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ABSTRACT 

In this dissertation, molecular dynamics (MD) simulations were applied to study 

the effect of single point mutations on protein folding free energy and the protein-ligand 

binding in the bifunctional protein dihydrofolate reductase-thymidylate synthase (TS-

DHFR) in plasmodium falciparum (pf). The main goal of current computational studies is 

to have a deeper understanding of factors related to protein folding stability and protein-

ligand binding. 

Chapter two aims to seek solutions for improving the accuracy of predicting 

changes of folding free energy upon single point mutations in proteins. While the 

importance of conformational sampling was adequately addressed, the diverse dielectric 

properties of proteins were also taken into consideration in this study. Through developing 

a three-dielectric-constant model and broadening conformational sampling, a method for 

predicting the effect of point mutations on protein folding free energy is described, and 

factors of affecting the prediction accuracy are addressed in this chapter. 

The following two chapters focus on the binding process and domain-domain 

interactions in the bifunctional protein pfDHFR-TS. This protein usually plays as the target 

of antimalarial drugs, but the drug resistance in this protein has caused lots of problems. In 

chapter three, the mechanism of the development of drug resistance was investigated. This 

study indicated that the accumulation of mutations in pfDHFR caused obvious changes of 

conformation and interactions among residues in the binding pocket, which further 

weakened the binding affinity between pfDHFR and the inhibitor drug. Furthermore, the 

high rigidity and significantly weakened communications among key residues in the 
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protein binding pocket were exhibited in the pfDHFR quadruple mutant. The rigid binding 

site was associated with the failure of conformational reorganization upon the binding of 

pyrimethamine in the quadruple mutant. Chapter four investigated the effect of the N-

terminus in pfDHFR-TS on enzyme activity and domain-domain communications. This is 

the first computational study that focuses on the full-length pfDHFR-TS dimer. This study 

provided computational evidence to support that remote mutations could disturb the 

interactions and conformations of the binding site through disrupting dynamic motions in 

pfDHFR-TS. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Overview of protein folding and protein ligand binding 

The problem of protein folding1 was first posed more than one half-century ago, 

when the Nobel Prize in Chemistry 1962 was awarded jointly to Max Ferdinad Perutz and 

John Cowdery Kendrew for their studies of the structures of globular proteins. Since then, 

scientists have raised the question of how to explain protein structures by physical 

principles2, 3. What are the driving forces for a protein to fold to its 3D-folded native 

structure from its denatured state4? Can scientists compute a protein’s native structure from 

the amino acid sequence5? After decades of research, the mystery in protein folding starts 

to unfold. The major contributing forces which drive proteins to fold are hydrogen bonding, 

van der Waals interactions, electrostatic interactions, hydrophobic interactions and chain 

entropy. Despite the huge number of conformations between denatured and native structure, 

proteins can precisely fold by determined pathways and mechanisms, without sampling all 

possible conformations. The protein folding energy landscapes6 are funnel-shaped, where 

low-energy conformational ensembles have fewer conformations. With a correctly folded 

structure, a protein can carry out its remarkable molecular functions.  

Today, the field of protein folding could not be framed as the folding process any 

more, since old questions in the field of protein folding have generated even more new 
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questions, which are related to physics, chemistry, biology and medicine. In this field, there 

are so many problems to be solved, such as developing algorithms that can accurately 

predict stability of folded proteins, solving the mechanism of protein folding related 

diseases, and developing methods to accurately calculate binding affinity between small 

ligands and proteins7-9.  

Proteins often achieve their specific biological functions through direct interactions 

with other ligands, such as peptides, nucleic acids, substrates and drugs. Therefore, a 

prerequisite for understanding or modifying the cellular activities is to obtain a good 

knowledge of the mechanism of the protein-ligand binding process, including the local or 

non-local interactions, the conformational changes, and the energies which play as major 

driving forces for the formation of protein-ligand complexes10. Furthermore, in the field of 

drug discovery, understanding protein-ligand binding is essential for exploring the 

mechanism of drug resistance and providing guidance in the development of new drugs11, 

12.   

1.2 Overview of the simulation methods 

1.2.1 Molecular dynamics simulation 

In order to reveal the mystery of protein folding and protein-ligand binding, 

computational approaches have been developed to explore these problems from the insight 

of the molecular level. Molecular dynamics (MD) is one of these computational approaches 

in reproducing the behavior of molecules’ motion. The molecular dynamics simulation is 
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based on Newton’s equation of motion, as described in equation (1.1), where the force 

exerted on each atom is essential to describe the physical system.  

𝐹𝑖 = 𝑚
𝑑2𝒓𝑖

𝑑𝑡2
 

(1.1) 

The acceleration of each atom could be determined from the force on each atoms 

or the position of each atoms. The force is usually evaluated by the potential energy 

𝑈(𝒓1, … , 𝒓𝑁) for N interacting atoms, where 𝒓𝑖  represents the individual atom’s position. 

The force acting on the ith atom could be written as equation (1.2): 

𝐹𝑖 = −
𝜕𝑈(𝒓1, … , 𝒓𝑁)

𝜕𝒓𝑖
 

(1.2) 

Therefore, it is necessary to find an accurate force field to describe the potential 

energy of the physical system. The CHARMM force field is one of the typical force 

fields used in MD simulations, as shown in equation (1.3)13: 

𝑈(𝑟) = ∑ 𝐾𝑏(𝑏 − 𝑏0)2 +

𝑏𝑜𝑛𝑑𝑠

∑ 𝐾𝜃(𝜃 − 𝜃0)2 +

𝑎𝑛𝑔𝑙𝑒𝑠

∑ 𝐾𝑈𝐵(𝑆 − 𝑆0)2

𝑈𝑟𝑒𝑦−𝐵𝑟𝑎𝑑𝑙𝑒𝑦

+ ∑ 𝐾𝜑(1 + cos (𝑛𝜑 − 𝛿)) +

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

∑ 𝐾𝜔(𝜔 − 𝜔0)2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠

+ ∑ {𝜀𝑖𝑗
𝑚𝑖𝑛 [(

𝑅𝑖𝑗
𝑚𝑖𝑛

𝑟𝑖𝑗
)12 − 2(

𝑅𝑖𝑗
𝑚𝑖𝑛

𝑟𝑖𝑗
)6] +

𝑞𝑖𝑞𝑗

4𝜋𝜀0𝜀𝑟𝑖𝑗
}                  (1.3)

𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑
𝑝𝑎𝑖𝑟𝑠

 

The first five terms on the right hand side of the above equation describe the internal terms, 

which include bond length, bond angle, Urey-Bradly, dihedral angle, and improper angle. 

The internal terms, except for the dihedral angle term, are described in the harmonic form 

so that the molecules are in the correct chemical structure, and 𝑏0, 𝜃0, 𝑆0, 𝜔0 are values at 
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the equilibrium position. The last term represents the non-bond interactions between atom 

pairs (i, j), which exclude adjacent atoms with covalent bond and atom pairs with two 

covalent bonds in between. In this force field, the non-bond interactions include Coulombic 

electrostatic interactions and van der Waals interactions calculated by the Lennard-Jones 

6-12 term. In the van der Waals term of the equation (1.3), 𝑅𝑖𝑗
𝑚𝑖𝑛 is the distance where the 

potential reaches a minimum, 𝜀𝑖𝑗
𝑚𝑖𝑛 is the well depth, and 𝑟𝑖𝑗 is the distance between centers 

of the two atoms i and j. In the Coulombic potential energy term, 𝑞𝑖  𝑎𝑛𝑑 𝑞𝑗 is the partial 

charge of the two atoms i and j, respectively, 𝜀 is the relative dielectric constant, which is 

set to 1 in explicit solvent, and 𝜀0  is the electrical permittivity in space. Molecular 

dynamics simulations utilize the CHARMM force field are applied all through the three 

projects discussed below. 

1.2.2 Implicit solvent simulation 

In contrast to explicit solvent method, the implicit solvent method treats the solvent 

as continuous medium, thus it neglects the large number degree of freedom in explicit 

solvent method. Assume that the absolute values of the solvation free energy of ions of the 

same size and opposite charge are not identical14, one common model for estimating 

solvation free energy ∆𝐺𝑠𝑜𝑙𝑣 is: 

∆𝐺𝑠𝑜𝑙𝑣 = ∆𝐺𝑝𝑜𝑙𝑎𝑟 + ∆𝐺𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟 (1.4) 

Equation (1.4) implies that the process of solvating molecules involves two steps: 

first, moving the solute to solvent with the removal of all charges (∆𝐺𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟); and second, 

transfer all the partial changes to the continuum solvent (∆𝐺𝑝𝑜𝑙𝑎𝑟)15. In one relatively 
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rigorous approach, ∆𝐺𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟 includes generating a cavity in the solvent and inserting the 

solute into the cavity, which contains attractive dispersion and repulsion interaction 

between solute and solvent16. A common method for estimating  ∆𝐺𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟 is through 

calculating solvent accessible surface area (SASA), More details about calculating SASA 

are provided in Chapter 2. 

In the implicit solvent framework, the polar solvation free energy (∆𝐺𝑝𝑜𝑙𝑎𝑟) can be 

solved through the Poisson-Boltzmann model. When mobile ions are absent in solvent, the 

Poisson equation (PE)17 for calculating electrostatic potential is: 

∇[𝜀(𝒓)∇𝜙(𝒓)] = −4𝜋 𝜌(𝒓) (1.5) 

where 𝜙(𝒓) is the electrostatic potential, 𝜌(𝒓) is the charge density, 𝜀(𝒓) is the position 

dependent dielectric constant. However, when the effect of salt is considered in the 

continuum solvent, equation (1.5) becomes more complicated. With the presence of mobile 

ion, the charge density is described as18 

𝜌(𝒓) = 𝜌𝑓(𝒓) + |𝑒| ∑ 𝑛𝑗

𝑗

𝑧𝑗 exp (−
𝜙(𝒓)|𝑒|𝑧𝑗

𝑘𝑇
) 

(1.6) 

where 𝑛𝑗  and 𝑧𝑗  are the bulk density and ion charge, respectively. |𝑒| is the elementary 

charge, and 𝜌𝑓(𝒓) is the charge density for a set of fixed partial charges 𝑞𝑗  at position 

𝒓𝑗  inside the dielectric boundary. We can obtain the non-linear Poisson-Boltzmann 

equation through substituting the charge distribution described in equation (1.6) into PE. 

If the exponential term in the above equation is linearized, then we can get the linear 

Poisson-Boltzmann (PB) equation: 
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∇[𝜀(𝒓)∇𝜙(𝒓)] = −4𝜋𝜌𝑓(𝒓) + 𝜅2𝜀(𝒓)𝜙(𝒓) (1.7) 

The numerical solutions of PB equation are usually obtained through finite-

difference method. Once the electrostatic potential is calculated, the polar solvation free 

energy is computed through equation (1.8). Here, 𝜙(𝑟𝑖)𝑣𝑎𝑐  is the electrostatic potential 

when 𝜀 equals to exterior dielectric constant. 

Δ𝐺𝑝𝑜𝑙𝑎𝑟 =
1

2
∑ 𝑞𝑖[𝜙(𝑟𝑖) − 𝜙(𝑟𝑖)𝑣𝑎𝑐]  

𝑖

 
(1.8) 

In the case of an ion with radius a, the equation can be reduced to the Born formula, 

as shown in equation (1.9): 

Δ𝐺𝐵𝑜𝑟𝑛 = −
𝑞2

2𝑎
(1 −

1

𝜀𝑒𝑥𝑡
) 

(1.9) 

where 𝜀𝑒𝑥𝑡 is the exterior dielectric constant. Thus, for a molecule consisting of N spherical 

atoms with radii 𝑎𝑖 and charge 𝑞𝑖, if the distance between any two atoms is sufficiently 

larger than atom radii, the polar solvation free energy the generalized Born (GB) model  is 

given by the summation of individual Born terms and pair-wise Coulombic terms19: 

Δ𝐺𝑝𝑜𝑙𝑎𝑟 = ∑
𝑞𝑖

2

2𝑎𝑖

𝑁

𝑖=1

(
1

𝜀𝑒𝑥𝑡
− 1) +

1

2
∑ ∑

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
(

1

𝜀𝑒𝑥𝑡
− 1)

𝑁

 𝑗≠𝑖

𝑁

𝑖=1

 
(1.10) 

where 𝑟𝑖𝑗  is the distance between two different atoms i and j.  However, atoms in real 

molecules are not spheres as mentioned above.  

In order to capture the physics of PE for real molecule geometries, a function 𝑓𝐺𝐵 

is introduced in the GB theory. Substituting 𝑓𝐺𝐵 to equation (1.10), the polar solvation free 

energy could be represented as equation (1.11): 
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Δ𝐺𝑝𝑜𝑙𝑎𝑟 =
1

2
∑ ∑

𝑞𝑖𝑞𝑗

𝑓𝐺𝐵
(

1

𝜀𝑒𝑥𝑡
− 1)

𝑁

 𝑗=1

𝑁

𝑖=1

 
(1.11) 

𝑓𝐺𝐵 = [𝑟𝑖𝑗
2 + 𝑅𝑖 𝑅𝑗exp (−γ𝑟𝑖𝑟𝑗/𝑅𝑖 𝑅𝑗) ]

1/2
 (1.12) 

𝑅𝑖 = −
1

2
(1 −

1

𝜀𝑒𝑥𝑡
)

𝑞𝑖
2

∆𝐺𝑖𝑖
𝑝𝑜𝑙𝑎𝑟

 
(1.13) 

where 𝛾 = 1/4 is the most common form20, 𝑅𝑖 is the effective Born radii of the ith atom, 

and ∆𝐺𝑖𝑖
𝑝𝑜𝑙𝑎𝑟

  is obtained from the self-contribution of every atom in the molecule. 

1.3 Overview of projects 

In this dissertation, we aim to improve the accuracy of predicting the protein 

stability, which is necessary for understanding the relationship between protein structure 

and function, and designing new proteins. We are also interested in understanding the 

mechanism of drug resistance development to provide a guidance for the future drug 

discovery.  

In chapter 1, we developed a novel model to improve the accuracy of predicting 

changes of protein folding free energy upon single point mutation.  For more than 30 years, 

there has been a great focus on understanding the interactions dominating protein folding 

and the driving forces maintaining protein stability21. The major research interests include 

the contribution of hydrophobic effect, the polar or charge interactions, local interactions 

and non-local interactions. To answer these questions, chemists have generated site-

directed mutations to identify the essential interactions and residues in maintaining protein 

structural stability. There are a lot of experimental data regarding the effect of site-directed 
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mutations on protein folding free energy22, 23. However, the accuracy of theoretical 

methods in predicting this effect still need to be improved24. Since protein conformations 

are constantly shifting from one to another, it is very difficult to capture all protein 

conformations in one computational study. The conformational sampling problem has been 

a major concern25. In this dissertation, we presented a method to compute changes of 

protein folding free energy upon site-directed single mutation with an attempt to broaden 

conformational sampling through generating diverse conformations and applying 

molecular dynamics simulations subsequently. On the other side, considering the diverse 

dielectric environments in proteins and, protein dielectric properties were also taken into 

consideration in this study. A method was developed here to predict the changes of protein 

folding free energy upon single point mutations through conformational sampling, the 

Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) approach, and the 

recognition of multiple protein dielectric environments.  

In the following two chapters, different aspects of the bifunctional protein 

dihydrofolate reductase-thymidylate synthase in plasmodium falciparum (pfDHFR-TS) 

have been studied. The pfDHFR-TS plays an important role in the folate pathway, which 

is reducing dihydrofolate (DHF) to tetrahydrofolate (THF)26. Because THF is essential for 

purine, pyrimidine, and amino acid production, inhibiting the activity of pfDHFR can lead 

to the failure of DNA production or cell division. Therefore, pfDHFR has been a target for 

the treatment of malaria27. However, during the course of antimalaria drug treatment, 

mutations occur and lead to antimalarial resistance. In chapter 3, we provide an insight into 

the mechanism of pfDHFR resistance to pyrimethamine (Pyr) from a computational 
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approach. Despite the large amount of experimental studies regarding pfDHFR drug 

resistance28, 29, quite little theoretical work is published to explain the mechanism of the 

drug resistance in pfDHFR30. We performed molecular dynamics (MD) simulations for 

wild type pfDHFR, C59R/S108N, N51I/C59R/S108N/I164L mutant, and explored how the 

accumulation of mutations affect binding affinity between pfDHFR-TS and Pyr. The 

results are consistent with the experimental data, and indicate that antimalarial resistance 

is related to significant conformation and flexibility changes upon mutations in pfDHFR. 

It is also found that the weakened communications among key residues may cause the 

failure of conformational reorganization upon the binding of Pyr, which lead to weak 

binding between pfDHFR and Pyr. 

Compared to DHFR in eukaryotes, the structure of pfDHFR-TS is unique26. The 

unique structural features of this bifunctional protein, which include the junction region 

connecting the DHFR and TS domain, the N-terminal tail in DHFR domain, and the two 

extra inserts (residue 20 to 36 and residue 64 to 99) in the DHFR domain, may be important 

in the protein function. It is reported that the N-terminus, even though remote from 

pfDHFR active site, plays an important role in maintaining pfDHFR activity31 and domain-

domain communication in pfDHFR-TS32. A hypothesis was made in a previous 

experimental study that the N-terminal tail may influence the enzyme catalytic function 

through the interactions with the Insert II and the αβ loop (residue 141-184)31. However, 

this hypothesis is not tested yet. There are adequate studies focusing on studying mutations 

near or in the active site, but only quite a few studies are about the role of the unique N-

terminal tail in pfDHFR-TS. In chapter 4, we provide the computational study of the role 
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of N-terminal tail, and reveal that the deletion of this tail could perturb the conformation 

of active site, which may be a reason for the decreased pfDHFR activity upon deleting the 

N-terminal tail. This is also the first computational study that focuses on the full-length 

pfDHFR-TS dimer to understand the domain-domain interactions. The N-terminal tail not 

only can modulate the pfDHFR activity, it also contributes to maintaining the 

communications among different domains in this bifunctional dimer protein. 

In summary, the dissertation presented here provides a novel model to improve the 

accuracy of predicting changes of protein folding free energy upon single point mutations. 

It also brings a mechanism of the drug resistance development in pfDHFR-TS, which can 

help to guide the future discovery of new drugs in treating malaria. More progresses about 

the research has been discussed in the next chapters. 
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CHAPTER TWO 

 

PREDICTING FOLDING FREE ENERGY CHANGES: A STRUCTURAL 

ENSEMBLE AND MOLECULAR DYNAMICS SIMULATION APPROACH 

 

ABSTRACT 

 

A method to calculate changes in the folding free energy upon single point 

mutations was presented here through an MM/PBSA approach that attempts to broaden 

conformational sampling through the generation of diverse “seed” conformations and 

subsequent molecular dynamics (MD) sampling in the phase space surrounding these seed 

conformations. This approach was applied to 150 mutants from 9 independent different 

proteins, and changes in protein stability upon mutation were calculated. The seed 

conformations of all mutants were generated using the program CONCOORD, and the 

changes in the folding free energy of each mutant were evaluated by the Molecular 

Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) method. The role of 

conformational sampling was investigated by comparing the methods of using single 

minimized structures, ensembles generated using CONCOORD, and ensembles generated 

using a combination of CONCOORD and MD. Recognizing the important role of 

electrostatics in protein stability, we also examined the dielectric properties of the proteins 

and their impact on model accuracy. Of the models being investigated, a three dielectric 

region model in which the dielectric constant increases from a value of 4 in the protein core 
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to 6 on the protein periphery showed the best agreement with experiment. The three 

dielectric constant model resulted in a correlation coefficient of 0.7 and a root mean square 

error of 2.09 kcal/mol between the computational and the experimental results. A 

subsequent analysis of the error within the model indicated significant challenges remain 

in the characterization of the electrostatic environment surrounding charged or polar 

residues.  

2.1 Introduction 

Single point mutations can affect protein stability and function, which are 

frequently related to human diseases, such as Alzheimer’s disease and Rett syndrome. In 

order to better understand how protein stability will change upon single mutations, a 

number of computational estimation techniques have been developed to obtain information 

about protein dynamics that could not be easily gained through experimental techniques. 

Through these computational techniques, the changes in folding free energy of protein are 

calculated, and valuable information for protein stability study is provided. 

One of the protein folding free energy prediction methods is based on detailed 

atomic models coupled to physical force fields33,34,35,36,37. Bash et al. 33 implemented the 

free energy perturbation (FEP) method in molecular simulation to estimate the trypsin 

stability upon a point mutation, and achieved good agreement with the experimental results. 

Such methods are based on precise physical models, but are computationally expensive 

and could not estimate contribution from each energy components. The statistical potential 

based technique is another method which is popularly used to study protein 
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stability38,39,40,41 , and could successfully predict the change of protein thermal stability 

upon mutations. The free energy is computed by the linear combination of different 

statistical potential terms, such as distance potential, torsion potential, residue contact, 

dihedral angle, and solvent accessibility39. Statistical potentials are extracted from protein 

structure databases, and rely on chain length or composition, where true physical potentials 

do not.  Similar to the statistical potential based methods, empirical energy functions rely 

on the combination of physical energy terms and empirical experimental data42,43,44 , and 

involve weights that are fit to the experimental data. These methods are computationally 

efficient but do not provide accurate physical information of protein structure. Structure 

based methods, such as FoldX45, Eris46, CC/PBSA47 and SAAFEC48, while predicting the 

change of folding free energy upon mutations at different accuracy level,  they are also 

capable of estimating the structural change upon single point mutations. However, applying 

multiple weighing factors make such models less physically rational.  

It is desirable to develop a model that could both accurately and physically 

rationally predict protein folding free energy upon single point mutations.  Physical 

potential approach (e.g., molecular dynamics), which simulates all atom force fields, is 

found physically precise. However, such approach is computationally expensive. Generally, 

a MD simulation of microseconds is required to reveal the folding reaction of a small 

protein, and a short simulation (less than 10 ns) will encounter unavoidable sampling 

problem49. Therefore, from the perspective of simulation efficiency and accuracy, it will 

be a robust choice to replace one long timescale simulation by several parallel short 

timescale simulations through sampling conformational space50,51, which overcomes the 
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drawback of physical potential approach. The generation of diverse “seed” conformations 

not only conserves the computational resources, but also improves the probability of 

overcoming the multiple energy barriers. de Groot et.al 52 developed a sampling technique, 

named CONCOORD. In this technique, the structural coordinates are generated randomly, 

and then corrections are applied iteratively to search for structures that fulfill all predefined 

distance restrictions in CONCOORD. CONCOORD has been successfully applied as a 

sampling technique to predict the protein folding free energy changes upon single 

mutations in the CC/PBSA method47. However, those sampled structures donot agree with 

Boltzmann distribution. In addition, four weighing factors were applied in this model, so it 

is not completely physically rational. Thus, it is necessary to develop an approach that 

could follow both Boltzmann sampling and physical potential. 

Here we applied the Molecular Mechanics/Poisson-Boltzmann Surface Area 

approach, which attempts to broaden conformational sampling through the generation of 

diverse “seed” conformations and subsequent molecular dynamics (MD) sampling in the 

phase space surrounding these seed conformations, to estimate the folding free energy of 

the wild type, the mutants, as well as the unfolded state. Structural ensembles were 

generated separately for the wild type and the mutants using both the program 

CONCOORD24 and MD simulation. The combination of CONCOORD and molecular 

dynamics sampling could significantly increase the structural diversity in the ensembles. 

Comparing with the free energy perturbation method, while it may be less accurate, it’s 

computationally more efficient with the capability to evaluating the contribution from each 

energy compoents.  Comparing with statistical potential methods and structure based 
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methods even though less efficient, it does not need a large training set to fit different 

parameters for each energy term, or a number of weighing factors in evaluating the energy 

term.Thus, our approach provides a physically rational way to predict protein folding free 

energy change upon point mutations with comparable accuracy with other popular 

prediction methods. The dielectric constant was also an important parameter, since inner 

and outer regions of protein respond to the external electric field differently. In this work, 

models applying single, double, and three dielectric constants were evaluated. In the three 

dielectric constants model, the values of changes of protein folding free energy for 150 

mutants from nine structurally unrelated proteins were calculated and compared against the 

experimental data. The correlation coefficient is found to be 0.70 and the standard deviation 

was 2.09 kcal/mol. 

2.2 Methods 

2.2.1 Input structures and Structure ensembles 

Nine structurally unrelated proteins were used in this study. The initial coordinates 

of the wild type of these nine proteins were obtained from the crystal structure in the Protein 

Data Bank (PDB ID 1AYI, 1PGA, 1STN, 1YPC, 2LZM, 1VQB, 1CSP, 1APS, 

4LYZ)53,54,55,56,57,58,59,60,61. Single point amino acid mutations were made to the wild type 

protein structure by applying the program MODELLER62, and 150 mutant structures were 

generated. The structures of the nine wild type proteins and the 150 mutants were taken as 

the initial structures. These 150 mutants were randomly chosen from the 582 mutants in 

the paper by Benedix et al.47 and the ProTherm database63. Proportions of different 
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mutation types within 150 mutants, including uncharged to uncharged mutations, 

uncharged to charged mutations, charged to uncharged mutations, and charged to charged 

mutations, are the same as those in the ProTherm database.  

2.2.2 Structure ensembles 

Diverse “seed” conformations of the 150 mutants’ structures were generated by the 

program CONCOORD52. Twenty different conformations were independently generated 

for each protein. When using CONCOORD, the crystal structure from the protein data bank 

or the mutant structure from MODELLER is used as the reference structure. All of the 

pairwise interatomic distances, d, were measured for the reference structure, and then the 

upper and lower interatomic distances were clearly defined for all pairs of atoms. 

CONCOORD uses a set of parameters for the pairs involving interaction, but for the other 

pairs of atoms, the upper and lower distances were set to be d±1 nm. In order to generate 

the ensemble of structures, a structure was generated with initial coordinates, where the 

coordinates were randomly chosen from a cube with edges of 2 nm. Then corrections of 

these coordinates were iteratively applied so that all the interatomic distances could be 

between the upper and lower distances. For each structure, 1000 iterations of corrections 

were performed. 

2.2.3 Unfolded structures 

The denatured state free energy is difficult to estimate, and here we are applying an 

idea which was discussed in Seeliger’s paper 64 to generate the tripeptides GXG65, where 
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X is any one of the twenty standard amino acids. In this GXG tripeptide, residue “X” is 

surrounded by glycine residues, only backbone atoms can affect internal motions of side 

chain of residue “X”. When the protein is in unfolded state, ideally, there is no interaction 

among each side chains of amino acid or among different chains of protein, and only 

backbone interactions between adjacent residues are considered, thus the GXG model can 

be considered as an effective approximation for the unfolded state. The tripeptides, GXG, 

are first generated using CHARMM with the CHARMM27 parameters. Then the structural 

ensembles of tripeptides are obtained through the CONCOORD program. The free energy 

of each tripeptide is calculated by applying the same method as applied for calculating the 

folded state free energy, dielectric constant of 4 was applied for all GXG free energy 

calculation. For each GXG, all energies terms are averaged over all the CONCOORD 

structures. 

2.2.4 Explicit solvent simulation  

Conformational free energy differences were calculated for both the wild type and 

the mutant proteins using the molecular mechanics Poisson-Boltzmann surface area 

MM/PBSA method66. Before performing MM/PBSA analysis, all “seed” conformations of 

the wild type protein structures and the 150 mutants structures were undergone the process 

of explicit solvent simulation.  

Before the energy minimization and MD simulation of the whole system, the 

structures of the proteins are prepared in three steps. First, all the coordinates of the 

CONCOORD structures were converted into the format that CHARMM could read using 
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the convpdb.pl script in the package MMTSB67. CHARMM version c35b6 was then used 

to place the hydrogen and build other missing atoms. Next, all structures were minimized 

applying harmonic restraints to hold atoms near a desired location. The first 500 steps of 

minimization were performed using the steepest descent (SD) algorithm, and there were 

the other 500 steps of minimization using the Adopted Basis Newton-Raphson (ABNR) 

algorithm. Then each protein was placed in a periodic cubic box containing TIP3P water 

with a density of 0.0334 moelcules/Å-3(1g/cm3) and the water molecules overlapping with 

the solute were removed.  

All energy minimizations and molecular dynamics simulations were carried out 

with the package CHARMM applying the CHARMM27 force field and the TIP3P explicit 

water model as the CHARMM force field is parameterized with respect to TIP3P water 

model. To ensure the correct usage of Particle Mesh Edward (PME), the system was 

neutralized by adding Na+ cation, and Cl- ion with a concentration of 0.15 M. After the 

system was solvated, the systems (including the protein solute and the explicit solvent) 

were first minimized for 500 steps using the steepest descent (SD) algorithm, followed by 

another 500 steps minimization using the Adopted Basis Newton-Raphson (ABNR) 

algorithm. During the minimization, harmonic restraints were applied with a force constant 

of 20 kcal/mol/Å2, which could prevent the atoms in the protein from large motions. During 

the explicit solvent simulation, the dielectric constant is set to 1, which is corresponding to 

the permittivity of vacuum. The short-range non-bond interaction was described by 

Lennard-Jones potential with a cutoff of 12 Å using a switch function. PME was applied 

to calculate the electrostatic force during the simulation. Then the systems were heated 
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without applying harmonic restraints from 100 K to 300 K over a period of 20 ps using 1 

fs time step, and equilibrated at 300 K for a further 1.6 ns using NPT ensemble.. The 

constant pressure was maintained at the pressure of 1 atm with the Langevin piston method. 

In the simulation, all covalent bonds involving hydrogen were constrained by the SHAKE 

command. 

2.2.5 Minimized structure 

In order to obtain minimized structure, the energy minimization of crystal structures 

and CONCOORD structures was performed by CHARMM with CHARMM27 force field 

as mentioned above. The harmonic restraints were applied during energy minimization, 

and the force constant was gradually reduced from 20 kcal/mol/Å2 to 1 kcal/mol/Å2. Under 

each force constant, 5000 steps of minimization was performed using SD algorithm, and 

then energy minimization with ABNR algorithm was performed until the energy change is 

less than or equal to 1.0E-9 kcal/mol.  

2.2.6 MM/PBSA and Energetic analysis 

The folding free energy change upon mutations could be represented by the 

thermodynamic cycle in Figure 2.1.  
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Figure 2.1: Thermodynamic cycle of protein folding upon point mutation 

 

From the thermodynamic cycle, the folding free energy difference upon the 

mutations is calculated by ΔΔG = ΔG2 – ΔG1, which is also equal to ΔG3 – ΔG4. Therefore, 

the folding free energy changes can be determined if ΔG3 and ΔG4 are obtained.  The free 

energy function is given by equation (2.1) and (2.2). 

∆𝐺𝑀𝑀𝑃𝐵𝑆𝐴 = ∆𝐸𝑀𝑀 + ∆𝐺𝑃𝐵 + ∆𝐺𝑆𝐴 − 𝑇∆𝑆 (2.1) 

∆𝐺𝑀𝑀𝑃𝐵𝑆𝐴 = ∆𝐸𝑉𝐷𝑊 + ∆𝐸𝐸𝐿𝐸𝐶 + ∆𝐸𝐼𝑁𝑇 + ∆𝐺𝑆𝑜𝑙𝑣
𝑝𝑜𝑙𝑎𝑟 + ∆𝐺𝑆𝐴

𝑛𝑜𝑛−𝑝𝑜𝑙𝑎𝑟 − 𝑇∆𝑆        (2.2) 

Folded and unfolded free energy was calculated separately for the wild type and 

mutants using the MM/PBSA approach.  The gas phase energies, including Van der Waals 

energy (ΔEVDW), Coulombic energy (ΔEELEC) and other energy terms, such as bond energy, 

angle energy and so on, were calculated from the molecular mechanical energy function 

using charmm27 parameters without applying non-bond cutoff. The Poisson-Boltzmann 

polar solvation energy was calculated by solving the linear form of the PB equation 

applying the PBEQ module in the CHARMM package. The external dielectric constant 
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was set to 78. The internal dielectric constant used for proteins is different depending on 

the position of mutations. For all the 150 mutations in our study, dielectric constant of 4, 5 

or 6 were applied to interior, partially exposed, or surface mutations respectively. The salt 

concentration was zero in this calculation. The non-polar part of the solvation energy was 

obtained by calculating the solvent accessible surface area (SASA) using a 1.4 Å radius 

probe: ∆𝐺𝑆𝐴
𝑛𝑜𝑛−𝑝𝑜𝑙𝑎𝑟 = 𝛾𝑆𝐴𝑆𝐴 + 𝑏, where the surface tension γ uses the value of 0.00542 

kcal/mol/ Å2, and the constant b adopts the value of 0.92 kcal/mol68. The folded protein 

energy was calculated with the snapshots extracted from the trajectory every 3 ps after the 

system was considered to achieve equilibrium. We assumed that the change of protein 

entropy upon single point mutation is quite small, and the entropy of wild type and mutants 

could be canceled out in equation (2.1) and (2.2). Each energy terms of chosen frames was 

calculated, and the final MMPBSA free energy was estimated based on ensemble averages 

of the associated energy terms. 

∆𝐺𝑀𝑀/𝑃𝐵𝑆𝐴 = 〈∆𝐸𝑀𝑀〉 + 〈∆𝐺𝑃𝑆𝑂𝐿𝑉〉 + 〈∆𝐺𝑆𝐴〉 (2.3) 

2.2.7 Three methods to address the significance of conformational sampling 

In the first method, energy minimization was performed for the crystal structures 

of proteins, and then single-minimized structures were used to calculate the changes of 

folding free energy of each mutant. In the second method, 20 independent structures were 

sampled through the CONCORD package. All CONCOORD structures were minimized, 

and all energies of minimized structures were averaged to estimate protein stability. In the 

third method, CONCOORD were also applied to obtain 20 different protein conformations, 
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and all CONCOORD structures were subjected to energy minimization followed by 

explicit solvent molecular dynamics simulation, which was described in the method section. 

For each CONCOORD structure, 300 snapshots were extracted from the trajectory, and 

were used for the MM/PBSA calculation. 

2.2.8 Data evaluation 

The correlation between the computational results and the experimental data 

set69,70,71,72,73,74,75 is evaluated through the Pearson linear regression correlation coefficient, 

and the equation is given by: 

𝑟 =
𝑛 ∑ 𝑥𝑖𝑦𝑖 − ∑ 𝑥𝑖 ∑ 𝑦𝑖

√[𝑛 ∑ 𝑥𝑖
2 − (∑ 𝑥𝑖)2][𝑛 ∑ 𝑦𝑖

2 − (∑ 𝑦𝑖)2]

 
(2.4) 

where xi and yi are the calculated data and experimental data separately, and n is the number 

of mutants. 

The standard deviation (σ) between the computational data set and the experimental 

data set is calculated by the following equation (2.5): 

𝜎 = √
1

𝑁
∑(𝑥𝑖 − 𝜇)2

𝑁

𝑖=1

 

(2.5) 

where N is the number of mutants, xi is the change of free energy obtained through 

computation, and µ is the mean of all the experimental value. 

The RMS Error between the predicted value and the experimental value is shown 

in equation (2.6): 
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𝑅𝑀𝑆𝐸𝑟𝑟𝑜𝑟𝑠 = √
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
 

(2.6) 

where xi and yi are the calculated data and experimental data respectively, and n is the 

number of mutants. 

The 95% confidence interval for the population correlation coefficient (ρ) was also 

evaluated. To obtain a confidence interval for ρ, we first calculated a 95% confidence 

interval for 𝜇𝑉, where 𝜇𝑉 =
1

2
ln [

1+𝜌

1−𝜌
]. The interval for 𝜇𝑉 is 

(𝜐 −
𝑧𝛼/2

√𝑛−3
, 𝜐 +

𝑧𝛼/2

√𝑛−3
) (2.7) 

where 𝜐 =
1

2
ln [

1+𝑟

1−𝑟
], and r is the sample correlation coefficient. This interval can yield a 

95% confidence interval for ρ:  

(
𝑒2𝑐1 − 1

𝑒2𝑐1 + 1
,
𝑒2𝑐2 − 1

𝑒2𝑐2 + 1
) 

(2.8) 

where 𝑐1and 𝑐2 are the left and right endpoints of the interval (2.7). 

2.3 Results 

2.3.1. Conformation sampling can improve the prediction accuracy 

Three different methods were applied to evaluate the significance of 

conformational sampling in the prediction of folding free energy changes upon mutations. 

In all of the three methods, ε=5 is the optimal dielectric constant, where the RMSE is 

smaller comparing with the results applying any other value of dielectric constant in each 

method (more details are in section 3.2). The results of the three methods are shown in 
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Table 2.1. Through the comparison of the three approaches, the importance of applying 

conformational sampling is addressed. The combination of CONCOORD and MD 

sampling is chosen to investigate the effect of mutations on protein stability. 

 

Table 2.1: Comparison of the three methods 

Methods 
RMSError 

 (kcal/mol) 

Correlation coefficient  

(95% confidence interval)* 

Minimize/single 17.0±1.2 0.01(-0.15, 0.16) 

CONCOORD/minimize 8.1±0.6 0.41(0.27, 0.54) 

CONCOORD /MD 3.6±0.3 0.57(0.45, 0.67) 

*: The value in parentheses is the 95% confidence interval of correlation coefficient. 

 

2.3.1.1 The effect of CONCOORD sampling 

The results in Table 2.1 showed that among the three methods, the method applying 

the single minimized structure produced the largest RMSE and smallest correlation 

between predictions and experimental results. When the sampling technique CONCOORD 

was applied, the root mean square error (RMSE) was greatly reduced and the correlation 

between the estimation and experimental data was also improved.  

It is reported that there are multiple minima existing in proteins76, therefore, the 

single-minimized structure of the wild type and the mutant may not correspond to the same 

minima, which make it difficult to correctly predict protein stability. In the 

CONCOORD/minimized method, we then analyzed the RMSD between each 

CONCOORD structures for the same protein, as well as the RMSD between the minimized 

structures of each CONCOORD conformations for the same protein. We found that the 

RMSD of the later is quite close to the former one for every CONCOORD structure, and 
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the difference is less than 0.1Å. The above observations indicated that the initial 

CONCOORD structures corresponded to different minima in the same protein. Therefore 

the application of CONCOORD sampling enabled the consideration of several 

conformations corresponding to different minima of the protein, and the unweighted 

averaged energies over several minima could more accurately predict the effect of single 

mutation on protein stability than the single-minimized structure did. Furthermore, the 

ensemble of states in protein is accordant with Boltzmann distribution, and proteins 

constantly shift from one conformation in one conformational (thermodynamic) state to 

another. In order to take into consideration the large number of conformational states, the 

averaged energies over several states could better reflect the changes in protein folding free 

energy.  

2.3.1.2 The effect of molecular dynamics sampling 

Comparing the second method with the third method, when the MD simulation was 

performed for each CONCOORD structure, the results were further improved. This result 

implies that applying the ensemble of conformations generated from MD simulation could 

predict the effect of single point mutations on protein folding free energy more accurately 

than just using the minimized structure.  

It is worthy to notice that the protein behavior is dynamic. It’s well known that the 

protein folding process is corresponding to an energy landscape, and the concept of energy 

landscape could also be applied to the folded state protein77,78. When the temperature is 

higher than glass transition temperature of proteins, the anharmonic motion of protein is 



 26 

increased, which indicates that the protein is not trapped in a single energy well any longer. 

Only the multidimensional energy landscape could completely describe proteins, thus the 

minimized structure can merely represent one conformation of protein, and the dynamic 

properties of protein could not be reflected when only considering the minimized structures. 

Typically, even nanoseconds of MD simulation could not reach all the conformations of 

protein, since proteins usually have to take more than microseconds to move from one 

energy valley to another one with energy barriers of several kT78., Therefore, the 

combination of CONCOORD and MD can reveal a more accurate picture of protein 

dynamic motion.  

2.3.2. Dielectric constant affects prediction accuracy 

The results in Figure 2.2 indicate that the dielectric constant plays an important role 

in accurately predicting protein stability. In this section, we will present how the 

heterogeneous dielectric property of protein relates to the accuracy of predicting changes 

of protein folding free energy. The CONCOORD/MD method is applied on the analysis of 

the 150 mutants. 

2.3.2.1 The single dielectric constant model 

If we assume the protein is homogeneous, and only one dielectric constant is 

applied for the whole protein, the optimal dielectric constant in the single dielectric 

constant model is 5, where RMSE is the smallest and the correlation is the largest among 

the results applying dielectric constant from 1 to 70(Figure 2.2), with RMSE = 3.6±0.3 
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kcal/mol, and correlation R=0.57±0.015 (p-value < 0.0001), with a confidence interval 

(0.45, 0.67).  

Coulomb energy and polar solvation free energy are anti-correlated with each other. 

When the dielectric constant is small enough, changes in protein folding free energy caused 

by mutations (ΔΔGMM/PBSA) will be dominated by the Coulomb energy, however, as the 

dielectric constant increasing, the Coulombic energy term and polar solvation free energy 

term begins to cancel out. Potential energy, other than Coulombic energy, is not affected 

by electric the force field, and is stable.  Therefore, there is a minimum in Figure 2.2. When 

the dielectric constant is greater than 30, the RMSE is almost steady. The reason is that 

when the model applys a quite large dielectric constant, the Coulomb energy and the polar 

solvation free energy will disappear, and only the van der Waals potentials and the bonded 

energy terms, such as bond potential, angle potential, and dihedral potential, contribute to 

the protein folding free energy. Due to the importance of electrostatic energy terms over 

other energy terms in characterizing the effect of mutations on the stability of protein 

folding, the model with a large dielectric constant is a bad one. 
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Figure 2.2: The RMSE between prediction and experiment results at different RMSE. 

 

Figure 2.3 shows the correlation between the calculation data and the experimental 

results in the single dielectric constant model. If the deviation of calculated result from the 

regression line is greater than 2σ (σ=RMSE), this mutant is defined as an outlier. Based on 

this measure, there are 8 outliers in the single dielectric constant model (Figure 2.3).  When 

the 8 outliers are excluded, the correlation rises to 0.65±0.010, with a 95% confidence 

interval of (0.54, 0.74), and the RMSE drops to 2.8±0.2 kcal/mol. 
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Figure 2.3: Calculated data compared with experimental data for 150 mutants applying the 

single dielectric model. In the left figure, the continuous line is the linear regression with 

an equation y=1.36x+0.47. The dash line is used to detect outliers, R=0.57, and σ=3.56 

kcal/mol. In the right figure, the continuous line is the linear regression after discarding 8 

outliers with an equation y=1.27x+0.45, R=0.65, and σ=2.73 kcal/mol. 

 

Table 2.2 shows the analysis of the outliers in the single dielectric constant model. 

One explanation for some outliers is that we improperly assume the polarizability of each 

site is uniform all over the protein, which makes the single dielectric model unsuitable to 

estimate changes of the protein stability upon each point mutation. The importance of a 

proper electrostatic representation is further supported by the fact that 5 of the 8 outliers 

are charged residue related mutations. The mutation 1vqbL32R occurred in the 

hydrophobic core, and the residue Arg32 is even more destabilized by Lys46 through the 

repulsion effect in the mutant, and this might cause the overestimation of the coulomb 

energy. The similar situation happens to the mutation 1vqbY26R. This mutation also 
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involves a repulsion effect between Lys24 and Arg26 in the mutant, and changes of 

coulomb energy is overestimated. The mutation 1cspN10D leads to the formation of the 

salt bridge Asp10-Lys13 on the surface of proteins. The desolvation penalty of forming 

this salt bridge is underestimated, and thus the stabilizing effect of this mutation in the 

calculation is larger than experiment. Except for the charged site mutations, there are 

another two mutations 2lzmI58Y, which are highly buried in the hydrophobic core, and 

involved in large size change of the side chain. These mutations have caused movement of 

atoms and residues with respect to one another around the mutating position, which can 

also affect the electrostatic interactions. In this case, the reorganization of the local 

structure makes the changes of folding free energy difficult to be predicted. 

 

Table 2.2: Analysis of the outliers in the single dielectric constant model 

Mutations 

ΔΔGEXP 

(kcal/mol) 

ΔΔGCALC 

(kcal/mol) Most likely explanation for outliers 

1stnV39T 1.30 -5.42 
Overestimation of Coulomb energy or underestimation 

of the solvation penalty 

1pgaT53D 0.90 10.20 
Improper dielectric parameter; underestimation of  

desolvation penalty of forming salt bridge 

2lzmW126R 5.74 18.83 improper dielectric parameter 

2lzmW138Y 2.87 12.64  Overestimation of the Coulomb energy 

1vqbL32R 1.60 10.59 
Highly buried mutation; improper dielectric parameter;  

overestimation of the Coulomb energy 

1vqbY26R 0.40 14.17 overestimation of the Coulomb energy 

1cspN10D -0.26 -8.79 
Improper dielectric parameter; underestimation of  

desolvation penalty of forming salt bridge 

2lzmI58Y 3.11 -5.19 Difficult to predict structural reorganization 

 

It is necessary to realize that the dielectric constant is not a universal constant79, 

and instead differs in the different regions inside the protein79,80. Dielectric constant is the 
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ratio of the permittivity of the material to the permittivity of the vacuum, and it reflects the 

capability of dielectric polarizes being affected by external electric field. The dielectric 

constant of protein measures the protein polarizability. It is a parameter in models such as 

the one used here, but it is not a real constant, and its value may differ in the different 

regions inside the protein79,80. For example, the dielectric constant for the interior of the 

proteins is different from that of region on the surface. Simonson et.al81,82 showed that the 

protein dielectric constant could vary from 2 in the interior of proteins to 13-30 in the outer 

region of proteins, and the flexible charged protein side chains at protein surface are 

associated with the large dielectric constant in the outer part. Therefore, in the following 

sections we will improve the prediction accuracy of the model by applying different 

dielectric constants based on the position of the mutations. 

2.3.2.2 Double dielectric constants model 

The classification is based on the solvent accessible surface area (SASA) and the 

Born radii of alpha carbon of residues.  In the double dielectric constants model, The 

surface mutations are defined as: (1) any residues whose Born radius (R) of alpha carbon 

(Cα) is smaller than 4.0Å; (2) any residues with 4.0Å < RCα < 5.0Å and percentage of 

solvent accessible surface area (SASA) of the residue is greater than 15%; (3) charged 

residues whose the average Born radius of the heavy atoms in side chain is smaller than 

3.5Å. The rest of the mutations are buried mutations. 

Based on the categorization methods, 87 mutants in the current dataset are surface 

mutations, and 63 mutants are interior mutations. To determine the optimal dielectric 
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constants for both surface mutations and interior mutations, RMSE between estimated 

value and experimental results were calculated for both categories at different dielectric 

constant, which is shown in Table 2.3. 

 

Table 2.3 The RMSE of prediction results compared against experimental data  

in the double dielectric constants model 
 

Dielectric constant Buried (discard 2 outliers)* exposed(discard 5 outliers) 

ε=1 37.2±4.4 (37.2±4.4) 68.2±7.1 (57.7±6.2) 

ε=2 12.9±1.6 (12.6±1.5) 26.0±2.7 (22.6±2.4) 

ε=3 5.6±0.7 (5.2±0.6) 12.2±1.3 (11.0±1.7) 

ε=4 2.5±0.3 (1.9±0.2) 5.6±0.6 (5.4±0.6) 

ε=5 3.8±0.4 (3.6±0.4) 3.3±0.4 (2.8±0.3) 

ε=6 4.5±0.6 (4.9±0.6) 4.0±0.4 (2.4±0.3) 

ε=8 7.0±0.8 (7.1±0.8) 6.8±0.7 (4.6±0.5)  

ε=10 8.1±1.0 (8.2±1.0) 8.7±0.9 (6.2±0.7) 

ε=20 10.3±1.2 (10.5±1.2) 12.7±1.4 (9.5±1.0) 

ε=40 11.5±1.4 (11.7±1.4) 14.8±1.6 (11.2±1.2) 

ε=50 11.7±1.4 (11.9±1.4) 15.2±1.6 (11.6±1.2) 

ε=60 11.9±1.4 (12.1±1.4) 15.4±1.6 (11.8±1.3) 

*: The value in parentheses are the RMSE after discarding outliers. 

 

It shows that ε=4 is the optimal dielectric constant for interior mutations, while 6 is 

the optimal dielectric constant for the surface mutations. Thus ε=4 and ε=6 is applied for 

mutations occurring in the buried or exposed regions, respectively. The smaller dielectric 

constant of the inner region and the larger dielectric constant of the outer region are also 

consistent with the previous studies81-84, where they directly calculate the dielectric 

constant of some proteins (see section 6.2). The interior of a protein is much more 

hydrophobic and far less polarizable than the protein surface, thus, the dielectric constant 

in the inner region of proteins is lower than the surface region. The overall correlation 

between calculation and observation results is 0.45±0.025, with a 95% confidence interval 
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of (0.31, 0.57), and the RMSE is 3.4±0.3 kcal/mol for all 150 mutants in the current data 

set.  Applying the outlier definition from previous section, there are 7 outliers (2 outliers 

in the buried region, and 5 outliers in the exposed region) in this double dielectric constants 

model. With the exclusion of outliers, the correlation is improved to 0.67±0.009 (p-

value<0.0001), the 95% confidence interval for the population correlation coefficient of 

the mutations is (0.57, 0.75), and RMSE=2.3±0.2 kcal/mol, which is shown in figure 2.4.  

 

Figure 2.4: Calculated data compared against experimental data for 150 mutants applying 

the double dielectric constants model. In the left figure, the continuous line is the linear 

regression with an equation y=1.04x+0.16, R=0.45, σ=3.44 kcal/mol. The dash line is used 

to detect outliers. In the right figure, the continuous line is the linear regression after 

discarding 7 outliers with an equation y=1.15x+0.07, R=0.67, and σ=2.27 kcal/mol. 

 

Comparing with the single dielectric constant model, the correlation between the 

prediction and the experimental data increases in the two dielectric constants model. There 

is also a significant decrease in the RMSE with the upper limit of RMSE in the two 
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dielectric constant model smaller than the lower limit of the single dielectric constant 

model.  

Three of the outliers in the two dielectric constant model (1cspN10D, 1vqbY26R, 

2lzmI58Y) also appeared in the single dielectric model, and the explanation about these 

outliers is discussed above. The other four outliers in current model are 1stnR87A, 

1stnR35G, 1stnV39T, and 4lyzD101R, and they are most likely caused by the 

overestimation of coulomb energy or the underestimation of the solvation penalty. Also, 

the value of the electrostatic energy is related to the dielectric constant, and an improper 

dielectric constant used for predicting the changes of folding free energy upon point 

mutations may also cause large discrepancy from the experimental results. 

2.3.2.3 Three dielectric constants model 

When applying this three dielectric constants model, the RMSE is further decreased 

relative to the two dielectric constant model. In this model, the exposed residues mentioned 

in the last section were further divided into two groups: exposed and partially exposed 

amino acids. As a result, 51 mutations are fully exposed, 36 mutations are partially exposed, 

and 63 mutations are in the interior of proteins. The RMSE between prediction and 

experimental data was calculated for the buried, partially exposed and exposed region, 

respectively.  The optimal dielectric constants for each region is determined from the value 

of RMSE, and the RMSE is the smallest at the optimal dielectric constant. The optimal 

dielectric constants for buried, partially exposed, and exposed mutations are 4, 5, and 6, 

respectively. The results of the RMSE calculation are shown in Table 2.4.  
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Using the three dielectric constants model, the predicted results correlated with the 

experimental results with R=0.49±0.02, with a 95% confidence interval of (0.36, 0.60) and 

RMSE=3.2±0.3 kcal/mol. There are five outliers (2 outliers are buried mutations, and 3 

outliers are exposed mutations) in this model. After discarding these five outliers, the 

correlation coefficient rises to 0.69±0.008 (p-value<0.0001), and RMSE=2.1±0.2 

kcal/mol. The results are shown in Figure 2.5. In the three dielectric constant model, the 

95% confidence interval for the population correlation coefficient of the mutations is (0.59, 

0.77). The current model produces a higher correlation coefficient between predicted 

results and experimental results than the double dielectric constant models, with R 

increasing from 0.67 to 0.69. 

Because the above results were obtained through the rescaling results using 

equation (2.7) and (2.8), MM/PBSA calculation were performed in the following step to 

test the consistence between the rescaling results and the MM/PBSA calculation results.  

𝐺𝐶𝑂𝑈𝐿
𝑎

𝐺𝐶𝑂𝑈𝐿
𝑏 =

𝜀𝑃
𝑏

𝜀𝑃
𝑎  

(2.7) 

 

𝐺𝑆𝑂𝐿𝑉
𝑎

𝐺𝑆𝑂𝐿𝑉
𝑏 = (

1

𝜀𝑃
𝑎 −

1

𝜀𝑤
)/(

1

𝜀𝑃
𝑏 −

1

𝜀𝑤
) 

(2.8) 
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Table 2.4 RMSE of prediction results compared against experimental data in the three 

dielectric constants model 

 

Three categories 

Buried 

(discard 2 outliers)* Partially exposed 

Exposed 

(discard 3 outliers) 

ε=1 37.2±4.4 (37.2±4.4) 73.2±11.4 65.2±9.0 (59.5±8.1) 

ε=2 12.9±1.6 (12.6±1.5) 27.6±4.3 25.2±3.4 (23.7±3.2) 

ε=3 5.6± 0.7(5.2±0.6) 12.6±2.0 12.1±1.6 (11.8±1.6) 

ε=4 2.5±0.3 (1.9±0.2) 4.8±0.8 6.2±0.8 (6.1±0.8) 

ε=5 3.8±0.4 (3.6±0.4) 2.5±0.4 3.8±0.5 (3.0±0.4) 

ε=6 5.0±0.6 (4.9±0.6) 3.7±0.6 4.1±0.6 (2.1±0.3) 

ε=8 7.0±0.8 (7.1±0.8) 7.3±1.2 6.4±0.9 (4.0±0.6) 

ε=10 8.1±1.0 (8.2±1.0) 9.5±1.5 8.1±1.1 (5.6±0.8) 

ε=20 10.4±1.2 (10.5±1.2) 13.9±2.2 11.8±1.6 (9.0±1.2) 

ε=40 11.5±1.4 (11.7±1.4) 16.1±2.5 13.8±1.9 (10.7±1.5) 

ε=50 11.7±1.4 (11.9±1.4) 16.6±2.6 14.1±2.0 (11.1±1.5) 

ε=60 11.9±1.4 (12.1±1.4) 16.9±2.7 14.4±2.0 (11.3±1.6) 

*: The value in parentheses is the RMSE after discarding outliers. 

 

 

Figure 2.5: Calculated data compared against experimental data for 150 mutants applying 

the three dielectric constants model. In the left figure, the continuous line is the linear 

regression with an equation y=1.03x+0.33, R=0.49, and σ=3.15 kcal/mol. The dash line is 

used to detect outliers. In the right figure, the continuous line is the linear regression after 

discarding 5 outliers with an equation y=1.14x+0.11, R=0.69, σ=2.14 kcal/mol. 
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Figure 2.6: Calculated data compared against experimental data for 150 mutants applying 

the three dielectric constants model. In the left figure, the continuous line is the linear 

regression with an equation y=1.03x+0.25, R=0.50, and σ=3.07 kcal/mol. The dash line is 

used to detect outliers. In the right figure, the continuous line is the linear regression after 

discarding 4 outliers with an equation y=1.16x-0.05, R=0.70, and σ=2.09 kcal/mol. 

 

Using the optimal dielectric constants which are mentioned above, the changes of 

folding free energy upon all 150 single point mutations were then calculated using the 

MM/PBSA method. The results are consistent with the rescaling results, as shown in Figure 

2.6. The overall correlation coefficient is 0.50±0.020, with a 95% confidence interval of 

(0.37, 0.61), and RMS Error is 3.1±0.2 kcal/mol. After deleting 4 outliers, the RMSE is 

2.1±0.2 kcal/mol, and correlation coefficient R is 0.70±0.007 with the 95% confidence 

interval for the population correlation coefficient of the mutations of (0.61, 0.77). 
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2.4. Discussions 

2.4.1. Justification of this model 

2.4.1.1 MM/PBSA 

The MM/PBSA method combines explicit solvent simulation with continuous 

solvent model. Since only the final states are considered (unfolded and folded) and explicit 

solvent is removed, one major advantage of this method over the pathway method is its 

calculation speed, which makes it a suitable method for a macromolecule system, such as 

protein. The MM/PBSA method is founded on the statistical thermodynamics basis85. All 

solute-solute interactions are considered in this calculation, because no cutoff is applied86. 

Due to the cancelation of variance of polar solvation free energy and the coulomb energy, 

the MM/PBSA method could produce relatively stable total energy. The main challenge of 

the MM/PBSA method is the difficulty in accurately estimating the solute entropy87. 

Despite of the limitations, the MM/PBSA method could still achieve satisfactory accuracy 

in many cases compared with the pathway method and the experimental results. Srinivasan 

et.al applied this continuum solvent model and obtained good qualitative agreement with 

the experimental results86. Brice and Dominy calculated the free energy difference between 

A-form and B-form of DNA through MM/PBSA calculation, and the results achieved close 

agreement with an umbrella sampling approach88. Similarly, through the comparison of 

MM/PBSA and free energy perturbation (FEP) or thermodynamic integration (TI) 

method89, 90,91 , it is demonstrated that the accuracy of MM/PBSA method is comparable 

with that of the FEP in calculating bisadamantyl-phosphate complex association free 
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energy, and is also comparable with the accuracy of the TI method in predicting protein-

protein binding free energy changes upon alanine mutations. 

2.4.1.2 Protein dielectric constant 

The interior of a protein is a hydrophobic core, and has fewer charged atoms than 

the outer region of a protein. Thus, the innermost of a protein is much less polarizable than 

the surface region84. Furthermore, the surface of a proteins is “liquid-like”, while the 

interior of a protein is “solid-like”92, and the surface residues have more mobility than the 

buried groups in the core. Due to the lower flexibility and the less polarizable property, the 

interior of a protein is less capable to respond to the local electrostatic force field than the 

outer region of a protein. Therefore, the interior of a protein is corresponding to lower 

dielectric constant than that of the surface of a protein. Simonson et.al81 have developed 

methods to evaluate the protein dielectric. If the protein is assumed to be a three-medium 

case, the dielectric constant can be determined based on equations (2.9), (2.10) and (2.11).  

〈∆𝑀2〉 = ∑ 𝑞𝑖𝑞𝑗〈𝛿𝒖𝑖𝛿𝒖𝑗〉 

𝑖𝑗

 (2.9) 

〈∆𝑀𝑙𝑓
2 〉

𝑘𝑇𝑟1
3 =

𝑓(𝜀1, 𝜀2, 𝜀3)(𝜀1 − 1) − 𝑓(𝜀1
ℎ𝑓

, 𝜀2
ℎ𝑓

, 𝜀3
ℎ𝑓

)(𝜀1
ℎ𝑓

− 1)

𝑓(𝜀1
ℎ𝑓

, 𝜀2, 𝜀3)
 

(2.10) 

 

𝑓(𝜀1, 𝜀2, 𝜀3) =
9𝜀2𝜀3

(𝜀1 + 2𝜀2)(𝜀2 + 2𝜀3) − 2 (
𝑟1

𝑟2
)

3

(𝜀3 − 𝜀2)(𝜀1 − 𝜀2)
 

(2.11) 

The protein is assumed to be made of 3 different regions, with dielectric constant 

of 𝜀1, 𝜀2, 𝜀3, and 𝑟𝑖 is the distance from the measured region to the center of the protein 
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(𝑟1 < 𝑟2 < 𝑟3 ). Superscripts “lf” stands for low frequency and “hf” stands for high 

frequency. ∆𝑀 is the deviation of the dipole moment from its mean, and is determined by 

the correlations between all pairs of protein atoms, 𝑞𝑖 is the partial charge of atom I, and 

𝛿𝒖𝑖 is its instantaneous displacement from its mean position. Their results indicated that 

the innermost region always showed lower dielectric constant than the outer regions. In 

Simonson’s calculation81, if ferro- and ferricytochrom c was viewed as a homogeneous one, 

estimated value of dielectric constant vary from 16 to 37. However, if the charged portions 

of the charged side chains, which were mainly at the interface of protein and solvent, were 

considered as the solvent medium, the calculated dielectric constants were 4.7±1.0 and 

3.4±1.0 for ferro- and ferricytochrom c respectively, which is consistent with the 

experimental measurement. Furthermore, the calculated results indicated that the 

innermost region, which was within the distance of 10-11Å away from protein’s center, 

were corresponding to even lower dielectric constant with a value of 1.5-2.0. Therefore, 

Simonson’s work claimed that the dielectric constant in the inner region of protein is lower 

than that of the surface of protein. Simonson and Brooks82 further applied Frohilch-

Kirkwood theory of dielectric to study the dielectric property of 4 different proteins, their 

results also showed that the core in general had a lower dielectric constant than the protein 

surface. 

2.4.1.3 Entropy 

A single point mutation in the wild type usually does not perturb the structure of 

native or denatured states. The three dimensional structure of mutants is identical to that of 
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the wild type protein93,94. Therefore, it is reasonable to not take into account the changes 

of entropy upon single point mutation. To understand in detail how the single mutation 

affects entropy of proteins, translational entropy, vibrational entropy and rotational entropy 

will be considered separately. The equation for calculating translational/rotational entropy 

is given by equation (2.12). 

𝑆𝑡𝑟
0 = 𝑆𝑡

0 + 𝑆𝑟
0 = [2.5𝑅 − 𝑅𝑙𝑛

𝑁𝑗

𝑉
Λ3] + ⌊1.5𝑅 + 𝑅𝑙𝑛𝜋1/2 (

8𝜋2𝑘𝑇

ℎ2 )
2/3

𝑑𝑒𝑡(𝐴𝑗)
1/2

⌋      (2.12) 

  The first part of Eq. (2.12) is the translational entropy, which depends on 

molecular weight, through Λ3. 
𝑁𝑗

𝑉
 is the protein solution concentration, which is a constant. 

R is the gas constant, and T is temperature. Therefore, 𝑆𝑡
0  only depends on molecular 

weight of protein. Since a single mutation has minimum influence on the molecular weight 

of protein, the change of translational entropy upon a single mutation can be ignored. The 

second part of Eq. (2.12) is the rotational entropy. The term 𝑆𝑟
0 depends on molecular 

structure, which is represented by 𝑑𝑒𝑡(𝐴𝑗)
1/2

. Because a single point mutation in the wild 

type protein couldn’t perturb the structure of folded and unfolded protein, rotational 

entropy also has negligible contribution to the changes of protein folding free energy upon 

single point mutation.  Doig et al.95 suggested that 25% of protein side chain entropy is lost 

upon protein folding, but the vibrational entropy is retained during the protein folding 

process. Therefore, changes in vibrational entropy upon protein folding are often negligible, 

and it is reasonable to ignore changes of vibrational entropy upon single point mutation.  
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2.4.1.4 Conformations generated from CONCOORD and MD simulation 

The ensemble of conformations generated from CONCOORD sampling and MD 

simulation is determined here, and whether this ensemble is based on statistical 

thermodynamic is one important problem that we concern. Here, we studied the 

distribution of GMM/PBSA over the trajectories in the folded state for Staphylococcal nuclease 

(PDB ID: 1STN). Figure 2.7 is the histogram for the free energy distribution for ensemble 

trajectories. This result indicated that the free energy distribution of snapshots followed 

Gaussian distributions, and the sampling level here is well converged. 

Peter V. Coveney and coworkers96,97,98 have demonstrated that the ensemble of 

simulations are more efficient in sampling configurational space than a single long 

trajectory. Their research reveals that the binding free energy of each snapshot, which is 

calculated from MM/PBSA, fits quite well to the Gaussian distribution, and the sampling 

from the ensemble simulations is better converged than that from a single long trajectory. 

This Gaussian distribution indicates that particular free energy falling into this 

mathematical category satisfies the central limit theorem, which means that conformations 

being sampled are not correlated and the sampling is adequate. 
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Figure 2.7: Histogram for free energy of snapshots for folded proteins in 

ensemble simulations 
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Figure 2.8: RMSD plotted against Cα-Cα distance for 20 individual MD trajectories 

Figure 2.9: RMSD plotted against Cα-Cα distance for 20 individual MD trajectories 
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To further identify whether the conformational ensemble is canonical ensemble or 

not, RMSD relative to the minimized structure, radius of gyration of the protein, and the 

distance between two alpha carbon atoms for the staphylococcal nuclease (pdb:1STN) were 

calculated here. One pair of Cα atoms from Pro47 and Lys116 in the staphylococcal 

nuclease, where the distance between these two Cα atoms changes the most, is chosen for 

this study. The conformations are determined by the plot of RMSD or radius of gyration 

as a function of Cα-Cα distance along all ensemble trajectories for all the 20 CONCOORD 

structures of the staphylococcal nuclease as shown in Figure 2.8 and 2.9. 

It appears that not only each trajectory is distinguished from other trajectories, but 

there are also obvious overlaps among ensemble trajectories, which indicated that the 

trajectories generated from different CONCOORD structures shared common 

conformations, thus the sampling level here is quite well converged, and the free energy 

barrier between two adjacent initial conformation is small enough to be overcome by two 

1.6 ns simulations. Therefore, we can conclude that all conformations follow a canonical 

ensemble, and this method is rational from the perspective of statistical thermodynamics. 

In general the overlapped conformations among ensemble trajectories are corresponding 

to lower free energy than that of the rest conformations, which is also one of the properties 

of conformational Boltzmann distributions. 



46 

2.4.2. Prediction accuracy on uncharged or charged residue mutations 

Using the three dielectric constants model, we calculated the RMSE of prediction 

results compared against experimental data. As shown in Table 2.5, the result indicated 

that overall, this model could provide better accuracy in predicting the change of protein 

stability upon uncharged residue related mutations than upon charged residues related 

mutations. More than 58% of the uncharged to uncharged amino acid mutations in our 

dataset are in buried regions of proteins, while over 85% of the charged residue related 

mutations occur in partial exposed or exposed region. The dielectric property of the outer 

region of proteins is even more heterogeneous than the inner region of proteins, thus ε=5, 

or ε=6 in outer region may not be suitable to all residues in this region. Therefore, the 

relative inaccuracy in predicting the effect of charged site mutations are related to the more 

heterogeneous dielectric property in outer regions of proteins. Based on the outlier 

definition we used before, there is one outlier in the charged to uncharged mutation group, 

and the RMSE drops to 1.4±0.2 kcal/mol after discarding this outlier. Using the same 

outlier definition, in the uncharged to uncharged mutation category, there are 7 outliers, 

and this model produced a RMSE of 1.7±0.2 kcal/mol and a correlation of 0.73 for the rest 

of 89 mutations. These outliers are due to the overestimation of Coulombic energy or the 

difficulty in predicting structural reorganization. 
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Table 2.5: Predicted RMSE for different types of mutations 

class of mutations number of mutations RMSE (kcal/mol) 

uncharged to uncharged 96 2.5±0.2 

charged to uncharged 32 1.8±0.3 

uncharged to charged 14 6.6±1.8 

charged to charged 8 4.0±1.4 

total 150 3.1±0.2 

2.4.3 Prediction accuracy based on position of mutations 

Since our models are built through the characterization of different dielectric 

regions, we analyzed the prediction accuracy of the mutations that are buried, exposed or 

partially exposed.  With the exclusion of the two outliers in the buried mutation category 

and the two outliers in the exposed mutation category, the RMSE of the buried mutations 

decreases from 2.5 to 1.5, which is smaller than the RMSE of partial exposed or exposed 

region by over 0.5 kcal/mol., The correlation between the calculated value and the 

experimental data in the buried region is the largest among all three categories, with R=0.79, 

as shown in Table 2.6 and Figure 2.10.  
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Figure 2.10 Calculated data compared against experimental data for mutations at different 

positions. The continuous line in every right figure is the linear regression after the outliers 

were discarded equation. The outliers in this figure is marked with cross. Figure 2.10A 

shows the results of buried mutations, the linear regression equation is y=1.00x+0.52, with 

R=0.79. Figure 2.10B shows the results of exposed mutations, the linear regression 

equation is y=1.20x-0.13, with R=0.57. Figure 2.10C shows the results of partially exposed 

mutations, the linear regression equation for figure c is y=1.39x-0.37, with R=0.73. 
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Section 2.4.2 shows that our current model could predict the uncharged site 

mutations more accurately than the charged residue related mutations. In our current data 

set, almost 90% of the buried region mutations are from uncharged to uncharged amino 

acids. Therefore, the majority of charged sites mutations are in partially exposed and 

exposed regions.  Since most of the mutations in the buried region are uncharged residues, 

the RMSE in this region is relatively small. The buried region includes two outliers, 

2lzmI58Y and 1stnV39T. One of the outliers (2lzmI58Y) is small to large mutation. The 

structural reorganization may be one main reason for the difficulty in predicting. For the 

mutation 1stnV39T, there might be an underestimation of the solvation penalty associated 

with the polar atoms in the buried region. 

Table 2.6: RMSE of prediction for different categories of mutations 

categories of 

mutations 

number of 

mutations 

RMSE 

(kcal/mol) 

number of 

outliers 

RMSE without  

outliers (kcal/mol) 

Correlation 

without outliers 

buried 63 2.5±0.3 5 1.5±0.2 0.79 

partially exposed 36 2.4±0.4 1 2.2±0.4 0.73 

exposed 51 4.0±0.6 2 2.1±0.3 0.57 

This three dielectric constant model could provide more accuracy in predicting 

changes of folding free energy upon buried mutations or uncharged mutations. Compared 

with mutations in buried and partial exposed regions, the predicting accuracy for exposed 

mutations is relatively low, with a correlation coefficient of 0.57, which is much lower than 

the correlation coefficient of 0.79 for the buried mutations. Even though the overall optimal 

dielectric constant for the exposed region is 6 in this study, the actual dielectric 
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environment within each category is heterogeneous. It is possible that the polarizability of 

different amino acids at different positions response differently to the external electric field, 

thus lead to different dielectric constants. The outer region, where more charged residue 

side chains are included, is much more heterogeneous than the inner most region of 

proteins81. We further classified the mutations in exposed regions based on mutation types. 

If ε=8 is applied to the mutations from lysine to uncharged amino acid, the correlation 

between prediction and experimental result will be improved from 0.57 to 0.62, with a 95% 

confidence interval for correlation coefficient of (0.42, 0.76) Thus, due to the variety of 

dielectric environments in this region, it is  difficult to predict accurately currently. 

2.4.4. The relationship between the energy decomposition and the RMSE 

The energy decomposition enables us to learn which energy term dominates the 

changes of protein folding free energy upon each single mutation. In the three dielectric 

constants model, these 150 mutants in our dataset were further classified into 5 groups 

based on the dominating energy terms. The RMSE between predicted results and 

experimental results was calculated for each category, and the details are shown in Table 

2.7. The group with changes of folding free energy (ΔΔG) being dominated by Coulomb 

energy results in the highest RMSE, with a value of  4.75 kcal/mol, which is more than 2 

kcal/mol higher than that of the other four groups.  
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Table 2.7: RMSE vs. Dominated energy terms 

Dominated energy terms number of mutants RMSE (kcal/mol) 

Coulomb energy 39 4.75±0.76 

Polar solvation energy 11 2.75±0.55 

vdw energy 57 2.65±0.33 

Internal energy 6 1.27±0.34 

Equally dominated 37 0.99±0.16 

Since our three dielectric constant model predicts less accurately in the group 

dominated by electrostatic energy (Coulombic energy and polar solvation free energy),, 

some factors related to the electrostatic energy were studied. The 11 mutations which are 

dominated by polar solvation free energy were chosen for the further electrostatic 

interaction studies. First of all, the polar solvation energy was recalculated at different 

resolutions of the grid for the PB solver, and the results suggested that decreasing the grid 

space from 0.6 Å  to 0.25 Å could not affect the correlation between the calculation results 

and the experimental data with R=0.84.  

The effect of salt concentration on prediction accuracy is also investigated. Even 

though the concentrations of mobile ions may affect the solvation free energy, it was found 

here that the salt concentration could barely improve the prediction discrepancy of the 

outliers (data is not presented here). This result is consistent with our expectations. In the 

system with existence of salts, since there are many ions between two charges, the 

electrostatic interactions between them is strongly screened. The solvent dielectric constant 

is screened by a factor of 𝑒𝜅𝑟𝑖𝑗 when calculating the polar solvation free energy19, 99. The

coulomb energy is screened by a factor of (
𝑒𝜅𝛼

1+𝜅𝛼
)

2

𝑒−𝜅𝑟𝑖𝑗, where 𝜅−1 is the Debye length,
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α is the particle radius, 𝑟𝑖𝑗  is the center to center distance between two particles. Because 

of the high anti-correlation between the coulomb energy and the polar solvation free energy, 

the salt screening effects for both energy terms can be partially canceled out. Therefore, 

the large changes of coulomb energy, which lead these mutants to be outliers, still dominate 

the overall changes of energy upon point mutations.  

2.4.5. Comparison with other methods 

The three dielectric constants model provides a method to predict the changes of 

folding free energy upon single point mutations, and also demonstrates the  the importance 

of considering the heterogeneous dielectric properties of protein in predicting ΔΔG.  Even 

though the three dielectric constant model is not good at predict the effect of point 

mutations in the exposed region of proteins, it could provide good accuracy in calculating 

the changes of folding free energy upon buried site mutations, with the RMSE of 1.51 

kcal/mol, and a correlation coefficient of 0.79 (with a confidence interval of (0.68, 0.87)) 

for the buried site mutations (exclusion of 5 outliers in this region). In the CC/PBSA 

method, the correlation to experimental results for the buried mutations is 0.70 with the 

confidence interval of (0.63, 0.76), which is lower than what we presented here.  The 

overall correlation for 150 mutations is 0.50 with RMSE=3.07 kcal/mol, but after 

discarding 4 outliers, the correlation increased to 0.70, and RMSE=2.09 kcal/mol. This 

overall correlation is lower than the CC/PBSA method, where R=0.75, σ=1.04 kcal/mol.  

The low prediction accuracy of exposed site mutation is one reason that leads to the 

lower overall correlation coefficient in our model. The heterogeneous protein dielectric 
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properties depend on the position of amino acids, and the prediction accuracy is affected 

by the various dielectric environments of the exposed region. To improve the prediction 

accuracy of the exposed mutations, more knowledge of the variety of dielectric property in 

the exposed region is needed. The three dielectric constants model produces lower 

correlation coefficient than Fold-X (R=0.73, σ=1.02 kcal/mol) and Eris46 (R=0.75, σ=2.60 

kcal/mol), which may be related to the number of weighing factors in the models. There 

are 5 weighting factors in Fold-X45, and 20 weighing factors in Eris, but the dielectric 

constant is the only one flexible parameter in our current model, thus, our model is 

considered to be physically rational.  

2.5 Conclusion 

Molecular dynamics does a good job in accurately predicting the conformational 

energy landscape of proteins during short timescale. Simulation results of the short 

timescale could not represent the protein motion in laboratory experiment, since it is 

difficult for proteins to overcome the high energy barriers between two conformational 

state during a short timescale simulation under room temperature. On the other hand, a 

long timescale MD simulation is also unrealistic due to the limitation of computational 

efficiency. Here, in order to predict protein behavior in long timescale and reduce 

computational expense, we worked on increasing the conformational diversity and 

applying several nanosecond time scale simulations to simulate the behavior of proteins in 

long timescale. We then applied the MM/PBSA method to calculate the changes of protein 

folding free energy upon single mutations.  
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This study also revealed the diverse dielectric properties of proteins. In general, the 

dielectric constant is lower in the innermost region, while higher on the surface of proteins. 

The value of 4, 5, and 6 were applied for the interior, partially exposed, and exposed region, 

respectively. This trend was consistent with the calculated results of the protein dielectric 

constants by Simonson et al81. This three dielectric constants model provided more accurate 

prediction of the aliphatic group mutations and buried mutations than the other mutations. 
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CHAPTER THREE 

EFFECT OF ACCUMULATED MUTATIONS ON PLASMODIUM 

FALCIPARUM DIHYDROFOLATE REDUCTASE DRUG 

RESISTANCE 

ABSTRACT 

Dihydrofolate reductase-thymidylate synthase (DHFR-TS) in plasmodium 

falciparum (pf) is a bifunctional protein. The pfDHFR domain plays an essential role in the 

folate pathway, reducing dihydrofolate (DHF) to tetrahydrofolate (THF), which is crucial 

in the production of purine, pyrimidine, and amino acid. Therefore, DHFR-TS usually acts 

as the therapeutic target for malaria. Pyrimethamin (Pyr) is one of the antimalarial drugs. 

However, during the course of Pyr treatment, mutationsoccurred, such as S108N, 

C59R/S108N, and N51I/C59R/S108N/I164L/, thus leads to antimalarial resistance. To 

gain more insight into the drug resistance mechanisms, we applied the molecular dynamics 

simulation to study the wild type, C59R/S108N, and N51I/C59R/S108N/I164L/ mutant 

pfDHFR-TS, which are all complexed with Pyr and NADPH. The calculation results 

indicate that the interaction between pfDHFR and Pyr is decreasing as mutations 

accumulating, and is the weakest in the N51I/C59R/S108N/I164L mutant. This result is 

consistent with the experimental study.  
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Mutations in this study cause significant structural and dynamic changes in the Pyr 

binding pocket and in the Leu46 loop (residue 42~50). The hydrogen bond strength 

between D54 and Pyr, the ring-ring stacking interaction between Pyr and NADPH, and the 

interaction between Pyr and Leu46 loop are all getting weaker in mutants than in the wild 

type pfDHFR, while they are the weakest in the quadruple mutant. In the simulation of the 

N51I/C59R/S108N/I164L quadruple mutant, the hydrogen bonds between L46 and K49 

and between I51 and D54 break, which is an important reason for weak binding between 

this mutant and Pyr. The structural and dynamic changes caused by mutations also 

increased the number of communities in both double and quadruple mutants. Significantly 

weakened communications among key residues, which contribute to pfDHFR-Pyr 

association in quadruple mutant, was observed in this study. The weakened 

communications cause the failure of conformational reorganization upon the binding Pyr, 

and lead to weak binding between pfDHFR and Pyr. 

3.1 Introduction 

Malaria is caused by the infection of plasmodium parasites, and is transmitted to 

human by female Anopheles mosquitoes100. Among all five species of plasmodium 

parasites, plasmodium falciparum (pf) is the deadliest. Currently, around 400 million 

people are suffering from this disease with 130 million new cases occurring each year. The 

treatment of malaria is achieved through the inhibition of dihydrofolate reductase (DHFR) 

in plasmodium falciparum101-103. DHFR in plasmodium falciparum forms a bifunctional 

protein with thymidylate synthase (TS). The DHFR-TS of plasmodium falciparum consists 
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of 608 amino acids. The first 231 residues are in DHFR domain, the last 288 residues form 

TS domain, and these two domains are connected through a junction region comprising of 

89 residues26. 

DHFR plays an essential role in the folate pathway, which reduces dihydrofolate to 

tetrahydrofolate with the help of a cofactor nicotinamide adenine dinucleotide phosphate 

(NADPH). Because tetrahydrofolate is crucial in the production of purine, pyrimidine, and 

amino acid, the deficiency of tetrahydrofolate can lead to the failure of cell division. Thus, 

inhibiting the activity of DHFR can reduce the level of tetrahydrofolate, as a result, cells 

growth and proliferation can be impeded.  

To inhibit pfDHFR-TS, antimalarial drugs, such as pyrimethamine(Pyr), have long 

been used. However, during the course of Pyr treatment, mutations occurred, and have led 

to antimalarial resistance. The development of antifolate resistance in pfDHFR is widely 

studied in experiment104-106. It is found that SER108 is critical for drug resistance and 

catalytic activity of pfDHFR. Substitution of SER108 with most other amino acids can 

cause great decrease or absence of pfDHFR activity, but the mutation S108N can retain 

catalytic function of the enzyme107. Furthermore, mutation S108N is the origin of the 

subsequent multiple sites mutants with higher level of antimalarial resistance. The steric 

interaction between the bulky side chain of ASN108 and the p-Cl atom of the 5-p-

chlorophenyl group in Pyr is one key reason associated with the decreased binding affinity 

of pfDHFR towards Pyr108. Other frequent mutations appear as A16V, N51I, C59R, S108T 

and I164L105. 
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The double mutants C59R/S108N is one of the key mutants in pfDHFR responsible 

for high levels of resistance against Pyr. As reported previously, these double mutations at 

position 59 and 108 can result in about 48 fold higher inhibition constant105. Similar to the 

single mutant S108N, ASN108 in the double mutant also has close contacts with the 

nicotinamide ring of NADPH and the p-chlorophenyl group of Pyr.  

The quadruple mutant N51I/C59R/S108N/I164L shows the maximum global 

resistance towards Pyr. It exhibits approximately 570-fold increase in the inhibition 

constant. Among all these four mutations, only S108N and I164L occur in the Pyr-pfDHFR 

interaction domain. Brown and his coworkers109 studied the possible mutational pathway 

from wild type to this mutant. They found the ten most frequent mutational pathways from 

wild type to this mutant, and only these four mutations are involved in the top ten pathways. 

Apart from the experimental studies on pfDHFR, only a few computational studies 

were performed to gain some insight on the mechanism of changing binding affinity 

between Pyr and pfDHFR upon mutations30, 110-113. Homology modeling of wild type 

pfDHFR and the mutants suggested that the mutation C59R could cause repulsion between 

the Pyr and the positive charge of Arg30. The key residues contributing to tight binding in 

Pyr were identified through molecular dynamics simulation, and these residues are I14, 

D54 and I164113, which directly interact with Pyr through hydrogen bond. Mutations 

occurring at these positions might change the hydrogen bond network, which lead to weak 

binding affinity between pfDHFR and Pyr. 

Despite abundant studies of pfDHFR, there are still several problems to be solved. 

First of all, the cause of developing resistance of pfDHFR towards Pyr upon C59R/S108N 
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and N51I/C59R/S108N/I164L mutations is not well understood. Perturbations of protein 

conformations and dynamic properties by mutations might be one of the causes, but they 

are not well explored. The changes of these properties may directly relate to the changes 

of binding affinity of pfDHFR towards antifolate drugs. Elaborating this cause will be 

important for developing new antifolate drugs. Secondly, C59R/S108N and 

N51I/C59R/S108N/I164L mutants will not only affect the Pyr-pfDHFR binding, but will 

also change the catalytic function of the pfDHFR protein. The catalytic function is 

facilitated through the Leu46 loop (residue 42-50). However, the influence of mutations on 

the Leu46 loop is not identified yet. Thus, more efforts are needed in addressing these 

problems. 

Here we performed the molecular dynamics (MD) simulation for wild type, 

C59R/S108N, N51I/C59R/S108N/I164L mutant pfDHFR-TS, with the aim of 

understanding how these mutations lead to drug resistance through analyzing the changes 

of the structure and dynamics of Pyr ligand binding pocket and the Leu46 loop upon 

mutations. The calculation results indicate that the binding affinity between pfDHFR and 

Pyr is decreasing as the accumulation of mutations, and the binding is the weakest in the 

N51I/C59R/S108N/I164L mutant, which is consistent with the experimental study. Our 

work provides an insight into the mechanism of pfDHFR resistance to Pyr, where the 

changes of hydrogen network and the ring-ring stacking interactions in the binding pocket 

upon mutations are associated with weak binding affinity Both enthalpic and entropic 

changes caused by mutations in pfDHFR lead to weaker communication among key 

residues that contribute to protein-ligand binding. The binding pocket of 
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N51I/C59R/S108N/I164L mutant is more rigid than that of the wild type pfDHFR, which 

also contributes to the loss of binding affinity. Besides the effect on interactions in the 

binding pocket, mutations also disturb the interactions between Pyr and Leu46 loop, and 

the conformation of this loop is significant changed upon quadruple mutations. Our results 

indicate the importance of developing antimalarial drugs with higher flexibility in future.   

3.2 Methods 

3.2.1 Simulation System preparation 

The initial coordinates for wild type, C59R/S108N, and N51I/C59R/S108N/I164L 

were obtained from the protein data bank, corresponding to PDB ID 3QGT114, 1J3J26, and 

3QG2114 respectively. All three DHFR variants are bound to an inhibitor Pyr, and a cofactor 

NADPH. N1 atom of Pyr is modeled as protonated state, as validated in the previous NMR 

studies115, 116. Topology files and parameter files of Pyr and NADPH are obtained through 

the CHARMM General Force Field (CGenFF) program117. The initial version of CGenFF 

was based on CHARMM biomolecular force field, and parameters of Pyr and NADPH 

were examined and found to be consistent with those parameters for corresponding 

chemical groups within the CHARMM36 force field. The initial structures were built in 

CHARMM13, using the package c35b6 with CHARMM36 force field, and the hbuild 

command in CHARMM was applied to build missing hydrogen coordinates. The energy 

of initial crystal structures was then minimized by CHARMM. In order to hold the atoms 

near the desired positions, a harmonic restraint was applied during energy minimization 

over 26 cycles in vacuum with a restraint force constant reduced from 30 kcal/mol/Å2 to 5 
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kcal/mol/Å2 at a decrement of 1 kcal/mol/Å2 in each cycle. During each cycle, the structures 

were first minimized for 3000 steps using the steepest descent (SD) algorithm, followed by 

another 5000 minimization steps applying the Adopted Basis Newton-Raphson (ABNR) 

algorithm. A cutoff of 14 Å was applied, and the dielectric constant was set to 1, so that 

the permittivity is the same as that in the vacuum, and proteins are able to sample all 

conformations. 

Due to the feature of CHARMM force field, the TIP3P water model is applied in 

the simulation. Each protein-ligand complex was then placed in a periodic cubic box 

containing TIP3P water with a density of 0.0555 mol/mL (or approximately 1 g/ml). 

Though there is not a hard rule for the ratio of solute and solvent atoms, sufficient TIP3P 

solvent molecules are required to allow the solute to interact with solvent, as well as to 

prevent the solute from interacting with its image while applying periodic boundary 

conditions. On the other hand, too many solvent molecules could make the simulation very 

expensive. Thus, the ratio of atoms in complex and atoms in TIP3P water is around 1:10 

in our systems. TIP3P water molecules overlapping with complex were removed. Na+ 

cations and Cl- anions were added to the system to maintain a neutralized system and an 

ion concentration of 0.15 M, and the neutralized environment can ensure the application of 

the PME method for the electrostatic energy calculation. 

3.2.2 Molecular dynamics simulation 

After the process of solvating and adding ions to the system, the energy 

minimization of the system was then performed in NAMD 2.10118 by two steps. In the first 
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step, the coordinates of protein-ligand complex and all crystal water were fixed, and the 

solvent molecules were minimized for 5000 steps applying the method of conjugate 

gradients (CG) to avoid any nonphysical contacts from the water atoms. In the second step, 

8000 steps of CG energy minimization were performed for the whole system to remove 

any bad contacts. 

NAMD 2.10-GPU was applied to perform all simulations using CHARMM36 force 

field119. For each protein, the MD simulations were repeated for three times under the same 

conditions of temperature, pressure, initial coordinates and simulation procedure, but 

different random seeds. During each simulation, the system was first heated from 100 K to 

300 K within 1.6 ns with a temperature increment of 0.25 K every 2000 steps. The system 

was then equilibrated for another 6.4 ns, and followed by another 60 ns production run. 

The time step is 1 fs for heating and equilibration, and 2 fs for production run. Since the 

bonds involving hydrogen tend to vibrate at very high frequency, which are impossible to 

be simulated in a large time step MD simulation, all bonds between heavy atoms and 

hydrogen atoms were constrained through the SHAKE algorithm during the production 

runs. Long range Coulombic interactions were treated using the particle Mesh Ewald (PME) 

method120 with a grid spacing of 1.0 Å. A smooth switching function was applied to 

truncate the van der Waals potential energy smoothly between 10.5 Å and 12.0 Å. Each 

MD simulation was performed in an NPT ensemble. The constant temperature is 

maintained at 300K through Langevin dynamics121, while the constant pressure is 

controlled to 1 atm using the Langevin piston Nosé-Hoover method122. 
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3.2.3 Binding free energy calculation 

The binding affinity between protein and ligand was obtained by the molecular 

mechanics/generalized Born surface area (MM/GBSA)123, 124 method and was calculated 

in CHARMM using equation (3.1) and (3.2): 

∆𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = 𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − 𝐺𝑝𝑟𝑜𝑡𝑒𝑖𝑛 − 𝐺𝑙𝑖𝑔𝑎𝑛𝑑 (3.1) 

𝐺𝑀𝑀/𝐺𝐵𝑆𝐴 = 〈𝐸𝑉𝐷𝑊〉 + 〈𝐸𝐸𝐿𝐸𝐶〉 + 〈𝐸𝐼𝑁𝑇〉 + 〈𝐺𝑆𝑜𝑙𝑣〉 − 𝑇〈𝑆〉 (3.2) 

MM/GBSA calculation was applied to single structures, which were extracted from 

the MD simulation trajectory every 200 ps, and the final MM/GBSA free energy was 

estimated based on ensemble average of the energy terms. Averaging over time along the 

molecular dynamics simulation trajectory is denoted by “< >” in equation (3.2). For each 

single structure, the binding free energy calculated by MM/GBSA includes four terms, 

which are gas phase energies, generalized Born polar solvation energy, non-polar solvation 

energy, and entropy of solute. The gas phase energy is the sum of Van der Waals energy 

(ΔEVDW), Coulombic energy (ΔEELEC) and other energy terms (∆𝐸𝐼𝑁𝑇), such as bond energy, 

angle energy and dihedral angle energy, where no non-bond cutoff was applied to these 

energy terms calculations. The generalized Born solvation energy term ( ∆𝐺𝑆𝑜𝑙𝑣
𝑝𝑜𝑙𝑎𝑟

) is

calculated through the GBSW module in CHARMM. The dielectric constant for GB 

calculation is set to 4, the salt concentration was set to 0.05 M, which is based on the 

experiment environment, and the temperature is 300 K in this calculation. The non-polar 

solvation energy (∆𝐺𝑆𝐴
𝑛𝑜𝑛−𝑝𝑜𝑙𝑎𝑟

) was calculated through evaluating the solvent accessible 
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surface area (SASA) with a radius probe of 1.4 Å, and this energy term was calculated by 

the following equation: 

∆𝐺𝑆𝐴
𝑛𝑜𝑛−𝑝𝑜𝑙𝑎𝑟 = 𝛾𝑆𝐴𝑆𝐴 + 𝑏 (3.3) 

Where the value of 0.00542 kcal/mol/ Å2 was used for the surface tension 𝛾, and 

the value of 0.92 kcal/mol was used for the constant b125. We assume that the influence of 

mutations on the change of solute entropy (∆𝑆) upon protein-ligand binding is small and 

can be neglected7, 126, which is discussed in the results section 

3.2.4 Trajectory analysis 

Distance between certain atoms, and the root mean square fluctuation (RMSF) 

(equation (3.4)) around the average structure from MD simulation trajectory for each alpha-

C atom were calculated using the CHARMM c35b6 package with CHARMM36 force field. 

Equation (3.4) is the calculation of the RMSF of a single atom, the summation runs over a 

specified set of N Cartesian coordinate of this atom along the MD trajectory, 𝑥𝑖
𝑀𝐷is the

position of the atom at the frame i in the trajectory, and 〈𝑥𝑖
𝑀𝐷〉 denotes the average position

of the atom along the MD trajectory. 

𝑅𝑀𝑆𝑓𝑙𝑢𝑐. = [
1

𝑁
∑(𝑥𝑖

𝑀𝐷 − 〈𝑥𝑖
𝑀𝐷〉)2

𝑁

𝑖=1

]

1/2 (3.4) 

Protein network and community analysis127 was performed in VMD128. In a protein 

network, each single node denotes an amino acid residue, and a pair of in contact nodes are 

connected through an edge. A pair of nodes are considered to be in contact if the distance 

between two alpha carbon atoms of the corresponding residues is within 4.5 Å for more 
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than 75% of frames in a trajectory. Our choice of above network definition is supported by 

past studies127, 129 on network robustness and parameters defining the network, as well as 

our calculation results. These studies reveal the variation of cutoffs used to define contacts 

and changes in the parameters (75% of frames and 4.5 Angstroms cutoff between any pair 

of heavy atoms in residues) defining the network contacts led to minimal  changes in the 

community distribution of the network. From our calculations on wild type pfDHFR, we 

also learn that changing the cutoff value to 4.0 Å instead of 4.5 Å for wild type protein 

could not disturb the community distribution with a community repartition difference of 

0.21. Each edge is weighted using equation (3.5), where Cij is the correlation value of 

correlated motion for the two end residues. 

𝑤𝑖𝑗 = −𝑙𝑜𝑔(|𝐶𝑖𝑗|)     (3.5)

The betweenness of a node is defined as the number of shortest paths between pairs 

of nodes that pass through that node. The community structure is obtained by using the 

Girvan-Newman algorithm130, which iteratively removes the node with the largest 

betweenness and recalculates the betweenness of the nodes affected by the removal. 

Modularity score is recorded to identify the clusters that result in an optimal community 

network. Community analysis helps to identify the overall communication among residues. 

Nodes belonging to the same community are strongly interconnected and can communicate 

with one another more efficient through a large number of routes, while connections 

between nodes in different communities are weaker.
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3.3 Results 

3.3.1. Calculation of binding affinity between pyrimethamine and pfDHFR 

To obtain a quantitative view of the effect of mutations on pfDHFR – Pyr binding 

affinity, MM/GBSA calculations were performed. Table 3.1 presents the binding free 

energy between Pyr and the rest of the complex for wild type, C59R/S108N, and 

N51I/C59R/S108N/I164L. The calculated binding free energies were obtained from the 

average of three 68 ns trajectories. The interaction energy is defined as the sum of 

coulombic potential energy, van der Waals potential energy and polar solvation free energy. 

In the wild type, the computed binding free energy is -49.68 kcal/mol, which is 

exaggerated by around 37 kcal/mol from the experimental measurement. The cause of the 

exaggerated absolute MM/GBSA free energy estimation is due to the neglection of entropy 

during calculation7, 87. Even though some studies aims to calculate absolute binding free 

energy ∆𝐺𝑏𝑖𝑛𝑑. Here, we are only interested in evaluating the change of binding affinity 

between Pyr and pfDHFR upon mutations. There is a connection between the 

MM/GB(PB)SA calculation method and statistical thermodynamics. It is reasonable to 

assume that the change of vibrational motion due to the loss of translational and rotational 

freedom upon association is minimal, and the energy landscape can be determined from a 

sufficiently long MD simulation87. It has been found that MM/GB(PB)SA performs well 

at identifying the effect of mutations on association process131,132. Through computational 

alanine scanning, Kollman and coworkers132 suggested that MM/GB(PB)SA calculation 

could achieve good agreement between calculation and experimental results. Therefore, 
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MM/GB(PB)SA is precise enough to calculate the difference of binding free energy 

between the wild type pfDHFR and the  mutant pfDHFR.  

The van der Waals potential energy term contributes more to the difference of 

binding free energy than the electrostatic energy. This result also indicates that the 

interaction between Pyr and pfDHFR is the most favorable in the wild type complex, and 

is the least favorable in the quadruple mutant complex. The result is consistent with the 

experimental data, where the quadruple mutant (N51I/C59R/S108N/I164L) is the most Pyr 

resistant. 

Table 3.1: Energies between PYR and the rest of the complex 

Proteins 

ΔEcoul 

(Kcal/mol) 

ΔEvdw 

(Kcal/mol) 

ΔG
solv-polar 

(Kcal/mol) 

*ΔG
INTER

(Kcal/mol) 

G
EXP

(Kcal/mol) 

Wild type 1.4±0.2 -29.7±0.2 -21.4±0.2 -49.7±0.2 -12.0

Double MU 3.2±0.1 -26.2±0.1 -21.9±0.1 -45.0±0.1 -9.7

Quadruple MU 1.2±0.1 -24.8±0.1 -19.8±0.01 -43.0±0.1 -8.2

*∆𝐺𝐼𝑁𝑇𝐸𝑅 = ∆𝐸𝑐𝑜𝑢𝑙 + ∆𝐸𝑣𝑑𝑤 + ∆𝐺𝑠𝑜𝑙𝑣−𝑝𝑜𝑙𝑎𝑟

The MM/GBSA calculation is also able to evaluate the interaction between Pyr and 

individual amino acid. Figure 3.1 presents the changes of interactions between individual 

residue and Pyr upon double or quadruple mutations. It is indicated that mutations mainly 

significantly perturb interactions between Pyr and a few key residues in pfDHFR, including 

L46, D54, F58, and I164. This result is as expected, because the above four residues are all 

important amino acids in protein active sites as reported in experiment26. Except for L46, 

all other key residues are located in the Pyr binding pocket. Interaction between D54 and 

antifolate drug is of crucial importance in maintaining binding affinity between pfDHFR 

and antifolates. As reported by Sirawaraporn and coworkers, mutations occurring at D54 

can lead to detrimental effect of enzyme activity and antifolate binding affinity133. F58 and 
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I164 both have direct interaction with Pyr26. L46 is in the Leu46 loop (residue 42-50), 

which is important in facilitating the catalytic function of pfDHFR26, and it offers multiple 

binding site for the cofactor NADPH26. Pyr makes more favorable interactions with L46, 

D54, and F58, but less favorable interaction with residue 164 in wild type than in 

C59R/S108N and N51I/C59R/S108N/I164L mutant. The interactions between Pyr and 

residue 164 is dominated by van der Waals energy. The changes of the paired interactions 

are related to the local conformation changes, and are described below. 
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Figure 3.1 Changes of free energies between each residue and PYR upon mutations. 

The free energy is the sum of Coulombic energy, van der Waals energy and polar 
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3.3.2 Interactions in binding pocket 

To understand the reason of weak binding affinity in double mutations 

(C59R/S108N) and quadruple mutations (N51I/C59R/S108N/I164L), we further explored 

the interactions in the binding pocket. We analyzed the hydrogen bond network and the 

ring-ring stacking interactions inside the binding site with the 68 ns MD simulation 

trajectories for wild type and mutants. 

D54 PYR 

I164 
I14 

C15 

NADPH 

PYR 

F58 

Figure 3.2 Binding pocket and two side views of the binding pocket in wild type protein 
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The hydrogen bond network and ring-ring interactions in wild type binding site are 

shown in Figure 3.2. The ligand Pyr can form hydrogen bond with residue I14, C15, D54, 

and I164, where the hydrogen bond between D54 and Pyr is the strongest. Other than 

hydrogen bond, Pyr is also stabilized in the binding pocket through the ring-ring stacking 

interactions with F58 and the cofactor NADPH.  

We analyzed the probability distribution of center of mass distance between Pyr 

and residue 164 in the binding pocket, which is presented in Figure 3.3. In general, these 

mutants cause the movement of residue 164 towards Pyr. The center of mass distance 

between I164 and Pyr ligand is shortened by 0.82±0.71 Å in double and 0.42±0.65 Å in 

quadruple mutants compared with wild type. This observation is also consistent with the 

results of binding free energy calculation. Results of the binding free energy analysis 

indicate that the interaction between residue 164 and Pyr is dominated by the van der Waals 

energy. Figure 3.1 shows that this interaction is stronger in the double mutant and 

quadruple mutant than in wild type pfDHFR. Based on L-J potential equation, the decrease 

in distance can lead to more negative van der Waals potential energy in double mutant, 

compared against wild type. 
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Figure 3.3 Probability distribution of center of mass distance between PYR 

and residue 164

The hydrogen bond forming between N14 atom of Pyr and OD1 atom of D54 was 

studied. The distribution of this hydrogen bond length is presented in figure 3.4. The length 

of this hydrogen bond gets larger as more mutations accumulating, where the average 

length is 2.81±0.22 Å in wild type, 2.92±0.22 Å in the double mutant, and 2.98±0.30 Å in 

the quadruple mutant. This figure indicates that comparing with wild type, the hydrogen 

bond interaction is weaker in C59R/S108N mutant and N51I/C59R/S108N/I164L mutant. 

Hydrogen bonds with donor-acceptor distance of 2.2-2.5 Å is defined as strong, 2.5-3.2 Å 

as moderate, and 3.2-4.0 Å  as weak. The energy of a weak hydrogen bond is usually 0~14 

kcal/mol higher than that of a moderate hydrogen bond134. Weaker hydrogen bonds are 

related to the higher interaction energies between pairs of D54 and PYR in C59R/S108N 

and N51I/C59R/S108N/I164L mutants, which are presented in Figure 3.1.  
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To understand the effect of mutations on the ring-ring interactions in the Pyr 

binding pocket, we examined the probability distribution of center of mass distance 

between Pyr and nicotinamide ring of NADPH, as shown in Figure 3.5B. The distance is 

most likely around 5.0 Å, 6.8 Å, and 8.9 Å in wild type, C59R/S108N and 

N51I/C59R/S108N/I164L mutant, respectively. The trend of distance is consistent with the 

trend of interaction energies between Pyr and NADPH, where the most favorable 

interaction between Pyr and NADPH occurs in wild type. Thus, the lack of ring-ring 

interactions in the binding pocket of C59R/S108N and N51I/C59R/S108N/I164L mutants 

are associate with the weaker interaction between Pyr and NADPH, and the ring-ring 

interactions are important for retaining Pyr in position. The ring-ring interaction between 
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Figure 3.4 H-bond distance between N14 atom of PYR and OD1 atom of D54. The 

black color is for wild type, red is for double mutant, and blue is for quadruple mutant.
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Pyr and F58 does not vary much among wild type and mutants. The weaker ring-ring 

interactions in mutants are directly caused by changes of conformations of Pyr and NADPH 

in the binding site, as explained in Figure 3.5A. 
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Figure 3.5 (A) Representative snapshot for the binding mode of PYR and NADP in 

binding pocket of wild type (purple) and quadruple mutant (yellow).  (B) Center of mass 

distance between PYR and the nicotinamide ring of NADPH.
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3.3.3 Conformation changes in binding site 

To gain more insight into the effect of mutations on protein binding site 

conformations, we examined the shape of binding site for wild type and mutants. Here, the 

binding site is defined as all protein atoms within 3.5 Å of Pyr and the free volume among 

these atoms. Figure 3.6 is obtained from the representative snapshot from trajectories, 

figure 3.6A is the shape of binding site for wild type, and figure 3.6B is for 

N51I/C59R/S108N/I164L mutant. Comparing figure 3.6A with 3.6B, the shape of binding 

site is experiencing obvious changes caused by quadruple mutations.  

A B

Figure 3.6 The shape of Pyr binding site in pfDHFR. (A) is for wild type, and (B) is for 

quadruple mutant protein. 



75 

The shape of the binding site is usually related to the binding mode of ligand. Thus, 

further analysis on the binding mode of Pyr is performed, so that the cause of shape change 

could be clear. Figure 3.7A shows the probability distribution of dihedral angle for C8, C7, 

C4, and C3 atoms of Pyr in wild type, C59R/S108N, and N51I/C59R/S108N/I164L. The 

dihedral angle in C59R/S108N and N51I/C59R/S108N/I164L is most likely to be around 

60 degree, which is off by 60 degree from the 120 degree dihedral angle in wild type. As 

shown in Figure 3.5, the ring-ring stacking interaction between PYR and NADPH is 

weaker or even broken in the double mutant and quadruple mutant, therefore, the 

chlorophenyl ring of Pyr exhibits higher mobility in mutants than in the wild type. 

Furthermore, the longer side chain of N108 in mutants upon the mutation S108N has 

caused steric hindrance between chloride atom in Pyr and N108. The steric hindrance is 

another reason for the change of dihedral angle in C59R/S108N, and 

N51I/C59R/S108N/I164L. The change of binding mode of Pyr is associated with changes 

of the binding site shape and interactions in binding site, thus leads to the changes of 

binding affinity.  
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3.3.4 Effect of mutations on Leu46 loop conformation 

Leu46 is one of the key residues that contribute significantly to the changes of 

binding affinity upon mutations based on the calculations described above. Rather than 

locating in the binding pocket, it is located in the Leu46 loop, which is important in 

facilitating the pfDHFR catalytic function26. In the wild type, the side chain of Leu46 

interacts with Pyr through hydrophobic interactions. In order to further understand the 

effect of mutations on interactions between Pyr and Leu46, we calculated the probability 

distribution of center of mass distance between Pyr and Leu46, and the result is in Figure 

3.8. The center of mass distance is much shorter in wild type than that in C59R/S108N and 

N51I/C59R/S108N/I164L, and the distance in C59R/S108N is shorter than that in 
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Figure 3.7 (A) The structure of PYR, with C3 C4 C7 C8 labeled.  (B) Probability 

distribution of dihedral angle for C8 C7 C4 C3 atoms in PYR. 
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N51I/C59R/S108N/I164L. The changes of center of mass distance cause the change of 

interaction between Leu46 and Pyr, which is dominated by van der Waals potential energy. 

To gain more insight into the effect of mutations on Leu46 loop, we explored the 

conformation of Leu46 loop in wild type and mutants. Snapshots of trajectories have shown 

that the conformation of Leu46 loop in N51I/C59R/S108N/I164L mutant is significantly 

different from that in wild type and C59R/S108N mutant, which is presented in Figure 3.9. 

The direct reason of conformation change is that the hydrogen bond between L46 and K49 

is broken in N51I/C59R/S108N/I164L mutant, while it exists in wild type and 

C59R/S108N mutant. The change of this hydrogen bond is shown in Figure 3.10. The N51I 
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Figure 3.8 Probability distribution of the center of mass distance between Leu46 and 

Pyr. Wild type protein is presented in black, C59R/S108N is in red, and 

N51I/C59R/S108N/I164L is in blue. 
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mutation leads to the shift of residues 48-51, and they move away from Pyr as shown in 

Figure 3.11. The movement is related to the conformation change of Leu46 loop in the 

quadruple mutant. 

K49 L46 

Figure 3.9 Representative snapshot for conformation changes of Leu46 loop in 

quadruple mutant (green). The wild type is shown in orange, and the double mutant is 

shown in yellow. 
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Figure 3.10 Distance between O atom of L46 and HN atom of K49

Figure 3.11 Probability distribution of the center of mass distance between residue 48-

51 and PYR. Wild type protein is presented in black, C59R/S108N mutant is in red, and 

N51I/C59R/S108N/I164L mutant is in blue.
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3.3.5 Flexibility of pfDHFR 

Flexibility plays an important role in modulating protein-ligand binding affinity135. 

Process of both protein-ligand/protein interactions requires structural flexibility. To 

examine the effect of mutations on pfDHFR flexibility, we calculated root mean square 

fluctuation (RMSF) of wild type and mutants. Figure 3.12 depicts the RMSF of alpha-C of 

each residue in the wild type, C59R/S108N and N51I/C59R/S108N/I164L mutant. The 

result indicates that the quadruple mutant is less flexible than the wild type and double 

mutant. Since the binding pocket of quadruple mutant is the very rigid, and is not perfectly 

complementary with Pyr, thus, it could not tightly bind to a rigid ligand as Pyr. Furthermore, 

the low flexibility of quadruple mutant suggests that the binding pocket is not able to 

moderately modulate the conformation upon the binding of Pyr ligand. The trend in 

flexibility has good agreement with the trend in pfDHFR-Pyr binding affinity. 

N51I/C59R/S108N/I164L mutant is the most rigid among all three proteins mentioned 

above, and its binding affinity toward Pyr is also the weakest.  
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3.3.6 Community network analysis 

To gain more insight into the relationship between protein dynamic network and 

protein binding affinity, we performed the community network analysis. With the 

occurrence of quadruple mutations, the levels of network communication in pfDHFR are 

altered. The number of communities is 8 in the wild type protein. It increases to 9 and 11 

upon the double and quadruple mutations, respectively. The community repartition 

difference between the quadruple mutant and the wild type pfDHFR is0.51 The above 

results indicate that 49% of the node pairs remain in the same community, while 51% of 

the node pairs are broken into different communities.  This result suggests that quadruple 

mutations have caused weaker connection between nodes which are broken into different 

0 20 40 60 80 100 120 140 160 180 200 220 240
0

1

2

3

4

5

R
M

S
F

 (
Å

)

Residue number

 WT

 DU

 QU

Figure 3.12 Root mean square fluctuations of wild type (Black), double (Red) and 

quadruple (Blue) mutant proteins. 
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communities. A significant change in community repartition can be attributed to the 

weakened interaction of the quadruple mutant's residues with its neighbors. Weak 

interaction edges in the quadruple mutant are removed early in the Girvan–Newman 

algorithm and, as a result, have larger overall effect on the community node assignment. 

Furthermore, the weaker interactions between nodes indicates that the correlation of 

motion between these two residues is weaker. Weaker correlation between two residues 

may suggest this interaction is not instrumental in defining information flow in protein. 

The weaker correlation between two residues may also suggest that these interactions are 

not contributing to determine changes in topology of protein due to events like ligand 

binding.  

Apart from the overall community network, N51I/C59R/S108N/I164L mutations 

also perturb the communications among key residues as mentioned in Figure 3.1. These 

key residues are in 3 separate communities in the wild type, while they are in 5 different 

communities in N51I/C59R/S108N/I164L pfDHFR. Nodes in the same community are 

strongly interconnected and can communicate with one another more efficiently through 

multiple routes, while connections between nodes in different communities are weaker.  

The betweenness of a node is defined as the number of shortest paths between pairs 

of nodes that pass through that node. The betweenness is used to measure the importance 

of the edge for communication within the network.  As shown in Figure 3.13, Asp54 and 

Phe58 are in the same community in wild type, with high edge betweenness value, however, 

they are split into two communities in C59R/S108N and N51I/C59R/S108N/I164L mutant, 

where the betweenness is the lowest in the quadruple mutant. Even though Ile14 and 
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residue 164 remains in the same community after C59R/S108N mutations occurring, the 

communication strength between them is largely decreased. However, the strength of 

communication between residue 14 and 164 is restored through N51I/I164L mutations. 

The edge betweenness between Phe58 and Ile164 is much smaller in C59R/S108N 

mutation than in wild type, and this value becomes zero upon N51I/C59R/S108N/I164L 

mutations.  

Thus, in general, key residues are connected through strong communication in wild 

type, but are loosely connected in N51I/C59R/S108N/I164L mutant due to the 

repartitioning among the community network.  The strong communication among these 

key residues in wild type means that the information flow between these residues is more 

efficient, and the correlated/anti-correlated motion between these residues is more 

significant. Changes of correlated motions upon mutations may also affect the protein 

function136. Mutations can lead to changes of protein conformations, as well as the 

modification of protein internal motions, which influence the height of activation free 

energy barrier137. 

The Leu46 loop in wild type is in one common community. However, the breaking 

of the hydrogen bond between Leu46 and Lys49 in the quadruple mutant leads to the two 

separate communities in the Leu46 loop. Figure 3.9 has shown that the Leu46 loop in 

N51I/C59R/S108N/I164L mutant experiences conformation changes. Beside the broken of 

hydrogen bond between Leu46 and Lys49, the reorganization of communities in this loop 

is also another contributing factor for the conformational change. The mutation N51I leads 

to the split of community which contains residue Cys15 and the Leu46 loop. Cys 15 and 
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residues in Leu46 loop are located in three different communities in the 

N51I/C59R/S108N/I164L mutant, which indicate that the communications among these 

residues are weakened by the quadruple mutations.  

3.4 Discussion 

3.4.1 The effect of accumulated mutations in N51I/C59R/S108N/I164L 

S108N is the first mutation occurring in the quadruple mutant. The mutation S108N 

leads to a steric clash between the bulky side chain of N108 and p-Cl atom of the 5-p-

chlorophenyl group of Pyr, which causes the change of the binding mode of Pyr in the 

binding pocket of pfDHFR.  

D54 

Figure 13 Communities for the key residues in wild type (A) and quadruple mutant (B). 

Nodes of the same color are in the same community. The nodes in the figure represent 

for the six key residues contributing for Pyr binding. 
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The single point mutation in C59R could in fact slightly enhance the binding 

between Pyr and pfDHFR105. However, upon mutations C59R/S108N, the binding affinity 

between Pyr and pfDHFR is even weaker than that in S108N mutant as reported in 

experiment. Therefore, the overall effect of C59R/S108N is not an accumulated effect of 

each single point mutation. The reason may be that the interactions between the local 

environment of the residue 59 and residue 108 is also affected by the mutaions. 

The mutation N51I in N51I/C59R/S108N/I164L mutant, even though is outside of 

the Pyr binding pocket of pfDHFR, not only breaks the ring-ring stacking interactions 

between PYR and NADPH, but also perturbs the binding pocket conformation. The local 

conformation rearrangement in respond to N51I leads to the breaking of the H-bonds 

between L46 and K49, between I51 and D54, and a weaker H-bond between W48 and C50. 

Hydrogen bonds between L46 and K49, as well as between W48 and C50 are crucial in 

maintaining the shape of the Leu46 loop in wild type pfDHFR. According to our 

calculation, residues 48-51 move away from Pyr in the quadruple mutant, this is consistent 

with the experimental result that the mutation at residue 51 caused a main chain movement 

of residues 48-51 with respect to the wild type26. The Leu46 loop offers binding sites for 

the second ligand NADPH. Thus, the conformation change of the Leu46 loop causes the 

binding mode change of NADPH, which may further lead to the loss of the ring-ring 

stacking interactions between PYR and NADPH. The local conformation of D54 is 

changed due to the broken of H-bond between I51 and D54. Since D54 tightly binds to Pyr 

in wild type pfDHFR through H-bond, conformation changes around D54 caused by 
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mutation N51 lead to a weaker hydrogen bond between D54 and Pyr, thus the interaction 

between D54 and Pyr is less favorable in the quadruple mutant than that in the wild type.  

Residue 164 is closer to Pyr in the mutants than in the wild type, which is consistent 

with a previous finding30. The methyl group in Leu164 is closer to Pyr in the quadruple 

mutant, thus, Leu164 contributes to the favorable interaction between residue 164 and Pyr.  

3.4.2 Reduced communication strength in Pyr binding pocket  

The decreased binding affinity between Pyr and pfDHFR in quadruple mutant is 

associated with its weak communication among residues in the binding site. The breaking 

of hydrogen bond between I51 and D54, which is caused by the mutation N51I in 

N51I/C59R/S108N/I164L , leads to rearrangement of the mean conformation in and around 

D54 (enthalpic change). This change also results in the reorganization of communities, and 

residues in the binding pocket split into more communities. As a consequence, the 

communication among residues in the Pyr binding pocket is much weaker in the double or 

quadruple mutant than that in the wild type. Our results imply that communications among 

residues are affected by the changes of enthalpy. The result is also consistent with precious 

research that protein conformational dynamics can mediate the protein-ligand binding 

process138. In other words, the structural change caused by mutations can lead to changes 

of binding affinity, which can further disturb communications among residues in the 

pfDHFR binding pocket. These communications suggest that these residues are central to 

information flow as the result of pfDHFR-Pyr binding. The weaker communication among 
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the residues in the binding pocket of quadruple mutants further indicates the functional 

significance of these conformational changes in protein.  

Communications among residues not only occurred from enthalpy contribution, but 

also from entropic contribution139-141. The fluctuation of residues about the mean position 

can propagate residue communications. Weaker correlations among the key residues in the 

binding pocket of quadruple mutants relate to a decrease in information flow as compared 

with the binding event in wild type, thus the key residues in the binding site of quadruple 

mutant are not capable of responding to the fluctuation of other residues. Because the 

structural fluctuation plays an important role in modulating protein-protein or protein-

ligand interaction142, the low flexibility of quadruple mutant suggests that the binding 

pocket is not able to moderately modulate the conformation upon the binding of Pyr ligand. 

Consequently, the binding affinity between Pyr and quadruple mutant is quite low. As 

presented in Figure 3.7, the quadruple mutations lead to the change of binding mode for 

Pyr in response to the binding pocket conformation change. However, Pyr is too rigid to 

achieve a tight binding in the relatively rigid binding pocket of quadruple mutant.  

The flexibility of both the protein and the ligand plays significant roles in regulating 

the binding interactions in the protein-ligand complex143. Therefore, it is necessary to 

design drugs with higher flexibility to accommodate to the rigid binding pocket of 

N51I/C59R/S108N/I164L mutant. The flexible ligand may be able to bind to the rigid 

protein with multiple binding mode, which can increase the possibility of the ligand 

binding to multiple binding sites of the protein. Thus, designing a flexible ligand for 
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N51I/C59R/S108N/I164L mutant may result in favorable enthalpy of binding upon 

association. 

3.5 Conclusion 

In summary, pfDHFR is an important target for antimalarial drugs, such as Pyr. The 

highest Pyr resistance occurs in N51I/C59R/S108N/I164L mutant. However, it’s not clear 

of how this high resistance occurs. In this study, we applied the MD simulations for the 

wild type, double mutant and quadruple mutant pfDHFR, all of which are complexed with 

Pyr and NADPH. The structure and dynamics of the binding pocket and the Leu46 loop, 

which are affected by mutations, can impact the protein-ligand binding affinity, and are 

crucial for the development of drug resistance. The Leu46 loop, even is outside of the Pyr 

binding pocket, can perturb Pyr binding upon quadruple mutations. The breaking of Leu46-

Lys49 hydrogen bond causes the weak ring-ring stacking interaction between Pyr and 

NADPH through the conformation change of the Leu46 loop. Communications among key 

residues are much weaker in quadruple mutant that in wild type or double mutant. The 

weaker communication can result in less efficient information flow among these key 

residues upon pfDHFR-Pyr binding. Furthermore, among all three proteins studied above, 

the binding pocket of quadruple mutant is the most rigid, and is not perfectly 

complementary with Pyr, thus, it could not tightly bound to a rigid ligand as Pyr. Therefore, 

antimalarial drugs with higer flexibility need to be designed in future in order to achieve 

tight binding with pfDHFR.  
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CHAPTER FOUR 

PROBING THE ROLE OF N-TERMINAL TAIL ON ACTIVITY AND DOMAIN-

DOMAIN COMMUNICATION IN PLASMODIUM FALCIPARUM 

DIHYDROFOLATE REDUCTASE-THYMIDYLATE SYNTHASE 

ABSTRACT 

Dihydrofolate reductase-thymidylate synthase (DHFR-TS) in plasmodium 

falciparum (pf) is a bifunctional protein. The DHFR domain and the TS domain in 

plasmodium parasites are encoded by a single gene and are expressed as one protein. Even 

though the DHFR function is conserved in plasmodium parasites, comparing with DHFR 

in bacteria or other eukaryotes, there are several unique structural features in plasmodium 

falciparum. One of these unique features is the N-terminal tail in pfDHFR. The N-terminal 

tail is essential in modulating the interactions between DHFR and TS, as well as 

maintaining the pfDHFR activity. Since the N-terminal tail is remote from the pfDHFR 

active site, it is not clear how this distant tail could perturb the protein activity and the 

domain-domain interaction. In this chapter, the role of the N-terminal tail in domain-

domain communication and DHFR activity in plasmodium falciparum is examined through 

molecular dynamics simulations, correlated motions, and principal component analysis. It 
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is found that the deletion of the N-terminal tail can disturb the pfDHFR activity through 

indirectly changing the local conformation of SER108, which is a key residue in 

maintaining the pfDHFR activity. While involving the interactions between DHFR and TS, 

the N-terminal tail also has an impact on the strong anti-correlated motions between the 

two DHFR domains in pfDHFR-TS dimer.  

4.1 Introduction 

Dihydrofolate reductase – thymidylate synthase (DHFR-TS) in plasmodium 

falciparum (pf) is an important bifunctional protein involving in the process of DNA 

production144, 145. Unlike eukaryotes, where DHFR and TS are expressed as two distinct 

enzymes, they are encoded by a single gene and are expressed as one bifunctional protein 

in plasmodium parasite146. The DHFR and TS domain is connected through a 54-residue 

junction region26. The bifunctional pfDHFR-TS is a dimeric protein (Figure 4.1)147, 148 and 

the dimerization of the bifunctional protein is formed through broad contacts between the 

two TS domains. Even though some structural features are conserved in the DHFR family, 

there are some unique features that are only found in pfDHFR26. PfDHFR has two extra 

inserts which are not found in eukaryotes. The first insert comprise residues from 20 to 36, 

and the second one from residue 64 to 99. Besides the extra inserts, there is an N-terminal 

tail existing in pfDFHR, which has found to be structurally and functionally important for 

pfDHFR-TS31. 

The N-terminal tail consists of the first five amino acids in the DHFR domain of 

pfDHFR-TS. Such N-terminal tail does not exist in bacteria or other eukaryotes DHFR, 
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and it is also absent in Cryptosporidium hominis bifunctional DFHR-TS, but it could be 

found in other bifunctional DHFR-TS proteins. For instance, in Leishmania major, there is 

a 22-residue tail, wrapping around the enzyme surface149. The 5 amino acids long N-

terminal tail in pfDHFR is located on the surface of pfDHFR-TS, and a hydrogen bond 

network is formed among residues GLN4, VAL5, ASP7, VAL8, and PHE9. Thus, the N-

terminal tail plays an important role in maintaining the stability of the protein structure.  

The N-terminus is remote from the active region of the DHFR domain, and the exact 

functional role of this tail is unknown yet, but it has been reported that the N-terminal tail 

is crucial in modulating the activity of pfDFHR-TS protein31, 32, 150. 

 

 

 

N-Terminal tail 

TS 

DHFR 

TS 

DHFR 

Fig 4.1 The dimeric structure of the bifunctional pfDHFR-TS protein. The tail in red 

color is the N-terminus in pfDHFR domain 
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To obtain a deeper understanding of the role of N-terminal tail in pfDHFR, the 

truncation of N-terminal tail in the pfDHFR-TS monomer has been studied previously150. 

The result showed that deleting MET2 or further deleting GLU3 in the N-terminus did not 

perturb the activity of pfDHFR at all. Thus, it is concluded that MET2 and GLU3 might 

not be important for maintaining the pfDHFR activity. However, poorer activity was 

observed after the further deletion of residue GLN4 and VAL5 in the N-terminal tail. The 

activity of pfDHFR is even completely prohibited after further deleting CYS6 and more 

subsequent residues. Besides the study of N-terminal tail in pfDFHR-TS monomer, 

Dasgupta and Anderson also examined the effect of N-terminus on the activity of DHFR 

in the full-length dimeric pfDFHR-TS protein through single-turnover experiments31. After 

deleting the residues from 2 to 5, the mutant DHFR rate is only about half of that in the 

wild type. However, different from the results in pfDHFR-TS, deleting the 22 residue N-

terminal tail in L. major DHFT-TS can surprisingly increase the DHFR rate. Therefore, the 

mechanism of N-terminal regulating DHFR activity is different for different species.  

In spite of the findings in the role of N-terminal tail in pfDFHR, unsolved problems 

still exist. Up to now, there is not a solid explanation for the decreased DHFR activity 

causing by deleting the N-terminal tail. One possible explanation is that the deletion of the 

N-terminal tail disturbs the interactions of N-terminus with Insert II or αβ loop (residue 

141-184), which may further perturb the geometry of Insert II or αβ loop31. Even though 

Insert II and αβ loop are not in the active sites, they play an important role in keeping the 

conformation of active sites. The changes of active site conformation may alter the DHFR 

activity. However, this statement is lack of support in either experimental or computational 
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study. Thus, further study is needed to verify this statement. A reasonable explanation for 

decreasing pfDHFR activity by deleting the N-terminal tail will provide insight into novel 

strategies in inhibiting malaria parasites DHFR-TS. 

The physical interactions between DHFR and TS are essential for maintaining the 

catalytic function of pfTS32.  Furthermore, it is also demonstrated that only the right 

conformation of pfDHFR can retain an active pfTS. Since the N-terminal tail may play an 

important role in keeping the pfDHFR in a correct conformation, it is possible that the 

deletion of N-terminal tail may change the conformation of DHFR domain, and thus disturb 

the communication between DHFR and TS domains. However, the function of N-terminal 

in maintaining the domain-domain communication has not been verified, and it is not clear 

how such communication affect the protein function. 

In present study, we performed molecular dynamics (MD) simulations for the full-

length dimeric wild type pfDHFR-TS and the mutant with deletion of the N-terminal tail 

(residue from 1 to 5), with the aim to understand: 1) the domain-domain interaction in 

bifunctional DHFR-TS, 2) the role of N-terminal tail in modulating the domain-domain 

interactions, 3) the role of N-terminal tail in maintaining the conformation of DHF binding 

pocket conformation, and 4) the role of N-terminal tail in maintaining the activity of 

pfDHFR-TS. In this study, covariance matrix analysis and principal component analysis 

was utilized to demonstrate the importance of the N-terminal tail in the domain-domain 

communication of the dimeric bifunctional protein. This study also proposed that the 

decreased activity by the deletion of the N-terminal tail is due to the disturbance of the 

binding site of DHF, especially SER108. Therefore, the N-terminal tail, even though is 
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remote form the active site, is important in preserving the active site conformation. This is 

the first computational study that focused on the full-length dimeric pfDFHR-TS with the 

aims to understand the domain-domain interaction and the effect of the distant mutations 

on the conformation of the active site. 

4.2 Methods 

To assess the effect of the N-terminal tail on the communication and catalysis of 

pfDHFR-TS, we simulated the wild type enzyme as well as the mutant bound to DHF and 

NADPH cofactor. The wild type structure and the mutant structure is obtained from the 

crystal structure (PDB ID: 4DPD151). In the following steps of our study, we performed 

molecular dynamics simulations, covariance matrix analysis, principle component analysis, 

and molecular mechanics/generalized Born surface area (MM/GBSA)19 free energy 

calculations. The detailed description of the methods used in this study is presented below. 

4.2.1 System preparation 

The initial coordinates for wild type pfDHFR-TS crystal structure are obtained from 

the protein data bank, with PDB ID 4DPD. The mutant is obtained by manually deleting 

the N-terminal tail in the wild type protein. Both the wild type and the mutant are in the 

form of dimer. In the crystal structure, each dimer is bounded to one DHF, one NADPH, 

and two UMP ligands. Parameter files of small ligands (DHF, NADPH, UMP) are obtained 

from ParamChem through the CHARMM General Force Field (CGenFF) program117. The 

initial structures were built using c35b6 CHARMM13 package with CHARMM36 force 
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field. The missing hydrogen coordinates were added by applying the hbuild command in 

CHARMM. The energy minimization of the crystal structure were performed by 

CHARMM to remove the nonphysical contacts. During energy minimization, a harmonic 

restraint with a restraint force constant reducing from 30 kcal/mol/Å2 to 5 kcal/mol/Å2 was 

applied over 26 cycles in vacuum. In each cycle, the structures were first minimized for 

3000 steps using the steepest decent (SD) algorithm, followed by another 5000 

minimization steps applying the Adopted Basis Newton-Raphson (ABNR) algorithm. A 

cutoff of 14 Å was applied. 

Each system was solvated in a periodic cubic box containing TIP3P water with a 

density of 1 g/ml. The system was neutralized and maintained at a salt concentration of 

0.15 M by adding Na+ cations and Cl- anions. 

4.2.2 Molecular dynamics simulation 

Before running the MD simulation, the energy of the system was minimized in 

NAMD 2.10118. In the process of energy minimization, , 7000 steps of conjugate gradients 

(CG) energy minimization were performed for the solvent molecules with the coordinates 

of protein-ligand complex and all crystal water at fixed position, and then the whole system 

were minimized for 9000 steps applying the method of CG. 

All simulations were preformed using NAMD 2.10-GPU and the CHARMM36 

force field119. During each simulation, the system was first heated from 100 K to 300 K 

within 1.6 ns with a temperature increment of 0.25 K every 2000 steps. After equilibrating 

for another 6.4 ns, a production run of 172 ns was performed for the system. The time step 
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is 1 fs for heating and equilibration, and 2 fs for production run. All bonds between heavy 

atoms and hydrogen atoms were constrained through the SHAKE algorithm all through the 

simulations to avoid imprecise movement of the hydrogens in proteins. The particle Mesh 

Ewald (PME) method120 with a grid spacing of 1.0 Å was applied to calculate the long 

range Coulombic interactions in the neutralized system. The van der Waals potential 

energy was smoothly truncated between 10.5 Å and 12.0 Å through a smooth switching 

function. For each MD simulation, the NPT ensemble was applied to the system. The 

constant temperature is maintained at 300K through Langevin dynamics121, while the 

constant pressure is controlled to 1 atm using the Langevin piston Nosé-Hoover method122.  

4.2.3 Correlation and Principle Component Analysis  

Dynamic cross-correlation matrix152 between C-alpha atoms of all residues were 

calculated for the last 152 ns of the 180 ns MD simulation trajectory using the CHARMM 

c35b6 package. The equation for calculating the normalized covariance is: 

𝐶𝑖𝑗 =
〈∆𝑟𝑖⃗⃗⃗ (𝑡) ∙ ∆𝑟𝑗⃗⃗⃗(𝑡)〉

(〈∆𝑟𝑖⃗⃗⃗ (𝑡)2〉 〈∆𝑟𝑗⃗⃗⃗(𝑡)2〉)
1/2

 
(4.1) 

where ∆𝑟𝑖⃗⃗⃗ (𝑡) = 𝑟𝑖⃗⃗⃗ (𝑡) − 〈𝑟𝑖⃗⃗⃗ (𝑡)〉. 𝑟𝑖⃗⃗⃗ (𝑡) is the position vector of the C-alpha atom of the ith 

residue at time t. The bracket “〈 〉” denote the time average of the value within the bracket. 

The correlations between C-alpha atoms are in the range from -1 to 1. The higher the 

absolute value, the stronger the correlation or anti-correlation is. Positive value (correlation) 

indicates that both residues move towards the same direction, and negative value (anti-
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correlation) implies motions in opposite direction for most of the time. If the correlation 

between two residues is around zero, then they are uncorrelated. 

Examining the distribution of the protein conformational space can help to 

understand the relationship between different structures. Due to the high dimension of the 

protein conformational space, it is impractical to directly examine the conformational space. 

Therefore, it is necessary to produce a lower dimensional representation of the structural 

dataset. Usually, 3-5 dimensions are sufficient to capture more than 70% of the total 

variance in a given family of structures. Principle component analysis (PCA)153, 154 is a 

useful analysis that enable the projection of the high dimensional conformational space 

into the lower dimensional subspace. PCA provides a statistical analysis of molecular 

dynamics simulation trajectories, and has been applied for extracting the collective modes 

of displacement from MD trajectories. Through analyzing the mean-square displacement 

of all PCs, we are able to capture the non-harmonic motions of proteins. 

The PCA calculation is performed with the Bio3D package. All C-alpha atoms of 

the protein is selected for calculation. A 3N dimensional covariance matrix, C-matrix, 

associating with the positional deviation of the selected set of atoms is constructed. The 

elements of C-matrix are defined as: 

𝑐𝑖𝑗 = 〈(𝑥𝑖 − 〈𝑥𝑖〉)(𝑥𝑗 − 〈𝑥𝑗〉)〉 (4.2) 

where 𝑥𝑖 and 𝑥𝑗 are coordinates of atoms, and the brackets denotes the ensemble average.  

We applied PCA to 180 ns MD simulations with the aim to identify correlated 

motions in the pfDHFR-TS protein.  

4.3 Results and discussions 
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4.3.1 The domain-domain interaction in bifunctional DHFR-TS 

To understand the domain-domain interactions in bifunctional DHFR-TS, 

correlated motions between C-alpha atoms of all residue were calculated by normalizing 

the cross correlation matrix of atomic fluctuation over the MD trajectory. The plot of the 

correlation matrix is shown in the left graph of Fig. 4.2.  

There are strong correlations among residues in the DHFR domain. The Leu46 loop, 

which is important in facilitating the enzyme catalysis, is strongly correlated with residues 

in active site. The residues in active site are also correlated with each other. The N-terminal 

tail, including residues 1-5, is correlated with part of Insert 2 (residue 61~84), part of active 

site, and the αβ loop (residue 141~184). The above coupling indicates that except for local 

correlation, correlations also exit between distant residues.  

Besides correlations within one single domain, there are cross domain correlated or 

anti-correlated motions. The two DHFR domains are strongly anti-correlated, while the 

two TS domains are mildly correlated. There are mainly three regions which anti-correlate 

with one another in the two DHFR domains. The three major regions include the residues 

5~17, which is connecting N-terminal tail of DHFR, the Insert II  residues, and the αβ loop. 

In each single DHFR domain, the three regions also correlated with each other as 

mentioned above. The results suggest that the motions of Insert II and the αβ loop have 

great dependence on the motion of residue 5. If residue 5 is deleted, motions of these 

residues may be disturbed, and changes in DHFR conformation may occur.  It is still not 

clear about the implication of the communications between the two DHFR domains here. 
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The highly anti-correlated motion between the two DHFR domains may be necessary for 

the stabilization of the protein conformation and the regulation of signal transduction155.  

The domain-domain communication does not only exist in the pfDHFR-TS dimer, 

this behavior has been broadly studied previously156. In the HIV-1 protease dimer, the 

domain communications are suggested to be involved in functional energy transfer of the 

enzyme.  

 

 

4.3.2. The role of N-terminal tail in modulating the domain-domain interactions 

The deletion of N-terminal tail affects conformation of the dimer, which is 

important in modulating the domain-domain interaction. To understand the importance 

of N-terminal tail on the dimer conformation, the conformations before and after deleting 

Fig 4.2. The domain-domain interaction in bifunctional protein DHFR-TS. The left 

figure is for the wild type. The plot on the right is for the mutant with the deletion of N-

terminal tail in DHFR domains. 
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the N-terminal tail were studied. The distance between C-alpha atoms of asp54 residues 

and between C-alpha atoms of asp54 residues in both DHFR domains determines one 

conformation. As shown in the left graph of Fig. 4.3, the distance between C-alpha atoms 

of asp54 residues in both DHFR domains is highly correlated with the distance between C-

alpha atoms of Ile164 residues in both DHFR domains. This result indicates that both 

distance increases or decreases at the same time, thus it implies that the two DHFR domains 

are moving towards opposite directions. This is also consistent with the results shown in 

figure 4.2, which shows that the motion of the two DHFR domains in DHFR-TS dimer is 

highly anti-correlated.  
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Fig 4.3. These two plots represent the relationship between the distance of the asp54 

and the distance of ile164 in two DHFR domains. The left plot is for the wild type, and 

the right plot is for the mutant with the deletion of the N-terminal tail in pfDHFR. 
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Upon deleting the N-terminal tail, as shown in the right plot of Fig. 4.3, the 

distribution of the DHFR-DHFR domain conformation is changed, and there is no 

correlation between the two distance mentioned above, which indicates that the motion of 

neither the two asp54 residues nor the two ile164 residues in both DHFR domains are 

correlated or anti-correlated. These results are consistent with what are presented in figure 

4.2. The anti-correlated motions between residue asp54 or between residue ile164 in both 

DHFR domains are much weaker or even disappear upon deleting the N-terminal tail in 

the DHFR domain. After the deletion of N-terminal tail, the motions of two DHFR domains 

are in general much less correlated. 

N-Terminal tail is important in the interaction between the DHFR domain and 

the TS domain. Upon deleting the N-terminal tail, besides the decreased anti-correlated 

motions between the two DHFR domains in pfDHFR-TS dimer , the motion of the DHFR 

and TS domain in one monomer is also less anti-correlated. According to a previous 

experiment study31, the binding of the ligand UMP in TS domain can affect the activity of 

DHFR. If the TS domain is bound with UMP ligand, the DHFR rate is almost doubled. 

This result implies that domain-domain communication may occur through active sites 

communications in both domains. As shown in the left plot of figure 4.2, within one 

monomer, the motion of the part of DHFR and TS domain are mildly anti-correlated with 

each other. Residue 470 in TS active site is anti-correlated with residue 108 in DHFR active 

site. However, upon the deletion of the N-terminal tail, the anti-correlated motion between 

DHFR and TS domain is significantly decreased, and there is no anti-correlation between 

residue 108 and residue 407. This result indicates that the N-terminal tail of DHFR domain 
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can affect the domain-domain communication, which may further affect activity in one 

single domain.  

N-Terminal tail is important for the correlated motion within the DHFR 

domain. The experiment report31 shows that the DHFR rate is decreased by 2-fold with 

the deletion of the N-terminal tail in DHFR. Since the Leu46 loop is important in 

facilitating the catalytic function of pfDHFR26, it is necessary to examine the effect of the 

N-terminal tail on the motion of the Leu46 loop. As shown in figure 4.2, the correlated 

motion between the Leu46 loop and the active site residues is highly decreased in the 

mutant. For instance, the residue SER108 is strongly correlated with the entire Leu46 loop, 

as well as all other residues within the active site in the wild type, however, these 

correlations are all weakened upon the deletion of the N-terminal tail.   
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We then applied PCA to further identify the correlated motions within the DHFR 

domain, and the result is shown in figure 4.4. According the analysis of the first principal 

component, the N-terminal tail, the Insert 2, the αβ loop, and the loop connecting residue 

107 and 129 are highly correlated with each other, and all these correlated motions are 

greatly weakened when the N-terminal tail is deleted. Therefore, the N-terminal tail is 

crucial in maintaining the dynamic behavior of the DHFR domain. The deletion of N-

terminal tail can lead to the decrease of DHFR activity through changing the dynamic 

motion of the Leu46 loop.        

4.3.3 The role of N-terminal tail in maintaining the conformation of DHF binding 

pocket conformation 

The conformation of the binding pocket is very important in maintaining the 

catalytic function of enzyme. Understanding the influence of N-terminal tail on 

conformation of the DHFR binding site can help to explain the effect of N-terminal tail on 

enzyme activity. To gain more insight into the effect of N-terminal tail on the DHFR active 

site, we examined the interactions in the DHF binding pocket. Figure 4.5 shows part of the 

DHF binding site, which presents the major change of this binding site upon the deletion 

of N-terminal tail. The left graph is for the wild type, while the right graph represents the 

Fig 4.4. PCA of the wild type and the mutant. The left plot is for the first PC, and the 

right plot is for the second PC. The black line represents the wild type, while the red 

line represents the mutant with the deletion of the N-terminus. 
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binding pocket of the mutant. In the wild type, both SER108 and LYS56 form stable 

hydrogen bond with the DHF ligand. However, upon deleting the N-terminal tail, the 

hydrogen bond between SER108 and DHF is broken, and LYS56 no longer has close 

contact with DHF.  

 

 

 

The structural change of DHF binding pocket is related to the conformation change 

of DHF. According to figure 4.6, the atoms, which initially interacts with lys56 in the wild 

type, rotate, and move further away from lys56 in the mutant, and thus have quite weak 

interactions with this residue.  

Fig 4.5. Part of the DHF binding site. The left figure is the binding site conformation 

for the wild type, and the right figure is for the mutant with the deletion of the N-terminal 

tail. The wild type is colored in yellow, and the mutant is in green. 
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The conformation change of the ligand also cause significant change of the binding 

free energy between DHF and residue lys56, which increase by nearly 12 kcal/mol upon 

deleting the N-terminal tail, as shown in figure 4.7. The molecular mechanics/generalized 

Born surface area (MM/GBSA) calculation is applied to evaluate the interactions between 

the ligand DHF and each individual amino acid in the DHFR domain. Figure 4.7 shows the 

changes of the free energy between DHF and individual amino acid upon deleting the N-

terminal tail. The result indicates that even the N-terminal tail is distant from the active site 

of DHFR, the deletion of this tail still cause significant change of binding free energy 

between DHF and individual residue in the binding pocket. We noticed that as the breaking 

of the hydrogen bond between DHF and the SER108 upon deleting the N-terminal tail, the 

binding free energy between them is increased. This result further supports that a remote 

Fig 4.6. The averaged structure of DHF ligand obtained from MD simulation. The 

yellow structure represents the wild type, and the green one represents the mutant with 

the deletion of the N-terminal tail. 
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tail could perturb both the conformation and free energy of the active site in DHFR. 

SER108 plays a very important role in maintaining the activity of pfDHFR. Previous study 

has found that most mutations at position 108 could perturb the enzyme activity 

dramatically107. They substituted SER108 with all other 19 amino acid respectively, and 

found that only 9 mutants exhibited detectable activity. Even the active mutants, except for 

S108N, showed much poorer DHFR activity. Therefore, it is quite possible that any 

perturbation around SER108 could cause changes of DHFR activity.  
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Figure 4.7 Changes of binding free energy between each residue and DHF upon deleting 

the N-terminal tail in the DHFR domain 
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4.4 Conclusion 

This study provides evidence that the N-terminal tail plays an important role in 

modulating the domain-domain communications in pfDHFR-TS. The anti-correlated 

motions between the two DHFR domains, as well as the correlated motions between the 

DHFR domain and the TS domain are significantly weakened upon the deletion of the N-

terminal tail. The communications between domains are likely to be important in 

stabilizing protein conformations. 

The deletion of N-terminal tail also causes significant conformation changes in the 

DHFR active site. The local environment change around the residue SER108 may be an 

important reason for the decreased DHFR activity in the mutant, since SER108 is crucial 

for the functionally active DHFR enzyme. Also, the deletion of N-terminal tail can lead to 

changes in the dynamic motion of the Leu46 loop, which may further its motions in 

facilitating the DHFR catalytic function.        
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