
Clemson University
TigerPrints

All Theses Theses

8-2016

Analyzing Clustered Latent Dirichlet Allocation
Christopher Gropp
Clemson University, groppcw@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Gropp, Christopher, "Analyzing Clustered Latent Dirichlet Allocation" (2016). All Theses. 2471.
https://tigerprints.clemson.edu/all_theses/2471

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/2471?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2471&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Analyzing Clustered Latent Dirichlet

Allocation

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Ful�llment

of the Requirements for the Degree

Master of Science

Computer Science

by

Christopher Gropp

August 2016

Accepted by:

Dr. Amy Apon, Committee Chair

Dr. Brian Malloy

Dr. Paul Wilson

Abstract

Dynamic Topic Models (DTM) are a way to extract time-variant information

from a collection of documents. The only available implementation of this is slow,

taking days to process a corpus of 533,588 documents. In order to see how topics

- both their key words and their proportional size in all documents - change over

time, we analyze Clustered Latent Dirichlet Allocation (CLDA) as an alternative to

DTM. This algorithm is based on existing parallel components, using Latent Dirichlet

Allocation (LDA) to extract topics at local times, and k-means clustering to combine

topics from di�erent time periods. This method is two orders of magnitude faster than

DTM, and allows for more freedom of experiment design. Results show that most

topics generated by this algorithm are similar to those generated by DTM at both

the local and global level using the Jaccard index and Sørensen-Dice coe�cient, and

that this method's perplexity compares favorably to DTM. We also explore tradeo�s

in CLDA method parameters.

ii

Acknowledgments

Clemson University is acknowledged for a generous allotment of compute time

on Palmetto Cluster.

This research is funded in part by NSF grants 1243436 and 1228312.

I would like to thank my parents and friends for their unwavering support and

their con�dence in my abilities even when I was skeptical.

I would like to thank Dr. Paul Wilson and Dr. Ilya Safro for their ideas which

led to this thesis. Their clever suggestions form the core around which this project

was built. I would also like to thank Dr. Alex Herzog for his work on the data

cleaning, experimental pipeline, and �gures, as well as generally being an excellent

person to bounce ideas o� of.

Last and most de�nitely not least, I would like to thank Dr. Amy Apon, whose

contributions cannot be understated. From passing along useful papers to in depth

style editing, she has been an invaluable resource whose guidance has made this thesis

possible. Even more so than for her substantial help, though, I would like to thank

her for putting up with me as I put this together.

iii

Table of Contents

Title Page . i

Abstract . ii

Acknowledgments . iii

List of Tables . vi

List of Figures . vii

1 Introduction . 1

1.1 Topic Modeling . 1
1.2 Research Motivation . 2
1.3 Approach . 3
1.4 Solution Design . 3
1.5 Results . 4

2 Review of Literature . 5

2.1 Topic Models . 5
2.2 Latent Dirichlet Allocation . 7
2.3 Dynamic Topic Modeling . 11
2.4 Clustering . 12
2.5 Related Projects . 16

3 Problem Motivation . 20

3.1 Impact of High-Performance Computing 20
3.2 Evaluating Research Output . 21
3.3 Dynamic Topic Models . 23

4 Clustered Latent Dirichlet Allocation 24

4.1 Requirements . 24
4.2 Design . 26

5 Experimental Validation . 34

iv

5.1 Data and Resources . 34
5.2 Comparison to DTM . 36
5.3 Parameter Optimization . 45
5.4 Global and Local Topic Dynamics . 45

6 Conclusion . 50

6.1 Outcomes . 50
6.2 Future Work . 51

Appendices . 52

A Sample Documents . 53
B Additional Similarity Graphs . 55

Bibliography . 57

v

List of Tables

5.1 Dataset Details for Computer Science Journal Abstracts
and NIPS Conference Proceedings . 37

5.2 Runtime Results on Computer Science Abstracts 38
5.3 Perplexity results on computer science abstracts. 41
5.4 Probability of overlap of random topics among top 20 values. 44

vi

List of Figures

4.1 Flowchart of the algorithm . 28

5.1 Similarity of Dynamic Topic Means under
Sørensen-Dice Coe�cient and Jaccard Index. 43

5.2 Heatmap showing perplexity estimated from cross-validation
for di�erent combinations of topic counts on the NIPS data. 46

5.3 Heatmap showing perplexity estimated from cross-validation
for di�erent combinations of topic counts on the
computer science abstracts data. 47

5.4 Evolution of three largest global topics for the NIPS data (left panel)
and computer science abstracts data (right panel). 48

5.5 Evolution of global topic �Computer Networks�. 48
5.6 Local topics for selected time segments corresponding to global topic

�Computer Networks�. 49

1 Similarity of Local Topic Means under Sørensen-Dice Coe�cient . . . 55
2 Similarity of Local Topic Means under Jaccard Index 56

vii

Chapter 1

Introduction

1.1 Topic Modeling

Topic modeling is the process of automating the task of identifying key themes

in a collection of documents. The most common representation for this is based on

Latent Dirichlet Allocation, wherein documents are assumed to be randomly gener-

ated from one or more topics, each of which is a word distribution. These topics are

latent distributions inferred from the documents via a Dirichlet process. The algo-

rithm repeatedly samples the documents and modi�es the topics to better �t them

until reaching a de�ned convergence. LDA has a number of strong assumptions, in-

cluding that both words and documents are unordered. Various methods have been

developed to relax these assumptions, generally at a substantial performance cost [8].

1.1.1 Dynamic Topic Modeling

Of particular interest is Dynamic Topic Modeling [7], which relaxes the as-

sumption that all documents are generated simultaneously. It divides the corpus into

a set of time segments, which each have their own topics. These topics represent the

1

same theme in each time segment, but the speci�c language used is allowed to change

through time. This lets a user not only see how the language of a topic changes over

time, but also how well represented a topic is at any given point in time. However,

DTM's update process is considerably slower than LDA's, and requires many more

iterations for convergence. At the time of writing this document, the only available

implementation for DTM is the one released by the algorithm's creator, David Blei

[6], which is not parallelized for model generation. A parallel implementation of DTM

was very recently developed by a di�erent research group, but they have not made

their code available [5].

1.2 Research Motivation

We are interested in examining how academic research changes over time, and

especially how it reacts to new resources. Speci�cally, we have a corpus of over one

million abstracts from journal articles published between 1996 and 2012. Of these

abstracts, 396,959 are in chemistry, 533,588 are in computer science, and 101,318

are in economics. We want to see what changes occur in the subjects of research at

various institutions when they gain access to new computing resources, and how this

compares to the overall direction of research of top universities. DTM can give us the

necessary output, but its performance is almost prohibitive on this volume of data,

let alone any larger datasets. We need an algorithm that can both determine the

shape of discussion across time and also allow for changes in those same topics; and

be able to do this for very large datasets, preferably in parallel.

2

1.3 Approach

The original DTM code is not parallelized. However, LDA has several strong

parallel implementations available. In this thesis, we utilize parallelized LDA on

subsets of the data to construct a system roughly analogous to DTM out of parallel

components. This system provides the same type of outputs as DTM. In order to

succeed, our system needs to run considerably faster than DTM. Our system must

also generate data that provides insight for our original scienti�c inquiry.

1.4 Solution Design

We solve this problem using Clustered Latent Dirichlet Allocation (CLDA).

The basic structure of the system is as follows. First, the data are segmented as for

DTM, breaking the corpus into discrete time segments. Each of these sub-corpora

is the input to a separate run of PLDA+, our chosen implementation of parallelized

LDA. The output for this step is set of topics for every timestep. The full list of these

topics is passed to a parallelized implementation of k-means clustering, producing a set

of topics representative of the full set. Each original topic corresponds to a particular

centroid topic. Analysis can be performed on the overall mixture of topics at any

given timestep, matching the original topic mixtures to their representative centroids

to compare them across time. We can also study how the topics corresponding to a

given centroid change over time.

1.4.1 Test Design

Evaluation is along multiple dimensions. First, we want to know if the results

are obtained more quickly than when using the original implementation of DTM.

3

Secondly, are they of high quality? Third, we would also like to know if the results

are similar to those obtained by DTM. Runtime is straightforward to test. The

second question is more di�cult. Overall quality of a model is often evaluated using

perplexity measures, although there is evidence suggesting this measure does not

necessarily correlate with human perception of topic quality [9]. Similarity can be

tested using set comparison metrics like the Sørensen-Dice Coe�cient or Jaccard

Index. However, these are open questions in the topic modeling community, and

there are multiple plausible metrics for similarity.

1.5 Results

We compare our implementation of CLDA to Blei's DTM along three dimen-

sions; runtime, perplexity, and similarity. As our implementation is fundamentally

constructed from a highly optimized parallel LDA, its runtime is dramatically faster

than that of DTM. Its perplexity over the test set is also superior. The topics it gen-

erates are also broadly similar to those generated by DTM. We also explore the e�ect

of CLDA's parameters on perplexity, and demonstrate CLDA's ability to provide

detailed information about a given dynamic topic.

Overall, the system provides a practical alternative to DTM, although it does

not match perfectly. Future work will focus on exploring the sensitivity of various

input parameters, expanding the framework to use other clustering techniques, and

developing improved metrics for topic evaluation.

4

Chapter 2

Review of Literature

2.1 Topic Models

Topic modeling is the process of automating the task of identifying key themes

in a collection of documents. This information can be the end goal, allowing exami-

nation of the themes in a large corpus. This information can also be used to classify

new documents.

2.1.1 Terminology

Topic modeling has formal de�nitions for a number of common terms.

• Word � The smallest meaningful element of data. Also called a �token�.

• Vocabulary � A collection of all unique words. This is typically implemented as

a vector.

• Document � A collection of words. A word may appear multiple times in a

document. This is typically implemented by a vector where the ith element is

the address of the ith word in the vocabulary.

5

• Corpus � A collection of documents.

• Topic � A means to describe a pattern of words; the speci�cs vary by method.

In LDA, this is a word distribution represented by a vector of probabilities.

2.1.2 Brief History of Topic Modeling

Early attempts at reducing text corpora to their most useful components began

with a method called term-frequency inverse-document-frequency (tf-idf). In this

method, the frequency of a word in a document is compared to its overall occurrence

in all documents, providing a rough estimate of its importance to the document in

question. This provides information on word importance without giving undo weight

to stopwords. However, it only minimally reduces the description of the corpus and

provides no special insight into recurring trends. For example, tf-idf will note that a

document contains an unusually high frequency of the words �car� and �door� but no

information as to how common this combination is [8].

Latent Semantic Indexing (LSI) uses the importance matrix of tf-idf and ap-

plies an additional step. Singular Value Decomposition (SVD) is applied on this

matrix to extract the key correlations. Continuing the previous example, LSI will

detect that �car� and �door� often appear together.

Probabilistic LSI, despite the name similarity, is closer to LDA than LSI. PLSI

takes the co-occurrence data of words and documents as observations of a generative

model. To generate a word in a document, randomly choose a topic from that docu-

ment's topic distribution, and then randomly choose a word from that topic's word

distribution. Continuing the previous example, a document may have a high likeli-

hood of choosing the �vehicle� topic, which in turn has a high likelihood of generating

the words �car� and �door�, resulting in that document having a high occurence of

6

those words. While the speci�c method used by PLSI leads to over�tting and pre-

vents use as a classi�er on held-out data, the model structure forms the core of LDA

[11][19].

2.2 Latent Dirichlet Allocation

2.2.1 LDA Assumptions

Latent Dirichlet Allocation (LDA) is the most commonly used method for

topic modeling. It has several key assumptions [8]:

1. Each document is equally important.

2. Each document is a �bag of words�: Words are assumed to be unordered.

3. A topic is described by a probability mass function of words.

4. Each document is a mixture of topics, represented by a probability mass function

for topic selection.

5. Documents are generated by sampling a topic from their topic mixture, and

then sampling a word from that topic. This is repeated to generate all words

in the document.

6. Multiple topics can contribute to generating a document.

7

Only the output of this model (documents) can be observed directly. The

topics and topic mixtures are latent distributions that must be inferred. LDA assumes

that the prior distribution of each topic is a Dirichlet distribution, which distinguishes

it from more generalized methods. Topics are randomly seeded, and then iterated

upon using Bayesian inference; during each iteration, the algorithm considers each

document's relation with each topic and updates the topics for the next iteration.

Iteration continues until some user-speci�ed condition is met.

2.2.2 Bayesian Inference

Bayesian Inference is a critical component of LDA. It is the process of adapt-

ing hypotheses to better suit new data without disregarding prior knowledge. For

example, suppose a coworker has recently arrived from another city. We have several

hypotheses on how he or she traveled between cities;

• Coworker traveled by car.

• Coworker traveled by train.

• Coworker walked the whole way.

These hypotheses are not equally likely. Prior knowledge tells us that people do not

generally travel between distant cities by foot. We can improve our estimates of the

likelihood of each hypothesis by making observations of available data. If we notice

a train ticket stub, this supports the hypothesis that our coworker took a train, and

reduces the likelihood of the other hypotheses. If we notice mud on our coworker's

shoes, this supports the hypothesis that he or she walked the whole way, but we will

still be skeptical due to our prior low belief.

8

2.2.3 Dirichlet Distribution

To understand the Dirichlet distribution, we begin with the Beta distribution.

This is a distribution over [0,1] with two parameters, α and β. These parameters

control the shape of the distribution, and its probability density function is given by

P (x) =
xα−1 · (1− x)β−1

B(α, β)
. (2.1)

Here, B(α, β) is the Beta function, which serves to normalize the distribution.

The Dirichlet distribution is the multivariate generalization of the beta distri-

bution. It is de�ned by a vector of concentration parameters. Concentration values

of 1 represent uniformity, while values approaching zero concentrate all probability

mass into a single point. We are concerned with this distribution due to the Dirichlet

process, wherein each sampling of the distribution's observed data alters the param-

eters for the next sample in a �rich get richer� fashion. LDA is essentially a modi�ed

Dirichlet process.

2.2.4 LDA Implementations

LDA has many implementations in a wide variety of languages. There are two

standard formulations of it, depending on how the Dirichlet priors are updated for the

next iteration. The implementation used in the original paper and uses variational

Bayes, while many later works, including PLDA, rely on Gibbs sampling.

In both cases, directly computing the optimal values for the latent variables

and other parameters is intractable. Variational Bayes divides these unknowns into

smaller groups whose local optimums are tractable. Each subgroup is optimized an-

alytically, holding the others constant. As the local optima rely on the value of the

9

other parameters, this suggests an iterative process where each grouping is optimized

in alternating sequence until convergence is reached. While this convergence is guar-

anteed, deriving the processes to perform the local optima represents a substantial

development cost.

Gibbs sampling takes a di�erent approach. Rather than a series of alternating

optimizations, each observation is sampled repeatedly, updating the latent distribu-

tions using Bayesian inference. The posterior distribution after each observation is

sampled will tend toward the values of the inferred parameters that are mostly likely

to generate the observed data, but as a Monte Carlo method the rate of convergence

is unbounded. In practice, there is a length of time where the estimated distribu-

tion does not represent the true distribution, called the burn-in period, followed by

convergent behavior. While this behavior is less desirable than that of Variational

Bayes, the implementation of Gibbs sampling is less complicated and comparatively

straightforward to derive.

In either method, iteration is used to approximate the latent parameters. Con-

vergence can be measured either by change in these estimates or in another objective

metric of the model, such as the likelihood of producing the training set [8].

2.2.5 LDA Strengths and Weaknesses

One of the assumptions of LDA is that every document is equally important.

When evaluating documents over a long span of time, this becomes troublesome. The

classi�cation of a document written in 2000 should be based more on how it compares

with documents written in the 1990s than in the 1900s. This problem can be partially

sidestepped by considering blocks of time as separate collections, and performing LDA

on each of them independently. However, this not only greatly reduces the size of the

10

corpus being used on any given task, but also neglects any information about topic

evolution. This second element is of interest in many �elds of study, and can only be

crudely captured by baseline LDA [7].

2.3 Dynamic Topic Modeling

2.3.1 DTM Algorithm

Dynamic topic modeling is one approach to the time dependency problem;

documents are sorted into discrete time segments, each containing a sizable corpus

of its own. Each time segment has its own LDA model, and these models are linked

together during parameter approximation. Each time segment contains the same

number of topics, initially seeded by applying LDA to the entire corpus. As a result,

topics with matching indices but from di�erent time segments will be similar, having

arisen from the same original topics. These topics are further tied together during

each iteration of the DTM algorithm, where updates take into account not only the

topics in the current time segment but also the one preceding it. We refer to the

set of topics linked to each other over time as a dynamic topic, where the particular

topic at a given timestep is a local topic. For example, if one models 20 topics on 10

time segments using DTM, there will be 20 dynamic topics each consisting of 10 local

topics. During each iteration, topics are updated by repeated inference on documents

in their own timestep, and also by consideration of the topic's form in the preceding

timestep.

However, the multinomial model used by LDA and the Gaussian model for

the time dynamics are non-conjugate, making posterior inference intractable, and an

approximation must be used. Using approximations at each iteration has a negative

11

e�ect on convergence, causing a process already slowed by splitting the timesteps to

slow further [7].

2.3.2 DTM Strengths and Weaknesses

DTM is e�ective in capturing the transformation of a dynamic topic over

time. It maintains the core strength of LDA while also allowing for variance across

time periods to account for slowly changing language [7]. However, it possesses no

mechanism for the birth or death of topics. Furthermore, the evolution model for the

topics assumes the topics are recognizable from one year to the next. While a topic

might gradually evolve to be unrecognizable from its original form, each individual

jump must be smaller than the distance from that topic to the others in that time.

DTM also retains the weaknesses of LDA, primarily the necessity of specifying

how many topics are present. DTM adds further complication to this, as the optimal

number of topics may vary by time, which is not supported by the model.

2.4 Clustering

Topic models are by no means the only way to classify data. Clustering nu-

merical data is an omnipresent problem in machine learning. The most relevant

approaches are discussed here.

Clustering is a much more general problem than topic modeling, which is but

one of many applications. Its terminology is correspondingly more general;

• Feature - Any axis of input used for classi�cation. Height, weight, and color

are examples of features. The set of possible combinations of values for each of

these features is known as the feature space. Any given data point will have a

12

number of features; most algorithms assume that all input data have the same

features (though di�erent values).

• Cluster - A set of data points that are �alike�; what this means varies consid-

erably from method to method. Generally, points in the same cluster will be

�closer� to each other than they are to points in other clusters, under some dis-

tance metric. Whether clusters are disjoint, can overlap, or are nested within

one another varies as well.

• Classi�er - A method to assign a data point to a cluster. A common way of

verifying a classi�er is to use it to classify points whose cluster is known (also

called labeled data) to con�rm they are assigned correctly.

One algorithm for clustering is k-means. This thesis uses k-means due to

its combination of simplicity, familiarity, speed, and availability of a fast parallel

implementation.

2.4.1 K-Means Algorithm

K-means is among the simplest clustering methods possible. Data points are

divided into k clusters based on a simple Voronoi diagram on k points. A Voronoi

Diagram is a partition of a space, based on a set of points. The area closer to a

given point than to any other points is its Voronoi cell. Each of the k points is the

mean of the training points in its cluster, and the surrounding Voronoi cell represents

a classi�er. K-means is a hard classi�er, that is, points near the boundary between

Voronoi cells are still treated as part of the cluster with the closer mean.

Within this structure, the quality of a set of clusters is determined via inter-

cluster sum of squares, calculated as the sum of the distance between each point in a

13

cluster and its center. Computing the optimal cluster for a given value of k is an NP-

hard problem, and as such is generally impractical. However, heuristic algorithms

can reach local maxima very quickly, and when run repeatedly on di�ering initial

conditions can often �nd the optimal solution quickly.

The most well-known algorithm for generating k-means clusters is Lloyd's

Algorithm, and is interchangeably known as the K-means algorithm. Beginning with

some initial set of k points (�means�), the data are classi�ed to the nearest such

point using Euclidean distance. Once all the data have been classi�ed, the means are

updated to become the centroid of all points in their cluster. Repeat the process to

classify the data, and update the means whose clusters changed, until the change in

the centroids falls below a provided threshold, or stops changing entirely.

2.4.2 K-Means Strengths and Weaknesses

K-means' simplicity ensures it has excellent runtime, but it also carries with it

a number of assumptions. As a Voronoi classi�er, there is an intrinsic assumption that

�correct� clusters should be roughly equally sized or that data in di�erent clusters will

be separated by considerable distance. It is thus very likely to not identify a small

cluster near a large one, but will instead split the large cluster into two.

Even if the data lend themselves well to Voronoi classi�cation, there is the

matter of selecting k. While this is a well-studied problem, there is no general solution.

Where it is possible to evaluate the value of the resulting classi�er, such as with

precision and recall, the algorithm can be run with varying values of k and the best

result selected. Note that while technically the internal measure of inter-class sum

of squares can be used for this purpose, it is optimized when k = n and each data

point has its own cluster for a total sum of 0; the choice of k is a prime example of a

14

bias-variance trade-o�.

The algorithm can be highly sensitive to its initial conditions, generating dif-

ferent clusters depending on the starting values. This is often handled by running

the algorithm repeatedly with varying starting points. Combining this with the pos-

sibility of repeating the algorithm for varying k values as mentioned above, ensuring

con�dent results can require many executions. Fortunately, each execution rarely

requires more than a handful of iterations, so this whole process is still very fast

compared to other clustering approaches.

2.4.3 K-Means Implementation

Most machine learning toolboxes implement K-means. However, some imple-

mentations re-calculate the distance between every point and every centroid at every

iteration, even though the centroid may not have changed. This is an O(k · n · d)

operation, where n is the number of points and d their dimensionality. Even when

a centroid has changed, it may not have moved nearly far enough to potentially re-

classify a given point. There are a number of clever variants on K-means, such as

Yinyang K-Means [13], that produce identical results without performing many of

these unnecessary distance calculations. However, even the unmodi�ed algorithm

lends itself to parallel optimization. The classi�cation of points at each iteration is a

highly parallelizable operation, and the centroid adjustment can be performed with

a broadcast-reduce pair.

The chosen implementation of K-means for this project was developed by

Northwestern University. The code is readily available, and provides standalone exe-

cutables for both serial operation and two varieties of parallel operation, using either

shared or distributed memory. Its input and output formats are simple as well. It is

15

a lightweight implementation that still ful�lls the primary requirement of scalability.

2.5 Related Projects

2.5.1 PLDA+

While LDA alone is a powerful tool, applying it to large corpora, such as those

possessed by Google, can surpass the practical capabilities of serial computing. PLDA

is one answer to this problem, developed by collaboration between Google Beijing

Research and CMU [28]. PLDA builds on a method called Approximate Distributed

LDA (AD-LDA) [23]. Instead of a probability mass function, topics are represented

by the count of each word assigned to them. For example, if the word �apple� is

generated by a topic �fteen times and there are sixty words generated by that topic

in total, AD-LDA will record �fteen whereas LDA would record 0.25. This method

utilizes data parallelism by dividing up the set of documents across processes, and

iterates over the corpus using Gibbs sampling. Each process has a copy of the word

counts, and communicates any changes it makes to word assignment in its documents

(and thus the resulting topic matrix) at the end of every iteration. During each

iteration, processes do not communicate, and thus are working with stale results that

are not globally accurate. As such, this can be considered an approximation to serial

Gibbs sampling. Experiments show this approximation converges in practice.

PLDA implements the AD-LDA algorithm in MPI, and extends it to provide

error recovery, and demonstrate substantial speedup on large corpora. PLDA+ takes

the MPI implementation of PLDA and goes further, optimizing the algorithm using

the four strategies of data placement, pipeline processing, word bundling, and priority-

based scheduling [21]. Data placement enables the pipeline to mask communication

16

delays with further computation, working on one word bundle while communicating

the results of another. These word bundles are chosen such that the computation time

is long enough to mask communication, and arranged in a circular queue rather than

statically assigned to processes. The queue and word bundles are managed by one set

of processors while another set performs the Gibbs sampling, thus taking advantage

of model parallelism.

PLDA+ succeeds in masking communication with computation, and as a re-

sult has superior scalability and performance to even PLDA, which is already fast.

PLDA+ nears the theoretical maximum speedup for hundreds of processes and re-

mains very high for all process counts tested.

2.5.2 Parallel DTM

Bhadury et al. [5] devised a method to address the normal complications

with DTM's inference algorithm. Previous work relies on mean �eld approximations,

which are costly to calculate. Their work instead utilizes developments in stochastic

Markov Chain Monte Carlo methods, a category which also includes Gibbs sampling.

This allows them to utilize the more easily parallelized Gibbs sampling framework to

estimate posterior likelihood, but is also faster in serial operation. Their results show

dramatic speedup over the original DTM implementation, but they have not made

their code available as of this writing [5].

2.5.3 DCM-LDA

Dirichlet Compound Multinomial LDA is a method developed for organizing

a library corpus, composed of many books. Its primary purpose is to facilitate corpus

exploration, either by keyword or exploring related works, without the need for man-

17

ual tagging. Its structure is quite similar to the system we devise in this thesis. Both

systems divide their corpus into sub-corpora for LDA, then subsequently cluster the

resulting topics. However, in DCM-LDA, each sub-corpus is a set of tightly intercon-

nected documents. In their example, it is the pages of a single book, while in our data

it might be articles within the same journal. These topics are then greedily clustered

using a similarity matrix based on Jenson-Shannon divergence, then culled to roughly

the most commonly occurring 10%. Despite the super�cial similarities, this method

is intended for local similarity and global diversity, while ours is designed around the

reverse [22].

2.5.4 Other Related Works

A. Ahmed and E. P. Xing developed in�nite dynamic topic models (iDTM),

which operates similarly to DTM but allows for an unbounded number of topics. Each

topic can be born or die out at any given timestep, as demonstrated on the NIPS

conference proceedings [3]. Q. Diao et al. developed TimeUserLDA to discover �bursty

topics� amongst microblogs such as twitter. Their method successfully identi�es

major events from noisy data by taking advantage of user history [12]. A. Dubey

et al. propose non-parametric topics over time (npToT), which extends the topics

over time algorithm to an unbounded number of topics. This treats document time

as an observation rather than a classi�er, and attaches topics to time distributions

rather than single timesteps [14]. C. Chen et al. developed a dynamic topic model

that utilizes normalized random measures instead of a Dirichlet process, yielding

superior perplexity [10]. Q. He et al. integrate citation information into LDA, tying

documents not to a �xed timestep but to the documents they cite [18]. Y. Tu et al.

extend LDA into a Citation-Author Topic (CAT) model that identi�es expert authors

18

in each topic [25]. S. Xu et al. extend Topics over Time into the Author-Topic over

Time (AToT) model, which infers not only topics but also the research interests of

contributing authors [30]. K. W. Lim and W. L. Buntine develop a nonparametric

model combining a Poisson mixed-topic link model with an author-topic model, using

it to model authorship and content of research papers [20]. H. Yu et al. develop an

improved Gibbs sampling routine using Fenwick trees, and apply this to speed up

parallel LDA [31].

19

Chapter 3

Problem Motivation

3.1 Impact of High-Performance Computing

While high-performance computing (HPC) clusters have proliferated over the

last few decades, they are still not omnipresent. A supercomputer requires substantial

resources to obtain and maintain, far beyond discretionary budgeting. Acquiring

the funding for such machines requires a convincing argument for the merit of the

investment. Understandably, there is a considerable desire for evidence that such

an expensive undertaking will have impressive results; however, while anecdotes are

plentiful, quantitative descriptions of what happens when an institution gains high-

performance resources are scarce.

While this problem plays out all over the globe in varying forms, the National

Science Foundation (NSF) is particularly interested in the e�ectiveness of their invest-

ments. To this end, they have commissioned a grant to investigate how the acquisition

of high-performance computing resources impacts research in academic institutions.

Investigating this question requires examining the characteristics of institutions be-

fore and after they gain HPC resources; however, identifying the relevant timeframes

20

and characteristics are both nontrivial problems.

3.2 Evaluating Research Output

The goal of HPC resources is to improve research, for some de�nition of �im-

prove�; as such, evaluating the success of such investments logically means looking

at the output of such research. There are many ways to do this, but a few possible

quantitative analyses are of particular noteworthiness.

3.2.1 Graduate Output

One of the simplest ways to evaluate research output is to examine an in-

stitution's graduate program; every graduate student must produce new research in

order to gain a degree, so simply counting the degrees awarded by a graduate school

provides a very rough approximation of the volume of research being done. In theory,

any advance that causes research to take less time would cause students to graduate

more quickly, thus resulting in an increase in the number of degrees awarded.

Similar logic would suggest that more than just graduate students would �nish

projects more quickly; the overall rate of publishing would increase if the same work

was being done, but more quickly. This, too, provides a rough metric for how much

research an institution is performing. Publishing rates vary enormously by �eld;

while this necessitates closely examining data for alternative explanations, changes

in publishing rates may also indicate cross-�eld collaboration encouraged by HPC.

Certainly, any anomaly is worthy of exploration to determine its cause [4].

21

3.2.2 Citation Count

In addition to evaluating the volume of research, one can evaluate its approx-

imate quality. Citation count is a common metric for the importance of a paper,

and can provide an easily calculated statistic to examine. However, citation count

does not always indicate novelty; a paper discussing the state of the art may garner

many citations as it forms a useful reference for other papers to draw on, despite not

necessarily presenting anything new in its own right. Papers also unevenly accrue

new citations as time passes, making it di�cult to justify calibrations of relative im-

portance for papers that were not published at the same time. Utilizing the citation

count that papers possessed after a set period of time addresses that problem, but

weakens the greatest advantage of using citations; the ease of calculation. While there

is valuable information in citation counts, it is a tightly interconnected measure and

driven more by external work than the work itself.

3.2.3 Type of Research

Another angle for examining research output is its subject; �nanotech� versus

�material science� for example. If it is possible to identify the subject of research

output, then changes in this makeup represent another feature to examine for im-

pact. To do so, one must �rst �nd a quantitative de�nition of subject. Naïvely, one

possibility of subject classi�cation is the journal to which a paper was submitted.

However, major journals often cover a wide range of topics within a �eld, so this

alone is too coarse to observe the types of changes we expect to see. The articles

themselves are usually tagged with a set of keywords, but use of these keywords is

inconsistent. Instead, we examine the journal articles directly, using the text to de-

�ne data-driven classi�cations. This is done through topic modeling, the demands of

22

which lead directly to the subject of this thesis.

3.3 Dynamic Topic Models

Having chosen to examine the subjects of research output via topic models,

the next question is what topic model to use. To evaluate a change in research output,

we need several qualities in our topic model. Most importantly, we must be able to

compare the proportions of topics from year to year. If years are not comparable to

each other, we cannot measure di�erences. This can be done in a limited sense by

running LDA on our entire corpus and adding up topic mixtures for each year once

complete. However, we also seek insights on how the same overall subject changes

over time. For example, we wish to notice if an institution continues to submit articles

about material science from year to year, but their lexicon begins to include words

relating to simulations once HPC resources are introduced. The combination of these

requirements leads us to the need for a dynamic topic, whose overall subject matter

remains consistent over time but can morph to incorporate new language. Dynamic

topic models implement this requirement, with each timestep having a local topic as

the form of a dynamic topic on that time's sub-corpus.

The available implementation of DTM is slow. Running the experiments for

our research inquiry can take weeks, causing substantial setbacks if any modi�cations

are necessary. In order to progress with this research, we require a system that

generates dynamic topics, and does so more quickly than DTM.

23

Chapter 4

Clustered Latent Dirichlet Allocation

4.1 Requirements

The main goal of the algorithm is to provide a faster and more �exible al-

ternative to Dynamic Topic Modeling. It must answer the same type of questions.

It must accept the same type of input and produce the same types of output. It

must be possible to replace DTM's presence in a work�ow with this algorithm, both

mechanically and conceptually.

The solution must address shortcomings of the original implementation of

DTM. In particular, that the runtime of the existing C code is prohibitively long

for large datasets. This algorithm must have superior performance to previous DTM

implementations, and be scalable to large datasets. It is also desirable that the

algorithm allow for the appearance and disappearance of topics over time.

4.1.1 Format

Speci�c requirements include:

24

1. Input must match previous DTM input. In this case, the chosen implementation

was Blei and Gerrish's C code [6], so the input is the following:

• A word ID �le containing the entire vocabulary.

• A sequence �le containing the number of timesteps and their respective

sizes.

• A wordcount �le containing the IDs and counts of each word that appears

in a document. Each document occupies one line of this �le.

2. Output must include the same information as previous implementations. In

particular:

• Every dynamic topic's form at each timestep

• The topic mixture for each document

4.1.2 Performance

The algorithm must process much larger datasets in shorter timeframes. The

system's runtime must be much shorter than the existing available DTM implemen-

tation, in terms of total run time.

4.1.3 Quality

In order to be useful, the topics produced by the algorithm must be either very

similar to those produced by DTM, or superior to them. Measuring the quality of a

topic model is an open question, but a standard approximation is the perplexity met-

ric. This metric evaluates how likely the topic model is to generate a set of provided

documents. A lower perplexity indicates a model more closely �ts the documents. As

25

perplexity is a function of probabilities rather than direct model parameters, it can be

used to compare models over the same input. This metric is e�ective in evaluating a

model's ability to predict output, but lower perplexity does not necessarily correlate

with human perception of topic quality [9][26].

In addition to overall predictive quality, it is useful to evaluate the di�erence

between the results generated by DTM and this system. The primary output of a

topic model is a set of topics represented by vectors. While these vectors can be

compared directly, their application in this numerical form is already measured by

perplexity. Humans, however, do not generally examine these topics in their native

numerical form; instead, it is easier to look at the most common words associated with

a topic. This transforms the topic from a large vector to a small set, and necessitates

a di�erent type of comparison [9].

We can consider the output of two models to be similar if there is substantial

overlap in the sets representing their topics, as a rough approximation to whether a

human would consider the two outputs to be similar. This transforms the qualitative

question of how similar topics look into a quantitative question that can be tested

objectively [9]. If the output of this system and DTM are similar on this basis, then

the system satis�es the need to generate output similar to that provided by DTM.

4.2 Design

The design for CLDA comes from evaluating the needs of the research ques-

tions.

The goal of DTM is to generate a consistent set of topics over a large corpus,

and to modify them through an iterative process to better �t the documents of that

corpus. There is a persistent subject, or dynamic topic, with many forms across

26

time. DTM starts by discovering the overall topics with an LDA initialization step,

and then iterates to discover how these dynamic topics take on local forms at each

timestep. Our system does the inverse, searching for local topics at each timestep

�rst. These local topics are then collected into dynamic topics in a later step.

Searching for topics in a given timestep is an easily solved problem. Each

timestep can be treated as a corpus of its own, and be input into LDA. Similarly,

collecting output into like subjects is another solved problem. Topics are vectors,

and can be processed using clustering algorithms such as K-means. Both LDA and

K-means have readily available parallel implementations, leaving only the data ma-

nipulation to be developed.

Figure 4.1 shows the overall process of CLDA.

4.2.1 Step 1: Decompose the Corpus

In order to process each timestep with LDA, the data �rst need to be separated

by timestep. The DTM input �les contain all the necessary information, so carving up

the full corpus is a simple task for Python or similar languages. The bulk of the data

manipulation was handled in Python for this reason; the manipulation operations

represent a fairly small portion of the overall runtime, so the language was chosen

for ease of implementation. Once the timesteps are separated, there is another data

manipulation step to convert them from the DTM input format to the input format

of the chosen LDA implementation.

27

Document Corpus

Split

s1 s2 sS…

Z

W

N

θ

M

α

{t2
i}i=1

L

Z

W

N

θ

M

α

Z

W

N

θ

M

α

…

Apply LDA

Merge

… c1 c2 cK

Cluster

U

{tS
i}i=1

L{t1
i}i=1

L

{t1
i}i=1

L ,{t2
i}i=1

L ,!,{tS
i}i=1

L ,

Figure 4.1: Flowchart of the algorithm

28

The division of the overall corpus into individual timesteps is a serial task, but

the remaining data manipulation before each LDA run can act independently on the

resulting chunks as long as that process can access the vocabulary list. Most of the

manipulation required for the Merge step can similarly be done independently, and

as such this entire sequence can be trivially parallelized. However, only the LDA step

takes substantial time to complete, so parallelizing the manipulation as well is not

necessary.

4.2.2 Step 2: Generate Local Topics

Once the corpus has been decomposed into individual timesteps, it is time

to process them with LDA. This is a straightforward operation, with a number of

LDA runs equal to the number of timesteps; LDA run 1 processes timestep 1, and so

on. As these are independent, they can run simultaneously on separate processors -

or groups of processors, if using parallel implementations of LDA - for embarrassing

parallelism. When this is complete, there will be one set of outputs for each timestep,

to be merged in the next step.

To test the algorithm, PLDA+ was chosen as the LDA implementation [21].

The foremost reason for this was its ready availability, but it boasts many other

advantages already detailed in a previous section.

4.2.3 Step 3: Merge Local Topics

Once the LDA runs are complete, their output is prepared for input to k-

means. At the conceptual level this requires concatenating the emitted topics into

a single list, but in practice this step is considerably more involved. The individual

outputs have indexing entries that must be removed before they can be concatenated,

29

and then re-indexed to match the speci�c demands of k-means. More complex than

such reformatting is ensuring that the topics generated are comparable; LDA acts

on a vocabulary consisting of everything that appears in its source documents, and

produces topics with a value for each element in the vocabulary. If a word appears in

one document collection but not another, these topics are not directly comparable.

As such, if any of the timesteps did not contain the full vocabulary, it is necessary at

this stage to pad their topics with the missing entries as zero values.

Proper data cleaning minimizes the importance of padding topics with missing

entries; in many of the experiments performed on real data it was not necessary.

However, there is no guarantee that this is true on any given dataset, and missing

entries are especially likely to occur if data is divided into small subcorpora or spans

a wide range of subjects.

In addition to ensuring the vectors are comparable in dimension, they must

be comparable in scale. PLDA+ provides varying magnitudes for vectors based on

their occurance in the data, but the intention of this algorithm is to cluster based

on the meaning of topics, not their occurrence. As such, we normalize the topics

before clustering them, using Manhattan distance. This operation is not complicated

and has no dependence on other topics, let alone other timesteps, and can thus be

done independently before the merge, or all at once afterwards. Our implementation

performs this normalization after the merge, but there is no di�erence in results either

way.

4.2.4 Step 4: Clustering Local Topics

After the topic collections have been merged into one �le, they must be clus-

tered. While executing this step requires only a one-line script to call an imple-

30

mentation of k-means, there are some important caveats worthy of discussion. Most

notably, the choice of k and the initial clusters both represent user speci�cations with

substantial consequences.

The choice of what value to use for k is an open question, and has no general

solution. There are a �nite range of acceptable values of k for any given input. In the

extreme cases, k = 1 de�nes a single cluster containing the entire dataset, and k = n

de�nes a cluster for each and every data point individually. It can be optimized for

any given metric of quality, even if just by brute force, but the notion of �quality� has

no intrinsic de�nition. Evaluating the quality of a given set of topics is the subject

of future work1; for now, the choice of k is left to the judgment of the users.

The k-means algorithm is also sensitive to its initial clusters. It is a heuristic

algorithm that settles into local minima, since computing the optimal clustering under

inter-class sum of squares is NP-hard. One set of initial values may result in di�erent

topics than another, and as before, there is no obvious notion of quality. The internal

metric of inter-class sum of squares, while unhelpful for comparing varying values

of k because it is minimized by k = n in all input sets, does allow comparison of

clusters using the same k; from a set of clusterings, it can be used to choose the one

closest to optimal. Even running k-means repeatedly and selecting the best results

has its problems, though; generating random initial clusters that are di�erent enough

from each other to be useful is a challenge whose solution depends on the data, and

every method is likely to skew results toward a particular shape. Fortunately, in this

particular case, there is a useful initial guess to utilize; the results of LDA itself. The

initial values can either come from random topics sampled from the merged set, or

one can run LDA on the entire corpus with k topics. In the latter case, this can

be done simultaneously with the other LDA runs, avoiding an unnecessary delay in

1See the Conclusions chapter for preliminary thoughts on this subject.

31

overall runtime. This implementation uses LDA results as its initial clusters, although

experiments with other initialization strategies will be the subject of future work.

The implementation used for these experiments performs clustering serially,

since the size of the topic matrix is small enough that it can be clustered faster than

a job can be scheduled on parallel resources (generally taking less than a second).

However, for much larger experiments, the selected k-means code provides parallel

implementations for both OpenMP and MPI.

Once clustering is complete, there are two important outputs. The �rst is the

centroids, each usable as a topic in its own right, and the second is the assignment of

the original topics to their corresponding centroids.

4.2.5 Step 5: Backtracking for Supplemental Information

The clustering outputs are useful on their own, but they provide entirely dif-

ferent information than the outputs of DTM. DTM does not provide a general vision

of a given dynamic topic, only its local topics at each timestep. Clustering provides

both a time-agnostic version of a topic and a varying number of local topics at each

timestep; including potentially none at all, indicating that topic was not meaningfully

present at that time. The likelihood of this depends on the ratio of local to dynamic

topics, becoming more unlikely as the number of local topics is increased.

DTM's major outputs are a matrix of local topics for each timestep, and topic

mixture values for each document in the corpus. Generating the �rst one is fairly

straightforward; for each dynamic topic generated by clustering, collect the local

topics assigned to it at each timestep. As there may be many such local topics,

it is necessary to combine them into something directly comparable to DTM; an

arithmetic mean can combine the vectors into a topic representative of the subject at

32

that timestep, but this is an area worthy of further exploration. Other possibilities

include other statistics, such as the median, or selecting one topic as a paragon based

on intra-class similarity.

Generating topic mixture data requires more steps. PLDA+, unlike many LDA

implementations, does not provide as output the mixtures used during its iterations.

Instead, it comes bundled with a program that estimates topic mixtures given a

PLDA+ topic model and a set of documents, which need not be the documents on

which the model was trained. To gather the mixture data for the corpus, we run

this program using the local topic models and the local data. While this step is

presented here for clarity, it is performed immediately after PLDA+ runs, as it is

fully independent of other timesteps and can thus be done in parallel.

Combining the local mixture data into the global dynamic topics follows a

process similar to combining the local topics. For each document, the topic mixture

value for a dynamic topic is the sum of the topic mixture values for each local topic

assigned to that dynamic topic.

33

Chapter 5

Experimental Validation

There are several questions to be answered in this analysis:

• How does the runtime of CLDA compare to DTM?

• How does the output of CLDA compare to DTM? Speci�cally:

� Is the output of CLDA similar to the output of DTM?

� How does the quality of the output of CLDA compare to the output of

DTM?

• How do the user speci�ed parameters of CLDA in�uence output quality?

• What insights can CLDA provide that DTM cannot?

5.1 Data and Resources

We chose two datasets to use as case studies for our experiments. These

datasets are both collections of research text in computer science, allowing us to

intuit meaning from the topics more easily than we would for data from other �elds.

34

Other types of text data may have other properties, and exploring them will be the

subject of future work. Coincidentally, both datasets also span 17 years. Future work

will also investigate the e�ects of data spanning a much larger time scale.

5.1.1 Journal Abstracts

Clemson's Data-Intensive Computing Ecosystems lab has a collection of jour-

nal abstracts acquired from Elsevier through partnership with LexisNexis. These ab-

stracts span 1996-2012 and 3 subjects: chemistry, computer science, and economics.

The focus of this analysis will be on the computer science abstracts, as it is the most

familiar and thus simplest to verify intuitively.

Cleaning the data requires several steps. The raw data also contain substantial

metadata stored in XML, which must be removed to extract the raw text. Samples of

this raw text can be found in Appendix A. From there, we remove special characters

and punctuation; these are replaced with spaces, as we discovered that simply remov-

ing punctuation often leads to words being combined. We then convert all letters to

lower-case. It is important to do these steps before removing words, since most string

comparison functions will not recognize that �Apple:� and �apple� are the same word.

The �rst words removed are stopwords. Then, we remove every word that does not

appear in most documents. We initially removed words that did not appear in at least

1% of the documents, but this reduces the vocabulary down to 1,253 unique words.

As an alternative, we prepared a second version of the dataset that only removed

words that did not appear in at least 0.01% of the documents, which leaves 22,410

unique words in the vocabulary. The 1% version of the dataset is used in most of the

experiments directly comparing CLDA and DTM, while the 0.01% version is used in

the experiments about CLDA's parameters. Each experiment will note which version

35

of the data is used. Details on the properties of both versions of this dataset are

found in Table 5.1.

5.1.2 NIPS Conference Proceedings

The Neural Information Processing Systems (NIPS) Conference provides the

full text of every paper accepted there, and is commonly used as a point of reference

for a variety of machine learning techniques. We use a version of the data containing

papers scanned using Optical Character Recognition (OCR) for the years 1987-2003.

This version has stopwords already removed and minor manual data cleaning [15].

We left this dataset as-is to maintain comparability with other results on these data

and did not perform any additional pre-processing beyond format changes. Details

of the data are found in Table 5.1.

5.1.3 Computing Resources

All experiments were run on Clemson University's Palmetto Cluster. Palmetto

is a highly ranked academic research cluster, consisting of 1,978 compute nodes with

20,728 cores and 598 NVIDIA Tesla GPU accelerators, with 36,608 GB of memory

[2][1]. Since Palmetto is a diverse resource, care was taken to ensure di�erent exper-

iments landed on the same types of nodes.

5.2 Comparison to DTM

To compare our system to DTM, we used Blei and Gerrish's implementation

of DTM [6], used in the original paper developing the method [7]. Since the start

of this project, another implementation has been published by Bhadbury et al. [5].

36

Table 5.1: Dataset Details for Computer Science Journal Abstracts and NIPS Con-
ference Proceedings

Dataset Vocabulary Size Total Documents Total Tokens
Abstracts (1%) 1,253 533,560 25,201,799
Abstracts (0.01%) 22,410 533,560 32,551,540
NIPS 14,036 2,484 3,280,697

Abstracts NIPS
Year Documents Year Documents
1996 17191 1987 90
1997 19277 1988 95
1998 18778 1989 101
1999 15663 1990 143
2000 16293 1991 144
2001 16005 1992 127
2002 17434 1993 144
2003 22315 1994 140
2004 21151 1995 152
2005 29054 1996 152
2006 34499 1997 151
2007 42115 1998 151
2008 48218 1999 150
2009 52821 2000 151
2010 54103 2001 192
2011 54946 2002 203
2012 53639 2003 197

37

Table 5.2: Runtime Results on Computer Science Abstracts

of # of Walltime Walltime
Processors Iterations (minutes) (hours)

DTM (Blei) 1 100 3497 58.3
CLDA 12 1,000 12 0.2
CLDA 24 1,000 6 0.1
CLDA 48 1,000 2 0.03
CLDA 48 10,000 18 0.3

Their implementation is parallelized and reports excellent performance, but its code

is not yet publicly available; as such, our comparisons are restricted to the original

implementation.

5.2.1 Runtime

To compare runtimes, we used the same input �les for both our system and

DTM. However, for our system, there are additional parameters for parallel operation,

as well as the number of local topics. For this test, we used the computer science

abstracts using the 1% word appearance threshold. All tests used 20 global topics,

with our system using 50 local topics.

The results shown in Table 5.2 demonstrate that the algorithm is orders of

magnitude faster than the original implementation of DTM. This is unsurprising;

the primary operation of consequence is the LDA phase of the algorithm, which

utilizes the highly optimized PLDA+. The other operations largely consist of data

manipulation to normalize or rotate �les, and the clustering step. However, since

only the topics themselves are used for clustering, k-means can process these data in

seconds serially.

As a consequence of this speed, we can run LDA for many more iterations

38

than is practical with DTM, and on many more local topics. PLDA+ is also highly

scalable, which is encouraging for applications to larger corpora.

5.2.2 Perplexity

Perplexity is a standard measure of the overall quality of a topic model. It

captures how well the model matches the provided data. It is the exponent of en-

tropy, which is calculated as the negative inverse of the log-probability. Calculating

perplexity requires calculating the probability of an input set being generated by the

model, which is the product of the probability of generating each document in the

input set. The probability of generating a document i is the product of the probabil-

ity of generating each of its words wi,j, of which there are ni. As multiplying these

probabilities quickly results in under�ow in �oating point arithmetic, these products

are expressed as sums of logarithms instead. Here, this simply pushes the existing

logarithm through the product operations to where it no longer causes problems, as

shown in Equation 5.1 [27]. The formula used for perplexity is thus

Perplexity = e

− log

(
i∏

1..d
(

j∏
1..ni

P (wi,j))
)

i∑
1..d

ni
= e

−
i∑

1..d

(
j∑

1..ni

logP (wi,j)

)
i∑

1..d
ni

.

(5.1)

Calculating P (w) depends on the model used. For most topic models, the

probability of a word appearing in a document is based on the topic mixture of that

document. Each token has a chance of being drawn from any of the document's

39

constituent topics, each of which has its own chance of generating any particular

word. The probability of a token appearing in a document is

P (w) =
t∑

1..T

P (w|t) ∗ P (t). (5.2)

P (w|t) is an entry in the topic matrix, and estimating it consists of a lookup.

P (t) is a value from the topic mixtures, for which estimates are not always available.

The DTM code used for these experiments estimates the topic mixtures for each

document in its training corpus, but the LDA code used in our system does not. See

the �Backtracking� section for how this is handled. Further, testing on a set of held-

out documents, rather than the training set, requires calculating new topic mixtures

regardless of implementation. PLDA+ comes equipped with a program to perform

this task for its particular form of topic output, but DTM does not. Algorithms

exist for approximating these values, but there is no intrinsic method. Wallach et al.

describes several of these algorithms, and evaluates their strengths and weaknesses

[26]. For the purposes of our experiment, we rely only on the methods provided with

the code.

We applied DTM to the computer science abstract data while specifying 20

global topics, using the topic mixtures output by the DTM code to calculate perplex-

ity. We applied CLDA with 20 global topics and 50 local topics to this same data,

calculating topic mixtures using the code provided with PLDA+. We also applied

CLDA to a randomly selected subset of this data, consisting of 80 percent of the

documents in each time step, and then calculated perplexity using the 20 percent of

documents not used to generate the model. The results of this experiment can be

found in Table 5.3.

Our system has a substantially lower perplexity than the DTM implementa-

40

Table 5.3: Perplexity results on computer science abstracts.

Vocab. Total Log- # of Tokens Perplexity
Size Likelihood

DTM (All Data) 1253 -196,815,247 25,201,799 2,464.07
CLDA (All Data) 1253 -149,717,941 25,201,799 380.22
CLDA (Heldout) 1253 -31,723,462 5,027,567 549.99

tion, meaning that the model much more closely �ts the training data. Future work

will explore other ways to evaluate the quality of a topic model.

5.2.3 Similarity

The previous results indicate that our system is both very fast and has low

perplexity. We wish to know how similar the generated topics are to those generated

by DTM.

Topics are probability mass functions represented by vectors, but this is not

how humans interpret them [9]. Rather than look holistically at the entire vector, a

human will typically examine the most heavily weighted words in a topic; for example,

the top �ve. These words will provide insight as to the conceptual meaning of a topic.

In order to compare the insights gleaned from a set of topics, we thus need to compare

what a human compares; the words most strongly tied to a topic [9].

Set theory provides several metrics for comparing �nite sets. Of particular

interest are the Sørensen-Dice coe�cient

S(A,B) =
2 ∗ |A ∩B|
|A|+ |B|

(5.3)

and the Jaccard index

J(A,B) =
|A ∩B|
|A ∪B|

, (5.4)

41

both of which examine the relative size of the intersection. Sets that share most of

their elements with each other will generate values closer to 1, while sets that share

few elements will be closer to 0.

In order to transform our data into a form where it can be evaluated with

these metrics, we use the top 20 words in a topic as its representative set. Chang et

al. [9] used the top 5 words as the core of a topic for their intruder experiment, but

they were using humans to detect outliers instead of searching for broad similarity.

We chose this value as it is low enough to be human-readable, but high enough to

dampen the impact of minor value di�erences on ordering. However, this value is still

arbitrary. Future work will explore other means of transforming topics into sets.

We compared the systems on two levels, local and global, using both measures.

Each comparison requires having a single set of topics to compare to a single set of

topics. At the local level, DTM has exactly one local topic per dynamic topic, but

CLDA does not. We computed a local topic centroid for each of CLDA's dynamic

topics using the local topics assigned to it, averaging these local topics together to

form a new topic which could be compared to a DTM topic. Speci�cally, each word

probability estimate for this local centroid is the mean of the word probability es-

timates of its component local topics. For the global comparison, CLDA provides

a centroid topic for each dynamic topic but DTM does not. We estimated a global

centroid topic for each of DTM's dynamic topics using the same process, averaging

together the local topic from each time segment. These means provide us with an

equal length set of topics for each system both globally and at each timestep.

Both the Sørensen-Dice coe�cient and the Jaccard index only compare single

sets to each other. Comparing the output requires assigning a bipartite matching

between each collection of 20 topics. This is a �Stable Marriage Problem� and is well

studied in matching. While the general problem is NP-hard, knowledge of our speci�c

42

Figure 5.1: Similarity of Dynamic Topic Means under Sørensen-Dice Coe�cient and
Jaccard Index.

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Topic index

M
at

ch
 c

oe
ffi

ci
en

t

Sorenson−Dice Coefficient Jaccard Index

problem allows us to avoid the need for a general solution. If each collection contains

a topic describing a concept; for example, �neural nets�; these topics should ideally

match each other more closely than they match any other topics in the opposite

collection. If they do not, then our results are not particularly similar, and a low

value is ensured regardless of the optimality of matching. Our experiment utilizes

this assumption by greedily matching the pair of unassigned topics that are closest to

each other under the Jaccard index out of all possible pairings, repeating the process

until all topics are assigned. The Jaccard index and Sørensen-Dice coe�cient are

calculated for each match. The values of the global matches are shown in Figure 5.1,

sorted from best to worst. The local matches for each timestep can be found in

Appendix B.

43

Table 5.4: Probability of overlap of random topics among top 20 values.

Overlap of at least: 1 2 3 4 5 6 7
Probability: 0.275 0.040 0.0038 0.00026 1.3E-05 5.3E-07 1.7E-08

Overlap of at least: 8 9 10 11 12 13 14
Probability: 4.5E-10 9.6E-12 1.7E-13 2.5E-15 3.1E-17 3.0E-19 2.5E-21

Overlap of at least: 15 16 17 18 19 20
Probability: 1.6E-23 8.1E-26 3.1E-28 8.3E-31 1.4E-33 1.2E-36

Even low values under these metrics represent an overlap in topics unlikely

to occur by coincidence. If a topic was created completely at random by choosing

20 words from this vocabulary, the chance at least one of those words overlaps with

a selected topic is only 28%. We calculate this by noting the chance of a single

random word lands in the selected topic is 20 (the number of words in the topic set)

divided by the number of words in the vocabulary (here, 1253), which is approximately

1.6%. Subsequent probabilities can be modeled using the binomial distribution, where

each event represents choosing a word that matches the topic in question. This

approximation is imperfect; it assumes that all words are equally likely to be in

the random topic's top 20, and that a word could potentially appear more than

once. However, the predictions approach zero likelihood rapidly enough that we

consider this a useful estimate; see Table 5.4. Using these probability estimates, we

can estimate the expected value of the Sørensen-Dice coe�cient and Jaccard index

for random topics, by adding together the products of each overlap's probability

estimate and the value of the metric for that overlap. Using this process, the expected

value of the Sørensen-Dice coe�cient for this experiment is estimated at 0.016, and

the expected value of the Jaccard index is estimated at 0.014. With this in mind,

the coe�cients presented earlier represent a considerable similarity that is extremely

unlikely to have occurred by coincidence.

44

5.3 Parameter Optimization

We wish to know if there is an optimal ratio between the number of local

topics L and the number of clusters K. Perplexity can be used to compare varying

parameters of the same model as well as di�erent models. We show perplexity results

for a range of values for L local topics and K global topics. In Figure 5.2 we show

the results of CLDA models varying both L and K from 2 to 30 in steps of 4 on the

NIPS data. In Figure 5.3 we show the results of CLDA models varying K from 14 to

90 and L from 34 to 70 on the computer science abstract data, using the 0.01% word

appearance threshold.

Our estimated perplexity on these data is comparable to that obtained by

Bhadury et al. [5]. These results show several interesting trends. The overall direction

of improving perplexity is increasing in both K and L at a similar rate, but increasing

one while �xing the other does not appear to cause improvement. We hypothesize

that a given value of K or L implies an optimal value of the opposite parameter,

beyond which the model degrades. While the abstract data have optimal perplexity

values with close values of K and L, the NIPS data shows superior perplexity when

K is substantially larger than L. Further investigation is needed to determine the

source of this di�erence.

5.4 Global and Local Topic Dynamics

LDA can be used to capture changes in topic proportions over time by training

topics over a whole corpus and then evaluating segments of it. This does not capture

any change in topic language over time, forcing each segment to use the same topics.

DTM relaxes this constraint by allowing the topics to vary over time. DTM produces

45

NIPS Data

Local
Global 2 3 4 5 6 7 8 9 10 11

2 2292 2301 2345 2402 2466 2520 2552 2631 2685 2743
3 2102 2142 2209 2231 2295 2324 2353 2413 2473 2519
4 2103 2102 2131 2173 2207 2256 2264 2322 2363 2408
5 2102 2098 2090 2115 2166 2201 2215 2263 2309 2355
6 2019 2026 2036 2059 2098 2133 2145 2200 2222 2259
7 2019 2013 2019 2039 2077 2106 2119 2160 2204 2228
8 2019 2013 2019 2024 2049 2077 2088 2142 2152 2199
9 2019 2003 2008 2004 2033 2060 2071 2102 2141 2153

10 2019 1984 1968 1983 1982 1993 2026 2053 2080 2092
11 2019 1980 1980 1982 1993 2001 2019 2056 2070 2068
12 2020 1977 1958 1967 1980 1991 2005 2032 2073 2073
13 2020 1978 1955 1955 1969 1970 1995 2015 2041 2069
14 2020 1981 1961 1955 1967 1954 1979 1981 2026 2039
15 2020 1984 1946 1950 1964 1962 1959 1972 2040 2048
16 2020 1984 1952 1953 1962 1959 1978 1969 2023 2006
17 2021 1989 1946 1949 1948 1954 1958 1967 2004 2011
18 2021 1979 1941 1937 1917 1915 1919 1924 1983 1957
19 2021 1985 1953 1962 1947 1945 1962 1955 1964 1947
20 2021 1979 1951 1929 1919 1914 1909 1945 1941 1917
21 2021 1979 1947 1929 1902 1898 1906 1915 1946 1943
22 2021 2036 1960 1960 1931 1914 1919 1916 1946 1937
23 2022 1992 1942 1929 1905 1910 1887 1915 1904 1948
24 2022 2002 1954 1936 1916 1914 1917 1897 1941 1957

Figure 5.2: Heatmap showing perplexity estimated from cross-validation for di�erent
combinations of topic counts on the NIPS data. Best perplexity is highlighted in red.

both a version of each topic at each segment, as well as the relative proportion of each

topic at each segment, demonstrating how both language and representation change

over time [7]. However, DTM �xes the number of topics across time, with each overall

topic having one representative per segment. CLDA relaxes this further, allowing a

global topic to have any number of local representatives at each segment. In addition

to allowing for topics to branch out, better �tting their local data, this also allows

for global topics to appear and disappear entirely.

The strength of DTM is the variation of topics over time, taking on forms

better suited to their local data while remaining tied together by a common theme.

Blei et al. [7] demonstrate this by examining the changing form of a topic at several

time steps, as well as their changing proportions over time. CLDA produces output

to provide this same type of insight into a corpus.

We show the changing topic proportions for selected topics in both the NIPS

data and computer science abstract data in Figure 5.4. Like DTM, CLDA provides

46

CS Abstracts Data

Local
Global 34 38 42 46 50 54 58 62 66 70

14 2348 2384 2412 2383 2432 2431 2440 2450 2480 2507
18 2225 2253 2248 2246 2267 2260 2255 2289 2338 2305
22 2050 2102 2068 2090 2107 2132 2117 2153 2212 2136
26 1999 2037 2052 2011 2065 2085 2073 2090 2162 2117
30 1944 1942 1923 1917 1939 1936 1957 1974 1989 2037
34 1909 1909 1866 1873 1864 1870 1890 1891 1886 1932
38 1887 1864 1857 1800 1826 1842 1855 1824 1843 1890
42 1874 1839 1804 1781 1792 1792 1780 1763 1783 1768
46 1880 1841 1801 1753 1756 1777 1781 1763 1764 1800
50 1855 1815 1791 1722 1724 1718 1709 1689 1695 1699
54 1852 1795 1748 1717 1700 1665 1681 1665 1672 1640
58 1838 1794 1741 1701 1682 1657 1646 1640 1628 1631
62 1830 1795 1745 1700 1684 1652 1632 1627 1627 1608
66 1854 1775 1733 1682 1664 1634 1616 1595 1563 1566
70 1853 1782 1746 1705 1666 1647 1620 1606 1586 1599
74 1878 1789 1761 1712 1677 1646 1622 1595 1565 1549
78 1878 1801 1752 1704 1676 1634 1615 1588 1569 1552
82 1866 1800 1760 1712 1674 1646 1615 1589 1563 1543
86 1873 1810 1752 1716 1664 1629 1606 1595 1539 1535
90 1899 1823 1780 1710 1681 1637 1613 1576 1550 1531

Figure 5.3: Heatmap showing perplexity estimated from cross-validation for di�erent
combinations of topic counts on the computer science abstracts data. Best perplexity
is highlighted in red.

insight into the rising and falling predominance of various topics in a corpus. Unlike

DTM, CLDA global topics need not be composed of exactly one topic at each segment.

Figure 5.5 shows how a changing number of local topics represent a global topic we

identify as �Computer Networks�, along with their relative proportions.

We show the top words for these local topics at selected segments in Figure 5.6.

While these topics are all clustered together, they represent distinct ideas within

the overall concept of �Computer Networks�. One may focus on software de�ned

networking, while another may focus on the communication between remote sensors.

While this distinction is useful to examine, treating these as fully separate topics

does not produce an accurate picture of how prevalent computer networks research

is in the corpus as a whole. Clustering these topics together provides both the global

insight of overall representation and local insight into a research area's subdomains.

47

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Time segment

G
lo

ba
l t

op
ic

 p
ro

po
rt

io
n

Topic: 1 2 3

Top three topics NIPS data

0.000

0.025

0.050

0.075

0.100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Time segment

G
lo

ba
l t

op
ic

 p
ro

po
rt

io
n

Topic: 1 2 3

Top three topics computer science abstracts data

Figure 5.4: Evolution of three largest global topics for the NIPS data (left panel) and
computer science abstracts data (right panel).

0.00

0.01

0.02

0.03

0.04

0.05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Time segment

G
lo

ba
l t

op
ic

 p
ro

po
rt

io
n

Computer Networks

Figure 5.5: Evolution of global topic �Computer Networks�. Each bar represents a
local topic, with bar height corresponding to the proportion a local topic contributes
to the global topic at a time segment. See Figure 5.6 for a more detailed description
of the local topics inside the red rectangle.

48

network
 networks

 nodes
 sensor
 node

 wireless
 distributed

 communication
 protocol

 ad

network
 traffic

 routing
 packet

 networks
 path
 tcp

 multicast
 link

 paths

network
 networks

 nodes
 sensor
 node

 wireless
 routing
 energy

 protocol
 distributed

network
 traffic

 networks
 performance

 packet
 throughput

 delay
 wireless
 control

 link

network
 networks
 wireless

 traffic
 packet
 access

 performance
 bandwidth
 throughput

 protocol

network
 networks
 routing
 nodes
 node
 path
 ad

 protocol
 hoc

 topology

sensor
 network
 sensors
 networks

 nodes
 distributed

 wireless
 ...

network
 networks

 nodes
 routing
 wireless

 node
 sensor

 protocol
 communication

 distributed

network
 traffic
 packet

 networks
 performance
 throughput

 delay
 bandwidth
 protocol

 layer

network
 networks
 routing
 traffic

 protocol
 wireless
 nodes
 packet

 protocols
 performance

sensor
 network
 nodes

 networks
 sensors
 wireless

 distributed
 node

 ...

network
 networks

 nodes
 wireless
 routing
 traffic
 node

 communication
 protocol
 packet

0.00

0.01

0.02

0.03

0.04

0.05

11 12 13 14 15 16
Time segment

G
lo

ba
l t

op
ic

 p
ro

po
rt

io
n

Computer Networks

Figure 5.6: Local topics for selected time segments corresponding to global topic
�Computer Networks� from the computer science abstracts data using 62 global topics
and 50 local topics in each segment. Each bar lists the top words in each local topic.
The height of each bar corresponds to the proportion a local topic contributes to the
global topic.

49

Chapter 6

Conclusion

6.1 Outcomes

We have analyzed Clustered Latent Dirichlet Allocation, an alternative to

Dynamic Topic Modeling. CLDA uses existing parallel components to vastly in-

crease speed and facilitate the use of large corpora. It begins by dividing up data by

timestep, and performing Latent Dirichlet Allocation on each timestep individually.

The resulting local topics are merged together using k-means clustering, producing

a smaller number of dynamic topics; each dynamic topic is composed of a number

of local topics at each timestep, and provides a vision of what a cohesive idea looks

like at di�erent times. Our system was built using PLDA+, with R and Python code

performing the data manipulations.

We �nd that our system performs faster than the original implementation of

DTM by two orders of magnitude. CLDA also has a lower perplexity than DTM.

The topics generated by CLDA are similar to those generated by DTM. CLDA shows

a more detailed composition of local topics than is possible with DTM, and enables

global topics to emerge and disappear over the time span. Taken together, these

50

results show that CLDA is a promising approach for modeling dynamics in topics

estimated from textual data.

6.2 Future Work

The system has already demonstrated usefulness in its intended purpose. How-

ever, many questions remain unanswered, and there are many ways to explore the

full potential of this design. Some of them are listed below;

• How does performance compare across a wider variety of corpora? Small?

Large? Diverse?

• Are there better metrics for evaluating the quality of a set of topics? If so,

can these metrics be used to guide a data-driven approach to the choice of how

many topics to use?

• How does the system perform using di�erent clustering techniques? Does it

function better with hard classi�ers (like k-means) or fuzzy classi�ers?

51

Appendices

52

Appendix A Sample Documents

The following are a selection of documents from the Journal Abstracts corpus

used in our experiments. This is the raw text, before any pre-processing is applied.

• 2-s2.0-0030181502 1996 y eng <abstract original="y" xml:lang="eng"><ce:para>Several
loop applications of wireless technology are aimed at reducing the cost of deploy-
ing communications services ranging from telephone to wideband video. In these
applications, wireless links replace a portion of a wireline loop from a central lo-
cation (a central o�ce or cable headend) to a subscriber. The replacement of labor-
intensive wireline technology by complex mass-produced integrated electronics in wire-
less transceivers is projected to reduce the overall cost of the resulting loop. These
wireless loop applications attempt to provide existing communications services or
small modi�cations to existing communications services. A di�erent interpretation
of a wireless loop makes use of low-power digital radio technology to provide the
last thousand feet or so of a loop. Low-power low-complexity wireless loop technol-
ogy in small base units can be integrated with network intelligence to provide the
�xed-infrastructure network needed to support economical personal communications
services (PCS) to small, lightweight, low-power personal voice and/or data commu-
nicators. Low-complexity communicators can provide many hours of "talk time" or
data transmission time and perhaps several days of standby time from small bat-
teries (≤ 1.5 oz). Because this application of wireless loop technology can reduce
the inherent costs in several parts of a wireline loop, it has the potential to provide
convenient widespread PCS at less costs than providing telephone services over con-
ventional wireline loops. This low-power wireless loop application does not �t into
any existing communications system paradigm. Wireless technology with tetherless
access and wide-ranging mobility, e.g., the personal access communications system
(PACS), does not �t the accumulated wisdom of the wireline telephony paradigm. It
also does not �t the paradigm of existing cellular radio that has sparsely distributed
expensive cell sites, and it is not targeted at �xed video services as is wireless cable.
Because a signi�cant change in thinking is required in addressing this new low-power
low-complexity widespread wireless loop paradigm, its large economic advantages and
service bene�ts have not yet been embraced by many of the existing communications
providers, who appear to be more comfortable pursuing the better-known paradigms
of video using wireless cable, or of cellular radio in the guise of high-tier PCS, or in
the guise of rapid economical deployment of telephone services in developing nations.
This paper discusses the inherent economic advantages and service bene�ts of low-
power low-complexity wireless loop technology integrated with network intelligence
aimed at providing economical low-tier PCS to everyone. Â© 1996 Plenum Publishing
Corporation.</ce:para></abstract>

• 2-s2.0-0029753866 1996 y eng <abstract original="y" xml:lang="eng"> <ce:para>This
paper presents 35, 95, and 225 GHz polarimetric radar backscatter data from snow-
cover. It compares measured backscatter data with detailed in situ measurements

53

of the snowcover including niicrostructural anisotropies within the snowpack. Ob-
servations of backscatter were made during melt-freeze cycles, and measurable dif-
ferences in the normalized radar cross section between older metamorphic snow and
fresh low-density snow were observed. In addition, these data show that the aver-
age phase di�erence between the copolarized terms of the scattering matrix, Svv and
S/,? is nonzero for certain snow types. This phase di�erence was found to be re-
lated to snowpack features including anisotropy, wetness, density, and particle size.
A simple backscatter model based on measured particle size and anisotropy is found
to predict the Mueller matrix for dry snowcover with reasonable accuracy. Â©1996
IEEE.</ce:para> </abstract>

54

Appendix B Additional Similarity Graphs

These graphs show the matchings between the topics generated by CLDA and

DTM for each local time segment. They are sorted from best match to worst match.

Figure 1: Similarity of Local Topic Means under Sørensen-Dice Coe�cient

55

Figure 2: Similarity of Local Topic Means under Jaccard Index

56

Bibliography

[1] Palmetto user's guide, 2016. Online; accessed April 7, 2016.

[2] Palmetto2 � top500 supercomputer sites, 2016. Online; accessed March 24,
2016.

[3] Amr Ahmed and Eric P Xing. Timeline: A dynamic hierarchical dirichlet process
model for recovering birth/death and evolution of topics in text stream. arXiv
preprint arXiv:1203.3463, 2012.

[4] Amy W Apon, Linh B Ngo, Michael E Payne, and Paul W Wilson. Assessing the
e�ect of high performance computing capabilities on academic research output.
Empirical Economics, 48(1):283�312, 2015.

[5] Arnab Bhadury, Jianfei Chen, Jun Zhu, and Shixia Liu. Scaling up dynamic
topic models. arXiv preprint arXiv:1602.06049, 2016.

[6] David M. Blei. Topic modeling, 2016. Online; accessed April 12, 2016.

[7] David M Blei and John D La�erty. Dynamic topic models. In Proceedings of the
23rd international conference on Machine learning, pages 113�120. ACM, 2006.

[8] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
the Journal of machine Learning research, 3:993�1022, 2003.

[9] Jonathan Chang, Sean Gerrish, Chong Wang, Jordan L Boyd-Graber, and
David M Blei. Reading tea leaves: How humans interpret topic models. In
Advances in neural information processing systems, pages 288�296, 2009.

[10] Changyou Chen, Nan Ding, and Wray Buntine. Dependent hierarchical
normalized random measures for dynamic topic modeling. arXiv preprint
arXiv:1206.4671, 2012.

[11] Scott C. Deerwester, Susan T Dumais, Thomas K. Landauer, George W. Fur-
nas, and Richard A. Harshman. Indexing by latent semantic analysis. JAsIs,
41(6):391�407, 1990.

57

[12] Qiming Diao, Jing Jiang, Feida Zhu, and Ee-Peng Lim. Finding bursty topics
from microblogs. In Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: Long Papers-Volume 1, pages 536�544. Association
for Computational Linguistics, 2012.

[13] Yufei Ding, Yue Zhao, Xipeng Shen, Madanlal Musuvathi, and Todd Mytkowicz.
Yinyang k-means: A drop-in replacement of the classic k-means with consistent
speedup. In Proceedings of the 32nd International Conference on Machine Learn-
ing (ICML-15), pages 579�587, 2015.

[14] Avinava Dubey, Ahmed Hefny, Sinead Williamson, and Eric P Xing. A nonpara-
metric mixture model for topic modeling over time. In SDM, pages 530�538.
SIAM, 2013.

[15] A. Globerson, G. Chechik, F. Pereira, and N. Tishby. Euclidean Embedding of
Co-occurrence Data. The Journal of Machine Learning Research, 8:2265�2295,
2007.

[16] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: portable parallel
programming with the message-passing interface, volume 1. MIT press, 1999.

[17] William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced fea-
tures of the message-passing interface. MIT press, 1999.

[18] Qi He, Bi Chen, Jian Pei, Baojun Qiu, Prasenjit Mitra, and Lee Giles. Detecting
topic evolution in scienti�c literature: how can citations help? In Proceedings
of the 18th ACM conference on Information and knowledge management, pages
957�966. ACM, 2009.

[19] Thomas Hofmann. Probabilistic latent semantic indexing. In Proceedings of the
22nd annual international ACM SIGIR conference on Research and development
in information retrieval, pages 50�57. ACM, 1999.

[20] Kar Wai Lim and Wray L Buntine. Bibliographic analysis with the citation
network topic model. In ACML, 2014.

[21] Zhiyuan Liu, Yuzhou Zhang, Edward Y Chang, and Maosong Sun. Plda+:
Parallel latent dirichlet allocation with data placement and pipeline processing.
ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):26, 2011.

[22] David Mimno and Andrew McCallum. Organizing the oca: learning faceted
subjects from a library of digital books. In Proceedings of the 7th ACM/IEEE-
CS joint conference on Digital libraries, pages 376�385. ACM, 2007.

[23] David Newman, Padhraic Smyth, Max Welling, and Arthur U Asuncion. Dis-
tributed inference for latent dirichlet allocation. In Advances in neural informa-
tion processing systems, pages 1081�1088, 2007.

58

[24] Peter S Pacheco. Parallel programming with MPI. Morgan Kaufmann, 1997.

[25] Yuancheng Tu, Nikhil Johri, Dan Roth, and Julia Hockenmaier. Citation author
topic model in expert search. In Proceedings of the 23rd International Confer-
ence on Computational Linguistics: Posters, pages 1265�1273. Association for
Computational Linguistics, 2010.

[26] Hanna M Wallach, Iain Murray, Ruslan Salakhutdinov, and David Mimno. Eval-
uation methods for topic models. In Proceedings of the 26th Annual International
Conference on Machine Learning, pages 1105�1112. ACM, 2009.

[27] Chong Wang, David Blei, and David Heckerman. Continuous time dynamic topic
models. arXiv preprint arXiv:1206.3298, 2012.

[28] Yi Wang, Hongjie Bai, Matt Stanton, Wen-Yen Chen, and Edward Y Chang.
Plda: Parallel latent dirichlet allocation for large-scale applications. In Algorith-
mic Aspects in Information and Management, pages 301�314. Springer, 2009.

[29] Eric P Xing, Qirong Ho, Pengtao Xie, and Wei Dai. Strategies and principles
of distributed machine learning on big data. arXiv preprint arXiv:1512.09295,
2015.

[30] Shuo Xu, Qingwei Shi, Xiaodong Qiao, Lijun Zhu, Hanmin Jung, Seungwoo
Lee, and Sung-Pil Choi. Author-topic over time (atot): a dynamic users' in-
terest model. In Mobile, Ubiquitous, and Intelligent Computing, pages 239�245.
Springer, 2014.

[31] Hsiang-Fu Yu, Cho-Jui Hsieh, Hyokun Yun, SVN Vishwanathan, and Inderjit S
Dhillon. A scalable asynchronous distributed algorithm for topic modeling. In
Proceedings of the 24th International Conference on World Wide Web, pages
1340�1350. ACM, 2015.

59

	Clemson University
	TigerPrints
	8-2016

	Analyzing Clustered Latent Dirichlet Allocation
	Christopher Gropp
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Topic Modeling
	Research Motivation
	Approach
	Solution Design
	Results

	Review of Literature
	Topic Models
	Latent Dirichlet Allocation
	Dynamic Topic Modeling
	Clustering
	Related Projects

	Problem Motivation
	Impact of High-Performance Computing
	Evaluating Research Output
	Dynamic Topic Models

	Clustered Latent Dirichlet Allocation
	Requirements
	Design

	Experimental Validation
	Data and Resources
	Comparison to DTM
	Parameter Optimization
	Global and Local Topic Dynamics

	Conclusion
	Outcomes
	Future Work

	Appendices
	Sample Documents
	Additional Similarity Graphs

	Bibliography

