
Clemson University
TigerPrints

All Theses Theses

8-2016

The Role of Developmental Plasticity in Response
to Salinity on the Evolution of Alternative
Reproductive Tactics in the Sailfin Molly, Poecilia
Latipinna (Poeciliidae: Poecilia: Mollienesia)
Kelly Elise Hogan
Clemson University, hogan2@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Hogan, Kelly Elise, "The Role of Developmental Plasticity in Response to Salinity on the Evolution of Alternative Reproductive
Tactics in the Sailfin Molly, Poecilia Latipinna (Poeciliidae: Poecilia: Mollienesia)" (2016). All Theses. 2467.
https://tigerprints.clemson.edu/all_theses/2467

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2467&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2467&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2467&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2467&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/2467?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2467&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


 

THE ROLE OF DEVELOPMENTAL PLASTICITY IN RESPONSE TO SALINITY ON 
THE EVOLUTION OF ALTERNATIVE REPRODUCTIVE TACTICS IN THE SAILFIN 

MOLLY, POECILIA LATIPINNA (POECILIIDAE: POECILIA: MOLLIENESIA) 
 
 

A Thesis 
Presented to 

the Graduate School of 
Clemson University 

 
 

In Partial Fulfillment 
of the Requirements for the Degree 

Master of Science 
Biological Sciences  

 
 

by 
Kelly Elise Hogan 

August 2016 
 
 

Accepted by: 
Margaret B. Ptacek, Committee Chair 

Michael J. Childress 
J. Antonio Baeza



 ii 

ABSTRACT 

 

Variability in life history and morphology across conspecific populations is a widespread 

phenomenon and may be attributed to life history trade-offs in response to 

environmental variation. Such trade-offs between growth, maintenance, and 

reproduction often occur via developmental plasticity, which allows organisms to shift 

their developmental trajectories to maximize fitness in a given environment. Sailfin 

mollies (Poecilia latipinna) exhibit interpopulation variation in life history and 

morphological traits, and inhabit springs, tidal creeks, and estuaries that range from 

freshwater to seawater. Male size at maturity is smaller on average in freshwater springs 

than in brackish water marshes where these fish are most abundant. Such variation 

influences male fitness, because male size is fixed at maturity, highly variable, and 

correlated with the expression of alternative reproductive tactics. Large males erect an 

exaggerated dorsal sailfin in courtship displays, whereas small males perform sneaking 

mating behavior. In order to determine if developmental plasticity plays a role in 

interpopulation variation and the maintenance of size-associated mating tactics, I used a 

split brood design to rear siblings in low salinity (2 ppt) and brackish water (20 ppt) until 

sexual maturity. I found that growth and maturation rates of males and females did not 

differ in response to salinity. Mortality rate was somewhat higher in 20 ppt relative to 2 

ppt. Females were smaller at maturity in brackish water, though their body condition did 

not differ in response to salinity treatment. Males also responded plastically to salinity 

environment, though the direction and magnitude depended largely on family genotype. 

Males exhibited better body condition in 20 than 2 ppt. The relative size (to body area) of 

the sexual ornament (dorsal sailfin) was smaller for males reared in low salinity than 
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brackish water, suggesting that males in brackish water could allocate more energy 

resources towards producing larger sexual ornaments. Because males produce smaller 

sexual ornaments and have reduced body condition in low salinity, small male body size 

and sneaking mating tactics may be favored in freshwater populations. Such a shift in 

the balance between natural and sexual selection between salinity environments may 

help to explain interpopulation variation in P. latipinna.   
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CHAPTER ONE 

  

UNDERSTANDING THE ROLE OF PHENOTYPIC PLASTICITY IN THE PRODUCTION 

OF ALTERNATIVE REPRODUCTIVE TACTICS 

  

INTRODUCTION 

  

Polymorphic traits that repeatedly occur within a life stage or population are 

widespread across taxa and may be expressed in life-history traits, physiology, 

morphology, and behavior (Moran 1992; West-Eberhard 1986, 2003). These alternative 

phenotypes are often associated with specializations in reproduction, feeding, dispersal, 

or predator avoidance (West-Eberhard 2003; Leimar 2009). Understanding the origin 

and maintenance of alternative phenotypes within a species provides clues to the 

evolutionary history of such taxa because these polymorphisms may represent 

evolutionary phases leading to speciation. Novel alternative traits within a population 

may evolve to fixation or be maintained indefinitely as polymorphisms. This could allow 

for the evolution of new adaptive specializations via the elaboration of the novel trait 

without the elimination of the established trait (West-Eberhard 2003). Alternative 

phenotypes associated with mating signals are of particular interest because selection 

on these traits should be strong and can lead to speciation via reproductive isolation 

(Panhuis et al. 2001).  

Within a sex, alternative phenotypes are often associated with reproductive 

tactics (Andersson 1994; Gross 1996). These alternative reproductive tactics (ARTs) 

arise in populations where sexual selection is strong and relatively few individuals 
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secure mates (Shuster 2010). ARTs have been described in most animal taxa, including 

invertebrates (e.g., freshwater prawns (Macrobrachium rosenbergii): Ra’anan & Sagi 

1985); beetles (Onthophagus taurus): Moczek 1998; marine isopods (Paracerceis 

sculpta): Shuster & Wade 2003; mites (Rhizoglyphus echinopus): Tomkins et al. 2011), 

reptiles (e.g., side-blotched lizards (Uta stansburiana): Sinervo & Lively 1996), birds 

(e.g., ruff (Philomachus pugnax): Lank et al. 1995), mammals (e.g., elephant seals 

(Mirounga angustirostris): Le Boeuf 1974; red deer (Cervus elaphus): Clutton-Brock et 

al. 1979), and fishes (e.g., cichlids (Lamprologus callipterus): Schütz et al. 2010; salmon 

(Salmo salar): Garant et al. 2003; bluegill sunfish (Lepomis macrochirus): Gross 1991, 

Neff et al. 2003; guppies (Poecilia reticulata): Godin 1995; swordtails (Xiphophorus 

nigrensis): Zimmerer & Kallman 1989). A notable example of ARTs occur in beetles 

(Onthophagus taurus) where male phenotype is correlated with mating strategy; long-

horned males defend territories and hornless males sneak copulations (Moczek 1998). 

Body size and color polymorphism in male side-blotched lizards (Uta stansburiana) is 

related to mating behavior; large, orange-throated males defend many females on large 

territories, intermediate-sized, blue-throated males mate-guard a single female, and 

small, yellow-throated males patrol large home ranges and sneak copulations (Sinervo & 

Lively 1996; Sinervo et al. 2000). Similarly, marine isopod (Paracerceis sculpta) males 

fall into three distinct color and body size morphs that correspond to bourgeois (i.e., 

territorial) and parasitic (i.e., sneaking) mating tactics (Shuster 1987). These examples 

illustrate the ubiquity of ARTs across taxa.  

Although ARTs are common in animals, how they are maintained in many taxa is 

still unknown (Rio-Cardenas & Morris 2011). There are two leading, mutually exclusive 

hypotheses that have been suggested to explain the origin and maintenance of ARTs: 
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game theory and “best of a bad job.” Game theory argues that alternative tactics are 

stabilized because they yield similar Darwinian fitnesses (Taborsky 1998), and therefore 

represent an evolutionary stable strategy (ESS). When an ESS is established in a 

population, no other strategy can invade, and as such, ARTs are maintained by negative 

frequency-dependent selection (Maynard Smith 1982; Andersson 1994). This theory 

assumes that alternative tactics are either purely genetic or may be correctly adopted by 

individuals that are phenotypically flexible (Andersson 1994). Sinervo & Lively (1996) 

provide empirical support for this model: frequencies of three alternative male morphs of 

side-blotched lizards oscillated concordantly with expectations of negative frequency-

dependent models. Further, ARTs in these lizards are genetically determined (Sinervo et 

al. 2001; 2006), and therefore, align with the assumptions of the game theory 

framework.  

However, ARTs are not always genetically fixed.  Mating tactics may vary with 

individual condition or size (Dawkins 1980; Andersson 1994; West-Eberhard 2003). For 

example, young satellite males opportunistically mate with females in a competitor’s 

harem until they are large enough to establish their own territories (e.g., northern 

elephant seals (Mirounga angustirostris): Le Boeuf 1974; red deer (Cervus elaphus): 

Clutton-Brock et al. 1979). ARTs are also common in males that cease to grow after 

maturation, yet differ significantly in size and morphology at maturity. For example, 

larger male yellow dung flies (Scathophaga stercoraria) fight for access to female-

preferred cow dung patties, whereas smaller males must attempt to find mates in the 

surrounding grass areas (Pitnick et al. 2009). Similarly, horned beetles (Onthophagus 

taurus) differ in horn ornamentation, and long-horned males defend territories while 

hornless males sneak copulations (Moczek 1998). Horn size is determined by nutrition 
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during ontogeny, suggesting that these exaggerated sexually-selected traits are reliable 

signals of male quality (Emlen et al. 2012). Instead of representing ARTs with equal 

fitnesses, these examples describe scenarios in which low-quality males may be making 

“the best of a bad job” (Dawkins 1980). Individuals with inferior competitive abilities 

maximize fitness by adopting an alternative mating strategy because some mating 

opportunities are better than none (Dawkins 1980; Andersson 1994 Shuster 2010).  

From a proximate level, ARTs may arise as a result of underlying genetic control 

(G), environmental conditions (E), or plasticity (GxE) (e.g., guppies (P. reticulata): 

Hughes et al. 2005; sailfin mollies (P. latipinna): Travis & Woodward 1989; Fraser et al. 

2014). Virtually all quantitative traits are influenced by both genetic and environmental 

factors (Scheiner 1993), yet understanding the evolutionary significance of phenotypic 

plasticity (GxE) in producing heritable phenotypic variation is a challenging aspect of the 

study of ARTs. Identifying the role of plasticity in the origin and maintenance of ARTs is 

important because its presence can complicate estimations of genetic variation and alter 

the outcome of selection in natural populations (Trexler 1989). Indeed, Leimar (2009) 

argues for a unified framework of genetic and environmental cues in determining 

phenotypes during development, because genes and the environment play similar roles 

as determinants of development. 

Developmental plasticity may play an integral role in the evolution and 

maintenance of ARTs, occurring when an organism modifies its developmental trajectory 

in response to environmental conditions (Moczek et al. 2011). Specifically, 

environmental conditions during ontogeny can act as cues that initiate alternative 

developmental pathways. This mechanism is known as a “developmental switch” and 

leads to shifts in life history traits, morphology, physiology, and behavior (West-Eberhard 
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1989; Pfennig 1990; Nijhout 2003). Developmental switches may be an adaptive 

response to environmental stressors or conversely, an unavoidable consequence of 

environmental heterogeneity (Badyaev 2005; Ghalambor et al. 2007; Pfennig et al. 

2010). Environmental stressors during ontogeny can lead to alternative phenotypes, 

such as early maturation in response to habitat desiccation (e.g., Newman 1992; Denver 

1997; Denver et al. 1998; Johansson & Richter-Boix 2013) and predator-induced 

defense mechanisms (e.g., Spitze 1992; Boersma et al. 1998; Benard 2004). Fewer 

studies have investigated the role of developmental plasticity in producing ARTs.   

From a theoretical standpoint, the ART literature has described a mechanism 

similar to the “developmental switch,” in which ART expression may be determined by 

heritable threshold responses to environmental variation during development (Taborsky 

& Brockmann 2010). This threshold or “switch point” mechanism has been described in 

the well-studied horned beetle system. Male beetles that do not reach a threshold body 

size will develop reduced horns relative to their large-bodied territorial competitors and 

gain access to females by digging side tunnels in order to bypass guarding males 

(Emlen 1997; Moczek & Emlen 2000). Further, Emlen (1996) demonstrated that this 

size-dependent life history switch point was heritable using artificial selection 

experiments. Specifically, small- and large-horned males were mated to random females 

resulting in shifts in size-dependent switch points for each sire size treatment (Emlen 

1996). However, nutritional quality during development alters the allometry of horn size, 

whereby well-fed male offspring develop larger horns relative to body size than do poorly 

fed offspring (Emlen et al. 2012), illustrating the importance of genes and the 

developmental environment in producing size-dependent ARTs. Identifying the role of 
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developmental plasticity in producing ARTs in other model systems will be necessary to 

better understand this intriguing mating system.  

Taborsky (1998) identified three major areas of ART research: determining (1) 

the relative degree to which genetic or environmental variation determines phenotype, 

(2) the relative degree to which plasticity influences phenotypes, and (3) the selective 

regimes that maintain or erode persistence of these alternative phenotypes. My thesis 

research addressed the first two major areas of ART research using the sailfin molly fish 

(P. latipinna). Specifically, my research focused on quantifying the relative importance of 

genes (G), environment (E), and phenotypic plasticity (GxE) in producing ARTs. Only 

after we have identified the proximate causation of ARTs can we begin to answer the 

ultimate question of how ARTs are maintained evolutionarily.   

 

THE STUDY SYSTEM 

 

The livebearing fish family, Poeciliidae (e.g., guppies, swordtails, and mollies), 

offers an ideal study system in which to examine the interplay between genes, the 

environment, and their interaction (i.e., plasticity) in producing ARTs. Poeciliids are 

known for their extensive diversity in male sexual traits such as body size, fin 

ornamentation, coloration, and mating behaviors, with males often having exaggerated 

secondary sexual ornaments such as coloration in guppies, caudal fin extensions in 

swordtails, and enlarged dorsal fins in sailfin mollies (Farr 1989). In swordtails and sailfin 

mollies, variation in body size and the size of these ornaments is often associated with 

the alternative mating strategies of courtship and sneaker behaviors (Farr et al. 1986; 

Zimmerer & Kallman 1989; Ptacek & Travis 1996). These male signaling traits are 
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influenced by both genetic and environmental factors. For example, body size (standard 

length (SL)) in males is heritable to some degree (e.g., swordtails: Kallman & Borkoski 

1978; Borowsky 1987; Zimmerer & Kallman 1989; Lampert et al. 2010; mollies: Travis 

1994), but is also influenced by environmental conditions during ontogeny such as the 

social environment (e.g., platyfish: Borowsky 1978; swordtails: Walling et al. 2007; 

guppies: Campton & Gall 1988; Magellan & Magurran 2009; mollies: Davidson & Hogan, 

unpubl. data). 

My thesis research focused on the sailfin molly (Poeciliidae: Poecilia: 

Mollienesia: Poecilia latipinna), which is native to coastal regions along the Atlantic 

Ocean and Gulf of Mexico, ranging from South Carolina in the north into Veracruz, 

Mexico at the southernmost part of its geographic distribution (Nordlie et al.1992; Ptacek 

& Breden 1998; Breden et al.1999). Mollies are found naturally in habitats that range 

from freshwater (0 ppt) to seawater (32 ppt) estuaries (Rosen & Bailey 1963), and 

therefore, are considered to be euryhaline (e.g. Gunter 1950; Large 1985; reviewed in 

Meffe & Snelson 1989; Trexler et al. 1990;). Indeed, laboratory studies have shown that 

P. latipinna can tolerate a wide range of salinities from freshwater to hypersaline water 

(65-80 ppt) (Nordlie et al. 1992; Gonzalez et al. 2005), allowing them to occupy the 

largest geographic range of the four sailfin molly species: P. latipinna, P. latipunctata, P. 

velifera, and P. petenensis (Figure 1.2).  
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Figure 1.1. Map of North and Central America showing the distribution and range of four 
described species of sailfin mollies (Figure from Seda 2010).  
 

Like all poeciliids, mollies are characterized by reproduction via internal 

fertilization (Farr et al. 1986). At the onset of sexual maturity in male poeciliids, the anal 

fin fuses into a copulatory organ termed the gonopodium, which is used to transfer 

sperm to the female’s gonopore (Cummings 1943; Constantz 1989). Sailfin mollies are 

sexually dimorphic, and age and size at maturity in males (standard length (SL): 

measurement from the tip of the snout to the end of the caudal peduncle) is highly 

variable within and between populations (Snelson 1985; Ptacek & Travis 1996; Seda et 

al. 2012). Further, males grow minimally once mature, so small males never reach the 

size of larger males (Snelson 1982, 1984; Figure 1.2).   
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Figure 1.2. Small (25 mm; left) and large (50 mm; right) male P. latipinna from 
Steve’s Ditch, Wakulla County, Florida. 

 
 
Size variation in males has a genetic component, hypothesized to be inherited on 

the Y-chromosome (Travis 1994). The genetic architecture of male size at maturity has 

been studied extensively in the closely related genus Xiphophorus  (swordtail fishes) 

where for several species (e.g., X. nigrensis and X. multilineatus), multiple alleles at the 

Y-linked pituitary (P) locus code for male size and mating behaviors by controlling the 

onset of sexual maturity (Kallman & Borkoski 1978; Borowsky 1987; Zimmerer & 

Kallman 1989). Specifically, early-maturing males are smaller and rely on sneak mating 

whereas late-maturing males are larger and perform courtship displays in order to gain 

female cooperation during copulation. As in Xiphophorus, male size of sailfin mollies is 

correlated with sexual behavior in which larger males erect an enlarged dorsal fin in a 

courtship display to elicit female cooperation during mating, and smaller males rely 

primarily on forced copulation attempts termed gonopodial thrusts (Farr & Travis 1986; 

Ptacek & Travis 1996; Seda et al. 2012). The size of the dorsal sailfin is strongly 

positively allometric with SL, and its expression is influenced by both genetic and 

environmental factors (Ptacek 2002; Hankison & Ptacek 2007). Indeed, there is 
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considerable additive genetic variance for dorsal fin size that maintains polymorphism 

within populations for this trait, at least in a related species of sailfin molly (P. velifera: 

Loveless et al. 2009). Finally, females prefer males with the largest lateral projection 

area (LPA: body area + dorsal and caudal fin areas), and can differentiate between very 

slight differences in male LPA (MacLaren et al. 2004; Ptacek & Travis 1997), making 

dorsal fin size a clear target of sexual selection.   

Variation in life history and morphological traits of poeciliid fishes is also 

influenced by environmental factors. For example, temperature has been found to 

influence interbrood interval (Snelson et al. 1986) and biomass allocation (McManus & 

Travis 1998) in sailfin mollies, as well as age and size at maturity in mosquitofish 

(Gambusia holbrooki: Meffe 1992). Diet has been shown to influence growth rate and 

body size across poeciliid species (swordtails: Kruger et al. 2001; James & Sampath 

2004; Ling et al. 2006; guppies: Dahlgren 1980; Reznick 1982, 1983, 1990; Reznick & 

Bryga 1987; Hughes et al. 2005; mollies: Tekelioglu et al. 2005). Further, preliminary 

data in our lab suggest that diet (i.e., protein level) during ontogeny influences the size of 

the male dorsal sailfin. Specifically, males reared on a high-protein diet have larger 

dorsal fins relative to their body size than males reared on a low-protein diet (Lange 

2013). These findings suggest that the developmental environment plays an important 

role in final size and shape of male sailfin mollies.   

Salinity may be an especially relevant environmental factor to consider when 

identifying the determinants of phenotypic variation in sailfin mollies, because mollies 

can be found naturally in habitats that range from freshwater (0 ppt) to seawater (32 ppt) 

estuaries (Rosen & Bailey 1963). Despite this tolerance, experimental evidence 

suggests that P. latipinna is best adapted to brackish water. Juveniles of P. latipinna 
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were found to grow faster (Zimmerer 1983) and females produced larger broods 

(Kumaraguru vasagam et al. 2005) when reared in brackish water relative to freshwater. 

Indeed, an examination of osmotic balance in P. latipinna has shown that mollies are 

best adapted physiologically to brackish water (Evans 1973, 1975; Gustafson 1981). In a 

reciprocal transplant field experiment, Trexler & Travis (1990) found that female and 

male P. latipinna grew more slowly and were older and smaller at maturity when reared 

in freshwater ponds relative to brackish water ponds regardless of population of origin. In 

a corresponding laboratory study, Trexler et al. (1990) found that both sexes matured 

later and at larger body sizes (SL) when reared in low salinity (2 ppt) relative to higher 

salinity (20 ppt). Nordlie et al. (1992) found that sailfin mollies from brackish water 

populations tolerated higher salinities better than those from freshwater populations. 

Araújo & Monteiro (2013) found that P. vivipara from a brackish water population grew 

faster but suffered higher mortality rates when reared in freshwater relative to a native 

freshwater population. Taken together, these studies suggest that sailfin molly 

populations along a salinity gradient can become locally adapted to fresh or brackish 

water, resulting in osmoregulatory trade-offs (Velotta et al. 2015).  

At the physiological level, the gill is largely responsible for osmoregulation in 

euryhaline fishes (Evans et al. 2005). Specifically, suitable osmolality (electrolyte-water 

balance) in the blood and tissues is maintained through ionic transport mechanisms in 

the gill epithelium (Evans et al. 2005). Research in the gill structure of the closely related 

killifish (Fundulus sp.) suggests that rapid changes in ion transport pathways and 

morphology of the gill epithelium itself occur when these fishes are introduced into a 

stressful osmotic environment (reviewed in Evans et al. 2005). Similarly, Yang et al. 

(2009) found that activity in the branchial Na+–K+-ATPase (NKA) pathway, which is 
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responsible for ion secretion in the gill epithelium, increased in sailfin mollies that were 

introduced into full-strength seawater. Further, stress indicators were higher in mollies 

that were acclimated to seawater relative to those acclimated to freshwater or brackish 

water (Yang et al. 2009), suggesting that seawater is more stressful to sailfin mollies 

than brackish or freshwater. Gonzalez et al. (2005) found that oxygen consumption rate 

and metabolism in sailfin mollies increased as hyper-salinity increased. In summary, it 

appears that extreme salinities at both ends of spectrum: fresh and seawater, are not an 

ideal osmotic environment for sailfin mollies and may have impacts on growth and 

development.     

 

GOALS AND OBJECTIVES OF MY STUDY 

 

 The goal of my thesis research was to quantify the degree to which genes (G), 

environment (E), and developmental plasticity (GxE) influence life history and 

morphological traits in response to salinity environment in the sailfin molly fish, Poecilia 

latipinna. In order to answer these questions, I conducted a full-sibling split brood 

complete block latin square design in which I reared full-siblings in low salinity (2 ppt) or 

brackish water (20 ppt) to investigate how salinity environment during ontogeny 

influences a suite of life history and morphological traits (mortality and growth rate, body 

condition, age, mass, length, and dorsal fin size at maturity). By rearing the offspring of 

mollies from a brackish water population (Steve’s Ditch, Wakulla County, Florida) in low 

salinity (2 ppt) or brackish water (20 ppt), I was able to identify the relative contributions 

of (1) sire size (proxy for genetic effects), (2) salinity environment, and (3) their 

interaction (i.e., plasticity) on the expression of life history and morphological traits 
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associated with ARTs. 

 In total, I reared 309 fish (159 male,150 females) from 12 families in which 123 

had small sires (<30mm) and 186 had large sires (>48mm). This research resulted in 

measures of life history traits at the family and individual level. At the family level, growth 

rates were compared between treatmeants using a REML model to test the main effect 

of salinity treatment, as well as potential covariates: average temperature, average 

photoperiod, and cumulative population density. Family within sire size class and an 

interaction between family and sire size class were included as random effects. 

Cumulative population density was measured as the sum of individuals in a tank across 

all census periods. Survival and maturation rates of males and females were assessed 

using the Kaplan-Meier method and compared using a log-rank chi-square test. At the 

individual level, size, approximate age (estimated to nearest 3 weeks), and wet mass at 

maturity were compared between treatments using a REML model to test the main effect 

of salinity treatment, sire size class, and their interaction, as well as two covariates: 

photoperiod and temperature. Family within sire size class and an interaction between 

family and sire size class were included as random effects. A linear regression between 

the natural log (ln) transformed standard length and natural log (ln) transformed mass 

was used as a measure of body condition, and was compared using a REML model to 

test for differences due to SL, salinity, and SL by salinity (a measurement of linear slope 

differences). Additionally, the allometry of two male morphological characters (i.e., dorsal 

fin area, caudal fin area) in response to salinity environment was assessed using linear 

regression between the natural log (ln) transformed trait and natural log (ln) transformed 

body area (BA). Adjusted r-square values, slope, and 95% confidence intervals of the 

slope were calculated and compared using a REML model to test for differences due to 
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BA, salinity, and BA by salinity (a measurement of linear slope differences).  

The results of my thesis research will contribute to our understanding of how the 

developmental environment influences the origin of ARTs in natural populations. 

Specifically, if developmental environment is found to strongly influence life history 

variation, then natural populations that vary in abiotic factors should display similar 

differences in thes traits. Therefore, interpopulation variation in phenotype due to gene-

environment interactions may represent evolutionary phases leading to population 

divergence and ultimately, speciation. If I find that developmental environment does not 

influence life history variation, then ARTs may be strongly genetically linked in this 

species and may be maintained by negative frequency-dependent selection (Rios-

Cardenas & Morris 2011). Aided by the results of my findings, future research should 

focus on identifying the selective regimes that maintain or erode ARTs in the sailfin molly 

study system.    
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CHAPTER TWO 

  

DEVELOPMENTAL PLASTICITY IN LIFE HISTORY AND MORPHOLOGY IN 

RESPONSE TO SALINITY ENVIRONMENT IN THE SAILFIN MOLLY (POECILIA 

LATIPINNA) 

  

INTRODUCTION 

 

Variability in life history and morphology across conspecific populations is a 

taxonomically widespread phenomenon (Trexler & Travis 1990), and may be largely 

attributed to life history trade-offs in response to environmental variation (Stearns 1992). 

Such trade-offs occur when an individual partitions finite energy resources between 

growth, maintenance, storage, and reproduction (Stearns 1992; Roff 2002). Maintaining 

homeostasis in stressful environments requires a substantial portion of this energy 

budget, leaving less for other functions such as growth and reproduction (Sibly & Calow 

1989). Resource allocation for survival at the expense of other physiological functions 

alters the developmental trajectory of traits that are important determinants of 

reproductive success, including age and size at maturity (Stearns & Koella 1986; 

Stearns 1992; Zera & Harshman 2001) and condition-dependent sexual ornaments 

(Emlen et al. 2012). Therefore, populations that experience environmental stressors may 

exhibit life history and morphological divergence from conspecific populations in less 

stressful environments (e.g., Gomes & Monteiro 2008; Araújo & Monteiro 2013; Martin et 

al. 2009).  
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For fishes, salinity represents a major selective force that governs their 

physiology, life history, and habitat distribution (Boeuf & Payan 2001; Kültz 2015) by 

imposing trade-offs between maintenance and growth as a result of osmoregulation 

under different salinity conditions (Velotta et al. 2015). Estuarine habitats experience 

daily and seasonal fluctuations in salinity ranging from freshwater to even hypersaline 

conditions (Bamber & Henderson 1988). Consequently, euryhalinity (i.e., the ability to 

osmoregulate in both fresh and saltwater environments) in fishes is rare (Schultz & 

McCormick 2013). In those species that are euryhaline, higher salinity often increases 

growth hormone levels (Deane & Woo 2009), food intake, and conversion rates (Boeuf & 

Payan 2001). Despite these benefits, many euryhaline fishes have invaded freshwater 

habitats (Lee & Bell 1999; Schultz & McCormick 2013). Indeed, Bamber & Henderson 

(1988) suggest that selection for plasticity in euryhaline fish has pre-adapted them to 

living in freshwater habitats. In spite of their tolerance for low salinity, euryhaline species 

often exhibit reduced size and reproduction (e.g., Poecilia vivipara: Gomes & Monteiro 

2007; Araújo & Monteiro 2013; Poecilia latipinna: Trexler & Travis 1990; Martin et al. 

2009), or delayed maturation (P. latipinna: Trexler et al. 1990) in freshwater. Since 

osmoregulation requires as much as 50 percent of the total energy budget in fishes 

(Boeuf & Payan 2001), physiological trade-offs between maintenance and growth likely 

result in the phenotypic variation often observed in species inhabiting salinity gradients.  

The sailfin molly (P. latipinna) offers an excellent fish system in which to explore 

how plasticity in response to salinity changes might influence expression of life history 

and morphology. This saltmarsh species is found naturally in habitats that range from 

freshwater to seawater in coastal regions along the Atlantic Ocean and Gulf of Mexico, 

ranging from South Carolina in the north into Veracruz, Mexico at the southernmost part 
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of its geographic distribution (Rosen & Bailey 1963; Ptacek & Breden 1998). Mollies 

tolerate a wide range of salinities from freshwater to hypersaline (Nordlie et al. 1992; 

Gonzalez et al. 2005). Despite this wide salinity tolerance, P. latipinna is best adapted 

physiologically to brackish water (Evans 1973, 1975), and is most abundant in brackish 

habitats of saltmarshes and estuaries with influx from freshwater tidal creeks (Martin et 

al. 2009). 

Male size distributions (Snelson 1985; Farr et al. 1986; Trexler et al. 1990; 

Ptacek & Travis 1996; Seda et al. 2012) and morphological traits (Seda 2010; Ptacek 

2005) vary substantially within and between populations despite high gene flow (Trexler 

1988; Apodaca et al. 2013). Size at maturity in males of P. latipinna is partially controlled 

by patriclinal inheritance (Travis 1994), where genes on the Y-chromosome (Lampert et 

al. 2010) are thought to influence adult standard length (SL: distance from tip of snout to 

caudal peduncle; Ptacek & Travis 1996; Seda et al. 2012). Environmental factors (e.g., 

temperature, salinity; Trexler & Travis 1990; Trexler et al. 1990), however, are also 

known to alter male size at maturity through developmental plasticity in length of the 

juvenile period (Trexler & Travis 1990). Understanding why this life history variation 

arises and is maintained under local conditions is important, because male size at 

maturity is correlated with sexual behaviors and mating strategy: larger males erect an 

enlarged dorsal fin in a courtship display to elicit female cooperation during mating, while 

smaller males rely primarily on forced copulation attempts (Farr et al. 1986; Ptacek & 

Travis 1996; Seda et al. 2012). Further, as males grow minimally after maturation 

(Snelson 1982; Travis 1994), a small male will never attain the size of a large male 

during his lifetime. In addition to this body size polymorphism, the size of the dorsal fin in 

male sailfin mollies is strongly, positively allometric with body size, and its expression is 
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influenced by both genetic and environmental factors (Ptacek 2002; Hankison & Ptacek 

2007; Loveless et al. 2009). Females of P. latipinna prefer males with the largest lateral 

projection area (LPA: body area + dorsal and caudal fin areas: Ptacek & Travis 1997; 

MacLaren et al. 2004) making dorsal fin size a clear target of sexual selection. 

Therefore, variation in life history and morphology in response to the salinity 

environment may strongly influence male fitness, hence, contributing to population 

divergence between habitats in this species. 

The primary objectives of this study were to determine the degree of phenotypic 

plasticity in life history and morphology between salinity environments and at what level 

(sire size class, family or their interactions with salinity environment) plasticity influences 

the expression of these traits in males and females of P. latipinna. I used sires and dams 

from a single brackish-water population (ranging in salinity from 3 to 34 ppt) and 

employed a full-sibling split brood design, rearing juveniles in two different salinity 

treatments: low salinity (2 ppt salinity) and brackish water (20 ppt salinity). I tested for 

salinity effects on growth rate and survival in juveniles, size and age at sexual maturity in 

both sexes, and size of target morphological traits in males is known to be associated 

with sexual and natural selection. I compared variation among 12 different families using 

sires from both ends of the natural male size distribution (six small: 20-29 mm SL; six 

large: 49-57 mm SL) found in this population. I tested the hypothesis that phenotypic 

plasticity in response to salinity environment produces variation in life history traits (i.e., 

age, body length (SL), and mass at maturity) and morphological targets of sexual 

selection (i.e., dorsal fin length). I predicted that greater osmotic stress in low salinity (2 

ppt salinity) would result in slower growth, longer development times, and potentially 

smaller body and dorsal fin ornament size. I discuss my findings in the context of life 
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history evolution and adaptation to local conditions.   

 

METHODS 

 

Adults of P. latipinna were collected from a single brackish water population 

(Steve’s Ditch: N29°58.379’, W084°23.357’) in Wakulla County, Florida in May and 

August of 2014 and 2015. This population has been well characterized for its distribution 

of male sizes (SL) at maturity and rates of mating behaviors (courtship displays, 

gonopodial thrusts; Ptacek & Travis 1996, Seda et al. 2012), and its large variance in 

male size at maturity (range of SL: 19 mm – 68 mm), which is strongly, positively 

correlated with courtship display rates (Seda et al. 2010). In addition, this saltmarsh site 

experiences a wide range of salinities (3-34 ppt) seasonally (unpubl. data), thus, fish 

collected from this population should be able to osmoregulate in both low salinity and 

saltwater. Fish were collected using a 2.8 x1.2 m seine and a cast net, which is effective 

for collecting a random sample of females and males of all size classes (Travis & Trexler 

1987, Hankison et al. 2006; Seda 2010). Fish were transported to Clemson University, 

Clemson, South Carolina, USA, and housed in the Aquatic Animal Research Laboratory 

(Animal Research Protocol No. AUP2014-017). Wild-caught males that represented the 

upper (<25th percentile; >48mm) and lower quartiles (>75th percentile; <30mm) of male 

size distributions in this population (Seda 2010, Seda et al. 2012) were mated to first-

generation laboratory-reared virgin females to ensure paternity. This allowed me to 

compare reaction norms between salinity treatments among families (wild-caught 

pregnant females may be inseminated by multiple males of varying size: Bisazza 1993; 

Travis et al. 1990; Trexler et al. 1997) and to compare variation between salinity 
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treatments among families sired by small males to those sired by large males. To 

minimize maternal effects, virgin females were raised in isolation in 3.8 L aquaria that 

shared brackish water (12 ppt) via a recirculating system. At maturity, virgin females 

were transferred to 37.85 L aquaria with brackish water (12 ppt) and housed with a male 

(sire-dam pair). Sire-dam pairs were fed daily with commercial flake food (Ocean Star 

International Freshwater Flake (60%) with Brine Shrimp Flake (38%) and Spirulina Flake 

(2%) mixture; Burlingame, California) ad libitum. Previous studies have shown that fish 

reared in these laboratory conditions are indistinguishable in both expression of mating 

behaviors and morphology from wild-caught fish in several molly species including P. 

latipinna (Ptacek 2002; Ptacek et al. 2005, Hankison et al. 2006). 

Twelve broods were included in this split brood experimental design (6 with sires 

<30mm and 6 with sires >48mm) and offspring from these broods were reared to sexual 

maturity between October 2014 and April 2016. Broods with 30-50 individuals were used 

into the experiment, so starting population density within a tank was standardized at 20 ± 

5 individuals. At parturition, broods were transferred to a climate-controlled greenhouse 

(Biosystems Research Complex Greenhouse; Animal Research Protocol No. AUP2014-

053), and placed into a full-sibling split brood design where siblings were divided and 

reared in one of two salinity treatments (low salinity (2ppt) or brackish (20ppt)) in 568 L 

Rubbermaid tanks organized in a 4x4 Latin square design (Figure 2.1). Because 

experimental aquaria were very large, competition between offspring should have been 

low (Trexler & Travis 1990). The Latin square design helped to minimize other 

environmental differences (e.g., temperature, light intensity) that may have resulted from 

room location, but weekly temperature and salinity readings were measured using an 

YSI Pro30 instrument to assess variability in these environmental variables across 
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replicate tanks. Due to the logistical constraints of such a large rearing design, broods 

entered the experiment on different dates (10/2014-9/2015). To account for differences 

in average photoperiod within and between families, photoperiod data for Clemson, SC 

was obtained from a US Navy database (http:/aa.usno.navy.mil). Water temperatures 

were kept within normal summer conditions ((26°C to 30°C); Trexler et al. 1992), which 

required submersible heaters during the winter months. Each tank was equipped with an 

individual water pump (flow rate=2460 L/Hr) that provided aeration and biological 

filtration via a recirculating system. Water was prepared with conditioned tap water using 

Amquel, Novaqua, Marine Buffer, and Instant Ocean salt. Water quality parameters (pH, 

ammonia, nitrite) were tested weekly (API test kits) and were always within acceptable 

ranges. Fish were fed ad libitum once daily with ground fish flake food (Ocean Star 

International Freshwater Flake (60%) with Brine Shrimp Flake (38%) and Spirulina Flake 

(2%) mixture; Burlingame, California). Partial water changes were performed every three 

weeks.  

Censuses were conducted every three weeks and all fish were measured for 

standard length ((SL); Ptacek & Travis 1996; Seda et al. 2012). Juvenile fish were 

returned to the experiment; mature fish were removed, euthanized using MS-222, and 

photographed. Mature males were identified by the complete fusion of the anal fin into 

an intromittent organ, the gonododium (Cummings 1943), and females were identified by 

the appearance of a brood spot (Constantz 1989). Broods remained in the experiment 

until all individuals died or were removed at sexual maturity. In order to control for 

differential mortality, broods where all individuals died prior to census five, or 105 days, 

were removed from analyses. This experimental design generated data at the family and 

individual level. Because it was impossible to identify individuals within a brood, family 
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averages from each tank and salinity treatment were recorded as the observational unit. 

It is important to note that I did not replicate family within salinity treatment. However, 

prior studies have found considerable variation among family genotypes of life histories 

in response to environmental variation (e.g., Trexler & Travis 1990; Trexler et al. 1990), 

so variation among family in response to salinity is expected.  

Average growth, mortality, and maturation rates were recorded for each 

family/salinity treatment. Because families varied in the duration of time it took for all 

juveniles to die or reach sexual maturity, linear and polynomial growth models were fitted 

to average juvenile size (SL) by age (days) for 105 days only (minimum duration of any 

family). A REML model (Patterson & Thompson 1974) tested the main effect of salinity 

treatment, as well as potential covariates: average temperature, average photoperiod, 

and cumulative population density. Family within sire size class and an interaction 

between family and sire size class were included as random effects. Cumulative 

population density was measured as the sum of individuals in a tank across all census 

periods. Survival and maturation rates were assessed across 194 days (9 census 

periods) using the Kaplan-Meier method and compared using a log-rank chi-square. 

Families with surviving individuals after 194 days were censored from the dataset.  

At the individual level, approximate age (to the nearest three weeks), SL, and wet 

mass at maturity were recorded and analyzed separately for male and female offspring. 

None of the three traits were normally distributed, so all were transformed using the 

natural log to fulfill assumptions of the statistical model. A REML model was used to test 

the main effects of salinity, sire size class, and their interaction. Average rearing 

temperature and photoperiod were also included as covariates. To control for family 

level differences, family within sire size class and an interaction between family and sire 
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size class were included as random effects. The relationship between natural log-

transformed SL and wet body mass was used as a measure of body condition 

(Anderson & Neumann 1996). A REML model tested for differences due to SL, salinity, 

and SL by salinity (a measurement of linear slope differences). Average temperature 

and photoperiod were included as covariates. To control for family level differences, 

family within sire size class and an interaction between family within sire size class and 

salinity were included as random effects.  

Morphological traits that represent sexually and naturally selected traits of male 

offspring were measured using ImageJ software: dorsal fin area (male ornament: DFA) 

and caudal fin area (used in swimming: CFA) were compared to body area (BA). Linear 

regression between the natural log (ln) transformed trait and natural log (ln) transformed 

body area (BA) for individuals reared in low salinity and brackish water treatments were 

performed to calculate adjusted r-square values, slope, and 95% confidence intervals of 

the slope. A REML model tested for differences due to BA, salinity, and BA by salinity (a 

measurement of linear slope differences). Average temperature and photoperiod were 

included as covariates. To control for family level differences, family within sire size class 

and an interaction between family within sire size class and salinity were included as 

random effects.  

All statistical analyses were performed using JMP Pro version12 (Cary, North 

Carolina).  
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Figure 2.1. Experimental tanks arranged in a 4x4 Latin Square design in the BRC 

Greenhouse. Each sire size class and salinity combination is represented within a block 

and occur in every possible row position across blocks. 
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RESULTS 

 

 In total, 309 fish (159 males and 150 females) from 12 families were raised to 

sexual maturity. Specifically, 72 and 78 females were reared in 2 ppt and 20 ppt, and 72 

and 87 males were reared in 2 ppt and 20 ppt, respectively. At least one male and 

female matured in low salinity and brackish water treatments from every family. Average 

female age, SL, and mass were greater in low salinity than brackish water treatments 

(Table 2.1). Male size distributions were skewed towards smaller males in both low 

salinity and brackish water treatments relative to the observed size distribution of wild-

caught males found in Steve’s Ditch (Figure 2.2). Summary statistics of life history traits 

of each family are presented in Appendix I.  

The overall survival curves were significantly different between salinity 

treatments (log-rank chi-square=8.17, df=1, p=0.0043), with mortality rate higher in 

brackish than in low salinity treatments (Figure 2.3). Total mortality varied substantially 

among families; some families (e.g., L10) experienced higher mortality in brackish water 

while others (e.g., L7) had higher mortality in low salinity across both sire size classes 

(Fig 2.4). Conversely, linear and polynomial growth rates did not differ between salinity 

treatments (Table 2.2; Figure 2.5). Adjusted r-square values for the linear and 

polynomial growth curve models were 0.41 and 0.15, respectively (Table 2.2). This lack 

of fit for both models can be attributed to minimal variation between growth rates across 

replicate tanks in which the average adjusted r-squares (± standard error) for linear and 

polynomial growth curves were 0.96 (± 0.006) and 0.99 (± 0.002), respectively. While the 

AICc values indicated that the polynomial was a better fit than the linear model (Table 

2.2), we used both models to determine if growth rates were influenced by salinity, 
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cumulative density, photoperiod, and temperature. Both linear and polynomial growth 

models indicated that none of these variables significantly influenced growth rates (Table 

2.2; Figure 2.5). All replicate tank averages were pooled to determine an average growth 

rate of 0.2 mm per day for the first 105 days of the experiment. Finally, female and male 

maturation rates did not differ significantly across salinity treatments (Female: log-rank 

chi-square=0.1819, df=1, p=0.6697; Male: log-rank chi-square=0.2807, df=1, p=0.5963; 

Figure 2.6; Figure 2.7). Nearly 90% of all female and male offspring in the experiment 

were mature by the ninth census, or 193 days (Figure 2.6; Figure 2.7).  

Though females on average took nearly two weeks longer to mature in 2 ppt than 

20 ppt (Table 2.1), this difference was not significant in the REML model (Table 2.3). In 

addition, there was no effect of sire size class or its interaction with salinity on female 

age at maturity (Table 2.3). Instead, there was considerable variation in family 

responses to salinity, independent of sire size class (Table 2.3; Figure 2.8). Indeed, 

family and an interaction between family and salinity accounted for 35% and 48% of the 

variation in female age at maturity, respectively. Average rearing temperature and 

photoperiod also significantly modified the age at which females matured (Table 2.3). 

Increasing temperature resulted in increased age at maturation, whereas increasing 

photoperiod resulted in decreased age at maturation.  

 Females in 2 ppt matured at significantly larger sizes (both SL and mass) than 

their siblings in 20 ppt (Table 2.3). However, sire size class and the interaction between 

sire size class and salinity did not influence female SL or mass at maturity (Table 2.3). 

Instead, family response to salinity varied dramatically (Table 2.3; Figure 2.9; Figure 

2.10). The main effect of family and its interaction with salinity accounted for 49% and 

31% of the variation in female SL and mass at maturity, respectively. This response was 
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also significantly influenced by average rearing temperature and photoperiod (Table 

2.3). Increasing temperature resulted in increased age at maturation, whereas 

increasing photoperiod resulted in decreased age at maturation. 

 For males, age, SL, and mass at maturity were not influenced by salinity, sire 

size class, or their interaction (Table 2.4). However, family within sire size class and an 

interaction between family within sire size class and salinity significantly influenced all of 

these life history traits (Table 2.4). Indeed, norms of reaction show that family response 

to salinity varied dramatically in direction and magnitude (Figure 2.8-2.10) for families 

sired by both large and small males. Indeed, family differences in response to salinity 

environment explained between 74 and 77 percent the variation in male age, SL, and 

mass at maturity. An interaction between family and salinity accounted for between 9 

and 12 percent of the variation in these life history traits. Average rearing photoperiod 

and temperature modified these responses (Table 2.4) as well. Male age, SL, and mass 

at maturity increased with increasing temperature, but decreased with increasing 

photoperiod.  

 Salinity significantly influenced male, but not female, body condition (Table 2.5; 

Figure 2.11). Specifically, there was a significant interaction between natural log-

transformed SL by wet mass and salinity treatment (i.e., the slopes were significantly 

different) in which the slope between SL and dry mass was steeper for brackish than low 

salinity treatments. Temperature and photoperiod did not affect male body condition 

(Table 2.5). For females, there was no interaction between natural log-transformed SL 

by wet mass and salinity treatment (i.e., the slopes were not significantly different). 

However, temperature and photoperiod significantly affected female body condition 
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(Table 2.5). Increasing temperature resulted in increased body condition at maturation, 

whereas increasing photoperiod resulted in decreased body condition at maturation. 

 Finally, salinity differences influenced male morphology. Males reared in brackish 

water had significantly larger dorsal fin areas relative to their siblings reared in low 

salinity, independent of body size (Table 2.6; Figure 2.12). However, the slopes for the 

relationship between natural log-transformed dorsal fin area and natural log-transformed 

body area (BA) did not significantly differ between salinity treatments (Table 2.6; Low 

Salinity: slope=1.36, 95% CI= 1.17-1.54, r2=0.76; Brackish: slope=1.46, 95% CI=1.33-

1.59, r2=0.86). There was also a positive relationship between photoperiod and DFA 

(Table 2.6), where DFA increased with increasing photoperiod. Conversely, caudal fin 

area was not significantly different in low salinity and brackish water treatments (Table 

2.6; Figure 2.13). The slopes for the relationship between natural log transformed caudal 

fin area and natural log transformed BA did not significantly differ between salinity 

treatments either (Table 2.6; Low Salinity: slope=1.03, 95% CI= 0.92-1.14, r2=0.83; 

Brackish: slope=1.10, 95% CI=1.02-1.17, r2=0.91).
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Table 2.1. Summary statistics for age, standard length (SL), and mass at maturity for male and female offspring reared in low 

salinity and brackish water treatments.  

Sex Life History Trait Salinity Minimum Maximum Average Standard Error 
Female Age Low Salinity 61 336 142.31 7.27 

 
  Brackish  61 296 129.14 7.19 

 
SL Low Salinity 26 53 36.89 0.697 

  
Brackish  22 46 34.37 0.63 

 
Mass Low Salinity 0.530 4.940 1.736 0.104 

    Brackish  0.503 3.260 1.387 0.075 
Male Age Low Salinity 43 218 100.54 4.04 

 
  Brackish  42 199 101.55 4.74 

 
SL Low Salinity 21 46 30.29 0.61 

  
Brackish  18 45 30.54 0.69 

 
Mass Low Salinity 0.256 2.757 0.890 0.060 

    Brackish  0.137 2.786 0.970 0.065 
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Figure 2.2. Size frequencies of male offspring from low salinity (top) and brackish water 

(bottom) treatments compared to size frequencies of males frequencies in the native 

population, Steve’s Ditch.  
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Figure 2.3. Average proportion of surviving juveniles (± standard error) in low salinity 

(green) and brackish water (blue) treatments over 193 days.  
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Figure 2.4. Overall percent mortality of offspring reared in low salinity and brackish water 

treatments across family groups. Blue lines are small sired families (<30mm) and red 

lines are large sired families (>48mm). Family number represents the rank order of sire 

sizes (i.e., S1 had the smallest sire at 20 mm and L12 had the largest sire at 57 mm).   
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Table 2.2. Results of REML analyses testing the effects of salinity, temperature, photoperiod, and cumulative density for 

growth rate over the first 105 days assuming linear and polynomial models.  

Growth Model Source DF F  P Adj. r2 AICc 

Linear Salinity 1,10 0.0420 0.8415 0.41 73.3 

 
Temperature 1,12 0.2115 0.6535 

  

 
Photoperiod  1,10 1.5613 0.2403 

    Cumulative Density 1,18 0.3981 0.5357     

Polynomial Salinity 1,10 0.0041 0.9503 0.15 44.6 

 
Temperature 1,12 0.0030 0.9571 

  

 
Photoperiod  1,10 0.0551 0.8190 

    Cumulative Density 1,18 0.0108 0.9184     
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Figure 2.5. Average juvenile standard length (± standard error) in low salinity and 

brackish water treatments for 5 census periods (105 days). 
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Figure 2.6. Average proportion of females maturing (± standard error) in low salinity 

(green) and brackish water (blue) treatments over 193 days.  
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Figure 2.7. Average proportion of males maturing (± standard error) in low salinity 

(green) and brackish water (blue) treatments over 193 days. 
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Table 2.3. Results of REML analysis for age, standard length (SL), and mass at maturity for female offspring reared in low 

salinity and brackish water treatments.  

 
Trait Source DF F P Adj. r2 
Age Salinity 1,8 2.08 0.1871 0.79 

 
Sire Size Class 1,8 0.36 0.5629 

 
 

Sire Size Class x Salinity 1,8 1.26 0.2937 
 

 
Temperature 1,138 24.99 <0.0001 

 
 

Photoperiod 1,58 21.83 <0.0001 
 

 
Family ID[Sire Size Class] 10,10 3.95 0.0194 

   Family ID[Sire Size Class] x Salinity 10,124 7.86 <0.0001   
SL Salinity 1,7 5.72 0.0467 0.77 

 
Sire Size Class 1,9 0.01 0.9264 

 
 

Sire Size Class x Salinity 1,7 2.40 0.1641 
 

 
Temperature 1,114 6.25 0.0138 

 
 

Photoperiod 1,60 7.06 0.0101 
 

 
Family ID[Sire Size Class] 10,10 5.68 0.005 

   Family ID[Sire Size Class] x Salinity 10,124 5.90 <0.0001   
Mass Salinity 1,7 5.91 0.0454 0.79 

 
Sire Size Class 1,9 0.00 0.9835 

 
 

Sire Size Class x Salinity 1,9 2.32 0.1716 
 

 
Temperature 1,117 10.85 0.0013 

 
 

Photoperiod 1,63 10.80 0.0017 
 

 
Family ID[Sire Size Class] 10,10 6.33 0.0033 

   Family ID[Sire Size Class] x Salinity 10,124 5.70 <0.0001   



 49 

Table 2.4. Results of REML analysis for age, standard length (SL), and mass at maturity for male offspring reared in low 

salinity and brackish water treatments.  

Trait Source DF F P Adj. r2 
Age Salinity 1,9 1.02 0.3394 0.65 

 
Sire Size Class 1,7 0.01 0.9377 

 
 

Sire Size Class x Salinity 1,9 1.68 0.2280 
 

 
Temperature 1,122 29.36 <0.0001 

 
 

Photoperiod 1,116 44.75 <0.0001 
 

 
Family ID[Sire Size Class] 10,10 3.33 0.0340 

   Family ID[Sire Size Class] x Salinity 10,133 5.17 <0.0001   
SL Salinity 1,9 0.68 0.4324 0.57 

 
Sire Size Class 1,6 0.00 0.9793 

 
 

Sire Size Class x Salinity 1,8 1.67 0.2304 
 

 
Temperature 1,89 22.52 <0.0001 

 
 

Photoperiod 1,92 24.86 <0.0001 
 

 
Family ID[Sire Size Class] 10,10 3.33 0.0334 

   Family ID[Sire Size Class] x Salinity 10,133 3.38 0.0006   
Mass Salinity 1,9 0.61 0.4571 0.59 

 
Sire Size Class 1,6 0.01 0.9159 

 
 

Sire Size Class x Salinity 1,9 1.45 0.2611 
 

 
Temperature 1,101 24.68 <0.0001 

 
 

Photoperiod 1,90 25.49 <0.0001 
 

 
Family ID[Sire Size Class] 10,10 3.02 0.0455 

   Family ID[Sire Size Class] x Salinity 10,132 3.88 0.0001   
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Figure 2.8. Average female (top) and male (bottom) age (transformed by natural log) at 

maturity for each family reared in low salinity and brackish water treatments. Blue lines 

are small sired families (<30mm) and red lines are large sired families (>48mm). Family 

number represents the rank order of sire sizes (i.e., S1 had the smallest sire at 20 mm 

and L12 had the largest sire at 57 mm).   
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Figure 2.9. Average female (top) and male (bottom) standard length (transformed by 

natural log) at maturity for each family reared in low salinity and brackish water 

treatments. Blue lines are small sired families (<30mm) and red lines are large sired 

families (>48mm). Family number represents the rank order of sire sizes (i.e., S1 had the 

smallest sire at 20 mm and L12 had the largest sire at 57 mm).   
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Figure 2.10. Average female (top) and male (bottom) mass (transformed by natural log) 

at maturity for each family reared in low salinity and brackish water treatments. Blue 

lines are small sired families (<30mm) and red lines are large sired families (>48mm). 

Family number represents the rank order of sire sizes (i.e., S1 had the smallest sire at 

20 mm and L12 had the largest sire at 57 mm).   
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Table 2.5. Results of REML analysis comparing natural log-transformed standard length 

by mass for female and male offspring reared in low salinity and brackish water 

treatments.  

Sex Source DF F P Adj. r2 
Female Salinity 1,8 0.09 0.7743 0.97	

 
ln(SL) x Salinity 1,24 0.11 0.7384 

	
 

ln(SL) 1,64 2245.38 <0.0001 
	

 
Temperature 1,21 5.49 0.0288 

	  Photoperiod 1,15 11.71 0.0038 		
Male Salinity 1,5 0.41 0.5529 0.99	

 
ln(SL) x Salinity 1,119 10.10 0.0019 

	
 

ln(SL) 1,118 6763.65 <0.0001 
	

 
Temperature 1,20 0.10 0.7499 

	  Photoperiod 1,19 0.02 0.9028 		
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Figure 2.11. The relationship between natural log-transformed standard length (mm) and 

mass (grams) for females (top) and males (bottom) reared in low salinity and brackish 

water treatments. 
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Table 2.6. Results of REML analysis comparing natural log-transformed dorsal fin area 

(DFA) and caudal fin area (CFA) by body area (BA) of male offspring reared in low 

salinity and brackish water treatments.  

Trait Source DF F P Adj. r2 
DFA Salinity 1,5 14.97 0.0133 0.91 

 
Salinity x ln(BA) 1,115 0.40 0.5293 

 
 

ln(BA) 1,126 601.14 <0.0001 
 

 
Temperature 1,14 0.72 0.4116 

   Photoperiod 1,33 12.34 0.0013   
CFA Salinity 1,9 0.37 0.5597 0.94 

 
Salinity x ln(BA) 1,142 0.04 0.8325 

 
 

ln(BA) 1,144 941.44 <0.0001 
 

 
Temperature 1,44 0.34 0.5621 

   Photoperiod 1,31 1.31 0.2611   
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Figure 2.12. The allometric relationship between natural log-transformed dorsal fin area 

(DFA) and body area (BA) for males reared in low salinity and brackish water 

treatments. 
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Figure 2.13. The allometric relationship between natural log-transformed caudal fin area 

(CFA) and body area (BA) for males reared in low salinity and brackish water 

treatments.  
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DISCUSSION 

 

Growth and Mortality Rates 

 

 Comparisons of growth and mortality rates indicated that P. latipinna juveniles 

perform equally well – if not better – in low salinity conditions than in brackish water 

conditions. While there were no differences in growth rate between salinity treatments, 

mortality rate was somewhat higher in the brackish water treatment relative to the low 

salinity treatment. This finding does not support the prediction that growth rates would 

shift in response to an environmental stressor (osmoregulation in low salinity), as 

predicted by life history evolution theory (Sibly & Calow 1989). Juveniles reared in both 2 

ppt and 20 ppt had an average growth rate of 0.2 mm SL per day, which is similar to the 

growth rates reported in other laboratory rearing studies in P. latipinna (Snelson 1982; 

Trexler et al. 1990). In addition, a field reciprocal transplant experiment (Trexler & Travis 

1990) found that juvenile growth rates in P. latipinna varied by season, year, and among 

family groups. However, when environmental factors were significant, fish grew faster in 

brackish water ponds (Trexler & Travis 1990). In a corresponding laboratory experiment, 

Trexler et al. (1990) found that juvenile growth rates differed between the sexes: male 

growth rate did not differ between populations from fresh or brackish water sites and 

responded minimally to environmental variation, whereas female growth rate was faster 

in warm (29°C), brackish water (20 ppt) relative to cooler (23°C), fresher water (2 ppt). 

However, growth rate was influenced much more by temperature than salinity (Trexler et 

al. 1990). In my experiment, replicate tanks were subject to variable photoperiods (i.e., 

10-14 hours per day) and temperatures (i.e., 26°C to 30°C), which potentially masked 
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subtle differences in growth rate in response to salinity environment. In another molly 

species, Poecilia vivipara, Araújo & Monteiro (2013) found that juveniles from a brackish 

water population grew faster in freshwater than conspecifics from a freshwater 

population, indicating genetic differentiation may causes differences in growth rates 

between salinity environments. Taken together with my results, these studies suggest 

that genotype and environmental factors such as temperature and photoperiod may 

influence growth rates to a greater degree than does salinity. A limitation of my 

experimental design was my inability to assess growth rate at the individual level; only 

measuring family response is possible without uniquely marking individual fish. 

Therefore, I cannot determine individual variability in growth rate within families, yet such 

variation provides the raw material through which selection can act on phenotypic 

plasticity (Mangel & Stamps 2001). 

 Mortality rates differed in response to salinity environment but not in the direction 

predicted; mortality rate was somewhat higher in brackish water than in low salinity 

treatments. Trexler et al. (1992) found that in adult P. latipinna, survival was higher in 

brackish water than in freshwater during summer and winter conditions, whereas 

juvenile survival in fresh and brackish water habitats was temporally inconsistent. 

However, fish were more likely to survive to maturity in freshwater than brackish water in 

one year of the experiment (Trexler et al. 1992). Bachmann & Rand (2009) observed 

increased mortality of juvenile P. latipinna in freshwater (0 ppt) relative to brackish water 

(15 ppt), but survival was equally high in 2 ppt and 15 ppt. One possible explanation for 

higher mortality in the 20 ppt treatment may be that our low salinity treatment (2 ppt) did 

not have impose a significant osmotic stress. Another explanation may be as a result of 

life history trade-offs. Juveniles reared in brackish water may have been allocating 
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energy resources towards gonadal development at the expense of maintenance and 

growth (e.g., females in many families matured earlier in brackish water), although 

overall rates of maturation did not differ between salinity treatments. Indeed, Gadgil & 

Bossert (1970) hypothesized that devoting energy towards reproduction results in 

decreased growth and survivorship. Such a trade-off between reproductive effort and 

somatic condition has been observed in other female livebearers (Poecilia reticulata: 

Reznick 1983; Gambusia holbrooki: Alcaraz & García-Berthou 2007). Wild-caught 

females of P. latipinna had similar body conditions in fresh and brackish water habitats, 

but those from freshwater habitats exhibited reduced reproductive allotment and 

fecundity (Martin et al. 2009). Therefore, it is possible that fish in the low salinity 

treatment suffered lower mortality because they allocated more energy towards somatic 

maintenance instead of gonadal development. Future studies should explore the 

potential trade-offs between somatic maintenance and reproductive effort at the onset of 

maturation in male and female P. latipinna across a range of environmentally relevant 

salinities. 

 

Male and Female Comparison 

 

 Salinity significantly affected female, but not male, life history traits. On average, 

females were older at maturity in 2 ppt than 20 ppt, but this difference was not significant 

(Table 2.1; Table 2.8). Females were significantly larger (SL and mass) at maturity in low 

salinity than brackish water treatments. Delayed maturation (Zimmerer 1983; Trexler & 

Travis 1990; Trexler et al. 1990) and larger body size (Trexler et al. 1990) in low salinity 

is consistent with previous findings. Sire size class and an interaction between sire size 
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class and salinity did not significantly impact any of the three female life history traits 

examined. Instead, family variation within sire size class and an interaction between 

family and salinity explained at least 80% of the total variation in female life history traits. 

In addition, differences in average rearing temperature and photoperiod were more 

important determinants of female life history traits than salinity. I observed a negative 

relationship between photoperiod and age, size, and mass at maturity for females. This 

is consistent with the finding that female P. latipinna cease ovary development 

somewhere between 12 and 14 hours of daylength, regardless of temperature (Grier 

1973). Conversely, I observed a positive relationship between temperature and age, 

size, and mass at maturity for females, even though temperature variation was minimal 

and was always within normal summer conditions ((26°C to 30°C); Trexler et al. 1992). 

Trexler et al. (1990) also found that temperature effects far exceeded salinity effects in 

determining female age at maturity. Trexler et al. (1990) also found that female size was 

less responsive to environmental factors than female age at maturity. I found a similar 

pattern: female age at maturity was largely determined by an interaction between family 

and salinity (48% of the variation in the data), whereas family alone accounted for nearly 

50% of the variation in female SL and mass at maturity. Taken together, female age at 

maturity may be more phenotypically plastic than size at maturity. Further, differences 

between families suggest female size at maturity has a genetic component. It is possible 

that maternal effects are responsible for these differences. However, maternal effects 

should have been minimized in my experiment because dams were laboratory-reared, 

and experienced similar environmental conditions during ontogeny.  

 Salinity did not significantly impact male life history traits. Sire size class and an 

interaction between sire size class and salinity also did not impact any of the three life 
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history traits examined. Instead, family within sire size class accounted for as much as 

77% of the variation in life histories, and an interaction between family and salinity 

accounted for as much as 12%. This means that family was more than twice as 

important in determining male age, than female age at maturity. Male SL and mass at 

maturity were also less responsive to an interaction between family and salinity than 

were female SL and mass, suggesting that male life history traits are less phenotypically 

plastic than female life histories. This result is congruent with Trexler et al. (1990) where 

over 50% of the variation in female age at maturity was attributed to environmental 

factors, whereas less than 12% of the variation in male age at maturity could be 

explained by temperature and salinity conditions. It has been suggested that male size is 

inherited at least in part, through genes on the Y-chromosome because males do mature 

at similar sizes as their sires under certain laboratory conditions (Travis 1994). My 

results however, did not show a strong effect of sire size class, independent of family 

differences in male offspring SL at maturity. For instance, large-sired families did not 

produce any large sons (>48mm), and male size distributions in both salinity treatments 

were smaller than the male size frequencies that are characteristic of their native 

population (Figure 2.2). Trexler et al. (1990) also raised males that were smaller on 

average than those collected from brackish populations. They suggested this pattern 

could have occurred if frequencies of male maturation genotypes changed between the 

sampling period and the laboratory study (Trexler et al. 1990). Because I controlled for 

sire size, this hypothesis is not sufficient to explain my results. Instead, male life history 

traits may exhibit phenotypic plasticity in response to environmental conditions that were 

not captured in my laboratory study. For example, the social environment is an important 

determinant of male size in many poeciliid fishes (e.g., platyfish: Borowsky 1978; 
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swordtails: Walling et al. 2007; guppies: Campton & Gall 1988, Magellan & Magurran 

2009; sailfin mollies: unpublished data), where juvenile males generally delay maturation 

in the presence of adult males. This hypothesis requires that male life histories are 

phenotypically plastic, and that differences in salinity may not have imposed enough of a 

stressor to cause physiological trade-offs in male P. latipinna, at least in this experiment.  

While males were relatively insensitive to salinity environment, temperature and 

photoperiod differences significantly impacted male life history traits. This result is 

consistent with findings that temperature is more important than salinity in determining 

male age, SL, and mass (Trexler et al. 1990) and testis biomass at maturity (McManus & 

Travis 1998). The effects of photoperiod and temperature are correlated and often 

synergistic (Boeuf & Le Bail 1999). Interestingly, I found that small increases in 

temperature (26°C to 30°C) resulted in larger male body size, while longer day length 

resulted in earlier maturation at smaller body size at maturity. Longer day length 

stimulates food intake and food conversion efficiency in many fishes (Boeuf & Le Bail 

1999), and increases gonadosomatic index in some poeciliid fishes (Poeciliopsis gracilis; 

P. sphenops: Burns 1985). I did not systematically vary photoperiod; instead, 

photoperiod differences resulted as a side effect of conducting the experiment in a 

greenhouse over the course of 1.5 years. To my knowledge, the influence of photoperiod 

on male life history traits in P. latipinna is not well understood, even though photoperiod 

is arguably the most predictable environmental cue (Migaud et al. 2010). Coordinating 

reproductive efforts with reliable cues can optimize allocation of energy resources 

(Migaud et al. 2010), and may be especially important in highly variable environments 

(Robinson et al. 2011). Snelson (1984) found that peak reproduction occurs in spring 

and fall months in P. latipinna populations. Consequently, selection to coordinate 



 64 

gonadal development in response to changing photoperiod in P. latipinna should be 

strong. Future studies should investigate the influence of photoperiod on male 

maturation in P. latipinna, as it may be play a role in maintaining seasonal variation of 

male size distributions.   

Male, but not female, body condition was significantly affected by salinity 

treatment where the relationship between SL and wet mass increased more rapidly for 

males reared in brackish water relative to the low salinity treatment. Female body 

condition was not influenced by salinity. Instead, there was a slight positive and negative 

relationship between female body condition and temperature and photoperiod, 

respectively. This result is consistent with the findings of Martin et al. (2009) in which 

field surveys of P. latipinna across marshes varying in salinity revealed that male body 

condition was better in brackish water than freshwater marshes, whereas female body 

condition did not vary in response to salinity. Instead, female reproductive allotment in 

terms of gonadosomatic index and fecundity was reduced in freshwater than brackish 

water marshes (Martin et al. 2009). My results coupled with those of Martin et al. (2009) 

suggest that male and female sailfin mollies may exhibit different patterns of life history 

trade-offs. While female age and size at maturity shift in response to salinity 

environment, male life histories are more constrained by family genotype. However, 

male body condition is reduced in low salinity than brackish water, suggesting that males 

undergo physiological trade-offs in response to salinity environment.   
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MALE MORPHOLOGY 

 

As predicted, the sexual ornament (dorsal fin area) was sensitive to osmotic 

stress, while a trait more likely subject to natural selection (caudal fin area) was not 

influenced by salinity environment. The dorsal fin shows positive allometry with body 

size in males (Ptacek 2002; Hankison & Ptacek 2007) as a result of strong sexual 

selection for increased lateral projection area (LPA: sum of body and dorsal and caudal 

fin areas; Ptacek & Travis 1997; MacLaren et al. 2004; Hankison et al. 2006). The 

handicap hypothesis predicts that female preferences for elaborate sexual ornaments 

have evolved because such traits are condition-dependent, and therefore, honest 

signals of mate quality (reviewed in Andersson 1994). The theory has been widely 

investigated across taxa, but empirical support remains sparse (Cotton et al. 2004). 

Emlen et al. (2012) demonstrated that ornamental horn size in the rhinoceros beetle 

(Trypoxylus dichotomus) is sensitive to nutritional quality via the insulin/insulin like 

growth factor pathway. In livebearers, there is evidence that diet influences secondary 

sexual characters in males (P. reticulata: Hughes et al. 2005; Rahman et al. 2013; P. 

latipinna: Lange 2013), and that females prefer well-fed males (P. reticulata: Kodric-

Brown 1989; Grether 2000; P. mexicana: Plath et al. 2005). Gomes & Monteiro (2008) 

found morphological divergence among P. vivipara populations that inhabited a salinity 

gradient; however, they concluded that differences were likely attributed to predation 

pressures instead of salinity. Here I provide preliminary evidence that osmotic stress 

compromises the size of the ornamental dorsal fin in male P. latipinna. Future studies 

should identify the mechanism responsible for the development of the ornamental dorsal 
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fin. It would also be informative to investigate the allometric scaling of the dorsal fin area 

in response to a range of salinities that are environmentally relevant (Cotton et al. 2004).  

The condition-dependence of sexual traits should be compared to suitable non-

sexual traits (Cotton et al. 1994). Therefore, I also measured caudal fin areas of 

individuals reared in low salinity and brackish water treatments. The caudal fin is 

involved in thrust generation and maneuverability, and therefore is more likely subject to 

natural selection in addition to sexual selection (Hankison et al. 2006; Langerhans et al. 

2004). For example, mosquitofish (Gambusia affinis) had larger caudal fins in predator 

populations relative to predator-free populations (Langerhans et al. 2004). Gomes & 

Monteiro (2008) found the same pattern in P. vivipara in a similar predator regime. 

Therefore, the caudal fin represents an appropriate non-sexual comparison to the 

secondary sexual character of the dorsal fin used in the courtship display signal. The 

prediction that male caudal fin area would be relatively insensitive to salinity environment 

was supported. Therefore, I can conclude that low salinity compromised the size of a 

sexually, but not naturally selected trait. This result suggests that the enlarged dorsal fin 

is condition-dependent in P. latipinna and as such, may act as an indicator trait of male 

quality in this species.  

 

SIGNIFICANCE 

 

Field surveys (Martin et al. 2009) and laboratory experiments (Evans 1973, 1975; 

Nordlie et al. 1992) suggest that individuals of P. latipinna are physiologically stressed in 

freshwater relative to brackish water due to the increased demands of osmoregulation. 

Concordantly, P. latipinna exhibits interpopulation size and morphological variation 
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between salinity environments (Snelson 1985; Farr et al. 1986; Trexler et al. 1990; 

Ptacek & Travis 1996; Seda et al. 2012) despite high gene flow (Trexler 1988; Apodaca 

et al. 2013). Physiological trade-offs between growth, maintenance, storage, and 

reproduction via phenotypic plasticity may provide an explanation for this interpopulation 

variation in P. latipinna. Phenotypic plasticity mitigates the effects of environmental 

stress by allowing organisms to shift their developmental trajectories to maximize fitness 

in a given environment (Pigliucci 2001). In highly variable habitats, such as coastal 

estuaries, phenotypic plasticity should be maintained. Indeed, Bamber & Henderson 

(1999) suggest that selection for plasticity in estuarine fish has pre-adapted them to 

invading stressful freshwater habitats. Consistent with these predictions, I have shown 

that P. latipinna from a brackish water habitat performed equally well – if not better – in a 

low salinity habitat relative to a brackish water habitat in terms of growth and mortality 

rates. I found that females responded consistently to salinity environment, where 

females were smaller at maturity in brackish water relative to low salinity treatments. 

Males also responded plastically to salinity environment; though, the direction and 

magnitude depended largely on family genotype. However, the effects of temperature 

and photoperiod far exceeded the importance of salinity in determining both male and 

female life histories. These results suggest that salinity variation alone is not sufficient to 

explain the interpopulation differences in male size distributions consistently observed in 

P. latipinna (Snelson 1985; Farr et al. 1986; Trexler et al. 1990; Ptacek & Travis 1996; 

Seda et al. 2012). Freshwater and brackish marshes likely vary in additional abiotic 

factors such as food resources, as well as biotic factors such as predation regime, 

competition, and community structure. Indeed, Trexler et al. (1990) suggested that 

habitats along salinity gradients are likely subject to differential selection pressures and 
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survival as salinity changes. All of these variables will need to be assessed before 

drawing firm conclusions about the factors that influence life history and mating signal 

variation among populations of P. latipinna in different environments.  

My results do however, provide support for the prediction that stressful 

environmental conditions lead to physiological trade-offs. Interestingly, male and female 

P. latipinna exhibited different life history trade-offs in response to salinity environment. 

Female body size was smaller in brackish water compared to low salinity treatments. 

Male life history traits, however, did not respond to environmental variation in the salinity 

environment, but body condition and the sexual ornament (dorsal fin) were 

compromised, potentially in response to osmotic stress. As a result, it is possible that the 

strength of sexual selection differs between populations of P. latipinna along salinity 

gradients. Polymorphism in male size and size-associated mating strategy in P. latipinna 

has been proposed to be maintained by a balance between natural selection favoring 

smaller size through earlier maturation and sexual selection favoring larger size through 

female mating preferences for increased LPA in males (Travis 1994; Ptacek and Travis 

1997; Ptacek 2005). If salinity or other abiotic variables shift the fulcrum of this balance, 

such as weaker sexual selection in freshwater environments, then variability in male life 

history and mating strategy could be maintained. Future studies should compare the 

strength of female mating preferences for large male body size in habitats that vary in 

salinity.  
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Appendix A. Summary statistics for female and male age, standard length, and mass across all families.  
 

Females Age Standard Length Weight 

Family Sire SL Salinity (ppt) N Min Max Average St. Error Min Max Average St. Error Min Max Average St. Error 

S1 20 2 7 64 126 101.71 11.62 26 32 29.86 0.83 0.530 1.250 0.860 0.091 

  
20 5 64 139 88.80 15.73 25 28 26.20 0.58 0.506 0.707 0.588 0.044 

S2 20 2 6 126 149 141.00 3.59 30 41 35.50 1.65 1.106 1.905 1.434 0.126 

  
20 3 65 136 88.67 23.67 22 33 26.33 3.38 0.503 1.133 0.719 0.207 

S3 25 2 3 61 276 146.67 65.79 30 45 37.00 4.36 0.785 3.056 1.784 0.670 

  
20 4 61 277 128.00 50.04 28 45 34.50 3.66 0.673 2.628 1.345 0.436 

S4 25 2 4 191 276 229.25 17.76 40 50 44.00 2.16 1.937 3.536 2.689 0.341 

  
20 3 166 296 209.33 43.33 40 42 41.00 0.58 1.967 2.474 2.226 0.147 

S5 27 2 8 88 253 184.88 21.83 34 44 39.50 1.46 1.258 3.492 2.194 0.276 

  
20 6 193 235 224.50 7.17 39 43 40.33 0.61 1.720 2.750 2.179 0.144 

S6 28 2 2 234 336 285.00 51.00 45 53 49.00 4.00 2.865 4.940 3.902 1.037 

  
20 1 68 68 68.00 0.00 28 28 28.00 0.00 0.659 0.659 0.659 0.000 

L7 49 2 4 68 131 91.00 14.98 28 39 32.25 2.50 0.613 1.727 1.084 0.252 

  
20 14 68 111 75.21 3.92 27 34 29.29 0.51 0.604 1.206 0.795 0.052 

L8 50 2 2 153 237 195.00 42.00 39 44 41.50 2.50 1.804 2.938 2.371 0.567 

  
20 9 131 237 187.89 16.61 36 46 40.33 1.14 1.492 3.260 2.103 0.204 

L9 53 2 14 84 105 94.50 2.91 30 35 33.36 0.34 0.873 1.367 1.211 0.038 

  
20 4 63 105 84.00 8.57 29 34 31.75 1.11 0.770 1.254 1.022 0.119 

L10 54 2 6 85 105 95.00 4.47 32 35 33.17 0.48 0.851 1.223 1.044 0.055 

  
20 14 85 105 86.43 1.43 31 39 33.50 0.60 0.867 1.753 1.147 0.061 

L11 57 2 4 90 110 105.00 5.00 33 36 34.75 0.63 1.308 1.687 1.487 0.092 

  
20 4 110 230 160.25 30.08 33 43 37.75 2.29 1.275 2.696 1.865 0.336 

L12 57 2 12 126 211 184.58 7.90 36 48 43.00 1.13 1.510 3.504 2.553 0.167 

  
20 11 126 211 170.64 7.31 36 40 38.18 0.40 1.486 2.048 1.787 0.056 
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Appendix A. continued.  
 

Males Age Standard Length Weight 

Family Sire SL Salinity (ppt)  N Min Max Average St. Error Min Max Average St. Error Min Max Average St. Error 

S1 20 2 4 43 166 115.25 25.86 21 34 30.25 3.12 0.256 1.230 0.889 0.216 

  
20 10 43 137 56.60 9.35 18 35 22.90 1.53 0.137 1.438 0.389 0.121 

S2 20 2 8 92 92 92.00 0.00 25 30 27.38 0.53 0.538 0.732 0.610 0.024 

  
20 8 51 126 84.25 9.39 20 35 27.25 1.80 0.183 1.287 0.619 0.126 

S3 25 2 1 124 124 124.00 0.00 42 42 42.00 0.00 1.765 1.765 1.765 0.000 

  
20 1 124 124 124.00 0.00 40 40 40.00 0.00 2.080 2.080 2.080 0.000 

S4 25 2 8 49 166 107.88 12.08 25 38 32.75 1.52 0.459 1.675 1.092 0.166 

  
20 6 42 94 64.50 9.99 18 35 25.33 2.99 0.138 1.215 0.554 0.199 

S5 27 2 7 85 101 94.14 3.23 26 30 28.29 0.57 0.512 0.848 0.682 0.053 

  
20 9 83 199 133.89 17.04 27 40 33.33 1.63 0.635 2.005 1.253 0.184 

S6 28 2 2 89 112 100.50 11.50 32 35 33.50 1.50 1.050 1.206 1.128 0.078 

  
20 7 84 112 108.00 4.00 34 39 36.14 0.59 1.263 1.763 1.417 0.069 

L7 49 2 2 75 171 123.00 48.00 26 41 33.50 7.50 0.518 2.194 1.356 0.838 

  
20 7 138 195 168.43 8.84 32 45 38.57 1.85 1.083 2.786 1.927 0.229 

L8 50 2 6 74 136 84.33 10.33 25 36 28.50 1.61 0.452 1.365 0.711 0.134 

  
20 7 74 150 110.86 14.41 24 41 31.29 2.63 0.445 2.090 1.058 0.261 

L9 53 2 5 63 91 78.40 6.42 25 31 28.20 1.16 0.481 1.063 0.726 0.109 

  
20 3 63 84 73.67 6.06 28 33 29.67 1.67 0.670 0.968 0.770 0.099 

L10 54 2 8 65 105 81.50 4.56 25 33 29.13 1.03 0.449 1.078 0.725 0.082 

  
20 11 55 91 77.36 4.70 23 34 29.55 1.15 0.402 1.095 0.765 0.080 

L11 57 2 10 81 152 91.70 6.85 25 37 27.90 1.09 0.459 1.611 0.668 0.107 

  
20 8 81 170 104.88 10.47 27 33 30.50 0.82 0.504 1.133 0.842 0.081 

L12 57 2 11 78 218 134.73 16.05 25 46 34.64 2.34 0.468 2.757 1.385 0.260 

  
20 10 76 198 125.70 15.62 24 39 31.80 1.95 0.355 1.703 1.059 0.183 
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