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ABSTRACT 

 The quality of highway bridge infrastructure in United States is of major concern. 

One in every four bridges in the US is deficient. This research applied Artificial 

Intelligence, Systems Dynamics and linear modeling techniques to investigate the causes 

and effects of bridge deterioration and to forecast bridge infrastructure condition and 

improvement costs. The main contribution of the research is the development and 

demonstration of these methods within the context of highway bridges.  These methods 

provide bridge designers and policy makers new tools for maintaining, improving, and 

delivering high quality bridge infrastructure.  

To start with, a comprehensive review of the current state of bridge deficiency in 

US was conducted. Through extensive data mining of the National Bridge Inventory 

(NBI), the causes and trends in bridge deficiency were identified. This exercise addressed 

questions such as: What is the current extent of bridge deficiency? Is deficiency getting 

better or worse?  What are the biggest problems causing deficiencies? It was observed 

that though the general condition of bridges is improving, additional work needs to be 

done in fixing bridge deficiency and bridge functionally obsolescence in particular. 

Subsequent to the review of bridge deficiency, four distinct but related modeling 

studies were conducted.  These phases are: 1) Capacity Obsolescence/Sustainability 

assessment, 2) Causal Loop Diagram (CLD) and linear modeling for bridge improvement 

costs, 3) Artificial Neural Network (ANN) model for bridge condition ratings and bridge 

variable effects, 4) Non-linear auto regression (NARX) model for bridge inventory 

condition prediction.  
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In the first phase, a conceptual model was developed to minimize capacity 

obsolescence, one face of functional obsolescence. A framework was developed to 

minimize bridge capacity obsolescence while optimizing the use of embodied energy 

over the service life of bridges. The research demonstrated how design phase 

consideration of bridge obsolescence can contribute to sustainability of bridge 

infrastructure. 

As a novel approach for studying bridge improvement costs, the second phase 

used a Causal Loop Diagram (CLD), a tool used in the field of System Dynamics. Using 

a CLD, the causes and effects for bridge deterioration were qualitatively described. A 

segment of the qualitative relationships described through the CLD were then analyzed 

quantitatively for the South Carolina bridge inventory.  The quantitative model was based 

on linear modeling and was developed and validated using NBI data. The model was then 

applied to estimate future bridge inventory sufficiency ratings and improvement costs 

under possible funding scenarios.  

For effective mitigation of bridge deficiency, it is important to identify the effects 

of different variables on bridge conditions and forecast bridge condition. In the third 

phase of modeling, Artificial Neural Networks (ANN) models were used to study the 

effects of bridge variables on bridge deck and superstructure condition ratings.  The 

models considered prestressed concrete bridges in South Eastern United States. 

Simulations based on Full Factorial Design (FFD) were conducted using the developed 

ANN models. The simulations highlighted the effects of skew, span and age on bridge 
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condition ratings. Given sufficient source data, the approach can be broadly applied to 

consider other bridge types and design variables. 

In the last phase, time based ANN learning algorithms were used to forecast 

bridge condition ratings and bridge improvement costs. Non Linear Auto Regression with 

Exogenous Inputs (NARX) model was developed using NBI data for South Carolina 

bridges over the last decade. The study estimated bridge condition ratings as a function of 

bridge geometry, age, structural, traffic attributes and bridge improvement spending. 

This doctoral research contributed to the development of multiple qualitative and 

mathematical models for forecasting bridge inventory condition and improvement costs 

by applying ANN, CLD, and linear regression techniques.  While the conclusions of 

these studies are bound by the scope of the data and methodical constraints of the 

research, the methods can be more generally applied to aid in better bridge management 

policies and contribute to sustainable bridge infrastructure in United States. 
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CHAPTER ONE 

INTRODUCTION 

Motivation 

Bridges are critical to transportation systems and have impact on the vitality of the 

communities and regions. The quality of bridge infrastructure in US has become a cause 

of concern for federal authorities, state transit authorities, bridge owners, and general 

public (Jansen 2016, Babcock, 2016). The ASCE Report Card for America’s 

Infrastructure gave C+ grade to bridge infrastructure quality which means that the quality 

is ‘mediocre’ (ASCE, 2013). According to the National Bridge Inventory (NBI) (NBI, 

2016), a collection of data on all bridges that are over 20ft length in U.S, nearly 24% of 

all bridges in US are categorized as ‘deficient’. A ‘deficient’ bridge means that the bridge 

is either structurally deficient (SD) or functionally obsolete (FO) (Ryan et al, 2012).   

Bridges are categorized as deficient based on routine inspection ratings. The 

FHWA coding guide provides guidelines to bridge inspectors on conducting inspections 

and assigning ratings (FHWA, 1995). Some of the important items that affect a bridge 

over all rating are its deck condition, superstructure condition, substructure condition, 

structural capacity and bridge geometry. While condition ratings grade the bridge 

components with reference to their original built condition, appraisal ratings compare the 

bridge current standards with those of current design standards (Ryan et al, 2012). The 

ratings are assigned on a scale of 0 to 9 indicating worst to best respectively. Sufficiency 

Rating (SR) is another important rating measure used to assess the overall health of a 

bridge. SR is measured on a scale of 0 to 100 indicating worst to best, respectively.  
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Bridge ratings give a picture of the condition of individual bridges as well as the 

health of the entire inventory. Hence there has been great research interest in developing 

methodologies that aid in estimating the future condition of bridges. In the past, 

Markovian chains and regressions models have been successfully applied to forecast 

bridge conditions (Morcous, 2002). With the advent of advanced computing methods, 

there is also great f interest in Artificial Intelligence (AI) techniques.   

While methods such as probabilistic evaluation, decision trees, and linear 

regression models are available, AI-based methods were selected for this research 

because of the complex nature of bridge infrastructure systems.  AI models are based on 

“learning” from source data, and they are well-suited for identifying patterns and 

relationships between bridge usage (traffic), age, material types, geometries, and other 

relevant variables.    

Alternative methods and their limitations are mentioned in brief.  Probabilistic 

methods estimate probability distribution of the outcome variable by defining transition 

probabilities based on current condition and a set of dependent variables. They do not 

consider condition history, and are not self-learning (Morcous 2002). Decision trees 

provide a simple white box classification, however, they become very complicated for 

systems with large sets of variables and outcome scenarios. Their ability to learn from 

noisy and incomplete data is poor (Podgorelec, 2002). Linear regression models are 

deterministic mathematical models that are suitable for linear modeling, however linear 

regression models are based on monotonic relation between dependent and independent 

variables (UCB, 2011). With dynamic, nonlinear and time history based supervised 
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learning, AI-based methods, such as artificial neural networks (ANN) and nonlinear auto 

regression networks (NARX) are well suitable for addressing the problems selected in 

this study.  

Bridge infrastructure is part of a complex public transportation system, the 

condition of which depends on a numerous different variables. For instance, bridge 

quality depends on local aspects such as traffic on the bridge, the age, the geometry, the 

structural conditions, weather, etc. to global aspects such as geographical, geological, 

social, economic, demographics of the location, and policies of the local, state and federal 

governments. Because of the complexity of bridge infrastructure systems, there is need 

for models and techniques that account for numerous variables and their interactions over 

time.  System Dynamics approach is one suitable for modeling complex transportation 

systems and are useful for making policy-level decisions (Shepherd, 2014). 

This study is motivated by the desire to improve the quality of bridge 

infrastructure in US.  Accurate forecasts of the bridge conditions and deterioration will 

help bridge agencies and authorities to rightly and timely prioritize bridge maintenance, 

repair and rehabilitation programs, thus improving the bridge infrastructure quality. The 

application of ANN to bridge infrastructure is interesting and encouraging.  Application 

of Causal Loop Diagrams, a tool used in System Dynamics, is also promising as a means 

to capture the dynamics of bridge variable interactions, the cause and effects of 

deterioration. ANN and CLD models, as well as traditional linear regression and 

simulations based on full factorial designs were applied in this work.  
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In addition to forecasting bridge deterioration, this study is motivated to identify 

and quantify the impacts of key bridge attributes on the bridge quality. The knowledge of 

these impacts will help designers as well as policy makers in making better choices 

within engineering and economic constraints.  

Objectives 

 

This research aimed to apply AI-based and CLD methods in a novel application, 

specifically to better understand bridge infrastructure conditions. These methods are 

apply to enhance understanding of bridge deterioration, to forecast the future health of 

bridge inventories, and to estimate costs of bridge improvements. Variables that cause 

bridge deterioration and their effects on bridge condition ratings were identified and 

studied.  

The principal objectives of this study are: 

  Develop a conceptual model for minimizing capacity obsolescence 

 Create a causal loop diagram to qualitatively describe the causes and effects that 

impact the quality of highway bridge inventories 

 Develop a linear quantitative model for proportions of the bridge inventory CLD  

 Create an approach for evaluating the effects of design variables on bridge 

condition; the approach utilizes artificial neural networks and simulations based 

on a full factorial design  

 Apply the NARX modeling approach  to assess bridge inventory conditions 
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Organization 

 

This dissertation is organized into seven chapters, some of which were prepared as stand-

alone papers for journals and conferences.  Chapter two contains a review of the current 

status of US bridge infrastructure. Terminology and concepts associated with bridge 

deficiency are described, as are the NBI bridge condition rating criteria.  Extensive 

mining of NBI data across 50 states of US was performed for this part of the study and 

the most common reasons for bridge deficiency were identified.  This chapter provides 

background on the prevalence of bridge deficiency and its impacts and gives a context for 

the research presented in the subsequent chapters. 

 In chapter three, a conceptual model was developed to quantify bridge capacity 

obsolescence. Capacity Obsolescence (CO) is defined as the gap between evolving load 

demands on bridges and load carrying capacity of bridges. A design framework is 

demonstrated to optimize bridge capacity with embodied energy consumption.  

Recommendations were made to incorporate design stage intervention to minimize 

capacity obsolescence and improve sustainability of bridge infrastructure. A review of the 

sustainability impacts of bridge obsolescence was also done. Chapter three was published 

as a conference paper in the proceedings of Transportation Research Board 94th annual 

meeting. 

 In chapter four, causal loop diagrams were developed for bridge deterioration 

system to describe the cause and effects of technical, policy, and other variables on 

bridge infrastructure quality. In the first step, a qualitative CLD was presented.  Next, a 

portion of the CLD was quantitatively modeled with data for bridges in South Carolina 
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using NBI records for years 2004 to 2013. The model was used to forecast bridge quality 

in terms of Sufficiency Rating (SR) and yearly costs of improvements needed for bridges 

until 2020. The forecast is done for several possible funding scenarios, and the effects of 

alternative funding scenarios on the future quality of the SC bridge inventory are 

evaluated.  

 In chapter five, a method is presented for assessing the impacts of design 

variables on bridge performance. The method used ANN models with a systematic 

grouping of simulations based on full factorial design (FFD) to evaluate bridge deck and 

superstructure condition ratings, and demonstrated for prestressed concrete bridges in 

South Eastern United States. The FFD based simulations were used to perform sensitivity 

analysis and evaluate the effects of skew, span and age of bridge on deck and 

superstructure ratings.  

 In chapter six, NARX model was developed for bridges in South Carolina to 

forecast bridge inventory quality as measured by sufficiency rating. Extensive data from 

NBI for the past decade are used to build a non-linear auto regression based ANN model. 

Average SR for bridge inventory for each year until 2020 are estimated for various levels 

of bridge improvement funding.  

 Finally, chapter seven provides an overall summary of the work and conclusions; 

recommendations for further research are also suggested. 
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CHAPTER TWO 

 

THE STATE OF BRIDGE DEFICIENCY IN UNITED STATES 

 

Abstract 

 

The ASCE Report Card for America’s Infrastructure provides an annual grade on the 

overall condition of infrastructure sectors, including highway bridges.  Noting that 25% 

of the 607,751 bridges in the United States were classified as deficient, the 2013 ASCE 

report card gave bridges a C+ grade.  The objective of the current chapter is to give 

context to the ASCE grade by providing additional details on the state of bridge 

deficiency in the US.  To that end, analyses of data from the National Bridge Inventory 

(NBI) are presented and discussed.  These analyses investigate the prevalence of different 

types of bridge deficiency, and trends in the number and usage of deficient bridges in the 

past two decades.  Trends at the national and state levels are discussed.  Rules for 

classifying deficient bridges as functionally obsolete and structurally deficient are also 

summarized. 
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Introduction 

 
Deficiency of Bridges 

As of 2013, the average age of bridges in the US is 42 years, or close to the 50 year 

design life of most of the bridges built during the interstate era (ASCE, 2013).  As the 

bridge inventory has aged, deficient bridges have become a major concern for federal, 

state, and local transportation officials.  The annual infrastructure report card from 

American Society of Civil Engineers (ASCE) for 2013 (ASCE, 2013) gave a C+ to 

bridges.  According to ASCE, this grade means that bridge infrastructure in US is 

“mediocre.”  The objective of this paper is to provide details and context on the condition 

of US bridges that go beyond the overall grade given by ASCE.  To that end, the first part 

of this paper describes the rules and procedures for classifying bridges as deficient.  The 

sufficiency rating metric is also discussed.  In the second part of the paper, changes to the 

overall number and usage of deficient bridges between 1992 and 2013 are discussed.  The 

third part of the paper evaluates the different types of deficiency in the US bridge 

inventory.  The most common types are identified and reported.  The fourth and final part 

of the paper investigates if trends in bridge deficiency at the state level.  

 As per the Bridge Inspector’s Reference Manual (Ryan et al, 2012), deficient 

bridges are categorized as either structurally deficient (SD) or functionally obsolete (FO).  

A SD bridge has load carrying elements that are in poor condition due to deterioration 

and/or damage.  Bridges with inadequate waterway openings to the point of causing 

intolerable traffic interruptions are also categorized as SD.   A SD rating does not 
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automatically mean that a bridge is unsafe; however, it does indicate that the bridge needs 

some kind of repair intervention for it to perform and provide service as intended.  

 Bridges classified as FO no longer meet the design standards of the highway 

system of which it is a part.  Unlike structural deficiency, functional obsolescence does 

not indicate deterioration of components, but rather indicates constraints on the functional 

usage of the bridge due to changed requirements.  Writing about infrastructure in general, 

Lemer (1996) defined obsolescence as “something that does not measure up to the 

current needs or expectations”.  Lemer further observed that obsolescence is triggered by 

social, economic, technology and regulatory changes.  Federal Highway Administration 

(FHWA) guidelines for FO classification are most directly linked to regulatory changes 

in bridges codes and design standards.   

 Bridges are characterized as SD or FO based on metrics obtained through routine 

bridge inspections.  These bridge inspections are conducted based on the National Bridge 

Inspection Standards (NBIS, 2004).  Details of the inspection procedures and standards 

are provided in Bridge Inspector’s Reference Manual (BIRM) (Ryan et al., 2012).  A 

discussion of how bridge inspection data is used to categorize SD and FO bridges is 

provided later in this paper.  

 Data from bridge inspections is aggregated into the National Bridge Inventory 

(NBI), a database maintained by FHWA for all bridges having spans greater than 6.1m 

(20ft) (NBI, 2013).  According to the 2013 NBI data, there are 607,751 bridges in the US, 

and approximately 25% of are categorized as deficient. Of these, 63,522 bridges are SD 

while 84,348 are FO.  With one in four bridges categorized as SD or FO, there is 
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incentive to understand these deficiencies in greater detail and to investigate how the 

prevalence and usage of deficient bridges has changed over the past two decades. 

Previous studies on bridge deficiency 

 Dunker and Rabbat were the first to publish a study of deficient bridges based on 

the NBI data (1990). Their study analyzed bridges built between 1950 and 1987 based on 

bridge type, material, and type of structural deficiency. The study reported that steel 

stringer and timber stringer bridges had the highest percentage of structural deficiency 

while prestressed concrete (PSC) bridges had the lowest. Out of the total 69, 885 steel 

stringer bridges built during this period, 23% were SD while only 3% of all PSC slab 

bridges (5,706) and 5% of the all PSC Tee bridges (5,017) built during this period were 

SD. The study also considered the most common types of structural deficiency. It was 

noted that poor deck condition was the most common structural deficiency in interstate 

bridges, and poor substructure condition was the most common deficiency in county 

bridges. 

 In 1988 revisions were made to the FHWA Recording and Coding Guide for the 

Structure Inventory and Appraisal of the Nation’s Bridges (FHWA, 1995) leading to 

greater consistency of the NBI data across different states (Dunker and Rabbat, 1995). 

Using the revised NBI data, Burke (1994) published a study reporting that 44% of US 

bridges were deficient.  A year after Burke’s study, Dunker and Rabbat (1995) analyzed 

the revised NBI data and concluded that deck geometry, structural evaluation, and 

condition deficiencies were most prevalent types of bridge deficiency.  
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 Based on NBI data, Bhide (2004) studied correlations between bridge material 

and physical condition.   The author reported that 2.9% of the bridges built between 1990 

and 2003 were SD. Even though reinforced concrete (RC) bridges accounted for 21.4% 

of total bridges built during this period, they accounted for only 9.2% of SD bridges. 

Steel bridges accounted for 25.8% of the bridges constructed during this period, but had a 

62% share of SD bridges. At 22%, County highways had the highest percentage of SD 

bridges, though Interstate highways had the highest percentage SD bridges (28%) as 

measured by the area of bridge decks.  

 The FHWA is required by law to submit a biennial report to congress on the 

status of the nation’s roads, bridges, and transit. Since 1999, the FHWA has submitted 

seven reports.  The latest report from FHWA, Status of the nation’s highways, bridges 

and transit: Conditions and performance (FHWA, 2013) indicates that the condition of 

US bridges has improved in recent years, with the total percentage of deficient bridges 

dropping from 31% in 2000 to 26% in 2010.   Although the overall percentage of 

deficient bridges is improving, maintaining the condition of bridge infrastructure in US 

continues to be a major challenge for transit officials (Reid 2008, ASCE 2013).  The 

aforementioned ASCE report card (2013) indicated that about 20.5 billion USD of annual 

funding is required to eliminate the backlog of deficient bridges by 2028.   

The report card also makes the following relevant observations:  

1. As of 2013, 11% of the nation’s bridges are classified as SD while 14% are 

classified as FO. 

2. 22 states have higher percentage of SD bridges than national average. 
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3. SD bridges account for one third of the total bridge decking area in the nation. 

4. More than 30% of bridges have exceeded their design life of 50 years 

This paper adds to the discussion of deficient bridges in three distinct ways.  First, it uses 

recent NBI data to evaluate the prevalence of the different types and subtypes of 

deficiency.  Second, evaluations are presented regarding changes to the quantity and 

usage of deficient bridges over the last two decades. Third, and finally, the paper reports 

changes in SD and FO bridges at the state-level.  All data used in these comparisons 

comes from the NBI.  Details of the NBI are discussed in the next section. 

National bridge inventory data 

 In response to the tragic collapse of Silver Bridge in West Virginia on 15
th

 

December of 1967, the Federal-Aid- Highway act (US Congress, 1968) required that 

National Bridge Inspection Standards be established to ensure the safety of travelling 

public.  The Act directed the states to maintain an inventory of Federal-aid highway 

bridges (FHWA, 2004). Shortly thereafter, in 1971, the National Bridge Inspection 

Standards (NBIS) were created to establish consistent procedures for bridge inspections 

and ratings.  In 1978, the Surface Transportation Assistant Act (US Congress, 1978) 

extended the NBIS and mandated inspections for all public bridges (FHWA, 2004).  The 

NBI data collected through the mandatory inspections is used by both FHWA and state 

transportation officials for setting priorities on repair, replacement, and rehabilitation of 

bridges (Bhide, 2004). 

 The NBI contains information about all bridges in US that have spans of 6.1 m 

(20 ft) or more.  Individual bridges in the NBI are given a unique identifier called 
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‘structure number’, and information is reported for each bridge such as location, 

geometric data, inspection details, material type, and usage. Important aspects like 

fracture criticality and scour criticality are also captured in the data. In total, data is 

collected in 116 fields to provide vital statistics about each bridge. The NBI database is 

available online for each year since 1992, and includes information about bridges in 50 

states as well as the District of Columbia and Puerto Rico. As mentioned previously, 

1992 was the first year that data was collected using the revised 1988 standards. 

Methodology 

 
Categorizing deficient bridges 

Six items from the NBI are considered for the structural deficiency classification, while 

five items are considered for functional obsolescence (Table 1, Table 2).  Each of the 

considered items is based on either an appraisal rating or a condition rating.  An appraisal 

rating is an assessment comparing a bridge to current codes and standards, while a 

condition rating is an assessment comparing a bridge with new as-built conditions.  A 

scale of 0 to 9 is used for rankings in both appraisal and condition ratings (Table 3).   

Additional details of the rating scales and their application to specific items are provided 

in the BIRM. 
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Table 1. Items and Criteria for Structural Deficiency
a
 

Item # Item Label Structural Deficiency 

Criteria 

Item description 

Item 58 Deck condition Condition rating <=4 Condition rating of the bridge deck  

Item 59 Superstructure 

Condition 

Condition rating <=4 Condition rating of the superstructure 

Item 60 Substructure 

Condition 

Condition rating <=4 Condition rating of the substructure 

including abutments 

Item 62 Culvert 

Condition 

Condition rating <=4 Condition rating of a culvert 

 

Item 67 Structural 

Evaluation 

Appraisal rating <=2 Appraisal rating with respect to 

structural load capacity 

Item 71 Waterway 

Adequacy 

Appraisal rating <=2 Appraisal rating with respect to 

passage of flow through the bridge 
a
 Source Information: Bridge Inspector’s Reference Manual 

 

 

Table 2. Items and Criteria for Functional Obsolescence 

Item # Item Label Functional 

Obsolescence Criteria 

Item description 

Item 67 Structural 

Evaluation 

Appraisal rating =3 Appraisal rating of structural load 

capacity 

Item 68 Deck Geometry Appraisal rating <=3 Appraisal rating of deck geometry  

Item 69 Under 

clearances 

Appraisal rating <=3 Appraisal rating of under 

clearances 

Item 71 Waterway 

Adequacy 

Appraisal rating =3 Appraisal rating with respect to 

passage of flow through the bridge 

Item 72 Approach 

Roadway 

Alignment 

Appraisal rating <=3 Appraisal rating of approach road 

alignment 

a
 Source Information: Bridge Inspector’s Reference Manual 
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Table 3. Code Description for Condition & Appraisal Ratings
a
 

Rating code Guidelines for condition 

rating 

Guidelines for appraisal rating 

N Not applicable Not applicable 

9 Excellent condition Superior to present desirable criteria 

8 Very good condition Equal to present desirable criteria 

7 Good condition Better than present minimum criteria 

6 Satisfactory condition Equal to present minimum criteria 

5 Fair condition Better than minimum adequacy to tolerate 

4 Poor condition Meets minimum tolerable limits 

3 Serious condition Basically intolerable- requires corrective 

action 

2 Critical condition Basically intolerable- requires replacement 

1 Imminent failure 

condition 

This rating code value is not used 

0 Failed condition Bridge closed 
a
 Source Information: Bridge Inspector’s Reference Manual 

Sufficiency rating 

Sufficiency Rating (SR) is an aggregate metric that provides an overall measure of bridge 

health and condition.  Federal and State transportation agencies rely on SR to prioritize 

repair, retrofit, and replacement of bridges.  SR is reported as a value between 0 and 100, 

with higher values indicating good overall health.  Out of 100 points, 55 points of the SR 

are based on structural adequacy and safety, 30 are based on serviceability and 

functionality, and 15 are based on essentiality for public use.  A complete description of 

the algorithm used to calculate SR is given in the Recording and Coding Guide for the 

Structure Inventory and Appraisal of the Nation's Bridges from FHWA (1995). 
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 Analyses reported in the subsequent sections were made using NBI data from the 

years 1992 through 2013, which data were downloaded directly from FHWA.  

Downloaded data were compiled into spreadsheets for analysis.  NBI data prior to 2010 is 

distributed by FHWA in text files with non-delimited format.  A sequential query 

language (SQL) algorithm was used to convert the non-delimited data into a more 

useable spreadsheet format.  Data from 2010 and beyond is distributed by FHWA in 

ASCII delimited format, which was directly compiled in spreadsheets.   

 To analyze bridge information at national level, the data from individual states 

were consolidated in to single spreadsheet for each year from 1992 until 2013. Once the 

data were compiled, filters in the spreadsheets were applied to isolate the records of 

deficient bridges. Filters were also used to isolate bridge data based on the items (Table 1 

and Table 2) associated with SD and FO classification.  The Recording and Coding 

Guide for the Structure Inventory and Appraisal of the Nation's Bridges from FHWA 

(1995) was used to interpret the data codes and their values.   All analyses reported in this 

paper assume that NBI data is accurate and closely reflects the actual condition of bridges 

as reported by bridge inspectors. 

 

Results and Discussion 

 
Functionally Obsolete Bridges (1992-2013) 

Figure 1 compares the rate of change for six different bridge metrics between 1992 and 

2013. To aid in comparison, all values are normalized using 1992 as a baseline.  Metrics 

include the total number of bridges, and the number of FO bridges.  Average daily traffic 

(ADT) and average daily truck traffic (ADTT) on all bridges and on FO bridges are also 
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shown.  Data presented in Figure 1 is based on all 50 states plus the District of Columbia 

and Puerto Rico. 

 

Figure 1. Change in Number and Usage of FO Bridges in US (1992-2013) 

 A steady increase in the total number of bridges and the average daily bridge 

traffic occurred over the period of 1992 and 2013.  The total number of bridges increased 

by 4.3%, while the total bridge traffic increased by 50%.  Truck traffic on all bridges 

grew at the fastest rate of any metric considered.  Average daily truck traffic on all 

bridges was over two times greater in 2013 than in 1992.  

 The number of FO bridges decreased steadily between 2002 and 2013 after a 

small increase during the period of 1997 and 2002. Overall, the number of FO bridges 

decreased by 5.7% between 1992 and 2013.  However, the usage of these bridges 

increased during this period.  Total traffic on FO bridges grew by 25% and truck traffic 
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on FO bridges grew by 58%.  Thus, the good news is that there are fewer FO bridges; the 

bad news is that the remaining FO bridges are carrying more and more traffic.   

Structurally Deficient Bridges (1992-2013) 

 Figure 2 compares the quantity and traffic on SD bridges between 1992 and 2013.  

As was done in Figure 1, data in Figure 2 is plotted with respect to baseline values from 

1992. The total number of bridges, the number of SD bridges, and the total traffic and 

truck traffic on bridges are plotted in Figure 2 

 

Figure 2. Change in Number and Usage of SD bridges in US (1992-2013) 

 Interpreting Figure 2, it is noted that the number of SD bridges has decreased 

steadily over the last two decades. As of 2013 there are approximately half as many SD 

bridges as there were in 1992.  Total traffic and truck traffic on SD bridges have also 

decreased over this period.  While total traffic on SD bridges decreased by 31.1%, the 

truck traffic decreased by 13.7%.  These trends are opposite to those on FO bridges 
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wherein both normal traffic and truck traffic have increased.  One possible explanation is 

that SD bridges carrying high traffic on important routes were prioritized for intervention, 

while FO bridges have not received the same degree of attention. 

Sufficiency Rating Of Bridges (1992-2013) 

 The SR for a bridge is an indicator of its overall health and condition.  Figure 3 

presents aggregate data on SR for all bridges in the US over the period 1992-2103.  

Rather than presenting the data in terms of SR directly, it is presented in terms of 100-SR 

(referred as ‘insufficiency’ here after).  This approach was taken so that the interpretation 

of Figure 3 is similar to that of Figure 1 and Figure 2; values less than 1.0 indicate an 

improvement in bridge conditions.  Data in Figure 3 were normalized using 1992 as a 

baseline.  The product of (100-SR) and ADT or ADTT is also presented.  Although these 

later metrics do not have any physical meaning, they are useful in evaluating health and 

usage in a combined sense. 

 

Figure 3. Change in insufficiency rating (100-SR) of FO & SD bridges in US 
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 In terms of average SR, the overall health of bridges improved by 12.4% during 

the period between 1992 and 2013.  The SR of FO and SD bridges also improved, 

suggesting that the worst FO and SD bridges were either replaced or were upgraded.  

However, though the average SR of SD bridges improved by 15.9%, the average SR for 

FO bridges improved by just 4.9% over the last two decades. The combined SR and 

traffic metrics indicate that traffic volume is increasing at a faster rate than SR is 

improving.  This means that usage of relatively poor health bridges continues to increase. 

SR is included as an eligibility criterion for federal funding for bridge replacement.  A 

bridge must have an SR less than 50 to be eligible.  In 1992 the average SR for SD 

bridges was 36.6% while the same is 42.5% in 2013. While this data indicates 6% 

improvement, it also demonstrates that much of work is left to be done.   

Items Leading to FO and SD Classification (2013) 

 Figure 4 and Figure 5 compare the prevalence of each of the items associated with 

FO and SD classifications.  Data in the figures is for deficient bridges in US as of 2013.  

In some cases a single bridge may qualify as FO or SD based on multiple item ratings, for 

this reason the data are presented as exclusive and combined.  Exclusive means that the 

FO or SD classification is based on a single item rating; combined means that the 

deficient item exists in combination with any other deficient items.   
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Figure 4. USA 2013: FO Bridges by Type of Obsolescence 

Inadequate deck geometry was the most common type of FO in 2013. Inadequate deck 

geometry means that the bridge deck is narrow compared to current standards.  This 

inadequacy is as safety concern.  Deck geometry alone renders 45,118 bridges obsolete 

and another 6,965 bridges obsolete in combination with other causes.   Inadequate under 

clearances are also safety concerns and are the second most common type of 

obsolescence. Under clearances alone account for obsolescence of 15,870 bridges and 

another 4,178 bridges in combination with items. When combined, inadequate deck 

geometry and inadequate under clearances account for 95% of all FO bridges.  Thus 

geometric factors, i.e. the width, height, and pier/abutment spacing are the most 

significant factors causing FO highway bridges.   

 Capacity obsolescence, obsolescence due to inadequate structural capacity, affects 

4,602 bridges, or approximately 6% of all FO bridges. A methodology for quantifying 

capacity obsolescence was developed by Jonnalagadda et al (2014). Inadequate approach 
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roadway alignment impacts 4,842 bridges. Waterway inadequacy is the least common 

cause of deficiency.  This is because the number of bridges spanning over navigable 

waterways is relatively small as compared to other bridges. 

 

 

Figure 5. USA 2013: SD Bridges by Type of Structural Deficiency 

 

 For SD bridges, poor substructure condition is the most common item resulting in 

SD classification, impacting 12,332 bridges by itself and another 17,443 bridges in 

combination with other items. This is closely followed by inadequate structural capacity, 

poor superstructure condition, and poor deck condition, respectively. It is noted that SD 

bridges are likely to have multiple deficient items, whereas most FO bridges typically 

have a single deficient item.  This means that in most cases, correcting an SD bridge 

requires repair or retrofit of multiple bridge components.   
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Analysis of Bridge Deficiency at State Level (1992-2013) 

This section evaluates how quantity and usage of deficient bridges changed between 1992 

and 2013 at the state level.  The Federal Districts of Columbia and Puerto Rico were also 

considered in the evaluation.  The evaluation was conducted to determine if the trends 

observed at the national level are consistent when analyzed for individual states.  For 

each state, the percent change in the number of SD and FO bridges, and the percent 

change in ADT on SD and FO bridges were calculated.  Distribution of these values for 

FO bridges is presented in Figure 6 and Figure 7.  The distribution of these values for SD 

bridges is presented in Figure 8 and Figure 9. Negative percent change in the figures 

indicates a decrease or improvement in deficient bridges and deficient bridge traffic.  

Positive percent change indicates an increase or worsening.   

 

Figure 6. State & Jurisdiction Level Change in Number of FO bridges (1992-2013) 

 

Negative percentage - reduction in FO   

Positive percentage - increase in FO 
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Figure 7. State & Jurisdiction Level Change in ADT on FO bridges (1992-2013) 

 The percent change in the number of FO bridges has an approximately normal 

distribution.  With respect to FO bridges, Iowa is the best performing state while New 

York is the worst performing.  The number of FO bridges in New York increased by 

179% between 1992 and 2013, whereas Iowa saw a 64% decrease.  Traffic on FO bridges 

shows a different trend.   Fourteen states had reduced ADT on FO bridges as compared to 

1992, and thirty eight states had increase in ADT on FO bridges.  No trends were 

observed with regard to region or population of states having the largest increases in 

ADT on FO bridges. 

 Referring to Figure 8, forty two states had a reduction in the number of SD 

bridges between 1992 and 2013.  Only ten states had an increased number of SD bridges 

as compared to 1992. The states of California, Wyoming, and Arizona had greater than 

50% increases in number of SD bridges. California had the largest increase, 94%.  With a 

Negative percentage - reduction in ADT   

Positive percentage - increase in ADT 
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79% reduction in SD bridges in the last two decades, New York is the best performing 

state with respect to decreasing the number of SD bridges. 

 

Figure 8. State & Jurisdiction Level Change in Number of SD bridges (1992-2013) 

   Referring to Figure 9, thirty four states had reduced ADT on SD bridges as 

compared to 1992; however, ten states had increases in ADT on SD bridges in excess of 

50%. The remaining states (eight) had a moderate increase in ADT on SD bridges. 

 

Figure 9. State & Jurisdiction Level Change in ADT on SD bridges (1992-2013) 

Negative percentage - reduction in SD   

Positive percentage - increase in SD 

Negative percentage - reduction in ADT   

Positive percentage - increase in ADT 
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Summary and Conclusions 

 

 This paper evaluates the trends in the prevalence and usage of deficient bridges in 

United States. Deficient bridges include those that are structurally deficient or 

functionally obsolete. NBI data for all fifty states, plus the District of Columbia and 

Puerto Rico were consolidated and analyzed over the interval from 1992 to 2013. Metrics 

such as the number of deficient bridges, amount of traffic on deficient bridges and bridge 

sufficiency ratings were considered. Prevalence of the different types of deficiency was 

also considered.  The following observations and conclusions are made: 

 Between 1992 and 2013, the number of SD and FO bridges in the United States 

decreased by 47% and 5.7%, respectively.  Also, the average sufficiency rating of the 

US bridges, which is currently at 81%, improved by a margin of 12.4% over the same 

period.  By these metrics the overall health of US bridges is improving. 

 Trends in the traffic usage of deficient bridges provided mixed results.  The ADT on 

SD bridges decreased by 31%, whereas the ADT on FO bridges increased by 25% 

over the period considered.  Thus the number of FO bridges is decreasing, but the 

remaining FO bridges are carrying increased traffic. 

 Reduction in the number of FO bridges (5.7%) between 1992 and 2013 was lower 

than reduction in number of SD bridges (47%) over the same period.  

 Although bridge quality is improving by many metrics, deficient bridges are still a 

major concern.  In 2013, one in four bridges in the US was deficient, and the average 

SR of deficient bridges was 58.1%. 
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 Geometric features such as deck width and under clearances are the most common 

items of deficiency in FO bridges. At least one of these types of deficiency exists in 

95% of the FO bridges. 

 Poor substructure condition is the most common type of deficiency leading to SD 

ratings, followed closely by inadequate structural capacity, poor superstructure and 

poor deck condition.  Many SD bridges have multiple deficiencies. 

 The distribution and usage of deficient bridges is not uniformly distributed in the 

United States.  Although the overall trend is towards improved bridges, some states 

have had distinct increases in the number and usage of deficient bridges.  
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CHAPTER THREE 

 

A METHOD FOR ASSESSING CAPACITY OBSOLESCENCE OF HIGHWAY 

BRIDGES 

 

A paper on this chapter is published in Transportation Research Board 94
th

 Annual 

compendium of papers 

Srimaruthi Jonnalagadda, Brandon E. Ross, Jeffery M. Plumblee, II 

Abstract 

 

As of 2013, 14% of highway bridges were classified as functionally obsolete.  This 

classification is given to bridges that have capacity and geometric conditions that do not 

satisfy modern requirements and thereby limit usage.  The first part of this paper is a 

general discussion of obsolescence and sustainability of highway bridges, and describes 

the impact of obsolete bridges on economic, social, and environmental sustainability.  

The second part of the paper proposes a theoretical model for quantifying obsolescence 

due to load carrying capacity, a subcategory of functional obsolescence.  The model 

includes features to account for increasing load demand and decreasing structural 

capacity over time.  Historic trends for bridge design loads are discussed as they relate to 

the model, as are methods for calculating degradation of structural capacity.  Limitations, 

applications, and possible extensions of the model are discussed.  The third part of the 

paper applies the capacity obsolescence model to an example problem involving a simple 

span reinforced concrete bridge.  The example demonstrates a methodology for 

simultaneously evaluating capacity obsolescence and environmental impact using multi-

criteria decision analysis (MCDA).  The paper concludes by suggesting future research to 
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advance the proposed methodology.  The overall objectives of the paper are to propose a 

model for quantifying obsolescence and to demonstrate how obsolescence can be jointly 

considered with other bridge design criteria. 
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Introduction 

 

According to the 2013 data in the National Bridge Inventory (NBI) (1), approximately 

67,000 highway bridges in United States are structurally deficient and 85,000 are 

functionally obsolete.  The substandard quality of bridges is reflected in the C+ grade 

given for the overall condition of bridges in the ASCE infrastructure report card for 2013 

(2).  These statistics and ratings demonstrate the critical need to address the condition of 

the United States’ bridge infrastructure.  This paper focuses specifically on functional 

obsolescence, a topic that has received only limited attention in the existing literature. 

The effects of functional obsolescence on the sustainability of highway bridges are also 

discussed and a methodology is proposed for designing bridges to minimize obsolescence 

and maximize sustainability.   

Functional obsolescence is a label applied to infrastructure that is unsuitable for current 

demands (3).  Obsolescence (i.e. lacking relevance) is common to all sectors of civil 

infrastructure (4).  According to the Federal Highway Administration (FHWA), bridges 

are categorized as functionally obsolete when their load carrying capacity, deck 

geometry, under clearance, water way adequacy, or approach roadway alignment no 

longer meet current demands (5). Details of the FHWA rating system used to categorize 

bridges are discussed in section 2.1.   

Capacity obsolescence is a primary focus of this paper and is herein defined as the 

condition of having structural capacity that is insufficient to support current load 

demands.  Although this terminology is not used in the FHWA rating system, capacity 

obsolescence is accounted for in the system criteria. According to the 2013 NBI, capacity 
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obsolescence affects about 5,200 bridges.  The terms functional serviceability and 

capacity serviceability are proposed to denote the absence of functional obsolescence and 

capacity obsolescence, respectively.  Functional serviceability and capacity serviceability 

are thus distinct from the classical concept of serviceability used in structural 

engineering.   

Sustainable development is defined as “development that meets the needs of the present 

without compromising the ability of future generations to meet their own needs” (6).  

Sustainability is assessed in three domains: economic, environmental, and social. 

Because bridges are often the most complex and costly components of highway 

infrastructure, they can have large footprints on the economic, environmental, and social 

sustainability of a project. Though economic efficiency of bridge management and design 

have been well studied (e.g. 7, 8, 9, 10, 11), quantification of social and environmental 

costs is a relatively recent development.  The life cycle analysis method for quantifying 

environmental sustainability is discussed in the section 2.2.   

It has been proffered that sustainability and resilience will be the two metrics by which 

infrastructure will be evaluated in the next century (12).  Resilience is a metric associated 

with the ability of an infrastructure asset or system to recover from an extreme event.  

Recent natural hazards such as Superstorm Sandy and Hurricane Katrina have exposed 

vulnerabilities in the United States’ civil infrastructure systems and have demonstrated a 

clear need for infrastructure resilience (4).  While noting the critical import of resilience, 

the scope of this paper will be limited to sustainability and functional serviceability.   
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Background 

 
Functional and Capacity Obsolescence 

According to the FHWA Bridge Inspection Manual (5), bridges are classified as 

functionally obsolete based on structural evaluation, bridge deck geometry, under 

clearances, waterway adequacy and approach roadway alignment (Table 4). As part of a 

bridge condition appraisal, each item is rated on a scale of 0 to 9; with 0 meaning the 

item is completely unfit for use and the bridge is closed, and 9 meaning that the item is 

superior to the desirable condition.  A bridge is categorized as functionally obsolete if 

any of the associated criteria are rated as a 3 or lower.  

Item 67 in the FHWA rating system, structural evaluation, is used for assessing both 

structural deficiency and functional obsolescence.  A poor rating on this item does not 

automatically trigger a structurally deficient rating; many additional criteria and rules are 

also used to determine structural deficiency in the FHWA system.  A poor rating (3 or 

less) on the structural evaluation, however, is an automatic trigger for a functionally 

obsolete rating.  Thus, it is possible for a bridge to be categorized as functionally obsolete 

due to the structural evaluation, but not be categorized as structurally deficient.  In cases 

where a bridge qualifies as both deficient and obsolete, then structural deficiency is the 

priority classification; a structurally deficient bridge it is not classified as functionally 

obsolete until the structural deficiency has been repaired. 

Although it is not labeled as such in the FHWA Bridge Inspection Manual, capacity 

obsolescence is directly related to the structural evaluation in item 67.  As noted above, 

capacity obsolescence is defined as the condition of having structural capacity that is 
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insufficient to support current load demands.  In this condition, a bridge can have 

restricted usage even if it is otherwise structurally sound and can still safely carry the 

original loads for which it was designed.   

Whereas item 67 is associated with structural capacity, the remaining criteria for 

functional obsolescence (items 68 through 72) are associated with geometric conditions.  

These items account for the effects of geometric constraints on traffic moving on and 

under the bridge.  The term geometric obsolescence is proposed herein to distinguish 

bridges that are categorized as functionally obsolete due to the geometric criteria 

accounted for in items 68 through 72. 

Table 4. Itemized Evaluation Criteria for Functionally Obsolete Bridges (5) 

Item # Item description Sub Items or evaluation criteria 

67 Structural Evaluation Item 59 (superstructure evaluation) 

Item 60 (substructure evaluation) 

Item 29 (comparison of ADT) 

Item 66 (inventory rating) 

68 Deck Geometry Item 51 (curb-to-curb width) 

Item 53 (vertical over clearance) 

69 Under clearances Item 54 (vertical under clearance) 

Item 55 (lateral under clearance-right) 

Item 56 (lateral under clearance-left) 

71 Water way adequacy Overtopping flood frequency 

Impact to traffic delays 

72 Approach roadway alignment Speed restrictions 
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Functional obsolescence as defined by FHWA is a subset of general obsolescence.  

Writing of civil infrastructure in general, Lemer (3) noted that obsolescence can be 

caused by changes in technology, regulations, social or economic conditions.  Langston 

(13) noted that causes of obsolescence in buildings are due to physical, technological, 

social, functional, economical, legal and political changes.  Many of these conditions also 

impact highway bridges but are beyond the scope of the FHWA rating system.  The intent 

of this paper is to contribute towards the creation of a general framework whereby 

mitigation of obsolescence can be treated as a fundamental design goal, and whereby 

relevance can be considered as a paramount feature of infrastructure along with resilience 

and sustainability. 

Environmental Sustainability of Highway Bridges 

Sustainability is assessed in three domains: economic, environmental, and social. Thus a 

sustainable highway bridge provides economic and social benefits, while limiting the 

environmental costs of its construction, operation, maintenance, and decommissioning.  

Bridges are often the most complex and costly components of highway infrastructure 

projects and have a significant impact on sustainability.  

Life Cycle Assessment (LCA) is a commonly used tool for quantifying the environmental 

sustainability of a product, process, or system.  Rules for conducting an LCA are defined 

by the ISO 14040 series (14).   Embodied energy is one metric used to assess 

environmental sustainability in an LCA, and is the metric used in the example in section 

4. Embodied energy includes all energy consumed in the production of building 

materials, energy needed for transportation of the materials, and energy required for 
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assembling the various materials to form the building (15).  This metric also includes 

‘recurrent energy’ that is required for maintenance, repairs and renovations (16).  

Environmental impact and optimization of have been topics in recent literature on 

highway bridges.  In one of the most comprehensive qualitative treatments of the subject, 

Steele et al. (17) discussed how design, durability, retrofit, and maintenance operations 

have significant impact on the environmental impact of bridges.  Other authors have 

compared the environmental impact of alternate bridge designs (18) and materials (19).  

Sustainability in the context of highway bridges has been studied at the network level 

(20) and as it relates to resilience (21).  One common theme in the literature is the need to 

consider environmental costs over the entire life span of a bridge.  This paper adds to the 

body of knowledge by discussing how obsolescence affects sustainability of bridge 

infrastructure, and by presenting a methodology whereby obsolescence and sustainability 

can be jointly evaluated. 

Impacts of Functional Obsolescence on the Sustainability of Bridge Infrastructure 

Functional obsolescence can have significant impacts on the economic, environmental, 

and social aspects of sustainability for highway bridge infrastructure. Functional 

obsolescence can necessitate major repair, retrofit, or replacement, even for bridges with 

remaining service life. These activities require economic, social, and environment 

investments that would otherwise be avoided in the absence of functional obsolescence.  

Table 5 summarizes some of the effects functional obsolescence has on the economic, 

social and environmental sustainability of bridges. 
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Table 5. Impacts of Functional Obsolescence on Sustainability  

Sustainability 

Category 

Impacts of  functional obsolescence on sustainability of highway bridges 

Economic Limits ability to transport goods 

Businesses avoid areas lacking functional bridge infrastructure 

Economic costs for repair, retrofit and/or replacement of obsolete bridges 

Rerouting to avoid obsolete bridges affects travel and transport costs 

Social Reduced safety due to speed changes, alignment issues, and flooding potential 

Negative public perception of bridge infrastructure 

Reduced speeds and congestion cause longer travel time 

Social disruptions during repair, retrofit and/or replacement of obsolete bridges 

Geometric constraints discourage walking and cycling 

Environmental Rerouting and congestion due to obsolete bridges affect fuel consumption 

Environmental costs for bridge repair, retrofit, and/or replacement  

Geometric constraints discourage walking and cycling 

 

Methodology 

 
Capacity obsolescence model 

Capacity obsolescence is graphically defined in  Figure 10 for a hypothetical highway 

bridge.  The approach taken in this figure is an adaptation of the general obsolescence 

framework proposed by Lemer (3).  As the hypothetical bridge ages, its capacity is 

diminished and the load demand increases.  For simplicity these effects are represented in 

as linear trends, however, they are likely to occur in discrete instances or at variable rates 
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throughout the bridge life.  Models for evaluating these trends are discussed in the next 

sections.  The intersection of capacity and demand defines the end of functional life; at 

time less than the functional life the bridge has capacity serviceability, and at time greater 

than the functional life the bridge is capacity obsolete. Capacity obsolescence is 

quantified as the area between capacity and demand lines occurring after the end of the 

functional life. This value accounts for both the degree and the duration of the capacity 

deficiency.  As observed in Figure 10, capacity obsolescence is a function of initial 

capacity and demand, the rate of capacity degradation, the rate of load demand increase, 

and the length of time between the end of functional life and the end of service life.  

 

 Figure 10. Graphical Representation of Capacity Obsolescence 

The statistician George Box (22) famously quipped “…all models are wrong, but some 

are useful.”  The observation that all models are wrong certainly holds true for the 

proposed model.  As noted above, demand increases occur as discrete events based on 
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code and regulatory changes.  Also, routine maintenance may prevent capacity 

degradation over time.  Clearly the model is a simplification, but what are its uses?  First, 

the model can be used to study the sensitivity of obsolescence and functional life over a 

range of possible changes to demand and capacity.  Second, as demonstrated in section 4, 

the model provides a means to quantitatively assess obsolescence in order to evaluate 

tradeoffs with other design criteria such as sustainability.  Increasing the rigor of the 

proposed model will improve its utility; to that end suggestions for future work to refine 

the model are presented in section 5. 

Capacity obsolescence is used in this paper because load demand and structural capacity 

can be estimated using historic data and existing models.  In a more general form (3), the 

proposed model can also be extended to quantify other causes of obsolescence. In the 

2013 NBI (1) deck geometry is the most common trigger for the functionally obsolete 

label.  Thus extension of the model to the other causes of obsolescence will provide even 

greater utility. 

Demand Increase 

Load demands on highway bridges in the United States have increased throughout the 

last century. Figure 11a shows changes in the weight of notional trucks in AASHTO 

bridge design codes. The H20 design truck was introduced in 1923 and had a total weight 

(across all axles) of 40 kip (178kN) (23, 24). The HS20 design truck was introduced in 

1944 to account for truck trailers that were in use on the US highway system. The total 

weight for HS20 truck was 72 kip (320kN) (23, 24). In 1976 interim specifications, 

AASHTO added the design tandem for alternate military loading. In early 1980s, some 
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states increased the design loads to the HS25 truck.  This truck had a total weight of 90 

kip (400kN) but of the same axle spacing and weight proportions of HS20 (23).  With the 

advent of probabilistic methods and publication of the AASHTO LRFD specifications 

(23), the HL93 truck was introduced in 1993.  The HL93 truck has a total weight of 72kip 

(320kN) and is superimposed with a design lane load of 64 psf (0.003MPa). The uniform 

lane load is included to calibrate the notional load with load effects measured on select 

highway bridges (25).  The 100 kip (444kN) load for HL93 shown in Figure 11a 

includes both the truck and lane loads.  The “weight” of the lane load was calculated by 

multiplying the prescribed uniform load by the design lane width and truck length.  A 

linear trend line fit to the data points in Figure 11. 

 Figure 11a indicates the weight of design trucks has increased at a rate of 

approximately 0.85kip per year (or 2% of the H20 truck weight) between 1923 and 1993. 

Ignoring the H20 truck, the rate has been 0.55kip per year between 1944 and 1993. 

Figure 11b shows changes to the federal GVW limit over the past century.  The first 

GVW limit of 28 kip (124 kN) was introduced in 1913. In 1956 the limit was raised to a 

GVW of 73 kip (325 kN), and in 1975 it was raised to 80 kip (356 kN).  A recent bill 

introduced in the US Congress proposed to raise the allowable GVW to 97 kip (431 kN) 

(26).  Assuming the limit is raised as proposed, 97 kip (431 kN) is included in Figure 11b 

as the final data point. Figure 11c shows the state overweight permit limits for 15 

different states as reported in 1913, 1933, 1994, and 2010 (24, 27). Note that only 3 of the 

15 states represented in the figure had permit limits for 1913 and 1933.   The limits range 

from a low of 28 kip (125 kN) in 1913 to a high of 200 kip (890 kN) in 2010.   
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Figure 11. Evolution of highway bridge loads- (a) Design trucks (b) Federal GVW limits 

(c) State overweight permit limits.  
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The data plotted in Figure 11 show how design and permit loads for highway bridges 

have increased over the past century.  This observation, however, does not mean that 

loads will continue to increase in the future.  In calculations of capacity obsolescence, 

engineering judgment must be used when selecting a function to model future load 

demand.  If historic trends are expected to continue, then use of a linear function with 

slope near 0.75 kip/year (3.3 kN/year) may be appropriate.  In selecting a model for 

future load demand, the relationship between service life and extreme truck loading must 

also be considered.  This relationship has nothing to do with changes to design or permit 

loads; it is based on the probabilistic concept that as the life span of a bridge increases, so 

does the likelihood that the bridge will experience an extreme truck loading.  A procedure 

for assessing this effect can be found in National Cooperative Highway Research 

Program Report No. 538 (28). 

Capacity Degradation  

 Without (and sometimes even with) proper maintenance, all bridges experience 

capacity degradation over their lifespan.  The causes of degradation vary based on the 

bridge materials.  Steel bridges lose capacity primarily due to corrosion (29).  Fatigue can 

also cause degradation, but this mechanism is not a significant factor for bridges designed 

according to current AASHTO fatigue provisions (30). Concrete bridges primarily lose 

capacity due to corrosion of reinforcement and prestressing, and due to environmental 

stressors that attack the concrete such as freeze-thaw cycling and alkali-silica reaction 

(29, 31).  Loss of capacity over time has also been reported for bridges made of timber 

(32) and masonry (33).  
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Recent works have made meaningful contributions to the area of modeling bridge 

degradation.  As part of a larger effort to predict life-cycle performance of bridges, 

Okasha and Frangopol (29) numerically modeled the degradation of a steel girder bridge.  

Using reliability concepts, finite element modeling, and advanced computing techniques, 

the authors calculated linear degradation of girder flexural capacity of approximately 

0.3% per year relative to the initial capacity.  Sun et al. (34) modeled the degradation of a 

reinforced concrete bridge due to the effects of concrete carbonation and reinforcement 

corrosion.  These degradation phenomena were modeled empirically and resulted in a 

nonlinear relationship between the age of the bridge and the degree of flexural capacity 

degradation.  A 17% loss of flexural capacity was calculated over an assumed 100 year 

life span, with the majority of the loss occurring in years 30 through 60 due to 

reinforcement corrosion and the attendant loss of bond.  Bridge degradation has also been 

quantified using bridge condition assessments such as the FHWA rating system (35, 36).   

Example 

Description and Methodology 

This section presents an example whereby multi-criteria decision analysis (MCDA) was 

used to evaluate a bridge with regard to environmental sustainability and obsolescence 

criteria.  The bridge in the example consisted of a 20 ft (6.1m) long simple span with 

rectangular reinforced concrete girders and a reinforced concrete deck, subjected to truck 

and lane loads (Figure 12).  Flexural capacity of the interior girder was the subject of the 

example.  The objective was to identify a girder design that minimized embodied energy 

and capacity obsolescence over a service life of 50, 75, or 100 years.  The example was 
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designed to be relatively simple in order to illustrate how sustainability and obsolescence 

criteria can be simultaneously considered in bridge design; ideas for enhancing the rigor 

of the methodology are discussed in section 5.  

 

 

Figure 12.  Girder Loading and Superstructure Cross Section 

Design constraints and variables are listed in Table 6. Variables were treated discretely 

and resulted in a design space with 64 options (permutations).   Each option was 

considered using the methodology from Koslowski (37). Other methods have been 

demonstrated for optimizing the environmental impact of reinforced concrete structures 

in problems with much larger design spaces (38, 39, 40).  The range for each variable in 

the current example was selected based on typical values used on reinforced concrete 

design. For example, the minimum girder height (measured from the top of the slab) was 

18” (0.45 m) which corresponds to a span-to-depth ratio of approximately 13.  The 

flexural capacity was calculated considering the girders as T-beams.  Shear capacity was 

not considered in the example.   

To calculate capacity obsolescence, a demand increase of 0.6% per year (relative to the 

initial demand from the HL-93 loading) and a capacity degradation of 0.3% per year 
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(relative to the initial capacity) were used.  These values are within the ranges discussed 

in sections 3.2 and 3.3.  The initial flexural demand was calculated based on the loading 

condition shown in Figure 12.  For the analysis, it was assumed that the entire axle load 

and a 10 ft (3 m) tributary of the uniform load were carried by the interior girder.  The 

maximum moment occurring at midspan was used in the analysis.  Only self-weight and 

truck loads were considered, and the appropriate load, dynamic load allowance, and 

resistance factors based on LRFD (41) were applied.  Capacity obsolescence was 

calculated as the difference between the factored moment demand and the nominal 

flexural capacity reduced by the resistance factor.  

 The total embodied energy for each option was calculated by multiplying the 

material quantity by the unit embodied energy values presented in Table 6.  As the deck 

was consistent across all options, only the embodied energy of the girders was 

considered.  To facilitate comparison across different service lives, the total embodied 

energy of each option was divided by 50, 75, and 100 years to obtain three amortized 

values.    These values represent the annual investment of embodied energy for each 

bridge design option.  A bridge having a longer service life will require a smaller annual 

investment of embodied energy than an identical bridge having a shorter service.  

Discount rates were not considered in the example. 
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Table 6. Design Parameters and Variables  

Concrete compressive strength 5000 psi  (35 MPa) 

Embodied Energy (Concrete) 1.3 MJ/kg  (42) 

Grade of steel 60 ksi  (415 MPa) 

Embodied Energy (Steel) 8.8 MJ/kg (42) 

Unit weight of concrete 150 pcf (24 kN/m3) 

Depth of beam Varied from 18 in. to 33 in. 

(450 to 825 mm) 

Width of beam Varied from 8 in. to 12 in. 

(200 to 300 mm) 

Reinforcement ratio Varied from  

0.008% to 0.016%  

(based on T-beam section) 

Span of girder 20 ft (6.1 m) 

Live load factor 1.75 

Dead load factor 1.25 

IM factor 1.33 

Resistance factor 0.9 

Deck slab thickness 8” (200mm) 

Effective Flange width 60”  (1.5m) 

 

Results and Discussion       

 

Results from two typical design options are presented in  

 Figure 13. The demand curves for both options are nearly identical and vary only due to 

differences in girder self-weight.  The capacity curves are different for each option, based 

on their associated design variables.  The option shown in Figure 13a had a smaller initial 

capacity and a functional life of only 33 years; the option in Figure 13b had a larger 

initial capacity and a functional life of 87 years.  The capacity obsolescence of option (a) 

was 700, 4,320, and 11,020 kip-ft-years (949, 5,861, 14,951 kN-m-years) for services 

lives of 50, 75, and 100 years, respectively.  Because the functional life of option (b) was 
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87 years, it had a capacity obsolescence of zero for service lives of 50 and 75 years.  The 

capacity obsolescence for a 100 year service life was 520 kip-ft-years (705 kN-m-years). 

 

 

 

 Figure 13. Capacity and demand over time for two representative options 

 Results for all 64 permutations of the design variables are plotted in Figure 14 

according to their capacity obsolescence and annual embodied energy.  Each individual 

permutation can be represented by up to three points, one for each service life. The solid 

lines Figure 14 are the Pareto fronts for each service life.  Design options along a Pareto 

front cannot be improved for one objective without causing a negative effect on the other 

objective.  Optimal designs for the example bridge are those that have minimum annual 

embodied energy and that remain functional throughout the designated service life. The 

optimal designs correspond to the points at which the Pareto front crosses the line of zero 

obsolescence.   

(a) bw=10’’ (250mm)  

      h= 21’’ (530 mm) 

       = 0.015%  

(b) bw=10’’ (250mm) 

      h= 30’’ (750 mm) 

 = 0.013%  
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Figure 14. Multi-criteria analysis of the example bridge  

 As expected, longer services lives are associated with lower embodied energy, 

and consequently, greater environmental sustainability.  In the example problem, changes 

in energy efficiency were greater between 50 and 75 years than between 75 and 100 

years.  There is a trade-off between energy and obsolescence.  Girder designs with lower 

capacity obsolescence are larger and contain more embodied energy than smaller girder 

designs with higher obsolescence.  MCDA methods, such as the Pareto front method 

demonstrated in Figure 14 and discussed above, can be used to navigate these tradeoffs.  

More rigorous MCDA methods such as multi-attribute utility theory (MAUT) or the 

analytic hierarchy process (AHP) can be used to evaluate problems with greater 

complexity.   
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Scope for further research 

In order to demonstrate application of MCDA and the capacity obsolescence model, the 

example in the previous section was designed to be relatively simple.  Practical 

application of the methodology will require additional considerations and features.  

Suggestions for future advancements are listed below: 

 The example focused only on flexural capacity of girders. The methodology 

should be extended to include other components of the bridge and to other load 

effects and limit states. 

 The effects of repair, maintenance and/or retrofit should be considered as they 

relate to the degradation model and embodied energy.  As these events occur at 

discrete instances, a piecewise function might be utilized to model their effects on 

structural capacity.    

 Capacity degradation and load increase were treated independently in the 

example.  Work should be conducted to elucidate the interaction between these 

factors. 

 The example only included embodied energy and capacity obsolescence. The 

methodology should be expanded to include other criteria such as economic cost 

and multi-hazard resilience, as well as geometric obsolescence. 

 Probabilistic analysis should be used to assess uncertainties and variability. 

Application of robust design methodologies, such as those applied by Liu et al 

(43), would be an effective tool for selecting a designs with minimum sensitivity 

to uncertainty and variability. 
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 The methodology should be extended from a single bridge to infrastructure 

networks.  This would be of benefit to agencies in prioritizing maintenance and 

replacement interventions.  Existing works studying seismic resilience of bridge 

networks would likely be useful in this regard (20, 44).  

 

Summary and conclusions 

 

The 85,000 functionally obsolete highway bridges in the United States have significant 

impact on the economic, social, and environmental sustainability of highway 

infrastructure.  In spite of this condition, there is a dearth of information on methods for 

assessing obsolescence.  In response, this paper qualitatively discussed the interactions 

between functional obsolescence and sustainability of highway bridges.  A definition was 

proposed for capacity obsolescence (one type of functional obsolescence), and a model 

for quantifying capacity obsolescence was proposed.  An example involving a simple 

span reinforced concrete bridge was presented to demonstrate a methodology for 

quantitatively evaluating capacity obsolescence and environmental impact using multi-

criteria decision analysis.  The example demonstrated the environmental benefits of 

designing for a longer service life.  Concepts for advancing the methodology used in the 

example were suggested.  The concepts and methods discussed and presented in this 

paper are presented as a foundation for future studies on functional obsolescence and 

sustainability of highway bridges. 
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CHAPTER FOUR 

 

APPLICATION OF CAUSAL LOOPS DIAGRAMS TO MODEL 

IMPROVEMENT COSTS FOR HIGHWAY BRIDGE INVENTORIES 

 

This chapter is currently under review for publication 

Srimaruthi Jonnalagadda, Brandon E. Ross 

Abstract 

 

The quality of bridge infrastructure is affected by a variety of factors. Traffic and aging 

deteriorate bridges; maintenance and repair operations mitigate deterioration.  The overall 

quality of a bridge inventory is also affected by new construction, and through removal or 

improvement of poor bridges. This study uses tools from the field of systems dynamics to 

study changes to the quality of bridge inventories. A causal loop diagram (CLD) is 

developed to qualitatively describe the relationships and actions impacting the quality 

and improvement costs of a bridge inventory. Relationships expressed in the CLD 

consider physical, economic, and policy factors. A quantitative linear-regression model is 

also developed, which is based on a portion of the CLD.  Using South Carolina as a test 

subject, the model is used to calculate the inventory-level improvement costs as a 

function of annual improvement budget.  Data from the National Bridge Inventory are 

used to develop the model. This paper is presented as a first step towards the use of 

system-based approaches to study highway bridge inventories. Recommendations are 

given for extending the proposed CLD and quantitative model. 
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Introduction 

 

The average age of highway bridges in United States in 2015 was approximately 42 years 

(1). As age and traffic demands increase, there is growing need for maintenance and 

improvement of highway bridges. This paper uses a system-based approach to study 

improvement costs, which are defined as the costs to repair or rehabilitate bridges to the 

point at which they provide an acceptable level of service (2). By using such an approach 

the relationships between physical phenomena, policy decisions, economic activity, 

traffic demands, and other relevant factors can be jointly considered and evaluated. The 

suitability of system-based models for studying transportation systems has been well 

established (3); however this approach has not previously been applied to study highway 

bridge inventories.  Towards the goal of applying a system approach to bridge 

inventories, this paper has three objectives: 

1. To develop a Causal Loop Diagram (CLD) of the system that governs the 

improvement costs of a highway bridge inventory (hereafter ‘bridge inventory 

system’); 

2. To develop and apply a simplified quantitative model to predicting future 

improvement costs subject to variable levels of annual funding; and 

3. To recommend future work for extending system modeling of bridge inventories 

The first objective is conceptual in nature and is addressed in section 3 of this paper. 

Factors and relationships that impact improvement costs are identified and mapped onto a 

CLD for the bridge inventory system.  For the second objective, a simplified quantitative 

model is developed to predict quality and improvement costs of the South Carolina 
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bridge inventory.  The model is characterized as ‘simplified’ because it is not 

comprehensive of the entire bridge inventory system, is based on linear-regression (as 

opposed to more complex system dynamic modeling,) and because it focuses only on 

short-term analysis. Development of the simplified model is presented in section 4.  

Section 4 also presents a parametric study to determine the effects of annual 

improvement budget on the future improvement costs.  The final objective flows from the 

first two.  Recommended tasks towards quantitatively modeling the entire bridge 

inventory system are discussed in section 5. Summary and conclusions are presented in 

section 6.  

Background 

 
Bridge Improvement and Maintenance 

Bridge improvement is distinct from maintenance; the latter being defined as activities 

performed on a predetermined schedule to preserve bridges from future deterioration and 

damage (2). While improvements are aimed at enhancing the functional or structural 

condition of bridges, maintenance activities are aimed at delaying bridge deterioration.  

Both are critical factors when evaluating the condition of individual bridges, as well as 

the overall condition of bridge inventories.  According to the Federal Highway 

Administration (FHWA) typical bridge improvements include (2): 

 Widening of existing bridges with or without deck rehabilitation 

 Bridge deck rehabilitation with only incidental widening 

 Replacement of bridge or other structure due to substandard load carrying 

capacity 
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 Bridge deck replacement with only incidental widening 

 Bridge rehabilitation because of general structure deterioration 

 Other structural works including hydraulic replacements 

The National Bridge Inventory (NBI) is a database of all bridges in the United States 

having spans over 20 feet.  It is updated on a yearly basis and is available through FHWA 

(4).  Estimated improvement costs are included as a data item for each bridge in the NBI. 

A year-over-year decrease in estimated improvement costs indicates that a bridge 

received treatments for improvement during the previous year. A year-over-year increase 

in improvement costs indicates the condition of the bridge worsened and that additional 

funds are required to bring the bridge up to an acceptable level of service.   

Sufficiency Rating 

Sufficiency Rating (SR) is another of the data items listed in the NBI, and is an overall 

indicator of a bridge’s quality and condition. SR is reported as a value between 0 and 

100, and is calculated from over 20 different data parameters listed in the NBI. Structural 

adequacy, safety features, serviceability, function, and criticality are all part of SR. A 

value of 100 indicates a bridge in effectively new condition; lower values indicate lesser 

degrees of sufficiency.  A bridge with SR less than 80 is a considered a candidate for 

rehabilitation, whereas a bridge with SR less than 50 is a candidate for replacement (5). 

Because it provides an overall measure of bridge health, SR was selected for use in the 

simplified model presented in section 4. 
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System Dynamics and Causal Loop Diagrams  

System Dynamics is defined as a perspective and set of conceptual tools that enable 

understanding of the structure and dynamics of complex systems (6).  It is developed 

from system theory, information science, organizational theory, control theory, and 

tactical decision-making (3). System Dynamics approach is suitable for modeling 

complex transportation systems and are useful for making policy-level decisions (3).  

Causal loops diagrams (CLD) are a fundamental tool in System Dynamics. CLD are used 

to organize variables that impact a complex system and to visualize the interaction 

between these variables. CLD provide a basis for understanding and measuring the 

effects of these variables and their interactions on the overall performance of the system 

(6). As a precursor to quantitative analyses, CLD can also be used to qualitatively map 

and rationalize relationships in complex systems. A qualitative CLD approach has been 

used to study such things as the process by which buildings are adapted over time (7) and 

the decision of individuals to use public or private transportation (8).  

The study most relevant to the current research was conducted by Fallah‐Fini et al. (9) in 

which a CLD was developed to describe the causal relationships between highway 

maintenance operations and highway deterioration. Using mathematical functions to 

describe casual relationships, the effects of three types of maintenance operations 

(preventive, corrective, and restorative) were considered and measured. The study 

concluded that the current decision-making strategies are not adequate for deriving 
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optimal highway performance.  Based on the CLD and associated modelling, 

recommendations were made for optimizing highway maintenance. 

Methodology 

 
Causal loop diagram for bridge inventory system 

Figure 15 presents a CLD of the system that controls the size, quality, and improvement 

costs of a highway bridge inventory. The figure is based on South Carolina; however, 

most aspects of the figure can be generalized to other jurisdictions. Arrows in the 

diagram represent causal relationships. A positive sign is placed next to the arrow if the 

factor on the originating end tends to increase or grow the item at the arrowhead end.  A 

negative signs denotes decreasing or shrinking effect.  

 To aide in presenting the CLD, numbers are used to link components of the 

Figure 15 with discussions in the subsequent text.  Numbering begins with improvement 

costs near the center and follows a roughly counterclockwise pattern through the figure. 

In addition to describing the components of the diagram, relevant sources of data are also 

mentioned in the subsequent text. 
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 Figure 15. Causal Loop Diagram of the Bridge Inventory System 

Description of CLD 

1. The primary objective in creating Figure 15 was to map the factors and 

relationships that impact total improvement costs for the South Carolina bridge 

inventory. Thus each path through the diagram ends at improvement costs. 

Improvement cost data for individual bridges are available in the NBI. 

2. Average SR provides one measure of inventory quality. Measures such as the 

percentage of structurally deficient and functionally obsolete bridges could also 
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be used to measure inventory quality. Data on these measures are available in the 

NBI. 

3. Total improvement costs for the inventory increase as the size and quantity of 

bridges increase; they decrease as the quality of the inventory improves.   

4. Deterioration adversely impacts the quality of bridges and occurs due to ageing, 

traffic, and obsolescence. Maintenance activities slow deterioration.  

5. Bridges are considered obsolete when they no longer meet current standards and 

functional demands (10). Strictly speaking, changing standards and demands do 

not cause a reduction in bridge quality. They do, however, impact the definition 

by which bridge quality is evaluated.  For example, if the standard for calculating 

SR changes, then bridges failing to meet the new standard will be judged as 

having reduced quality.   

6. It is well understood that traffic, especially heavy truck traffic, has a negative 

impact on bridge quality.  This impact has recently been studied in South Carolina 

by Chowdhury et al. (11).   

7. Traffic on individual bridges is measured as average daily traffic (ADT) and as 

percentage of truck traffic. Data on both measures are available at the bridge level 

in the NBI. 

8. It is reasoned that higher levels of economic activity lead to increased traffic as 

goods are trucked using the highway system.  
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9. As with many other states, South Carolina uses a fuel tax as a funding source for 

transportation infrastructure.  It is reasoned that increased traffic results in 

increased fuel sales and taxes.   

10. Measures such as Gross Domestic Product (GDP) are available for quantitatively 

describing the level of economic activity.  Historic data on state-level GDP are 

available from Bureau of Economic Analysis (12). 

11. The overall quality of transportation infrastructure has positive impact on 

economic activity (13). The specific impact of bridge quality on economic activity 

has not previously been studied, however, and is recommended as an area for 

future research. 

12. Federal Highway Bridge Rehabilitation and Replacement Program (HBRRP) is a 

major source of funding for bridge repair and replacement (14). Individual bridges 

are candidates for federal bridge replacement aid when they have a SR 50 or 

lower. Data on total federal aid for highway is available (15); funding for bridges 

is a portion of the total aid. 

13. It is reasoned that economic activity increases the tax base. The causal 

relationship between economic activity and state funding for bridges represents 

mechanism other than fuel taxes.  Examples include special funding districts and 

one-time funding packages. 

14. Data on the total transportation budget for South Carolina can be found from SC 

Office of the State Auditor (16). For recent years (2008 and later) State 

Transportation Improvement funding is also readily available (17).  
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15. The ability of transportation funds to impact physical improvements is a function 

of economic inflation and construction costs. The National Highway Construction 

Cost Index (NHCCI) is the price index that accounts for these factors (18). 

16. Funding allows for new construction and for improvement or removal of poor 

bridges.  The number of added, removed, and improved bridges can be obtained 

through year-to-year comparison of the NBI. 

17. A portion of bridge funding is allocated to maintenance activities. Maintenance is 

distinct from other activities in that maintenance slows the rate of deterioration. 

Condition ratings in the NBI implicitly reflect maintenance activities, but specific 

data on maintenance activities are not explicit in the NBI.  

18. In practice it can be challenging to separate the effects of maintenance, aging, and 

traffic because they do not occur in isolation. Thus, these factors are collectively 

considered as the ‘deterioration system’. Net deterioration from this system is 

reflected in the condition and sufficiency ratings in the NBI.   

19. Total area of all bridge decks provides a measure of inventory size that captures 

the effects of both the number and physical size of bridges.  Total deck area of the 

inventory changes as bridges are added and removed. Improvement activities also 

commonly increase the size of bridge decks. Deck area for an individual bridge 

can be calculated as the product of the structure length and deck width; these data 

are available in the NBI.  

20. Inventory quality improves as new high-quality bridges are built and as existing 

poor-quality bridges are removed or improved.   
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21. It is reasoned that increasing the size of the bridge inventory has a positive effect 

on state economy as the bridges facilitate more efficient transfer of goods. To 

date, this relationship has not been rigorously studied. 

Comments on CLD 

The purpose of CLD mapping is to combine basic relationships into a graphical 

representation of a more complex system. Studying feedback loops in a CLD can be 

insightful for understanding long-term system behavior. For example, one loop in Figure 

15 shows that increased bridge quality leads to increased economic activity, leads to 

increased funding, leads to increased bridge quality. This is referred to as a reinforcing 

loop because each relationship in the loop has positive impact. In an alternative loop we 

can see that increased bridge quality leads to increased traffic, leads to increased 

degradation, leads to decreased quality.  This is referred to as a balancing loop because 

the negative factors and relationships balance the positive effects of the reinforcing loop.  

The net effect of reinforcing and balancing loops leads to system behavior, in this case 

inventory improvement costs. 

 Presentation of the CLD is made as a first step towards development of a quantitative 

model of the complete bridge inventory system. Additional research and data are needed 

in order to realize such as model. Some of the relationships shown in the CLD cannot be 

quantitatively described due to lack of data and/or establish theories. Limitations also 

exist in modeling the impacts of delays in the causal relationships.  An example of a 

delay would be the time it takes between funding allocation and the subsequent increase 
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in inventory quality. Design, bidding, and construction time are responsible for such a 

delay.    

Some casual relationships, such as those allocating funding, are highly dependent on 

policy. These relationships are difficult to predict due to the volatility of the political 

process.  Rather than attempting to predict political outcomes, policy decisions are can be 

treated as decision variables in quantitative models to study the impacts of alternative 

policies. This is demonstrated in section 4, wherein the annual budget for bridge 

improvement is treated as a variable.   

With some adjustments the CLD shown in Figure 15 can be used to describe the systems 

impacting other components of transportation infrastructure such as pavements, or to 

describe the quality of transportation infrastructure overall. The CLD was developed with 

consideration of the South Carolina bridge inventory; however CLD can also be used to 

map larger or smaller systems.     

 
Simplified improvement cost model 

Model Overview 

This section presents a simplified quantitative model for studying the total improvement 

costs of the South Carolina highway bridge inventory. The model is mapped in Figure 16  

and is referred to as ‘simplified’ because it is based on only a portion of the larger CLD 

presented in Figure 15.  The ‘simplified’ moniker is also used because the model is based 

on linear regression, and not more complex system dynamics approaches. The portion of 

the CLD selected for the simplified model was chosen because items and relationships 

can be quantified using data exclusively from the NBI. Calculations in the model are 
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made on a yearly basis, and utilize South Carolina NBI data from 2004-2014. This range 

was selected because improvement costs, an essential piece of the model, were not 

consistently reported in the NBI for South Carolina prior to 2004.   

Annual funding for improvements is the only variable in the model.  Funding for 

demolitions, new construction, and maintenance are treated as constants.  This approach 

is taken so that the impact of improvement funding can be studied in isolation. 

Furthermore, this approach was taken for the practical reason that funding data for 

demolitions, new construction, and maintenance are not included in the NBI.  Traffic is 

also treated as a constant in the model. 

Note that the portion of the CLD used for the simplified model does not contain any 

feedback loops.  Feedback loops in the bridge inventory system (Figure 15) are likely to 

impact long-term system behavior. For this reason, the simplified model is only 

considered viable for estimating improvement costs in the short-term future.  
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Figure 16. Simplified Model for Total Improvement Costs 

Source Data 

Data used to develop the model are shown in Table 7. The total number of bridges in the 

inventory was determined by simply counting the number of records in the NBI for each 

year. The numbers of removed and new bridges were determined by comparing data from 

adjacent years. The number of improved bridges for a given year was determined by 

comparing changes in improvement costs for each bridge from the previous year. If 

improvement costs for a given bridge changed downward from the previous year, then 

that bridge was added to the count of improved bridges.  Structured Query Language 

(SQL) programs were written to automate these processes.  

Table 7. Data for South Carolina Bridges (based on NBI data) 

Year Number of bridges tDA
+
 

(m
2
) 

sIC
+
 

(USD 

millions) 

tIC
+
 

(USD 

millions) 

aSR
+
 

 

∆SR
+
 

  Total Improved removed new 

2004 9224 163 14 125 5790539 75.6 1422 75.4 1.38 

2005 9168 186 104 48 5875774 142 1492 76 0.90 

2006 9202 103 123 157 6046437 56.8 1340 76.2 2.25 

2007 9184 126 21 3 6129313 80.7 1317 76.48 0.19 

2008 9184 104 30 30 6373756 94.2 1247 76.83 0.32 

2009 9188 99 27 32 6422431 47.5 1188 77.06 0.47 

2010 9187 118 1 0 6473146 72 1136 77.56 -0.26 

2011 9202 107 22 36 6525932 61 1079 77.9 0.39 

2012 9204 100 55 58 6555825 54 1067 77.95 1.06 

2013 9261 120* 23 80 6581745 * 999 78.35 * 

*Data not available, assumed   
+ 

Explained below 
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 The total Deck Area (tDA) is the summation of deck area from all bridges for a 

given year, and was calculated using Equation 1.  

𝑡𝐷𝐴 = ∑ 𝐿𝑏 ∗ 𝐷𝑏

𝑏=𝑛

𝑏=1

  Equation 1  

    Where: n =  

Lb=  

Db= 

number of bridges 

length of bridge (m) 

width of deck (m) 

     

Spent improvement cost (sIC) is the total amount spent on all bridge improvements in a 

given year. This value is calculated indirectly from NBI data. As noted above, year-to-

year comparisons were used to identify improved bridges.  Once the improved bridges 

were identified, the sIC for a given year was calculated using  

Equation 2.   

 

 𝑠𝐼𝐶𝑡 =  ∑(𝐼𝐶𝑏𝑡−𝐼𝐶𝑏𝑡−1

𝑏=𝑝

𝑏=1

)  

 

Equation 2 

    Where: p =  

ICbi=  

ICbt-1= 

number of improved bridges 

Improvement cost for bridge ‘b’ at year ‘t’ 

Improvement cost for bridge ‘b’ at year ‘t-1’ 

  

The Total Improvement Cost (tIC) is the funding required to bring all bridges to a 

satisfactory level of service. Data for tIC in Table 7 were calculated for each year from 

the NBI as the summation of the improvements cost for each bridge.   
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Average Sufficiency Rating (aSR) is calculated directly from the NBI data for each year 

as the average SR of the entire inventory.   

Net deterioration (∆SR) is listed for each year in Table 7, this parameter will be defined 

and discussed in section 4.6. Table 8 lists additional calculated values that are used in the 

simplified model for improvement costs.   

Table 8. Calculated constants for simplified model (based on NBI data 2004-2013 unless 

otherwise noted)  

Item Variable Value 

Average cost of improvements per unit area (m
2
) of bridge deck*  uIC 1250 $/m

2
 

Average number of newly built bridges per year Q 56 

Average number of removed bridges per year R 46 

Average deck area of new bridges 𝑏𝐷𝐴̅̅ ̅̅ ̅̅  1565 m
2
 

Average deck area of removed bridges  𝑟𝐷𝐴̅̅ ̅̅ ̅̅  650 m
2
 

Average deck area added due to improvements 𝐼𝐷𝐴̅̅ ̅̅ ̅ 630 m
2
 

Average SR of new bridges  bSR 80 

Average SR of removed bridges rSR 61 

Average change in SR of improved bridges ∆ISR 23 

Average net deterioration in SR (see discussion in section 4) a∆SR 0.75 unit SR /year 

*Based on personal communication with Wilson. B, SCDOT, Feb 2016 

 

The Arthur Ravenel Bridge on US 17 near Charleston, SC, was omitted from the data 

shown in Table 7 and Table 8.  This bridge is a 2.5 mile long signature cable stayed 
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bridge and is an outlier in the SC bridge inventory.  Data from all other bridges were 

included. 

Total Improvement Cost 

A linear equation was developed to describe the relationship between total improvement 

costs, inventory quality, and inventory size: 

𝑡𝐼𝐶 =  [−𝑚(𝑎𝑆𝑅) +  𝑏] ∗ 𝑡𝐷𝐴 Equation 3 

    Where: tIC =  

tDA=  

aSR= 

m= 

b= 

total improvement costs for all bridges (USD) 

total deck area of all bridges (m
2
) 

average sufficiency rating of entire bridge inventory 

constant taken as 31.4 ($/m
2  

per unit SR) 

constant taken as 2618 ($/m
2
) 

The rationale for the above formulation is that improvement cost is directly related to the 

size of the bridge inventory (large inventories have greater improvement costs) and 

inversely related to SR (poor quality bridges cost more to improve).  The linear model is 

compared to data from 2004-2013 in Figure 17; each data point in the figure represents 

one year. Values for slope (m) and intercept (b) are based on fit with the data.  
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Figure 17. Relationships between Improvement Costs, Inventory Size, and Sufficiency 

Ratings  

 Equation 3 correlates well with data (R
2
=0.946), indicating the linear model 

adequately captures the relationship between improvement costs, inventory size, and 

Sufficiency Ratings. The intercept value of equation 3 is 2618 $/m
2
. This is the 

theoretical cost to improve one square meter of deck having an SR of 0 to an SR of 100. 

The intercept value is approximately the same amount as needed for each square meter of 

new bridge construction (Wilson. B, SCDOT, Personal Communication, Feb 2016). If 

building a new bridge is analogous to improving a bridge from an SR of 0 to an SR of 

100, then the similarity between intercept value and new construction cost gives further 

support for the validity of equation. 
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Total Deck Area 

Referring to Figure 17, total deck area increases with new bridges and improvements, and 

decreases with removals.  Accordingly, Equation 4 is used to estimate tDA in future 

years: 

               𝑡𝐷𝐴𝑖 = 𝑡𝐷𝐴𝑖−1 + 𝐼𝐷𝐴𝑖 + 𝑏𝐷𝐴𝑖 − 𝑟𝐷𝐴𝑖 Equation 4 

    Where: 𝑡𝐷𝐴𝑖=  

tDAi-1=  

IDAi= 

bDAi= 

rDAi= 

total deck area of bridges at year ‘i’ 

total deck area of bridges at year ‘i-1’ 

deck area added through improvements in year ‘i’ 

deck area added by new bridges at year ‘i’  

deck area added by removed bridges at year ‘i’ 

The deck area added through improvements is a function of the annual budget for 

improvement (sIC). For the prediction phase (2014 through 2020), sIC is calculated as: 

                                                         𝐼𝐷𝐴𝑖 =
𝑠𝐼𝐶𝑖

𝑢𝐼𝐶
 

 

Equation 5 

The total deck area of newly built bridges and removed bridges during any year 

‘i’ are estimated using Equation 6 and Equation 7. 

                                      𝑏𝐷𝐴𝑖 = 𝑞𝑖 (𝑏𝐷𝐴̅̅ ̅̅ ̅̅ ) 

                                      𝑟𝐷𝐴𝑖 = 𝑟𝑖 (𝑟𝐷𝐴̅̅ ̅̅ ̅̅ )    
                          

Equation 6 

Equation 7 

Average Sufficiency Rating 

Referring to Figure 17, bridge quality is negatively impacted by the deterioration system, 

and positively impacted by bridge improvements, new construction, and removal of poor 
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bridges. These factors are included in the Equation 8 for calculating average SR of the 

inventory (aSR): 

                     𝑎𝑆𝑅𝑖 = 𝑎𝑆𝑅𝑖−1 + 𝑏𝑆𝑅
𝑞𝑖

𝑁𝑖
+ 𝑟𝑆𝑅

𝑟𝑖

𝑁𝑖
+ ∆𝐼𝑆𝑅

𝑝𝑖

𝑁𝑖
+ ∆𝑆𝑅𝑖 

Equation 8       

    Where: 𝑎𝑆𝑅𝑖=  

𝑎𝑆𝑅𝑖−1= 

 𝑝𝑖= 

 𝑁𝑖= 

average SR of entire bridge inventory at year ‘i’ 

average SR of entire bridge inventory at year ‘i-1’ 

number of bridges improved at year ‘i’ 

total number of bridges at year ‘i’ 

 The value of aSR for a given year is based on the previous years’ value and 

changes due to removals, new construction, improvements, and net deterioration. For the 

predictions in this paper, changes due to removed bridges, new bridges, and net 

deterioration are treated as constants based on the values given in Table 8.  Calculations 

for determining net deterioration are discussed in detail in the next section. The number 

of improved bridges for a given year is calculated using Equation 9. 

𝑝𝑖 =
𝐼𝐷𝐴𝑖

𝐼𝐷𝐴
⁄  

Equation 9  

Net Deterioration 

Referring to Figure 16, net deterioration is defined as the combined effect of the 

deterioration system on inventory quality.  In the simplified model net deterioration is the 

reduction of aSR due to the deterioration system.  The deterioration system includes 

traffic, aging, and maintenance.  The NBI data do not provide a means of isolating these 

effects individually, but do allow a means of determining the combined (net) effect of all 
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three.  This is accomplished by considering the year-over-year change in aSR less the 

effects of new, removed and improved bridges: 

                ∆𝑆𝑅𝑡 =  𝑎𝑆𝑅𝑡 − 𝑎𝑆𝑅𝑡−1 + 𝑏𝑆𝑅 ∗
𝑞𝑡

𝑁𝑡
+ 𝑟𝑆𝑅 ∗

𝑟𝑡

𝑁𝑡
+ 𝐼𝑆𝑅 ∗

𝑝𝑡

𝑁𝑡
 

Equation 10  

Equation 10 can be derived by rearranging Equation 8.  The subscript ‘t’ is used in 

Equation 10 to denote that it is based on years 2004-2013, whereas Equation 8 uses 

subscript ‘i’ to denote future years.  Yearly values of ∆SR calculated using Equation 10 

are reported in Table 7. The value for average net deterioration (a∆SR) reported in  was 

Table 8 calculated by averaging the yearly ∆SR values reported in Table 7. 

Parametric Study 

The simplified model was used to parametrically study the effects of annual improvement 

spending. Four possible funding scenarios were considered: 0, 40, 80, and 120 million 

USD annually. The average spent improvement cost in recent years (Table 7) was 

approximately 60 million USD. Hence, the scenarios range from zero funding to a level 

that is approximately double the funding from recent years. Average SR (aSR) and total 

Improvement Costs (tIC) were projected from 2014 to 2020 for each scenario. 

 Table 8 presents input and output data for the scenario of sIC equal to 40 million 

USD per year.  Input data for the other scenarios were similar; only the sIC and number 

of improved bridges varied. The number of improved bridges for each scenario was 

determined using Equation 9.  Constant values for new and removed bridges were based 

on average values from recent years (Table 7).  Total deck area was calculated for each 

year using Equation 4 through Equation 7.  Output data included tIC and aSR, which 

were calculated using Equation 3 and Equation 8, respectively. 
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The analysis implicitly treats maintenance activities and traffic levels as constant.  A 

value of 0.75 was used yearly net deterioration (∆SR) in Equation 8.  As discussed in 

section 4.6, this value is based on NBI data from 2004 through 2013, and includes the 

effects of maintenance, aging, and traffic.  By using 0.75 as net deterioration in the 

parametric studies, it is assumed that maintenance and traffic will continue at a level 

similar to 2004 to 2013.     

 

Results and Discussions 

 

Table 9. Projections for South Carolina bridge inventory (Scenario: sIC=40 USD 

Millions) 

Year Input data 

 

Output data 

Number of bridges 

 

tDA (m
2
) sIC 

(USD 

millions) 

tIC 

(USD 

millions) 

aSR 

 Total improved removed New     

2014 9271 51 46 56 6647486 40 1015 78.46 

2015 9281 51 46 56 6713226 40 991 78.62 

2016 9291 51 46 56 6778966 40 967 78.78 

2017 9301 51 46 56 6844706 40 942 78.94 

2018 9311 51 46 56 6910446 40 917 79.10 

2019 9321 51 46 56 6976186 40 891 79.25 

2020 9331 51 46 56 7041926 40 865 79.41 
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    Figure 18. Total Improvement Costs (tIC)  

 Figure 18 presents total improvement costs as a function of time.  Data from the 

NBI and model are presented for years 2004 through 2013.  NBI data in the figure match 

the values from Table 9; model values for the same period were calculated using 

Equation 3 and data from Table 9.  Data from 2014 through 2020 are predictions from the 

parametric study.  Four lines are shown, one for each funding level.  As the annual 

funding level increases, the total improvement costs for the inventory decreases. It is 

estimated that total improvement costs for the South Carolina inventory can be reduced 

by 50% by 2020 if annual funding for improvements is set at 120 million USD per year.  

This estimation assumes that traffic, maintenance, new construction, and demolition will 

continue at the same pace through 2020.  

 



79 

 

  

  Figure 19. Average Sufficiency Rating (aSR)  

 Figure 19 compares the average SR of the South Carolina inventory under 

different levels of improvement funding.  Average SR is approximately constant at 78.5 

between 2014 and 2020 for the scenario where no funds are spent on improvement.  In 

this scenario, the positive effects of bridge removals and new construction are 

approximately equal to the negative effects of the deterioration system. Thus adding and 

removing bridges at a rate equal to the average rate from 2004 to 2012 would likely be 

sufficient for maintain average SR in the near future.  Improving average SR will require 

spending on improvements, or an increased rate of new bridge construction and/or 

removal of poor bridges. Assuming rates of new construction and removal stay constant, 

it is estimated that an annual improvement budget near 80 million USD per year would 

increase the average SR of bridges in South Carolina to 80 by 2019.  
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Recommendations for future work 

 

This paper is intended as a starting point for the application of System Dynamics to 

evaluate highway bridge inventory systems. Additional works are required to practically 

apply a system-based approach in more rigorous and comprehensive studies.  The 

following recommendations and comments are made in this regard: 

 Inclusion of bridge-specific models is recommended to improve modeling of 

traffic, maintenance, and aging effects. NBI data are insufficient for such 

modeling; maintenance and inspection records would be required.  Detailed 

bridge-specific funding data would also be of great use.   

 Delays in casual relationships should be considered.  For example, the time 

required for economic activity to impact funding for bridges.      

 The simplified model was based entirely on linear relationships, and in this sense 

was not a system dynamics model. Nonlinear models should also be considered as 

they may be appropriate for describing some relationships in the system. 

Nonlinear behavior of the overall system due to feedback loops should also be 

considered.      

 A multidisciplinary approach is required in order to model the entire bridge 

inventory system. Public policy models are required to relate economic activity to 

funding. Similarly, relationships are needed to relate economic activity to traffic 

levels, and bridge inventory size and quality to economic activity. 
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 The simplified model was based on a limited data set covering only 10 years.  

Creating and validating a model that captures the effects of feedback loops, 

obsolesce, and construction cost variation will require additional years of data.  

 The CLD and simplified models are based on average sufficiency rating of the 

bridge inventory.  Alternative measures such as average deck condition ratings, or 

percentage of structurally deficient and functionally obsolete bridges might also 

be considered. 

 

Summary and conclusions 

 

A systems-based approach was used to study the system controlling the size and quality 

of the South Carolina highway bridge inventory.  To begin, the system was qualitatively 

described using a causal loop diagram that included physical, economic, and policy 

factors.  Second, a simplified linear regression model, based on a segment of the CLD, 

was developed and applied to study the effects annual improvement funding on inventory 

quality and total improvement costs. The model was developed exclusively using data 

from the National Bridge Inventory. Alternative funding scenarios were analyzed using 

the simplified model. Finally, recommendations and comments were made with regard to 

future system-based modeling of bridge inventory systems. 

With regard to the South Carolina highway bridge inventory, the following conclusions 

and observations are made from the parametric study: 

 Total improvements costs are linearly related to total deck area and average 

sufficiency rating.  The proposed linear model had strong correlation, R
2
 = 0.95, 

with the available data from 2004 through 2013. 
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 The combined effects of traffic, aging, and maintenance resulted in a deterioration 

of average Sufficiency Rating by an average of 0.75 SR points per year from 2004 

to 2013.  Deterioration was completely offset during this period, however, a net 

improvement in average SR was realized due to the effects of new construction, 

and removal and improvement of poor bridges. 

 Under the assumed conditions (constant traffic, maintenance, new construction, 

and demolitions), it is estimated that an annual improvement budget of 120 

million USD per year will decrease the total improvement costs by 50% by 2020.  

 For each 10 million USD spent on annual improvements between 2014 and 2020, 

the total improvement cost in 2020 is estimated to decrease by 46 million USD, 

and the average SR in 2020 is estimated to increase by 0.14 SR points. 
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CHAPTER FIVE 

 

A MODELING APPROACH FOR EVALUATING THE EFFECTS OF DESIGN 

VARIABLES ON BRIDGE CONDITION RATINGS 

 

This chapter is currently under review for publication  

Srimaruthi Jonnalagadda, Brandon E. Ross, Amin Khademi 

 

Abstract 

 

While routine inspections are commonly used to assess the structural integrity, safety, 

and maintenance needs of individual highway bridges, data from these inspections can 

also be used to study performance of bridges at the inventory level. This paper presents a 

novel method by which inspection data can be used to evaluate design variables and 

inform future designs. In particular, inspection data from prestressed concrete bridges in 

Southeastern United States were used to develop artificial neural networks (ANN) 

models for estimating the condition rating of bridge decks and superstructures as a 

function of skew angle and span length, as well as, bridge age, width, and traffic level.  

Once developed and validated, the ANN models were used for an array of simulations 

that were designed using a full factorial approach. The objective of the simulations was to 

identify skew angles and span lengths that correlate with the highest inspection ratings. It 

was determined that deck ratings are highest for smaller skew angles and shorter span 

lengths, whereas superstructure ratings are minimally impacted by larger skews and 

unrelated to span length. The conclusions of this study will be helpful in understanding 
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the implications of bridge design variables on the long term performance of bridge decks 

and superstructures. Though the trends and conclusions noted in this study are to be seen 

within the scope of the data considered, the approach demonstrated in this paper can be 

applied to address other questions of bridge performance. 

 

Introduction 

 

Routine bridge inspections provide a wealth of information on the condition and 

performance of individual bridges, but also provide rich data for analyzing bridge 

inventories and for identifying design variables that correspond to high-performing 

bridges. As the quality and quantity of inspection data increase, what approaches can be 

used to learn from this information? This paper presents a methodology, using Artificial 

Neural Network (ANN) modeling and full factorial-based simulations (FFS), to analyze 

bridge inspection data. The ANN is built using data from the National Bridge Inventory 

(NBI) (NBI, 2016), a database compiled by the United States Federal Highway 

Administration (FHWA) for all bridges in the US that are longer than 6.1 meters (20 

feet).  The NBI is updated yearly and includes 116 different pieces of data for each 

bridge, including inspection data that documents the condition of different bridge 

elements. Similar inspection data inventories are available in other countries such as 

Denmark, Germany, UK, Finland, Canada, France (Hearn, 2007), Korea, China, and 

Japan (Jeong et al, 2016). India currently is in the process of building a bridge inventory 

(Arora, 2016). Typical data items in these inventories include physical characteristics, 

structural characteristics, traffic counts, component structural ratings, overall sufficiency 
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ratings, etc. The FHWA coding guide (FHWA, 1995) describes each of these fields and 

how to interpret the code values for these fields in NBI databases. 

 ANN and other artificial intelligence networks have previously been trained using 

bridge inspection records (discussed in Section 2.1); however, these applications have 

focused on predicting the future condition of existing bridges. ANN methods also offer 

the potential to identify relationships between design variables and ratings, which 

information can be used to inform future designs. The novel ANN-FFS approach 

demonstrated in this paper was created for such as purpose; to provide a systematic 

means of evaluating large sets of inspection data so that future designs can be informed 

by “lessons learned” from existing bridges.  To that end, this paper has three technical 

objectives: 

1. To apply the ANN-FFS approach to assess the sensitivity of prestressed 

concrete bridge deck and superstructure condition ratings to changes in skew 

and span length; 

2. To compare findings of the current study with results of other researchers who 

used alternative methods; 

3. To suggest values of skew and span length that are likely to lead to longer 

lasting decks and superstructures. 

Identifying relationships between design variables and inspection ratings is insufficient to 

determine causation. Hence the results of the current study are compared to findings from 

other researchers who used structural analysis models, small field studies, and laboratory 

studies.  In this manner, possible explanations for the relationships observed in the ANN-
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FFS analysis are identified and analyzed. Prestressed concrete superstructures and 

reinforced concrete bridge decks were selected for the current study because they are 

common in the southern eastern United States. While applied here to study prestressed 

concrete bridges, the ANN-FFS methodology has potential for addressing questions 

related to other bridge types.  Information gleaned from bridge inspection records can be 

used as one more piece in the puzzle of improving performance and extending the life of 

highway bridges.  Design engineers can use such information to create designs that 

balance the likelihood of high condition ratings (increased longevity) against functional 

and economic criteria.  Maintenance engineers can use the information to target their 

inspections and maintenance interventions on bridges having the highest likelihood of 

poor condition ratings. 

 

Background 

 
Artificial Neural Networks for Bridge Condition Evaluation 

Artificial Intelligence techniques, ANN being one type, are effective for modeling the 

behavior of complex systems with multiple factors that dynamically influence system 

performance. Neural networks simulate the thinking and learning behavior of biological 

systems (Mitchell, 1997). The approach was first proposed in 1943 by mathematician 

Walter and neuro-physician Warren (McCulloch and Pitts, 1943).  Since that time, the 

application and sophistication of ANN models have expanded widely (Burke et al 1997, 

Abbass et al 2002, Gniadecka et al 2004).  
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 A neural network is a collection of processing units called neurons arranged in 

layers to form a computing network (Priddy and Keller, 2005). The network can have 

single or multiple layers, with multi-layered networks yielding better results for more 

complex systems. Referring to Figure 20, the first layer is called input layer. Input data 

are passed from the input layer to an intermediate hidden layer, wherein the data are 

assigned mathematical weights and processed by neurons. The neurons pass information 

to transfer function which generates the net input based on input variable values and their 

weights. The net input is passed to an activation function in the output layer, wherein the 

output value is calculated. To train the network, the process is repeated many times, with 

different weights and functions being used for each pass. The model is trained until the 

error between model outputs and source data are within an acceptable range. 

Input 1Input 1

Input 2Input 2

Input 3Input 3

Input 4Input 4

Input 5Input 5

Neuron 1Neuron 1

Neuron 2Neuron 2

Neuron 3Neuron 3

Neuron 4Neuron 4

Neuron 5Neuron 5

Transfer 
Function

Transfer 
Function

Activation 
Function

Activation 
Function

Net Input Output

Input Layer Hidden Layer

Output Layer

 

Figure 20. A multi layered neural network 

 ANN computing has been applied to a range of civil engineering problems, 

including evaluation and analysis of bridges. For example, Chen and Shah (1992) 
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developed ANN models to predict changes in frequencies and displacements of bridge 

piers due to dynamic loads. Sobanjo (1997) demonstrated the application of ANN for 

modeling bridge deterioration on a pilot basis. With a small data set of 50 bridges, the 

study predicted condition rating of superstructures considering only the age of bridge as 

variable. Tokdemir (2000) developed an ANN model to predict bridge sufficiency ratings 

in California based on 28 bridge attributes. Morcous (2002) applied ANN to forecast 

concrete bridge deck conditions and compared the results with other Artificial 

Intelligence methods. Huang (2010) applied ANN for developing deck condition 

prediction models for bridges in Wisconsin. The study suggested that age and 

maintenance history are relevant to deck deterioration. In a study conducted for Michigan 

Department of Transportation, Winn and Burgueno (2013) developed ANN models for 

predicting condition ratings for deck surfaces in the state of Michigan.  Contreras-Nieto 

et al (2016) compared results from ANN, linear regression, and decision tree models to 

predict superstructure ratings of bridges in the state of Oklahoma. It was concluded that 

among the three approaches, ANN models gave the best prediction and that age is the 

most significant factor in predicting superstructure ratings.  

  This paper adds to the body of knowledge on bridge condition evaluation by 

combining artificial neural networks modeling with full factorial-based simulations to 

create a framework for evaluating the impacts of design variables on condition ratings. 

Through this approach, complex interactions between input variables are inherently 

considered and overarching trends can be identified. Whereas previous researchers used 

ANN to forecast the condition of existing bridges and bridge components, the current 
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study presents a methodology for systematically identifying the sensitivity of bridge deck 

and superstructure performance to design variables through a large set of simulations. 

The results of such analyses can be used by designers as they seek to balance structural 

efficiency, functionality, and bridge longevity.    

Full Factorial Approach 

Full Factorial Design is an approach used within the ‘Design of Experiments’ (DoE) 

philosophy, and is commonly used to design experimental programs that involve many 

different variables.  The approach is useful for elucidating the effects of combinations of 

variables on a system response and can be an efficient alternative to one-factor-at-a-time 

analysis (Antony, 2014; Montgomery, 2008).  In civil engineering the full factorial 

approach has been used to study mix designs for concretes and mortars (Yeh 2006, 

Correia 2010). Rather than using a full factorial approach to design experiments, this 

paper uses full factorial to design an array of simulations in which all possible 

combinations of the variables are investigated. If ‘N’ is the number of variables and ‘K’ 

is the number of levels, then a full factorial array requires that K
N
 simulations be 

conducted to include each unique combination. In this manner the combined effects of 

skew, span, age, and other input variables can be considered. 

Condition Ratings 

Bridge inspection data in the NBI are given as condition ratings, which describe the 

physical condition of the superstructure, substructure, and bridge deck.  Inspectors rate 

components on a scale of 0 to 9, as shown in Table 10 below.  
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Table 10. Condition ratings for bridge components (Ryan et al, 2012) 

Rating code Condition rating guidelines 

N Not applicable 

9 Excellent condition 

8 Very good condition - No problems noted  

7 Good condition- Some minor problems 

6 Satisfactory condition- Structural elements show some minor 

deterioration 

5 Fair condition- All primary structural elements are sound but may have 

minor section loss, cracking, spalling, or scour 

4 Poor condition- Advanced section loss, deterioration, spalling, or scour 

3 Serious condition- Loss of section, deterioration, spalling, or scour have 

seriously affected primary structural components. Local failures are 

possible. Fatigue cracks in steel or shear cracks in concrete may be 

present 

2 Critical condition- Advanced deterioration of primary structural elements. 

Fatigue cracks in steel or shear cracks in concrete may be present or scour 

may have removed substructure support. Unless closely monitored it may 

be necessary to close the bridge until corrective action is taken  

1 Imminent failure condition- Major deterioration or section loss present in 

critical structural components, or obvious vertical or horizontal 

movement affecting structure stability. Bridge is closed to traffic but 

corrective action may put bridge back in light service 

0 Failed condition- Out of service; beyond corrective action 
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Previous research by Phares et al. (2004) quantified the variability in the condition ratings 

reported during bridge inspections. By having multiple inspectors rate the same bridge 

components it was determined that ratings are normally distributed and, depending on the 

situation, have a standard deviation between approximately 0.5 and 1 rating point.  

Variability of the ratings was observed to be greater from bridge decks and for bridges in 

relatively poor condition. In the current study, data are evaluated in an average sense, 

thus mitigating the effects of variability in individual bridge inspection ratings. 

Effects of skew and span length on condition ratings 

 Many different approaches have been used to study the effects of design variables 

on performance and behavior of bridge decks and superstructures.  This section 

summarizes those studies that are most germane to the current research. 

 Barr et al. (2001) modeled a 3-span continuous prestressed concrete girder bridge 

using finite elements to compare live load distribution as a function of skew angle.  Select 

results of the study are presented in  

Figure 21, which shows variation in distribution factor (DF) ratio (DFskew/DFzeroskew) with 

respect to bridge skew angle. It can be observed from the figure that distribution factors 

are relatively consistent for small skew angles, but decrease for skew angles greater than 

20 degrees. Khaloo and Mirzabozorg (2003) and Bishara et al (1993) arrived at similar 

conclusions.  As the distribution factor decreases, a greater portion of the load is shared 

through the bridge deck to the girders. This effect is considered in distribution factors 

presented in the AASHTO LRFD Bridge Design Specifications (AASHTO, 2012), which 

are referenced as “LRFD” in Figure 21 
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 Because large skew angles result in decreased girder load distributions, it is 

reasoned that the decks in bridges with large skew should wear out at faster rates.  In 

bridges with large skew angles the deck is “working harder” to distribute loads, and thus 

experiences greater distress and lower condition ratings.  This effect has been observed in 

bridges with integral abutments in New York State (Alampalli and Yannotti 1998). The 

analyses presented in Section 4 elucidate if the effects of skew are also reflected in the 

inspection ratings of prestressed bridges in the southeastern US. 

 

Figure 21. Effects of skew angle on live load distribution (reproduced from Barr et al, 

2001 with permission from ASCE) 



95 

 

 The effects of span length on transverse cracking of bridges with concrete decks 

and composite steel girders have been studied by Ducret et al. (1999) through laboratory 

experiments, French et al (1999) through a field study, and Saadeghvaziri and Hadidi 

(2005) through finite element modeling.  Each study concluded that higher longitudinal 

girder stiffness (relative to the deck stiffness) provides greater restraint and thus causes 

increased deck cracking. The current research investigates if a similar phenomenon is at 

work in prestressed concrete bridges.  It is reasoned that as span length increases, larger 

members are used (or members are spaced closer together), member stiffness increases 

relative to the deck, deck restraint is increased, transverse cracking is increased, and deck 

ratings decrease.  The ANN-FFS method is used to determine if less cracking and high 

deck ratings are associated with short spans in prestressed concrete bridges. 

 

Methodology 

 
Source Data 

Quality source data is essential for creating models that provide useful results. This 

section describes the datasets and the filtering processes used to create the ANN models.  

Separate datasets were used for creating models to estimate DR and SSR. All data were 

taken from the 2014 NBI for the states of Alabama, Georgia, Louisiana, Mississippi, 

North Carolina, South Carolina and Tennessee.  Data from multiple states were used to 

create a sufficiently large dataset for training and validating the ANN models. Each of the 

states has a similar climate and, with the exception of Tennessee, includes both coastal 

and inland bridges. Design, construction, and maintenance policies vary from state to 

state; therefore one limitation is that the analyses are based on the aggregate performance 
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of bridges in all of the states that comprise the dataset. The data filter process for deck 

and superstructures is presented in Figure 22 and Figure 23, respectively. Filtering steps 

are discussed in the following paragraphs.    

 Because of their prevalence in the Southeastern US, this study focuses on bridges 

with prestressed concrete (PSC) superstructures. The first filter removed bridges with 

superstructures other than PSC. The NBI does not differentiate between types of 

prestressed concrete superstructures, thus the dataset represents a range of different 

member types (girders, boxes, segments, etc.), and includes both precast/prestressed and 

post-tensioned structures. Subsequent steps were taken to focus the dataset on prestressed 

girder bridges. 

 The second filter for the superstructure dataset removed bridges that are older 

than 25 years or younger than 15 years.   In contrast, the age filter for the bridge deck 

dataset is based on a range of 5 to 15 years.  These ranges were selected based on the 

relative life of bridge components; decks typically degrade at an earlier age as compared 

to superstructures 

 The third filter for both datasets removed bridges having maximum spans less 

than 28m (90 ft) or greater than 62m (200 ft).  Depending on the range of interest, 

different span lengths could be filtered for, provided that the resulting dataset yields 

sufficient information for model training and validation.  This study focuses on girder 

bridges; however, the NBI does not provide a means of differentiating between girders 

and other superstructure types.  The low end filter for span length eliminated bridges 

using prestressed boxes and slabs, which are sometimes used for shorter span bridges up 
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to 30m (100 ft) in the study region (SCDOT design manual, 2006).  Prestressed I girders 

and bulb tees are common for spans up to 50m (Castrodale, 2004) though they are more 

recently used for spans up to 60m (FDOT, 2009).   In order to target I-girder bridges, a 

span range of 30m to 40m is considered in the simulation phase of this research, as 

discussed in Section 3.3. 

 The fourth filter removed bridges that have decks other than concrete. Both 

precast and cast-in-situ decks are included in the study. The fifth filter removed bridges 

having deck protection systems. Deck protection improves the performance of decks; 

however this study was interested in deterioration of decks without protection. 

 The sixth filter removed bridges that have received improvement treatments 

(significant upgrades or repairs). Improved bridges were identified by looking for year-

over-year reduction in Bridge Improvement Cost values reported in the NBI. Past years’ 

NBI data were also checked for increases in condition ratings, as this also suggests 

improvement treatments. Excluding improved bridges is necessary to create a comparable 

dataset for training of ANN models.   
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Figure 22. Data for deck model   Figure 23. Data for superstructure model 
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 After all filters were applied, a total of 520 and 450 bridges comprised the DR and 

SSR datasets, respectively.  Both dataset were then randomly subdivided into training 

sets consisting of 80% of the bridges and validation sets with the other 20% of bridges. 

The training sets were used to develop, train and validate the ANN models, while the 

validation sets were used for additional validation of the developed models. 

Model Training and Validation 

Two models were developed in this study. The DR model predicted the deck condition 

rating as output variable. The SSR model predicted the superstructure condition rating as 

output variable. Input variables for both the models included skew angle, maximum span 

length, deck width, average daily traffic (ADT), average daily truck traffic (ADTT), and 

age.  

 Models were built using the Mathworks® Matlab neural network toolbox 

(Mathworks®, 2015). A multi-layered feed forward neural network with error back 

propagation was selected for this study.  The model was a two-layered neural network 

with 40 neurons, and the Levenberg-Marquardt training function was selected for 

optimization.  

 Table 11 summarizes the goodness of fit for the DR and SSR models; fit is 

reported using Mean Absolute Error (MAE) and Mean Absolute Percentage Error 

(MAPE). Lower MAE and MAPE values indicate smaller errors and more accurate 

models. As shown in the table, the models are reasonably accurate; MAPE values are low 

and MAE values are within the range of scatter inherent in inspection data as reported by 

Phares et al (2004). A linear-regression model was also constructed from the source data.. 
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As reported in Table 11, the ANN model has less error than the linear model for all 

datasets.  

Table 11. Model Validation  

Dataset ANN Linear Regression 

MAE MAPE MAE MAPE 

DR  Training 0.35 4.7% 0.46 6.2% 

Validation 0.34 4.4% 0.44 5.8% 

SSR Training 0.32 4.5% 0.53 7.9% 

Validation 0.54 7.5% 0.57 8.1% 

 

Test Bridges and Full Factorial Simulations 

Three bridge types were used in the analyses: low-volume, medium-volume, and high-

volume.  These types were selected to cover the range of bridges within the dataset, while 

also representing commonly occurring bridges. Using the full factorial approach, unique 

combinations of variables were simulated using the validated ANN models. 

The upper level for maximum span length was set at 40m for the simulations.  This was 

done to limit the analysis range to match common span lengths of prestressed girders in 

the study region.  Levels used for widths were selected such that the low- and medium-

volume bridges are two-lane and the high-volume bridge is three lane.   

Table 12 lists the variables and levels considered for each bridge type.  Values for each 

level were chosen such that they fall between the 25 percentile and 75 percentile values 

of the datasets.  This is done so that the analyses do not include extreme variable values 
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and do not rely on extrapolation from the source data. Six different levels were 

considered for each of the six variables.  For a full factorial array, 6
6
 or 46,656 

simulations were conducted for each bridge types.  In other words, each possible 

permutation of the variables and levels presented in Table 12 was used in a simulation. 

The upper level for maximum span length was set at 40m for the simulations.  This was 

done to limit the analysis range to match common span lengths of prestressed girders in 

the study region.  Levels used for widths were selected such that the low- and medium-

volume bridges are two-lane and the high-volume bridge is three lane.   

Table 12. Variables and levels used in simulations 

Bridge 

Types 

Variable levels 

Skew 

(deg.) 

Max 

span 

(m) 

Width (m) ADT ADTT Age (years) 

DR SSR 

Low- 

volume 

0, 10, 

20, 

30, 

40, 50 

30,32, 

34,36, 

38,40 

10,10.5,11, 

11.5,12,12.5 

500,700, 

900,1100 

1300,1500 

50,60,70 

80,90,100 

8,9,10, 

11,12,13 

18,19,20 

21,22,23 

Medium- 

volume 

0, 10, 

20, 

30, 

40, 0 

30,32, 

34,36, 

38,40 

10,10.5,11, 

11.5,12,12.5 

2000,3200, 

4400,5600, 

6800,8000 

500,600, 

700,800, 

900,1000 

8,9,10, 

11,12,13 

18,19,20 

21,22,23 

High- 

volume 

0, 10, 

20, 

30, 

40, 50 

30,32, 

34,36, 

38,40 

17,18,19 

20,21,22 

10K,12K, 

14K,16K, 

18K,20K 

800,1050, 

1300,1550 

1800,2050 

8,9,10, 

11,12,13 

18,19,20 

21,22,23 

  

Benefits and Limitations 

Two limitations of the methodology are mentioned here.  First, results from the ANN-

FFS methodology are based on average performance over the considered study region, 

variables, and range of levels.  While useful for identification of overall trends, results of 
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the approach are not necessarily applicable at the level of a specific bridge.  Bridge-

specific studies can still be made using ANN models and one-factor-at-a-time 

methodologies; however, this is not the focus of this paper. Second, the approach 

provides results that are strictly empirical. Bridge inspection data are evaluated at a high 

level, but the results do not provide information on the physical phenomena which lead to 

the inspection ratings. For this reason it is important to use caution when inferring 

causation from the ANN-FFS analysis results. This paper studies causation by combining 

results of the ANN-FFS analysis with the results of previous researchers who used 

physical experiments and structural analysis models.  

 Regarding the benefits of such an approach, note that, ANN models can be 

superior to linear regression methods, as they are capable of learning and representing 

nonlinear relationships in a system.  Results in Table 11 demonstrate superiority for ANN 

to linear regression for the current study. The methodology also provides a systematic 

method for analyzing large sets of inspection data, and compliments other research 

methods such as structural modeling, small field studies, and laboratory work.  

Results and Discussions 

 

Figure 24,Figure 25, and Figure 26 present the estimated DR (left) and SSR (right) for 

the low-, medium-, and high-volume bridges, respectively.  To explain the construction 

and interpretation of the figures, reference is made to Figure 24a.  In this plot DR is 

shown as a function of skew for low-volume bridges. Using the full factorial approach, 

data in the plot come from each of the 46,656 unique simulations. Six different levels 

were used for skew starting at 0 degrees and ending at 50 degrees.  One-sixth or 7,776 of 
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the simulations were associated with each level of skew.  As observed from the 0 degree 

level of skew in the plot, the simulation outputs ranged from a high DR of 8.9 to a low of 

5.7, with an average of 7.8.  Range and average are shown for each level of skew and are 

also based on 7,776 unique simulations. The dashed line in the plot consists of straight-

line segments connecting the average output from each level.  The line is useful for 

evaluating the overall trend between DR and skew.  Each individual plot in Figure 

24,Figure 25, and Figure 26 was created in the same manner. 

 In practice, individual bridges ratings are reported as integer values between 0 and 

9.  However, the ANN models output ratings as decimal numbers. While inconsistent 

with practice, these decimal values provide useful information as they are based on the 

aggregate performance of all bridges in the source data. Thus, we assume that an average 

increase of 0.5 rating points is significant because it is spread over the entire dataset. 

 Within the given analyses, the greatest changes in ratings were observed for skew, 

span, and age; accordingly these effects are reported in Figure 24,Figure 25, and Figure 

26 and in Table 13.  In general the average ratings decrease with increases in skew, span, 

and age.  The only exceptions to this trend were span length and SSR for medium- and 

high-volume bridges.  The improvements in ratings for these exceptions were modest 

relative to the decreases observed in the other cases.   

 Deck ratings are of primary interest due to the relatively short service life of 

bridge decks.  Recall from the background material on the effects of skew that load 

distribution changes as a function of skew angle and that one goal of the current study is 

to determine if these changes impact deck condition.  Comparing Figure 21 to Figure 24a, 
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Figure 25a,Figure 26a, it is noted that the relationship between skew and the DF ratio 

follows the same trend as the relationship between skew and DR.  For skew angles less 

than 20 degrees, DF ratio and DR are constant or gradually changing.  As the skew angle 

increases beyond 20 degrees, both DF ratio and DR rapidly decrease. It is concluded that 

increased load distribution associated with large skews, leads to increased load demand in 

bridge decks, which causes increased deck distress and lower ratings.  This conclusion is 

consistent with the results of the research study conducted by Bishara et al (1993). 

Increased torsional effects in skew bridges are also noted as another possible factor 

contributing to the observed relationship between skew and DR.   

 Referring to Figure 24b,Figure 25b,Figure 26b, 20 degrees also appears to be a 

significant point in the relationship between skew and SSR. Values of SSR are highest at 

zero skew, decrease as skew increases to 20 degrees, and are effectively constant at skew 

angles greater than 20 degrees. This observation may also be due to changes in load 

distribution.  As skew increases 20 degrees, loads are spread between more and more 

girders, distress on individual girders is reduced, and SSR is constant. For the range of 

variables considered, the effects of skew on SSR are smaller than those on DR.  It is 

concluded that skew angles less than 20 degrees are optimal for the longevity of decks 

and superstructures. 

 As mentioned previously, previous researchers have studied the effects of 

transverse deck cracking in steel girders bridges with composite bridge deck, and have 

concluded that higher longitudinal girder stiffness (relative to the deck stiffness) provides 

greater restraint and thus causes increased deck cracking. This phenomenon can be 
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associated with span length, because greater spans required stiffer girders. The data 

presented in  Figure 24c,Figure 25c,and Figure 26c support the notion that similar effects 

are present in prestressed girder bridges; in each Figure, DR is highest when the span 

length is lowest. Although the causes of deck deterioration with increased span length 

cannot be definitively determined from the evidence presented, it is deemed plausible that 

this observation is due in part to effect of increased longitudinal superstructure stiffness 

in longer spans.  Increased stiffness leads to increased deck restraint, and consequently to 

transverse deck cracking and lower ratings. Another possibility is that ratings decrease 

with larger spans because they have greater deck area and greater opportunity for 

damage.  However, this possibility is considered secondary; inclusion of total structure 

length (which also increases opportunity for damage) was found to decrease the accuracy 

of the ANN model. Both possibilities are recommended for future study. In discussing 

the effects of span length, it is also noted that average SSR show little change with 

respect to span length.   

 With the exception of DR on high-volume bridges, age has the greatest effect on 

ratings in this study. The effects of age on SSR can be observed by comparing the ranges 

of SSR values.  The range of SSR for a given skew or span is much wider (~1 point) as 

compared to rage at a given age (~0.5 points).  Decreased scatter in ranges shown in 

Figure 24f, Figure 25f, and Figure 26f demonstrate the critically of age in the estimating 

SSR; this observation is consistent with previous research on the effects of age on SSR 

(Contreras-Nieto et al 2016). 
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 The relationship between age and DR in high-volume bridges is curious (Figure 

26e).  Why does age appear to have a smaller effect on deck ratings in high-volume 

bridges? Neural networks learn from data, and the relationships represented in the ANN 

models may not indicate causation. This may be culpable in some of the trends observed 

in high-volume bridges.  It is possible that bridges with the highest levels of traffic are 

prioritized for maintenance, and that increased maintenance accounts for the relationship 

observed in the results.  While the source data was filtered to account for improvement 

interventions, it does not include information on maintenance. Inclusion of maintenance 

records (not available in the NBI) as an input for the ANN models would allow for 

testing of this possibility.  Such efforts are a recommended extension of the current 

research.     



107 

 

  

Figure 24. Deck and superstructure ratings for low traffic volume bridges 
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Figure 25. Deck and superstructure ratings for medium traffic volume bridges 
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Figure 26. Deck and superstructure ratings for high traffic volume bridges 
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Table 13. Percent change in ratings over the considered range of variable values 

Bridge Type Ratings Percent change over tested range 

 
  Age Skew Span 

Low-volume DR -20.9 -14.7 -17.9 

SSR -15.7 -7.0 -1.4 

Medium-volume DR -21.8 -10.9 -14.1 

SSR -17.0 -7.2 0.0 

High-volume DR -5.3 -18.7 -9.1 

SSR -16.8 -3.5 3.3 

 

Summary and Conclusions 

 

An approach for analyzing bridge inspection data using Artificial Neural Networks and a 

systematic array of simulations was presented and demonstrated using inspection data 

from prestressed concrete bridges in the Southeastern United States.  Skew angle, span 

length, age, total traffic, truck traffic, and width were inputs to the ANN models, which 

estimated the condition rating of bridge decks and superstructures. While the 

demonstrated methodology can be broadly applied, the conclusions are specific to the 

range of variables studied on prestressed concrete bridges in Southeastern United States. 

Salient observations and conclusions are as follows:  

 The ANN models accurately estimated condition ratings for the given source data.  

Mean absolute percent error in the estimates were 4.4% to 4.7% for deck ratings, 

and 4.5% to 7.5% for superstructure ratings. The mean absolute errors were 

always 0.57 or lower, which is within the range of scatter inherent in bridge 

condition ratings. 
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 Skew angle has little impact on deck condition ratings for small skews; however, 

ratings are negatively impacted by skew angles greater than 20 degrees. This 

observation is consistent with previous researchers (Barr et al. 2001, Khaloo and 

Mirzabozorg 2003) who have identified 20 degrees as the boundary between 

different load distribution behaviors. For bridges with large skew, load 

distribution through deck increases, which causes increased deck distress and 

lower ratings. 

 Higher deck ratings correspond with shorter spans. One plausible explanation is 

that as span length increases, larger members are used (or members are spaced 

closer together), member stiffness increases relative to the deck, deck restraint is 

increased, transverse cracking is increased, and deck ratings decrease.  This 

phenomenon has been observed in steel girder bridges with composite decks 

(Ducret et al 1999, French et al 1999, Saadeghvaziri and Hadidi 2005), however, 

additional research is required to confirm if this phenomenon also impacts 

prestressed concrete bridges.   

 Superstructure ratings are negatively impacted by skew angle; however the effect 

is less pronounced than that for deck ratings. The effect of skew on superstructure 

ratings is diminished for skews greater than 20 degrees. This observation is 

attributed to the aforementioned relationship between skew angle load 

distribution. 
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CHAPTER SIX 

 

NON-LINEAR AUTO REGRESSION MODEL TO EVALUATE THE EFFECTS 

OF IMPROVEMENTS ON BRIDGE INVENTORY CONDITION 

 

Abstract 

 

The ability to accurately forecast bridge condition is imperative for developing better 

bridge management systems.  While methods such as ‘feed forward’ and ‘back 

propagation’ Artificial Neural Networks forecast bridge condition reasonably well, these 

algorithms cannot learn from time series data. In this study, time series data based non-

linear auto regression (NARX) algorithm was applied for modeling bridge condition.  A 

model was developed using twenty five attributes pertaining to bridge structural, 

geometry, age, traffic, and bridge improvement spending as input variables to estimate 

the future average Sufficiency Rating (SR) for the bridge inventory and study the effects 

of improvement spending on the inventory condition. The model was built using 

inspection records for bridges in SC that existed between 1992 and 2013. The average SR 

of the inventory is projected for various possible bridge improvement funding scenarios.  

It is concluded that NARX model can accurately estimate SR for bridge inventory, and is 

a suitable method for using large set of variables and data to assess the condition of 

bridge inventories.   
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Introduction 

 

Factors such as geometry, age, structural system, traffic, maintenance inventions, and 

improvement interventions have impact on bridge conditions. As discussed in chapter 

five of this report, improvements intervention decisions are often based on how 

conditions ratings of a bridge compare with a specified threshold (Ryan et al, 2012). 

While maintenance activities prevent bridges from deterioration, improvements are used 

to bring bridges to a better condition (FHWA, 1995). Bridge condition ratings and 

sufficiency ratings improve due to bridge improvement activities. However, the scale and 

size of these improvement activities depends on annual money spent on bridge 

improvements.  

This chapter investigated the combined effects of bridge variables and annual 

bridge improvement money on bridge inventory. The time variant NARX neural network 

model was developed using twenty five bridge specific factors and annual bridge 

improvement money spent as overall variable to forecast Sufficiency Rating (SR) for the 

South Carolina bridge inventory. 

The specific objectives of this chapter are: 

1. To demonstrate a novel approach for forecasting bridge inventory condition 

using NBI inspection records for bridges; and 

2. To forecast the average SR of bridges in SC considering combined effects of 

bridge variables and annual bridge improvements budget. 
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Background 

 

A review of literature and previous research on Artificial Neural Network applications in 

civil engineering and bridges is presented in the chapter five of this dissertation. 

Background information in this chapter focuses on time variant neural networks and their 

applications. Details of the NARX model, a type of time-dependent ANN modelling, are 

discussed. 

Time Variant Neural Networks 

Traditional neural networks are not effective in learning patterns from dynamic systems 

over time.  Time variant neural networks consider dynamic relationships between inputs 

and outputs that change through time. Very little research has been conducted so far on 

the application of these algorithms to bridge and structural engineering. In a research 

study by Barai and Pandey (1997) where the damage in steel truss bridges is estimated 

using data on vertical displacements, the prediction performance of time delay neural 

networks is proven to be superior to that of static models. The study compared the 

performance of traditional neural networks and time delay neural networks. Similarly 

time series based neural networks had better prediction of pavement cracking index as 

compared to traditional models (Lou et al, 2001).  Nevertheless, most of the applications 

of ANN in civil engineering have been based on traditional neural networks that do not 

consider pattern changes in time due to lack of computing resources (Barai and Pandey 

1997, Lou et al 2001). It is noted that this limitation is diminished as computer resources 

have advanced significantly since time-series neural networks were fist applied in civil 

engineering. 
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 NARX networks 

NARX networks are sophisticated versions of traditionally used time series based neural 

networks. NARX models are recurrent dynamic networks with feedback connections 

enclosing several layers of the network (Mathworks®, 2014). By using multi layered 

structure, NARX models can learn and predict behavior of complex nonlinear systems. 

These networks can model nonlinear relationships among variables in time. In a NARX 

model, the response variable (called ‘target’) at any time in future is not only a function 

of historic values of independent variables but also is a function of historic values of 

target itself. Multi-layered parallel processing abilities make NARX a fit for learning 

from huge nonlinear data even in the presence of noise. 

Being relatively new, there has been only limited application of NARX models in 

civil engineering. Examples of the use of NARX neural networks can be found in other 

fields (e.g. Basso et al 05, Pisoni et al 09, Napoli & Piroddi 10) Palumbo and Pirroddi 

(2001) applied NARX neural networks to model nonlinear response of buttress dam scale 

models subjected to seismic-like excitations. Ruslan et al (2014) concluded that NARX 

model was successful in predicting flood water levels and flood location 10 hours ahead 

of time. Hidayat et al (2011) applied NARX neural networks for developing models for 

fatigue life assessment of materials. 

The application of NARX models to the field of bridge engineering is very 

minimal. Zolghadri et al (2015) applied linear regression, auto regression and NARX 

networks to correlate temperature changes with natural frequencies while studying 

dynamic characteristics of bridges for long term structural health monitoring. The NARX 
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models gave the best fit out of the three models.  Lin et al (2012) proposed a neural 

network based health monitoring system for bridges. It was demonstrated that NARX 

models can find fundamental frequency of bridge decks using data collected from 

earthquakes, and that NARX models can identify nonlinear relationships which cannot be 

achieved by traditional methods like linear regression or conventional neural networks.  

However, no research is conducted so far on the application of NARX networks in the 

area of bridge infrastructure condition prediction or bridge management. 

In NARX model, the historic data of the response variable is used to estimate its 

future values. Thus the response of the systems does not depend on past values of 

dependent variables alone.              Equation 11 shows the mathematical representation 

for NARX model. The target variable value of y at any time ‘t’ can be predicted from 

input variable ‘x’ values and target ‘y’ values for ‘n’ historic years until time ‘t’ as shown 

below.  

𝑦(𝑡) =  𝑓{ 𝑦(𝑡 − 1) … … . 𝑦(𝑡 − 𝑛), 𝑥(𝑡), 𝑥(𝑡 − 1). . 𝑥(𝑡 − 𝑛) }             Equation 11  

Figure 27 shows graphical interface of NARX model and its architecture as 

represented in Matlab®. 

 

Figure 27. NARX Model (Mathworks®, 2015)           
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Methodology 

 
NBI Bridge Data 

In time-variant neural network models, data records for the same set of bridges are 

required over multiple years in the past. Hence, this study required data for a set of 

bridges in South Carolina that were in service during the period between 1992 and 2013.  

Bridges that were newly built, reconstructed, removed, or replaced since 1992 were 

excluded from this dataset. For this exercise, MS SQL query interface tool in MS Excel is 

utilized. The query programs identified bridges that were continuously in service between 

1992 and 2013 and aggregated NBI data for these bridges including structural, traffic, 

and inspection ratings. In total about 8250 (89%) bridges in South Carolina are 

considered for this study.  

Records of bridges with information on 120 fields were aggregated from NBI ASCII 

files for each bridge in this dataset for each of the years between 2004 and 2013.  The 

biggest challenge was to arrange the bridge records in the same order for every year 

because NARX models learn from time series patterns. Out of 116 fields total NBI data 

fields, twenty six fields were chosen as input parameters often called as ‘input variables’.  

The complete list of variables is given in Table 14. The SR of these bridges is the 

forecasted variable (here in called as ‘target’) considered as the outcome of interest in this 

study.  
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Bridge Improvement Costs and Spent Costs 

Improvement activities are performed on bridges to improve their condition. Typical 

bridge improvements include repair and rehabilitation of deck or other components of the 

bridge. The list of activities that are categorized as bridge improvements is provided in 

the FHWA coding guide (FHWA, 1995).  A detailed discussion about bridge 

improvements is presented in section two of chapter four.   An improvement cost is 

assigned to each bridge in the NBI that needs improvements.  Improvement cost is 

defined as the cost of any of the improvement activities performed on the bridges as per 

FHWA procedures. One of the input variables in the NARX model is ‘total improvement 

money spent’.  This value is distinct from improvement costs, but can be indirectly 

calculated from the improvement costs listed in the NBI.  The calculations are made as 

follows. 

 The estimated ‘total Improvement costs’ for each bridge are captured in field 96 

(TOTAL_IMP_COST) of the NBI record format.  When money is spent on a bridge for 

improvements, the estimated ‘total improvement costs’ of that bridge for subsequent 

years will reduce by an amount that is assumed to equal to money spent on 

improvements. Also, when bridges are improved, their ratings increase significantly. 

Using these criteria the bridges that were improved are identified to calculate the 

improvement costs. The total money spent annually on bridge improvements is calculated 

by summing up the money spent on individual bridges.  Based on historic data it was 

found that on an average about 80 million USD is spent annually on bridge improvements 

in SC in recent years.  
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 Apart from improvements, bridges are subjected to routine maintenance activities. 

These activities are performed on a predetermined schedule to prevent bridge 

deterioration.  The NBI bridge records do not provide information about bridge 

maintenance activities. However, the records include the effects of bridge maintenance 

activities.  It is assumed in this study that the level of maintenance activities will remain 

at the same levels as in the past. Also, the effects of bridges that are newly built or 

removed or replaced during the period of study are not considered. 

 

Inputs and target variables 

A NARX model was developed in this study for estimating the average sufficiency rating 

of the SC bridge inventory. Twenty five bridge specific attributes such as age, ADT, 

design load, skew, design type, material, clearances, condition ratings, etc. are chosen as 

inputs. The money spent on bridge improvement is a global input to the model. This 

means that each bridge was assigned the same value for ‘improvement money spent.’  

The method for calculating this value was discussed in the previous section.   

The variables of study are listed in Table 14. 
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Table 14. Variables for the model 

Detour Length 

 

Railings Condition Vertical Under Clearance 

Maintenance Agency Bridge Transitions Operating Rating 

Function Class Structure Material Inventory Rating 

Age (Year Built) Structure Design Structural Evaluation 

Average Daily Traffic 

(ADT) 

Structure Length Deck Geometry 

Average Daily Truck 

Traffic (ADTT) 

Maximum Span Waterway Evaluation 

Design Load Deck Width Approach Road Evaluation 

Skew Angle Horizontal Under 

Clearance 

Strategic Highway Network 

Deficiency Status Improvement Money 

Spent (Global) 

Sufficiency Rating           

(Response or Target variable) 

 

For NARX models, ‘time’ is the third data dimension, with bridges and input 

variables being the first two dimensions. Input data is fed into the model for each of the 

years from 2004 until 2013. MatLab® programs are developed to import data from 

Excel® sheets for each of the years into a 3D cell arrays.  Cell arrays are special data 

structures that can store data as multiple objects of 2D arrays. A figure depicting 3D cell 

array data for the models is presented in Figure 28. 
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Figure 28. 3D data model for NARX network 

 

 

Training, validation & prediction  

NARX modelling was conducted in three phases. The ‘training phase is also known as 

development phase, and is used by the model to learn from the source data. In the 

‘validation’ phase the trained model is tested for its reliability by comparing the model 

outputs with known values from the source data. During the ‘prediction phase’, 

simulations are performed on the developed model to forecast the effects of variable 

inputs (spent improvement costs) on future outputs (sufficiency rating).   

 A schematic figure showing these three phases for this study is shown in Figure 

29. The years 2004 to 2009 are used for developing and training the model from the 

source data. During the training phase, source was split so that 70 percent was used for 

learning and 30 percent for statistical validation and testing purposes; the 30 percent 

allows for automated checking of model reasonableness during training. In this manner, 

validation begins in the training phase.  The validation phase includes years 2010 to 

2013.  This is manual validation phase which is in contrast with the MatLab® neural 
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networks auto validation that is performed during the training phase with 30% of training 

records done for the purpose of checking for error convergence. During the validation 

phase, the model results are compared with NBI reported values. If the results are 

acceptable then the developed model can be reasonably used for predictions; if not the 

model is re-trained.  

Once trained and validated, the model was deployed to perform simulations for 

forecasting the future SR for the years 2014 to 2020. In this study nine possible scenarios 

for bridge improvements funding are considered. The amounts range from no spending to 

highest spending of 160 million USD with increments in multiples of 20 million USD.  

The model forecasts the average SR of the bridge inventory for each of these nine 

scenarios. 

 

Figure 29. Schematic drawing of validation, training & prediction phases 
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Training and Validation Details 

The model is developed using MatLab® programming tool. The ANN tool box plugin is 

used for generating the scripts for data imports and creating the architecture of the 

network and running training algorithms. As in Figure 30, a multi-layered NARX 

network is developed. After training several times, the network shown in Figure 30 with 

about 20 neurons using Bayesian Regulation algorithm is found to give the smallest error.  

 

Figure 30. Network Architecture (MatLab®) 

 

 Table 15 summarizes the error between the validation data and NARX results. 

Recall that validation begins during the training phase as the Matlab toolbox uses a 

portion of the source data to create the model and another portion to calculate the error 

and stop the training.  This occurs automatically during the model development iterations 

and continues until the model converges. A manual validation is also performed during 

the validation phase from 2010-2013.  The NARX model calculates SR for each 

individual bridge in the dataset. Table 15 reports the statistical errors in predicting 

average SR at individual bridge level as well as inventory level. These are the average 

errors for all years within the given phase.  
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The error in the model at individual bridge level is 5.6% (MAPE) during the 

training phase and 9.5% (MAPE) during the validation phase. This indicates a good fit 

between the model predicted ratings and the actual NBI reported ratings at the bridge 

level. The model has even better fit, when applied to calculate the average SR of the 

entire inventory. Error in the model at the inventory level is 0.46% (MAPE) during the 

training phase and 0.52% (MAPE) during the validation phase. These results indicate that 

the model is acceptable for estimating the average SR of bridges at inventory level. 

Table 15. Model Error  

Phase Level MSE (Mean Square 

Error) 

MAPE  (Mean 

Absolute Percent 

Error) 
Training  

(validation in MatLab, 

2004-2009) 

Bridge 19.62 5.6 % 

Inventory 0.21 0.46 % 

Validation 

(manual validation,  2010-

2013) 

Bridge 89.02 9.5 % 

Inventory 0.17 0.52% 

 

 Comparison of the NBI reported ratings and model projected ratings shown in 

Figure 31 also demonstrate the validity of the NARX model.  The trends are very similar. 

As shown, the model is able to capture the nonlinear relationship between time and 

average SR during the validation phase.   
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Figure 31. Comparison of NBI data and Model during validation phase (2010-2013) 

 

Results and Discussions 

 

The NARX model is used to evaluate nine hypothetical funding situations ranging from 

$0 to $160 million per year on total spent improvement costs for the inventory. The 

model predicted the sufficiency ratings for each individual bridge in the data set for each 

year in the validation and prediction phases (2014-2020).  The average SR of the 

inventory was calculated as the average of the model-calculated SR for all bridges in the 

inventory.  

In recent years approximately 80 million USD is spent annually in South Carolina 

on bridge improvements. For clarity, forecast of budgets greater than 80 million are 

shown in Figure 32, whereas forecasts with smaller budgets are shown in Figure 33.  As 

can be seen Figure 32, increased spending on bridge improvements consistently improved 
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the inventory health.  The model calculated average SR in 2020 increased by 

approximately 0.2 points for every 20 Million USD of annual improvement spending 

above the current spending of 80 million USD. It may be noted that if the current level of 

spending is continued into the next few years, we could see a deterioration of bridge 

inventory health. From the figure it can be observed that at least about 120 million USD 

annual spending is necessary to sustain the current level of bridge inventory ratings.  

 

Figure 32. Average SR over time for increased spending on improvements 

However, at times of poor economy or shifting priorities it is possible that funding 

for bridge improvements may be reduced. In Figure 33, the average SR for the bridges in 

the study is plotted with time for four scenarios of decreased funding. Figure 33 presents 

the model predicted average SR for funding from the current 80 Million USD going 

down to zero funding in decrements of 20 Million USD. The model calculated average 
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SR in 2020 dropped by 0.24 points for every 20 Million USD of annual improvement 

spending less than current spending. The plot indicates the rapid deterioration of bridge 

health in the years 2013-2016 if spending on bridge improvements is reduced.  The 

average SR of these 8250 bridges will drop by almost 1 point in the hypothetical event of 

no improvement treatments are made between 2015 and 2020.  

 

Figure 33. Average SR over time for decreased spending on improvements 

 It is of interest to compare and contrast the NARX model with the simplified CLD 

model presented in chapter three. In addition to different methodologies, the major 

difference between the models is the source data used in model development.  While 

CLD model source data included all bridges in South Carolina (including new bridges, 

removed and replaced bridges), the NARX model was based on a of fixed set of bridges 

that existed between 1992 and 2013. This difference is necessary because the NARX 
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model requires the same number of bridges for each year.  Another difference is the types 

of data used as inputs.  While CLD model used inventory size and improvement spending 

as the variables of study, the NARX model used 25 bridge attributes and improvement 

spending as variables.  

Difference in the results between models is attributed to differences in source data 

and methodology, particularly that the NARX model was based 1011 fewer bridges and 

utilized much more robust mathematics. One similarity is that both models implicitly 

include the effects of maintenance and aging. As discussed in chapter three, maintenance 

and aging effects are necessarily reflected in the NBI data used to build the models.   

 The values of average SR vary between the CLD and NARX models; variation is 

also seen in the relative impact of money spent on improvements.  For every 10 million 

USD in annual improvement spending between 2015 and 2020, the CLD model predicted 

an increase of 0.14 points in average SR for 2020 as against 0.1 point by the NARX 

model. This difference is attributed to the causes mentioned in the last two paragraphs.  

  

Summary and Conclusions 

 

A time variant NARX model was developed to study the effects of bridge improvement 

spending on the sufficiency rating of bridges in SC. The model considered 8,250 bridges 

in SC that were in service between 1992 and 2013. Twenty five attributes related to 

geometry, structural, traffic, maintenance and condition and bridge improvement 

spending were considered as inputs for the model. Once trained and validation, the model 

was used to predict the average SR for the bridge inventory for nine funding scenarios 
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varying from zero to 160 Million USD per year.  This range includes scenarios above and 

below the recent spending level in South Carolina of approximately 80 Million USD per 

year for bridge improvement.  

The following conclusions are made after analyzing the model results: 

1. The NARX model has very small error when compared to the validation 

data, particularly at the inventory level.  The average error (MAPE) in model 

prediction at the inventory level 0.52% during the validation phase between 

2009 and 2013. 

2. The model predicted that average SR is positively impacted by bridge 

improvement spending. Increased spending on improvements improved 

bridge sufficiency ratings while decreased spending brought them down.  

3. The model-calculated average SR in 2020 (end of the prediction phase) 

increased by approximately 0.2 points for every 20 Million USD of annual 

improvement spending above the current 80 million dollar level. 

4. The model-calculated average SR in 2020 (end of the prediction phase) 

reduce by 0.24 points for every 20 Million USD of annual improvement 

spending less than the current 80 million dollar level 

 This research demonstrates that time variant NARX models can be used to 

provide accurate estimates of bridge inventory condition. The benefit of NARX is that 

these networks learn from time history.  Conventional neural networks do not have the 

ability to learn from time history. Deterministic methods and Markovian models only use 
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current condition to model future deterioration; they cannot consider the effects of 

condition history while predicting future condition (Morcous, 2002).  

NARX is a novel modeling technique for evaluating the quality of bridge 

inventories, which can be applied for developing tools that help bridge agencies in bridge 

management and policy decisions. 

 

References 

Barai, S. V., & Pandey, P. C. (1997). Time-delay neural networks in damage detection of 

railway bridges. Advances in Engineering Software, 28(1), 1-10 

 

Basso, M., Giarre, L., Groppi, S., & Zappa, G. (2005). NARX models of an industrial 

power plant gas turbine. IEEE Transactions on control systems technology, 13(4), 599-

604. 

 

FHWA. (1995). Recording and coding guide for the structure inventory and appraisal of 

the Nation’s bridges, Federal Highway Administration Report No. FHWA PD, 96-001 

 

Hidayat, M. I. P., Yusoff, P. S. M. M., & Berata, W. (2011, March). Neural networks 

with NARX structure for material lifetime assessment application. InComputers & 

Informatics (ISCI), 2011 IEEE Symposium on (pp. 273-278). IEEE. 

 

Lang, K. J., Waibel, A. H., & Hinton, G. E. (1990). A time-delay neural network 

architecture for isolated word recognition. Neural networks, 3(1), 23-43 

 

Lin, T. K., Huang, M. C., & Wang, J. F. (2012). A Neural Network-Based System for 

Bridge Health Monitoring. Advanced Materials Research, 452, 557-563. 

 

Lou, Z., Gunaratne, M., Lu, J. J., & Dietrich, B. (2001). Application of neural network 

model to forecast short-term pavement crack condition: Florida case study. Journal of 

infrastructure systems, 7(4), 166-171. 

 

MATLAB® R2014b (2014). The MathWorks Inc, USA 

 

Morcous, G. (2002). Comparing the use of artificial neural networks and case-based 

reasoning in modeling bridge deterioration. Proceedings of the Canadian Society for 

Civil Engineering-30th Annual Conference: Challenges Ahead, Montréal, June 5 2002 

(Vol. 8). 



134 

 

Napoli, R., & Piroddi, L. (2010). Nonlinear active noise control with NARX 

models. IEEE transactions on audio, speech, and language processing,18(2), 286-295. 

 

Palumbo, P., & Piroddi, L. (2001). Seismic behaviour of buttress dams: Non-linear 

modelling of a damaged buttress based on ARX/NARX models. Journal of sound and 

vibration, 239(3), 405-422. 

 

Pisoni, E., Farina, M., Carnevale, C., & Piroddi, L. (2009). Forecasting peak air pollution 

levels using NARX models. Engineering Applications of Artificial Intelligence, 22(4), 

593-602. 

 

Ruslan, F. A., Samad, A. M., Zain, Z. M., & Adnan, R. (2014, March). Flood water level 

modeling and prediction using NARX neural network: Case study at Kelang river. 

In Signal Processing & its Applications (CSPA), 2014 IEEE 10th International 

Colloquium on (pp. 204-207). IEEE. 

 

Ryan, T. W., Mann, J. E., Chill, Z.M., Ott, B.T. (2012). Bridge inspector’s reference 

manual. Report No. FHWA NHI, 12-049  

 

Zolghadri, N., Halling, M. W., Barr, P. J., & Foust, N. (2015). Effects of Temperature on 

Bridge Dynamic Properties. 

 

 

 

 

 

 

 

 

 

 

 

 



135 

 

CHAPTER SEVEN 

 

CONCLUSIONS AND RECOMMENDATIONS OF THE STUDY 

 

This research is motivated by the prevalence of bridge infrastructure deficiency across 

United States. With limited resources available for maintaining and improving bridge 

infrastructure, well-designed bridge management and prioritization are essential for 

success in tackling bridge deficiency. The ability to forecast bridge condition and 

understand the effects of relevant variables is vital for prioritization of bridge 

maintenance, planning bridge management activities, and determining effective designs 

for new bridges. 

 This research focused on developing and demonstrating alternative methods for 

assessing bridge condition and deterioration, and for identifying the causal relationships 

that impact bridge quality. The study considered powerful Artificial Intelligence based 

computing, traditional linear regression methods, and systems dynamics tools to assess 

bridge condition under the influence of factors such as aging, design variables, and 

funding for improvements. The study also provided insights in to the interactions 

between variables and their effects on the overall health of a bridge inventory. A brief 

summary of the highlights and conclusions of each chapter are provided below. 

 To start with, a thorough review on the state of bridge deficiency was made in 

chapter two. The various causes of structural deficiency and functional obsolescence 

were analyzed, and the itemized bridge condition and appraisal ratings were reviewed. 

The traffic growth on deficient bridges was also analyzed over the years 1992 through 

2013. It was noted that in the last two decades the number of structurally deficient 
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bridges reduced by 47% while the number of functionally obsolete bridges dropped by 

just 5.7%. Traffic usage on FO bridges increased by 25% though the number of FO 

bridges came down. The most common traits leading to FO ratings are geometric factors 

of bridges such as deck width and under clearance.  These trends indicate that the 

problem of bridge functional obsolescence has not received as much attention as 

structural deficiency. Although bridge quality is improving as compared to last two 

decades, one in every four bridges in US is still deficient.  

 With the observations of chapter two in mind, a concept for evaluating capacity 

obsolescence of bridges was developed in chapter three. The concept is based on the 

evolution of vehicular loads on highway bridges in US, and also considers deterioration 

of bridge structural capacity overtime. An example was used to demonstrate how 

capacity obsolescence and embodied energy consumption can be jointly considered 

during design to enable longer functional lives for bridges. 

 In order to understand the effects of various bridge and economic variables on 

bridge condition, tools from the field of systems dynamics were applied in chapter four. 

A causal loop diagram was made to qualitatively describe the factors impacting the size 

and quality of bridge inventories.  A simplified linear regression model was then used to 

quantitatively model the portion of the CLD associated with data from the NBI.  From the 

quantitative model, it was concluded that for every 10 million USD spent on annual 

improvements between 2014 and 2020, the total improvement cost in 2020 is estimated to 

decrease by 46 million USD, and the average SR in 2020 is estimated to increase by 0.14 
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points.  Recommendations were made to expand the model if and when relevant source 

data are available. 

 In chapter five, a method for using bridge inspection data to assess in impacts of 

design variables was demonstrated.  The effects of bridge attributes like skew, span, age 

and traffic on bridge condition deterioration were investigated. Prestressed concrete 

bridges in seven South Eastern states were chosen for study. The method used a multi 

layered feed forward neural network model to estimate deck and superstructure condition 

ratings. Once the model was developed, a systematic array of simulations was conducted 

based on a full factorial design approach.  It was concluded that age typically has the 

most significant effect on both deck and superstructure ratings followed by skew and 

span. While deck deterioration is faster at higher skews, superstructure deterioration is 

relatively slower at higher skews. This can be partially attributed to changes in girder 

load distribution factors and the relative stiffness of girders and decks in composite 

decks. At about a skew angle of 25 degree, there is a considerable change in the effects. 

These findings confirm the results from experimental and analytical model studies 

conducted by previous research studies. The study gives insights for designers in 

choosing values of skew and span for best performing decks and superstructures within 

the design space. 

 Chapter six demonstrated the application of time-variant NARX neural networks 

to assess the effects of improvement spending on the average sufficiency rating of  bridge 

inventory. The NARX model considered 8,250 bridges in SC that were in service 

between 1992 and 2013, and was based on 26 bridge specific variables such as geometry, 
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clearances, traffic, loads, ratings, detour length etc. To consider the effects of bridge 

improvements on the SR, the money spent on bridge improvements for each year is 

included in the model as input variable. It was found that NARX approach was successful 

in capturing nonlinear relationship between time and average SR of the inventory. A 

parametric study was conducted with the validated model and it was concluded that the 

average SR of the inventory improves by 0.15 points for every 20 Million USD of 

increased annual spending over the study period (2013-2020). Furthermore, average SR 

reduces by 0.19 points over the study period for every 20 Million USD reduced annual 

improvement spending. This study demonstrated the feasibility of the NARX neural 

network approach for forecasting bridge conditions.  

 To conclude, this dissertation presented alternative methodologies for evaluating 

the performance of highway bridges. Both conventional and time variant neural network 

models were employed to study the effects of bridge variables and improvements on 

bridge condition. Additionally, linear regression methods and tools from systems 

dynamics tool were also utilized. Applying these methods, designers and policy makers 

can use large sets of bridge inspection data to make informed decisions regarding bridge 

design and inventory management. The author hopes that this study will emphasize the 

importance of treating bridge deficiency in United States and contribute alternative 

methodologies to developing solutions for the same. 
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