

can be compared to those from the laboratory model directly, through comparable 

exposures (eliciting comparable responses), and indirectly, by observing responses in the 

field and inferring the causative exposure from the laboratory model.   

The overall objective of this study was to evaluate responses of a problematic 

algal assemblage to laboratory exposures of an SCP algaecide and compare responses 

with exposures and responses measured in situ. Specific objectives were to 1) measure 

responses (in terms of chlorophyll a concentrations, phycocyanin concentrations, and cell 
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densities) of a benthic algal assemblage from Hartwell Lake to 7-d exposures of H2O2 (as 

Phycomycin® SCP) in the laboratory, 2) to measure the exposure of H2O2 introduced to 

Hartwell Lake (as Phycomycin® SCP) and consequent responses of the algal assemblage 

(in terms of chlorophyll a concentrations, phycocyanin concentrations, and cell 

densities), and 3) compare exposures and responses measured in the laboratory and in 

situ.  
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Materials and Methods 

Study Site 

Hartwell Lake is a 22,662.4-hectare (56,000 acres) reservoir in the southeast 

United States, bordering South Carolina and Georgia.  The reservoir is managed by the 

U.S. Army Corps of Engineers for hydropower, flood control, navigation, recreation, 

water quality, drinking water supply, and fish and wildlife management (USACE, 1992). 

Within the Six-and-Twenty Creek cove of Hartwell Lake, the SCP algaecide 

Phycomycin® SCP (Arch Chemicals a Lonza Business, Applied Biochemists, Alpharetta, 

GA) was applied in multiple coves east of a drinking water intake structure to control the 

algal assemblage producing taste and odor. The study site (34°33'33.91"N  

82°44'0.30"W) was a cove of approximately 2.43 hectares (6 acres) treated with 

Phycomycin® SCP in the fall of 2015.  

Laboratory Toxicity Testing 

Samples of the algal assemblage were collected from multiple locations within the 

study site. Samples were gently rinsed from substrates (e.g. submerged rocks) into a 1 L 

high-density polyethylene (HPDE) Nalgene bottle. Site water was collected at the 

sediment water interface using a Van Dorn bottle and transported to the laboratory. Site 

algae and water were allowed to acclimate to laboratory conditions of light and 

temperature for 24-h prior to testing (Bishop and Rodgers, 2011). Static, non-renewal 

exposures were conducted in 250 mL borosilicate beakers (USEPA, 1996a,b) by 

exposing 0.5 g of site algae to Phycomycin® SCP in site water. Nine replicates per 

concentration and nine replicates of untreated controls were tested.  Tests were conducted 
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at 23±2°C and were illuminated on a 18:6-h light:dark photoperiod by cool white 

fluorescence lighting at an intensity of 3100  100 lux.  

Laboratory experiments were designed to be a scaled representation of an in situ 

application (Bishop and Rodgers, 2011).  The series of SCP concentrations used in this 

experiment encompassed the range of label recommended concentrations. Concentrations 

were scaled to the field with the assumption that the bottom 0.61m (2 ft) of the water 

column from the sediment-water interface would be treated in order to maximally expose 

the target benthic algae. Exposures were accomplished by dissolving granules of 

Phycomycin® SCP (Table 1) in site water. Granules of SCP were weighed for each 

exposure using a calibrated A&D GR-202 dual range (0.0001 g) balance (A&D 

Engineering, Inc., San Jose, CA 95131). Targeted exposures ranged from 37 to 1234 mg 

H2O2 m-2 (representing 0.3-10.2 mg H2O2 L-1 in situ; 10.2 mg H2O2 L-1 is the maximum 

recommended label concentration). H2O2 concentrations were measured 

spectrophotometrically immediately after dissolution of SCP using the I3
- method 

(MDL=0.2 mg H2O2 L-1, CV= ±1.5%; Klassen et al., 1994; Kinley et al., 2015) with a 1 

cm cuvette and SpectraMax®M2 Microplate Reader (Molecular Devices Corp. 

Sunnyvale, CA 94089). Exposure durations were quantified by measuring exposures five 

times within 48-h of initial exposure and then using analytically informed sampling until 

exposure measurements were less than the detection limit (i.e. less than 0.2 mg H2O2 L-1) 

Three-milliliter aliquots were collected from 3 randomly selected replicates of each 

exposure, mixed with reagents for H2O2 analysis, and measured. Based on a storage 

stability study by Kinley et al. (2015), any samples not measured immediately were 
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stored in the dark at 2  1ºC for less than 96-h before analysis. Water characteristics in 

exposures were measured at test initiation and completion. Dissolved oxygen, pH, and 

conductivity were measured using a YSI® Model 52 dissolved oxygen meter (±0.1 mg/L), 

an Orion® 4-Star pH meter with a Triode® electrode (±0.01 SU), and a YSI® 30 

conductivity meter (±1 μS/cm2), respectively. Hardness (±2 mg/L as CaCO3) and 

alkalinity (±2 mg/L as CaCO3) of samples were measured according to Standard Methods 

for Examination of Water and Wastewater (APHA, 2005).  

Multiple measures were utilized to discern responses of the algal assemblage to 

laboratory exposures of SCP. Chlorophyll a concentrations, phycocyanin concentrations, 

and cell densities were measured in triplicate prior to treatment, 4 days after treatment (4-

DAT), and 7-DAT. Chlorophyll a concentrations were measured fluorometrically 

following standard methods with a SpectraMax® M2 Microplate Reader (MDL=10µg L-1, 

CV= ±4.5%; APHA, 2005), and expressed as the mass of chlorophyll a extracted per 

square meter of substrate (i.e. μg m-2). Phycocyanin concentrations were analyzed 

according to Lawrenz et al (2011; MDL=10µg L-1, CV= ±5.0%), and also expressed as 

the mass extracted per square meter of substrate (i.e. μg m-2). Cell densities, defined in 

the present context as the number of target algal cells (i.e. cyanobacteria genera 

Oscillatoria, Anabaena, and Planktothrix and diatom genera Tabellaria and Fragilaria) 

per square meter of substrate (i.e. cells m-2), were determined using light microscopy 

(Leitz Dialux 20, Leitz US Scopes, Paramount, California) and a Sedgwick-Rafter 

counting cell, according to standard method 10300C (MDL=1.0x103 cells m-2) APHA, 

2005). 
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Analysis of Field Exposures 

SCP was applied in situ at a concentration of 37 mg L-1 (10.2 mg H2O2 L-1) as a 

granular, surface application. As SCP is denser than water (Table 1), granules settled to 

the sediment water interface after SCP was broadcast from a boat. To measure initial 

H2O2 exposures, water samples were collected in triplicate at three locations in the study 

site using a Van Dorn bottle, immediately after the application (i.e. within minutes of 

application). Samples were collected in close proximity to the sediment-water interface, 

at a depth of approximately 3.05m (10 ft). To quantify the duration of the field exposure, 

analytically informed samples were collected in triplicate from the three sampling 

locations until concentrations were less than the detection limit. To determine the 

detection limit, samples were collected synoptically from an untreated area of Hartwell 

Lake. Each 50 mL sample was collected in a polyethylene terephthalate centrifuge tube 

and stored on ice away from sunlight. Samples were mixed with analytical reagents at the 

site and prior to transport to Clemson University. Laboratory analysis of H2O2 

concentrations followed the methods outlined in section 2.2. Samples not immediately 

analyzed were stored in the dark at 2  1ºC for less than 96-h before analysis, based on 

the storage stability of the I3
- method (Kinley et al., 2015). 

Responses of Algae to Field Applications 

Algal samples were collected before treatment, 4 days after treatment (4-DAT), 

and 7-DAT to determine the effectiveness of Phycomycin® SCP exposures and to 

compare with the laboratory model. An untreated area of Hartwell Lake was sampled 

during this period for use as an untreated control. Three composite algal samples were 
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collected from three sites within the treated study site and three sites at the untreated area. 

Samples were gently rinsed from substrates (e.g. submerged rocks) into 50 mL 

polyethylene terephthalate centrifuge tubes and stored on ice for transport to the 

laboratory. Responses of the algal assemblage (i.e. chlorophyll a concentrations, 

phycocyanin concentrations, and cell densities) were analyzed less than 24-h after sample 

collection. Responses were measured following methods outlined in section 2.2.  

In situ concentrations of MIB and geosmin were quantified as an additional 

response parameter. Samples were collected from two locations downstream of the 

treatment area and one location upstream in an unexposed area. Analysis was performed 

by Regional Water Authority (New Haven, CT 06511) according to standard method 

6040D (APHA, 2005). 

Water characteristics in treated and untreated areas were measured prior to 

application, 4-DAT, and 7-DAT. Dissolved oxygen, pH, conductivity, hardness, and 

alkalinity were measured as outlined in section 2.2. 

Statistical Analysis 

Differences in algal responses to laboratory treatments were discerned using one-

way analysis of variance (ANOVA) with specific differences identified through multiple 

comparisons testing (Tukey’s). A paired t-test procedure was used to determine 

statistically significant differences in algal response measurements between the 

laboratory and in situ treatments 4-DAT and 7-DAT. Exposure data analysis was 

performed using ANOVA followed by Tukey’s multiple comparisons testing to identify 

differences between treatments. Regression analysis was performed to determine the rate 
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of decline and half-life of H2O2 concentrations. A paired t-test was used to determine 

statistically significant differences in exposure measurements between the laboratory and 

in situ experiments. All data were analyzed using JMP® Pro 12.0.1 (2015;  = 0.05).  
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Results and Discussion 

Measured Laboratory Exposures and Consequent Algal Responses 

Laboratory Exposures 

Measured initial exposures of H2O2 as SCP were between 66% ± 1.5% and 96% ± 

3.5% of targeted exposures (average = 76% ± 11%; Table 4), therefore all results are 

reported as measured exposures. Measured initial exposures of 238, 453, 615, and 812 

mg H2O2 m-2 were significantly different from targeted exposures.  

Within 48 hours, all exposures of H2O2 declined to less than the detection limit 

(0.2 mg H2O2 L-1) and were not significantly different from untreated controls (Figure 2). 

Changes in peroxide concentration over time fit a first order rate model for all five 

exposures; there was a linear relationship between the natural log of the H2O2 

concentration (ln[H2O2]) and time (R2=0.67; Figure 2). Rates of H2O2 dissipation were 

similar for all five exposures, (p=0.5267; =0.05; Figure 2), with an overall first order 

rate coefficient of H2O2 as SCP of 0.08 h-1, and an overall half-life of 8.6 h. 

Algal Responses to Laboratory Exposures 

Densities of target algae measured 4-DAT were significantly different (p<0.05) 

from pretreatment at exposures of 812, 615, 453, and 238 mg H2O2 m-2, decreasing 

91.1±1.1%, 77.3±2.8%, 71.3±14.0%, and 37.6±13.8%, respectively (Figure 5). Densities 

measured 7-DAT remained significantly different from pretreatment at each of these 

exposures, but were not significantly different from densities measured 4-DAT (p>0.05; 

Figure 5). In untreated controls, no change was measured 4-DAT or 7-DAT. Phycocyanin 

concentrations measured 4-DAT were significantly different from pretreatment at 
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exposures of 812, 615, and 453 mg H2O2 m-2, decreasing 85.7±5.4%, 66.7±4.2%, and 

67.6±7.8%, respectively (Figure 5). Phycocyanin concentrations measured 7-DAT 

remained significantly different from pretreatment and were not significantly different 

from 4-DAT, except at exposures of 238 mg H2O2 m-2 and 615 mg H2O2 m-2. In untreated 

controls, there was no change in phycocyanin concntrations measured 4-DAT or 7-DAT. 

Chlorophyll a concentrations measured 4-DAT and 7-DAT did not change significantly 

from pretreatment in any of the five exposures of H2O2 as SCP or in untreated controls 

(Figure 3).  

Although significant responses in the laboratory were measured in terms of 

phycocyanin concentrations and target algal densities, chlorophyll a concentrations did 

not change significantly from pretreatment in any of the five H2O2 exposures or the 

untreated controls. For the targeted algae, this could be explained by a differential 

sensitivity of cyanobacteria compared to diatoms (eukaryotic algae), which has been 

measured for H2O2 exposures (Barroin and Feuillade, 1986; Drabkova et al., 2007a,b; 

Barrington and Ghadouani, 2008; Matthijs et al., 2012; Barrington et al., 2013; Burson et 

al., 2014) and exposures of H2O2 as SCP (Geer et al., in press). Chlorophyll a is an 

aggregate measure of cell viability, and is not always useful for measuring the responses 

of algal assemblages to algaecide exposures (Calomeni and Rodgers, 2015). Phycocyanin 

is a photosynthetic pigment specific to prokaryotic algae, and concentrations of 

phycocyanin coupled with declining densities of target algae suggests that prokaryotic 

organisms were affected by exposures of H2O2 as SCP.  
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Responses of the algal assemblage to laboratory exposures of H2O2 in terms of 

phycocyanin and target algal densities indicates that control of an algal assemblage can 

be achieved with an in situ application of SCP. In contrast, phycocyanin concentrations 

and target algal densities of untreated controls did not change significantly from 

pretreatment, indicating that the algal assemblage would remain viable if the decision 

was made not to implement a treatment. These results can be used to select an appropriate 

concentration for application in situ. Although the magnitude of responses (i.e. percent 

decrease of phycocyanin concentrations and target algal densities 4-DAT from 

pretredsatment) appeared to increase with increasing exposures of H2O2 (R2=0.70, 0.79 

respectively; Figure 6), significant differences between treatments were masked by the 

variance of algal responses. Based on significant changes from pretreatment in 

phycocyanin concentrations and densities of target algae measured 4-DAT and 7-DAT, 

an exposure greater than 453 mg H2O2 m-2 was predicted to be effective. In addition to 

selecting an appropriate concentration for use in the field, preliminary laboratory 

experiments can be used to guide post treatment monitoring of algal responses. Our 

results indicate that significant responses of the algal assemblage in terms of phycocyanin 

and cell density will be manifested 4-DAT, as additional decline 7-DAT was not 

discernable.  

Measured In Situ Exposure and Consequent Algal Responses 

Measured In Situ Exposure 

The in situ SCP application was designed to expose the targeted algae to 22,500 

mg H2O2 m- 2, scaled for a depth of 1.83m (6 ft) at the sediment-water interface 
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(equivalent to a concentration of 10.2 mg L-1 H2O2 as Phycomycin SCP). The maximum 

exposure of H2O2, measured immediately after application at a depth of approximately 

3.05m (10ft) and within 0.3m (1ft) of the sediment-water interface, was 996 mg H2O2 m-

2, approximately 4.4% of the targeted initial exposure. Within 30 hours, concentrations of 

H2O2 were below the detection limit (i.e. were not significantly different from untreated 

controls; Figure 3). The change in the natural log of the H2O2 concentration (ln[H2O2]) 

with time fit a linear regression model (R2=0.67). The slope of the linear regression 

yielded an in situ first order rate coefficient for the in situ dissipation of H2O2 as SCP of 

0.061 h-1 and a first order half-life of 11.4 h (Table 4). 

H2O2 from an in situ application of an SCP algaecide can be challenging to 

measure. Due to the instability of H2O2, Matthijs et al. (2012) could not use the 

laboratory catalase method to measure in situ exposures. Matthijs et al. (2012) as well as 

Burson et al. (2014) were able to estimate in situ H2O2 concentrations using Quantofix 

test sticks, which are intended for measurement of distinct H2O2 concentrations (i.e. 1, 

10, 30, and 100 mg L-1). In the present study, the triiodide method was useful for 

measuring in situ H2O2 concentrations because samples could be fixed for analysis at the 

field site, without need for additional laboratory equipment until analysis with a 

spectrophotometer. Due to the storage stability of fixed samples and the sensitivity of the 

method, our results demonstrate the utility of the triiodide method for measuring in situ 

H2O2 exposures after an SCP application. 
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Measured Algal Responses 

In the treated area, target algal densities measured 4-DAT declined significantly 

by 85.5±7.2% from pretreatment (p=0.0072), and remained significantly less than 

pretreatment 7-DAT (p=0.0353). In the untreated site densities measured 4-DAT and 7-

DAT increased 40.0±154% and 1,030±727%, respectively, although increases were not 

significant. Phycocyanin concentrations measured in samples from the treated study site 

declined significantly from pretreatment (p<0.0001) by 72.2±12.7% 4-DAT, and 

remained significantly less than pretreatment 7-DAT (p<0.0001), paralleling target algal 

densities. In the untreated area, concentrations declined 4-DAT and 7-DAT, but variances 

associated with the changes were not sufficient to be significantly different from 

pretreatment. Chlorophyll a concentrations measured 4-DAT and 7-DAT did not change 

significantly from pretreatment in either the treated or untreated sites.  

Samples collected from Hartwell Lake were analyzed for MIB and geosmin as 

additional evidence indicating a target algal response. Pretreatment concentrations of 

MIB were 39.2 ng L-1 at the water intake structure and 44.9 ng L-1 in a cove adjacent to 

the study site. MIB declined 7-DAT to 27.17 ng L-1 at the water intake and 33.2 ng L-1 

near the study site. Concentrations were at or below the detection limit (1 ng L-1) at both 

locations 21-DAT, and remained below detection through 37-DAT. Pretreatment 

geosmin concentrations were 4.53 ng L-1 at the water intake structure and 4.1 near the 

treated cove, and declined 7-DAT to 3 ng L-1 and 2.7 ng L-1 at the water intake and near 

the treated cove, respectively. Geosmin concentrations measured 21-DAT decreased 

further to 1.3 and 1.1 ng L-1 at the water intake and near the treated cove, respectively. 
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There was no addition decline measured 37-DAT after treatment. In the untreated area, 

pretreatment (i.e. prior to application of SCP in the treated area) concentrations of MIB 

and geosmin measured 15 days before treatment were 23.5 and 74.4 ng L-1, respectively. 

Post-treatment concentrations were 5.6 and 66.2 ng L-1 measured 21-DAT, and 11.6 and 

33.6 ng L-1 measured 37-DAT. 

Significant responses in terms of phycocyanin concentrations and target algal 

densities confirm that some of the target algae comprising the benthic algal assemblage 

were affected by the application of H2O2 as SCP. The lack of a significant response in 

terms of chlorophyll a concentrations indicates that the exposure was not sufficient to 

affect all algae in the study site (i.e. eukaryotic target and non-target algae). As the algae 

were considered problematic due to their production of taste and odor compounds MIB 

and geosmin, measures of these tertiary alcohols provide lines of evidence necessary to 

discern the effect of the SCP exposure on the assemblage. Relative to the untreated site, 

decreases in MIB and geosmin at the intake of the water treatment facility corroborate 

significant responses (in terms of phycocyanin concentration and target algal densities) in 

the study site, indicating that the algaecide application provided a beneficial alternative to 

a no-treatment decision.    

Comparison of Laboratory and Field Exposures and Responses  

In situ algal responses were compared to the laboratory responses from an 

exposure of 812 mg H2O2 m-2. In both the laboratory and in situ experiments, chlorophyll 

a concentrations measured post treatment (i.e. 4 and 7-DAT) did not change significantly 

from pretreatment concentrations. Cell density decreased to a greater extent in the 
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laboratory than in situ (91.1±1.1% compared to 85.5±7.2%; Figure 8), although the 

difference was not statistically significant. Phycocyanin concentrations were comparable 

between laboratory and in situ experiments (85.7±5.4% compared to 72.2±12.7%; Figure 

8), paralleling target algal density similarities between laboratory and in situ experiments. 

However, due to the variance of in situ phycocyanin and target algal density responses, 

and lack of significant differences among laboratory exposures, responses measured 4-

DAT in situ were also comparable to responses obtained 4-DAT from laboratory 

exposures of 615 and 453mg H2O2 m-2. In situ responses measured 7-DAT were 

comparable to laboratory responses elicited from exposures of 615, 453, and 238 mg 

H2O2 m-2. Because responses measured in situ 4-DAT and 7-DAT were consistent with 

the laboratory prediction (i.e. that an exposure greater than 453 mg H2O2 m-2 would yield 

significant decreases in target algal densities and phycocyanin concentrations relative to 

pretreatment), the exposure obtained in situ was inferred to be comparable to effective 

laboratory exposures (i.e. 453-812 mg H2O2 m-2). 

By indirect comparison, laboratory and in situ algal responses provide a line of 

evidence that the laboratory model provided an accurate prediction of the results of an in 

situ SCP application.  Several other studies have similarly conducted laboratory 

experiments with site water and algae and found in situ responses to be comparable 

(Bishop and Rodgers, 2012; Matthijs et al., 2012; Barrington et al., 2013; Burson et al., 

2014). In the present study, laboratory and in situ experiments were compared directly in 

terms of measured H2O2 exposures. In situ predictions were based on responses of the 

algal assemblage to a mean initial exposure of 812 mg H2O2 m-2 measured in the 
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laboratory, which was not significantly different from the mean initial exposure measured 

in situ (619 mg H2O2 m-2). Due to the variance associated with the measured in situ 

exposure (i.e. standard deviation ±428 mg H2O2 m-2), the exposure measured in situ was 

not significantly different than any of the laboratory exposures that produced significant 

responses (i.e. 453–812 mg H2O2 m-2). By direct comparison of exposures, measured in 

situ exposures confirm that the laboratory exposure-response model was accurate in 

predicting exposures necessary to affect the target benthic algal assemblage.  

Based on direct and indirect comparison, the application of SCP in situ obtained 

results consistent with laboratory predictions. Results were consistent because exposures 

obtained in the laboratory were comparable to exposures obtained in the field. 

Comparable half-lives of H2O2 as SCP (i.e. overall t1/2 in the laboratory was 8.6 h 

compared to 11.4 h in situ; Table 4) suggest that processes affecting the dissipation of 

H2O2 over time were captured in the laboratory by the inclusion of site-collected water 

and algae in the experimental design. Although half-lives indicate that exposures were 

comparable in terms of exposure duration, initial exposures were more variable in situ 

than in the laboratory. Deviation of laboratory exposures ranged from 1.1 to 18.3 mg 

H2O2 m-2, while the initial exposure in situ varied by ±428 mg H2O2 m-2 (Table 4). To 

achieve an exposure of H2O2 at the sediment water-interface, granules of SCP had to 1) 

settle through the water column and 2) dissociate into H2O2. The variability associated 

with the measured in situ exposure, and the order of magnitude difference between the 

measured exposure and targeted exposure, are likely the result of inconsistent settling 

rates of SCP granules, such that they do not arrive uniformly at the sediment-water 
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interface. Furthermore, since exposures were measured at a depth of approximately 

3.05m (10 ft), some of the activity of H2O2 was likely lost due to concurrent settling and 

dissociation into H2O2. Therefore, when treating benthic algae with a surface broadcast of 

SCP granules, our results indicate that it is critical to consider the depth of the water 

column/volume of water being treated in order to accurately translate effective laboratory 

exposures and obtain a comparable exposure in situ. Barrington et al. (2013), in the 

context of a liquid H2O2 application, similarly noted that water volume is an important 

factor when determining the amount of H2O2 needed to control a noxious algal growth.  

In the present experiment, to ensure that an adequate exposure reached the target algae at 

the sediment-water interface, the in situ application was adjusted for a depth of 1.83m, 

rather than 0.61m as was used in the laboratory. As a result, sufficient SCP reached the 

sediment-water interface in situ such that the measured exposure was comparable to 

effective laboratory exposures.  
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4. Conclusions

Benthic algae collected from Hartwell Lake and exposed to H2O2 as SCP in 

laboratory experiments responded similarly (in terms of chlorophyll a, phycocyanin, and 

cell densities) to algae exposed in situ. An effective exposure of Phycomycin SCP (i.e. at 

least 453 ±4.3mg H2O2 m-2) was identified to produce the desired response from the 

targeted algal species. By utilizing field-collected algae and water in both laboratory and 

field experiments, differences in potential exposure modifying factors (i.e. water 

characteristics and specific algal sensitivity) were minimized. As a result, in situ 

exposures were comparable to effective laboratory exposures, both by direct comparison 

of exposures (in terms of initial exposure achieved and exposure duration) and by indirect 

comparison of equivalent responses, inferring that exposures had to be comparable to 

achieve comparable responses. Our results are consistent with the results of previous 

studies in which preliminary laboratory experiments with field collected algae preceded 

in situ treatments, in an attempt to discern effective concentrations of H2O2 (Burson et al., 

2014; Matthijs et al., 2012; Barrington et al., 2013) and H2O2 as SCP (Bishop and 

Rodgers, 2011) for use in situ. We contributed to this approach by using the triiodide 

method to measure laboratory and in situ H2O2 exposures, such that laboratory 

predictions confirmed by comparable algal responses were augmented with measures of 

equivalent H2O2 exposures. This experiment provides evidence for the use of a physical 

laboratory model in predicting responses of algae in situ. 
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TABLES AND FIGURES 

Table 4.1: Physical and chemical properties of Phycomycin® SCP. 

CAS number 497-19-8a

Formulation SCP and inert ingredients 
Active ingredient 85% SCP 
Maximum application Concentration 36.9 mg L-1 (10.2 mg L-1 H2O2)a 

Physical state Coarse white grainsa 
Water solubility 140g/L at 24ºCa 

pH 10.4-10.6 s.u. (1% solution)a 
Boiling Point Not applicablea (SCP decomposes when heated)b 
Melting point Not applicable (SCP decomposes when heated)c 

Partition coefficient n-octanol/water Not applicable (sodium carbonate peroxyhydrate is an organic salt)b 
aAB (2007) 
bOECD (2006) 
cHERA (2002) 
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Table 4.2: Water characteristics at test initiations and completions (7-DAT) for laboratory exposures of H2O2 as SCP in 
Hartwell Lake site water. 

Exposure 

Control 0.3 2.5 5.2 7.5 10.2 

Parameter 
Initial 

7-DAT
Initial 

7-DAT
Initial 

7-DAT
Initial 

7-DAT
Initial 

7-DAT
Initial 

7-DAT

pH1

(S.U)1 7.29 7.02 6.95 7.3 7.02 7.5 7.25 7.87 7.38 8.04 7.42 8.17 

Dissolved O2

(mg/L)2 8.77 8.53 8.36 8.3 8.15 8.12 8.87 8.61 8.29 8.67 8.56 8.23 

Conductivity 

(µS/cm)3 50 35 55 56 71 71 93 95 100 102 136 142 

Alkalinity 

(mg/L as CaCO3)4 20 15 20 20 25 30 35 30 45 35 60 70 

Hardness 

(mg/L as CaCO3)4 10 15 10 15 10 10 10 10 10 15 10 15 

1pH was measured using an Orion® 4-Star pH meter and Triode® electrode (±0.01 SU) 
2Dissolved oxygen was measured using a YSI® Model 52 dissolved oxygen meter (±0.1 mg/L) 
3Conductivity was measured using YSI® 30 conductivity meter (±1 μS/cm2) 
4Alkalinity and hardness were measured according to standard methods 2320 (±2 mg/L as CaCO3) and 2340 (±2 mg/L as 

CaCO3), respectively (APHA, 2005) 
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Table 4.3: Water characteristics for Hartwell Lake pretreatment and 7-DAT. 

Water characteristics (average) 

Parameter Initial 
Control Site 

7-DAT 
Treated Site 7-DAT 

pH (SU)1 7.8 7.5 7.4 
Dissolved O2 (mg L-1)2 8.5 8.6 8.2 
Conductivity (μS/cm2)3 57 59 51 

Alkalinity (mg L-1 as CaCO3)4 25 15 20 

Hardness (mg L-1 as CaCO3)4 15 15 15 
1pH was measured using an Orion® 4-Star pH meter and Triode® electrode (±0.01 SU) 
2Dissolved oxygen was measured using a YSI® Model 52 dissolved oxygen meter (±0.1 mg/L) 
3Conductivity was measured using YSI® 30 conductivity meter (±1 μS/cm2) 
4Alkalinity and hardness were measured according to standard methods 2320 (±2 mg/L as CaCO3) and 2340 (±2 mg/L as 
CaCO3), respectively (APHA, 2005) 
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Table 4.4: Comparison of measured laboratory and in situ initial H2O2 exposures (n=3). 

Experiment 
Target 

Concentration % of 
MLR 

Depth of 
Water 

Column 
Treated 

Target 

Exposure 

Measured 

Exposure 
Deviation 

% of 
Target 

Exposure 

Rate of 
Dissipation 

(k) 

Half-
life 

(mg H2O2 L-1) (m) 
(mg H2O2 

m-2)
(mg H2O2 

m-2)

Laboratory 0.3 3 0.61 36.6 35 1.3 95.7 0.131 5.3 

Laboratory 2.5 25 0.61 303 238 1.1 78.4 0.099 7.0 
Laboratory 5.2 51 0.61 638 453 4.3 71.1 0.094 7.3 
Laboratory 7.5 74 0.61 909 615 2.1 67.7 0.096 7.2 

Laboratory 10.2 100 0.61 1234 812 18.3 65.9 0.105 6.6 
In situ 10.2 100 1.83 22500 619 430 2.8 0.061 11.4 
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Figure 4.1: Comparison of targeted and measured initial laboratory exposures of H2O2 as SCP. Error bars indicate ± 1 

standard deviation. 
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Figure 4.2: Change in (A) mean measured H2O2 exposure over time and (B) mean ln(H2O2) concentrations over time in 
laboratory exposures of H2O2 as SCP (n=3). Error bars represent ±1 standard deviation.   
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Figure 4.3: In situ change in (A) mean measured H2O2 concentration over time and (B) mean ln[H2O2] over time from 
exposures of H2O2 as SCP (n=3). Error bars represent ±1 standard deviation.   
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Figure 4.4: Comparison of the change in (A) mean H2O2 concentration over time and (B) mean ln(H2O2) concentrations over 
time from laboratory and in situ exposures of H2O2 as SCP (n=3). Error bars represent ±1 standard deviation.   
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Figure 4.5: Mean responses of the benthic algal assemblage from Hartwell Lake (in 
terms of chlorophyll a, phycocyanin, and cell density, and the percent decrease of 

responses relative to pretreatment amounts) to laboratory exposures of H2O2 as SCP 
(n=3). Positive values indicate a decrease in response and negative values indicate an 

increase in response from pretreatment amounts. Error bars represent ±1 standard 
deviation
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Figure 4.6: Linear relationship between the percent decrease of phycocyanin and cell density with increasing exposure 
concentrations of H2O2 as SCP. Error bars indicate ± 1 standard deviation. 
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Figure 4.7: Mean in situ responses of the benthic algal assemblage from Hartwell Lake 
(in terms of chlorophyll a, phycocyanin, and cell density, and the percent decrease of 

responses relative to pretreatment amounts) to H2O2 from an application of SCP (n=3). 
Positive values indicate a decrease in response and negative values indicate an increase in 

response from pretreatment amounts. Error bars represent ±1 standard deviation. 
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Figure 4.8: Comparison of mean responses of the benthic algal assemblage from 
Hartwell Lake (in terms of percent decrease relative to pretreatment amounts) between 

laboratory and in situ exposures of H2O2 as SCP (n=3). Positive values indicate a 
decrease in response and negative values indicate an increase in response from 

pretreatment amounts. Error bars represent ±1 standard deviation. 
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CHAPTER FIVE 

SUMMARY AND CONCLUSIONS 

The overall objective of this research was to evaluate exposures of an SCP 

algaecide to efficiently and effectively control problematic algal growth in a field 

situation while decreasing potential risks to non-target species. Experiments were 

conducted to 1) measure influences of particulate and dissolved forms of organic carbon 

on exposures of an SCP algaecide and consequent effects on a target alga; 2) measure and 

compare responses of an array of freshwater organisms following exposures to hydrogen 

peroxide (H2O2) as SCP in laboratory formulated water; and 3) evaluate responses of 

putative algal taste and odor producers to laboratory exposures of an SCP algaecide and 

compare results with exposures and responses measured in situ. This research as a whole 

enhances our understanding of SCP as an algaecide and its ability to mitigate risks 

associated with noxious algal growths in water resources.  

In “Influence of Dissolved and Particulate Fractions of Organic Carbon on 

Exposures of a Sodium Carbonate Peroxyhydrate Algaecide and Consequent Responses 

of Microcystis aeruginosa.” 96-h median effects concentrations (96-h EC50s) of a series 

of densities of M. aeruginosa exposed to H2O2 as SCP were measured and compared. As 

the density of algae increased from 9.7x105 to 2.3x107 cells/mL, measured 96-h EC50 

values for M. aeruginosa in terms of cell density increased from 0.9 mg H2O2/L to 30.9 

mg H2O2 L-1. The exposure per cell of H2O2 as SCP achieving 96-h EC50 values increased 

concomitantly with cell density from 8.79x10-10 mg H2O2 /cell to 1.34x10-9 mg H2O2

/cell. Exposures likely increased due to competitive reactions between H2O2 and algal-
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related dissolved organic carbon, as the increase in cell density was coupled with an 

increase in dissolved organic carbon from 4±1 mg/L to 24±1 mg/L. Based on results of 

the study, concentrations of H2O2 as SCP achieving control of M. aeruginosa are 

proportional to the density of algae and DOC concentration. Based on label limited 

concentrations of SCP that could be applied to a water resource, there is a limit to the 

density of algae that may be controlled with a single application. Implementing a 

treatment before prolific algal growth increases the likelihood of success with a single 

treatment and decreases the amount of product required, decreasing costs associated with 

treatment and potential risks for non-target organisms. Critical burdens were not 

equivalent, and instead were concluded to be different due to reactions between H2O2 and 

algal derived DOC. When scaling laboratory results to an in situ treatment with an SCP 

algaecide, predictions of exposures necessary to achieve control could be enhanced if 

DOC and algal density are known, which could decrease the chance of applying an 

ineffective concentration and maintain margins of safety for non-target organisms. 

In “Comparative Toxicity of Sodium Carbonate Peroxyhydrate to Freshwater 

Organisms”, a cyanobacterium and two invertebrates were more sensitive than a 

eukaryotic alga and a vertebrate to exposures of H2O2 from an SCP algaecide. 96-h EC50 

values ranged from 1.0 to 19.7 mg L-1 H2O2
 for animals, while the 96-h EC50 for the 

cyanobacterium M. aeruginosa was 0.9 mg L-1 H2O2. The 7-d EC50 for the eukaryotic 

algae P. subcapitata was 5.2 mg L-1 H2O2, as responses to environmentally relevant 

concentrations of SCP were not manifested in 96-h, while the fish P. promelas was not 

sensitive to exposures within the recommended range of application concentrations for 
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the source of SCP used in this study (Phycomycin® SCP; 0.2 to 10.2 mg L-1 H2O2). SCP 

is comparable to other algaecides (i.e. copper-based algaecides, endothall, and diquat 

dibromide) in that it could be used selectively for control of prokaryotic algae. However, 

SCP may be less potent than diquat dibromide to H. azteca, and less potent than copper 

algaecides to C. dubia, enhancing margins of safety for these species. While not directly 

predictive of specific concentrations at which organisms will respond to in situ, results of 

this study can be used to predict the distribution of responses likely to occur. Results 

indicate that SCP could mitigate risks associated with noxious cyanobacterial growths 

(e.g. M. aeruginosa) while providing a margin of safety for non-target species.  

In “Predicting In Situ Responses of Taste and Odor Producing Algae in a 

Southeastern U.S Reservoir to a Sodium Carbonate Peroxyhydrate Algaecide Using a 

Laboratory Exposure-Response Model,” the potential convergence of exposures and 

responses measured in a laboratory experiment and in situ was evaluated. By utilizing the 

same algae and water in both laboratory and field experiments, differences in potential 

exposure modifying factors (i.e. water characteristics and specific algal sensitivity) were 

minimized such that results obtained from the in situ application were comparable to the 

laboratory exposure-response relationship. Benthic algae were not uniformly affected by 

laboratory or in situ exposures of H2O2 from SCP, as indicated by chlorophyll a 

concentrations, while significant responses in both experiments in terms of phycocyanin 

and cell densities indicated that cyanobacteria within the benthic algal assemblage 

responded to the application of SCP. Additional measurements of MIB and geosmin 

concentrations in situ corroborated significant responses measured in terms of 
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phycocyanin and cell densities, indicating that the in situ application was successful in 

achieving the site-specific performance goals. These results are consistent with the results 

of previous studies in which preliminary laboratory experiments with field collected 

algae preceded in situ treatments, in an attempt to discern effective concentrations of 

H2O2 (liquid) and H2O2 as SCP (granular) for use in situ. We contributed to this approach 

by using the triiodide method to measure laboratory and in situ H2O2 exposures, such that 

laboratory predictions could be directly compared to the in situ exposure (i.e. compared 

by comparing exposures that elicited comparable responses). However, as exposures of 

H2O2 as SCP were labile and dynamic, an indirect comparison of laboratory and field 

experiments (i.e. responses observed in situ were used to infer the causative exposure 

from the laboratory model) was necessary to corroborate exposures directly comparable 

in terms of initial exposure and exposure duration (i.e. half-life). 

The approach outlined in this research has applications universally, and can be 

used as a component of a water resource management plan to make site specific 

predictions that increase algaecide effectiveness when remediating critical water 

resources that have been impaired by problematic algal growth. As a whole, this research 

highlights important considerations when designing and implementing a management 

plan to control noxious algal growths with an SCP algaecide. 
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