
Clemson University
TigerPrints

All Dissertations Dissertations

8-2016

Algebraic Geometry Arising from Discrete Models
of Gene Regulatory Networks
Qijun He
Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
He, Qijun, "Algebraic Geometry Arising from Discrete Models of Gene Regulatory Networks" (2016). All Dissertations. 1730.
https://tigerprints.clemson.edu/all_dissertations/1730

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268649683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1730&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1730&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1730&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1730&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/1730?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1730&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

ALGEBRAIC GEOMETRY ARISING FROM DISCRETE MODELS
OF GENE REGULATORY NETWORKS

A Dissertation
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
Mathematical Sciences

by
Qijun He

August 2016

Accepted by:
Dr. Matthew Macauley, Committee Chair

Dr. Elena Dimitrova
Dr. Svetlana Poznanovikj

Dr. Neil Calkin

Abstract

Discrete models of gene regulatory networks have gained popularity in computational

systems biology over the last dozen years. However, not all discrete network models reflect the

behaviors of real biological systems. In this work, we focus on two model selection methods and

algebraic geometry arising from these model selection methods.

The first model selection method involves biologically relevant functions. We begin by

introducing k-canalizing functions, a generalization of nested canalizing functions. We extend

results on nested canalizing functions and derived a unique extended monomial form of arbitrary

Boolean functions. This gives us a stratification of the set of n-variable Boolean functions by

canalizing depth. We obtain closed formulas for the number of n-variable Boolean functions

with depth k, which simultaneously generalizes enumeration formulas for canalizing, and nested

canalizing functions. We characterize the set of k-canalizing functions as an algebraic variety

in F2n

2 . Next, e propose a method for the reverse engineering of networks of k-canalizing func-

tions using techniques from computational algebra, based on our parametrization of k-canalizing

functions. We also analyze binary decision diagrams of k-canalizing functions.

The second model selection method involves computing minimal polynomial models us-

ing Gröbner bases. We built up the connection between staircases and Gröbner bases. We pro-

vided a necessary and sufficient condition for the ideal I(V) to have a unique reduced Gröbner

basis, using the concept of a basic staircase. We also provide a sufficient combinatorial charac-

terization of V ⊂ Nn
p that yields a unique reduced Gröbner basis.

ii

Dedication

To my parents, Hua Wang and Shiqiang He.

iii

Acknowledgments

Foremost, I would like to express my deepest gratitude to my advisor, Matthew Macauley,

whose immense knowledge, wisdom and encouragement has made my past five years an amazing

life-changing experience. I am grateful for the guidance and mentorship he generously offered,

not only on my career development, but also on how to be a good citizen in academia and what

is truly important in life.

I would like to thank my committee members, Svetlana Poznanovikj and Neil Calkin, for

their helpful comments during the research process and for all you have taught me in and out of

the classroom. Sincere thanks to Elena Dimitrova for all of your insight and many contributions,

especially with the unique Gröbner basis work.

During the course of my graduate studies, I have benefited significantly from the broad

range of courses offered at Clemson. Besides, I have been fortunate to work with a few great

scholars: Christine Heitsch, Elizabeth Drellich, Andrew Gainer-Dewar and Heather A. Harring-

ton during the Mathematics Research Communities program, as well as Brandilyn Stigler, who I

collaborated with remotely. Their expertise has enriched my research experience.

Finally, I am eternally grateful to my parents, Hua Wang and Shiqiang He, who brought

me to this wonderful world and have always been there for me. I am also extremely blessed to

have found my special one, Xiaoqing Gu, to accompany me throughout my Ph.D. journey, and

the unknown but exciting adventures ahead of me.

iv

Table of Contents

Title Page . i

Abstract . ii

Dedication . iii

Acknowledgments . iv

1 Introduction . 1
1.1 Gene Regulatory Networks in Molecular Biology 1
1.2 Reverse Engineering of Gene Regulatory Networks 3
1.3 Boolean Networks . 4
1.4 Model Selection . 7

2 Computational Algebra Basics . 8
2.1 Ideals and Varieties . 8
2.2 Gröbner Bases . 9
2.3 Toric Ideals and Toric Varieties . 12
2.4 Elimination Theory . 13

3 Canalization in Boolean networks . 15
3.1 Introduction . 15
3.2 Canalizing and Nested Canalizing Functions . 17
3.3 k-canalizing Functions . 19
3.4 Characterizations of k-canalizing Functions . 25
3.5 Enumeration of Boolean Functions by Canalizing Depth 31
3.6 k-canalizing Functions in F2n

2 . 36
3.7 Reverse Engineering with k-canalizing Functions 44
3.8 Binary Decision Diagram of k-canalizing Functions 48

4 Data Identification for Improving Gene Network Inference 55
4.1 Introduction . 55
4.2 Data Identification for Unique Model . 57
4.3 Staircases and Gröbner Bases . 59
4.4 A Sufficient Condition for Unique Reduced Gröbner basis 62

v

5 Conclusions and Discussion . 66
5.1 Significance of Results . 66
5.2 Future Work . 67

Bibliography . 69

vi

Chapter 1

Introduction

1.1 Gene Regulatory Networks in Molecular Biology

The word “gene” has become an increasing popular topic these days. Children learn

early that who we, and the living world around us, is encoded in each and every cell of the

organism. The concept of gene even shows up in common parlance, such as “it is in my genes”.

Indeed, genes hold the information to build and maintain an organism’s cells and pass genetic

traits to offspring. However, thinking of genes simply as a collection of building blocks of one’s

body paints an incomplete picture. It hides the fact that these “building blocks” know how to

communicate and interact with each other. In other words, genes also contain instructions for the

mechanisms through which genetic information is extracted and plays a role in cellular processes,

such as controlling the response of a cell to environmental signals and replication of the DNA

preceding the cell division. This process of genetic information extracting and utilizing is part

of what is known as gene regulation. Gene regulation is an intricate process whose complexity

makes it an extreme challenge for mathematical modeling, since it not only involves genes, but

also involves DNA, RNA, proteins, and small molecules. This gives rise to the notion of a gene

regulatory network (GRN). A GRN is a collection of regulators, which can be genes, proteins,

1

or enzymes, that interact with each other for a specific purpose. For example, a simple GRN

consists of one or more input genes, metabolic and signaling pathways, regulatory proteins that

integrate the input signals, several target genes, and the RNA and proteins produced from target

genes.

The first discovery of a GRN is widely considered to be the identification in 1961 of the

lac operon, discovered by Jacques Monod [23], in which proteins involved in lactose metabolism

are expressed by Escherichia coli and some other enteric bacteria only in the presence of lactose

and absence of glucose. Since its discovery, the lac operon has often been used as a model sys-

tem of gene regulation. Over the past five decades, improvements in biotechnology have greatly

accelerated the amount of experimental data available. While on the other hand, such explo-

sion of data brings growing challenges for organizing the overwhelming amounts of disparate

experimental data and for developing models that reflect the dependencies between the system’s

components. Different types of mathematical models have been developed in an attempt to cap-

ture gene regulatory mechanisms and dynamics [7, 18]. Most mathematical models of GRNs

have been given as systems of differential equations, but discrete modeling frameworks are in-

creasingly receiving attention for their use in offering global insights [34]. Discrete models tend

to be simpler and can be more intuitive than continuous models. Also, discrete models do not

depend on estimation of initial conditions or parameters which is quite an advantage over their

continuous counterparts. Moreover, discrete models consider the effects of individual compo-

nents within the network, not just measuring the network as a whole, so it is possible to observe

how altering or perturbing a subset of the components can affect system dynamics. Finally, some

discrete models have convenient algebraic representations, allowing us to employ tools and al-

gorithms from algebraic geometry and computational algebra to construct appropriate network

models.

One of the most studied discrete models is the Boolean Network, where each variable

can only take 0 or 1 as its value (often interpreted as “absent” and “present”, or “off” and “on”).

2

Boolean models were first introduced to biology in 1969 to study the dynamic properties of

gene regulatory networks [34]. They are useful in the case where one is interested in qualitative

behavior. In particular, when network dynamics are determined by logical interactions rather

than finely tuned kinetics, which may often be unknown, Boolean models would be one of the

preferred candidate models.

1.2 Reverse Engineering of Gene Regulatory Networks

Technological advances in the life sciences have triggered an enormous accumulation

of experimental data representing the activities of the living cell. Furthermore, few GRNs are

as well understood as the lac operon, which prohibits model construction that is purely based

on knowledge of the GRN. Therefore, instead of constructing a model and tune it to fit the data,

people develop modeling methods that generate models directly from the data. These data-driven

modeling methods are sometimes referred to as reverse engineering.

Generally speaking, the goal of reverse engineering in systems biology is to recover the

network topology and regulatory functions of a network from observations. Network topology

refers to the physical structure of the network, that is, how the components in the network are

connected. It is often encoded as a directed graph, or a wiring diagram, where vertices repre-

sent the components of the network (genes, DNA, RNA, proteins, small molecules, etc.) and a

directed edge is drawn between two vertices if one component is directly affected by the other

(regulation, activation, prohibition etc.). Regulatory functions refer to the mechanism that how

each component is affected by other components.

3

1.3 Boolean Networks

Given a gene regulatory network, one can create a Boolean network model by assigning

Boolean variables to each node and representing the interactions as Boolean functions. Boolean

networks are discrete-time, discrete-space dynamical systems first proposed by Stuart Kauffman

in 1969 as models of GRNs [34]. A similar Boolean framework, called logical models, was

proposed by René Thomas in 1973 [59].

If we take the vertex set of a Boolean network to be V = {1, 2, . . . , n}, then the state of

a node i is a Boolean variable xi ∈ F2 = {0, 1}, and the vector

x(t) = (x1(t), . . . , xn(t)) ∈ Fn2

is called the system state. Time is also discretized into steps t = 0, 1, 2, Each node j has an

update function fj : Fn2 → F2 that determines the value of xj for the next time step. Though the

domain of fj is Fn2 , this function can only depend on the states of the nodes i such that (i, j) is an

edge in the wiring diagram. Sometimes, these functions are written using Boolean variables, and

other times they are written in polynomial form. For example, if we want to say that “gene C is

on if gene A is on and enzyme B is not present”, where by “on” we mean “being transcribed”,

we may write

fC(t+ 1) = fC(A(t), B(t)) = A(t) ∧B(t) . (1.1)

Since it is understood that Boolean variables are functions of time, we will usually just write the

above example as

fC(A,B) = A ∧B .

At each time-step t, the states of each node are recomputed via the global update function

f : Fn2 → Fn2 to get a new system state, x(t + 1). The most commonly used global update

4

function in Boolean models simply updates the nodes synchronously:

x(t+ 1) = f(x(t)) = (f1(x(t)), . . . , fn(x(t)) . (1.2)

Some models use an asynchronous update [44], but this raises the question of which of the

possible n! update orders to use. Thus, we will henceforth assume that a synchronous global

update is used.

Definition 1. A Boolean network is a pair (X,F) consisting of a finite set of nodes X and a set

F = {fi}i∈X of update functions, where each fi : Fn2 → F2.

Given a Boolean network (X,F) as defined above, the wiring diagram is easy to construct

– it is a directed graph with vertex setX and an edge (i, j) for each xi that appears in the equation

for fj and is not fictitious. One can also construct its global update map f : F2n

2 → F2n

2 , its wiring

diagram, and a directed graph, called its phase space, that completely encodes the dynamics.

Definition 2. The phase space of a Boolean network is the directed graph whose nodes are the

2n system states and whose edge set is

E = {(x, f(x)) | x ∈ Fn2}.

Each node in the phase space has exactly one out-going edge. Consequently, there are

two types of nodes: those that lie on a directed cycle, called periodic states, and those that do not,

called transient states. Every periodic state lies in a cycle of length k ≥ 1. States on length-1

cycles are called fixed points. Transient states lie on chains that lead into periodic cycles. A

transient state that has no predecessor is called a garden-of-Eden state.

As an example, consider a Boolean network on 3 nodes: X = {1, 2, 3} with update

functions F = {fi}3i=1 as shown in Figure 1.1.

Though Boolean networks are widely used as models of biological networks, one must

5

000 111

010 100 001 101

110 011

Phase space

x1 x2 x3

Wiring diagram

f1(x1, x2, x3) = x1 ∧ x2
f2(x1, x2, x3) = x1 ∧ x2 ∧ x3
f3(x1, x2, x3) = x2 ∧ x3

Figure 1.1: A simple Boolean network (X,F) on 3 nodes.

remember the old adage that “all models are wrong, but some models are useful.” Like any

mathematical model, Boolean networks have several artifacts that have drawn criticism. One of

these is the synchronous update: biological networks do not have a universal “central clock”. In

real gene regulatory networks, the state of each regulator is updated asynchronously. However,

making the simplifying assumption of synchronous update will often still lead us to the correct

overall network dynamics. A real gene regulatory network has to be robust enough so that

it can withstand, so changing update order should not change the network dynamics drastically.

Another issue is that the network is assumed to be static, whereas in reality, edges are continually

added, removed, and changed. For example, consider a model of a disease network where edges

represent social contacts. These social contacts are usually temporary. You might be in contact

with person A in the morning, and then person B in the evening. In this case, you cannot infect

person A with person B’s disease, despite the fact that you’re connected to both in a static social

network. The interdisciplinary field of “evolving networks” is very popular due to these issues

and more, but it is still in its infancy [3]. This is less of an issue for molecular networks, since

molecular networks are often static.

We can rewrite a Boolean function in logical expression as a polynomial using the fol-

6

lowing arithmetic:

f(x, y) = x ∧ y f(x, y) = xy

g(x, y) = x ∨ y g(x, y) = x+ y + xy

h(x) = x h(x) = 1 + x.

Hence a Boolean network is a special case of polynomial dynamical systems (PDS) [37] with

F = F2. The fact that the update function can be expressed as polynomial allows us to employ

tools and algorithms from algebraic geometry and computational algebra to construct appropriate

network models. In the remainder of this dissertation, when we mention a Boolean function, we

would assume it is written in polynomial form.

1.4 Model Selection

One prominent problem in the application of Boolean models is that of selecting a model

that is “biologically meaningful”. Random Boolean networks were initially introduced by Kauff-

man [34, 35] as gene network models. In this setup, input variables are randomly selected for

each node, (i.e., the wiring diagram is randomly wired), and each component is assigned a ran-

dom update function according to a specified probability distribution. However, this model is

often not a good mimic of real biological systems, since not all wiring diagrams and Boolean

functions exhibit biological behavior. As a result, different model selection strategies have been

developed, with the hope that restricting the model selection to networks with more appropriate

dynamic behaviors. Some model selection strategies incorporate appropriate restrictions about

the network topology so that the selected model will possess some desired property [21, 60].

Other model selection strategies restrict the update functions to be some specific biologically

motivated classes of functions. For instance, the chain functions [19], the biologically meaning-

ful functions [50], and the nested canalizing functions [32] have all been proposed due to their

biologically relevant properties.

7

Chapter 2

Computational Algebra Basics

2.1 Ideals and Varieties

Ideals and varieties are essential structures in discrete modeling, especially for their utility

in reverse engineering. Here, we include several key definitions and properties, as presented in

[47].

Definition 3. Let F be a field and f1, . . . , fs ∈ F[x1, . . . , xn]. Then the set

V(f1, . . . , fs) = {(a1, . . . , an) ∈ Fn : fi(a1, . . . , an) = 0, 1 ≤ i ≤ n}

is the affine variety defined by f1, . . . , fs.

Thus, an affine variety V(f1, . . . , fs) ⊆ Fn is the set of all solutions of the system of

equations f1(x1, . . . , xn) = · · · = fs(x1, . . . , xn) = 0. Several important relationships exist be-

tween ideals and affine varieties. In particular, given a variety V ∈ Fn, the set of all polynomials

that vanish on V forms an ideal.

8

Definition 4. Let V ∈ Fn be an affine variety, then we set

I(V) = {f ∈ F[x1, . . . , xn] : f(a1, . . . , an) = 0, for all (a1, . . . , an) ∈ V }.

The crucial observation is that I(V) is an ideal, called the ideal of V .

On the other hand, if I ⊆ F[x1, . . . , xn] is an ideal, then

V(I) = {x ∈ Fn : f(x) = 0,∀f ∈ I}

is an affine variety. In particular, if I = 〈f1, . . . , fs〉, then V(f1, . . . , fs) = V(I). We can think

of an ideal I as a collection of relations and V(I) is the set of points that satisfy these relations.

As some relations can be derived from other relations, we just need to check the set of relations

f1, . . . , fs that generates the ideal I instead of checking all relations in I .

An important relation between ideals and their associated varieties is the Ideal-Variety

Correspondence, a result of Hilbert’s well-known Nullstellensatz. For a field F, this correspon-

dence tells us that

1. For V ⊆ Fn, V(I(V)) = V .

2. If F is algebraically closed and I is a radical ideal, then I(V(I)) = I .

In the case of Boolean networks, we will be working with polynomials over F2, which is not

algebraically closed.

2.2 Gröbner Bases

As mentioned previously, instead of working on the whole ideal, it is often sufficient

to work on a set of polynomials that generates the ideal, or a basis of the ideal. In practice,

9

people often prefer the basis to have some desired property, and consist of as few polynomials

as possible. In particular, Gröbner bases play critical roles in PDS models of GRNs. Here, we

present several definitions and properties associated with Gröbner bases which may be found in

[47, 62]. A Gröbner basis is dependent upon its so-called monomial ordering. A polynomial in

F[x1, . . . , xn] is a linear combination of monomials of the form xα := xα1
1 · · ·xαnn over k, where

α is the n-tuple exponent α = (α1, . . . , αn) ∈ Nn.

Definition 5. A monomial order is a total order on Nn, satisfying:

α ≺ β =⇒ α + γ ≺ β + γ,

0 ≺ α,

for any α, β and γ in Nn.

A monomial order is a total order on Nn that is compatible with polynomial multiplication

and the degree of each variable. It is a natural extension of the elementary concept of degree for

multivariate polynomials.

Example 6. One common monomial ordering is the lexicographic order, which can be consid-

ered an alphabetical ordering. Here α ≺lex β if the leftmost nonzero entry of β − α is posi-

tive. Notice that a particular order of the variables is assumed, and by changing this, we ob-

tain n! nonequivalent lexicographic orderings. For example, under the lexicographic order with

z ≺ y ≺ x, we have xz ≺ xy.

Definition 7. Let f =
∑

α∈Nn aαx
α ∈ F[x1, . . . , xn] be nonzero and ≺ be a monomial order.

Then

1. The multidegree of f is multideg(f) = max≺{α ∈ Nn : aα 6= 0}.

2. The leading coefficient of f is LC(f) = amultideg(f) ∈ F.

10

3. The leading monomial of f is LM(f) = xmultideg(f).

4. The leading term of f is LT (f) = LC(f) · LM(f).

Finally, for an ideal I ⊆ F[x1, . . . , xn], LT (I) is the set of leading terms of polynomials

in I , and 〈LT (I)〉 is the ideal generated by LT (I). 〈LT (I)〉 is called the initial ideal of I . We

can now formally define a Gröbner basis.

Definition 8. Let ≺ be a monomial order and I ⊆ R[x1, . . . , xn] be nonzero. Then a subset

G = {g1, . . . , gt} is a Gröbner basis for I if 〈LT (g1), . . . , LT (gt)〉 = 〈LT (I)〉. A Gröbner basis

is reduced if the leading coefficient of each element of the basis is 1 and no monomial in any

element of the basis is in the ideal generated by the leading terms of the other elements of the

basis.

The well-known Hilbert Basis Theorem tells us that this basis exists and is finitely gen-

erated. Given a fixed monomial ordering, an ideal I has a unique reduced Gröbner basis.

Example 9. Let I = 〈f1, f2〉 ∈ Z[x, y], with f1 = x and f2 = x2 + y. Using lexicographic order

with y ≺ x, y = x · f1 + 1 · f2, so y ∈ 〈LT (I)〉. However, y is divisible by neither x nor x2, so

y /∈ 〈LT (f1), LT (f2)〉. Therefore I is not a Gröbner basis for this ideal.

Even with a fixed monomial ordering, polynomial division is not unique, as it depends

on the order of the divisors.

Example 10. Let f1 = y2 +1, f2 = xy+1 ∈ Z[x, y] and f = 2xy2 +x−y. Using lexicographic

order with y ≺ x and the division algorithm for multivariate polynomials in [47], if we divide

by f1 and then f2, we obtain a remainder of −x − y; however, if we reverse the order of the

divisors, our remainder is x− 3y.

If we are dividing by a Gröbner basis, however, our remainder is unique regardless of the

order of the divisors. The normal form of a polynomial f ∈ F[x1, . . . , xn] with respect to an

11

ideal I ⊆ F[x1, . . . , xn] is the remainder when dividing f by G, where G is the Gröbner basis

for I . This normal form is unique up to monomial order, and f lies in I if and only if the normal

form for f is zero. Moreover, the normal form consists of monomials that are not in 〈LT (I)〉.

The monomials which do not lie in 〈LT (I)〉 are called standard monomials. Let SM(I) denote

the set of standard monomials of I . In particular, when I = I(V) is the ideal of a finite set V , we

have |SM(I)| = |V | [11].

Gröbner basis computation is still an active area of research. The first algorithm for doing

so is known as Buchberger’s Algorithm, first introduced in 1965. Buchberger’s Algorithm can be

seen as a multivariate, non-linear generalization of both Euclid’s algorithm for computing poly-

nomial greatest common divisors, and Gaussian elimination for linear systems. Worst-case com-

putational complexity for computing Gröbner bases is believed to be exponential [42], although

several speedups and special cases exist. For instance, there exist fairly efficient algorithms when

the ideal is zero dimensional [1], or when it is toric [56]. Newer Gröbner basis algorithms and

speedups have been developed, as in [16, 17, 20], some of which are used by current computer

algebra systems.

In addition to their utility in discrete modeling, Gröbner bases have various applications

in computational algebra. For instance, they are used to solve multivariate systems of polynomial

equations, to determine whether a polynomial belongs to a given ideal [47], to determine whether

or not two sets of polynomials give rise to the same ideal, and in elimination theory, which we

will introduce in the next section.

2.3 Toric Ideals and Toric Varieties

In Chapter 3, we will encounter a class of functions that form a so-called toric ideal. Toric

ideals and their corresponding varieties (toric varieties) are well-studied structures in algebraic

geometry with computationally desirable properties [12, 49].

12

Definition 11. A prime ideal generated by binomials is called a toric ideal.

Here are some examples of toric ideals:

Example 12. 〈x3 − y2〉 ⊆ C[x, y].

Example 13. 〈xz − yw〉 ⊆ C[x, y, z, w].

Example 14. 〈xixj+1 − xi+1xj : 1 ≤ i < j ≤ d− 1〉 ⊆ C[x1, . . . , xd].

Since prime ideals are radical, the Ideal-Variety Correspondence tells us that varieties

corresponding to a toric ideals are also toric. The geometry of a toric variety is fully determined

by the combinatorics of its associated fan, which often makes computations far more tractable.

For example, one can compute a Gröbner basis of an ideal of a toric variety by only looking at

the corresponding integer lattice [56, 57].

2.4 Elimination Theory

An important application of Gröbner bases is in elimination theory. In commutative alge-

bra and algebraic geometry, elimination theory is the classical name for algorithmic approaches

to eliminating some variables between polynomials of several variables. One can think of an

ideal as a collection of relations that variables must satisfy. An ideal is often is described by

giving its generating set (or a basis), which is a subset of relations that imply all relations in the

ideal. In practice, people are often interested in the relations among a specific subset of variables

in the ideal. For example, computing the projection of a variety onto a subspace. However,

these relations might not be given directly in the generating set. Hence, one might need to think

of a smart way to compute these relations. In other words, we would like to “eliminate” other

variables in the ideal and only focus on the variables that we are interested in.

Definition 15. Let I ⊆ F[x1, . . . , xn] be an ideal. The ith elimination ideal Ii of I is the inter-

section Ii = I ∩ F[xi+1, . . . , xn].

13

As one can see from the definition, Ii encodes all the relations among variables xi+1, . . . , xn.

In order to describe Ii, one needs to compute a basis of Ii and this can be done efficiently using

a Gröbner basis.

Theorem 16. Let I ⊆ F[x1, . . . , xn] be an ideal. Let G be a Gröbner basis for I for the lexico-

graphic order ≺ with xn ≺ . . . ≺ x1. Then G∩F[xi+1, . . . , xn] is a Gröbner basis for Ii (for the

induced lexicographic monomial order).

Example 17. Let I = 〈x− t2 − 1, y − t3 − t〉 ⊆ F[t, x, y]. Note that

t2 − x+ 1, tx− y, ty − xx + x, x3 − x2 − y2

is a Gröbner basis for I with respect to lexicographic order y ≺ x ≺ t. Theorem 16 implies that

x3 − x2 − y2 generates the first elimination ideal.

14

Chapter 3

Canalization in Boolean networks

3.1 Introduction

The phenotype of an organism consists of its observable traits, such as eye-color, height,

or wing type. One can also speak of phenotypes of a population or species, such as having tails,

opposible thumbs, or body hair. The nature vs. nurture paradigm summarizes the two primary

factors that determine phenotype, both at the individual and population level: (i) environment

and (ii) genetic makeup, the latter of which is called genotype. On one hand, the phenotype of

an organism (or population) must be robust enough to withstand changes to its environment and

genotype. On the other hand, at the population level, it must be flexible enough to evolve and

better adapt to these changes. Canalization is a measure of the stability of a phenotype with

respect to outside changes.

The term “canalization” was coined by geneticist Conrad Hal Waddington in 1942 as an

attempt to quantify the reduced sensitivity of a phenotype to genetic and environmental per-

turbations [63]. Over 30 years later in [31], Kauffman introduced the notion of canalizing

Boolean functions, in order to accurately reflect the behavior of biological systems in the set-

ting of Boolean network models. Thirty years after that, Kauffman and collaborators further

15

expanded the canalization concept and introduced the class of nested canalizing functions [32],

which can be thought of as functions that are fully “recursively canalizing.”

In the last decade, canalizing functions have been extensively studied by researchers in

the fields of mathematics, biology, physics, computer science, and electrical engineering. For

example, Shmulevich and Kauffman showed that canalizing functions have lower activities and

sensitivities than random Boolean functions, and this causes Boolean network models using these

functions to be more stable; see [55] and [33]. More work on the dynamical stability of canalizing

Boolean networks was done in [43] and in [30], where the authors explored the relationship

between the proportion of canalizing functions in a network, and whether it lies in the ordered

or chaotic dynamical regime. The evolution of canalizing Boolean networks was studied in

[58]. Fourier analysis has shown that canalizing Boolean networks maximize mutual information

[36]. On the more mathematical side, an exact formula was derived for the number of Boolean

canalizing functions in [28]. Canalizing functions have been generalized from Boolean to over

general finite fields in [45].

Nested canalizing functions (NCFs) have also gained significant attention. In [48] and

[29], the authors study the phase diagram of Boolean networks with NCFs. A recursive formula

for the number of nested canalizing functions was derived in [27], where they were shown to

be what the electrical engineering community calls unate cascade functions [6]. NCFs have

been studied algebraically through the lens of toric varieties [25], and in [40], where the authors

obtained a unique algebraic form by writing an NCF in extended monomial layers. This allowed

the authors to enumerate the number of NCFs. It also provided the tools for the development of

an algorithm in [22] to reverse engineer a nested canalizing Boolean network from partial data.

In [39], the authors generalized the notion of both canalizing and nested canalizing functions by

introducing the class of partially nested canalizing functions. Loosely speaking, these are the

functions that are “somewhat recursively canalizing.” The dynamics of Boolean networks built

with these functions has been studied in [39] and [24].

16

3.2 Canalizing and Nested Canalizing Functions

To make this chapter self-contained we will restate some well-known definitions; see,

e.g., [32]. This is also needed because there are slight variations in certain definitions throughout

the literature. Let F2 = {0, 1} be the binary field, and let f : Fn2 → F2 be an n-variable Boolean

function.

Definition 18. A Boolean function f(x1, . . . , xn) is essential in the variable xi if there exists a

sequence a1, . . . , ai−1, ai+1, . . . , an ∈ F2 such that

f(a1, . . . , ai−1, 0, ai+1, . . . , an) 6= f(a1, . . . , ai−1, 1, ai+1, . . . , an).

In this case, we say that xi is an essential variable of f . Variables that are non-essential are

fictitious.

S. Kauffman defined canalizing Boolean functions in [31] to capture the general stability

of gene regulatory networks. In that paper, a Boolean function f is canalizing in variable xi, with

canalizing input a and canalized output b, if, whenever xi takes on the value a, the output of f is

b, regardless of the inputs of other variables. As a consequence, constant functions are trivially

canalizing. We will soon see why it is more mathematically natural to exclude these functions,

among others. This is done by the following small adjustment to the original definition that does

not change the overall idea.

Definition 19. A Boolean function f : Fn2 → F2 is canalizing if there exists a variable xi, a

Boolean function g(x1, . . . , xi−1, xi+1, . . . , xn), and a, b ∈ F2 such that

f(x1, . . . , xn) =

b xi = a,

g 6≡ b xi 6= a.

17

In this case, xi is a canalizing variable, the input a is the canalizing input, and the output value b

when xi = a is the corresponding canalized output.

The only difference of our definition is the added restriction that g can not be the constant

function b. In other words, we require a canalizing function to be essential in its canalizing

variable. The original definition was motivated by the stability of canalizing functions while our

definition tries to capture the dominance of the canalizing variable. At first glance, our additional

restriction might seem artificial or insignificant. However, it is unequivocally more natural when

considering the algebraic structure of Boolean functions, which is at the heart of the stratification

derived in this chapter.

In Definition 19, when the canalizing variable does not receive its canalizing input a,

the function g obtained by plugging in xi = a can be an arbitrary Boolean function. To better

model a dynamically stable network, in [32] Kauffman proposed that in this case, there should

be another variable xj that is canalizing for a particular input, and so on. This leads to the

following definition, where σ is a total ordering, or permutation, of {1, . . . , n}. We write this as

σ = σ(1), σ(2), . . . σ(n), and say that σ ∈ Sn, the symmetric group on n letters.

Definition 20. A Boolean function f : Fn2 → F2 is nested canalizing with respect to the permu-

tation σ ∈ Sn, inputs ai and outputs bi, for i = 1, 2, . . . , n, if it can be represented in the form:

f(x1, . . . , xn) =

b1 xσ(1) = a1,

b2 xσ(1) 6= a1, xσ(2) = a2,

b3 xσ(1) 6= a1, xσ(2) 6= a2, xσ(3) = a3,

...
...

bn xσ(1) 6= a1, . . . , xσ(n−1) 6= an−1, xσ(n) = an,

bn xσ(1) 6= a1, . . . , xσ(n−1) 6= an−1, xσ(n) 6= an.

(3.1)

18

The idea of nested canalizing is in that some sense, it is “recursively canalizing” for

exactly n steps. As an analogy, one can consider a nested canalizing function as an onion. We

can peel off variables one at a time by not taking the canalizing input of each variable (i.e., by

plugging in xi = ai). Before we peel off the ‘inner’ variables, we need to peel off the ‘outer’

variables first. In the end, we are left with the constant function bn. We will return to this onion

analogy several times throughout this paper to highlight our main ideas.

Remark 21. Since bn 6= bn, a nested canalizing function is essential in all n variables.

If a Boolean function is nested canalizing, then at least one (of all n!) ordering of the

variables yields an equation in the form of Eq. (3.1). Note that such variable orderings are not

unique, and the number of such orderings depends on the function f . For example, we can

write the function f1(x, y, z) = xyz as in Eq. (3.1) using any of the 6 orderings of the variables

{x, y, z}. In contrast, for f2(x, y, z) = x(yz+ 1), only 2 orderings would work, namely (x, y, z)

and (x, z, y).

3.3 k-canalizing Functions

Nested canalizing functions have a very restrictive structure and become increasingly

sparse as the number of input variables increases [27]. In a real network model, it is often

the case that not all variables exhibit nested canalizing behavior. Moreover, the first several

canalizing variables play more central roles than the remaining variables. Thus, it is natural to

consider functions that are canalizing, but not nested canalizing. For example, one function in

the segment polarity gene in by Albert and Olhmer’s seminal paper [4] is canalizing but not

nested canalizing. For another example, one can look at the lactose (lac) operon, which regulates

the transport and metabolism of lactose in Escherichia coli. In [52], a simple Boolean network

19

model of the lac operon was proposed, where the regulatory function for lactose was

fL(t+ 1) = Ge ∧ [(L ∧ E) ∨ (Le ∧ E)] .

In a sentence, this means “internal lactose (L) will be present the following timestep if there is

no external glucose (Ge), and at least one of the following holds:

• there already internal lactose present, but the enzyme β-galactosidase (E) that breaks it

down is absent;

• there is external lactose (Le) available and the lac permease transporter protein (also rep-

resented by E since they are co-transcribed) are present.

The variable Ge (though sometimes considered a parameter) is canalizing because it acts as a

“shut-down” switch: if Ge = 1, then fL = 0 regardless of the other variables. In other words,

we can write this as

fL(Ge, Le, L, E) =

0 Ge = 1,

(L ∧ E) ∨ (Le ∧ E) Ge 6= 0.

The function g = (Le ∧ E) ∨ (L ∧ E) is not canalizing, and so the 5-variable function fL is

canalizing but not nested canalizing. In the framework that we are about to define, this function

has canalizing depth 1.

Due to both theoretical and practical reasons, a relaxation of the nested canalizing struc-

ture is often necessary. This was done in [39], where there authors defined partially nested

canalizing functions, and then distinguished between the “active depth” and “full depth” of a

function. Our definition of k-canalizing functions is similar to what it means in their paper to

be “partially nested canalizing of active depth at least k.” As before, the small differences are

motivated by the desire to have a natural unique algebraic form. For notational purpose, we first

20

introduce the notion of a k-permutation.

Definition 22. Let [n] denote the set {1, 2, . . . , n}. A k-permutation σ is an injective map from

[k] to [n]. We use Sn,k to denote the set of all k-permutations.

A k-permutation is a way of selecting k distinct objects from a list of n, such that the order

of selection matters. k-permutations are also known as partial permutations or as sequences

without repetition. P (n, k), the number of k-permutations of n objects, is n!
(n−k)! . Moreover,

Sn,n = Sn, since an n-permutation is just a regular permutation.

Definition 23. A Boolean function f(x1, . . . , xn) is k-canalizing, where 0 ≤ k ≤ n, with respect

to the k-permutation σ ∈ Sn,k, inputs ai, and outputs bi, for 1 ≤ i ≤ k, if

f(x1, . . . , xn) =

b1 xσ(1) = a1,

b2 xσ(1) 6= a1, xσ(2) = a2,

b3 xσ(1) 6= a1, xσ(2) 6= a2, xσ(3) = a3,

...
...

bk xσ(1) 6= a1, . . . , xσ(k−1) 6= ak−1, xσ(k) = ak,

g 6≡ bk xσ(1) 6= a1, . . . , xσ(k−1) 6= ak−1, xσ(k) 6= ak.

(3.2)

where g = g({xi : i ∈ [n]\σ([k])}) is a Boolean function on n − k variables. When g is not a

canalizing function, the integer k is the canalizing depth of f . Furthermore, if g is not a constant

function, then we call it a core function of f , denoted by fC .

As with canalizing and nested canalizing functions, the g 6≡ bk condition ensures that f

is essential in the final variable, xσ(k).

Remark 24. Since g 6≡ bk, a function f that is k-canalizing with respect to σ ∈ Sn,k, inputs ai

and outputs bi is essential in each xσ(i) for i = 1, . . . , k.

21

The representation of a k-canalizing function f in the form of Eq. (3.2), even when k is

the canalizing depth, is generally not unique since it depends on the variable ordering. However,

we will prove that several key properties, such as the canalizing depth and core function fC = g

(if there is one), are independent of representation. It is worth noting that if g is constant, then g

need not be unique, i.e., both g ≡ 0 and g ≡ 1 can arise. This is why we do not allow constant

core functions. The following observation is elementary.

Remark 25. If f is k-canalizing with respect to σ ∈ Sn,k, inputs ai and outputs bi, then any

initial segment xσ(1), . . . , xσ(j) with the same canalized output b1 = · · · = bj can be permuted to

yield an equivalent form as in Eq. (3.2).

Definition 26. If f(x1, . . . , xn) is k-canalizing with respect to σ ∈ Sn,k, inputs ai and outputs

bi, then for each j ≤ k, define the Boolean function gσj ({xi : i ∈ [n]\σ([j])}) to be the result of

plugging in xσ(i) = ai, for i = 1, . . . , j.

In plain English, the function gσj is the result of when the first j canalizing variables

do not get their canalizing inputs. We can now show that the canalizing depth k and the core

function fC are independent of the order of the variables. Moreover, the ambiguity of variable

orderings is well-controlled in that they are partitioned into blocks called layers via extended

monomials, and variables can be permuted arbitrarily if and only if they lie in the same layer.

This generalizes the observation in Remark 25.

Proposition 27. Suppose an n-variable Boolean function f is k-canalizing with respect to the

k-permutation σ, inputs ai and outputs bi, for 1 ≤ i ≤ k, and k′-canalizing with respect to the

permutation σ′, inputs a′j and outputs b′j , for 1 ≤ j ≤ k′, such that both g and g′, obtained by

substituting ai for xσ(i) and a′j for xσ′(j) respectively, are not canalizing. Then k = k′ and the

resulting core functions, if they exist, are the same.

Proof. Assume f is canalizing, because otherwise, k = k′ = 0 and the result is trivial. Without

losing generality we can assume σ(1) 6= σ′(1), since if this were not the case, we could simply

22

input a1 = a′1 for xσ(1) = xσ′(1) and consider gσ1 = gσ
′

1 . (Note that if σ(1) = σ′(1) and a1 6= a′1,

then b1 6= b′1, which means that f is completely determined by the input to xσ(1) = xσ′(1). In this

case, f has only one essential variable, and so k = 1. Moreover, both gσ1 and gσ′1 are constant

functions. Thus f has no core function.)

Since g is non-canalizing, it is not essential in xσ(1), and thus σ(1) = σ′(j∗) for some

1 < j∗ ≤ k′. We claim that we may assume without loss of generality that a′j∗ = a1 and b′j∗ = b1.

To see why, first suppose that a′j∗ = a1 and consider the two possible inputs to xσ′(j∗) = xσ(1) in

the function gσ′j∗−1. If this variable takes its canalizing input a1, then the output is b′j∗ . However,

since f is canalizing in xσ′(j∗) = xσ(1), then the other input a1 would yield the output b1. In

other words, gσ′j∗−1 is completely determined by the input to xσ′(j∗), so all subsequent variables

are fictitious. Therefore, gσ′j∗ = g′ must be constant, hence j∗ = k′. Moreover, this function must

be g′ ≡ b1 because it only arises when xσ′(j∗) = xσ(1) takes the canalizing input a1. Since f is

essential in xσ′(j∗) = xσ(1), then Remark 24 implies that b′j∗ = b1, the opposite value of g′ ≡ b1.

Thus, we have two equivalent ways to represent gσ′j∗−1 = gσ
′

k′−1:

gσ
′

k′−1 =

b1 xσ′(k′) = a1,

g′ ≡ b1 xσ′(k′) = a1.

=

b1 xσ′(k′) = a1,

g′ ≡ b1 xσ′(k′) = a1.

(3.3)

In other words, switching the triple of values (a′k′ , b
′
k′ , g

′) from (a1, b1, b1) to (a1, b1, b1) in the

original representation of f with respect to σ′ ∈ Sn does not change the function, so we may

assume that a′j∗ = a1 and b′j∗ = b1, as claimed. The proof for the case when b′j∗ = b1 is almost

the same.

Since f is canalizing in xσ′(j∗) = xσ(1) with input a1 and output b1, we must also have

b′j = b1 for all 1 ≤ j ≤ j∗. By Remark 25, we can create a new permutation σ′′ by swapping

the order of xσ′(1) and xσ′(j∗) in σ′. Clearly, f is k′-canalizing with respect to σ′′ and gσ′k′ = gσ
′′

k′ .

Since xσ(1) = xσ′′(1), the result follows from induction on gσ1 = gσ
′′

1 . We conclude that k = k′.

23

Finally, we need to show that when f has a core function fC , it is unique. The non-

canalizing functions g and g′ are essential in the same set of variables. If they are both constant

functions, then they actually need not be the same, due to the different ways to write g′ as in

Eq. (3.3). Otherwise, they are core functions for f , and are obtained by substituting the same set

inputs for the same set of variables, thus we must have fC = g = g′.

It is worth noting that Definition 23 is similar to the definition of k-partially nested canal-

izing functions (k-PNCFs) in [39]. In fact, these two definitions hold the same motivation but are

from different perspectives. In [39], the authors treat k-PNCFs as a subclass of Boolean func-

tions. While we prefer to consider canalization as a property of Boolean functions and different

functions have different extent of canalization. This provides us a well-defined way to classify

all Boolean functions on n variables.

Returning to our onion analogy, now we can think of all Boolean functions as onions.

For each Boolean function, we can try to peel off its variables as we did for nested canalizing

functions. We will have to stop once we get to a non-canalizing function. In this sense, nested

canalizing functions would be the ‘best’ onions since we can peel off all the variables and non-

canalizing would be the ‘worst’. The k-canalizing functions would be those for which one can

be peeled off at least k variables. Though a unique core function fC = g only exists when g is

non-constant, we will soon see how every Boolean function, whether or not it has a core function,

has a unique core polynomial that extends the notion of a core function.

Example 28. The Boolean function f(x, y, z, w) = xy(z + w) has canalizing depth 2 and core

function fC = z + w.

Remark 29. In our framework, if we consider the set of all Boolean functions on n variables,

then:

• The canalizing depth of a k-canalizing function is at least k.

24

• A non-canalizing function has canalizing depth 0 and its core function is itself.

• Every Boolean function is 0-canalizing.

• The 1-canalizing functions are precisely the canalizing functions.

• The n-canalizing functions are precisely the nested canalizing functions.

• If a function f has canalizing depth k and a constant core function, then f has n − k

fictitious variables, and is a nested canalizing function on its k essential variables.

3.4 Characterizations of k-canalizing Functions

3.4.1 Polynomial Form of k-canalizing Functions

It is well-known [41] that any Boolean function f : Fn2 → Fn2 can be uniquely expressed

as a square-free polynomial, called its algebraic normal form. Equivalently, the set of Boolean

functions on n variables is isomorphic to the quotient ring R := F2[x1, . . . , xn]/I , where I =

〈x2i − xi : 1 ≤ i ≤ n〉. Henceforth in this section, when we speak of Boolean polynomials,

we assume they are square-free. Additionally, we define x̂i := (x1, . . . , xi−1, xi+1, . . . , xn) for

notational convenience.

Lemma 30. A Boolean function f(x1, . . . , xn) is canalizing in variable xi, for some 1 ≤ i ≤ n,

with input ai and output bi, if and only if

f = (xi + ai)g(x̂i) + bi ,

for some polynomial g 6≡ 0.

Proof. Suppose f is canalizing in xi. Written in its algebraic normal form, f can be viewed as

an element of the Euclidean domain F2[x1, . . . , xn]. By the Euclidean algorithm, we can factor

25

it as

f = xi q(x̂i) + r(x̂i) ,

where q and r are the quotient and remainder of f when divided by xi. Note that bi = aiq(x̂i) +

r(x̂i), and since ai + ai = 0 in F2,

f = (xi + ai)q(x̂i) +
[
r(x̂i) + aiq(x̂i)

]
= (xi + ai)q(x̂i) + bi .

The function g(x̂i) := q(x̂i) is nonzero because f is essential in xi. This establishes necessity,

and sufficiency is obvious.

By applying the above lemma recursively, we get the following theorem.

Theorem 31. A Boolean function f(x1, . . . , xn) is k-canalizing, with respect to the k-permutation

σ ∈ Sn,k, inputs ai and outputs bi, for 1 ≤ i ≤ k, if and only if it has the polynomial form

f(x1, . . . , xn) = (xσ(1) + a1)g(x̂i) + b1 , (3.4)

where

g(x̂i) = (xσ(2) + a2)
[
. . .
[
(xσ(k−1) + ak−1)[(xσ(k) + ak)ḡ + ∆bk−1] + ∆bk−2

]
. . .
]

+ ∆b1

for some polynomial ḡ = ḡ(xσ(k+1), . . . , xσ(n)) 6≡ 0, where ∆bi := bi+1 − bi = bi+1 + bi, or

equivalently,

f(x1, . . . , xn) = ḡ
k∏
i=1

(xσ(i) − ai) +
k−1∑
j=1

∆bk−j

k−j∏
i=1

(xσ(i) − ai) + b1.

26

3.4.2 Dominance Layer and Extended Monomial Form of k-canalizing Func-

tions

One weakness of Theorem 31 is that given a Boolean function f , the representation of f

into the above form, even when k is exactly the canalizing depth, is not unique. For example, f =

x(y+1)(z+w) can be also written as f = (y+1)x(z+w). In this example, x and y have bigger

impact the z and w. In a k-canalizing function, some variables are “more dominant” than others.

We will classify all variables of a Boolean function into different layers according to the extent

of their dominance, extending work from [40] from NCFs to general Boolean functions. The

“most dominant” variables will be precisely those that are canalizing. Recall that we are always

working in the quotient ring R = F2[x1, . . . , xn]/I , though at times it is helpful to consider the

algebraic normal form of a polynomial as an element of F2[x1, . . . , xn].

Definition 32. A Boolean functionM(x1, . . . , xm) is an extended monomial in variables x1, . . . , xm

if

M(x1, . . . , xm) =
m∏
i=1

(xi + ai),

where ai ∈ F2 for each i = 1, . . . ,m.

An extended monomial in R is an extended monomial of a subset of {x1, . . . , xn}. In

other words, it is simply a product
∏n

i=1 yi, where each yi is either xi, xi, or 1. Using ex-

tended monomials, we can refine Theorem 31 to obtain a unique extended monomial form of any

Boolean function.

Proposition 33. Given a Boolean function f(x1, . . . , xn), all variables are canalizing if and only

if f = M(x1, . . . , xn) + b, where M is an extended monomial in all variables.

Proof. Suppose all n variables are canalizing in f , and so f is essential in every variable. Since

x1 is canalizing, Lemma 30 says that f = (x1 + a1)g(x̂1) + b for some a1, b ∈ F2, and g 6≡ 0.

In particular, this means that (x1 + a1) | (f + b) in F2[x1, . . . , xn]. Since x2 is also canalizing,

27

f(x1, a2, . . . , xn) ≡ b′ for some a2 and b′. Plugging in x1 = a1 yields f(a1, a2, x3, . . . , xn) ≡

b = b′, and so

(x2 + a2) | (f + b) = (x1 + a1)g(x2, . . . , xn) .

Since x1 + a1 and x2 + a2 are co-prime, we get (x2 + a2) | g(x2, . . . , xn). Note that g(x̂1) 6≡ 0,

hence, we have g(x̂1) = (x2 + a2)g
′(x3, . . . , xn) where g′(x3, . . . , xn) 6≡ 0. Thus we have

f = (x1 + a1)(x2 + a2)g
′(x3, . . . , xn) + b. Necessity of the proposition now follows from

induction, and sufficiency is obvious.

We are now ready to prove the main result of this section. This is a generalized version

of Theorem 4.2 in [40]. We will obtain a new extended monomial form of a Boolean function

f by induction. In this form, all variables will be classified into different layers according to

their dominance. The canalizing variables are the most dominant variables. Thus, a Boolean

function may have one, none, or many “most dominant” variables. As in [40], variables in the

same layer will have the same level of dominance, with the variables in the outer layers being

“more dominant” than those in the inner layers.

Theorem 34. Every Boolean function f(x1, . . . , xn) 6≡ 0 can be uniquely written as

f(x1, . . . , xn) = M1(M2(· · · (Mr−1(MrpC + 1) + 1) · · ·) + 1) + b, (3.5)

where each Mi =
∏ki

j=1(xij + aij) is a nonconstant extended monomial, pC 6≡ 0 is the core

polynomial of f , and k =
∑
ki is the canalizing depth. Each xi appears in exactly one of

{M1, . . . ,Mr, pC}, and the only restrictions on Eq. (3.5) are the following “exceptional cases”:

(i) If pC ≡ 1 and r 6= 1, then kr ≥ 2;

(ii) If pC ≡ 1 and r = 1 and k1 = 1, then b = 0;

When f is a non-canalizing function, we simply have pC = f .

28

Before we prove Theorem 34, we will define some terms and examine a few details, such

as the subtle difference between the core function and core polynomial, and the “exceptional

cases”, by simple examples. This should help elucidate the more technical parts of the proof.

Definition 35. A Boolean function f written in its unique form from Eq. (3.5) is said to be in

standard monomial form, and r is its layer number. The ith dominance layer of f , denoted Li, is

the set of essential variables of Mi. The set of essential variables of pC is denoted L∞, and these

are called the recessive variables of f .

As we will see, when f has a core function fC , its core polynomial is either pC = fC or

pC = fC + 1. When the number of “+1”s that appear in Eq. (3.5), possibly including b, is even,

we have pC = fC . Otherwise, we have pC = fC +1. When a Boolean function f with canalizing

depth k > 0 fails to have a core function, in other words, f is in fact a nested canalizing function

on k variables, with n− k fictitious variables then its core polynomial is simply pC = 1.

Finally, we will examine the two “exceptional cases”. Both of these are necessary to

avoid double-counting certain functions and ensure uniqueness, as claimed in Theorem 34.

(i) If pC ≡ 1 and r 6= 1. In this case, if kr = 1, that isMr = xi or xi, for some i. In either case,

this innermost layer can be “absorbed” into the extended monomial Mr−1. For example, if

Mr = xi, then the inner two layers are

Mr−1(Mr + 1) + 1 = Mr−1(xi + 1) + 1 = (xi + 1)

kr−1∏
j=1

(xij + aij) + 1,= M̂r−1 + 1 ,

where M̂r−1 = xiMr−1 is an extended monomial. Thus, in this case we may assume that

the innermost layer has at least two essential variables, hence kr ≥ 2.

(ii) If pC ≡ 1 and r = 1 and k1 = 1, then for some i, either f = xi + b, or f = xi + b. Clearly,

there are only two such functions, either f = xi or f = xi, and so allowing both b = 0 and

b = 1 would double-count these. Thus, we may assume that b = 0.

29

Proof of Theorem 34. For any non-canalizing function f 6≡ 0, f = pC and the uniqueness is

obvious.

When f is canalizing, we induct on n. When n = 1, there are 2 canalizing functions,

namely x = (x)1 and x+1 = (x+1)1, both satisfying Eq. (3.5). For the these 2 functions, since

pC ≡ 1, r = 1 and k1 = 1, we must have b = 0, so the previous representation is also unique.

When n = 2, there are 12 canalizing functions, 4 of which are essential in 1 variable,

and thus can be uniquely written as in Eq. (3.5). Now let us consider the 8 canalizing functions

that are essential in 2 variables. It is easy to check for all these, both variables x1 and x2 are

canalizing. Then by Proposition 33, all of them are of the form

(x1 + a1)(x2 + a2) + b = M1pC + b ,

where M1 = (x1 + a1)(x2 + a2) and pC ≡ 1. In this case, we have r = 1 and k1 = 2. Note

that when pC ≡ 1, the innermost layer must have at least two essential variables, so uniqueness

holds. We have proved that Eq. (3.5) holds for n = 1 and n = 2.

Assume now that Eq. (3.5) is true for any canalizing function that is essential in at most

n − 1 variables. Consider a canalizing function f(x1, . . . , xn). Suppose that x1j for each j =

1, . . . , k1 are all canalizing in f . With the same argument as in Proposition 33, we get f =

M1g + b, where M1 = (x11 + a11) · · · (x1k1 + a1k1) and g 6≡ 0. If g is non-canalizing, then

Eq. (3.5) holds with pC = g and r = 1. If g is canalizing, then it is a canalizing function that is

essential in at most n − k1 < n − 1 variables. By our induction hypothesis, it can be uniquely

written as

g = M2(M3(· · · (Mr−1(MrpC + 1) + 1) · · ·) + 1) + b′ .

Note that b′ must be 1, otherwise all variables in M2 will also be most dominant variables of f .

This completes the proof.

Remark 36. For any Boolean function f :

30

(i) Variables in two consecutive layers have different canalized outputs.

(ii) L1 consists of all the most dominant variables (canalizing variables) of f .

Let us return to our onion analogy, where we previously were peeling off one variable at

a time. Furthermore, imagine that each individual variable layer is white if the canalized output

ai = 0, and black if ai = 1. Thus, we can think of an extended monomial layer Li as a maximal

block of variable layers of the same color. We can “peel off” an entire Li at once by plugging

in the non-canalizing input xij = aij for each variable in Li. In other words, we can peel off all

black layers, then all white layers, then all black layers, and so on. Moreover, we can read off

the colors directly off of the function if it is written in the form of Eq. (3.2). However, recall that

this form of a k-canalizing function, where g is non-canalizing, is not unique. By Theorem 34,

the order of consecutive variables, xσ(i) and sσ(i+1), can be transposed if and only if they are in

the same Li. Based on this property, we can enumerate Boolean functions on n variables with

canalizing depth k. Roughly speaking, we will do this by counting the number of different layer

structures, and then counting the number of (non-canalizing) core functions. This last set is just

the complement of the set of canalizing functions on those variables, which were enumerated in

[28].

3.5 Enumeration of Boolean Functions by Canalizing Depth

Let B(n, k) be the number of Boolean functions on n variables with canalizing depth

exactly k. Exact formulas are known for B(n, k) in a few special cases. The number of nested

canalizing functions is B(n, n). A recurrence for this was independently derived in the 1970s

by engineers studying unate cascade functions [6, 54], and then a closed formula was found by

mathematicians studying NCFs [40]. The quantity B(4, k) was recently computed in [51]. In

this section, we will present a general formula for B(n, k).

31

Theorem 34 indicates that we can construct a Boolean functions with canalizing depth

k by adding layers to a non-canalizing function on n − k variables. Moreover, the complement

of the set of non-canalizing functions are the canalizing functions. Hence, let us begin with a

formula forCn, the number of canalizing functions on n variables. This result was derived in [28]

using a probabilistic method. We will include an alternative combinatorial proof using the truth

table of a Boolean function f . This is the length-2n vector (f(xi))i, given some fixed ordering

x1, x2, . . . , x2n of the elements of Fn2 .

Lemma 37. The number Cn of canalizing Boolean functions on n ≥ 0 variables, is given by:

Cn = 2((−1)n − n− 1) +
n∑
k=1

(−1)k+1

(
n

k

)
2k+122n−k .

Proof. We wish to count the number of Boolean functions that are canalizing in at least 1 vari-

able. We can construct a truth table of a Boolean function that is canalizing in at least k variables

by doing the following. First, pick k variables to be canalizing; there are
(
n
k

)
ways to do this.

Next, pick the canalizing input for each canalizing variable; there are 2k ways to do that. Then,

fill out the entries in the truth table of these canalizing inputs with the same canalized output;

there are 2 ways to do that. The remaining table has 2n−k entries, so there are 22n−k − 1 ways to

fill it out such that the corresponding function is non-constant. By Inclusion-Exclusion, we have∑n
k=1(−1)k+1

(
n
k

)
2k+1(22n−k − 1). Note that in this process, there are 2n functions of the form

xi + ai, each being counted exactly twice, since we can pick either input as canalizing input.

Therefore we have

Cn =
n∑
k=1

(−1)k+1

(
n

k

)
2k+1(22n−k − 1)− 2n = 2((−1)n−n− 1) +

n∑
k=1

(−1)k+1

(
n

k

)
2k+122n−k .

As examples, one can check that C0 = 0, C1 = 2, C2 = 12, C3 = 118, C4 = 3512,

32

This is consistent with the results in [28], though it should be noted that all numbers differ by 2

because we do not consider the constant functions to be canalizing.

Recall that there are 22n Boolean functions on n variables. Since non-canalizing functions

are complement of canalizing functions, the following is immediate.

Corollary 38. The number B∗(n, 0) of non-constant core polynomials on n variables is

B∗(n, 0) = B(n, 0)− 2 = (22n − Cn)− 2 = 22n − 2((−1)n − n) +
n∑
k=1

(−1)k
(
n

k

)
2k+122n−k .

One can check that B∗(n, 0) = 0, 0, 2, 136, for n = 0, 1, 2, 3,

Before we derive the general formula for B(n, k), let us first look at the special case

when k = n. This was computed in [40], but we include a self-contained proof. Recall that a

composition of n is a sequence k1, . . . , kr of non-empty integers such that k1 + · · ·+ kr = n. By

Theorem 34, the standard monomial form of a Boolean function with canalizing depth k involves

a size-r composition of k with the additional property that kr ≥ 2.

Lemma 39. For n ≥ 2, the number B(n, n) of nested canalizing functions on n variables is

given by:

B(n, n) = 2n+1

n−1∑
r=1

∑
k1+...+kr=n
ki≥1, kr≥2

(
n

k1, . . . , kr

)
,

where
(

n
k1,...,kr

)
= n!

k1!k2!...kr!
.

Proof. If a Boolean function is nested canalizing in n variables, then by Theorem 34, we know

its core polynomial must be B = 1. Let us first fix the layer number r. Then for each choice

of k1, . . . , kr, with k1 + . . . + kr = n, ki ≥ 1 and kr ≥ 2, there are
(

n
k1,...,kr

)
different ways to

assign n variables to these r layers. For each variable xj , we can pick either xj or xj + 1 to be in

its corresponding extended monomial. Note that we also have 2 choices for b. So the number of

33

nested canalizing functions on n variables with exactly r layers is given by:

2n+1
∑

k1+...+kr=n
ki≥1, kr≥2

(
n

k1, . . . , kr

)
.

Then by summing over all possible layer numbers r, 1 ≤ r ≤ n − 1, we get the formula for

B(n, n).

According to our definition, B(1, 1) = 2. As example, one also can check B(2, 2) = 8,

B(3, 3) = 64, B(4, 4) = 736,

Now we are ready to derive the general formula for B(n, k).

Theorem 40. The number B(n, k) of Boolean functions on n variables with canalizing depth k,

for 1 ≤ k ≤ n, is

B(n, k) =

(
n

k

)[
B(k, k) +B∗(n− k, 0) · 2k+1

∑(
k

k1, . . . , kr

)]
,

where the sum is taken over all compositions of k, and the closed from of B(k, k) is given by

Lemma 39.

Proof. We can construct a Boolean function f on n variables with canalizing depth k by doing

the following. First, pick k variables that are not in the core polynomial pC . There are
(
n
k

)
different ways to do that. Once we fixed the variables that are not in pC , we need to consider the

following two cases:

Case 1: pC ≡ 1. Then f is actually a nested canalizing function on these k variables.

There are B(k, k) of them in total.

Case 2: pC 6≡ 1. Then pC is a non-constant core polynomial on n− k variables, so there

34

are B∗(n− k, 0) different choices for pC . Using the same argument as in Lemma 39, there are

2k
∑(

k

k1, . . . , kr

)

different ways for those k variables to form the extended monomials in Eq. 3.5, where the sum

is taken over all compositions of k. Note that we also have 2 ways to pick b. Therefore, in this

case, there are

B∗(n− k, 0) · 2k+1
∑(

k

k1, . . . , kr

)
different Boolean functions.

By combining the above two cases, we get the formula for B(n, k).

Example 41. As previously mentioned, the quantities B(4, k) for k = 0, . . . , 4 were computed

in [51]. It is easy to check that these values are consistent with our general formula. There are

224 = 65536 Boolean functions on 4 variables. The number of functions with canalizing depth

exactly k, for k = 1, 2, 3, 4 is

B(4, 4) =

(
4

4

)
(736 + 0) = 736,

B(4, 3) =

(
4

3

)
(64 + 0) = 256,

B(4, 2) =

(
4

2

)
(8 + 2 · 8 · 3) = 336,

B(4, 1) =

(
4

1

)
(2 + 136 · 4 · 1) = 2184.

Summing these yields the total number of canalizing functions on 4 variables,

C4 = B(4, 4) +B(4, 3) +B(4, 2) +B(4, 1) = 736 + 256 + 336 + 2184 = 3512.

Thus, there are B(4, 0) = 65536 − 3512 = 62024 non-canalizing functions on four variables,

35

including the two constant functions.

Note that k-canalizing functions are simply Boolean functions with depth at least k, there-

fore we immediately get the following equality.

Corollary 42. The number of k0-canalizing Boolean functions on n variables, 1 ≤ k0 ≤ n, is

given by:

n∑
k=k0

B(n, k) =
n∑

k=k0

(
n

k

)[
B(k, k) +B∗(n− k, 0) · 2k+1

∑(
k

k1, . . . , kr

)]
.

In particular, the canalizing functions are counted by the following identity:

Cn =
n∑
k=1

B(n, k) =
n∑
k=1

(
n

k

)[
B(k, k) +B∗(n− k, 0) · 2k+1

∑(
k

k1, . . . , kr

)]
.

3.6 k-canalizing Functions in F2n
2

Recall that the ring of Boolean functions is isomorphic to the quotient ringR = F2[x1, . . . , xn]/I ,

where I = 〈x2i − xi : 1 ≤ i ≤ n〉. Indexing monomials XS :=
∏

i∈S xi by the subsets of

S ⊆ [n] := {1, ..., n} corresponding to the variables appearing in the monomial, we can write

the elements of R as a square-free polynomial

R =

∑
S⊆[n]

cSXS : cS ∈ F2

 .

As a vector space over F2, R is isomorphic to F2n

2 via the following correspondence

R 3
∑
S⊆[n]

cSXS ←→ (c∅, . . . , c[n]) ∈ F2n

2 .

36

Based on this correspondence, we can associate any Boolean function with a point in F2n

2 . More-

over, given any subclass of Boolean functions, it is natural to ask for the corresponding subset

in F2n

2 . In particular, we are going to discuss the subset V k-canalizing ⊆ F2n

2 corresponding to

k-canalizing function in this section. Since V k-canalizing is in fact an algebraic variety, we will

also come up with an algebraic parametrization of V k-canalizing, namely, a collection of poly-

nomial equations that encode the relations of the coefficients of k-canalizing functions. This

parametrization describes the entire space of k-canalizing functions as a geometric object, whose

properties can then be studied with the tools of algebraic geometry.

Definition 43. Let S ⊆ [n] be an non-empty subset whose largest element is rS . The completion

of S, denoted by [rS], is the set [rS] := {1, . . . , rS}. For S = ∅, let [r∅] = ∅.

Example 44.

[r{1,2,5}] = [r{5}] = [r{3,5}] = {1, 2, 3, 4, 5}.

In [27], the authors derive the algebraic parametrization for the set of NCFs.

Theorem 45. Let f be a Boolean polynomial in n variables, given by

f =
∑
S⊆[n]

cSXS.

The polynomial f is an NCF in the order x1, x2, . . . , xn if and only if: c[n] = 1, and for any

subset S ⊆ [n],

cS = c[rS]
∏

i∈[rS]\S

c[n]\{i}.

The basic idea behind Theorem 45 is actually pretty simple: if the monomial XS appears

in a nested canalizing polynomial f , then there must be “1” in the corresponding places if we

write f in polynomial form Eq.(3.4).

37

Example 46.

f = x1x2x3 + x1x2 + x2x3 + x1 + x2 + 1 = (x1 + 1)[x2(x3 + 1) + 1], (3.6)

Let us look at S = {2}, we have:

c{2} = c{1,2} · c{2,3}.

The monomialX{2} = x2 appears in f since 1 appears in all of the underlined entries in Eq.(3.6)

if we write f in polynomial form of Eq.(3.4). The 1 on the left corresponds to c{2,3} = 1 and the

1 on the right corresponds to c{1,2}.

Theorem 47. Let f be a Boolean polynomial in n variables, given by

f =
∑
S⊆[n]

cSXS.

The polynomial f is a k-canalizing function in the order x1, x2, . . . , xk, if and only if there exists

M 6= ∅ ⊆ [n]\[k], such that cM∪[k] = 1, and for any subset S ⊆ [n],

cS =

c[rS]

∏
i∈[rS]\S cM∪[k]\{i} S ⊆ [k]

c[k]∪S
∏

i∈[k]\S cM∪[k]\{i} S * [k],

or, for all M 6= ∅ ⊆ [n]\[k], cM∪[k] = 0, and c[k] = 1, then for any subset S ⊆ [n],

cS =

∏

i∈[rS]\S c[k]\{i} S ⊆ [k]

0 S * [k]

In the latter case, the function is an NCF on k variables, and fictitious on the other n − k

38

variables.

Proof. First assume that the polynomial f is an n-variable Boolean k-canalizing function in the

order x1, . . . , xk, with canalizing input values ai and corresponding canalized output values bi,

1 ≤ i ≤ k, and core polynomial ḡ = ḡ(xk+1, . . . , xn) 6≡ 0. Then by Theorem 31, f has the form:

f(x1, . . . , xn) = ḡ

k∏
i=1

(xi − ai) +
k−1∑
j=1

∆bk−j

k−j∏
i=1

(xi − ai) + b1,

which can be expanded as

f(x1, . . . , xn) = ḡ
∑
T⊆[k]

XT

∏
`∈[k]\T

a` +
k−1∑
j=1

∆bk−j

 ∑
T⊆[k−j]

XT

∏
`∈[k−j]\T

a`

+ b1. (3.7)

Let us first consider the case when ḡ 6= 1. In this case, there exists M 6= ∅ ⊆ [n]\[k], such that

XM appears in ḡ, and hence, cM∪[k] = 1. Next, consider subscripts of the form S = M ∪ [k]\{i},

1 ≤ i ≤ k. It is clear from Eq.(3.7) that XM only appears in first part of the summand and hence,

for 1 ≤ i ≤ k,

cM∪[k]\{i} = ai = cM∪[k]cM∪[k]\{i}.

Now, let us consider the subscripts of the form S 6⊆ [k]. From Eq.(3.7) we can see that XS could

only show up in the first part of the summand. It would only appear if XS\[k] appears in ḡ and∏
i∈[k]\S ai = 1. In other words, for all S 6⊆ [k], we must have

cS = c[k]∪S
∏

i∈[k]\S

cM∪[k]\{i}.

39

It is easy for us to check for any set S ⊆ [k] such that [rS] = S, we have

cS = c[rS] = c[k]
∏

i∈[k]\S

ai + ∆bk−1
∏

i∈[k−1]\S

ai + · · ·+ ∆brS
∏

i∈[rS]\S

ai

= c[k]
∏

i∈[k]\S

ai + ∆bk−1
∏

i∈[k−1]\S

ai + · · ·+ ∆brS ,

since
∏

i∈[rS]\S ai =
∏

i∈∅ ai = 1. Now, let S ⊆ [k] be any nonempty subset of [k]. By equating

the coefficients of XS , we have

cS = c[k]
∏

i∈[k]\S

ai + ∆bk−1
∏

i∈[k−1]\S

ai + · · ·+ ∆brS
∏

i∈[rS]\S

ai

=
∏

i∈[rS]\S

ai

c[k] ∏
i∈[k]\[rS]

ai + ∆bk−1
∏

i∈[k−1]\[rS]

ai + · · ·+ ∆brS

= (

∏
i∈[rS]\S

ai)c[rS] = c[rS]
∏

i∈[rS]\S

cM∪[k]\{i}.

The case when ḡ = 1 is similar.

Conversely, assume that there exists M 6= ∅ ⊆ [n]\[k], such that cM∪[k] = 1, and the

equations hold for a polynomial f . Clearly, f depends on x1, . . . , xk. Hence in order to show f

is k-canalizing, it is enough to show f(a1, . . . , aj−1, aj, xj+1, . . . , xn) = bj , for some aj, bj ∈ F2,

and 1 ≤ j ≤ k. Let 1 ≤ j ≤ k, for all S ⊂ [n] such that j /∈ S, we either have S ⊆ [j − 1], or

S 6⊆ [j− 1]. When S 6⊆ [j− 1], we have cS · cM∪[k]\{j} = cS∪{j}. By pairing cS with cS∪{j}, such

that j /∈ S, we have

f(x1, . . . , xn) =
∑
S⊆[j]

cSXS + (cM∪[k]\{j} + xj)
∑

S 6⊆[j−1],j /∈S

cS∪{j}XS.

40

For 1 ≤ j ≤ k, let aj = cM∪[k]\{j}. Then

f(a1, . . . , aj−1, aj, xj+1, . . . , xn) =
∑

S⊆[j−1]

(cS + cS∪{j}cM∪[k]\{j})
∏
i∈S

(1 + cM∪[k]\{i})

is a constant we called bj . Hence f is k-canalizing. The case when for all M 6= ∅ ⊆ [n]\[k],

cM∪[k] = 0 and c[k] = 1 is similar.

For notational purposes, we generalize the idea of completion and define k-completion.

Definition 48. Let S ⊆ [n] be an non-empty subset. Let rS be the largest element of S if S ⊆ [k].

The k-completion of S, denoted by [rS]k, is the set

[rS]k =

{1, . . . , rS} S ⊆ [k]

S ∪ [k] S 6⊆ [k].

For S = ∅, let [r∅]k = ∅. In particular, [rS]n = [rS].

Using this new notation, we can restate Theorem 47, so the generalization from NCFs in

Theorem 45 to k-canalizing becomes apparent.

Theorem 49. Let f be a Boolean polynomial in n variables, given by

f =
∑
S⊆[n]

cSXS.

The polynomial f is a k-canalizing function in the order x1, x2, . . . , xk, if and only if there exists

M 6= ∅ ⊆ [n]\[k], such that cM∪[k] = 1, and for any subset S ⊆ [n],

cS = c[rS]k
∏

i∈[rS]k\S

cM∪[k]\{i}

41

or, for all M 6= ∅ ⊆ [n]\[k], cM∪[k] = 0, and c[k] = 1, then for any subset S ⊆ [n],

cS =

∏

i∈[rS]k\S c[k]\{i} S ⊆ [k]

0 S * [k].

In the latter case, the function is an NCF on k variables, and fictitious on the other n − k

variables.

We can now generalize the above theorem to any k-permutation σ of [n].

Definition 50. Let σ be a k-permutation of the elements of the set [n]. We define a new order

relation <σ on the elements of σ([k]) as follows: σ(i) <σ σ(j) if and only if i < j. Let S be an

non-empty subset of [n]. Let rσS be the largest element of S with respect to the order relation <σ

if S ⊆ σ([k]). The k-completion of S with respect to the k-permutation σ, denoted by [rσS]k, is

the set

[rσS]k =

{σ(1), . . . , σ(rS)} S ⊆ σ([k])

S ∪ σ([k]) S 6⊆ σ([k]).

Theorem 51. Let f be a Boolean polynomial in n variables, given by

f =
∑
S⊆[n]

cSXS.

Let σ be a k-permutation of [n]. The polynomial f is a k-canalizing function in the order

xσ(1), xσ(2), . . . , xσ(k), if and only if there exists M 6= ∅ ⊆ [n]\σ([k]), such that cM∪σ([k]) = 1,

and for any subset S ⊆ [n],

cS = c[rσS]k
∏

i∈[rσS]k\S

cM∪σ([k])\{σ(i)}

42

or, for all M 6= ∅ ⊆ [n]\σ([k]), cM∪σ([k] = 0, and cσ([k]) = 1, then for any subset S ⊆ [n],

cS =

∏

i∈[rσS]k\S
cσ([k])\{σ(i)} S ⊆ σ([k])

0 S * σ([k])

In the latter case, the function is an NCF on k variables, and fictitious on the other n − k

variables.

Corollary 52. Let σ be a k-permutation of [n] and letM 6= ∅ ⊆ [n]\σ([k]) be a nonempty subset

of [n]\σ([k]). The set of points in F2n

2 corresponding to k-canalizing functions in the variable

order xσ(1), xσ(2), . . . , xσ(k), such that cM∪σ([k]) = 1, denoted by V k-canalizing
σ,M , is defined by

V k-canalizing
σ,M = {(c∅, . . . , c[n]) ∈ F2n

2 : cM∪σ([k]) = 1, cS = c[rσS]k
∏

i∈[rσS]k\S

cM∪σ([k])\{σ(i)}, for S ⊆ [n]}.

(3.8)

Corollary 52 is the starting point for a geometric analysis of the set of all k-canalizing

functions. It provides a set of equations that have to be satisfied by the coefficient vectors of

the polynomial representations of the functions. These coefficient vectors therefore form an

algebraic variety in the space F2n

2 , which turns out to have nice properties. Let Ik-canalizing
σ,M be the

ideal generated by the set of equations in Eq. 3.8. That is

Ik-canalizing
σ,M = 〈cM∪σ([k]) = 1, cS = c[rσS]k

∏
i∈[rσS]k\S

cM∪σ([k])\{σ(i)}, for S ⊆ [n]〉.

Directly from Theorem 2 in [25], one can show Ik-canalizing
σ,M is a prime ideal generated by binomials,

and hence, a toric ideal. Thus, V k-canalizing
σ,M is a toric variety.

Corollary 53. Let σ be a k-permutation of [n]. The set of points in F2n

2 corresponding to the

k-variable nested canalizing functions in the variable order xσ(1), xσ(2), . . . , xσ(k), denoted by

43

V k−canalizing
σ,∅ , is defined by

V k−canalizing
σ,∅ = {(c∅, . . . , c[n]) ∈ F2n

2 : cσ([k]) = 1, cS =
∏

i∈[rσS]k\S

cσ([k])\{σ(i)}, for S ⊆ σ([k]),

cS = 0, for S * σ([k])}.

Therefore, V k−canalizing
σ,∅ is also a toric variety.

Corollary 54. Let σ be a k-permutation of [n]. The set of points in F2n

2 corresponding to k-

canalizing functions in the variable order xσ(1), xσ(2), . . . , xσ(k), denoted by V k−canalizing
σ , is given

by

V k−canalizing
σ =

⋃
M⊆[n]\σ([k])

V k−canalizing
σ,M .

Corollary 55. The set of points in F2n

2 corresponding to k-canalizing functions in n variables,

denoted by V k−canalizing, is given by

V k−canalizing =
⋃

σ∈Sn,k

V k−canalizing
σ .

3.7 Reverse Engineering with k-canalizing Functions

In this section, we will propose an algorithm that identifies all k-canalizing models that

fit the given data. We will be talking about gene regulatory networks, however, the methods

apply for general molecular networks, such as biochemical reaction networks, protein-protein

interaction networks, etc. Suppose that the gene regulatory network that we want to reverse

engineer has n genes and that we have a set D of r state transition pairs (sj, tj), j = 1, . . . , r.

The input sj and the output tj are binary n-tuples encoding the state of genes x1, . . . , xn. The

44

goal now is to find a model

f = (f1, f2, . . . , fn) : Fn2 −→ Fn2 ,

such that

f(sj) = (f1(sj), . . . , fn(sj)) = tj.

Since fi : Fn2 → Fn2 is over a finite field, it is a polynomial. An algorithm that finds all models

f is presented in [37]. This is done by identifying, for each gene i, the set of all possible

functions for fi. This set can be represented as the coset f + I , where f is a particular such

function and I ⊆ F2[x1, . . . , xn] is the ideal of all polynomials that vanish on the input data set,

that is, I = I({s1, . . . , sr}). However, in general, there are 22n−r different Boolean functions in

this coset. Hence, it is necessary to develop certain model selection procedures. One approach

to improve the model selection process is restricting the model space f + I by requiring not

only that the chosen model fits the data but also satisfies some other conditions. Hinkelmann

and Jarrah [22] designed an algorithm to reverse engineer GRNs using only nested canalizing

functions. However, nested canalizing functions are very sparse in Boolean functions, so it is

possible that there exists no nested canalizing function that fits a given data set. In this section,

we will generalize Hinkelmann and Jarrah’s algorithm and propose an algorithm that reverse

engineers gene regulatory networks using k-canalizing functions.

In Section 3.6, we gave a parametrization of k-canalizing functions in F2n

2 . One can think

of such a parametrization as a set of relations on the 2n coefficients of a Boolean function. Recall

that our goal is to identify all k-canalizing functions that fit the given data. To do this, we also

need a parametrization of Boolean functions that fit the data in F2n

2 .

Recall that we are given the data set D = {(sj, tj) ∈ Fn2 × Fn2 , j = 1, . . . , r}. The model

45

space could be presented by the set f + I where, for all i,

fi(x1, . . . , xn) =
r∑
j=1

tj,i

n∏
e=1

(1− (xe − sj,e)).

Here, fi is a interpolating polynomial that fits the data for gene i, and I is the vanishing ideal for

D. Explicitly, I is

I = I({s1, . . . , sr}) =
r⋂
j=1

I(sj) =
r⋂
j=1

〈xe − sj,e : 1 ≤ e ≤ n〉

=
r⋂
j=1

〈(1−
n∏
e=1

(1− (xe − sj,e)))〉

= 〈
r∏
j=1

(1−
n∏
e=1

(1− (xe − sj,e)))〉.

Now, a polynomial g ∈ fi + I if and only if

g = fi + h(x1, . . . , xn)
r∏
j=1

(
1−

n∏
e=1

(1− (xe − sj,e))

)

for some polynomial h, say h =
∑

H⊆[n] bHXH . By expanding the right-hand side and collecting

terms, we get that

g =
∑
S⊆[n]

wS({bH}H⊆[n], D)XS

, where, for S ⊆ [n], the coefficient wS is determined by the coefficients of h and the input data

D. In other words, for a given data set D, we can think of wDS ({bH}H⊆[n]) := wS({bH}H⊆[n], D)

as a function with variables {bH}H⊆[n]. Then the subset of points

W = {(wD∅ ({bH}H⊆[n]), . . . , wD[n]({bH}H⊆[n])) ∈ F2n

2 : bH ∈ {0, 1}, for H = ∅, . . . , [n]}

is the set of Boolean functions in F2n

2 that fit the data set D. Moreover, we can compute I(W)

46

using the following theorem, whose proof follows directly from Theorem 2.4.2 in [2].

Theorem 56. Consider the ring homomorphism

Φ : F2[{cS : S ⊆ [n]}] −→ F2[{bH : H ⊆ [n]}]

given by, for S ⊆ [n],

cS → wDS ({bH}H⊆[n]).

Then ker(Φ) is the ideal of all polynomials that fit the data set D. In particular, the rational

points in the variety V(ker(Φ)) is the set of all models that fit the data set D, namely f + I .

We are interested in the set W
⋂
V k−canalizing, the set of all k-canalizing functions that fit

the data. Using the relationship between ideals and varieties, we have the following corollary.

Corollary 57. The ideal of all k-canalizing functions that fit the data set D is I(V k−canalizing) +

ker(Φ).

In practice, we can compute ker(Φ) efficiently using elimination ideals.

3.7.1 Algorithm Description

Input

Data set D = {(sj, tj) ∈ Fn2 × Fn2 , j = 1, . . . , r}. Integer ki, 0 ≤ ki ≤ n, 1 ≤ i ≤ n.

Output

For each variable xi, the complete list of all ki-canalizing functions interpolating the given data

set.

Algorithm

The outline of the algorithm is as follows: For each i:

47

1. Compute I(V ki−canalizing) in F2[{cS : S ⊆ [n]}].

2. Compute an interpolating polynomial fi =
∑r

j=1 tj,i
∏n

e=1(1− (xe−sj,e)) that fits data D.

3. Compute the polynomial p =
∏r

j=1(1−
∏n

e=1(1−(xe−sj,e))) that generates the vanishing

ideal I({s1, . . . , sr}).

4. For S ⊆ [n], compute the polynomial wDS ({bH}H⊆[n]), by expanding

∑
S⊆[n]

cSXS = fi + (
∑
H⊆[n]

bHXH)p.

5. Compute a Gröbner basis G of the ideal

〈cS − wDS ({bH}H⊆[n]) : S ⊆ [n]〉 ⊆ F2[{cS}S⊆[n], {bH}H⊆[n]]

using lexicographical order c∅ ≺ . . . ≺ c[n] ≺ b∅ ≺ . . . ≺ b[n]. The reason we pick

this specific monomial order is we would like to express relations among variables {cS}

explicitly. In fact, any lexicographical order such that cS ≺ bH , S ⊆ [n], H ⊆ [n], will

also work.

6. Concatenate generators of G ∩ F2[{cS}S⊆[n]] and I(V ki−canalizing).

7. Use the primary decomposition on 〈G∩F2[{cS}S⊆[n]]〉+I(V ki−canalizing) to obtain necessary

and sufficient conditions on the coefficients of all ki-canalizing function fitting data set D.

3.8 Binary Decision Diagram of k-canalizing Functions

The interest in nested canalizing functions by electrical engineers arose because this is

the precise class of functions whose “binary decision diagrams” have minimal average path

length [9]. A binary decision diagram (BDD) is a simple data structure that can efficiently

48

represent a Boolean function, and it additionally serves as a convenient visual aid and a quick

evaluation tool. The basic idea is to minimize the memory needed to store the function and the

time steps needed to evaluate the function with respect to a fixed variable order.

A Boolean function f(x1, . . . , xn) can be also represented (inefficiently) as a binary de-

cision tree. To do this, one needs to first specify a fixed variable order on {x1, . . . , xn}. The

binary decision tree gives a quick way to compute the function output when the values of the

variables are plugged in according to this order. This is best seen by an example: consider the

function

f(x1, x2, x3) = x1 ∧ (x2 ∨ x3) = x1x2x3 + x1x2 + x1x3

with variable order x1 < x2 < x3, which means “x1 comes first, then x2, then x3.” The binary

decision tree of this function is shown in Figure 3.1. The root vertex is labeled with the first

variable (in this case, x1). There are two outgoing edges – one corresponding to setting x1 = 0

(dashed, and to the left), and the other to x1 = 1 (solid, and to the right). Both of the children are

labeled with the next variable in the fixed order (in this case, x2). This process is repeated: each

non-leaf node is labeled with a variable xi and has exactly two children (nodes directly “below”

it). The nodes are labeled by level, from top to bottom. Finally, each node labeled with the last

variable (in this case, x3) also has two children, but these are leaves. Notice that in general,

there are 2n leaves, each one having a unique length-n path back to the root. This path uniquely

describes an evaluation of all n variables. Label each leaf with either 0 or 1 – the value of the

function f(x1, . . . , xn) corresponding to this particular evaluation.

A binary decision tree is an extremely inefficient way to represent a Boolean function – it

requires 2n leaf nodes and 2n − 1 interior nodes, which is prohibitly large for functions of more

than just a few variables. It has other draw-backs as well: it carries a lot of redundant information,

and the trees of two n-variable functions look structurally identical. A binary decision diagram

(BDD) can be thought of as a “reduced” version of a binary decision tree, in that it carries the

49

x1

x2 x2

x3 x3x3 x3

0 0 0 0 0 1 1 1

x3

x2 x2

x1 x1x1 x1

0 0 0 1 0 1 0 1

Figure 3.1: Two binary decision trees of f = x1x2x3 + x1x2 + x1x3, with respect to variable
orders x1 < x2 < x3 (left) and x3 < x2 < x1 (right). A dashed edge out of node xi means that
xi = 0, and a solid edge out of xi means xi = 1. Each evalution of x1 = a1, x2 = a2, and
x3 = a3 corresponds to a unique leaf which is labeled by f(a1, a2, a3).

same information but without the redundancies. For example, the tree on the left of Figure 3.2

is the BDD for the function f = x1x2x3 + x1x2 + x1x3, with order x1 < x2 < x3. Notice how

any evaluation f(a1, a2, a3) can be computed in the same manner as for the binary decision tree

– start at the root, and follow the paths corresponding to x1 = a1, x2 = a2, and x3 = a3 until a

node labeled with 0 or 1 is reached. Also notice how the fact that f is an NCF with the variable

order x1 < x2 < x3 can be visualized from the BDD: Starting at the node labeled x1, there is

an edge (x1 = 0) down to a leaf. However, the other edge (x1 6= 0) leads to a node labeled x2,

which also has a direct edge (x2 = 1) to a leaf. To summarize, there is a unique node at every

level, and each node has a unique path to a leaf node. On the other hand, the BDD on the right of

Figure 3.2 for the same function f but with respect to variable order x3 < x2 < x1 does not have

that property. Specifically, there is no edge from x3 to a leaf. Even stronger: upon following

either edge from x3, one can still reach both 0 and 1 nodes. Therefore, x3 is not a canalizing

variable.

In any rooted tree, every node has a canonical subtree consisting of itself and all of its

descendants. However, the BDDs in Figure 3.2 are not trees, but acyclic directed graphs. In

such a structure, every node still has an analogue of a subtree that we called a substructure.

Specifically, the substructure of v is the directed graph consisting of all of the nodes and edges

50

x1

x3

x2

0 1

x3

x1

x2

0 1

Figure 3.2: Two BDDs of f = x1x2x3+x1x2+x1x3. The one on the left arises from the variable
order x1 < x2 < x3, and the one on the right arise from x3 < x2 < x1

that can be reached via a directed path from v.

In general, the problem of how to construct a BDD given a Boolean function and a fixed

variable order is difficult. If a binary decision tree has already been constructed, then it can be

easily reduced to a BDD by repeatedly applying the following operations:

(i) Merge identical substructures that have the same parent node, and then eliminate that node.

(ii) Merge identical substructures that have different parents.

These two operations are applied repeatedly as long as they are applicable and the resulting graph

will be a BDD. As an example of this, the binary decision tree of f = x1x2x3 + x1x2 + x1x3

with respect to order x3 < x2 < x1 is shown in Figure 3.1 on the right. Notice that for three of

the four nodes labeled x1, the substructures (subtrees) rooted at those nodes are identical. When

the two circled subtrees are merged and their parent node (labeled x2) is eliminated, we obtain

the diagram on the left of Figure 3.3. This diagram also has two identical subtrees rooted at

x1-nodes, but with different parents. Merging these subtrees gives the diagram in the middle

of Figure 3.3, which is no longer a tree. Finally, the x1-node that has two 0-children can be

eliminated, yielding the BDD which is shown on the right in Figure 3.3.

It is not obvious, but every Boolean function has, for a given ordering of variables, a

unique binary decision diagram [9]. On the other hand, different variable orders of the same

function generally have BDDs that are structurally different. For example, both diagrams in

51

x3

x2

x1 x1x1

0 0 0 1 0 1

x3

x2

x1x1

0 0 0 1

x3

x2

x1

0 1

Figure 3.3: The merging process applied to the binary decision tree of f = x1x2x3+x1x2+x1x3,
with order x3 < x2 < x1. The tree on the left is obtained by merging the two circled subtrees in
Figure 3.1 and removing the parent vertex. The middle tree is formed by merging the two circled
subtrees on the leftmost tree, and the tree on the right is formed by eliminating the x1-labeled
vertex.

Figure 3.2 are BDDs of the same function, but with respect to different variable orderings.

One of the primary utilities of BDDs is that they represent a concise representation of a

Boolean function. Every evaluation of a function’s variables corresponds to a path from the root

to the leaves. The average path length of a BDD, taken over all 2n evaluations, is in some sense

a measure of the function’s complexity. Since this depends on the variable order, we say that the

average path length (APL) of a Boolean function is the minimal average path length of one of its

BDDs, taken over all possible orderings. We denote this as APLf , and it describes how quickly

f can be evaluated on average. An NCF has the property that at every interior vertex, there is

a direct edge to a leaf, which lowers the average path length considerably. Obviously, constant

functions have the simplest BDDs – they would consist of just a single vertex and no edges. The

number of levels of a BDD describes how many variables the function depends on. By definition,

an NCF depends on all variables, and so its diagram must have n levels (or n + 1, if the leaves

are included). The next result, from the electrical engineering community, says that NCFs are

the “quickest” functions to evaluate. It may be no coincidence that these functions often arise in

biological networks – they may possess some sort of evolutionary advantage.

Theorem 58 ([27]). The n-variable Boolean functions with no fictitious variables that have

52

minimal average path length are precisely the nested canalizing functions.

Theorem 59 ([10]). The nested canalizing functions are uniquely those functions whose BDDs

have the smallest APL (2− 1
2n−1) among all functions that depend on n-variables.

Example 60. f = x1x2x3 + x1x+ 2 + x1x+ 3 = x1((x2 + 1)(x3 + 1) + 1) is nested canalizing

in the variable order x1 < x2 < x3. The BDD given by this variable order is shown on the left in

Figure 3.2. The average path length of this BDD achieves minimum among all possible variable

order:

APLf =
1

2
+

2

4
+

3

8
+

3

8
=

7

4
= 2− 1

23−1 .

The key observation here is that, for a function f that is nested canalizing with respect

to variable order σ, APLf is achieved by taking the exact same variable order σ. In fact, if a

function is canalizing, one should pick the canalizing variable to be the first variable in BDD in

order to achieve minimum APL [46, 53]. A k-canalizing function is simply a Boolean function

that is recursively canalizing for at least k-steps. Based on these observations, we can reach the

following conclusion about the APL of a k-canalizing function.

Theorem 61. If f is a k-canalizing Boolean function on n variables, then

2− 1

2k−1
≤ APLf ≤ 2− 1

2k−1
− k

2k
+
n

2k

Proof. Assume f is a k-canalizing Boolean function, with respect to k-permutation σ, as shown

in the form of Eq. (3.2). In order to achieve minimum APL, the order of the first k variables in

the BDD should be σ. Hence, 1
2

of the inputs should have path length 1, 1
4

of the inputs should

have path length 2, etc. When the first k variables are fixed, the path length of 1− 1
2k

the inputs

has been determined. All we need to compute now is the average path length of the remaining

1
2k

of the inputs, where the k canalizing variables have all taken non-canalizing inputs. When

g is a constant function, the path length of all the remaining 1
2k

of the inputs is k. In this case,

53

APLf = 2 − 1
2k−1 . When g is a parity function, the path length of all the remaining 1

2k
of the

inputs is n. In this case, APLf = 2− 1
2k−1 − k

2k
+ n

2k
.

54

Chapter 4

Data Identification for Improving Gene

Network Inference

4.1 Introduction

Gene regulatory networks (GRNs) in molecular biology have been classically modeled

using continuous methods such as ordinary differential equations (ODEs). In the last few decades,

Boolean network models have arisen as a popular alternative [4, 64]. Every Boolean function

Fn2 → F2 is in fact, a multivariate polynomial in the ring F2[x1, . . . , xn]. This opens the door to

using tools from discrete math and computational algebra to tackle classic problems in molecu-

lar biology in a new way [38]. These types of models are called polynomial dynamical systems

(PDSs), and many of them are not just Boolean, but over larger finite fields [61].

One classic question is how to reverse engineer a PDS model given partial data, e.g.,

time-series data [26, 37]. Generally, there are (too) many models which fit the data, and this

model space admits an algebraic structure, similar to an affine vector space. In particular, it can

be written as the coset f + I in the polynomial ring Fp[x1, . . . , xn], where I = I(V) is the ideal

of models which vanish on the data set V , and f is any particular model that fits the data. This

55

is analogous to e.g., the structure of the solution space of a linear ODE, or a linear system of

equations Ax = b.

The algebraic structure of the model space is key to using computational algebraic geom-

etry to design algorithms for not only reverse-engineering, but also for model selection. This is

the problem of choosing the “best” model from the space f + I , given some assumptions. Most

GRNs are sparse, in the sense that they have few (less than half of all possible) connections, and

their edges follow a power-law distribution [8, 65]. Thus, a model selection algorithm should

return a model whose wiring diagram is sparse. One way to do this is to use Gröbner bases [15].

The main idea is to compute the unique remainder of f , given by multivariate division of f by

G, where G is a Gröbner basis of I(V).

The algorithm outlines as follows:

Input

Data set D = {(sj, tj) ∈ Fn2 × Fn2 , j = 1, . . . , r}. A monomial order ≺.

Algorithm

For each i:

1. Compute an interpolating polynomial fi that fits the data D.

2. Compute a Gröbner basis G of the vanishing ideal I({s1, . . . , sr}) with respect to ≺.

3. Compute the unique remainder of fi upon division by the elements of G.

However, I(V) might have multiple reduced Gröbner bases and each one is given by a

specific monomial ordering. In this case, different monomial orderings yield different models.

Example 62. Let f = x2 ∈ F3[x, y] and V = {(2, 0), (0, 1)} ⊆ F2
3. Then I(V) has two distinct

reduced Gröbner bases (under different monomial orders): G1 = {x− y + 1, y2 − y} (with

respect to y ≺ x) and G2 = {x2 + x, y − x+ 2} (with respect to x ≺ y) which produce two

different remainder polynomials: f
G1

= −y + 1 and f
G2

= −x.

56

We saw in the above example that the choice of monomial ordering affects which model

is selected from the model space. The two remainder polynomials look quite different. Applica-

tions of the above algorithm, such as network inference in [37], that use polynomial dynamical

systems for modeling strongly depend on selecting minimal polynomials. Typically, it is hard to

determine which term order to use. Prior knowledge of the network is often required to choose a

“good” term order.

4.2 Data Identification for Unique Model

To resolve the dependency on the choice of the monomial order, E. Dimitrova and B. Stigler

proposed a systematic way to add new data points to an existing data set to ensure that the ideal

of points has a unique reduced Gröbner basis, yielding a unique model [14]. They also gave an

algebraic characterization of the data points that need to be added. We will restate their charac-

terization formally below (in a slightly modified way), and then summarize colloquially.

Theorem 63 ([14]). Let Fp be a finite field where p is prime and V ⊆ Fnp be a set of points

for which I = I(V) has standard monomials SM1(I), . . . , SMm(I) (with respect to different

monomial orders) in R = Fp[x1, . . . , xn]. Let M be the set of monomials that are in some but

not all SMi(I), namely,

M =

(
m⋃
i=1

SMi(I)

)∖(
m⋂
i=1

SMi(I)

)
.

Finally, let

F = {f ∈ I | LT (f) = xα ∈M, for some monomial order}.

A set of points W ⊂ kn \ V with

|W | =

∣∣∣∣∣
m⋃
i=1

SMi(I)

∣∣∣∣∣− |V |
57

is such that I(V ∪W) has a unique reduced Gröbner basis if and only if F ∩ I(W) = ∅.

The set F is exactly the collection of polynomials in I that cause multiple reduced

Gröbner bases. Hence, the main idea of this theorem is to “kick out” F from I by adding the set

of points W that do not vanish on F . | ∪mi=1 SMi(I)| − |V | is the minimum possible number of

points to add to achieve a unique reduced Gröbner basis.

Example 64. Consider again the ideal of points I from Example 62. The standard monomials

corresponding to the two Gröbner bases are SM1(I) = {1, y} and SM2(I) = {1, x}. Also,

|SM1(I) ∪ SM2(I)| = 3 and |V | = 2 so we need to add at least 1 more point to the data set.

Moreover, we have M = {x, y}. There are six monic polynomials that are in I and have x or y

as a leading term under some term order:

f11 = x+ 2y + 1, f12 = x+ y + y2 + 1,

f13 = x+ 2y2 + 1, f21 = y + x2 + 2,

f22 = y + x+ 2x2 + 2, f23 = y + 2x+ 2.

Among the points in F2
3\V , only (a1, a2) = (0, 0) and (2, 1) are such that none of fij vanishes on

(a1, a2). By inspection, one can verify that indeed these two points are the only ones that, added

individually to V , generate an ideal of points with a unique reduced Gröbner basis. Notice that

depending on which point is added to V , a different reduced Gröbner basis is produced, but in

either case the standard monomials are {1, x, y} = SM1(I) ∪ SM2(I).

Provided that such a W exists, F ∩ I(W) = ∅ is both necessary and sufficient. However,

generating W by explicitly finding the polynomials in F is impractical since the number of

polynomials can be extremely large. Another problem with applying the above approach directly

is in actually finding the points in W that satisfy the condition, especially since we want to

be able to find all such minimal sets W . Moreover, it is possible that W , such that |W | =

58

| ∪mi=1 SMi(I)| − |V | and F ∩ I(W) = ∅ might not even exist [14]. Hence we propose to tackle

this problem from a different angle. We are trying to give a combinatorial characterization of all

V ∈ Fnp such that I(V) has a unique reduced Gröbner basis, regardless of monomial order. The

main result in this chapter is a sufficient condition for I(V) to have a unique reduced Gröbner

basis. Before we state our main result, we will introduce some terminologies and build up the

connection between staircases and Gröbner bases.

4.3 Staircases and Gröbner Bases

In this chapter, when we discuss point configurations in Fnp , we choose the smallest non-

negative integer at each coordinate as representative. Hence we are embedding Fnp into Nn, where

N = {0, 1, 2, . . .}. We denote the image of this embedding as Nn
p .

Definition 65. A staircase is a nonempty subset λ ⊆ Nn, such that if u ∈ λ and v ≤ u

(coordinate-wise), then v ∈ λ.

Example 66. λ1 = {(0, 0), (1, 0), (0, 1)} is a staircase. λ2 = {(1, 0), (0, 1)} is not a staircase.

Example 67. Exponent vectors of standard monomials of an ideal I , with respect to some mono-

mial order≺, also form a staircase, since any divisor of a standard monomial is again a standard

monomial. Such staircase is called a standard staircase of I .

We can also consider a staircase as a higher dimensional generalization of a Young di-

agram (a Young diagram is a 2D staircase). One important property of a staircase is that, any

“layer” of a staircase is also a staircase (one dimension lower).

Definition 68. Given a staircase λ = {u = (u1, . . . , un)} ⊆ Nn, the ith layer of λ with respect

to the jth coordinate is the subset {u ∈ λ : uj = i} ⊆ λ. Let k be the largest integer such that

{u ∈ λ : uj = k} 6= ∅. Then the height of λ in the jth coordinate is defined to be k + 1, denoted

as hj(λ).

59

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4
0

1

2

3

4

Figure 4.1: Standard staircases of the ideal I in Example 62. For a given Gröbner basis, each
diagram shows the interface between the standard monomials, which are represented by black
dots, and the leading terms, which are represented by white dots. A monomial is depicted via its
exponent vector: (m,n)↔ xmyn. In these examples, SM1 = {1, y} and SM2 = {1, x}.

One can ask many questions about staircases since it is an interesting class of combina-

torial objects. However, in this chapter we will be mainly focusing on the algebraic properties

of a staircase. In particular, the connection between staircases and Gröbner bases. Here we will

introduce a special type of staircases called basic staircases.

Definition 69. Given a zero-dimensional ideal I ⊆ Fp[x1, . . . , xn] (the dimension of Fp[x1, . . . , xn]/I

is finite), a subset λ ∈ Nn is basic for I if the congruence classes modulo I of the monomials

xv with v ∈ λ form a vector space basis for the quotient space Fp[x1, . . . , xn]/I . If λ is also a

staircase, then λ is called a basic staircase for I .

If λ is basic then the class [f] = f + I of any f ∈ Fp[x1, . . . , xn] can be uniquely

represented as linear combination of {xv | v ∈ λ}. For a given monomial order, any polynomial

f ∈ Fp[x1, . . . , xn] has a unique normal form with respect to ideal I . Hence, a standard staircase

of an ideal I is basic. We can check whether a set λ ∈ Nn
p is basic by looking at the evaluation

matrix.

Definition 70. Let λ = {u1, . . . , ur} be an r-subset of Nn
p and let V = {v1, . . . , vs} be a s-subset

of Nn
p . The evaluation matrix X(xλ, V) is the s by r matrix whose element in position (i, j) is

xu
j
(vi), the evaluation of xu

j
at vi.

Example 71. Let λ1 = {(0, 0), (1, 0)}, λ2 = {(0, 0), (0, 1)} and V = {(2, 0), (0, 1)} be subsets

60

of N2
3. Then X(xλ1 , V) =

 1 2

1 0

 and X(xλ2 , V) =

 1 0

1 1

.

Theorem 72 ([5]). Let λ ⊆ Nn
p be a subset and V be a subset of Nn

p . Then λ is basic for I(V) if

and only if the evaluation X(xλ, V) is invertible.

Example 73. Let λ1 = {(0, 0), (1, 0)}, λ2 = {(0, 0), (0, 1)} and V = {(0, 0), (1, 0)} be subsets

of N2
3. λ1 is basic for I(V), since X(xλ1 , V) =

 1 0

1 1

 is invertible. λ2 is not basic for I(V),

since X(xλ2 , V) =

 1 0

1 0

 is not invertible.

Remark 74. A standard staircase must be basic, while a basic staircase might not be standard.

However, if I has a unique standard staircase (hence a unique reduced Gröbner basis),

then I has a unique basic staircase.

Proposition 75. An ideal I has a unique standard staircase if and only if I has a unique basic

staircase.

Proof. Follows directly from Proposition 2.2 in [5].

Based on Proposition 75, if we want to find out whether I(V) has a reduced Gröbner

basis, we just need to check whether I(V) has a unique basic staircase. In other words, we can

just check if there exist a unique staircase λ ⊆ Nn
p , such that X(xλ, V) is invertible.

Before we state the main theorem of this chapter, we will first introduce an equivalence

relation on subset of Nn
p that fits well with staircases and Gröbner bases.

Definition 76. For V1, V2 ⊆ Nn
p , we say V1 is a linear shift of V2, denoted as V1

L∼ V2, if there

exist φ = (φ1, . . . , φn) : Nn
p −→ Nn

p , such that V1 = φ(V2), and φi(x) = aix + bi, ai ∈ F∗p,

bi ∈ Fp, for i = 1, . . . , n.

61

Example 77. Consider V1, V2, V3 ⊆ N2
3, where V1 = {(0, 0), (0, 1)}, V2 = {(1, 1), (1, 2)} and

V3 = {(1, 1), (2, 2)}. V1
L∼ V2 since V1 = φ(V2) where φ = (x + 1, x + 1). However, V1 6

L∼ V3

since the x-coordinates of the points in V3 are different.

Proposition 78. If V1, V2 ⊆ Nn
p are both staircases and V1

L∼ V2, then V1 = V2.

Proof. By mathematical induction.

Proposition 79. If V1
L∼ V2, then I(V1) and I(V2) have the same number of reduced Gröbner

bases. In particular, when I(V1) has a unique reduced Gröbner basis, I(V2) will also have a

unique reduced Gröbner basis.

Proof. First, observe that

I(V2) = {f : f(v) = 0, ∀v ∈ V2}

= {f : f(φ(u)) = f ◦ φ(u) = 0,∀u ∈ V1}.

Thus, for any f ∈ I(V2), we have f ◦φ ∈ I(V1). Since φ is a linear shift, f and f ◦φ have the same

leading monomial with respect to any monomial ordering. Therefore, LT (I(V2)) ⊆ LT (I(V1)).

We can show LT (I(V1)) ⊆ LT (I(V2)) by replacing φ with φ−1. Hence LT (I(V1)) = LT (I(V2))

with respect to any monomial ordering. Due to the one-to-one correspondence between initial

ideals and reduced Gröbner bases, I(V1) and I(V2) have the same number of reduced Gröbner

bases.

4.4 A Sufficient Condition for Unique Reduced Gröbner basis

In this section, we will present a sufficient condition for I(V) to have a unique reduced

Gröbner basis.

Theorem 80. Let λ ∈ Nn
p and V ∈ Nn

p be two staircases. Then λ is basic for I(V) if and only if

λ = V .

62

Proof. We first induct on number of variables: n = 1:

⇒ If λ 6= V :, since we have only one variable, we must have |λ| 6= |V |. Therefore X(xλ, V) is

not invertible since it is not a square matrix.

⇐ If λ = V :, then X(xλ, V) is a square Vandermonde matrix. Since V is a set of distinct points,

X(xλ, V) is invertible.

If the inductive hypothesis holds for n = k, let us consider the case when n = k + 1:

Here we are going to induct on the height of the monomial staircase with respect to the

first coordinate. Let us consider the base case when h1(λ) = 1, in other words, for all u ∈ λ, we

have u1 = 0. That is to say all monomials of xλ do not involve x1.

⇐: If λ = V , then the first coordinate of any point in V is 0. Therefore λ and V are essentially

staircases with one fewer variable (x1). Based on our inductive hypothesis n = k, we have xλ

are basic monomials of I(V).

⇒: If λ 6= V .

case 1: |λ| 6= |V |. In this case, X(xλ, V) is not invertible as it is not square.

case 2: h1(V) ≥ 2. In this case, X(xλ, V) is not invertible as at least two rows are the

same.

case 3: h1(V) = h1(λ) = 1, while λ 6= V : In this case, the first coordinate of any point

in λ and V is 0. In other words, λ and V are essentially staircases with one fewer variable (x1).

Based our inductive hypothesis for n = k, we have X(xλ, V) not invertible.

Assume the inductive hypothesis holds for all monomial staircases λwith 1 ≤ h1(λ) ≤ d.

Let us consider a staircase λ with h1(λ) = d+ 1.

⇐: If λ = V . Let λ0 := {u ∈ λ : u1 = 0} denote the 0th layer of λ and V0 := {v ∈ λ : v1 = 0}

denote the 0th layer of V with respect to the first coordinate. Since λ = V , we have λ0 = V0.

By inductive hypothesis, the evaluation matrix X(xλ0 , V0) is invertible. Now let us consider the

evaluation matrix X(xλ, V). We can reorder rows and columns of X(xλ, V) so that X(xλ0 , V0)

appears as the upper left submatrix of X(xλ, V). Since the upper left submatrix of X(xλ, V) is

63

invertible, after basic row and column operations, we can transform X(xλ, V) into a block matrix

of the form I 0

0 X(xλ\λ0 , V \V0)

 .
Moreover, x1 divides all monomials in xλ\λ0 and for any point v ∈ V \V0, we have v1 6= 0.

Therefore, X(xλ\λ0 , V \V0) is invertible if and only if X(x
λ\λ0
x1

, V \V0) is invertible. Note that the

xλ\λ0
x1

corresponds to a staircase with height at most d and V \V0 is a linear shift of the same

staircase, so X∗ is invertible by the inductive hypothesis and Proposition 79. Hence the original

evaluation matrix X(xλ, V) is also invertible.

⇒: If λ 6= V .

If |λ| 6= |V |, then X(xλ, V) is not invertible since it is not a square matrix.

We can reorder rows and columns so that X(xλ, V) appears of the form:

 X(xλ0 , V0) 0

A X(xλ\λ0 , V \V0)

 .
Note that row space of A is a subspace of the row space in X(xλ0 , V0). If X(xλ0 , V0) is not a

square matrix:

Case 1: If X(xλ0 , V0) has more rows than columns, then rows of [X(xλ0 , V0), 0] are lin-

early dependent.

Case 2: If X(xλ0 , V0) has more columns than rows, then columns of [X(xλ0 , V0), A]T are

linearly dependent.

In these cases, X(xλ, V) is not invertible.

If X(xλ0 , V0) is a square matrix but λ0 6= V0, then X(xλ0 , V0) is not invertible by the

inductive hypothesis. So X(xλ, V) is not invertible.

If X(xλ0 , V0) is a square matrix and λ0 = V0, then we must have λ\λ0 6= V \V0. Note

64

that X(xλ\λ0 , V \V0) is invertible if and only if X(x
λ\λ0
x1

, V \V0) is invertible. Since λ\λ0 6= V \V0

and xλ\λ0
x1

corresponds to a staircase with height at most d and V \V0 is a linear shift of some

other staircase, X(x
λ\λ0
x1

, V \V0) is not invertible by the inductive hypothesis and Proposition 79.

Therefore X(xλ, V) is also not invertible.

The following proposition is an immediate result of Theorem 80.

Proposition 81. If V ∈ Nn
p is a staircase λ ∈ Nn

p , then I(V) has a unique reduced Gröbner

basis.

Example 82. V = {(0, 0), (0, 1), (1, 0)} is a staircase in N2
3. I(V) has a unique reduced Gröbner

basis G = {y2 − y, xy, x2 − x}.

Applying Proposition 79, we get a more general condition for I(V) to have a unique

reduced Gröbner basis.

Proposition 83. If V ∈ Nn
p is a linear shift of some staircase λ ∈ Nn

p , then I(V) has a unique

reduced Gröbner basis.

Example 84. V1 = {(0, 0), (0, 1), (1, 0)} is a staircase in N2
3. V2 = {(0, 1), (0, 2), (2, 2)} is a

subset of N2
3. V1

L∼ V2, since V2 = φ(V1), where φ = (2x, 2x + 2). I(V2) has a unique reduced

Gröbner basis G = {y2 − 1, xy + x, x2 + x}.

However, V being a linear shift of a staircase is not a necessary condition for I(V) to

have a unique reduced Gröbner basis, as shown in the previous example.

Example 85. The set V = {(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)} is not a linear shift of a staircase

in N3
2. However, I(V) has a unique reduced Gröbner basis G = {z2 + z, yz + z, y2 + y, xz +

z, xy + y, x2 + x}.

65

Chapter 5

Conclusions and Discussion

5.1 Significance of Results

In this work, we focused on two model selection methods and algebraic geometry arising

from them.

In Chapter 3, we extended results on nested canalizing functions and derived a unique

extended monomial form of arbitrary Boolean functions. This gave us a stratification of the set

of n-variable Boolean functions by canalizing depth. In particular, this form encapsulates three

invariants of Boolean functions: canalizing depth, dominance layer number and the noncanaliz-

ing core polynomial. By combining these three invariants, we obtained an explicit formula for

the number of Boolean functions on n variables with depth k. We also introduced the notion of

k-canalizing Boolean functions, which is a promising framework for modeling gene regulatory

networks. We also derived an algebraic parametrization of V k-canalizing, namely, a collection of

polynomial equations that encode the relations of the coefficients of k-canalizing functions. This

parametrization describes the entire space of k-canalizing functions as a geometric object, whose

properties can then be studied with the tools of algebraic geometry. We generalized Hinkelmann

and Jarrah’s algorithm and proposed an algorithm to reverse engineer gene regulatory networks

66

using k-canalizing functions. We also studied k-canalizing functions from a data structure point

of view and computed the lower and upper bound of the average path length of a k-canalizing

function.

In Chapter 4, we studied the model selection methods that involves Gröbner bases. The

model is obtained by computing the unique remainder of f , given by multivariate division of f

by G, where G is a Gröbner basis of I(V). To minimize the effect of multiple Gröbner bases,

we studied the connection between staircases and Gröbner bases. We provided a necessary and

sufficient condition for I(V) to have a unique reduced Gröbner basis, using the concept of basic

staircase. We also provide a sufficient combinatorial characterization of V ⊂ Nn
p that yields to a

unique reduced Gröbner basis.

5.2 Future Work

The application of discrete models to biological networks is a blossoming field, so there

is still much work to be done in this area of research.

Our work in Chapter 3 motivates us to continue exploring canalization in Boolean func-

tions. Our stratification yielded closed formulas for the number of n-variable Boolean functions

of canalizing depth k. We are currently working on deriving asymptotics for the number of

such functions as n and k grow large, using analytic combinatorial techniques. We will inves-

tigate well-known Boolean network models and compute the canalizing depth of the proposed

functions. We will also study the impact of the stratification of all Boolean functions on random

Boolean networks (RBNs). For example, it was shown in [39] that RBNs with k-canalizing func-

tions are more stable as the parameter k increases. In [40], the authors showed that RBNs built

with NCFs of extended monomial layers are less stable as the parameter r increases. Both of these

studies used the average sensitivity of a Boolean function [55] as well as a tool from statistical

physics called a Derrida curve [13], which measures how small errors propagate throughout the

67

network. It would be interesting to consider RBNs where the Boolean functions are k-canalizing

and have r monomial layers, and see how the stability depends jointly on the parameters k and

r. We would like to extend the aforementioned stratification results to multi-state (rather than

Boolean) functions. The definition of an NCF was extended from Boolean to multi-state func-

tions in [45], where the authors also enumerated these functions. We are interested in questions

about k-canalizing functions in computer science. Boolean NCFs have been studied extensively

in engineering and computer science, since they are precisely the class of Boolean functions

whose corresponding binary decision diagrams are of shortest average path length [9, 27]. This

simply means that NCFs can be evaluated very efficiently. In that sense, k-canalizing functions

are Boolean functions with binary decision diagrams of “short” average path length, which might

lead to efficient algorithms.

In Chapter 4, we provided a sufficient combinatorial characterization of V ⊂ Nn
p that

yields to a unique reduced Gröbner basis. We are trying to generalize this result to a neces-

sary and sufficient combinatorial characterization. The reason we believe such characterization

should exist is because computing a reduced Gröbner basis with a given monomial ordering is

equivalent to solving a minimization problem with a cost vector on the variables. Hence, having

a unique Gröbner basis should be a combinatorial property of the ideal I(V), which should be

encoded in combinatorial properties of V . Another interesting question we could ask is that:

given a subset V ⊆ Nn
p , how can we determine whether V is a linear shift of a staircase in Nn

p .

If V is not a linear shift of a staircase, how far away is it from a linear shift of a staircase? We

are working on a systematical way to identify subsets W ⊆ Fnp \ V , so that V ∪W becomes is a

linear shift of a staircase, and hence, I(V ∪W) has a unique reduced Gröbner basis.

While we have provided a basis for the study of algebraic geometry arising from discrete

models of gene regulatory networks, there are still many directions to explore. We hope that the

results presented in this work are a source of motivation for continuing the application and study

of these models.

68

Bibliography

[1] John Abbott, A Bigatti, Martin Kreuzer, and Lorenzo Robbiano. Computing ideals of
points. Journal of Symbolic Computation, 30(4):341–356, 2000.

[2] William Wells Adams and Philippe Loustaunau. An introduction to Gröbner bases. Num-
ber 3. American Mathematical Soc., 1994.

[3] Charu Aggarwal and Karthik Subbian. Evolutionary network analysis: A survey. ACM
Computing Surveys (CSUR), 47(1):10, 2014.

[4] R. Albert and H.G. Othmer. The topology of the regulatory interactions predicts the ex-
pression pattern of the segment polarity genes in drosophila melanogaster. J. Theor. Biol.,
223(1):1–18, 2003.

[5] Eric Babson, Shmuel Onn, and Rekha Thomas. The hilbert zonotope and a polynomial time
algorithm for universal gröbner bases. Advances in Applied Mathematics, 30(3):529–544,
2003.

[6] E.A. Bender and J.T. Butler. Asymptotic aproximations for the number of fanout-free func-
tions. IEEE T. Comput., 27(12):1180–1183, 1978.

[7] Paul Brazhnik, Alberto de la Fuente, and Pedro Mendes. Gene networks: how to put the
function in genomics. TRENDS in Biotechnology, 20(11):467–472, 2002.

[8] Z Burda, A Krzywicki, OC Martin, and M Zagorski. Distribution of essential interactions
in model gene regulatory networks under mutation-selection balance. Physical Review E,
82(1):011908, 2010.

[9] J.T. Butler, T. Sasao, and M. Matsuura. Average path length of binary decision diagrams.
Comput., IEEE Trans., 54(9):1041–1053, 2005.

[10] J.T. Butler, T. Sasao, and M. Matsuura. Average path length of binary decision diagrams.
IEEE T. Comput., 54(9):1041–1053, 2005.

[11] David A Cox, John Little, and Donal O’shea. Using algebraic geometry, volume 185.
Springer Science & Business Media, 2006.

69

[12] David A Cox, John B Little, and Henry K Schenck. Toric varieties. American Mathematical
Soc., 2011.

[13] Bernard Derrida and Yves Pomeau. Random networks of automata: a simple annealed
approximation. EPL (Europhysics Letters), 1(2):45, 1986.

[14] E. Dimitrova and B. Stigler. Data identification for improving gene network inference using
computational algebra. Bull. Math. Biol., 76(11):2923–2940, 2014.

[15] E.S. Dimitrova, A.S. Jarrah, R. Laubenbacher, and B. Stigler. A gröbner fan method for bio-
chemical network modeling. In Proc. 2007 Internat. Symp. Symbolic Algebraic Computat.,
pages 122–126. ACM, 2007.

[16] Jean-Charles Faugere. A new efficient algorithm for computing gröbner bases (f 4). Journal
of pure and applied algebra, 139(1):61–88, 1999.

[17] Shuhong Gao, Yinhua Guan, and Frank Volny IV. A new incremental algorithm for com-
puting gröbner bases. In Proceedings of the 2010 International Symposium on Symbolic
and Algebraic Computation, pages 13–19. ACM, 2010.

[18] Timothy S Gardner and Jeremiah J Faith. Reverse-engineering transcription control net-
works. Physics of life reviews, 2(1):65–88, 2005.

[19] Irit Gat-Viks and Ron Shamir. Chain functions and scoring functions in genetic networks.
Bioinformatics, 19(suppl 1):i108–i117, 2003.

[20] Rüdiger Gebauer and H Michael Möller. On an installation of buchberger’s algorithm.
Journal of Symbolic Computation, 6(2):275–286, 1988.

[21] Mika Gustafsson, Michael Hörnquist, and Anna Lombardi. Constructing and analyzing
a large-scale gene-to-gene regulatory network lasso-constrained inference and biologi-
cal validation. Computational Biology and Bioinformatics, IEEE/ACM Transactions on,
2(3):254–261, 2005.

[22] F. Hinkelmann and A.S. Jarrah. Inferring biologically relevant models: nested canalyzing
functions. ISRN Biomathematics, 2012, 2012.

[23] François Jacob and Jacques Monod. Genetic regulatory mechanisms in the synthesis of
proteins. Journal of molecular biology, 3(3):318–356, 1961.

[24] K. Jansen and M.T. Matache. Phase transition of boolean networks with partially nested
canalizing functions. Eur. Phys. J. B, 86(7):1–11, 2013.

[25] A.S. Jarrah and R. Laubenbacher. Discrete models of biochemical networks: The toric
variety of nested canalyzing functions. In Algebraic Biology, pages 15–22. Springer, 2007.

[26] A.S. Jarrah, R. Laubenbacher, B. Stigler, and M. Stillman. Reverse-engineering of polyno-
mial dynamical systems. Adv. Appl. Math., 39(4):477–489, 2007.

70

[27] A.S. Jarrah, B. Raposa, and R. Laubenbacher. Nested canalyzing, unate cascade, and poly-
nomial functions. Physica D, 233(2):167–174, 2007.

[28] W. Just, I. Shmulevich, and J. Konvalina. The number and probability of canalizing func-
tions. Physica D, 197(3):211–221, 2004.

[29] C. Kadelka, Y. Li, J.O. Adeyeye, and R. Laubenbacher. Nested canalizing functions and
their networks. arXiv:1411.4067, 2014.

[30] F. Karlsson and M. Hörnquist. Order or chaos in boolean gene networks depends on the
mean fraction of canalizing functions. Physica A, 384(2):747–757, 2007.

[31] S. Kauffman. The large scale structure and dynamics of gene control circuits: an ensemble
approach. J. Theor. Biol., 44(1):167–190, 1974.

[32] S. Kauffman, C. Peterson, B. Samuelsson, and C. Troein. Random boolean network models
and the yeast transcriptional network. Proc. Natl. Acad. Sci., 100(25):14796–14799, 2003.

[33] S. Kauffman, C. Peterson, B. Samuelsson, and C. Troein. Genetic networks with canalyzing
boolean rules are always stable. Proc. Natl. Acad. Sci., 101(49):17102–17107, 2004.

[34] S.A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets. J.
Theor. Biol., 22(3):437–467, 1969.

[35] Stuart A. Kauffman. The origins of order: Self organization and selection in evolution.
Oxford University Press, USA, 1993.

[36] J.G. Klotz, D. Kracht, M. Bossert, and S. Schober. Canalizing boolean functions maximize
mutual information. IEEE T. Inform. Theory, 60(4):2139–2147, 2014.

[37] R. Laubenbacher and B. Stigler. A computational algebra approach to the reverse engineer-
ing of gene regulatory networks. J. Theor. Biol., 229(4):523–537, 2004.

[38] R. Laubenbacher and B. Sturmfels. Computer algebra in systems biology. Amer. Math.
Monthly, pages 882–891, 2009.

[39] L. Layne, E. Dimitrova, and M. Macauley. Nested canalyzing depth and network stability.
Bull. Math. Biol., 74(2):422–433, 2012.

[40] Y. Li, J.O. Adeyeye, D. Murrugarra, B. Aguilar, and R. Laubenbacher. Boolean nested
canalizing functions: A comprehensive analysis. Theor. Comput. Sci., 481:24–36, 2013.

[41] R. Lidl, H. Niederreiter, and P.M. Cohn. Encyclopedia of mathematics and its applications
20: Finite fields, 1996.

[42] Ernst W Mayr and Albert R Meyer. The complexity of the word problems for commutative
semigroups and polynomial ideals. Advances in mathematics, 46(3):305–329, 1982.

71

[43] A.A. Moreira and L.A.N. Amaral. Canalizing Kauffman networks: Nonergodicity and its
effect on their critical behavior. Phys. Rev. Lett., 94(21):218702, 2005.

[44] Henning Mortveit and Christian Reidys. An introduction to sequential dynamical systems.
Springer Science & Business Media, 2007.

[45] R. Murrugarra, D.and Laubenbacher. The number of multistate nested canalyzing func-
tions. Physica D, 241(10):929–938, 2012.

[46] Shinobu Nagayama, Alan Mishchenko, Tsutomu Sasao, and Jon T Butler. Minimization
of average path length in bdds by variable reordering. Technical report, DTIC Document,
2003.

[47] Donal O’Shea, John B Little, David Archibald Cox, David Archibald Cox, and
David Archibald Cox. Ideals, varieties, and algorithms: an introduction to computational
algebraic geometry and commutative algebra. Springer, 2007.

[48] T.P. Peixoto. The phase diagram of random boolean networks with nested canalizing func-
tions. Euro. Phys. J. B, 78(2):187–192, 2010.

[49] Tony Puthenpurackel, AV Jayanthan, Amit Khetan, Leah Gold, and Sara Faridi. Lecture
notes for the graduate school at the. 2004.

[50] Luc Raeymaekers. Dynamics of boolean networks controlled by biologically meaningful
functions. Journal of Theoretical Biology, 218(3):331–341, 2002.

[51] C. Ray, J.K. Das, and P.P. Choudhury. On analysis and generation of some biologically
important boolean functions. arXiv:1405.2271, 2014.

[52] R. Robeva and T. Hodge. Mathematical concepts and methods in modern biology: using
modern discrete models. Academic Press, 2013.

[53] T Sasao, JT Butler, and M Matsuura. Average path length as a paradigm for the fast evalu-
ation of functions represented by binary decision diagrams. Technical report, DTIC Docu-
ment, 2002.

[54] T. Sasao and K. Kinoshita. On the number of fanout-free functions and unate cascade
functions. IEEE T. Comput., 100(1):66–72, 1979.

[55] I. Shmulevich and S.A. Kauffman. Activities and sensitivities in boolean network models.
Phys. Rev. Lett., 93(4):048701, 2004.

[56] Bernd Sturmfels. Grobner bases of toric varieties. Tohoku Mathematical Journal, Second
Series, 43(2):249–261, 1991.

[57] Bernd Sturmfels, Robert Weismantel, and Günter M Ziegler. Gröbner bases of lattices,
corner polyhedra, and integer programming. ZIB, 1994.

72

[58] A. Szejka and B. Drossel. Evolution of canalizing boolean networks. Euro. Phys. J. B,
56(4):373–380, 2007.

[59] René Thomas. Boolean formalization of genetic control circuits. Journal of theoretical
biology, 42(3):563–585, 1973.

[60] Vesteinn Thorsson, Michael Hörnquist, Andrew F Siegel, and Leroy Hood. Reverse engi-
neering galactose regulation in yeast through model selection. Statistical applications in
genetics and molecular biology, 4(1), 2005.

[61] A. Veliz-Cuba, A.S. Jarrah, and R. Laubenbacher. Polynomial algebra of discrete models
in systems biology. Bioinformatics, 26(13):1637–1643, 2010.

[62] Joachim Von Zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge
university press, 2013.

[63] C.H. Waddington. Canalization of development and the inheritance of acquired characters.
Nature, 150(3811):563–565, 1942.

[64] R.-S. Wang, A. Saadatpour, and R. Albert. Boolean modeling in systems biology: an
overview of methodology and applications. Phys. Biol., 9(5):055001, 2012.

[65] H.-Y. Yeh, S.-W. Cheng, Y.-C. Lin, C.-Y. Yeh, S.-F. Lin, and V.-W. Soo. Identifying sig-
nificant genetic regulatory networks in the prostate cancer from microarray data based on
transcription factor analysis and conditional independency. BMC Med. Genet., 2(1):70,
2009.

73

	Clemson University
	TigerPrints
	8-2016

	Algebraic Geometry Arising from Discrete Models of Gene Regulatory Networks
	Qijun He
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Gene Regulatory Networks in Molecular Biology
	Reverse Engineering of Gene Regulatory Networks
	Boolean Networks
	Model Selection

	Computational Algebra Basics
	Ideals and Varieties
	Gröbner Bases
	Toric Ideals and Toric Varieties
	Elimination Theory

	Canalization in Boolean networks
	Introduction
	Canalizing and Nested Canalizing Functions
	k-canalizing Functions
	Characterizations of k-canalizing Functions
	Enumeration of Boolean Functions by Canalizing Depth
	k-canalizing Functions in F22n
	Reverse Engineering with k-canalizing Functions
	Binary Decision Diagram of k-canalizing Functions

	Data Identification for Improving Gene Network Inference
	Introduction
	Data Identification for Unique Model
	Staircases and Gröbner Bases
	A Sufficient Condition for Unique Reduced Gröbner basis

	Conclusions and Discussion
	Significance of Results
	Future Work

	Bibliography

