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Abstract

The effects of the velocity and length scale ratios of the annular flow to the

center jet on three-scalar mixing in turbulent coaxial jets are investigated. In this flow

a center jet and an annular flow, consisting of acetone-doped air and ethylene respec-

tively, are mixed with the co-flow air. Simultaneous planar laser-induced fluorescence

and Rayleigh scattering are employed to measure the mass fractions of the acetone-

doped air and ethylene. The velocity ratio alters the relative mean shear rates in the

mixing layers between the center jet and the annular flow and between the annular

flow and the co-flow, modifying the scalar fields through mean-flow advection, turbu-

lent transport, and small-scale mixing. The length scale ratio determines the degree

of separation between the center jet and the co-flow. The results show that while

varying the velocity ratio can alter the mixing characteristics qualitatively, varying

the annulus width only has quantitative effects. Increasing the velocity ratio and the

annulus width always delays the evolution of the scalar fields. The evolution of the

mean scalar profiles are dominated by the mean-flow advection, while the shape of

the joint probability density function (JPDF) is largely determined by the turbulent

transport and molecular diffusion. The JPDF for the higher velocity ratio cases is

bimodal at some locations while it is unimodal for the lower velocity ratio cases.

The diffusion velocity streamlines in scalar space representing the conditional diffu-

sion generally converge quickly to a manifold along which they continue at a lower
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rate. The curvature of the manifold is significantly larger for the higher velocity ratio

cases. Predicting the mixing path along the manifold as well as its dependence on

the velocity and length scale ratios presents a challenging test for mixing models.

The three-scalar subgrid-scale (SGS) mixing in the context of large eddy simu-

lation and its dependence on the velocity and length scale ratios are also investigated.

The analysis reveals two SGS mixing regimes depending on the SGS variance value

of the center jet scalar. For small SGS variance the scalars are well mixed with uni-

modal filtered joint density function (FJDF) and the three-scalar mixing configuration

is lost. For large SGS variance, the scalars are highly segregated with bimodal FJDFs

at radial locations near the peak of the mean SGS variance of the center jet scalar.

Two competing factors, the SGS variance and the scalar length scale, are important

for the bimodal FJDF. For the higher velocity ratio cases, the peak value of the SGS

variance is higher, thereby resulting in stronger bimodality. For the lower velocity

ratio cases, the wider mean SGS variance profiles and the smaller scalar length scale

cause bimodal FJDFs over a wider range of physical locations. The diffusion stream-

lines first converge to a manifold and continue on it toward a stagnation point. The

curvature of the diffusion manifold is larger for the larger velocity ratio cases. The

manifold provides a SGS mixing path for the center jet scalar and the co-flow air, and

thus the three-scalar mixing configuration characteristics is maintained for the large

SGS variance. The SGS mixing characteristics observed present a challenging test

for SGS mixing models. The scalar dissipation rate structures have similarities to

those of mixture fraction and temperature in turbulent nonpremixed/partially pre-

mixed flames. The results in the present work, therefore, also provide a basis for

investigating multiscalar SGS mixing in turbulent reactive flows.
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Chapter 1

Introduction

Fossil fuels has been the major energy source for human beings for transporta-

tion and power generation for a long time, and this fact is not going to change in

the foreseeable future [27]. Combustion is a fast and also an efficient way to extract

energy from fossil fuels. It is usually turbulent combustion rather than laminar flame

taking place in engineering applications such as power plant, gas turbine, internal

combustion engine and furnace. There are two reasons for turbulent combustion, one

is that the mixing between fuel and oxidizer is orders of magnitude faster, resulting

in quicker heat release so that combustion devices can achieve high power density;

another reason is the flow instability generated by heat release can induce large gas

expansion, which induce a laminar flow transition into turbulent flow [40].

In applications such as diesel engine, fuel and oxidizer usually are introduced

into the combustion chamber separately [40]. Combustion starts at the premixed

fraction of the gas (flammable) that is prepared when diesel spray entrain air, then

it is non-premixed (diffusion) flame ensued. Turbulent mixing plays an important

role in non-premixed flame, the combustion rate of which is controlled by the mixing

between the fuel and the oxidizer at reaction zone. Heat and radicals generated by
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chemical reactions also needs to mix with unreacted mixtures and extinction would

occur when there are large thermal runaway (heat loss). Turbulence-chemistry inter-

action, such as ignition and extinction, is one of the biggest challenges in turbulent

combustion research. More knowledge about turbulence-chemistry interaction are

needed as Reynolds number keep increasing in practical combustion devices. Investi-

gation of turbulent mixing is important for the understanding of turbulence-chemistry

interaction.

Mixing terms such as dissipation rate and diffusion are important in advanced

numerical simulation methods of turbulent combustion. Laminar flamelet method

treat turbulent flame as stretched laminar flame, and the flame structure is deter-

mined by two parameters: the mixture fraction and its dissipation rate [39, 40]. The

flamelet equation for nonpremixed combustion is parameterized by mixture fraction

dissipation rate, the functional dependence of which on mixture fraction is needed.

The dependence of conditional scalar dissipation on scalar are very complex even

in homogeneous flow fields [15, 17, 23, 24, 35, 36]. There are attempts to find the

relation between conditional dissipation and the scalar probability density function

(PDF) (e.g. [35, 36, 43, 52, 53, 57]). In inhomogeneous flow field, the dependence

are different for different flow configurations and vary with physical locations (e.g.

[26, 33, 65]). Chemical reaction (source term) is been treated exactly in the PDF

method, however, conditional diffusion show up as a unclosed term and mixing mod-

els are needed. In homogeneous scalar field, the conditional scalar diffusion is linearly

dependent on scalar [22, 28, 35, 37, 52, 75]. The dependence becomes a little complex,

approximately linear or piecewise linear, in inhomogeneous flow field [26, 65].

Binary (two-scalar) mixing has been extensively investigated due to its sim-

plicity and its applications in pollutant dispersions. Basic statistics such as the

scalar mean, the scalar root-mean-square or variance, scalar dissipation rate and
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scalar dissipation time scale has been studied in different flow configurations (e.g.

[1, 15, 24, 31, 37, 59, 74]). The scalar probability density function has also been

studied in a lot of previous works (e.g. [15, 65]). Different shapes of PDF, includ-

ing bimodal, quasi-Gaussian and exponential tails has been found for passive scalars.

Three mixing regimes has been identified for a single scalar dispersion in isotropic

turbulence: molecular diffusion dominates at small times; turbulent convection domi-

nates at intermediate times; turbulent diffusion dominates at very large times [45, 73].

However, scalar mixing in turbulent non-premixed flame is a multiscalar mix-

ing problem, and studies on multiscalar mixing are very limited. As the simplest case

of multiscalar mixing, three scalar mixing has been investigated in a few studies (e.g.

[25, 58, 65, 72, 73]). The correlation coefficient of two scalars (thermal fluctuations),

which are generated by two mandolines that are placed at different downstream lo-

cations of a grid turbulence, was found to decay going downstream [72]. Sirivat et

al [58] found that the decay rate of correlation coefficient dependent on the down-

stream locations at which the scalars been introduced into the grid turbulence. The

decay rate become much slower when scalars are introduced very close to the grid.

The evolution of correlation coefficient become different for different scalar separation

distance [73]. The correlation coefficient of two scalars that were introduced into a

jet is similar to that in grid turbulence [65]. There are also studies on the evolu-

tion of the joint probability density function (JPDF) and the conditional diffusion

of three-scalar mixing in isotropic homogenous turbulence through direct numerical

simulation (DNS) [25]. In order to mimic flow configuration of Sandia flames, Cha et

al investigated a double scalar mixing layer problem with DNS [10].

The initial arrangement of scalars in physical space is important for three-

scalar mixing. There were three scalar mixing studies have two scalars issued into

a background scalar (air) (e.g. [58, 65, 73]). The three scalars were symmetrical in
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scalar space and have direct contact with each other in physical space in the DNS

simulation of Juneja and Pope [25], thus the JPDF at the initial stage of mixing was

essentially three mixing lines that connecting the three scalars in the scalar space.

The double scalar mixing layer problem investigated by Cha et al [10] mimic the

flow configuration of Sandia flame very well, however, it does not represent good

enough the mixing scenarios in turbulent partially premixed flame because its pilot is

essentially the same scalar as the center stream only with a different initial value. To

understand better the multiscalar mixing processes in turbulent nonpremixed reactive

flows, Cai et al [6] studied three-scalar mixing in a coaxial jet emanating into co-flow

air. In this flow the scalar from the center jet (ϕ1) and the co-flow air (ϕ3) at the jet

exit plane are separated by the scalar from the annulus (ϕ2). As a result, initially

there is direct mixing between ϕ1 and ϕ2 and between ϕ2 and ϕ3, but not between ϕ1

and ϕ3. Mixing between ϕ1 and ϕ3 must involve ϕ2. This mixing configuration better

represents the mixing process in turbulent non-premixed reactive flows where mixing

between reactants generally must involve the product.

Cai et al [6] analyzed in detail the mixing process in the near field of the

flow. In addition to the scalar means, the root-mean-square (rms) fluctuations, the

correlation coefficient, the segregation parameter, the mean scalar dissipation and the

mean cross-dissipation. They also investigated the scalar JPDF and the mixing terms

in the JPDF transport equation: the conditional diffusion, conditional dissipation,

and conditional cross-dissipation, which are important for PDF methods for modeling

reactive flows. The results show that the diffusion velocity streamlines in scalar space

representing the conditional diffusion generally converge quickly to a manifold, along

which they continue at a lower rate. While the three scalars in this flow initially have

similar distances in scalar space, mixing between two of the scalars can occur only

through the third, forcing a detour of the manifold (mixing path) in scalar space.
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This mixing path presents a challenging test for mixing models since most mixing

models use only scalar-space variables and do not take into account spatial (physical-

space) scalar structures. In addition, the approach to the manifold is generally in the

direction of ϕ2. The difference in the magnitudes of the diffusion velocity components

for the two scalars cannot be accounted for by the difference in their dissipation time

scales. The mixing process during the approach to the manifold, therefore, cannot be

modelled by using different dissipation time scales alone.

The three-scalar mixing in the coaxial jet has been simulated with hybrid

LES/FMDF by Shetty et al [56]. While the mean profiles were in good agreement with

the experimental data, they failed to capture some key features of the rms profiles

such as the two off-centerline peaks of the ϕ2 rms profile. Rowinski & Pope [50]

used both RANS-PDF and LES-PDF to simulate this three-scalar mixing problem.

While the basic statistics such as mean and rms show excellent agreement with the

measurements, different mixing models show their limitations in capturing some of

the key features such as the bimodal JPDF and the diffusion manifold.

While Cai et al [6] revealed important characteristics of the three-scalar mixing

process, the velocity ratio between the annular flow and the center jet was fixed (close

to unity). So was the geometry of the coaxial jet. The velocity ratio determines the

relative magnitudes of the velocity differences (shear strength) between the center jet

and the annular flow and between the annular flow and the co-flow, and therefore is

an important parameter governing the mixing process. Its influence on the mixing

process can also help understanding the effects of the stoichiometric mixture fraction

on the mixing process in turbulent non-premixed flames. Since ϕ2 is analogous to a

combustion product in a flame, which generally has the maximum mass fraction near

the stoichiometric mixture fraction, varying the velocity ratio is, as far as mixing

is concerned, analogous to shifting the location of the product (the stoichiometric
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mixture fraction) relative to the velocity profile (shear layer). Present study will

investigate the effects of the velocity ratio on the three-scalar mixing process.

The ratio between the annulus width and the center jet diameter also has

important effects on the mixing process. The velocity and scalar length scales depend

on the sizes of the center jet and the width of the annulus. The dependence of the

mixing process on the ratio of the length scale is also useful for understanding the

effects of the reaction zone width on the mixing process in flames. Due to the similar

role in mixing played by ϕ2 to that by a combustion product (or the temperature), the

width of the peak ϕ2 region in the three-scalar mixing is analogous to the reaction

zone width in a non-premixed flame. Varying the width of the annulus (degree of

separation between ϕ1 and ϕ3) will alter the shape of of the JPDF at the peak ϕ2 region

in the scalar space. Investigating the effects of the length-scale ratio, therefore, is also

important for understanding the influence of the reaction zone width on multiscalar

mixing in flames.

Present study would investigate experimentally the effects of the velocity ratio

(mean shear) and the length scale ratio between the annular flow and the center jet

on the three-scalar mixing process. The dependence of the important scalar statistics

characterizing the mixing on these ratios will be analyzed. These include the mean,

the rms fluctuations, the correlation coefficient, the segregation parameters, the scalar

JPDF, and the mixing terms in the JPDF transport equation. The transport equation

for the scalar JPDF, f , is [41]

∂f

∂t
+

∂

∂xi

[
f(Ui + ⟨ui| ϕ̂1, ϕ̂2⟩)

]
= −

∂

∂ϕ̂1

[
f
⟨
D1∇2ϕ1

∣∣ ϕ̂1, ϕ̂2⟩
]
−

∂

∂ϕ̂2

[
f
⟨
D2∇2ϕ2

∣∣ ϕ̂1, ϕ̂2⟩
]

= (D1 +D2)∇2f −
1

2

∂2

∂ϕ̂2
1

[
f ⟨χ1| ϕ̂1, ϕ̂2⟩

]
−

1

2

∂2

∂ϕ̂2
2

[
f ⟨χ2| ϕ̂1, ϕ̂2⟩

]
−

∂2

∂ϕ̂1∂ϕ̂2

[
f ⟨χ12| ϕ̂1, ϕ̂2⟩

]
, (1.1)

where Ui, ui are the mean and fluctuating velocities respectively. The diffusion
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coefficients for ϕ1 and ϕ2, D1 and D2, have values of 0.1039 cm2/s and 0.1469 cm2/s,

respectively [49]. The left-hand side (LHS) of the equation is the time rate of change of

the JPDF and the transport of the JPDF in physical space by the mean velocity and

the conditional mean of the fluctuating velocity. The right-hand side (RHS) gives

two forms of the mixing terms. The first involves the conditional scalar diffusion,

⟨D1∇2ϕ1|ϕ̂1, ϕ̂2⟩ and ⟨D2∇2ϕ2|ϕ̂1, ϕ̂2⟩, whereas the second involves the conditional

scalar dissipation, ⟨χ|ϕ̂1, ϕ̂2⟩ = ⟨2D ∂ϕ
∂xi

∂ϕ
∂xi

|ϕ̂1, ϕ̂2⟩, and the conditional scalar cross-

dissipation, ⟨χ12|ϕ̂1, ϕ̂2⟩ = ⟨(D1 + D2)
∂ϕ1

∂xi

∂ϕ2

∂xi
|ϕ̂1, ϕ̂2⟩, respectively, where the angle

brackets denote an ensemble average. For convenience the sample space variable,

ϕ̂, are omitted hereafter. While transport by the mean and conditional velocities

are essentially the mean-flow advection and the turbulent convection of the JPDF in

physical space, respectively, the mixing terms transport the JPDF in scalar space,

and represent the effects of molecular mixing on the evolution of the scalar JPDF.

The three-scalar subgrid-scale (SGS) mixing in the context of large eddy sim-

ulation (LES) of turbulent velocity and scalar fields would also be studied. In LES

the resolvable-scale velocity and scalar are computed while the effects of the subgrid

scales, such as the SGS stress and the SGS scalar fluxes, are modeled. In LES of turbu-

lent reactive flows, the (joint) distribution of SGS scalars, i.e., the scalar filtered joint

density function (FJDF), is also needed in order to obtain the filtered reaction rates

because of their nonlinear dependencies on the scalars. LES based on the filtered den-

sity function method has become a very promising approach [12, 18, 21, 48, 54, 55, 56].

Much improvement in its capability to predict three-scalar mixing, however, is still

needed [56]. Because the evolution of the FJDF depends strongly on the small-scale

SGS mixing process, investigation of multiscalar SGS mixing is of importance.

Previous works ([8, 47, 63, 67, 68, 69]) have studied the SGS (binary) mixing

of mixture fraction in turbulent jets and turbulent partially premixed flames. The
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filtered density function (FDF) of mixture fraction (a conserved scalar) in the jets and

the filtered mass density function (FMDF) in the flames were analyzed using their

means conditioned on the resolvable-scale scalar and the SGS scalar variance. The

results show that the SGS scalar mixing has two limiting regimes. For instantaneous

SGS variance values small compared to its mean, the conditional FDF is close to

Gaussian. The conditionally filtered scalar dissipation depends weakly on the SGS

scalar, suggesting that the SGS scalar is well mixed. The SGS scalar time scale is

small and the SGS mechanical-to-scalar time scale ratio is large. For large values of

the SGS variance the conditional FDF becomes bimodal. The conditionally filtered

scalar dissipation is bell-shaped, indicating a strong dependence on the SGS scalar.

These results suggest that on average the scalar within a grid cell consists of portions

of well-mixed fluid that carry two distinct scalar values, and are separated by a

sharp interface (cliff). The SGS scalar time scale is large and the SGS mechanical-

to-scalar time scale ratio is small. The bimodal conditional FDF is similar to the

PDF in early stages of initially binary mixing, but is in contrast with PDFs in fully

developed flows, which are generally unimodal. It is also found that the SGS scalar

with very large variance (more than ten times its mean value) almost always contain

the ramp-cliff structure, which is associated with large-scale velocity structures, while

the SGS scalar with moderate variance can contain ramp-cliffs and other diffusion-

layer-like structures. The results for the FMDF in turbulent flames also show similar

trends [69]. These results are important for utilizing the resolvable scale variables in

modeling the FDF/FMDF. The qualitatively different SGS mixing fields in the two

limiting regimes also have strong implications for studying multiscalar SGS mixing.

The rest of the dissertation is organized as follows. Chapter 2 describes the ex-

perimental setup and the data reduction procedures. Chapter 3 provides an estimate

of the measurement resolution of scalar dissipation rates for the Rayleigh scattering
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and acetone LIF techniques. The effects of the mean shear and the scalar initial

length scale on three-scalar mixing in the context of RANS are shown in Chapter

4, while the three-scalar SGS mixing in the context of LES and also its dependence

on the mean shear and the scalar initial length scale are shown in Chapter 5. Then

conclusions follows in Chapter 6.

9



Chapter 2

Experimental facilities and data

reduction procedures

2.1 Experimental methodology

Simultaneous planar laser induced fluorescence (LIF) of acetone and planar

laser Rayleigh scattering are employed to measure the mass fractions of the center

stream and the annular stream in coaxial jets in this work. Both LIF and Rayleigh

scattering are well established techniques for scalar measurments in both cold flows

and reactive flows. Only a brief introduction of the theory and issues related to the

measurement in this work are given here, further detail about the theory and their

applications can be found in [13, 14, 32, 34].

2.1.1 Acetone laser induced fluorescence

Molecules (atoms) are resonantly stimulated by laser radiation in LIF, thus

the laser wavelength is corresponding to a specific absorption line of the molecules

(atoms) and LIF is a species selective technique [13, 14]. The molecules are stimulated
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from the ground state to an excited electric-vibrational state after the absorption of a

photon. Usually the excited state is unstable and will transfer to a lower vibrational

state immediately through vibrational relaxation, then a photon will be emitted when

the lower vibrational level state molecule goes back to the ground state. The emitted

light usually has a smaller photon energy than the laser source, or the wavelength of

the LIF emission is larger than the laser wavelength. The spontaneous emission from

the excited state can be observed at 90 degrees to the collimated laser sheet.

After evaluating a few candidates, Lozano [30] consider acetone as an excellent

tracer for scalar measurements in turbulent flows. Thurber [62] summarized the

advantages of acetone LIF including:

(1) High vapor pressure (over 30% by volume at room temperature) and can be

easily seeded into gaseous flow by bubbling the gas through liquid acetone containers.

(2) Large absorption cross section: σabs = 4.2 × 10−20 cm2 at the laser wave-

length (266 nm) used in this work.

(3) Broadband absorption spectrum (extends from 225 nm to 320 nm) and

easily accessible from commercially available high energy pulse lasers.

(4) Visible fluorescence emission (between 350 nm and 550 nm), at which range

CCD cameras usually have very high quantum efficiency.

(5) Short lifetime of the excited state so that acetone LIF a spontaneous tech-

nique that can “freeze” high speed flows.

(6) Large quantum yield to achieve higher signal-to-noise ratio (SNR).

(7) Linearity of the LIF signal, which is linearly proportional to the acetone

concentration and the laser intensity when the laser energy is not extremely high.
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2.1.2 Laser rayleigh scattering

Rayleigh scattering is the elastic scattering of light from molecules [14]. The

Rayleigh scattering signal is linearly proportional to the number density of molecules,

the laser intensity and the Rayleigh scattering cross section (σ) of the molecule.

Rayleigh scattering cross section is a physical property of the molecule. Rayleigh

scattering is not a species selective technique because the wavelength of the laser

source does not have to be tuned to a absorption line of the molecules like that in

LIF, or arbitrary laser wavelength can be used. However, shorter wavelengths are

usually preferred due to the λ−4 dependence of the Rayleigh cross section, σ ∝ λ−4,

where λ is the light wavelength. Another difference between Rayleigh scattering

and LIF is the wavelength of the scattering light is the same as the laser source

whereas the fluorescence wavelength is usually larger than the laser wavelength in

LIF. All molecules in the probe volume would scattering at the same wavelength,

although they are different in the signal intensity due to different Rayleigh cross

sections. Application of Rayleigh scattering in reactive flow for temperature or density

measurements are limited, because too many species show up and information about

the local composition is required to obtain temperature or density. It would be

possible to measure temperature only when the fuel mixture is carefully selected to

make the variation of the effective Rayleigh cross section (σeff ) across the scalar space

small (even negligible). The variation of the ratio between the effective Rayleigh cross

section (σeff ) and molecular weight needs to be negligible in order to measure density

[32].

Three molecules are involved in Rayleigh scattering in this work: air, acetone

and ethylene. Ethylene is chosen because of its high Rayleigh cross section, σEth

σAir
= 7

(measured in the present work), and its density is close to that of air so that buoyancy
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Figure 2.1: Schematic of the coaxial jet for Case I [6]. The dimensions of jet tubes
and the bulk velocities for other cases are listed in Table 2.1 and 2.2. The two solid
circles represent the approximate downstream locations that the cross-stream results
are shown in the following Chapters.

does not play a role in the flow. The ratio of the Rayleigh cross section of acetone

vapor and that of air is 15.5, σAce

σAir
= 15.5 (measured in the present work). The large

separation of the Rayleigh cross sections would reduce measurement uncertainties and

increase the signal intensity. The second harmonic of a Nd:YAG laser (output: 532

nm) is used for Rayleigh scattering in this work, so that the wavelength of Rayleigh

scattering signal and LIF signal are close and they can be recorded with the same

camera.
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2.2 Flow facilities and measurement system

The coaxial jets in this study are similar to that in [6], which consists of two

round tubes of different diameters placed concentrically (figure 2.1), resulting in a

three-stream configuration. The mass fractions of the scalars emanating from the

three streams are denoted as, ϕ1, ϕ2 and ϕ3, respectively, the summation of which

is therefore unity. The center stream, ϕ1, is unity at the center jet exit, while the

annular stream, ϕ2, is unity at the annular flow exit. The co-flow air represents the

third scalar, ϕ3.

Two coaxial jets with the same center tube but different outer tubes were

constructed for this work (the jet dimensions are listed in Table 2.1), with the smaller

one having identical dimensions to those used in [6]. A shape cut generate 90◦ corners

at the ends of the jet tubes. The length of the tubes are 500 mm and 570 mm for the

center jet and the annulus, respectively, which are sufficiently long to guarantee fully

developed flows at the jet exit, and that the flow field is expected to be insensitive to

the fine details of the geometry of the jet tubes. The center stream was air seeded with

approximately 9% of acetone by volume, while the annular stream was pure ethylene.

The densities of the center stream and the annular stream were approximately 1.09

and 0.966 times the air density. The difference is sufficiently small for the scalars to

be considered as dynamically passive.

For each coaxial jet, measurements were made for the same center jet (bulk)

velocity with two annular flow (bulk) velocities, result in a total of four coaxial jet

flows (Table 2.2). The velocity ratio of the annular flow to the center jet is close

to unity for Cases I and III while it is approximately 0.5 for Cases II and IV. The

velocities and Reynolds numbers of the four cases are listed in Table 2.2. Note that

Case I is identical to the flow studied in [6]. The Reynolds numbers are calculated
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Inner tube Annulus (outer) tube
Dji (mm) δj (mm) Dai(mm) δa (mm)

Coaxial Jet I 5.54 0.406 8.38 0.559
Coaxial Jet II 5.54 0.406 10.92 0.889

Table 2.1: Dimensions of the coaxial jets. Here Dji, δj, Dai and δa are the inner
diameter and the wall thickness of the inner tube and the annulus tube, respectively.

Jet Ujb (m/s) Rej Uab (m/s) Rea Velocity ratio Uab

Ujb

Case I Jet I 34.5 12,190 32.5 7,636 0.94
Case II Jet I 34.5 12,190 16.3 3,818 0.47
Case III Jet II 34.5 12,190 32.5 17,263 0.94
Case IV Jet II 34.5 12,190 16.3 8,631 0.47

Table 2.2: Characteristics of the coaxial jets. Here Ujb and Uab are the bulk velocities
of the center stream and the annular stream, respectively. The Reynolds numbers
are calculated using the tube diameter Dji and the hydraulic diameter of the annulus
Dai-(Dji+2δj), respectively.

as Rej = UjbDji/νair and Rea = Uab(Dai − (Dji + 2δj))/νeth, where νair = 1.56 ×

10−5 m2/s and νeth = 0.86× 10−5 m2/s [46] are the kinematic viscosities of air and

ethylene respectively.

The coaxial jets are placed in the center of a wind tunnel (figure 2.2) producing

a air co-flow with velocity at approximately 1 m/s. The dimension of the wind tunnel

is approximately 200 mm-by- 200 mm, which is large enough to isolate the coaxial jet

from the influence of the ambient air, at least for the downstream locations studied in

this work. The wind tunnel, with the coaxial jet mounted on it, was placed on a two-

axis translation system so that measurement at different jet downstream locations

can be easily accessed. The central chord of the round tube was aligned with the

laser sheets through fine adjustment of the wind tunnel location in the direction

perpendicular to the laser sheets. The exhaust hood that collecting exhausted gas

was placed approximately 1.5 m downstream of the coaxial jet.
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The source of the center jet air was a facility compressor, while ethylene came

from a high pressure gas cylinder with chemically pure ethylene. Alicat mass flow

controllers were used to control the air and ethylene flow rates. All controllers had

been calibrated by the manufacturer. Particles were removed for both streams before

the gases enter the flow controllers. Three acetone containers in a series were used

for seeding spectroscopic grade acetone into air through bubbling (figure 2.2). Each

acetone container has a volume of 1 liter, and was approximately 70% full. Large

amount of acetone are needed considering the large flow rate of air, and the heat for

the evaporation have to come from the liquid acetone. Then liquid temperature would

drop quickly and the seeding concentration also keep decreasing during the period of

measurement if only one acetone container is used. This difficulty can be overcome

with the arrangement of the three-stage bubbling containers. Most of the seeded ace-

tone came from the first container, which was placed in a hot water bath maintained

at approximately 35oC. It is possible that excessive acetone are evaporated in the

first container, however, the excess acetone will condense in the second and the third

container [2]. Only little amount of acetone are needed in the second container if evap-

oration is not enough in the first one, which would only result in a minor change of

liquid temperature in the second and the third container. Thus the second and third

container ensured that the acetone vapor pressure reached the saturation level at the

room temperature. As a result there was no observable variations of the seeding level

during the course of the experiment, which was confirmed by monitoring the LIF and

Rayleigh signal intensities of a flatfield for a long period. Approximately 30% of the

center jet air flow bubbled through the three acetone containers. The acetone-doped

air stream mixed with the rest of the air flow before entering the center tube. A very

fine particle filter (0.01 µm) was placed in the path of the acetone-seeded air flow to

remove the acetone mist, which would interfere with Rayleigh scattering imaging. In
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order to monitor the pulse-to-pulse fluctuations of the laser energy, the laser intensity

profile across the image height and the acetone seeding concentration for normaliza-

tion, a laminar flow reference jet was placed at approximately 0.5 m upstream of the

coaixal jet along the laser beam path. Approximately 5% of the center jet acetone

doped air was teed off from the coaxial jet to the reference jet. Additional air (also

controlled by a Alicat flow controller) was added to the reference jet to increase the

velocity to maintain a steady laminar jet flow.

Simultaneous planar laser-induced fluorescence (PLIF) and planar laser Rayleigh

scattering were employed to measure the mass fractions of the acetone-doped air (ϕ1)

and ethylene (ϕ2). The experimental setup (figure 2.2) is similar to that in [6],

with improvements on camera lens resolution and different optics are used to reduce

the laser sheet thickness. The second harmonic (532 nm) of a Q-switched Nd:YAG

laser (Quanta-Ray LAB-170 operated at 10 pulses/s) having a pulse energy of ap-

proximately 325 mJ was used for Rayleigh scattering. The fourth harmonic (266

nm) of another Q-switched Nd:YAG laser (Quanta-Ray PRO-350 also operated at

10 pulses/s) was used for acetone PLIF, with a pulse energy of approximately 80

mJ/pulse. A telescope consisted of a planar-concave cylindrical lens (−200 mm focal

length) followed by a spherical lens (750 mm focal length) was placed in the beam

path of the 532 nm beam to form a collimated laser sheet above the coaxial jets. The

telescope in the 266 nm beam path also consisted of a planar-concave cylindrical lens

and a spherical lens with focal lengths of −150 mm and 1000 mm, respectively. A

dichroic mirror reflecting 266 nm wavelength and transmitting 532 nm was employed

to combine the two beam paths into a single one. The focal points of the two spheri-

cal lens were located approximately above the jet centerline. The height of the laser

sheets were approximately 40 mm and 60 mm, respectively for the 532 nm beam and

the 266 nm beam. However, only the center 12 mm portion having a relative uniform
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intensity was imaged.

A Cooke Corp. PCO-1600 interline-transfer CCD camera was used to collect

both LIF and Rayleigh signals. The camera is 14-bit with two ADCs, with a in-

terframe transfer time of 150 ns. Its quantum efficiency is over 50% for green light

and the readout noise is only 11 e− at 10MHz readout rate. Each 532 nm pulse for

Rayleigh scattering was placed 210 ns before a 266 nm pulse for LIF. With the jet

velocity less than 35 m/s, the time lag between the beams was sufficiently short to be

considered as simultaneous. It was however longer than the interframe transfer time

of the camera to ensure that the Rayleigh image was transfered before the exposure

for the LIF image begins. To operate the camera with frame rate at 20 frames/s

with two ADCs, the imaging array of the camera was cropped and the pixels binned

2× 2 before readout, resulting in an image of 800 pixels wide by 500 pixels high. The

timing of lasers and cameras were controlled by a delay generator (Stanford Research

System DG535). A custom lens arrangement consisting of a Zeiss 135mm f/2 Apo

lens followed by a Zeiss planar 85mm f/1.4 lens was used for the PCO-1600 camera.

The lenses, both focused at infinity, were connected face to face with the 85mm lens

mounted on the camera. The pixel size of the camera is 7.4 µm (square), correspond-

ing to 22.9 µm in the image plane after binning 2 × 2. The field of view was 11.45

mm (high) by 18.3 mm (wide). The LIF and Rayleigh images of the reference jet

were recorded with two Andor ICCDs (Both are iStar 334T), respectively. They were

placed face to face on either sides of the laser sheet and the images were not intensi-

fied. Background light was suppressed using a series of hard blackboards to enclose

the wind tunnel, cameras and the reference jet.

The registration between the reference jet cameras and the main jet camera

is needed for the data reduction when the reference jet was used to monitor the

laser profile across the image height. It was done with the help of a fine metal wire
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(about 0.3 mm in diameter) that was placed between the dichroic mirror and the

reference jet along the beam path. The coaxial jet was replaced by a McKenna

burner, above which a uniform scalar field (flatfield) larger than the field of view

of the camera is sustained. Part of the laser sheet was blocked after it passed the

fine wire, then a shadow show up in both the reference jet cameras and the main

jet camera. The registration between cameras can be obtained by calculating the

correlation coefficient of the signal intensity profiles from the two cameras in the

neighborhood of the shadows. The exact pixel shift of the two cameras is at the peak

of the correlation coefficient between the two vertical profiles. The difference in the

pixel size needs to be adjusted before calculating the correlation coefficients, and it

was done by resampling the reference images in the vertical direction.

An indirect way has to be used to check the collimation of the laser sheet

because the laser heights are much larger than the field of view of the cameras. Two

fine metal wires with a separation about 7 mm were placed along the laser path the

same way as that for registration. The distance between the two shadows in reference

jet camera images and the main jet camera image should be the same when the laser

sheet is perfectly collimated. The fine adjustment of the laser sheet collimation is a

trial and error process. The travel path of the laser sheet also needs to be horizontal

relative to the cameras to make the data reduction process easier. We can easily

tell whether the laser sheet travel horizontally or not from the shadow of wire in the

images. Some adjustment of the camera or the beam reflecting optics are needed if

the shadows are not horizontal in the images.

The camera lens focus can be roughly found by letting the laser sheet skip the

surface of a grid target, which is imaged by the camera. However, the accuracy would

be only on the order of mini-meter. The camera lens resolution is very sensitive to the

camera lens focus due to the small depth of field resulting from the large magnification
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Figure 2.3: A sample image of fringes generated by the fine wire blocking part of the
532 nm laser sheet at the upstream when the camera lens focus is good. The right
part is a profile of a single column in the left image.

ratio and the large aperture (small f -number) of the camera lens. Thus the camera

lens focus needs be fine tuned for better scalar dissipation resolution. The camera

lens focus can be found with the help of the shadow in the main jet camera images

generated by the fine wire. The shadow in the main camera image, or at the laser

sheet focus, is not a simple dark stripe with the edge similar to an error function

that have a smooth transition to bright stripes. Some fine fringes show up due to the

interference between the two parts of the laser sheet that was separated by the fine

wire. The fringes would be blurred or even disappear when the camera lens focus is

not good. The fringes at good camera focus is shown in figure 2.3. A good camera

lens focus is that when the fringes in the cameras show most details. Fine adjustment

of the camera lens focus can be done by adjusting the focus of the Zeiss planar 85mm

f/1.4 lens while real time images of the fringes are taken.
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2.3 Data reduction procedures

The data reduction procedures in this work are in general similar to that

described in [9], however, with some modifications due to different (and better) cali-

bration process.

2.3.1 Rayleigh scattering

Rayleigh signal is proportional to the laser intensity, the effective Rayleigh

cross section and it can be modeled as [60]:

SRay(i, j, k) = ResRay(i, j) · I(i, k) · σeff(i, j, k) + BGRay(i, j) (2.1)

where SRay is the Rayleigh signal intensity, I is the laser intensity, σeff is the effective

Rayleigh cross section. The symbol i, j and k are the pixel numbering in vertical

direction, the pixel numbering in the horizontal direction and the frame number.

The laser intensity varies across the beam height direction (i) and have pulse to

pulse variations (k). The system response, ResRay, is consisted of all factors that

are independent of the laser intensity and the scalar values, including the absorption

cross section, the quantum yield, the solid angle of the collection optics, the quantum

efficiency of the camera and the lens vignetting et al. Lens vignetting is the main

contributor to the pixel-to-pixel variation of ResRay, especially in the case of the face

to face connection of two camera lens that have large magnification ratio in this

work. The non-uniformity of pixels can also be a major contributor to the pixel-

to-pixel variation of ResRay and cause the dependence of ResRay on i and j. BGRay

represents the background light signal and the dark current. The Rayleigh scattering

background was measured with helium flatfield while keeping the lasers operating the
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same way as recording normal images, because the Rayleigh cross section of helium

is negligible compared to that of air. The effective Rayleigh cross section is the mole

weighted average of the Rayleigh cross sections of all three species,

σeff = σ1ϕ1 + σ2ϕ2 + σ3ϕ3, (2.2)

where ϕis represent the mole fractions of each stream and satisfy the constraint

ϕ1 + ϕ2 + ϕ3 = 1. (2.3)

and σis are the corresponding Rayleigh cross section:

σ1 = (1− c)σair + cσace, (2.4)

σ2 = σeth, (2.5)

σ3 = σair (2.6)

where c is the acetone concentration in the center stream (ϕ1), and σace, σeth and σair

are the Rayleigh cross section of acetone, ethylene and air, respectively.

The model equation can be applied to both reference and main jet images:

SRay(i, j, k) = ResRay(i, j) · I(i, k) · σeff(i, j, k) + BGRay(i, j) (2.7)

Sr
Ray(i, j, k) = ResrRay(i, j) · I(i, k) · σr

eff + BGr
Ray(i, j) (2.8)

The laser intensity term can be cancelled if we take the ratio of the two equa-

tions with the background terms been subtracted from the signal intensities at first,
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and we can get

SRay(i, j, k)

(1/N)
∑N

l=1 S
r
Ray(i, j0 + l, k)

·
(1/N)

∑N
l=1Res

r
Ray(i, j0 + l)

ResRay(i, j)
=

σeff(i, j, k)

σr
eff

(2.9)

where SRay and Sr
Ray represent the main and reference rayleigh signals with back-

ground signals been subtracted hereafter. The signal intensity of the reference image

is averaged along the beam propagation direction to reduce shot noise effects.

The relative response

(1/N)
∑N

l=1Res
r
Ray(i, j0 + l)

ResRay(i, j)
(2.10)

needs to be found with calibration. The calibration measurement was done by re-

placing the coaxial jet flow with a flatfield flow generated by the McKenna burner,

while the reference flow, cameras and lasers are operating in the the same way as

normal measurements. The McKenna burner with a diameter of 60 mm generate a

uniform scalar field at the focus of the main camera. With a known and uniform

gas (Ethylene, acetone doped air or pure air) filling the image field, the relative re-

sponse (equation 2.10) can be found when applying equation 2.9 to the calibration

measurements because the ratio between the Rayleigh cross sections (the right side

of equation 2.9) is known.

With the relative response accounted, the rayleigh signal is reduced to a nor-

malized Rayleigh cross section (the right hand side of equation 2.9). The normalized

Rayleigh cross section is the ratio between the effective Rayleigh cross section in the

flow field and the Rayleigh cross section of the mixture for calibration (air). After a
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few steps of derivations, the equation becomes:

σnorm =
σeff

σair

= 1− ϕ2 − cϕ1 + c
σace

σair

ϕ1 +
σeth

σair

ϕ2 (2.11)

which can be rearranged as:

σnorm − 1 = cϕ1

(
σace

σair

− 1

)
+ ϕ2

(
σeth

σair

− 1

)
(2.12)

where σEth

σAir
= 7 and σace

σAir
= 15.5.

2.3.2 PLIF

The laser intensity for PLIF in this work is in the linear regime, and the LIF

signal can be modeled as:

SPLIF(i, j, k) = ResPLIF(i, j) · I(i, j, k) · ϕ1 · c ·
A21

Q21 + A21

+ BGPLIF(i, j) (2.13)

where ResPLIF is similar to ResRay for Rayleigh signal and includes all factors that

are independent of laser intensity and scalar values; I(i, j, k) is the laser intensity

and its dependence on j is due to laser intensity attenuation because of the large

absorption; A21 represents Einstein’s constant; Q21 represents quenching, and Q21 =

q1ϕ1 + q2ϕ2 + q3ϕ3, and

q1 = (1− c)qair + cqace ≈ (1− c)qair, (2.14)

q2 = qeth, (2.15)

q3 = qair (2.16)
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where qair, qace and qeth are the quenching coefficients of air, acetone and ethylene,

respectively to acetone LIF. Quenching of acetone to itself is negligible compared to

that of air, so it is deleted from equation 2.14.

When Q21 >> A21 [9], the model equation can be simplified to

SPLIF(i, j, k) = ResPLIF(i, j) · I(i, j, k) · ϕ1 · c ·
A21

q1ϕ1 + q2ϕ2 + q3ϕ3

(2.17)

where SPLIF represents signal intensity with Background signal been subtracted.

One big difference between the model equation of PLIF and Rayleigh is the

variation of laser intensity along its propagation direction. Acetone has very large

absorption cross section for the 266 nm wavelength. The variation of the laser in-

tensity follows Beer’s law. It drops by about 4% after passing the jet. However, we

can neglect the variation of laser intensity in the first place, and compensate it in

the last step of data reduction. The PLIF equation becomes similar to the Rayleigh

equation after ignoring laser intensity attenuation, and again the relative response

needs to be found from calibration. When the flatfield is used for calibration, the

whole imaging field would be filled with acetone doped air, which would cause a large

drop (about 15%) of laser intensity across the width of the image. So the calculated

relative response was the actual relative response times the laser intensity attenua-

tion percentile. The laser attenuation effect has to be corrected before the relative

response been used as actual relative response.

With the relative response accounted, the PLIF signal is reduced to (after a

few steps of derivations):

knorm =
keff
kRef

=
(1− c)ϕ1

1− cϕ1 +
(

qeth
qair

− 1
)
ϕ2

(2.18)
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Figure 2.4: Instantaneous (Sample) images of the center stream (Left) and the annular
stream (Right) at the near field. The first, second, third and fourth row are for Cases
I, II, III and IV, respectively. The top and the bottom of the images are at 25.45mm
and 14mm downstream of the jet exit, respectively.

The scalar values can be obtained from equation 2.12 and equation 2.18. Sam-

ple (instantaneous) images of the center stream and the annular stream at the near

field are shown in figure 2.4. A total of 7200-7600 images were taken for each cases

at the two near field downstream locations, where cross-stream results are shown

in the following Chapters. About 2400-3000 images were taken for the other three

downstream locations, for which only the centerline results are shown.
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Chapter 3

Measurement resolution of the

scalar dissipation rate

3.1 Measurement resolution of the scalar dissipa-

tion rate

Scalar dissipation rate, χ = 2D ∂ϕ
∂xi

∂ϕ
∂xi

, is an important turbulent mixing quan-

tity and a measure of the speed at which scalar inhomogeneities decay. It shows up

directly in laminar flamelet modeling equation and serves as a parameter characteriz-

ing the flame structure in turbulent non-premixed flames. Accurate measurement of

scalar dissipation rate (or scalar gradient) is more challenging than measuring scalar

itself due to smaller length scale. The smallest spatial length scale for this work is

close to the Kolmogorov scale, because Schmidt number (Sc = ν/D) is close to unity.

To assess the measurement resolution, we used both Rayleigh scattering and

LIF to measure ϕ1 by feeding the annular stream with an air flow. The ϕ1 mean

profiles from both techniques at x/d = 3.29 (where d is the diameter of the inner
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Figure 3.1: Cross stream mean profiles of the center stream at x/d = 3.29. The
annular stream is air flow with the same flow rate of ethylene for Case I.
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Figure 3.2: Cross stream profiles of the mean scalar dissipation rate before noise
correction at x/d = 3.29 using 10th order central finite difference scheme. The annular
stream is air flow with the same flow rate of ethylene of Case I.
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Figure 3.3: Same as figure 3.2 but after noise correction.

tube) are shown in figure 3.1. The annular stream was air flow with the same flow

rate as ethylene for Case I. All results shown in this Chapter are using this set of

data. The two mean profiles are essentially the same except little difference at the

tail, which might be due to effects such as beam steering or nonlinearity of camera at

low signal levels. Figure 3.2 shows the mean dissipation rate (before noise correction)

profiles at x/d = 3.29. The 10th Order central finite difference scheme is used to

calculate the derivatives. The mean dissipation rate should be small close to the cen-

terline (r/d < 0.1) because only pure ϕ1 exist there. However, the uncorrected mean

dissipation rate is very large at centerline, which is due to large noise contribution.

Shot noise add to the signal value when reading out, and it tends to result in a larger

calculated dissipation rate. The uncorrected mean dissipation rate at the centerline

of Rayleigh scattering measurement is much larger than LIF is a result of smaller

signal intensity and thus smaller signal to noise ratio (SNR) for Rayleigh scattering.

The Rayleigh scattering signal intensity of pure ϕ1 mixture is less than half of the

LIF signal intensity at the seeding level and laser energy of the present work. Moving
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away from the centerline to x/d > 1, there is no ϕ1 and the dissipation rate should

also be zero. However, the uncorrected dissipation rate from Rayleigh measurement

is also very large whereas LIF measurement have a close to zero mean dissipation

rate. The reason is that air have Rayleigh scattering signal while it does not have

LIF emission at all. Thus the non-zero mean dissipation rate from Rayleigh scattering

is again due to measurement noise.

The shot noise contribution to the mean dissipation rate can be removed using

the method developed by Cai and Tong [7]. Figure 3.3 shows the noise corrected ϕ1

mean dissipation rates. The corrected dissipation profiles have very small values at

both the centerline and the tail, suggesting that the noise correction method is effec-

tive. The small but non-zero mean dissipation rate close to the centerline and at the

tail for Rayleigh scattering is a result of not good statistical convergence since only

600 images were taken for these test cases. Figure 3.4 shows the calculated dissipation

rate using different orders of central finite difference scheme VS CN , which is depen-

dent on the orders of the finite difference scheme. The CN value is larger for higher

orders of finite difference scheme. Details about the noise correction method and CN

can be found in [7]. The straight line in the figure is a linear fit of the calculated

dissipation rates using the 6th, 8th and 10th order finite difference scheme (the last

three circles in the figures). The dissipation rate is fully resolved when the three cir-

cles stay exactly on the straight line, the intercept of which on the ordinate (CN = 0)

is the noise corrected mean dissipation rate. Lower orders difference scheme would

also fully resolve the dissipation rate if that circle also stays exactly on the straight

line. All the circles stay right on the line for r/d = 0, and the intercept is basically

zero. From these figures, we can see that the small non-zero noise-corrected mean

dissipation for Rayleigh scattering (figure 3.3) is due to the statistical convergence.

Move to r/d = 0.447, only the second order finite difference cannot resolve the dissi-
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Figure 3.4: Calculated mean dissipation rate VS CN . CN is a scheme dependent
factor, the five non-zero CN are corresponding to the 2nd, 4th, 6th, 8th and 10th
order central finite difference scheme. The straight line is a linear fit of the last
three circles. The circle with CN = 0 is the intercept of the line on the ordinate.
The left column is for Rayleigh scattering measurement while the right is for LIF
measurement.
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pation rate for Rayleigh scattering. For LIF measurement, the 4th order circle stays

a little below the line, suggesting it does not fully resolve the mean dissipation rate.

Results at other radial locations are similar. The noise contribution has been success-

fully removed from mean dissipation rate for both techniques. The noise corrected

mean dissipation rate for Rayleigh scattering is much larger than for LIF (figure 3.2).

The peak value from Rayleigh scattering is approximately 40% higher than from LIF,

thus the resolution of the two techniques are different. The measurement resolution is

affected by several factors including the camera lens resolution, the image pixel size,

the finite difference scheme and the laser sheet thickness.

Camera lens resolution (optical blurring) plays an important role in the dissi-

pation resolution. Line-spread function (LSF) is a good measure for imaging blurring

[70]. The Line-spread function was measured by translating a razor blade across the

imaging plane, the setup of the measurement is the same as in [11]. The knife edge

is placed at the focal plane and been back-illuminated, then the step jump profile

of the knife edge is an error function like profile at the image plane due to optical

blurring, the length scale of which is the LSF of the camera lens. The signal intensity

of a single pixel is monitored as the knife-edge is translated across the imaging plane,

since this way of measuring LSF is independent of camera pixel size or the resolution

of camera itself. The full width at half maximum (FWHM) of the error function

profile, or LSF, is approximately 38 µm for the lens arrangement.

The measurement system resolution is very sensitive to the camera lens focus,

due to the small depth of field resulting from the large magnification ratio and the

large aperture (small f -number) of the camera lens. We note that the wavelength

of the Rayleigh scattering signal is the same as the laser light (532 nm), with an

extremely small linewidth. By contrast, the LIF emission from acetone excited at

266 nm is broadband, from 320 nm to 550 nm with the peak at approximately 410
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Figure 3.5: A sample image of fringes generated by the fine wire blocking part of the
266 nm laser sheet at the upstream. The right part is a profile of a single column in
the left image.

nm [3]. The focal length of the camera lens vary with different light wavelength

considering that they are usually achromat, for which the variation of focal length

should be on the order of hundreds of micro-meter. This variation of focal length

would cause a less well focused camera lens for imaging acetone LIF because its

emission is broadband. Although we do not have a model to quantify its effects on

the resolution of the scalar dissipation, the difference in the quality of the camera lens

focus for the two techniques is obvious, with the image of the fringe produced by the

fine wire having much less detail for the 266 nm beam. Figure 3.5 shows the fringes

generated by blocking part of the 266 nm beam with a fine wire at the upstream. It

shows much less details compared to that of the 532 nm (figure 2.3), although shorter

wavelength tends to generate finer fringes. The camera lens focus for LIF is worse

compared to Rayleigh scattering.
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Non-zero sheet thickness average the scalar in the direction perpendicular to

the imaging plane. In order to measure the sheet thickness, we design a simple beam

profile measurement system in the lab. The laser beam was sampled by a few beam

splitters, then passing the cylindrical lens and the spherical lens, at the focus of which

the laser sheet hit a filter. It was a long pass filter with cut-off wavelength at 570

nm for the 532 nm beam, and a uv absorption glass for the 266nm beam. The filters

absorb the laser light and have fluorescence emission, the signal intensity of which

are linear to the laser intensity. A CCD camera was used to record the emitted light

signal to obtain the sheet thickness. The beam profile would be Gaussian like if the

beam quality is good. The sheet thicknesses (FWHM) were about 110 and 90 µm,

respectively, for the 226 and 532 nm beams.

The effects of pixel size on measurement resolution is twofold. First, light

collected by each pixel is a sum (average) of signal from the corresponding probe

volume. To some extent, pixel averaging is like apply a top-hat filter to the scalar

field with the filter size equals the pixel size. Second, different pixel size corresponding

to different sampling rate of the scalar field. Sampling rate has to be high enough

to fully resolve scalar gradient. Apart from sampling rate, the system resolution is

also affected by the differential schemes being used. Central finite difference schemes

are employed in this work. With higher orders of difference scheme, the calculated

dissipation rate would be higher if lower orders of difference scheme can not fully

resolve the gradient, because higher orders of finite difference scheme have higher

resolution power. We use the same camera and camera lens for both LIF and Rayleigh

scattering, thus LSF and pixel size are the same for the two techniques and not the

source of different resolution.

The combined resolution can be estimated by comparing the measured scalar

dissipation rate to the prediction using a scalar energy spectral model, which is filtered
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Figure 3.6: Estimation of the scalar length scale by matching the ratio of the dissi-
pation rates using finite difference scheme of different orders from the experimental
data to those from the model spectrum, where h and η represent the pixel size and
the scalar length scale, respectively.
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in the spectral domain taking into account all the above mentioned effects except the

effects of the broad-band LIF signal on the camera lens focus. The three-dimensional

model spectrum of Pope [42] for a homogenous isotropic turbulent scalar field is used.

The model for the effects of LSF, pixel averaging, laser sheet thickness and differential

scheme are the same as that in [71], with the parameters using values given above.

The scalar dissipation length scale can be inferred by matching the ratios of the dis-

sipation rates calculated with finite difference schemes of different orders using the

experimental data (all noise corrected) to those using the scalar energy spectrum [5].

The results show that the scalar dissipation length scale is approximately 14 µm (fig-

ure 3.6), and that the Rayleigh scattering and LIF techniques resolve approximately

72% (figure 3.7) and 68%, respectively, of the mean scalar dissipation rate. Thus,

the difference in the laser sheet thickness account for only 4% difference in the peak

mean dissipation rate, since the other parameters accounted are the same for the two

techniques. The effects of averaging in the imaging depth direction is expected to be

small when we only calculate the two in plane dissipation components. Thus mea-

surement resolution should not be sensitive to the sheet thickness considering that

the sheet thickness are large compared to the length scale of other factors and the

smallest scalar length scale. Then the large difference in the peak mean dissipation

rate (40%) must be due to the camera lens focus. The resolved mean dissipation rate

of acetone LIF is corresponding to approximately 43% of the “true” mean dissipation

rate, which is inferred from Rayleigh scattering measurement.

The peak of the mean dissipation rate is at r/d = 0.46 for both LIF and

Rayleigh measurement, although their magnitudes are different. The worse resolution

for LIF does not change the shape of the mean dissipation rate profile. Figure 3.8

shows the noise corrected conditional scalar dissipation rate at three radial locations at

x/d = 3.29. Close to the centerline (r/d = 0.207), the dissipation rate increase when
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Figure 3.8: Noise-corrected conditional scalar dissipation rate. The physical locations
are given in the legend.
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Figure 3.9: Noise-corrected filtered conditional scalar dissipation rate. The physical
locations are given in the legend. The conditional scalar mean and SGS variance are
also shown in the legend.

the scalar value is away from ϕ1 = 1. The dissipation rate is very small near ϕ1 = 1 in

scalar space, and both LIF and Rayleigh give similar values. Moving away from ϕ1 =

1, the conditional dissipation rate from Rayleigh scattering is larger by approximately

30% than LIF, however, the general trend of the two profiles does not show much

difference. The large fluctuations is due to not good statistical convergence. Moving

to r/d = 0.455, the conditional dissipation rate peak near ϕ1 = 0.4 for both LIF

and Rayleigh. Again, the shapes are similar but with different magnitudes. The

maximum value from Rayleigh scattering is larger than LIF by approximately 38%.

Moving further away from the centerline to r/d = 0.951, the conditional dissipation

rate is very small near ϕ1 = 0 and increases away from ϕ1 = 0. The dissipation

rates are small at this radial location, with Rayleigh scattering gives a higher value

than LIF in the whole scalar space, which is due to uncertainties in noise correction

because the Rayleigh signal of air is non-zero while the LIF signal of pure air is zero.

Figure 3.9 shows the filtered conditional scalar dissipation rate at x/d = 3.29
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and r/d = 0.455. The conditional variables are the filtered mean and the SGS vari-

ance. The square “top-hat” (or box) filter is used here, and the filter size was 0.69mm.

The left column is for the small SGS variance, in which case ϕ1 is well mixed with

air. The filtered conditional dissipation rate is small when ϕ1 is close to the filtered

mean, ⟨ϕ1⟩L , or ϕ′
1 = ϕ1−⟨ϕ1⟩L close to zero. The filtered conditional dissipation rate

increases as ϕ′
1 go away from zero. The noise corrected filtered conditional dissipation

rate is larger for Rayleigh measurement than LIF at the whole scalar space, however,

their shapes are again similar. The mixtures are segregated when the SGS variance is

large (figure 3.9b), and the filtered conditional dissipation rate peak near ϕ′
1 = 0 for

both Rayleigh and LIF. The peak dissipation rate is approximately 35% higher for

Rayleigh measurement, however, their shape does not show much difference. Results

at other locations show similar trends.

The resolved dissipation rates (mean dissipation rate, conditional dissipation

rate and filtered conditional dissipation rate) from Rayleigh scattering measurement

are generally much larger than from LIF measurement due to better resolution (Cam-

era lens focus). However, the shape of the profiles does not show much difference

between them. The profiles peak at the same location in both physical and sample

space. They start to increase at similar locations. These similarities are likely be-

cause the scale corresponding to the peak of the dissipation spectrum is still resolved

as our resolution is equivalent to κη ≈ 0.3 using Pope’s model dissipation spectrum

[42]. Thus, the spatial resolution of the measurement system is sufficient to support

the results obtained and the conclusions drawn from the measured dissipation rate

when normalized by the peak measured dissipation.
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3.2 Data analysis procedures

In the following Chapters, the first and second order derivatives of the scalars

are needed to calculate the dissipation rate and diffusion, respectively. The 10th-order

central finite difference scheme are used throughout the rest of this work. The first

and second order derivatives are as follows:

hX′
i =

2100

2520
(Xi+1 −Xi−1)−

600

2520
(Xi+2 −Xi−2) +

150

2520
(Xi+3 −Xi−3)

−
25

2520
(Xi+4 −Xi−4) +

2

2520
(Xi+5 −Xi−5) (3.1)

h2X′′
i =

42000

25200
(Xi−1 − 2Xi +Xi+1)−

6000

25200
(Xi−2 − 2Xi +Xi+2) +

1000

25200
(Xi−3 − 2Xi +Xi+3)

−
125

25200
(Xi−4 − 2Xi +Xi+4) +

8

25200
(Xi−5 − 2Xi +Xi+5) (3.2)

where X, i, h represent the scalars, pixel number and pixel size respectively. Two in-

plane components of the dissipation rate and the diffusion are calculated and the final

value is the summation of the two components. For example, the dissipation rate and

the diffusion for ϕ1 are χ1 = 2D1

(
∂ϕ1

∂x
∂ϕ1

∂x
+ ∂ϕ1

∂r
∂ϕ1

∂r

)
and D1∇2ϕ1 = D1

(
∂2ϕ1

∂x2 + ∂2ϕ1

∂r2

)
,

where x and r represent the streamwise and cross-stream direction, respectively.

Typically 7200-7600 images were used to calculate the statistics for the two

near field downstream locations, for which the cross-stream results are also shown.

And approximately 2400-3000 images were used for the other three downstream lo-

cations, for which only the centerline results are shown. Noise corrections were per-

formed in the following chapters for the rms fluctuations, the correlation coefficient,

the segregation parameter, the mean and conditional dissipation and cross-dissipation,

the SGS variance and the conditionally filtered dissipation and cross-dissipation. The

noise correction procedures are the same as in [6]. The JPDF, conditional diffusion,

conditional dissipation rates, FJDF, conditionally filtered diffusion and the condition-

ally filtered dissipation rates were calculated using Kernel Density Estimation (KDE)
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[66] in two dimensions with a resolution of 400 by 400 in the scalar sample space with

an oversmooth parameter of 1.3. The statistical uncertainties and bias for JPDF

and FJDF were estimated using the bootstrap method [19], while the uncertainties

for the conditional dissipation rates and the conditionally filtered dissipation rates

were estimated using the method given by [51]. The magnitudes of the statistical

uncertainties are similar to those in [6].
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Chapter 4

Effects of mean shear and scalar

initial length scale on three-scalar

mixing in the context of RANS

In this Chapter analyses of the scalar means, rms fluctuations, fluctuation in-

tensities, correlation coefficient, segregation parameter, JPDF, mean and conditional

dissipation rates, and conditional scalar diffusion computed from the two-dimensional

images are presented.

4.1 Evolution on the jet centerline

The scalar mean profiles on the jet centerline are shown in figure 4.1. For

x/d < 6 (Here d denotes the inner diameter of the inner tube), the profiles for both

⟨ϕ1⟩ and ⟨ϕ2⟩ overlap for Cases I and II and for Cases III and IV and the sum of ⟨ϕ1⟩

and ⟨ϕ2⟩ is close to unity. Further downstream, the co-flow air (ϕ3) as well as more ϕ2

reach the centerline, and ⟨ϕ1⟩ decreases monotonically, while ⟨ϕ2⟩ increases and reach
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Figure 4.1: Evolution of the mean scalars on the jet centerline.
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a maximum before decreasing further downstream. The profiles of Case I and Case

II also begin to depart from each other, with Case I having smaller ⟨ϕ1⟩ values but

larger ⟨ϕ2⟩ values. The smaller ⟨ϕ1⟩ values for Case I might seem surprising as one

might have expected that the mean shear between the center jet and the annular flow

in Case II would result in a larger cross-stream turbulent flux, and therefore faster

decrease of ⟨ϕ1⟩. To understand this trend, we note that the total streamwise flux of

the mean scalar across a cross-stream plane at any downstream location is conserved

[61]. For ⟨ϕ1⟩ the total mean flux is identical for both cases. Therefore, a lower mean

velocity generally will result in higher mean scalar values. The cross-stream mean

velocity profile at the jet exit is wider (inferred from the jet exit profiles) for Case

I, resulting in a slower decay of the centerline mean velocity. As a result, the mean

scalar decreases faster than Case II in order to maintain the total streamwise mean

flux. Therefore, at the local level although the mean shear between the center jet

and the annular flow may result in larger turbulent advection (loss of ⟨ϕ1⟩) for Case

II, it is more than compensated by the mean-flow advection, resulting in higher ⟨ϕ1⟩

values. The higher ⟨ϕ2⟩ values for Case I is likely due to larger turbulent advection.

We will discuss this issue further along with the cross-stream profiles.

The scalar mean profiles on the jet centerline for the larger annulus show that

ϕ3 begins to reach the centerline at approximately x/d = 7, later than for the smaller

annulus cases. Similarly to Cases I and II, ⟨ϕ1⟩ decreases faster for Case III than

for Case IV. Here ⟨ϕ2⟩ reaches a maximum at approximately x/d = 15 for both

larger annulus cases, again later than for the smaller annulus cases. There is more

ϕ3 (smaller ⟨ϕ1⟩ + ⟨ϕ2⟩) on the centerline for Case III than for Case IV. The lower

⟨ϕ1⟩ + ⟨ϕ2⟩ values are similar to those of ⟨ϕ1⟩, again due to the slower decay of the

centerline velocity resulting in smaller mean-flow advection.

To examine the effects of the annulus width (the ϕ2 length scale), we compare
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Figure 4.2: Comparisons of the centerline mean scalars between the smaller annulus
and the larger annulus.

46



profiles for Cases I and III and for Cases II and IV (figure 4.2). The ⟨ϕ1⟩ values are

larger for Case III than for Case I (figure 4.2a), probably because the shear layer

between the annular flow and the co-flow is farther from the centerline, resulting in

smaller cross-stream turbulent advection, although the mean advection is smaller for

Case III. The ⟨ϕ2⟩ values are essentially the same for Cases I and III for x/d < 12

(figure 4.2c), likely a result of the competition between the opposite effects of the

weaker velocity fluctuations, which tends to bring less ϕ2 to the centerline, and the

wider ϕ2 stream, which tends to result in more ϕ2 reaching the centerline. Further

downstream (x/d = 24), ⟨ϕ1⟩ values are very close for Case I and Case III, and also

for Case II and Case IV. However, ⟨ϕ2⟩ for the larger annulus are higher than for

the smaller annulus, because the total ⟨ϕ2⟩ flux is larger for the larger annulus flows.

Another effect of the larger annulus is that there is more ϕ3 (smaller ⟨ϕ1⟩+ ⟨ϕ2⟩) on

the centerline for Case III than for Case IV, whereas the difference is much smaller

between Case I and Case II.

The scalar rms profiles on the jet centerline for the smaller annulus are shown

in figure 4.3a,b. The ϕ1 rms fluctuations, σ1 = ⟨ϕ′2
1 ⟩

1
2 , reach the maximum values

near x/d = 7.5 for both cases. The ϕ2 rms fluctuations, σ2 = ⟨ϕ′2
2 ⟩

1
2 , reach the

maximum values at a larger x/d value for Case I than Case II. The maximum values

of both σ1 and σ2 are larger for Case I than for Case II. This might be a result of the

larger production rates for Case I, in which the cross-stream scalar mean gradients

are larger for both scalars (figure 4.13). At x/d = 21, σ1 is slightly smaller while σ2 is

slightly larger for Case I. This trend is also consistent with the relative magnitudes of

the scalar mean profiles (and gradients). At this downstream location ϕ1 and ϕ2 are

already very well mixed; therefore, the relative magnitudes of the rms fluctuations

should be consistent with those of the relative values of the mean scalars.

The scalar rms fluctuations for the larger annulus reach the maximum values
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Figure 4.3: Evolution of the rms fluctuations on the jet centerline.
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at larger x/d values for Case III than for Case IV (figure 4.3c,d), since there is no

mean shear between the center stream and the annular stream for Case III. Similar

to the relative magnitudes between Case I and Case II, the maximum values of both

σ1 and σ2 are larger for Case III than for Case IV, again a result of larger production

for Case III. The ϕ2 rms profiles appear to have minimum values near x/d = 18, after

which the values increase slightly, due to the inward shifting of the two off-centerline

peaks of the cross-stream ϕ2 rms profiles (figure 4.15). We will further discuss these

results along with cross-stream rms profiles.

Comparisons between Cases I and III, and between Cases II and IV show that

an increased annulus width generally pushes the locations of the peak rms values

further downstream (figure 4.4). This trend is expected because it takes longer for

the scalars to mix for the larger annulus width. The maximum values for both σ1

and σ2 are generally larger for the larger annulus cases except that the peak value

of σ1 is slightly smaller for Case IV compared to Case II. The increased length scale

of annulus also reduces the decay rate of the scalar fluctuations beyond the peak

locations, a trend similar to that of Sirivat & Warhaft [58].

The fluctuation intensities, σ1

⟨ϕ1⟩ and σ2

⟨ϕ2⟩ , on the jet centerline for the smaller

annulus are shown in figure 4.5a,b. The evolution of the fluctuation intensity of ϕ1

is quite different for the two cases. It reaches a peak before decreasing toward an

asymptotic value for Case I, whereas it appears to have reached the asymptotic value

at approximately x/d = 9 for Case II. The asymptotic values for both cases appear

to be the same, however. The faster approach to the asymptotic value for Case II

suggests faster ϕ1 mixing, due to the presence of mean shear between the center

stream and the annular stream. The ϕ2 fluctuation intensity decreases rapidly for

x/d < 14, after which it appears to increase slightly, due to the mild increase of σ2

on the centerline. It is slightly larger for Case I than Case II when x/d < 11, and
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Figure 4.4: Comparisons of the centerline rms fluctuations between the smaller an-
nulus and the larger annulus.

50



x/d
0 5 10 15 20 25

σ
1
/〈
φ
1
〉

0

0.1

0.2

0.3

0.4
Case I
Case II

(a)

x/d
0 5 10 15 20 25

σ
2
/〈
φ
2
〉

0

0.5

1

1.5

2

2.5

3
Case I
Case II

(b)

x/d
0 5 10 15 20 25

σ
1
/〈
φ
1
〉

0

0.1

0.2

0.3

0.4

0.5

0.6
Case III
Case IV

(c)

x/d
0 5 10 15 20 25

σ
2
/〈
φ
2
〉

0

0.5

1

1.5

2

2.5

3
Case III
Case IV

(d)

Figure 4.5: Evolution of the scalar fluctuation intensities on the jet centerline.
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becomes approximately equal (the asymptotic value) for the two cases for x/d > 14,

much earlier than that of ϕ1. This trend is probably due to the smaller initial length

scale of ϕ2 (the annulus width is much smaller than the center jet diameter).

The centerline fluctuation intensities for the larger annulus are shown in figure

4.5c,d. Similar to Case I, the ϕ1 fluctuation intensity reaches the maximum value

near x/d = 16 for Case III before beginning to decrease. It is still decreasing at

the furthest downstream measurement location, and appears to decrease to the same

asymptotic value as that of Case IV. The ϕ1 fluctuation intensity for Case IV increase

monotonically until it reaches the asymptotical value, which is similar to Case II.

Again, the overshoot is a result of poor ϕ1 mixing for Case III. Similar to the smaller

annulus, the ϕ2 fluctuation intensity for the larger annulus decreases rapidly when

x/d < 15, after which it appears to increase slightly. Similar to Cases I and II, the ϕ2

fluctuation intensity decreases toward its asymptotical value slightly slower for Case

III than Case IV.

Comparisons between profiles of different annulus widths show that the fluctu-

ation intensities approach the asymptotical values further downstream with increased

annulus width, while it appears that the asymptotic values are the same for all four

cases (figure 4.6). The peak value of the ϕ1 fluctuation intensity for Case III is larger

than for Case I, consistent with the observation that larger amounts of scalars need

to be mixed for the larger annulus width.

Different from the scalar mean and rms, which characterize individual scalar

fields, the correlation coefficient between ϕ1 and ϕ2 fluctuations, ρ =
⟨ϕ′

1ϕ
′
2⟩

σ1σ2
, is a

measure of the extent of (molecular) mixing between the scalars. For the smaller

annulus (figure 4.7a), the correlation coefficient equals negative one close to the jet

exit since there is no co-flow air. It begins to increase downstream and reaches the

maximum value earlier for Case II than Case I, indicating that the mean shear between
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Figure 4.6: Comparisons of the centerline fluctuation intensities between the smaller
annulus and the larger annulus.
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Figure 4.7: Evolution of the correlation coefficient between ϕ1 and ϕ2 on the jet
centerline.
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Figure 4.8: Comparisons of the centerline correlation coefficient between the smaller
annulus and the larger annulus.
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Figure 4.9: Evolution of the segregation parameter between ϕ1 and ϕ2 on the jet
centerline.

the center jet and the annular flow enhances mixing. The correlation coefficient for

the larger annulus cases (figure 4.7b) is still increasing at the furthest downstream

measurement location. However, it appears that it would reach the value of unity

earlier for Case IV than Case III, again reflecting the faster mixing between ϕ1 and ϕ2

due to the mean shear between the two streams. The correlation coefficient profiles

for the small annulus begin to increase and reach the maximum value at smaller

downstream locations than for the larger annulus (figure 4.8), indicating that the

mixing between ϕ1 and ϕ2 is faster with the smaller annulus width.

The segregation parameter, α =
⟨ϕ′

1ϕ
′
2⟩

⟨ϕ1⟩⟨ϕ2⟩ , is also a measure of the extent of

mixing between the scalars. Its evolution on the jet centerline is non-monotonic

(figure 4.9a). It is close to zero near the jet exit [6]. It then becomes negative before

increasing to positive values for the smaller annulus cases. For both Cases I and II, it

appears to approach the same asymptotic value far downstream. Similar to the trend

of ρ, α for Case II begins to increase and reaches the asymptotic value at smaller

downstream locations than for Case I, again because mixing of ϕ1 and ϕ2 is enhanced

by the mean shear between the center stream and the annular flow. However, α
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Figure 4.10: Comparisons of the centerline segregation parameter between the smaller
annulus and the larger annulus.

(figure 4.9b) for Case III reaches the asymptotic value earlier than for Case IV. Here

the evolution of α for Case III is quite different from the other cases. It first decreases

from zero to a minimum value. It then increases to a value of approximately −1 near

x/d = 7, after which it decreases again, reaching another minimum at about x/d = 10

before increasing again further downstream and approaching an asymptotic value.

Comparing the results for the two annulus widths (figure 4.10), the asymptotic values

appear to be approximately equal for all four cases. However, the smaller annulus

profiles reach the asymptotic value faster than the larger annulus.

The evolution of the scalar JPDF of ϕ1 and ϕ2 on the jet centerline for Cases

I and II is shown in figure 4.11. The JPDF in the ϕ1-ϕ2 space should be confined to

a triangle with the vertices at (1,0), (0,1) and (0,0), representing pure ϕ1, ϕ2 and ϕ3,

respectively. The straight line connecting (1,0) and (0,1) represents the ϕ1-ϕ2 mixing

line. At x/d = 3.29, the JPDF is largely concentrated near (1, 0) in the scalar space

because only pure ϕ1 is present there. The broadening of the JPDF here is due to

measurement uncertainties including noise. The JPDF begins to extend towards (0,

1) along the ϕ1-ϕ2 mixing line at x/d = 4.31 as ϕ2 reaches the centerline and begin
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Figure 4.11: Evolution of the scalar JPDF on the jet centerline for Case I (left) and
Case II (right). The downstream locations are listed in the top of each figure. The
last three contours correspond to boundaries within which the JPDF integrates to
90%, 95%, and 99%, respectively throughout this work. The rest of the contours scale
linearly over the remaining range.
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Figure 4.11: (Continued.)
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to mix with ϕ1. At x/d = 6.01, the JPDF extends further towards (0, 1) and the tail

begins to bend towards (0, 0), which is a result of the presence of ϕ3 on the centerline.

As the downstream distance further increases, the JPDF bends further toward (0, 0).

At x/d = 7.5, the JPDF area is significantly larger and extends further away from

(1,0) for Case I than for Case II, due to the stronger large-scale transport in physical

space by the conditional velocity for Case I. Note that transport of the JPDF can

result in both production and transport of the scalar variance. The movement of

the peak of JPDF towards smaller ϕ1 values is faster for Case I, consistent with the

evolution of the scalar mean, which is primarily due to the mean-flow advection. At

x/d = 10.9, the ridgeline of the JPDF is almost horizontal for Case II, while it still

has a negative slope for Case I. The shapes of the JPDFs are quite different for the

two cases. For Case I the JPDF has a somewhat triangular shape, while for Case II

the JPDF has a slender shape. There are larger fluctuations of ϕ2 and ϕ3 on the LHS

of the JPDF for Case I, due to the stronger transport caused by the strong mean

shear. The JPDF for Case II extends less than for Case I, suggesting better mixing of

ϕ1 due to the mean shear between the center jet and the annular flow. Thus, mixing

is occurring in a mixture with relatively uniform ϕ2 but large fluctuations of ϕ1 and

ϕ3. Moving further downstream (x/d = 15.9), the ridgeline of the JPDF begins to

have a positive slope and moves closer to (0,0). At x/d = 23.6, ϕ1 and ϕ2 are well

correlated. The extent of the JPDF in the ϕ1 direction is larger for Case II than for

Case I, while the extent in the ϕ2 direction is smaller. The differences in the slopes

of the JPDF ridgelines reflect different values of the initial ϕ2 flux.

The evolution of the scalar JPDF of ϕ1 and ϕ2 on the jet centerline for Cases

III (figure 4.12) is qualitatively similar to Case I, while that of Case IV is similar to

Case II. The JPDF extends much further along the ϕ1-ϕ2 mixing line before bending

toward (0,0) for the larger annulus than for the smaller annulus, because the larger

59



φ 1

φ
2

x/d = 4 .06
r/d = 0

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

1.6

7.6

17.4

70.8

124.2

177.6

φ 1

φ
2

x/d = 4 .06
r/d = 0

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

2.1

10

23.4

86.1

148.8

211.6

φ 1

φ
2

x/d = 6 .14
r/d = 0

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

0.5

2.2

4.5

19

33.5

48

φ 1

φ
2

x/d = 6 .14
r/d = 0

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

0.5

2.2

4.3

21.7

39.1

56.5

φ 1

φ
2

x/d = 7 .5
r/d = 0

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

0.3

1.3

3

16.3

29.7

43.1

φ 1

φ
2

x/d = 7 .5
r/d = 0

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

0.4

1.7

3.6

14.3

24.9

35.5

Figure 4.12: Evolution of the scalar JPDF on the jet centerline for Case III (left) and
Case IV (right).
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Figure 4.12: (Continued.)
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annulus width keeps the co-flow air from reaching the centerline. A major difference

between the two cases is that at x/d = 14.6, the JPDF for Case III is bimodal

with peaks at approximately (0.18,0.48) and (0.5,0.4). The latter mixture is mostly

a ϕ1-ϕ2 mixture, which likely comes from the ϕ1-ϕ2 mixing layer, while the former

is mostly a ϕ2-ϕ3 mixture coming from the ϕ2-ϕ3 mixing layer, which still contains

large ϕ2 fluctuations due to the strong turbulent transport. The two mixtures are

unmixed due to the large annulus width and the lack of mean shear between the

ϕ1-ϕ2 streams, and are transported by the large-scale velocity fluctuations (flapping),

resulting in the bimodal JPDF. At x/d = 14.6 for Case IV, the JPDF is unimodal

with the peak at (0.4,0.4), which is a relatively well mixed mixture of ϕ1, ϕ2 and

ϕ3, although the amount of ϕ3 is not large. Here, ϕ1 is better mixed with ϕ2 for

Case IV than for Case III, consistent with the earlier onset of mixing between ϕ1 and

ϕ3, probably because the mean shear on both sides of the annular stream is able to

overcome the large annulus width to enhance mixing between ϕ1 and ϕ3. We note

that while figure 4.7 shows that the values of the correlation coefficient between ϕ1

and ϕ2 are nearly equal for Cases III and IV at x/d = 14.6, the JPDF shows that the

states of mixing have some qualitative differences for these cases, an indication of the

limitation of the correlation coefficient in representing the state of mixing, especially

when it is small or negative. At x/d = 16.4, the JPDF becomes unimodal for Case

III. Moving further downstream, the JPDF has a positive slope. However, it still has

a tail bending toward (1,0) at x/d = 23.6.

While the lack of mean shear between the ϕ1-ϕ2 streams results in a bimodal

JPDF for Case III at x/d = 14.6, it does not do so for Case I. The peak of the JPDF

at x/d = 14.6 for Case I is at (0.25,0.28), which is essentially a well mixed mixture of

ϕ1, ϕ2 and ϕ3, because for the smaller annulus width ϕ3 is able to reach the centerline

due to the smaller distance. For Case III (with the larger annulus width) the mixing
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between ϕ1 and ϕ3 is slower, because they have to be mixed with ϕ2 separately before

they begin to mix with each other.

4.2 Cross-stream profiles

The cross-stream scalar mean profiles for the smaller annulus are shown in

figure 4.13a,b. The ⟨ϕ1⟩ profiles are narrower and the ⟨ϕ1⟩ values are generally smaller

for Case I than for Case II. The maximum slopes of the profiles, however, are larger for

Case I. These differences are primarily because of the different annular flow velocity.

The larger streamwise mean velocity of the annular flow for Case I results in smaller

⟨ϕ1⟩ values to maintain a constant total ⟨ϕ1⟩ flux.

The cross-stream ⟨ϕ2⟩ profiles have off-centerline peaks, at approximately the

same locations for both cases at the upstream location (x/d = 3.29). The ⟨ϕ2⟩ values

are larger for Case I than for Case II at all radial locations. The spread of ⟨ϕ2⟩ for

Case I is also slower. These trends are because the mean velocity downstream of the

annulus decreases faster for Case I than Case II, leading to slower decrease of ⟨ϕ2⟩ in

order to maintain a constant streamwise ⟨ϕ2⟩ flux. Thus, while the total streamwise

⟨ϕ2⟩ flux at the jet exit for Case I is larger than Case II due to larger annulus velocity,

this difference is not the cause of the higher ⟨ϕ2⟩ value. Figure 4.13b also shows that

the mean gradient of ⟨ϕ2⟩ on the LHS (closer to the centerline) of the peak is larger

than the RHS for Case I, whereas the difference between the slopes is smaller for

Case II. This reflects the difference in the mean shear for the two cases. The annular

stream has mean shear on both sides for Case II whereas there is no significant mean

shear on the LHS for Case I, resulting in larger ⟨ϕ2⟩ gradients. Moving downstream,

the peak location shifts inward until the peaks on both sides merge at the centerline.

The general trends for the cross-stream scalar mean profiles for the larger
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Figure 4.13: Cross-stream scalar mean profiles. The downstream locations are given
in the legend.
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Figure 4.14: Comparisons of the cross-stream mean scalars between the smaller an-
nulus and the larger annulus.
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annulus (figure 4.13c,d), are similar to those of the smaller annulus. Comparisons

between the smaller annulus and the larger annulus (figure 4.14) show that the ⟨ϕ1⟩

values at x/d = 3.29 are nearly equal for Cases I and III (and for II and IV) for

r/d < 0.6, beyond which Case I (II) is larger. At x/d = 6.99, ⟨ϕ1⟩ is smaller for

Case I (II) than Case III (IV) for r/d < 0.6, and is larger beyond. The spread

of the ⟨ϕ1⟩ is faster for the smaller annulus width, suggesting that the large-scale

turbulent transport is likely stronger for Case I (II) than for Case III (IV). The ⟨ϕ2⟩

peak values are generally lower for the smaller annulus, again due to the stronger

turbulent transport.

The cross-stream profiles of the ϕ1 rms fluctuations have off-centerline peaks

(figure 4.15a). At x/d = 3.29 σ1 peaks at the same location (r/d = 0.45) for both

Cases I and II. Further downstream the peak location shifts inward (to r/d = 0.3

at x/d = 6.99). The σ1 peak value is larger for Case I, which is likely a result of

the larger production rate of σ2
1 as the mean scalar gradient is larger for Case I. The

σ1 profile is narrower for Case I than for Case II, consistent with the widths of the

mean scalar profiles. The peak value of σ1 for Case I is 13% larger than Case II at

x/d = 3.29 while it is 26% larger at x/d = 6.99. The faster decay of σ1 for Case II

suggests faster mixing of ϕ1 due to the mean shear between the center stream and the

annular stream. For the larger annulus (figure 4.15c), the peak values of the ϕ1 rms

fluctuations are generally larger for Case III than Case IV, again a result of larger

production for Case III. The peak value increases by about 10% from x/d = 3.29 to

x/d = 6.99 for Case III whereas it decreases by about 10% for Case IV, suggesting

that the ϕ1 field is still in the early stages of development for Case III, probably

because the large mean shear results in stronger velocity fluctuations and a slower

transition to fully developed turbulence.

There are two off-centerline peaks for each cross-stream ϕ2 rms profile (figure

66



r/d
0 0.5 1 1.5 2

σ
1

0

0.05

0.1

0.15

0.2

0.25
Case I  x/d =3.29
Case II x/d =3.29
Case I  x/d =6.99
Case II x/d =6.99

(a)

r/d
0 0.5 1 1.5 2

σ
2

0

0.05

0.1

0.15

0.2

0.25
Case I  x/d =3.29
Case II x/d =3.29
Case I  x/d =6.99
Case II x/d =6.99

(b)

r/d
0 0.5 1 1.5 2

σ
1

0

0.05

0.1

0.15

0.2

0.25
Case III  x/d =3.29
Case IV x/d =3.29
Case III  x/d =6.99
Case IV x/d =6.99

(c)

r/d
0 0.5 1 1.5 2

σ
2

0

0.05

0.1

0.15

0.2

0.25
Case III  x/d =3.29
Case IV x/d =3.29
Case III  x/d =6.99
Case IV x/d =6.99

(d)

Figure 4.15: Cross-stream scalar rms profiles. The downstream locations are given in
the legend.
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Figure 4.16: Comparisons of the cross-stream rms fluctuations between the smaller
annulus and the larger annulus.
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4.15b), one located on each side of the peak of the ⟨ϕ2⟩ profile. The peak locations are

essentially the same for Cases I and II at both x/d = 3.29 and x/d = 6.99. Similar

to σ1, the σ2 values are generally larger for Case I than for Case II, consistent with

larger mean scalar gradients, which would result in a larger production rate of σ2
2 for

Case I. The value of the left peak (close to centerline) is larger than that of the right

peak (away from the centerline) for Case I, while the two peak values are very close

for Case II. These results are again consistent with the magnitudes of the mean scalar

gradient. Therefore, the ϕ2 mixing process in the two mixing layers are more similar

when there are mean shear on both sides of the annular flow. Similar to σ1, the peak

value of σ2 decays faster for Case II, indicating faster ϕ2 mixing for Case II. For the

larger annulus (figure 4.15d), the peak values of the σ2 profiles are larger for Case

III than for Case IV except the right peak at x/d = 3.29. The inward shift of the

left peak location for Case III is slower than for Case IV, while the outward shift of

the right peak location is similar for the two cases. The slower inward shift suggests

slower mixing between ϕ1 and ϕ2 for Case III due to the lack of mean shear between

the center stream and the annular stream. We note that the downstream evolutions

of the peaks and the minimum between them are responsible for the non-monotonic

centerline profile of σ2 for x/d > 11 (figure 4.3): the inward shift of the left peak and

the minimum causes σ2 to increase and then decrease. The broadening of the right

peak eventually causes σ2 to increases again on the centerline.

The above results also show that the progression of the mixing process is faster

for the smaller annulus, with generally smaller peak values (figure 4.16). The peak

value of σ1 decreases from x/d = 3.29 to x/d = 6.99 for Case I whereas it is still

increasing for Case III. The decay rate of σ2 is larger for the smaller annulus. The

σ2 peak value decreases by about 23% for Case II whereas it decreases only 11% for

Case IV. The peak locations also shift (inward and outward for the left and right
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Figure 4.17: Cross-stream profiles of the scalar correlation coefficient. The down-
stream locations are given in the legend.

peak, respectively) much faster for the smaller annulus.

The cross-stream profiles of the correlation coefficient are shown in figure 4.17.

The correlation coefficient generally has the value of negative one close to the cen-

terline, increasing toward unity far away from the centerline. Close to the centerline,

ϕ1 and ϕ2 are anti-correlated (ρ ≈ −1) because there is virtually no ϕ3. It begins to

increase when ϕ1 and ϕ2 begin to mix with ϕ3, and approaches unity far away from

the centerline, indicating that the two scalars are well mixed and their fluctuations
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are in phase. At x/d = 3.29, the slight increase (from −1) toward the centerline is

due to the measurement noise, because the composition is mostly pure ϕ1 with very

small fluctuations. For the larger annulus, the profile begins to decrease at r/d = 0.9,

also due to the measurement noise, because the composition is mostly pure ϕ3. The

differences between Cases I and II and between Cases III and IV are small. As dis-

cuss in section 4.3, there are significant differences among the JPDFs and conditional

diffusion for the cases, again an indication of the limitations of the correlation coeffi-

cient in representing the state of mixing. Comparisons between Cases I and III and

between Cases II and IV show that the evolution of the correlation coefficient is much

slower for the larger annulus than for the smaller annulus.

The cross-stream profiles of the segregation parameter are shown in figure 4.18.

The segregation parameter is negative close to the centerline because ϕ1 and ϕ2 are

negatively correlated (It is zero on the centerline very close to the jet exit). For both

Cases I and II at x/d = 3.29, α has minima near r/d = 0.4, after which it increase

monotonically and has positive values far away from the centerline. At x/d = 6.99,

there is a minimum near r/d = 0.2 for Case I whereas it increases monotonically from

the centerline for Case II. Away from the centerline (r/d > 0.7), the α values are

smaller at x/d = 6.99 than at x/d = 3.29 for both Cases I and II, consistent with the

degrees of the progression of mixing. The α values are generally larger for Case I than

Case II when r/d > 0.8, probably because the mixing between ϕ1 and ϕ2 is slower

for Case I. For the larger annulus, the profiles generally have off-centerline minima.

The difference between Case III and Case IV are small. Comparisons between Cases

I and III and between Cases II and IV show that α increases faster for the smaller

annulus.

The cross-stream profiles of the mean scalar dissipation rates and mean cross-

dissipation rate for the smaller annulus are shown in figure 4.19a,c,e. The general
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Figure 4.18: Cross-stream profiles of the segregation parameter. The downstream
locations are given in the legend.
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Figure 4.19: Cross-stream profiles of the mean scalar dissipation rates and the mean
cross-dissipation rate.
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shapes of mean scalar dissipation rates are similar to those of the rms fluctuations

profiles. Each profile of the ϕ1 dissipation rate, ⟨χ1⟩, also has an off-centerline peak,

at approximately the same radial location as that of σ1. The peak value is larger for

Case I than Case II, because of the larger production rate of σ2
1 due to the larger

⟨ϕ1⟩ gradient. The ⟨χ1⟩ peak value decreases faster downstream for Case II, again

indicating the faster progression of mixing due to the mean shear between the center

stream and the annular stream. Each profile of the ϕ2 dissipation rate, ⟨χ2⟩, has

two off-centerline peaks at approximately the same radial locations as those of the

σ2 profile. The values are larger for Case I than Case II at all radial locations, again

consistent with the larger production rate of σ2
2 for Case I. It is interesting that the

mean shear between the ϕ1-ϕ2 streams for Case II does not result in higher ⟨χ1⟩ and

⟨χ2⟩ (left peak) values. Each profile of the mean cross-dissipation rate between ϕ1

and ϕ2, ⟨χ12⟩, has a negative off-centerline peak. Further away from the centerline, it

increase and overshoots to a small positive value at approximately r/d = 0.8, before

decreasing toward zero. The peak value (maximum magnitude) for Case I is also

larger than Case II, which is a result of larger mean gradients for both ϕ1 and ϕ2.

The cross-stream profiles of the mean scalar dissipation rates and mean cross-

dissipation for the larger annulus (figure 4.19b,d,f) have general trends similar to

those of the smaller annulus. The peak values of the mean dissipation rates and the

mean cross-dissipation rate are generally larger for Case III than Case IV. The peak

values of ⟨χ1⟩ are slightly larger for the smaller annulus than the larger annulus at

x/d = 3.29. However, they are smaller at x/d = 6.99. The peak values of ⟨χ2⟩ and

⟨χ12⟩ are generally much smaller for the smaller annulus and the peak values decay

faster downstream for the smaller annulus. Moving downstream the peak locations

generally also shift (both inward and outward) faster for the smaller annulus, also

suggesting faster progression of mixing for the smaller annulus.
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Figure 4.20: Cross-stream profiles of the scalar dissipation timescales.
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The scalar dissipation time scale profiles are shown in figure 4.20. The time

scale of ϕ1, ⟨ϕ′2
1 ⟩/⟨χ1⟩, is generally larger than the time scale of ϕ2, ⟨ϕ′2

2 ⟩/⟨χ2⟩, for

all cases. The scalar time scale generally increases with the downstream distance

as the jet width grows. The cross-stream variations of the time scales are generally

small, similar to two scalar mixing in turbulent jets [38], except at locations far away

from the centerline (r/d > 0.8) where the scalar mean dissipation rates are small

(less than 10% of the peak value) and are susceptible to measurement uncertainties.

The time scale profiles for Cases I(III) and II(IV) do not show significant differences.

Comparisons between Cases I(II) and III(IV) also do not show significant differences.

4.3 Cross-stream JPDF, conditional diffusion, and

conditional dissipation

The JPDF for x/d = 3.29 at three radial locations for the smaller annulus

are shown in figure 4.21. On the centerline, the mixture is essentially pure ϕ1 (figure

4.11). At r/d = 0.165 (not shown), the JPDF begins to extend toward (0,1) along the

ϕ1-ϕ2 mixing line as ϕ2 begins to mix with ϕ1. The JPDF extends further for Case

I than for Case II, a result of the stronger large-scale transport (flapping) for Case

I. At r/d = 0.372, the JPDF extends further towards (0,1) and also begins to bend

toward (0,0). The JPDF has reached (0.1, 0.5) and (0.16, 0.5) for Case I and Case

II, respectively. These mixtures come from the co-flow air side and contain mostly ϕ2

and ϕ3. The JPDF area is larger and the left tail is closer to (0,0) for Case I.

Moving further away from the centerline, the JPDF extends further towards

(0, 1) and bends more towards (0, 0) indicating that more ϕ2 and ϕ3 are present.

Near the peak location of σ1 profile (e.g. r/d = 0.521), the JPDF is bimodal for Case
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Figure 4.21: Cross-stream evolution of the scalar JPDF at x/d = 3.29 for the smaller
annulus. Case I: left figures, Case II:right figures. The radial location is given in the
top of each figure.

77



I with two peaks at (0.4, 0.5) and (0.10, 0.50). The two mixtures are essentially the

ϕ1-ϕ2 and ϕ2-ϕ3 mixtures coming from the two mixing layers, and there is little mixing

between them. The bimodal JPDF is a result of the transport of the two mixtures

by the large-scale velocity fluctuations (flapping) generated by the single shear layer,

and the relatively poor small-scale mixing due to the lack of a shear layer between the

ϕ1 and ϕ2 streams. The strong transport also results in larger fluctuations in the ϕ2-

ϕ3 mixture. By contrast, the JPDF for Case II is unimodal at all radical locations,

due to the weaker transport and better small-scale mixing caused by the presence

of the shear layer between the ϕ1 and ϕ2 streams. At r/d = 0.703, the JPDF for

Case I becomes unimodal again and the peak of the JPDF moves close to (0, 0). The

JPDF is mostly concentrated at very small ϕ1 values with a tail pointing toward (1,0).

However, the ϕ1 value of the peak of the JPDF is larger for Case II. The tail for Case

II extends further toward (1,0) for Case I, which represents well-mixed ϕ1-ϕ2 mixtures

transported outward by the large-scale velocity fluctuations. These results are likely

due to the larger advection by the mean-flow. Moving further outside (r/d ≥ 0.951),

the ridgeline of the JPDF (not shown) becomes a straight line with a large positive

slope and the peak close to (0, 0), indicating that a small amount of ϕ1 is well mixed

with ϕ2 and that the ϕ1-ϕ2 mixture is mixing with ϕ3.

The conditional scalar diffusion, ⟨D1∇2ϕ1|ϕ1, ϕ2⟩ and ⟨D2∇2ϕ2|ϕ1, ϕ2⟩, for

x/d = 3.29 at three radial locations for the smaller annulus is shown in figure 4.22.

Since these diffusion terms transport the JPDF in the ϕ1-ϕ2 scalar space and are two

components of a diffusion velocity, we use diffusion streamlines to represent them.

We use the mean dissipation rate and rms fluctuations of ϕ1 to non-dimensionalize

the magnitude of the diffusion velocity. The mean composition, (⟨ϕ1⟩, ⟨ϕ2⟩), is rep-

resented by a solid circle in the diffusion streamline plot. Close to the centerline (not

shown), the diffusion streamlines generally converge towards the ϕ1-ϕ2 mixing line
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Figure 4.22: Cross-stream evolution of the scalar conditional diffusion at x/d = 3.29
for the smaller annulus. Case I: left figures, Case II:right figures. The contours
magnitudes of the diffusion are the Euclidean norm of the diffusion velocity vector.
The mean scalars (⟨ϕ1⟩, ⟨ϕ2⟩) is indicated in each streamline plot by a solid circle.
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because the conditional diffusion is small and the measurement is dominated by the

uncertainties. At r/d = 0.372, a manifold, towards which the diffusion streamlines

first converge to, begins to emerge for Case I. There is also a hint of an emerging

manifold for Case II. At r/d = 0.521, there are well-defined and bell-shaped diffu-

sion manifolds for both cases, which are close to the ridgelines of the JPDFs. The

manifold for Case I begins near (0, 0.45) and moves up to (0.3, 0.60), then bending

towards the ϕ1-ϕ2 mixing line. The streamlines generally converge first in the ϕ2

direction with large diffusion velocity magnitudes, and then move along the mani-

fold with smaller diffusion velocity magnitudes. Unlike near the jet centerline, these

diffusion streamlines results primarily from scalar mixing because the magnitude of

conditional diffusion is much larger than that resulting from the measurement uncer-

tainties, although it is still affected by them. The curvature of the manifold is much

larger for Case I than Case II, consistent with a lesser degree of mixing for Case I,

because mixing will eventually lead to a straight mixing line. The JPDF appears to

be more symmetric with respect to the manifold in the ϕ2 direction for Case II, while

it extends further in the direction of lower ϕ2 values for Case I, i.e., the fluctuations

of ϕ2 conditional on ϕ1 is skewed toward small ϕ2 values. This may reflect the uneven

mixing on the two sides of the annular stream for Case I, with large mean shear on

one side of the ϕ2 stream, bringing in the co-flow air and generating large negative

ϕ2 fluctuations. Since there is mean shear on both sides of the ϕ2 stream for Case

II, the fluctuations of ϕ2 are more symmetric with respect to the manifold. The solid

circle (mean scalar values) is well below the manifold for Case I while it is closer to

the manifold for Case II, consistent with faster mixing for Case II. We note that the

manifold is close to the conditional mean, ⟨ϕ2|ϕ1⟩, and the separation of the mean

scalars from it is a result of the three-scalar flow configuration. They become closer

as the mixing process progresses. At r/d = 0.703, the diffusion streamline patterns
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are the opposite of those close the centerline.

The conditional dissipation rates of ϕ1 and ϕ2, ⟨χ1|ϕ1, ϕ2⟩ and ⟨χ2|ϕ1, ϕ2⟩, and

the conditional cross-dissipation rate, ⟨χ12|ϕ1, ϕ2⟩, are non-dimensionalized by the

maximum mean dissipation rate of ϕ1 at the same x/d location. For the smaller an-

nulus at x/d = 3.29, the mixing is mostly between ϕ1 and ϕ2 close to the centerline;

therefore the shapes of the conditional dissipation rates of ϕ1 and ϕ2 are similar, being

small close to (1,0) and increasing away from (1,0) (figures not shown). The condi-

tional cross-dissipation rate is generally negative since ϕ1 and ϕ2 are anti-correlated

close to the centerline. At r/d = 0.521, where the JPDF is bimodal, ⟨χ1|ϕ1, ϕ2⟩ peaks

on the lower edge of the JPDF near ϕ1 = 0.4 for both cases (figure 4.23). The peak

is a result of mixing between nearly pure ϕ1 and the ϕ2-ϕ3 mixture transported to

this location by the large-scale velocity fluctuations, generating a sharp interface be-

tween them. A significant difference between Cases I and II is that above the peak

location and near the ϕ1-ϕ2 mixing line, where the amount of co-flow air is small, the

conditional dissipation rate of ϕ1 is larger for Case I than Case II. The large velocity

fluctuations for Case I transport relatively well-mixed ϕ2-ϕ3 mixtures to this loca-

tion, resulting in a sharp interface and larger ⟨χ1|ϕ1, ϕ2⟩. By contrast, the turbulent

transport is weaker for Case II and the small-scale mixing between ϕ1-ϕ2 streams is

better due to the mean shear between the streams, especially when the amount of

the co-flow air is small, thereby resulting in a lower dissipation near the ϕ1-ϕ2 mixing

line. There are two peaks for the conditional dissipation rates of ϕ2, due to the mixing

of ϕ2 on both sides of the ϕ2 stream. The right peak of ⟨χ2|ϕ1, ϕ2⟩ is close to the

peak location of ⟨χ1|ϕ1, ϕ2⟩, because it also results from the mixing between ϕ1 and

ϕ2-ϕ3 mixture. Similar to ⟨χ1|ϕ1, ϕ2⟩, ⟨χ2|ϕ1, ϕ2⟩ on the ϕ1-ϕ2 mixing line is larger for

Cases I than Case II. The conditional cross-dissipation rates are mostly negative, and

the (negative) peak is near the peak location of ⟨χ1|ϕ1, ϕ2⟩, because the gradients of
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Figure 4.23: Conditional dissipation rate and conditional cross-dissipation rate at
x/d = 3.29 and r/d = 0.521 for the smaller annulus. Case I: left figures, Case
II:right figures. The top, middle and bottom rows are for ⟨χ1|ϕ1, ϕ2⟩, ⟨χ2|ϕ1, ϕ2⟩, and
⟨χ12|ϕ1, ϕ2⟩, respectively.
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ϕ1 and ϕ2 are anti-correlated. Moving away from the centerline (figures not shown),

⟨χ12|ϕ1, ϕ2⟩ has positive peaks because ϕ1 and ϕ2 are well mixed.

Moving downstream to x/d = 6.99, the JPDF has already bent down toward

(0,0) on the centerline for both cases (figure 4.24). Again, the area of the JPDF

is larger and extends much further away from (1,0) for Case I than Case II. The

peak of the JPDF has already moved away from the ϕ1-ϕ2 mixing line, with Case II

moving further. The JPDF is again bimodal near the peak location of σ1 profile (e.g.

r/d = 0.376) for Case I. However, the curvature of the ridgeline of the JPDF is smaller

than at the upstream location (x/d = 3.29 and r/d = 0.521), due to the progression

of the mixing process. The JPDF is again unimodal for Case II at all radial locations.

At r/d = 0.538, the peak of the JPDF is at (0.1, 0.4) for Case I, which is largely a

ϕ2-ϕ3 mixture with large but relatively rare ϕ1 fluctuations. The peak of the JPDF for

Case II is at (0.4,0.3), which is close to the center of the JPDF. The mixture contains

significant amounts of all three scalars. Again, mixing is occurring in a mixture with

relatively uniform ϕ2 but with large variations of ϕ1 and ϕ3. At r/d = 0.827, the peak

of the JPDF moves close to (0,0), but with a tail bending toward (1,0). Similar to

the upstream location (x/d = 3.29), the tail is longer for Case II than Case I. The tail

disappears further away from the centerline and the ridgeline of the JPDF becomes

a straight line.

The conditional diffusion streamlines at x/d = 6.99 (figure 4.25) have general

patterns similar to those at x/d = 3.29. The manifold is already well defined even

on the centerline. For both Cases I and II, the curvature of the manifold is smaller

at x/d = 6.99 than at x/d = 3.29 and the mean composition (the solid circle) is

closer to the manifold. The curvature of the manifold is larger for Case I than

Case II, again consistent with a lesser degree of mixing for Case I. The JPDF is

skewed toward smaller ϕ2 values for Case I, while it is quite symmetric with respect
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Figure 4.24: Conditions same as figure 4.21 but at x/d = 6.99.
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Figure 4.25: Conditions same as figure 4.22 but at x/d = 6.99.
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Figure 4.26: Conditions same as figure 4.23 but at x/d = 6.99 and r/d = 0.376.
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to the manifold for Case II. The general trends for the conditional dissipation and

conditional cross-dissipation at x/d = 6.99 (figure 4.26) are also generally similar to

those at x/d = 3.29.

The JPDF for x/d = 3.29 at three radial locations for the larger annulus are

shown in figure 4.27. On the centerline, the mixture is again essentially pure ϕ1 (figure

4.12). At r/d = 0.124, the JPDF begins to extend along the ϕ1-ϕ2 mixing line. The

JPDF extends further for Case III than for Case IV, similar to the differences between

Case I and Case II. At r/d = 0.331, the JPDF has a long tail toward (0,1), indicating

large ϕ2 fluctuations, while the peak is still close to (1,0). At r/d = 0.448, the ridgeline

of the JPDF connects (0,1) and (1,0), which is a result of the turbulent transport

(flapping of the ϕ1-ϕ2 mixing layer). The peak of the JPDF has moved significantly

toward (0,1). The JPDF is still quite symmetric with respect to the ϕ1-ϕ2 mixing

line for Case III. However, there is a tail on the LHS of the JPDF extending toward

(0,0) for Case IV. At r/d = 0.662, the peak of the JPDF is very close to (0,1), while

the JPDF has tails pointing toward both (0,0) and (1,0), indicating that nearly pure

ϕ2 mixture is mixing with ϕ1 and ϕ3 separately. There is no direct mixing between

ϕ1 and ϕ3 because they are separated by nearly pure ϕ2. The lower values of ϕ2 for

Case IV is due to the faster mixing of ϕ2 since there is mean shear on both sides of

the annular stream. The tail toward (0,0) becomes longer and the tail toward (1,0)

becomes shorter when moving further away from the centerline (not shown). The

peak of JPDF also leaves (0,1) and moves toward (0,0).

The conditional diffusion at x/d = 3.29 and r/d = 0.662 for Cases III and

IV is shown in figure 4.28. Diffusion streamlines at other radial locations are not

shown because they are dominated by measurement uncertainties. At r/d = 0.662,

the diffusion streamlines mostly converge to the ϕ1-ϕ2 mixing line directly. There is

no sign of a curved manifold. Here the mixing is still largely binary as ϕ1 and ϕ3 are
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Figure 4.27: Cross-stream evolution of the scalar JPDF at x/d = 3.29 for the larger
annulus. Case III:left figures, Case IV:right figures.
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Figure 4.28: Scalar conditional diffusion at x/d = 3.29 and r/d = 0.662 for the larger
annulus. Case III:left, Case IV:right.

still separated by nearly pure ϕ2 without direct mixing between them, while a curved

manifold generally is a result of three-scalar mixing.

On the centerline at x/d = 6.99, the ridgelines of the JPDFs are still close to

the ϕ1-ϕ2 mixing line for both Cases III and IV (figure 4.29). At r/d = 0.289, the

JPDF begins to bend toward (0,0) and extends much further toward (0,1) for Case III.

Its area is also larger, indicating stronger transport. The JPDF for Case III is bimodal

at r/d = 0.496, with two peaks at (0.4,0.6) and (0.05,0.6), which are essentially ϕ1-ϕ2

mixture and ϕ2-ϕ3 mixture coming from the two mixing layers. There are still nearly

pure ϕ2 samples at this location. However, unlike at x/d = 3.29 the peak of JPDF

does not reach (0,1), a result of the progression of the mixing process. The JPDF

is unimodal for Case IV at all radial locations. At r/d = 0.744, the right peak has

disappeared for Case III. The general trends of the evolution of the JPDF moving

further outside are similar to those of the smaller annulus cases.

The patterns of conditional diffusion streamlines at x/d = 6.99 for the larger

annulus (figure 4.30) are generally similar to those of the smaller annulus cases at

x/d = 3.29. The manifold begins to emerge at r/d = 0.289 (figures not shown) and

it is well defined at r/d = 0.496. The curvature of the manifold is larger for Case III
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Figure 4.29: Cross-stream evolution of the scalar JPDF at x/d = 6.99 for the larger
annulus. Case III:left figures, Case IV:right figures.
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Figure 4.30: Cross-stream scalar conditional diffusion at x/d = 6.99 and r/d = 0.496
for the larger annulus. Case III:left, Case IV:right.

than Case IV. The mean composition is further away from the manifold for Case III.

The curvature of the manifold for Case III at x/d = 6.99 appears to be larger than

for Case I at x/d = 3.29, indicating that the mixing has progressed less. The general

trends of the conditional dissipation rates and conditional cross-dissipation rate for

the larger annulus at x/d = 6.99 (figure 4.31) are also similar to those of the smaller

annulus at x/d = 3.29.
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Figure 4.31: Cross-stream scalar conditional dissipation at x/d = 6.99 and r/d =
0.496 for the larger annulus. Case III:left, Case IV:right. The top, middle and
bottom rows are for ⟨χ1|ϕ1, ϕ2⟩, ⟨χ2|ϕ1, ϕ2⟩, and ⟨χ12|ϕ1, ϕ2⟩, respectively.
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Chapter 5

Three-scalar subgrid-scale mixing

in the context of LES

The three-scalar SGS mixing in the turbulent coaxial jets will be studied in

this Chapter. The scalar FJDF and the SGS mixing terms in the FJDF transport

equation will be analyzed to study the physics of multiscalar SGS mixing. The FJDF

is defined as

f(ϕ̂1, ϕ̂2;x, t) = ⟨δ(ϕ1 − ϕ̂1)δ(ϕ2 − ϕ̂2)⟩L =

∫
δ(ϕ1 − ϕ̂1)δ(ϕ2 − ϕ̂2)G(x− x′)dx′,(5.1)

where ϕ1, ϕ2, ϕ̂1, and ϕ̂2 are the mixture fractions of the center jet stream and the

annular stream, and their sample-space variables, respectively. The filter function is

denoted by G. We use the “top-hat” (or box) filter in this study since it is simple

and ensures positiveness of the FJDF. The FJDF transport equation is

∂f

∂t
+

∂

∂xi

[
f ⟨Vi| ϕ̂1, ϕ̂2⟩L

]
= −

∂

∂ϕ̂1

[
f
⟨
D1∇2ϕ1

∣∣ ϕ̂1, ϕ̂2⟩L
]
−

∂

∂ϕ̂2

[
f
⟨
D2∇2ϕ2

∣∣ ϕ̂1, ϕ̂2⟩L
]

= (D1 +D2)∇2f −
1

2

∂2

∂ϕ̂2
1

[
f ⟨χ1| ϕ̂1, ϕ̂2⟩L

]
−

1

2

∂2

∂ϕ̂2
2

[
f ⟨χ2| ϕ̂1, ϕ̂2⟩L

]
−

∂2

∂ϕ̂1∂ϕ̂2

[
f ⟨χ12| ϕ̂1, ϕ̂2⟩L

]
, (5.2)
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where Vi is the velocity vector. The LHS of equation 5.2 is the time rate of change

of the FJDF and the transport of the FJDF in physical space by the conditionally

filtered velocity. The RHS gives two forms of the mixing terms. The first involves two

terms that can be interpreted as the transport of FJDF in the scalar space by the cor-

responding conditionally filtered diffusion,
⟨
D1∇2ϕ1|ϕ̂1, ϕ̂2

⟩
L
and

⟨
D2∇2ϕ2|ϕ̂1, ϕ̂2

⟩
L
.

The second form involves four terms, which are the transport of FJDF in physical

space by molecular diffusion, and transport in scalar space by the conditionally fil-

tered dissipation rates and by the conditionally filtered cross-dissipation rate.

The filtered scalar means, the filtered mean scalar SGS variances, the scalar

FJDF, the conditionally filtered scalar dissipation rates, conditionally filtered cross-

dissipation rate, and the conditionally filtered diffusion are analyzed to study the SGS

mixing. We compute the means of these variables conditional on the filtered value

and the SGS variance of ϕ1, given as

⟨ϕ1⟩L =

∫
ϕ1(x

′)G(x− x′)dx′ (5.3)

and

⟨ϕ′′2
1 ⟩L =

∫
{ϕ1(x

′)− ⟨ϕ1⟩L(x)}2G(x− x′)dx′. (5.4)

In the present three-scalar mixing problem, ϕ1 is analogous to the mixture fraction in

a nonpremixed reactive flow. Due to the important role of mixture fraction in such

flows, previous studies [4, 8, 29] have obtained the conditionally filtered dissipation

and diffusion using the filtered mixture fraction and the mixture fraction SGS variance

as conditioning variables. Thus the conditioning variables in the present study ensure

that the SGS mixing process closely approximate that in a nonpremixed reactive flow.

Several filter widths (∆) ranging from 0.25 to 0.8 mm were used. To ensure that the
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Figure 5.1: Centerline profiles of the filtered mean scalar for Case I.

results are relevant to LES at high Reynolds numbers, the filter widths employed

are significantly larger than the dissipative scales (≈ 0.014 mm), so that the subgrid

scales contain sufficient fluctuations. Given the moderate Reynolds number of the

coaxial jet, the filter widths employed are not very small compared to the integral

length scales. Nevertheless, they are preferable than smaller filter widths, which will

be too close to the dissipative scales. Previous studies (e.g., [63, 67]) have shown that

when the filter width is much larger than the dissipation scales the properly scaled

conditional statistics are not sensitive to the filter width. Thus, the results for the

FJDF and the SGS mixing terms are only given for the 0.53 mm filter.

5.1 Evolution on the jet centerline

The profiles of the mean filtered scalars, ⟨⟨ϕ1⟩L⟩ and ⟨⟨ϕ2⟩L⟩, on the jet cen-

terline for Case I are shown in figure 5.1. The difference in the mean filtered scalars

between different filter scales are negligible. The mean filtered scalars are very close

to the mean scalar profiles for the filter scales considered. The general trends are
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Figure 5.2: Centerline profiles of the filtered mean SGS variance for Case I.

similar for other cases (figures not shown).

The profiles of the mean SGS scalar variances, ⟨⟨ϕ′′2
1 ⟩L⟩ and ⟨⟨ϕ′′2

2 ⟩L⟩, on the

jet centerline for Case I are shown in figure 5.2. The SGS scalar variances evolve

similarly as the scalar variances (figure 4.3). Their values, however, are significantly

smaller than the scalar variances. The peak value of ⟨⟨ϕ′′2
1 ⟩L⟩ is approximately 8%,

20% and 32% of ⟨ϕ′2
1 ⟩ for the three filter widths (∆ = 0.25, 0.53, 0.8mm), respectively,

while ⟨⟨ϕ′′2
2 ⟩L⟩ is 6.5%, 17% and 27% of ⟨ϕ′2

2 ⟩. The general trends are similar for the

other cases (figures not shown). The relative magnitudes of the mean SGS variances

among the cases are similar to those of the scalar variances, with the peak values

generally larger for cases with the higher velocity ratio and the larger annulus width.

The results for the FJDF are given as a conditional mean, ⟨f |⟨ϕ1⟩L, ⟨ϕ′′2
1 ⟩L⟩,

referred to simply as FJDF hereafter for convenience. The FJDF conditional on the

small SGS variance on the centerline for Case I are shown in figure 5.3. The values of

the conditional variables, ⟨ϕ1⟩L and ⟨ϕ′′2
1 ⟩L, are given in each figure. The value of ⟨ϕ1⟩L

is taken as its local mean, ⟨⟨ϕ1⟩L⟩, at the physical location. We use grayscales and

isocontours to represent the FJDF. The outermost contour represents the boundary
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Figure 5.3: Evolution of the scalar FJDF conditional on the small SGS variance on
the centerline for Case I.
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within which the FJDF integrates to 99%. The FJDF should be confined to a triangle

in the ϕ1-ϕ2 space with the vertices at (1, 0), (0, 1), and (0, 0), where the coordinates

denote the sample-space variables for ϕ1, ϕ2 and ϕ3, respectively. For small SGS

variance, the FJDF is always unimodal and appears to have a Gaussian-like shape.

For x/d < 5, it is centered on the ϕ1-ϕ2 mixing line connecting (1, 0) and (0, 1),

indicating that the SGS scalars contain little co-flow air. Further downstream the

FJDF moves away from the mixing line towards (0, 0) due to mixing with the co-flow

air. The evolution of the FJDF is generally consistent with filtered mean values. The

general trends are similar for other cases (figures not shown).

For large SGS variance (figure 5.4), the FJDF close to the jet exit (x/d < 8)

is unimodal, with the peak near (1, 0) and a long tail. The area of the FJDF is

much larger than for the small SGS variance, consistent with the relative magnitudes

of the SGS variance. At x/d = 10.8, the FJDF becomes bimodal for both Cases I

and II, indicating that the SGS mixing is between two distinct and segregated SGS

mixtures (ϕ
′′
1 and ϕ

′′
2). The two SGS scalars are negatively correlated at this location.

At x/d = 14.6, the two peaks become closer and are away from the mixing line due

to the presence of more co-flow air. The ridgeline of the FJDF is horizontal for both

cases with Case II has a much slender shape, consistent with better molecular mixing

due to the existence of mean shear between the center jet and the annular stream.

Further downstream (x/d = 23.6), the FJDF is still bimodal while moving closer to (0,

0). The two peaks are also much closer and become positively correlated, indicating

that they are well mixed and that they are mixing largely in unison with the co-flow

air. Note that for the smaller annulus cases, the JPDF is unimodal on the centerline.

Thus similar to the SGS mixing in binary mixing, there also exist two SGS mixing

regimes for the coaxial jets. For small SGS variance the SGS scalars are relatively

well mixed whereas for large SGS variance the scalars are highly segregated.
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Figure 5.4: Evolution of the scalar FJDF conditional on the large SGS variance on
the centerline for Case I (Left) and Case II (Right).
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Figure 5.5: Evolution of the scalar FJDF conditional on the large SGS variance on
the centerline for Case III (Left) and Case IV (Right).
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The general trends for larger annulus cases (figure 5.5) are generally similar

to those of the smaller annulus. The FJDF extends further along the ϕ1-ϕ2 mixing

line before bending toward (0,0), consistent with slower progression of mixing for the

larger annulus cases. The FJDF is unimodal for Case III at x/d = 10.9 while it is

bimodal for Case IV, although the value of the SGS variance chosen is smaller for Case

IV (The mean SGS variance is also smaller). This is quite different from the evolution

of the JPDF on the centerline in that JPDF is bimodal at some locations for Case III

but is always unimodal for Case IV (figure 4.12). Moving downstream (x/d = 14.6),

the FJDF also becomes bimodal for Case III. Similar to the smaller annulus cases, the

FJDF is bimodal for both cases further downstream (x/d = 23.6) and the two SGS

scalars are positively correlated. These results show that similar to two-scalar mixing

[63, 67], the FJDF can be bimodal even when the JPDF is unimodal everywhere

(Cases II and IV). The earlier appearance of the bimodal FJDF for Case IV is due

to stronger SGS transport resulting from the SGS velocity and scalar fluctuation

generated by the mean shear between the center stream and the annular stream and

between the annular stream and the co-flow.

5.2 Cross-stream subgrid-scale profiles

The radial profiles of the mean SGS variances with filter width ∆ = 0.53 mm

are shown in figure 5.6. They have similar shapes and peak locations to the scalar

variances (figure 4.15). Similar to the variance of ϕ1, the peak location of ⟨⟨ϕ′′2
1 ⟩L⟩

moves towards the centerline as x/d increases. The peak value of ⟨⟨ϕ′′2
1 ⟩L⟩ decreases

as x/d increases for all cases, whereas the peak value of ϕ1 variance for Case III

increases from x/d = 3.29 to x/d = 6.99. This difference is likely because that the

scalar integral length scale increases with x/d; for a fixed filter width, the fraction of
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Figure 5.6: Cross-stream filtered mean SGS variance profiles. The filter width ∆ is
0.53 mm.
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Figure 5.7: Cross-stream filtered correlation coefficient between ϕ1 and ϕ2. The filter
width ∆ is 0.53 mm.

the variance contained in the subgrid scales decreases. The mean SGS variance of ϕ2

also have the same trend as the variance of ϕ2 (figure 4.15). The peak values decrease

with increasing x/d. The mean SGS variance, however, decreases faster than the

variance due to the increase of the integral length scale. The relative magnitudes of

the mean SGS variances among the cases are also similar to those of scalar variances.

The peak values of both ϕ1 and ϕ2 mean SGS variances are smaller and decrease

faster for Case II (IV) than for Case I (III). However, the profiles of ⟨⟨ϕ′′2
1 ⟩L⟩ are

wider for Case II (IV) than for Case I (III). The peak values are generally smaller

and decrease faster for the smaller annulus cases than for the larger annulus cases,

except that the peak value of ⟨⟨ϕ′′2
1 ⟩L⟩ at x/d = 3.29 is larger for Case I than for

Case III. The general trends for the other filter width are similar but with different

magnitudes.

The filtered correlation coefficient between ϕ1 and ϕ2, ρ =
⟨⟨ϕ′′

1ϕ
′′
2 ⟩L⟩

⟨⟨ϕ′′2
1 ⟩L⟩

1
2 ⟨⟨ϕ′′2

1 ⟩L⟩
1
2
, is

shown in figure 5.7. The correlation coefficient generally has the value of negative one

close to the centerline, increasing toward unity far away from the centerline. Close
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to the centerline, ϕ1 and ϕ2 are anti-correlated (ρ ≈ −1) because there is virtually no

ϕ3. It begins to increase when ϕ1 and ϕ2 begin to mix with ϕ3, and approaches unity

far away from the centerline, indicating that the two scalars are well mixed and their

fluctuations are in phase. At x/d = 3.29, the results for both close to the centerline

and toward the edge of the jet (at approximately r/d = 1) are not shown, because the

correlation coefficient evolves toward zero due to the measurement uncertainties. The

correlation coefficient begins to increase at smaller r/d values at x/d = 6.99 than at

x/d = 3.29, resulting from the progression of scalar mixing. The differences between

Cases I and II and between Cases III and IV are small. Comparisons between Cases

I and III and between Cases II and IV show that the evolution of the correlation

coefficient is much slower for the larger annulus than for the smaller annulus.

5.3 Cross-stream FJDF and conditionally filtered

diffusion

In this section, the FJDF and the conditionally filtered diffusion at two down-

stream locations (x/d = 3.29 and 6.99) in the near field of the coaxial jet would be

shown. The conditionally filtered diffusion is given as conditional means,

⟨⟨D1∇2ϕ1|ϕ̂1, ϕ̂2⟩L|⟨ϕ1⟩L, ⟨ϕ′′2
1 ⟩L⟩ and ⟨⟨D2∇2ϕ2|ϕ̂1, ϕ̂2⟩L|⟨ϕ1⟩L, ⟨ϕ′′2

1 ⟩L⟩. The

conditionally filtered scalar diffusion terms in the FJDF equation transport the FJDF

in the scalar space; therefore, the conditionally filtered diffusion represents the two

components of a diffusion (or transport) velocity. The conditionally filtered diffusion

is presented as the diffusion velocity, represented by streamlines and magnitudes (us-

ing isocontours). Both conditionally filtered diffusion terms are non-dimensionized

by the square root of ϕ1 SGS variance and the conditionally filtered dissipation time
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scale for ϕ1,
⟨ϕ′′2

1 ⟩L
⟨⟨χ1⟩L|⟨ϕ1⟩L,⟨ϕ′′2

1 ⟩L⟩
.

At x/d = 3.29, close to the jet centerline (not shown) the FJDF is largely lim-

ited to the ϕ1-ϕ2 mixing line. The spread of FJDF is largely due to the measurement

uncertainties. For small SGS variance at r/d = 0.372 (figure 5.8), the FJDF is uni-

modal with the peak near the ϕ1-ϕ2 mixing line. The diffusion streamlines converge

to the peak of the FJDF. At r/d = 0.496, the FJDF still has a Gaussian-like shape

but the peak has already moved away from the ϕ1-ϕ2 mixing line, indicating that ϕ1

and ϕ2 are well mixed and there is some co-flow air present. The diffusion streamlines

again converge to the stagnation point near (⟨ϕ1⟩L, ⟨⟨ϕ2⟩L|⟨ϕ1⟩L, ⟨ϕ′′2
1 ⟩L⟩), which is

again the peak of FJDF. Further away from the centerline (at r/d = 0.703), the peak

of the FJDF moves closer to (0,0), consistent with the evolution of the filtered mean

values. The general trends for other cases are also similar (figures not shown).

For large SGS variance (generally more than four times the mean SGS vari-

ance), the FJDF close to the centerline (not shown) is concentrated at (1, 0) with

a tail extending toward (0, 1), indicating that the SGS mixing is largely limited to

between ϕ1 and ϕ2 but with only a small amount of ϕ2. At r/d = 0.372 (figure 5.9),

the FJDF begins to extend toward (0, 0) for both Cases I and II. A diffusion manifold

begins to emerge, and the diffusion streamlines converge to a stagnation point that

is different from both the local filtered mean scalars and the peak of FJDF. For Case

II, it appears a second peak begins to emerge on the left hand side of the FJDF. At

r/d = 0.496 (figure 5.10), the FJDF has become bimodal for both Cases I and II

with the bimodality of Case I stronger, consistent with the larger SGS variance for

Case I. The right peak is close to the ϕ1-ϕ2 mixing line without much ϕ3, while the

left peak contains little ϕ1, indicating that the two mixtures coming from the two

mixing layers are segregated with a sharp interface between them within the grid cell.

The diffusion streamlines first move towards a well defined and bell-shaped manifold,
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Figure 5.8: FJDF (Left) and conditionally filtered diffusion streamlines (Right) con-
ditional on the small SGS variance at x/d = 3.29 for Case I. The filtered scalar values
(⟨ϕ1⟩L, ⟨⟨ϕ2⟩L|⟨ϕ1⟩L, ⟨ϕ′′2

1 ⟩L⟩) are denoted by a bullet in the streamline figures.
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Figure 5.9: FJDF (Left) and conditionally filtered diffusion streamlines (Right) con-
ditional on the large SGS variance at x/d = 3.29 and r/d = 0.372 for Case I (Top)
and Case II (Bottom).
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Figure 5.10: FJDF (Left) and conditionally filtered diffusion streamlines (Right) con-
ditional on the large SGS variance at x/d = 3.29 and r/d = 0.496 for Case I (Top)
and Case II (Bottom).
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Figure 5.11: FJDF (Left) and conditionally filtered diffusion streamlines (Right) con-
ditional on the large SGS variance at x/d = 3.29 and r/d = 0.703 for Case I (Top)
and Case II (Bottom).
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then continue along it to a stagnation point, which is again different from the filtered

mean composition. Thus, the SGS scalars for large SGS variance have a structure

due to the mixing configuration of the coaxial jet whereas for small SGS variance

the three scalars are quite well mixed. The curvature of the manifold appears to be

larger for Case I than for Case II. Further away from the centerline, the right peak of

the FJDF becomes weaker. At r/d = 0.703 (figure 5.11), the right peak completely

disappears for Case I whereas a weak right peak still exists for Case II, indicating

that the bimodal FJDF exists over a wider range of physical locations for Case II.

This trend is different from the cross-stream evolution of JPDF since the JPDF is

bimodal at some locations for Case I whereas it is always unimodal for Case II (figure

4.21). The left peak of the FJDF has already moved very close to (0,0) but with a

tail bending toward (1,0). The streamlines converge directly to a stagnation point

from larger ϕ1 values (from the right), but appear to move to a manifold first from

smaller ϕ1 values (from the left) and then approach the stagnation point. The FJDF

would also become unimodal for Case II further away from the centerline.

Moving downstream to x/d = 6.99, some co-flow air has reached the centerline.

For small SGS variance, the conditional FJDF (not shown) has a Gaussian-like shape

and is concentrated near the filtered mean scalar values. The conditionally filtered

diffusion streamlines (also not shown) mostly converge to a stagnation point. The

evolution of the FJDF and the diffusion streamlines with increasing r/d values is

similar to those at x/d = 3.29. The FJDF and the conditionally filtered diffusion

again indicate that the SGS scalars are relative well-mixed.

For large SGS variance, the FJDF on the jet centerline (figure 5.4) is still

concentrated near (1, 0), but extends further away from it, indicating the penetration

of both ϕ2 and ϕ3. Moving away from the centerline, the FJDF extends further

towards lower ϕ1 values and bends further toward (0,0). A second peak begins to
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Figure 5.12: FJDF (Left) and conditionally filtered diffusion streamlines (Right) con-
ditional on the large SGS variance at x/d = 6.99 and r/d = 0.376 for Case I (Top)
and Case II (Bottom).
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Figure 5.13: FJDF (Left) and conditionally filtered diffusion streamlines (Right) con-
ditional on the large SGS variance at x/d = 6.99 and r/d = 0.538 for Case I (Top)
and Case II (Bottom).
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Figure 5.14: FJDF (Left) and conditionally filtered diffusion streamlines (Right) con-
ditional on the large SGS variance at x/d = 6.99 and r/d = 0.827 for Case I (Top)
and Case II (Bottom).
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emerge and the FJDF becomes bimodal at r/d = 0.248 and r/d = 0.207 for Case I

and Case II (figures not shown), respectively. At r/d = 0.376 (figure 5.12), the FJDF

is strongly bimodal for both Cases I and II with ϕ
′′
1 and ϕ

′′
2 negatively correlated.

The left side of the FJDF bend down toward (0, 0). The right peak is still close to

the mixing line, whereas the left peak is well below it, indicating that the SGS field

contains predominately the ϕ1-ϕ2 mixture and the ϕ1-ϕ2-ϕ3 mixture coming from the

two mixing layers. Again the mixtures are segregated with a sharp interface between

them. The diffusion streamlines first converge to a manifold, which is close to the

ridgeline of the FJDF. They then continue on the manifold at a lower rate toward

a stagnation point between the FJDF peaks. Further away from the centerline, the

FJDF extends further towards (0, 0). At r/d = 0.538 (figure 5.13), the FJDF becomes

unimodal for Case I whereas it is still bimodal for Case II, although the SGS variance

is again smaller for Case II. There is a well defined curved manifold for the conditional

diffusion for each case. Towards the edge of the jet (r/d = 0.827), the FJDF is still

bimodal for Case II but with ϕ
′′
1 and ϕ

′′
2 positively correlated (figure 5.14). The peak

of FJDF for Case I and the left peak for Case II are very close to (0,0) but with

a tail bending toward (1,0). For Case I, the diffusion streamlines to the left of the

stagnation point converge to a manifold, and then to the stagnation point whereas

those to the right of it converge to it. For Case II, the curved manifold is better

defined. Moving further away from the centerline, the FJDF is also unimodal for

Case II (not shown).

For the larger annulus at x/d = 3.29 (figure 5.15), the general trends are

similar to the smaller annulus cases. The main difference is that the peak of the

FJDF evolves along the ϕ1-ϕ2 mixing line and reaches (0,1) before bending toward

(0,0). At r/d = 0.331, the FJDF peak near (1,0) while the ridgeline stay exactly on

the ϕ1-ϕ2 mixing line. The FJDF is unimodal for Case III whereas a second peak
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Figure 5.15: FJDF conditional on the larger SGS variance at x/d = 3.29 for Case III
(Left) and Case IV (Right).
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Figure 5.16: Conditionally filtered diffusion streamlines conditional on the large SGS
variance at x/d = 3.29 and r/d = 0.62 for Case III (Left) and Case IV (Right).

begins to emerge on the left for Case IV. It is strongly bimodal for both Cases III

and IV at r/d = 0.488. The FJDF is symmetric with respect to the ϕ1-ϕ2 mixing line

for Case III whereas it extends toward (0,0) on the left for Case IV. The right peak

disappears for Case III at r/d = 0.62 whereas a weak right peak still exists for Case

IV. The peak near (0,1) indicates ϕ1 and ϕ3 are separated by pure ϕ2, and there are

two separate mostly binary mixing processes. A diffusion manifold begins to emerge

for Case IV at r/d = 0.62 (figure 5.16), whereas no sign of a curved manifold for Case

III. The FJDF would also become unimodal for Case IV moving further away from

the centerline.

For the larger annulus at x/d = 6.99 (figure 5.17,5.18,5.19), the general trends

are again similar to the smaller annulus cases. The bimodal FJDF exist over a wider

range of physical locations for Case IV than for Case III, again different from the

trend of JPDF. The curvature of the diffusion manifold is also larger for Case III

than for Case IV, consistent with better mixing for Case IV.

The above results show that the strongest bimodal FJDF occurs in Cases I
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and III at locations near the peaks of the mean SGS variance of ϕ1. These cases have

higher peak mean SGS variance values than Cases II and IV. The strongest bimodal

JPDF also occurs (in Cases I and III, which have higher peak scalar variance values)

near the peaks of the variance of ϕ1. Therefore, a higher variance (mean SGS variance)

is conducive to a bimodal JPDF (FJDF). On the other hand, the FJDF is bimodal

over a wider range of physical locations for Cases II and IV than for Cases I and

III, in spite of the weaker bimodality at the location of the peak mean SGS variance.

Furthermore, while Cases II and IV have wider SGS variance profiles with higher

values toward the edge of the jets than Cases I and III, thereby favoring bimodal

FJDF, there are also instances (e.g. at x/d = 3.29 and r/d = 0.372 for the smaller

annulus shown in figure 5.9) where the FJDF is unimodal for Case I (larger mean SGS

variance) and is bimodal for Case II (relatively smaller SGS variance). Therefore, the

SGS variance is only one important factor determining the bimodality of the FJDF.

The other important factor is the length scales of the turbulent fluctuations, which

influence the SGS scalar structure. Cases II and IV have two shear layers; therefore,

the length scales of the turbulent (both velocity and scalar) fluctuations are smaller

than Cases I and III, which have a single shear layer. Therefore, for a given filter

width and SGS variance value, the large-scale fluctuations for Cases II and IV have

a stronger influence on the SGS structure, and are more likely to result in a bimodal

FJDF.

Similar to the conditional diffusion for the JPDF, for large SGS variance the

diffusion streamlines first converge to a manifold and then continue along it towards

a stagnation point. Thus, there are also two mixing processes in the SGS mixing, one

slow and one fast. This phenomenon is related to the structure of the SGS scalars,

in which ϕ1 is dominated by a ramp-cliff structure [63, 67] and ϕ2 by a Gaussian-

like scalar profile, both large-scale structures. Ramp-cliff structures are generated by
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Figure 5.17: FJDF (Left) and conditionally filtered diffusion streamlines (Right) con-
ditional on the large SGS variance at x/d = 6.99 and r/d = 0.331 for Case III (Top)
and Case IV (Bottom).
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Figure 5.18: FJDF (Left) and conditionally filtered diffusion streamlines (Right) con-
ditional on the large SGS variance at x/d = 6.99 and r/d = 0.496 for Case III (Top)
and Case IV (Bottom).
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Figure 5.19: FJDF (Left) and conditionally filtered diffusion streamlines (Right) con-
ditional on the large SGS variance at x/d = 6.99 and r/d = 0.703 for Case III (Top)
and Case IV (Bottom).
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large-scale convergent-divergent separatrix [20, 64] acting on a mean (or large-scale)

scalar gradient. The large-scale scalar structures in ϕ2 are also likely due to the same

reason. Smaller scalar fluctuations can be viewed as being superimposed on these

structures. These fluctuations are likely due to mixing of small-scale homogeneous

scalar fields by velocity fluctuations of smaller scales. Thus, the scalars diffuse (relax)

towards the large structures first before the diffusion of these structures move the

streamlines towards the stagnation point. Thus, the slow and fast processes in SGS

mixing are likely the results of large- and small- scale velocity fluctuations acting on

large- and small-scale scalar gradients respectively. The large-scale scalar structures

also form a mixing path in the scalar space along which mixing of ϕ1 and ϕ3 occurs.

5.4 Cross-stream conditionally filtered dissipation

and cross-dissipation

This section would discuss the conditionally filtered dissipation, which are also

given as conditional means, ⟨⟨χi|ϕ̂1, ϕ̂2⟩L|⟨ϕ1⟩L, ⟨ϕ′′2
1 ⟩L⟩ and ⟨⟨χ12|ϕ̂1, ϕ̂2⟩L|⟨ϕ1⟩L, ⟨ϕ′′2

1 ⟩L⟩.

For convenience, the conditionally filtered dissipation and cross-dissipation are re-

ferred to as ⟨χi|ϕ1, ϕ2⟩L and ⟨χ12|ϕ1, ϕ2⟩L hereafter. The conditionally filtered dissi-

pation rates are non-dimensionized by the maximum ϕ1 mean dissipation rates at the

same x/d location.

For small SGS variance, the conditionally filtered conditional dissipation rates

for ϕ1 and ϕ2 share a similar pattern close to the centerline (not shown). The dissipa-

tion rates are small close to (1, 0) and increase towards (0, 1). These similarities are

because there is no co-flow air at this location and the SGS mixing is only between

ϕ1 and ϕ2. Thus, their fluctuations have equal magnitudes but are anti-correlated,
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Figure 5.20: Conditionally filtered dissipation conditional on the small SGS variance
at x/d = 3.29 and r/d = 0.372 for Case I (Left) and Case II (Right). The top, middle
and bottom rows are for ⟨χ1|ϕ1, ϕ2⟩L, ⟨χ2|ϕ1, ϕ2⟩L, and ⟨χ12|ϕ1, ϕ2⟩L, respectively.
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resulting in similar dissipation rates. The cross dissipation is also similar but has neg-

ative values due to the anti-correlation. For Case I at r/d = 0.347 (figure 5.20), both

⟨χ1|ϕ1, ϕ2⟩L and ⟨χ2|ϕ1, ϕ2⟩L as well as ⟨χ12|ϕ1, ϕ2⟩L are relatively uniform, consistent

with the Gaussian-like FJDF since the SGS scalars are well mixed for small SGS vari-

ance. The cross-dissipation still has the same trend as ⟨χ1|ϕ1, ϕ2⟩L and ⟨χ2|ϕ1, ϕ2⟩L,

but with negative values due to the mixing being primarily between ϕ1 and ϕ2. The

magnitudes are between those of ⟨χ1|ϕ1, ϕ2⟩L and ⟨χ2|ϕ1, ϕ2⟩L. Moving toward the

edge of the jet (figures not shown), the general trend is opposite to those close to the

centerline, with the dissipation rates increasing with ϕ1. The cross-dissipation also

has the same general trend but with positive values.

For large SGS variance, ⟨χ1|ϕ1, ϕ2⟩L and ⟨χ2|ϕ1, ϕ2⟩L are generally higher than

for small SGS variances. Close to the centerline (not shown), they are also higher

on the mixing line towards (0, 1). They peak at the location in scalar space where

the FJDF values are low, indicating that the large dissipation rates are rare events,

perhaps a result of strong SGS motions transporting ϕ2 to this physical location

generating sharp interfaces. The cross-dissipation also has the same trend.

At r/d = 0.372 (figure 5.21), ⟨χ1|ϕ1, ϕ2⟩L peaks on the lower edge of the FJDF

at intermediate ϕ1 values, due to the SGS mixing of the ϕ2-ϕ3 mixture with ϕ1. On the

ϕ1-ϕ2 mixing line, both ⟨χ1|ϕ1, ϕ2⟩L and ⟨χ2|ϕ1, ϕ2⟩L are higher for intermediate ϕ1

and ϕ2 values because this location is near the mean ϕ1-ϕ2 interface. For ⟨χ2|ϕ1, ϕ2⟩L

the peak on the mixing line is higher than that of ⟨χ1|ϕ1, ϕ2⟩L due to the higher

ethylene diffusivity (the ϕ1 and ϕ2 gradients have the same magnitude). The lower

edge value of ⟨χ2|ϕ1, ϕ2⟩L is lower than the ⟨χ1|ϕ1, ϕ2⟩L peak because the ϕ2 values are

approximately one half of the ϕ1 value, hence the smaller ϕ2 gradient and dissipation.

The cross-dissipation has a similar trend with negative values. The strengths of the

(negative) peaks are between those of ⟨χ1|ϕ1, ϕ2⟩L and ⟨χ2|ϕ1, ϕ2⟩L. The conditionally
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Figure 5.21: Conditionally filtered dissipation conditional on the large SGS variance
at x/d = 3.29 and r/d = 0.372 for Case I (Left) and Case II (Right). The top, middle
and bottom rows are for ⟨χ1|ϕ1, ϕ2⟩L, ⟨χ2|ϕ1, ϕ2⟩L, and ⟨χ12|ϕ1, ϕ2⟩L, respectively.
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Figure 5.22: Conditionally filtered dissipation conditional on the large SGS variance
at x/d = 3.29 and r/d = 0.496 for Case I (Left) and Case II (Right). The top, middle
and bottom rows are for ⟨χ1|ϕ1, ϕ2⟩L, ⟨χ2|ϕ1, ϕ2⟩L, and ⟨χ12|ϕ1, ϕ2⟩L, respectively.
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filtered dissipation rates and cross-dissipation rate for Case II have similar trends.

However, the peak locations of both ⟨χ1|ϕ1, ϕ2⟩L and ⟨χ2|ϕ1, ϕ2⟩L for Case II shift to

higher ϕ1 and ϕ2 values compared to those of Case I.

At r/d = 0.496 (figure 5.22), ⟨χ1|ϕ1, ϕ2⟩L still peak at the lower edge for Case

I, indicating that the most intense SGS mixing occurs when large velocity fluctuations

bringing together mixtures near the centerline (ϕ1 = 1) and far from the centerline

(both ϕ1 and ϕ2 are low), producing a sharp interface, i.e., a ramp-cliff structure.

The conditional dissipation, ⟨χ1|ϕ1, ϕ2⟩ (unfiltered), also has a peak near this location

(figure 4.23). The peak of the conditionally filtered dissipation, however is stronger

and exists for a wider range of r/d. Previous studies [67] have found that in the

far field of turbulent round jets the scalar FDF is bimodal and there is a ramp-cliff

structure when the SGS variance is large, even when the scalar PDF is unimodal.

Thus, the bimodal FJDF and the peak in the conditionally filtered dissipation is

primarily due to the ramp-cliff structure, whereas the bimodal JPDF is partly due

to the flapping of ϕ1 and the ϕ2-ϕ3 mixtures. At this location, ⟨χ2|ϕ1, ϕ2⟩L is still

large on the mixing line, but with two peaks at the lower edge of the FJDF. These

peaks are located on either side of the peak of ⟨χ1|ϕ1, ϕ2⟩L in the scalar space. In

physical space the peak ϕ2 is located approximately in the center part of the ramp-

cliff structure, where the ϕ2 dissipation is small, but on either side of the peak the ϕ2

gradient is large, resulting in two dissipation peaks. The peaks are located in regions

of low ϕ2 values because for these intense mixing events, the ϕ2 values are reduced by

the co-flow air. The right peak of ⟨χ2|ϕ1, ϕ2⟩L is close to the ⟨χ1|ϕ1, ϕ2⟩L peak as they

likely come from the same mixing events. Their locations (the maximum gradient)

do not coincide due to the presence of the co-flow air. For Case II the peaks shift to

higher ϕ2 values, due to the shear layer between the ϕ1-ϕ2 streams enhancing mixing

without transporting large amounts of ϕ3.
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The conditionally filtered cross-dissipation rate at this location has some of the

characteristics of both ⟨χ1|ϕ1, ϕ2⟩L and ⟨χ2|ϕ1, ϕ2⟩L. It has a negative peak close to

that of ⟨χ1|ϕ1, ϕ2⟩L, with magnitudes between those of ⟨χ1|ϕ1, ϕ2⟩L and the right peak

of ⟨χ2|ϕ1, ϕ2⟩L. It has a positive peak close to that of the left peak of ⟨χ2|ϕ1, ϕ2⟩L.

Here ϕ1 and ϕ2 are being mixed with ϕ3, hence the positive cross-dissipation. The

value, however, is much lower because ϕ1 and ⟨χ1|ϕ1, ϕ2⟩L are low. The left peaks of

both ⟨χ2|ϕ1, ϕ2⟩L and ⟨χ12|ϕ1, ϕ2⟩L are stronger for Case I than Case II.

Moving further towards the edge of the jet (figure not show), ⟨χ1|ϕ1, ϕ2⟩L and

⟨χ2|ϕ1, ϕ2⟩L have similar trends, each having a peak caused by the ϕ1-ϕ2 mixture mix-

ing with ϕ3. The cross-dissipation has the same trend as ⟨χ1|ϕ1, ϕ2⟩L and ⟨χ2|ϕ1, ϕ2⟩L,

and has positive values because ϕ1 and ϕ2 are well mixed and well correlated at this

location.

The general trends for the larger annulus are similar to the smaller annulus.

However, the peaks are located at higher ϕ2 (closer to the ϕ1-ϕ2 mixing line) for Case

III than for Case IV (e.g. at x/d = 6.99 and r/d = 0.496 shown in figure 5.23), which

is opposite to the relative locations between Case I and Case II.

The results on the conditionally filtered dissipation suggest that there are

several SGS mixing scenarios in the near field of the coaxial jets studied. The first

involves mixing of ϕ1 and the ϕ2-ϕ3 mixture, which is usually caused by relatively large

SGS velocity fluctuations bringing ϕ1 and ϕ3 together, producing high dissipation

rates. The second scenario involves primarily ϕ1-ϕ2 mixing, which generally does not

require SGS velocity fluctuations as large as the first scenario. The dissipation rates,

therefore, are lower than those in the first scenario. These two scenarios generally

occur in most regions of the jet but the probability of their occurrence becomes very

small towards the edge. The third scenario involves mixing of the ϕ1-ϕ2-ϕ3 mixture

with pure ϕ3, and occurs primarily towards the edge of the jet.
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Figure 5.23: Conditionally filtered dissipation conditional on the large SGS variance at
x/d = 6.99 and r/d = 0.496 for Case III (Left) and Case IV (Right). The top, middle
and bottom rows are for ⟨χ1|ϕ1, ϕ2⟩L, ⟨χ2|ϕ1, ϕ2⟩L, and ⟨χ12|ϕ1, ϕ2⟩L, respectively.
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While these mixing scenarios occur under general conditions, they manifest

themselves more clearly when the SGS variance is large. For small SGS variance, the

SGS scalars are relatively well mixed. The dissipation rates and their variations in

the scalar space are quite moderate. For large SGS variance, the SGS fields contain

the ramp-cliff structure for ϕ1. The dissipation rates for both ϕ1 and ϕ2 are higher. In

the first SGS mixing scenario, ⟨χ1|ϕ1, ϕ2⟩L has a peak near the center of the cliff and

⟨χ2|ϕ1, ϕ2⟩L has two peaks, one on each side of the ⟨χ1|ϕ1, ϕ2⟩L peak. These peaks are

located in the part of the scalar space with relatively low ϕ2 values, since a significant

amount of air is brought in by the large SGS velocity fluctuations. In the second

scenario the cliff for ϕ1 is not as sharp as in the first scenario. Thus ⟨χ1|ϕ1, ϕ2⟩L

might not have a peak in the scalar space. The overall pattern of the conditionally

filtered dissipation rates are largely determined by the relative probability and the

dissipation magnitudes of these SGS mixing scenarios.

The results also show that ⟨χ2|ϕ1, ϕ2⟩L is similar to the conditionally filtered

temperature dissipation. In the jet there are two ⟨χ2|ϕ1, ϕ2⟩L peaks, one on each side

of the peak of ⟨χ1|ϕ1, ϕ2⟩L. These peaks are near the lower edge of the FJDF, due to

the large dissipation lowering the ϕ2 values. In flames, high temperature is generated

between mixture fraction values of one (fuel stream, similar to ϕ1 = 1) and zero (air

stream), thus having a similar mixing configuration as the three scalar mixing in the

present turbulent coaxial jet. The temperature dissipation has peaks on both sides

of the peak temperature in the scalar space [8]. Due to the heat release generating

high temperatures, the locations of peaks relative to the FJDF peaks in the mixture

fraction-temperature FJDF domain are much higher than those of the ⟨χ2|ϕ1, ϕ2⟩L

in the ϕ1-ϕ2 FJDF domain. The temperature dissipation for the locally extinguished

samples are more similar to ⟨χ2|ϕ1, ϕ2⟩L in the present study due to the lack of a

temperature source.
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Chapter 6

Conclusions

The effects of the velocity ratio (mean shear) and the length scale ratio on

three-scalar mixing in turbulent coaxial jets are investigated. The mixing process in

this flow closely approximates that in turbulent non-premixed reactive flows. The ve-

locity ratio alters the relative mean shear rates in the mixing layers between the center

jet and the annular flow and between the annular flow and the co-flow, modifying the

scalar fields through mean-flow advection, turbulent transport, and small-scale mix-

ing. The length scale ratio determines the degree of separation between the center

jet and the co-flow.

For the cases with the higher velocity ratio (Cases I and III) the cross-stream

mean profiles for ϕ1 are narrower with the centerline values lower (the gradient is

higher, however), primarily due to the smaller mean-flow advection resulting from

the wider mean velocity profile and the higher centerline velocity. It is possible that

the turbulent convection is also larger, further reducing the centerline value. The peak

value of ϕ2, on the other hand, is larger for these higher velocity ratio cases, due to

the faster decrease of the mean streamwise velocity (here turbulent convection tends

to lower the mean scalar). The rms scalar fluctuations are larger for both scalars for
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Cases I and III, caused by the larger production rates due to the larger mean scalar

gradients and the higher turbulent fluxes.

The effects of the velocity ratio and length-scale ratio on the evolution of the

JPDF are a result of their altering the interaction among mean-flow advection, (large-

scale) turbulent transport, and small-scale mixing. The larger velocity ratio results

in stronger turbulent transport of the JPDF, but has opposite effects on the mean-

flow advection for ϕ1 (smaller) and ϕ2 (larger). It causes decreased and increased

mixing rate in the ϕ1-ϕ2 and ϕ2-ϕ3 mixing layers, respectively. The length scale

ratio, on the other hand, delays the progression of the mixing process, but does not

alter its qualitative characteristics. The peak location of the scalar JPDF is generally

consistent with the mean scalar values, thus is dominated by the mean-flow advection.

The shapes of the JPDF indicates that the mixing process is generally slower for Cases

I and III. The JPDF for these cases is bimodal at some locations, with one peak having

a low ϕ1 value representing a mixture of ϕ2 and ϕ3, which results from the strong

shear between these two streams, and the other peak consisting of mostly ϕ1. The

bimodality is due to the poor mixing between ϕ1 and the ϕ2-ϕ3 mixture, a result of the

lack of mean shear between the ϕ1-ϕ2 streams, and the large-scale turbulent transport

(flapping) due to the strong shear between the annular stream and the co-flow. The

JPDF is unimodal for cases II and IV, however, indicating that having shear layers

on both sides speeds up the mixing process.

The conditional diffusion streamlines in scalar space representing the diffusion

velocity generally converge quickly to a manifold, and then continue on the manifold

at a lower rate. The fast approach to the manifold is due to local events (small-scale

turbulent fluctuations and the molecular diffusion) and the slow process is related to

large-scale velocity fluctuations. The streamline patterns have significant differences

for the different velocity ratios. The main differences are the curvature of the diffusion
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manifold and the location of the manifold in the ϕ2 direction. For the cases with the

larger velocity ratio (I and III), the curvature of the manifold is larger with the mean

composition further from it, consistent with the slower progress of the mixing process,

since mixing reduces the curvature, eventually leading to a straight-line manifold with

the mean composition on it. While the existence of the manifold is a result of the

flow configuration of the coaxial jet itself, the different velocity ratios alter the large-

scale turbulent motions and small-scale mixing, resulting in different curvatures and

location of the manifold.

The results in the present study have implications for turbulent reactive flows

and mixing models. Varying the velocity ratio alters the location of the peak ⟨ϕ2⟩

value relative to the mean shear, which is analogous to shifting the location of the

product, and hence the stoichiometric mixture fraction in a reactive flow. Thus, the

results suggest that from the three-scalar mixing point of view, increasing the stoi-

chiometric mixture fraction tends to reduce the mean values of the fuel and product.

The bimodal JPDF for the higher velocity ratio cases suggests that such flows are

more conducive to flamelets, since there is a large jump in the ϕ1 value over a rel-

atively thin layer. The mixing path along the manifold for the conditional diffusion

presents a challenge for mixing models, which need to predict its shape as well as the

dependence of its curvature on the velocity ratio and the annulus width.

The fundamental characteristics of SGS mixing and its dependence on the

mean shear and scalar initial length scale were also investigated in detail, using the

conditional means of the scalar FJDF and the conditionally filtered scalar diffusion,

dissipation, and cross-dissipation. The filtered scalar and the SGS scalar variance

of ϕ1 are used as the conditioning variables. The results show that similar to SGS

mixing in the fully developed turbulent scalar fields, there are also two SGS mixing

regimes for the three-scalar mixing in turbulent coaxial jets. For small SGS variance
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the scalars are well mixed. The FJDF is unimodal and the diffusion streamlines

representing the conditionally filtered diffusion approach a stagnation point directly.

The conditionally filtered scalar dissipation and cross-dissipation rates are low and

their variations are small.

For large SGS variance, the scalars are highly segregated and the scalar struc-

ture (mixing configuration) in both scalar space and physical space is similar to the

initial scalar structure (configuration), in contrast to the small SGS variance for which

the three-scalar mixing configuration is lost. The FJDF is bimodal near the peak lo-

cation of the mean SGS variance of ϕ1 for all cases. The bimodal FJDF is a result of

two competing effects, the SGS variance and the scalar length scale. For the higher

velocity ratio cases a larger SGS variance in the neighborhood of the peak mean SGS

variance causes stronger bimodality, while for the smaller velocity ratio cases the

smaller scalar length scale and the wider mean SGS variance profile cause bimodal

FJDF over a wider range of physical locations. The diffusion streamlines first con-

verge to a manifold in the scalar space and continue on it toward a stagnation point.

The manifold provides a mixing path for the center jet scalar and the co-flow air.

The curvature of the diffusion manifold is larger for higher velocity ratio cases. The

conditionally filtered scalar dissipation rates and cross-dissipation rate are consistent

with those produced by the large SGS scalar structures. They also reveal several

SGS mixing scenarios in which the largest SGS scales of the velocity field are likely to

play a key role. These SGS mixing characteristics present a challenging test for SGS

mixing models. The scalar dissipation rate structures for ϕ1 and ϕ2 have similari-

ties to those of mixture fraction and temperature in turbulent nonpremixed/partially

premixed flames. The results in the present work, therefore, also provide a basis for

investigating multiscalar SGS mixing in turbulent flames.

The FJDF studied has relevance to a new LES approach proposed by Fox [16]
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and systematically developed by Pope [44]. The approach is based on self-conditioned

fields, e.g. the scalar PDF conditioned on a reduced representation of the scalar fields

obtainable from the self-conditioned PDF. A scalar FJDF conditioned on the same

conditioning variables can be obtained by filtering (averaged over the filter width for

a top hat filter) self-conditioned JPDF. The FJDF in the present study is obtained

using the filtered scalar and the SGS scalar variance at a point in physical space

as the conditioning variables, which are a subset of the filtered scalar field and the

SGS scalar variance field. The FJDF, therefore, is the filtered self-conditioned JPDF

(or the self-conditioned JPDF solved on a grid size equal to the filter width) with

conditions at a single point. Thus, the investigations of the FJDF in the present

study provides a basis for studying the self-conditioned JPDF.
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