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ABSTRACT 

 

 

Abdominal aortic aneurysm (AAA) is focal ballooning and dilation of abdominal 

aorta. AAAs are the 13th primary cause of death in the US, taking the lives of 

approximately 15,000 Americans each year 1.  The best prevention of AAA is early 

detection when the AAA is smaller than 3 cm. The only current treatment option for well-

developed AAA is surgical repair of the aneurysmal vessel. Since the enactment of the 

Screening Abdominal Aortic Aneurysms Very Efficiently Act (SAAVE) act, patients 

with Medicare are covered for one-time ultrasound imaging for aneurysm, which allows 

smaller scale AAAs to be discovered. Unfortunately, after this initial detection there is no 

currently known treatment to slow the growth of these aneurysms. Monitoring can be 

continued through the use of ultrasound imaging or plain film radiography, which shows 

calcification related to the AAA, but there is no effective way to show a full picture of 

focal wall weakening 2.  When the AAA has a diameter greater than 5.5 cm, elective 

surgery is typically performed as the risk of surgery is less than the risk of a ruptured 

AAA. 

Excessive activity of metalloproteinases (MMPs) has been associated with aortic 

elastin damage and degeneratio3.  Also AAA is often associated with calcification, which 

increases the risk of AAA rupture 4.  Based on this knowledge, we hypothesized that 

combined treatment MMP inhibitors locally to stop the degradation of elastin, and 

pentagalloyl glucose (PGG) to regenerate lost elastin can be an effective treatment option 

for early to middle stage aneurysms in order to prevent disease progression. Furthermore, 

we hypothesized that calcification associated with well-developed AAA can be removed 
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first with ethylene diamime tetraacetic acid (EDTA), a well-known metal ion chelator 

and then degraded elastin can be regenerated with PGG.   The overall goal of this study 

was to develop a minimally invasive, non-toxic, targeted vascular drug delivery system 

that both prevents elastin degradation and aids elastin regeneration, thereby acting as a 

multi-functional treatment option for elasto-degenerative vascular diseases including 

AAAs. In order to achieve this goal, we used nanoparticles (NPs) developed in our 

laboratory to target degraded elastin by conjugating elastin antibody that specifically 

recognizes only degraded elastin. First, using calcium chloride-induced AAA rat model, 

we show targeted delivery of such nanoparticles loaded MMP inhibitor (BB-94) lead to 

suppression of MMP activity in abdominal aortic aneurysms and prevented aneurysmal 

expansion. Next, we demonstrated that nanoparticles can be loaded with PGG. In AAA 

model in rats, we show PGG can be delivered at the site of AAA by targeted NPs. Such 

PGG delivery inhibited elastin degradation and lead to suppression of AAA.  Finally, we 

tested whether moderate size calcified aneurysms could be reversed by dual therapy. We 

created moderate size AAA in rats by calcium chloride injury, and then first delivered 

EDTA loaded NPs systemically to remove calcification followed by delivery of PGG 

loaded NPs. Only dual therapy showed reversal of calcification in the aorta as well as 

reversal of AAA and regeneration of elastic lamina. NPs with EDTA alone or blank NPs 

did not cause regeneration of elastic lamina in the aorta.  
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CHAPTER I 

 

INTRODUCTION 

 
Abdominal aortic aneurysm (AAA) is the dilation or ballooning of part of the 

aorta located in the abdominal region.  There are typically no symptoms associated with 

AAAs until it reaches an advance stage, and the bursting of the AAA is often fatal.  

AAAs less than 5.5 cm wide are considered to have a low chance of rupturing and are 

designated as small AAAs.  Any abdominal aortic aneurysm larger than 5.5 cm wide5 is 

considered a large AAA and often an operation to repair is advised if the risk of rupture is 

greater than that of surgery6.  Males 65-years-old and older and those who have smoked 

100 cigarettes or more are offered a routine ultrasound screening for AAA through 

Medicare.  Routine screening is now allowing diagnosis of early stage aneurysms.  

Unfortunately, there are no known pharmacological approaches for treating small AAA 

in humans or retarding AAA growth7.  However, there are multiple drugs that have been 

found to prevent AAA formation and progression in small animal studies.  These findings 

have generated a large amount of interest to treat patients with small aneurysms, and have 

led to some initial investigative studies.  In one study, 121 patients who received a Beta 

blocker had a significantly lower mean growth rate than those who did not (0.36 versus 

0.68 cm per year)8,9.  Another class of successful drugs, statins, are suggested for AAA 

patients to reduce atherosclerosis development10.  Additionally, there have been at least 

14 independent in-vivo studies on doxycycline that have shown it limits aneurysm 

progression.  Systemic delivery of doxycycline is known to decrease inflammatory 

markers in AAA in humans, but it has not been confirmed to reduce AAA expansion 
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rates10,11.  We believe one reason behind the failure of these drugs is that systemic 

administration at approved dosage levels does not provide the necessary therapeutic 

levels at the site of AAA.  If we were able to deliver the drugs locally, it would improve 

the therapeutic efficacy and prevent systemic side effects. 

Furthermore, inhibition of ECM degrading enzymes can halt the progression of 

the disease but it cannot reverse already degraded ECM.  One of the hallmarks of 

aneurysm is the degradation of elastic lamina in the medial region of the aorta.  Elastic 

fibers are created during early development and are made up of a cross-linked elastin core 

(amorphous elastin) residing in a network of microfibril associated glycoproteins 

(MAGPs), latent TGF-beta binding protein (LTBP) and fibulins12.  

Elastic fibers can undergo degeneration during inflammatory diseases13.  

Atherosclerotic disease or excessive smoking can cause chronic inflammation in arteries 

that can lead to elastic fiber degeneration and formation of aortic aneurysms.  Once 

degraded, it is rarely remodels in elderly patients.  Little work has been done on the 

regeneration of elastin for AAA treatment.  This is important because other ECM 

components such as collagen and glycosaminoglycans are remodeled during disease but 

older diseased cells are unable to repair and remodel degraded elastin14. 

During this dissertation research, we have explored the use of targeted 

nanoparticles that can deliver synthetic MMP inhibitors to the aneurysmal aorta to reduce 

MMP activities, protect elastin from proteolytic damage, and improve the integrity of the 

abdominal aorta.  We further investigated whether nanoparticle based targeted treatment 

can aid in deposition of newly formed cross-linked elastin by cells (delivery of 
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polyphenols) while reducing inflammation and calcification (by delivery of the chelating 

agent EDTA) in the artery.  Overall, our plan was to find treatments that were effective in 

halting and reversing aneurysms and healing AAAs.  

We were successful in formulating polymeric nanoparticles (NPs) based on either 

poly-l-lactic acid (PLA) or bovine serum albumin (BSA) that had been decorated with 

elastin antibodies to be able to recognize and attach to damaged aortic elastin.  Such NPs 

were successfully loaded with synthetic MMP inhibitor, polyphenolic compound PGG, 

and EDTA.  

This dissertation has been formatted in the following sections: 

 

1. In Chapter II, we present a comprehensive overview of the cardiovascular 

system, its structure, function, biomechanics, elastic moduli, elastin in aorta, 

vascular disease, specially AAA, and treatment recommendations as well as 

pharmacological treatment options available today. 

 

2. In Chapter III, we provide the rational of the research and specific aims.   

 

3. In Chapter IV, we discuss the prevention of abdominal aortic aneurysm 

progression by targeted inhibition of matrix metalloproteinase activity with 

Batimastat-loaded nanoparticles.  

 

4. In Chapter V, we present targeted therapy with nanoparticle loaded with 

pentagalloyl glucose (PGG) to protect vascular elastic lamina from MMP-

mediated degradation and show that it prevents progression of abdominal 

aortic aneurysm (AAA) in calcium chloride injury mediated AAA 

development in rats. 

 

5. In Chapter VI, we present dual therapy using EDTA loaded nanoparticles 

along with PGG loaded nanoparticles to reverse abdominal aortic aneurysm in 

an advance stage in a calcium chloride injury mediated AAA development in 

rats. 

 

6. Chapter VII provides conclusion of the present research and future directions 

needed to take this research further as a therapy for clinical suppression of 

AAA. 
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CHAPTER II 

 

LITERATURE REVIEW 
 

 

The Cardiovascular System 
 

The cardiovascular system functions to carry blood and lymph throughout the 

body15.  It is divided into four sub units:  the heart, macrocirculation, microcirculation, 

and lymph vascular systems16.  Blood vessels vary with size and function, but each has 

three layers, or tunics, which means “coat” in Latin.  The deepest layer, the tunica intima, 

makes up the typically simple squamous endothelial lining of the vessel.  The tunica 

media, the middle layer, consists of smooth muscle and some connective tissue fibers, 

and the outermost layer, the tunica externa, is primarily connective tissue with 

fibroblasts17 (See Figure 1). 

Arteries carry blood from the heart to various organs and can be categorized by 

their size.  Those with a diameter below 0.5 mm are known as arterioles.  Muscular or 

distributive arteries are medium sized, and elastic arteries are the largest.  Capillaries, the 

smallest blood vessels, are responsible for gas transfer and are 7–9 µm in diameter18.  

Veins bring blood to the heart from various organs.  They have three categories based on 

the size as well.  Venules are the smallest followed by medium and large veins.  

Compared to veins, arteries have thicker walls as they need to withstand more pressure19. 

 

Biomechanics of Aorta 

 

The rupture of aneurysmal vessel wall counts as a mechanical failure, so the 

biomechanics of AAA has been studied extensively21.  The mechanical properties of 

AAA could be used for predicting of AAA rupture risk so the ultimate goal of studying  
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Figure 1.  Sections of blood vessels composed of three main layers20. 

 

 

mechanical properties is to predict AAA rupture22.  Blood vessels can attribute most of 

their mechanical properties to their makeup of collagen and elastin fibers, ground 

substances, and smooth muscle cells.  Alan Burton and his colleagues were the first group 

to make the connection between the microstructure of the vessel and its resulting 

macroscopic mechanical properties23.  Using the differential digestion of elastin and 

collagen in the arteries, they were able to measure the corresponding variations in the 

mechanical properties of the wall.  Their finding resulted in the formation of a theoretical 

analysis of the arterial wall that spawned a number of notable studies expanding on the 

subject23,24. 
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Young's modulus or elastic modulus is determined as the slope of the linear 

portion of a uniaxial stress strain curve25.  Elastic modulus of AAA could provide 

parameters for analysis of AAA wall stress distribution and predicting rupture of AAA22. 

 

The Blood Pressure and Its Effect on the Aortic Wall 

 

When studying the arterial pressure in the aorta, the aorta can be compared to an 

inflated tube-like construction26.  This pressure can be translated directly to tension based 

mechanical stress on the wall, with the circumferential and axial stresses acting as the 

major stresses (See Figure 2).  During inflation, the wall undergoes an isochoric 

deformation, where tissue volume is constant, leading to weakening of the wall in the 

circumferential and axial directions.  

As a rule, as the aortic diameter increases, the wall becomes proportionally 

thicker.  Medial lamellar units (MLU) increase with wall thickness.  Thus, each MLU 

carries a tension of about 2 ± 0.4 N/m, and it’s been shown that substantial decrease in 

wall thickness and the number of MLU’s happens during aneurysmal changes27,28.  

Stiffness is the slope of the load-deformation curve29.  Aorta stiffness increases with 

strain which means that at hypertensive loading the aorta will be stiffer than during 

normal arterial pressure27,30.  When stiffness of aneurysmal and healthy vessel was 

compared, result showed that aneurysmal section were stiffer than the healthy section 

with less collagen and elastin content21.  

Stiffness of the artery depends on its intrinsic elasticity.  Pulse wave velocity 

(PWV) is a direct measure of large arterial stiffness31.  Circumferential cyclic Green-

Lagrange is another method of measuring arterial stiffness32.  PWV and circumferential  
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Figure 2.  Different types of stress in aortic wall. 

 

 

cyclic Green-Lagrange strain use ultrasound and offer a noninvasive assessment of 

stiffness along an arterial section33. 

 

Structure of Aortic Elastin 

 

Making up roughly 50% of the arterial ECM, elastin is the most prevalent 

structural protein of the arteries34.  Elastin is made up of elastic fibers that have two 

major components, one amorphous and one fibrillar.  The extensively cross-linked elastin 

of the amorphous component comprises 90% of the fiber.  The fibrillar component, is a 

collection of microfibrils, that are rich in acidic glycoproteins and is about 8-16 nm long35.  
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Amorphous elastin forms from monomers of soluble tropoelastin.  Tropoelastin arises 

during prenatal development when elastogenic cells including smooth muscle cells 

(SMCs), endothelial cell, fibroblasts and chondroblasts express the elastin gene36.  

Humans only contain one tropoelastin gene, ELN.  As we age, ELN expression decreases 

dramatically as elastin production decreases.  In middle-aged people, elastin production is 

almost non-existent, so we must rely on the elastin deposition that occurs in the womb 

and early in life37.  In order to make elastin, tropoelastin molecules must interact and then 

crosslink, forming insoluble elastin.  Fibrillin-1 largely makes up microfibrils in ECM 

that likely anchor the forming elastic fibers38.  Lysyl oxidases are a group of five 

enzymes including LOX, and LOXL 1-4, which cross-link tropoelastin and aid the 

process39.  

Initially, tropoelastin is expressed then secreted into the ECM.  In a closer look, 

the mature tropoelastin begins to accumulate on the surface on the cell to create 1 micron 

spherules.  This accumulation of tropoelastin aids coacervation of tropoelastin molecules.  

Eventually, the tropoelastin is oxidized by the lysyl oxidase enzymes and then participate 

in aldol condensation and Schiff base reactions to crosslink elastic fibers.  The 

microfibrils that exist in the ECM are transported to where the new elastin is being 

formed, by members of the fibulin protein family.  The elastin produced as the final 

product is very stable and able to give human tissue the ability to stretch and recoil40 (See 

Figure 3).  

          Elastin binding protein (EBP), made of a 67-kDa peripheral subunit attached to two 

membrane bound proteins of 61 and 55 kDa, is the mechanism that specifically targets  
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Figure 3.  Elastin assembly40. 

 

 

tropoelastin molecules to fibre formation sites on the surface of cells. Initially, 

tropoelastin binds to an EBP complex that is intact. The 67-kDa subunit loses its affinity 

for tropoelastin and the membrane bound protein when a sugar moiety binds to the EBP. 

The loss of affinity lease to tropoelastin being released onto growing elastic fibers 35. 

Smooth muscles cells (SMCs) and fetal lung fibroblasts go through a different 

process of binding to tropoelastin.  SMCs, much like chondrocytes, use heparin sulfate 

chains through proteoglycans on the cells surface to bind to the tropoelastin.  In the fetal 

lung, fibroblast, use heparan sulfate moiety and integrin αvβ3 receptors41.  
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Vascular Diseases 

 

Vascular disease may result from any circulatory system disorder.  It includes 

Peripheral Artery Disease, Aneurysms, Renal (Kidney) Artery Disease, Buerger's 

Disease, Peripheral Venous Disease and etc.42  Vascular disease is a subgroup of 

cardiovascular disease (CVD).  CVD, often brought on by risk factors such as high blood 

pressure, high LDL cholesterol, and smoking, is the primary cause of death in the United 

States.  At least one of these risk factors is present in nearly half (49%) of Americans43.  

Other lifestyle choices and medical conditions, namely diabetes, excessive weight, poor 

diet, lack of physical activity44, and overuse of alcohol, can increase the risk of heart 

disease25.  The prevalence of heart disease across the United States is shown in Figure 4. 

 

Abdominal Aortic Aneurysm (AAA) 

 

Weakening and resulting focal bulging of the abdominal aorta are known as 

abdominal aortic aneurysms (AAAs)46. The AAA disease is diagnosed when the 

minimum diameter between the anterior and posterior walls of the aorta is 3.0 cm47.  

Much like other cardiovascular diseases, AAAs occur more frequently in males and often 

dependent of risk factors including advanced age, tobacco use, and family history.  

American College of Cardiology/American Heart Association (ACC/AHA) guidelines 

list the occurrence of AAAs between 2.9 and 4.9 cm in diameter as 1.3% for 45-54 year 

old men and 12.5% for 75-84 year old men48.  While there is limited data on the 

mechanical strength of the human aorta, experts concur that an  
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Figure 4.  Heart disease rate of death across the US45. 

 

 

aneurysmal aorta is mechanically weaker than healthy aorta, both longitudinally and 

circumferentially, and the resulting weakness is the main cause of rupture49,50.  

 

Risk of Rupture 

 

Randomized studies comparing immediate repair and monitoring of small AAAs 

largely comprise the general theory of AAA progression and risk of rupture.  The results 

show that the yearly risk of rupture is less than or equal to 1% for those AAAs with a 

diameter below 5.5cm, but it increases with the size of the aneurysm.  For individuals that 

have an AAA greater than 6 cm, it jumps to 10% and then to over 25% for people with 



 

13 
 

one lager than 8 cm.  The risk of rupture also increases for smokers, women, people with 

poor lung function, and higher mean arterial blood pressure51. 

 

Treatment Recommendations 

 

Early stage AAA has no major symptoms thus it  makes the threat of rupture that 

much more serious 52.  A treatment plan has to take into consideration both the disease 

progression, risk of rupture, and patient life expectation as well as the mortality potential 

that comes with attempted prophylactic surgery.  The guidelines currently set in place by 

the ACC/AHA state patients with AAAs between 4.0 and 5.4 cm are to be checked by 

ultrasound or CT scans, while patients with AAAs larger than 5.5 cm should have the risk 

of rupture eliminated through surgery53.  Furthermore, asymptomatic male patients with 

an AAA less than 5.0 cm and asymptomatic female patients with an AAA below 4.5 cm 

should not undergo interventional repair techniques, but repair can be beneficial on an 

AAA between 5.0-5.4 cm6.  

 

EVAR vs. Open Surgery  

 

The most common and effective methods for repairing abdominal aortic 

aneurysms are abdominal endovascular aneurysm repair (EVAR) and the more traditional 

open surgery (shown in Figure 5).  EVAR involves a small incision in the groin that 

allows the placement of a stent graft in the aneurysm, whereas open surgery involves a 

synthetic graft being placed in the walls of the aneurysm54.  Comparing EVAR with open 

repair in cases that were a good fit for open repair showed that thirty days mortality was  
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Figure 5.  Open Repair vs EVAR57. 

 

 

1.6 % for EVAR and 4.7 % for open repair of AAA.  Given the 30 days post-surgery 

outcome, this may help both surgeon and patient in choosing treatment options6,55,56.  

 

Mortality of Ruptured AAA (rAAA) 

 

In a study in a specific geographical area, the mortality rate for rAAAs was 

assessed and found to be 6.3/100,000 inhabitants for the annual incidence.  In one the 

clinical studies58, about 37% or 82 out of 221 patients did not make it to the hospital 

before they died.  Of those patients who were admitted, 79.8% went through immediate 

surgery.  For the entire hospital, the mortality rate was 63.3%, while the cumulative 

mortality was 76.9% when non-admitted cases were included.  
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Animal Models for AAA 

 

In any animal model, the goal is to model human disease pathology as closely as 

possible, in order to effectively evaluate the mechanisms that occur in humans.  For 

aneurysms, currently no exact model exists, and so conclusions are drawn based on 

assumptions the biochemical and cellular mechanisms that occur in the animals are 

comparable to those in humans.  Of course, each different experimental model of AAA 

has its own pros and cons.  Most techniques of physical, chemical, and genetic 

manipulations on healthy vasculature have been used on almost every typically tested 

species.  Table 1 shows the advantages and disadvantages of animal species for AAA 

research. 

 

Surgically Induced Aneurysms 

 

Blunt trauma and/or crush injuries to the arterial wall are two of the most common 

ways to create the mechanical weakness necessary to induce an experimental AAA60.  

Artificially reducing the arterial diameter in certain locations can create the turbulence 

and shear stress that result in enough dilation to cause an aneurysm.  An aneurysm 

phenotype can also be created through the implantation of arterial tissues from a foreign 

species61.  The resulting immune rejection requires about four weeks to progress until it is 

deemed to effectively mirror an aneurysm.  Each of these techniques of creating 

aneurysms achieves the desired purpose at the cellular level which trauma to the arterial 

wall and a strong immune response.  This is characterized microscopically by a 

congregation of T-cells, B cells, and macrophages and a loss of both extracellular and 

medial cellular components, which is also seen in human aneurysms59. 
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Table 1.  Advantages and disadvantages of animal species for AAA research59. 

 

Animal Species advantages Species disadvantages 

Mouse  Fairly low costs 

 Well-characterized genome 

facilitates genetic manipulation 

 Very small aorta 

 Genetically manipulated models 

can be expensive 

Rat  Fairly low costs 

 Larger size of vessels compared to 

mice 

 Genetic manipulation is difficult 

Swine  Similar arterial morphology to 

humans 

 Variable aneurysm formation 

following elastase perfusion 

Rabbit  Relatively low costs  Poor public perception of studies 

based in rabbit species 

Canine  Large peripheral arteries 

 Able to survive prolonged 

anesthesia 

 High cost 

 Poor public perception of studies 

based in canine species 

Sheep  Large arteries  High cost  

Turkey  Form spontaneous aneurysms  N/A 

 

Chemically Induced Aneurysms 

 

According to initial clinical research, elastolysis of the aortic media was a major 

player in pathophysiological beginning of a human AAA, and elastase was at the center 

of the destruction occurring the elastic tissue of the aortic wall62.  Atherosclerosis, the 

hardening of the elastic wall, also showed similar patterns of calcification and 

fragmentation of elastic tissue that appeared in AAAs63.  Therefore, the administration of 

chemical solutions of elastase and calcium chloride to the infrarenal aorta is the most well 

established practice for generating aneurysms in most animal species59. 

 

Elastase-Induced Aneurysms 

 

In the 1960s, transient intraluminal perfusion with pancreatic elastase into the 

abdominal aorta was first documented as a technique to induce experimental AAAs64.  

The use of temporal analysis to compare aneurysm progression in humans to that in rats 
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that have undergone elastase infusion has found a number of similarities.  Notably, this 

analysis has demonstrated that the medial elastic tissue destruction is increased due to 

inflammatory response created by aortic dilation, while the rate of aneurysm formation 

post-aortic elastase treatment is not correlated  59. 

 

Calcium Chloride-Induced Aneurysms 

 

Calcification is closely associated with aneurysms, and heavy calcification is seen 

in about 80% of human AAAs65.  Knowing the commonality of calcification in AAAs, in 

1988 Gertz et. al.,66 conducted a pioneering study on male New Zealand rabbits, 

determining that the application of CaCl2 to the adventitia of the carotid artery resulted in 

the formation of an aneurysm.  In the study, the researchers immersed the entire 

adventitial surface of the right common carotid artery in a 0.5M CaCl2 solution for 15 

min.  After three weeks, the luminal diameter of the treated arterial segment had 

increased by an average of 61% as compared to the opposite carotid artery which was 

treated with sodium chloride (NaCl) instead.  A histological examination using scanning 

electron microscopy (SEM) revealed endothelial cell fragmentation where the calcium 

chloride was administered, as well as, elastin calcification, loss of vascular smooth 

muscle cells, and a strong immune response characterized by the presence of neutrophils, 

monocytes, foreign body giant cells, and lymphocytes.  This study was the first recorded 

model of a human aneurysm67.  Other studies have tried to recreate the model with 

variable conditions including Freestone et al.  They used a 0.25 M v solution instead, but 

even 12 weeks after surgery there was no AAA formation.  A second attempt was made 

using a 0.05M thioglycollate and CaCl2 solution in addition to a high cholesterol diet, and 
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AAA formation was seen in just three weeks68.  This model was successful in both 

rabbits and rodents.  Another technique applying a 13.6 mEq/10 mL CaCl2 solution 

applied to abdominal aorta of C57BL/6 mice resulted in AAA formation, degradation of 

elastin, reduction of VSMC, and lymphocyte and macrophage infiltration69.  CaCl2 has 

been documented to increase endothelial permeability and induce VSMC apoptosis when 

applied to vasculature, as well as causing the infiltration of the adventitia and media of 

the aorta by inflammatory cells70,71.  These documented animal models have been shown 

to closely mirror human AAAs in terms of their pathology due to aortic calcification, 

increased presence of inflammatory cells, degradation of elastin, neovascularization, 

oxidative stress, and VSMC apoptosis.  The main issue with the CaCl2 AAA model is 

that it does not result in intraluminal thrombus and rupture as is seen in human AAAs67. 

 

Genetically Manipulated Models of AAA 

 

Sophisticated techniques of altering genes have allowed researchers to more 

specifically dissect the mechanisms that lead to pathogenic phenotypes, thus allowing 

researchers to obtain a better idea of therapeutic targets.  Genetically modified organisms 

(GMOs) are growing in number and complexity as techniques are being improved and 

expanded, allowing medical researchers to apply their knowledge of GMOs to their 

research.  An example of this is the process of creating “gene knockout mice”, which are 

genetically deficient due to the targeted disruption of one or more alleles.  These mice are 

gaining an integral role in research regarding the pathophysiology of vascular diseases.  

Only a few have been used in AAA research at this point, but their presence will likely 
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increase.  Below the specific relevance of gene knockout mice to human AAA research 

will be discussed.59. 

 

Angiotensin II and Hyperlipidemic Mice 

 

Aortic aneurysms in mice have been created by infusing octapeptide angiotensin-

II (ang-II) subcutaneously.  When the ang-II is delivered to hyperlipidemic strains of 

mice, typically deficient in apolipoprotein E (Apo E−/−) or in low-density lipoprotein 

receptor (LDLR−/−), the mice’s pre-existing disposition to aneurysms is inflamed, 

resulting in small aneurysm formation.  While this model successfully creates 

atherosclerotic plaque similar to that seen in human AAAs, the AAAs in mice occur 

sporadically and occasionally supra-renally, which does not occur in humans72-74. 

 

Pharmacological Management of Small Abdominal Aneurysm  

 

Even though AAA has high rates of mortality and morbidity, ranking in the top 

fifteen of most recurrent causes of death in men over 55 in western societies75, little is 

known about the cause and development of AAA.  Non-invasive observational imaging 

such as ultrasound, computerized tomography(CT), scans, or magnetic resonance 

imaging (MRI), combined with angiography76 is used to make a diagnosis.  Images 

revealing an abdominal aorta with a diameter of 3 cm and above typically indicate the 

formation of an aneurysm.  Currently, surgical techniques including conventional and 

endovascular repair on AAAs are used in high rupture risk patients, defined as those with 

an AAA with a diameter of 5.5 cm or greater, and have been deemed effective treatment 

methods.  Unfortunately, that is about the extent of treatment for AAA patients, leaving 
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those with smaller aneurysms, less than 5.5 cm, without an effective treatment.  They are 

generally recommended to wait until the aneurysm grows to the size where an operation 

is deemed worth the risk, anxiously waiting as their condition worsens77.  

While what causes the degeneration of aneurysms may not be not known, it is 

established that AAAs are connected with chronic transmural inflammation78 and the 

breakdown and elimination of essential proteins in the connective tissue of the outer 

aortic wall.  Simply, three steps can summarize the progression of AAAs (See Figure 6).  

First, the vascular wall begins to increase production of substances that trigger 

inflammation, although these specific substances are not well known.  Next, infiltrating 

cells release molecular mediators.  Finally comes the release of metalloproteinases and 

their respective inhibitors, controlled by the inflammatory agents and infiltrated cells 

from the earlier steps.  Activated macrophages are responsible for producing of the 

MMPs, specifically of MMP-9 and MMP-2, that are not counter-balanced by the activity 

of their inhibitors (TIMPs)79.  This imbalance is primarily responsible for degradation of 

collagen and elastin, which are integral part of the ECM.  The destruction of the collagen 

and elastin interferes with the ordered lamellar structure in the tunica media of the aorta, 

leading to the formation of the aneurysm80.  When examining human AAA tissue, an 

excessive presence of inflammatory infiltrates containing both lymphocytes and 

macrophages have been discovered in both the media and the adventitia, validating the  
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Figure 6.  Flow chart showing progression of molecular mediators during formation of 

abdominal aortic aneurysm76. 

 

 

above theory.  Additionally, a correlation between increasing aneurysm diameter and 

higher density of inflammatory cells in the adventitia has been confirmed81. 

The main goal of current research related to AAAs is to find new treatments that prevent 

the expansion of small aneurysms.  At this time, majority of research in this field is 

concentrated on the third step of formation, trying to either decrease the presence of 

metalloproteinases or prevent their activities (See Figure 7).  Some drugs including  

http://www.intechopen.com/source/html/19551/media/image2.jpeg
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Figure 7.  Preventing MMPs activation as a therapy for AAA. 

 

 

doxycyclines, statins, and synthetic MMP inhibitors have shown potential and are 

undergoing testing.  

 

New Medications for AAA Treatment 

 

Doxycycline 

 

Tetracyclines were discovered in 1948, as a product of the fermentation of 

Streptomyces aureofaciens82.  Based on their origin, they can be classified into one of 

three different groups, either natural products, semi-synthetic compounds, or chemically 

modified tetracyclines83.  Besides being powerful antibiotics, tetracyclines are known to 

inhibit MMPs and aid in T-lymphocyte transmigration by preventing chemotaxis and the 

mass movement of neutrophils.  Additionally, doxycycline specifically targets endothelial 

cells where it inhibits MMP synthesis.  By doing this, doxycycline is capable of 
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decreasing both protein and mRNA levels which in turn alters endothelial migration that 

occurs during angiogenesis76. 

 

Statins 

 

Statins, which are widely used to lower lipid levels, are specifically 

hydroxymethylglutamyl-coenzyme A (HMG-CoA) reductase  inhibitors84.  Statins have 

also been demonstrated to prevent atherosclerosis progression for reasons unrelated to the 

benefits of lower lipid levels, which are known as “pleiotropic statins effects”.  

Specifically, these pleiotropic statins’ effects may include anti-oxidant effects, anti-

inflammatory effects, and reduction of MMP secretion, which have been shown to 

prevent AAA development in a number of studies85.  For example, three separate types of 

statins, pravastatin, simvastatin, and fluvastatin, have been shown to reduce MMP-9 

production in the AAA and its infiltrated cells86.  Further studies on simvastatin have 

shown it to increase TIMP-1 production although it had no effect on the infiltration of 

inflammatory cells into the AAA87.  Atorvastatin, on the other hand was effective in 

suppressing the recruitment of macrophages directly by MMP-12 inhibition, primarily by 

inhibition of the expression of intercellular adhesion molecule-1 within the vascular wall88.  

Despite these positive results, it should be noted that in some human studies there has 

been no noticeable effects on AAA growth by statins.  Furthermore, no association has 

been found between AAA expansion and a statin-based treatment or serum low-density 

lipoprotein (LDL) concentration.  However, these studies are contrasted by other studies 

in which statins did show an ability to reduce or delay AAA expansion in humans.  One 

of these studies conducted by Feeney et. al,89 reported that pre-hospital statin use resulted 
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in a significant survival benefit in patients with a ruptured AAA.  A separate 

observational study of 130 patients that were monitored for 2 years found that there was 

no expansion of aneurysms in the 75 patients that were administered statins90.  A few 

other studies have also show similar benefits for statins, suggesting that there is a 

decrease in aneurysm expansion rate for patients being treated with statins as opposed to 

those who were not91.  Further investigation about statins has revealed important 

information about the molecular pathways through which statins can inhibit the growth of 

AAAs.  Pravastatin was particularly ineffective in this setting; however, it was effective 

in increasing TIMP-1 content.  This shows that increased TIMP-1 expression is unrelated 

to HMG-CoA inhibition, and its benefits are not limited by MMP-9 inhibition92.  Another 

suspicion of the benefits of pravastatin is that it may be involved in preventing apoptosis, 

often elevated in AAAs, because pravastatin has been shown to increase the expression of 

Bax, a proto-oncogene known to induce apoptosis, but not the expression of Bcl-2, a 

proto-oncogene that reduces apoptosis.  When analyzing the ratio of Bax/Bcl-2, an 

important index of apoptosis, it was unchanged, rendering any conclusions about 

pravastatin affecting apoptosis in AAAs invalid93.  Based on this, it can be hypothesized 

that TIMP-1 influences other factors that prevent AAA progression, such as growth 

factor-like activity, anti-inflammatory activity, and aortic smooth muscle cell 

proliferation.  Although the specific molecular mechanism used by statins has yet to be 

determined, statins may still function to control AAA growth.  Studies evidencing the 

usefulness of statins’ pleiotropic effects in reducing aneurysmal wall inflammation, 
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diminishing MMP expression, and enhancing TIMP synthesis show potential for their 

ability to prevent AAA growth76. 

 

Synthetic Inhibitors of MMPs 

 

MMPs known formally as matrix metalloproteinases are a group of 

endopeptidases that contain zinc and are calcium dependent94.  They function to remodel 

tissue, by degrading parts of the ECM such as elastins, collagens, proteoglycans, and 

matrix glycoproteins.  Hormones, growth factors, and cytokines are able to regulate 

MMPs95.  Most commonly, MMPs are produced via excretion from a number of pro-

inflammatory cells like macrophages, neutrophils, and lymphocytes and connective 

tissues cells such as fibroblasts, osteoblasts, and endothelial cells73.  The zymogens that 

these enzymes are expressed as are processed further to reach active form by other 

proteolytic enzymes including plasmin, furin, serine proteases, and others96.  Currently, 

there are 26 known human MMPs (See Figure 8) that can be categorized into 4 groups:  

collagenases, gelatinases, stromelysins, and matrilysins97.  There is a further subclass 

known as membrane-type MMPs (MT-MMPs), which either have an intracellular and 

transmembrane domain, a membrane linker domain, or are membrane associated.  They 

also have an extra transmembrane domain to anchor them to the surface of the cell.  The 

remainder of the MMPs has a distinct domain, either a hinge region, a catalytic domain, 

an N-terminal domain, or a C-terminal hemopexin-like domain.  The membrane is 

important for macromolecular substrate recognition and TIMP interaction94,98. 
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Figure 8.  Matrix metalloproteinase enzymes94. 
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Mechanism of Action 

 

The majority of matrix metalloproteinase inhibitors act as chelating agents, 

meaning they block activity by binding to the zinc at the active center of the enzyme99. 

Synthetic MMP inhibitors have been created primarily through the use of a 

peptide sequence that the targeted protease can recognize.  This peptide sequence has also 

had a number of chemical functionalities attached that allow it to react with the zinc ion 

at the active site inhibiting the enzyme.  There are a few key requirements for a molecule 

to function properly as an MMP inhibitor, including, an attached functional group that 

can chelate the zinc (II) ion of the active site, a functional group with a hydrogen bond 

that can bind with the backbone of the enzyme, and at least one side chain capable of van 

der Waals interactions on the subsites of the enzyme100.  Functional groups capable of 

chelating the zinc ion would include hydroxamate (CONH–O), carboxylate (COO), and 

thiolate (S), among others.  Using methods including structure-based design and 

combinatorial chemistry, a number of different structural classes of MMP inhibitors have 

been discovered.  Current MMP inhibitors in use include marimastat, trocaid, CGS-

27023A, prinomastat, AG3340, BAY 12-9566, Ro 32-355594. 

 

Pioneering Hydroxamate Structures 

 

Hydroxamate-based MMP inhibitors are much like their name, inhibitors that use 

a hydroxamate (=CONHOH) group to bind to the zinc101.  Two of these inhibitors, 

Ilomastat and Batimastat (BB-94) were the first to undergo patient testing.  
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Batimastat (Figure 9), is a broad-spectrum MMP inhibitor and more commonly referred 

as BB-94, has been effective in inhibiting inflammatory responses in rats, decreasing the 

aneurysm expansion103.   

BB-94 has been shown to decrease inflammatory response to aneurysms, in 

addition to acting as a metalloproteinase inhibitor103; unfortunately, due to a lack of 

bioavailability it is limited for long term use.  A second generation of these, Marimastat, 

is used orally in cancer treatment but 30% of patients had musculoskeletal side effects.  

Most studies on Marimastat have examined intimal hyperplasia and aneurysms in human 

ex vivo tissue104.  While initially promising, these drugs have shown few therapeutic 

benefits in humans and have thus been overlooked for their potential to treat other 

conditions.  

Typically, hydroxamate-based MMP inhibitors tested in in vitro tumors cells have 

shown exceptional anticancer behavior however, when tested clinically, they did not 

perform adequately.  This could be explained at least in part because these broad-

spectrum inhibitors work on other metalloproteinases unrelated to pathology like 

disintegrin and metalloproteinase (ADAMs) proteases.  Testing on patients has shown 

these have caused muscular and skeletal pain in multiple patients, which seems to be 

related to the dosage level105,106.  However, if the MMP inhibitors had their structures 

altered to create a specificity of targets to cut down on toxicity, they would likely have 

shown the clinical cancer chemotherapy benefits that were initially expected107. 
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Figure 9.  Batimastat structure102. 

 

 

New Generation Hydroxamate-Based MMP Inhibitors 

 

MMI-270 (See Figure 10) is likely the single most important structure from earlier 

generations that has carried over.  The molecule allows for a number of key benefits 

including water solubility, oral availability, and low molecular mass in a broad spectrum 

inhibitor.  However, they do have a noticeable limitation of drug metabolism. The 

metabolism issues stems from amide reduction resulting in the loss of the hydroxamate 

zinc-binding group, leading to hydrolysis to the carboxylate, then conjugation to 

glucuronide107. 

 

Angiotensin Converting Enzyme Inhibitors (ACEI)  

and Angiotensin Receptor Blockers 

 

Blood pressure is another factor that is important to consider when examining 

AAA and ACEIs are a type of drug used for regulation of blood pressure.  While the  
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Figure 10.  MMI270 (CGS27023A) structure108. 

 

 

mechanisms of action of ACEIs are not known, they do affect aneurysm progression 

according to several studies.  Treating experimental animals with Angiotensin-II has been 

shown to decrease elastin content in the AAA and aortic wall109.  Additionally, collagen 

production in the vascular wall increases and arterial wall size decreases in established 

AAA patients when they are given ACEIs110.  Furthermore, research by Liao et. al, has 

shown that by using different ACEIs, elastin decreases could be controlled independently 

of arterial blood pressure lowering while preventing changes in inflammation of aortic 

wall111.  Another study conducted by Alsac et. al., testing an ACEI, perindopril, 

demonstrated its ability to reduce aneurysm growth through both the inhibition of MMP 

synthesis and changing elastin levels 112.  ACEI treatments have also been shown to limit 

aneurysm ruptures compared to no treatment in clinical trials, which other blood pressure 

lowering drugs including beta-blockers, calcium channel blockers, antagonists of 

angiotensin-II receptors, and diuretics have been unable to do113.  Unfortunately, studies 

have also seen detrimental effects of ACEI in regards to AAA growth.  One such study 
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from the UK on 1700 patients actually found that the aneurysm growth rate was higher in 

patients who had the ACEI treatment than those that did not114.  Due to these findings, it 

is clear that there is a need for more randomized studies in order to understand the true 

nature of ACEIs and what their actual therapeutic benefits are. 

As mentioned above, angiotensin II-receptor antagonists (ARBs) are blood 

pressure lowering drugs, but they also have been tested for their potential of preventing 

AAA growth115.  Using an experimental model in which apolipoprotein deficient mice 

were subjected to the chronic release of angiotensin II until their aortas dilated and 

eventually ruptured, researchers found that the administration of losartan was able to 

prevent aneurysm formation.  Further, they found when transforming growth factor-B 

was antagonized by losartan, progressive matrix degradation was prevented.  With these 

promising results, the need for more studies, clinical especially, to determine their ability 

to prevent AAA growth is obvious116. 

 

Natural Substances  

 

Some natural substances have been used to treat AAA.  Vitamin E improved 

AAAs and reduced the combined end point of fatal+nonfatal aortic rupture in Ang II 

animal model117.  Periadventitial administration of PGG(a polyphenol) delays the 

development of AAA in a calcium chloride injury rat model14.  

 

Polyphenols 

 

Polyphenols are a large and varied family of natural substances.  They exist as 

simple molecules or complex structures, but they all have at least one benzenic cycle with 
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one or more hydroxyl function and are derived from the metabolism of either polyacetate 

or shikimic acid.  They are present in all vascular plants and are secondary metabolites. 

Currently, thousands of polyphenolic compounds have been studied in plants and 

they been grouped into classes.  These classes are broken down based on the variations in 

the basic chemical makeup that lead to differences in the methylation, oxidation, 

hydroxylation, and glycosylation, as well as their links to other secondary metabolites or 

primary metabolites such as carbohydrates, proteins, and lipids118.  Polyphenols consist of 

a hydrophobic core surrounded by phenolic (-OH) groups on the exterior of the 

compound.  This structure allows them to be broken down into condensed, complex or 

hydrolysable varieties.  They can also be divided into ligands, flavonoids, phenolic acids, 

and stilbenes based on the number of phenolic rings and their accompanying structural 

elements119.  To create hydrolysable tannins, gallic acid (3, 4, 5-trihydroxyl benzoic acid) 

must be esterified to a core polyol. If a more complex hydrolysable tannin is desired, the 

galloyl groups can be either esterified or oxidatively crosslinked.  Gallotannins, the 

simplest of the hydrolysable tannins, are merely polygalloyl esters of glucose, and 

pentagalloyl glucose (β-1,2,3,4,6-Pentagalloyl-O-D-Glucopyranose) is the most 

prototypical of these 117.  Pentagalloyl glucose (PGG) is comprised of five identical ester 

linkages which involve the core sugar’s aliphatic hydroxyl groups (See Figure 11).  

PGG’s alpha anomer is not common in nature, but PGG does have numerous isomers, as 

do the rest of gallotannins.  All of these isomers have a molecular weight of 940 g/mol.  

What vary based on the different structures of the isomers are the biochemical properties, 

specifically the ability to precipitate proteins, susceptibility to hydrolysis, and  
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Figure 11.  PGG structure120. 

 

 

chromatographic behavior.  While PGG is best known for its anti-oxidant properties, its 

elasto-regenerative properties have been demonstrated both in vivo and in vitro121-123.  

Systemic delivery of the aforementioned drugs has failed to translate into 

significant clinical advances.  Systemic toxicity and low concentration of drug delivered 

to the diseased area could possibly be the main reasons behind this failure.  To address 

these issues we need a targeted drug delivery system.  This offers an efficient drug 

loading in a biodegradable polymer with an increased circulation time in vivo to reach 

targeted sites and remaining at the site by specific chemical bonds and finally offering the 

release of the encapsulated drug in a controlled fashion.  Such a delivery system also 

offers tailoring its physical and chemical properties to suit various needs124.  
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Use of Nanoparticle Based Theranostic 

Agents in the Vascular Diseases 

 

Nanotechnology that has the potential to fight cardiovascular diseases by making 

an immediate impact can be divided into four categories.  First, tissue engineering using 

nanofibers can be used to rebuild damaged or lost tissue, for example allowing for the 

replacement of defective heart muscle125 or blood vessels126.  Second, molecular imaging 

paired with nanotechnology based agents can be used to identify, diagnose and track 

diseases127.  Nano-based carriers can be used as targeted therapeutics which allow for 

precise treatments, limiting drug side effects and ensuring the injured area receives the 

drug.  Finally, nanotechnology can be used to improve diagnostic devices, including 

implantable biosensors, allowing for better feedback and control as to what is occurring 

in the body.  Targeted nano therapeutics in cardiology are especially helpful because 

injections of nano particles do not put the patient at risk of embolism formation, like the 

larger particles associated with intravenous delivery (IV)128.  

 

Targeted Drug Delivery 

 

The ability to send drugs, using a nanocarrier to the site of injury as opposed to 

systemic or more generalized treatments, is currently the ultimate goal of pharmaceutical 

research129.  Targeted drug delivery serves to maximize the benefits of a drug because of 

the localization of the therapeutic pharmacological activity to the specific tissue or organ 

in need.  The encompassing idea of targeted drug delivery is to use various systems, 

physical, biological, molecular, in order to increase the concentration of the active agent 

at the site where it is needed.  This would allow for reduced drug dosage while increasing 
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treatment efficacy and decreasing drug toxicity130.  While drug delivery is excellent in 

theory, putting it into practice is much more challenging. In order to successfully execute 

targeted drug delivery, careful consideration must be made as to the metabolism and 

reactivity of the drug, as well as how the distribution and rate need to occur131.  Other 

important concepts that need to be considered are nanocarrier biocompatibility, local 

blood flow, amount and distribution of drug receptors, interactions of nearby biological 

and cellular membranes with nanocarrier and the ability of enzymes to metabolize the 

nanocarrier132 133.  

Biological nanocarrier which are developed around the use of antibodies on 

surface, sound very effective theoretically; however, in practice, they encounter some 

issues centered around the antibody-polymer conjugate’s distribution134.  These issues 

include problems with the polymer carrier capacity of the antibodies conjugation sites 

and changes to the antibody’s specificity based on the polymer molecules being 

conjugated.  Thus far, the final issue has been the largest antagonist of achieving 

pharmacologically active concentrations at the desired local concentrations in the body135. 

 

Polymeric Particles 

 

Polymeric particles are the most heavily researched organic nanoparticles because 

of their ability to hold many types of drugs, release them over an extended amount of 

time and ease of linking targeting ligands to the surfaces136.  Polymeric particles are also 

very stable in both in vitro and in vivo settings.  Additionally, polymers have long been 

used in medicine137, including medical devices.  Another advantage of polymers like 

poly-lactic acid (PLA), poly-glycolic acid (PGA) and poly-lactic-co-glycolic acid 
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(PLGA), their co-polymer, is their biodegradability, which is very desirable for delivery 

applications138.  Poly-anhydrides and poly-orthoesters are also biodegradable, and been 

used for nanoparticle synthesis.  When hydrophobic polymers such as the ones stated 

above are combined with hydrophilic polymers their co-polymers are effective in 

synthesizing carriers of drugs139.  Poly-ethylene oxide (PEO), poly-propylene oxide 

(PPO), and poly-ethylene glycol (PEG) are all common copolymers used for this purpose.  

Another type of polymer used in drug delivery is responsive polymers, because they are 

able to react to temperature, pH, electromagnetic radiation, and other stimuli140.  The 

benefit of enclosing drugs within nanoparticles is two-fold.  First, the drug is protected 

from potential degradation by enzymes or hydrolysis, in both in vivo and in vitro 

conditions141.  Secondly, the encapsulation allows for flexibility in delivery techniques, 

allowing for more patient friendly approaches such as oral administration of insulin using 

polymer-based nanoparticles142.  Most types of substances, including RNA, DNA143, 

proteins, and peptides144, can be contained in these nanocarriers.  Furthermore, these 

carriers can be used for either specific targeting or simple localized delivery145.  When 

they are used as treatment for cancer, the particles are specifically designed to be small 

and hydrophilic increasing the time they remain in blood.  Because of the enhanced 

permeability and retention (EPR) effect seen in tumors due to blood vessel leakage or 

limited lymphatic drainage, the nanoparticles accumulate within the tumor146.  Mucosal 

surfaces are another common area in which localized release methods are used.  Eyes, 

lungs, nose, the gastrointestinal tract, and others are the target of particles coated with a 

mucoadhesive polymer that extends contact time between the drug and surface and 
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stabilizes the drug during interactions with digestive enzymes.  Active targeting typically 

functionalizes the surface of the nanoparticles using anything from receptor binding to 

peptides to antibodies and others in order to ensure delivery to the targeted tissue 147.  

Human serum albumin nanoparticles created to allow for loperamide transport across the 

blood-brain barrier are a perfect example of this active targeting.  The nanoparticles are 

attached to transferrin or monoclonal transferrin receptor antibodies so that they can 

reach the transferrin receptor in the brain148.  In summation, all the developments in 

targeted drug delivery, specifically the advances in the use of nanoparticles, allow for 

better treatments and reduced systemic toxicity during treatments149,150. 

 

Bovine Serum Albumin (BSA) Nanoparticles 

 

Albumin has long been the standard for modeling protein behavior in sustained 

release drug delivery systems because of its stability and commonality.  This globular 

protein is also biodegradable, nontoxic, and non-antigenic, making it a great candidate for 

use in controlled drug delivery151.  Abraxane®, an albumin-bound nanoparticle loaded 

with Paclitaxel, is a successful example of this, having been approved in 2006 to treat 

metastatic breast cancer by the Food and Drug Administration (FDA)152.  Molecularly, 

albumin is made up of six subdomains and six sites for fatty acids to bind.  Hydrophobic 

drugs, including curcumin, are also capable of binding to these fatty acid sites, offering 

protection from degradation and thus making them more bioavailable153.  BSA particles 

usually use glutaraldehyde as a cross linker and are prepared by a process of coacervation 

or desolavation under mild conditions149.  Because of the toxicity of glutaraldehyde, other 
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options for cross linking have been suggested and include polyethyleneimine (PEI), 

formaldehyde154 and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)149. 

 

Particle Size 

 

Pharmaceutical nanoparticles, or nanocarriers, are essentially submicron sized 

particles that serve to hold and/or transport a drug.  Based on their target or usage, they 

are between 10 and a few hundred nanometers and are either dry, solid particles or 

colloidal dispersions155.  

Particle size affects degradation, targeting, clearance and uptake mechanisms 

156,157.  A reduction in particle size allows an improved dissolution rate and maximizes 

how much drug is available for absorption.  Nanoparticles for drug delivery can be 

tailored to release their contents at an optimal rate by changing particle size156.  

 

Surface Modification 

 

Surface modification to the nanocarrier allows for increased residence time in 

blood158.  The particles are administered intravenously and do not dissolve immediately, 

an immune response (opsonization) to the blood proteins that are absorbed onto the 

particles’ surface will occur159.  The particles will then be quickly removed from 

circulation by the mononuclear phagocyte system (MPS) which will consume and 

dispose of the particles, eliminating therapeutic effects160.  Opsonization can be staved off 

by either a non-covalent attachment of polymers or surfactants to the nanocarriers’ 

surface, or molecular covalent attachments to the surface.  Poly-ethylene glycol (PEG)161 

is the most commonly used particle to be grafted or adsorbed to the surface.  When used 
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on bovine serum albumin (BSA) loaded poly(lactic-co-glycolic acid) (PLGA) 

nanoparticles, a steric PEG coating increased the half-life of the particles from 13.6 min 

to 4.5 hrs.150.  

 

Particle Charge (Zeta Potential) 

 

While surface coatings like PEGylation can improve the efficacy of nanoparticles, 

changing the charge of the nanoparticle can have major effects as well162.  Changing 

charge is well documented to alter protein adsorption and cellular internalization during 

circulation163.  This is reflected in the fact that nanoparticles that are positively charged 

have higher rates of phagocytosis than neutral and negatively charged particles, 

decreasing their blood circulation half-life150.  Another study determined that endosomes 

were more likely to escape due to surface charge.  Those results were based on the 

behavior of negatively charged polystyrene nanoparticles that stayed in endosomal 

compartments of smooth muscle cells, not reaching the cytosol164. 

 

Targeting AAA 

 

 There have been a few studies that have successfully targeted AAA using 

diagnostic or therapeutic targeting. Small AAA can be diagnosed using a novel, 

noninvasive technique if nanoparticles can enhance visualization. Bonnard et al. managed 

to successfully target AAA via P-Selectin, expressed by activated platelets in AAA, by 

using microparticles functionalized by fucoidan. Two weeks after elastase perfusion, the 

microparticles, injected into rats via penis vein, were radiolabeled with 99mTc. Single 

photon emission computed tomography (SPECT) imaging was used to successfully 
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image AAA165.  Another group proved that surface functionalization of doxycycline 

loaded PLGA nanoparticles with cationic amphiphiles can be useful in targeting AAA.  

These particles bind to elastin via hydrophobic interactions in cell culture of aneurysmal 

smooth muscle cells166.  AAA was successfully targeted via anti-elastin decorated 

nanoparticles in different animal models of AAA.  These nanoparticles could target 

damaged elastin but not healthy elastin167. 
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CHAPTER III 

 

KNOWLEDGE GAP AND SPECIFIC AIMS 

 

 

Knowledge Gap 

 

Up to 90% of detected AAAs are small enough that they do not require surgery. 

However, they are not treated because there are no current pharmacological treatments to 

prevent AAA expansion approved by the FDA. A safe treatment that could prevent the 

expansion of small AAA would benefit many patients who are left to wait until their 

AAA grows large enough to require surgery. Our intention is to develop a minimally 

invasive, non-toxic, biodegradable vascular delivery system that targets AAA in order to 

prevent elastin degradation and regenerate elastin as a novel AAA therapy.   

 

Filling in the Knowledge Gap 

 

We have developed a nanoparticle system that has been functionalized with an 

elastin antibody, in order to achieve our goal. This system can recognize and bind to 

damaged elastin in the aorta when delivered systemically. We then load a MMP inhibitor 

and deliver it to the site of AAA and confirm the MMPs activity suppression.  Later, we 

will use an elastin regenerator instead of a MMP inhibitor to see the effect of elastin 

preservation in AAA therapy.  Finally, in order to provide a therapy for a more advanced 

AAA, where calcification is involved, we will deliver calcium chelator to site of the AAA 

first, followed by an elastin regenerator to stabilize elastin. 

 

 

 



 

42 
 

Specific Aims and Rationale 

 

Aim1  

 

To investigate whether MMP inhibitors like batimastat (BB-94) loaded 

nanoparticles (NPs) can be targeted to the site of abdominal aortic aneurysm (AAA) and 

whether they can stop growth of AAAs by suppressing local MMPs activity in a calcium 

chloride mediated injury model of aneurysms in rats. 

 

Approach 

  

We will optimize loading of BB-94 in PEGylated poly-lactic acid (PLA) NPs that 

are conjugated with anti-elastin antibodies, necessary for targeting damaged elastin.  We 

will study drug loading efficiency, in vitro release, drug activity, and cellular uptake of 

NPs.  NPs with optimum drug loading and release profile will be delivered intravenously 

in rats where AAAs have been created by perivascular application of calcium chloride.  

We will study the MMPs activity and AAA growth suppression with time.  We will also 

study organ distribution and systemic toxicity of NPs.  

 

Rational  

 

Several clinical trials for systemic MMP inhibition as a cancer treatment failed 

because of poor bioavailability, dose limiting toxicity, and systemic side effects, such as 

musculoskeletal problems, which limited the dose that could be tolerated168.  Clinical 

trials of systemic delivery of MMP inhibitor beta-blocker-propranolol did not show 

significant changes in the growth rate of aneurysms, but caused systemic side effects and 

reduced patient compliance169, thus dampening enthusiasm for pharmacological therapy 
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for AAA.  The side effects caused by MMP inhibitors in cancer patients led to the use of 

substantially lower doses of MMP inhibitors in clinical trials for aneurysm prevention 170.  

Because our targeted treatment’s site-specificity permits very low doses of the drug, such 

therapy will be an attractive option for preventing expansion of aneurysms in patients 

without causing systemic side effects. 

 

Aim 2 

 

To investigate whether PGG loaded nanoparticles (NPs) can be targeted to the site 

of an AAA and whether they increase elastin matrix deposition, thus allowing AAA 

regression in a calcium chloride mediated injury model of aneurysms in rats. 

 

Approach 

 

We will optimize loading of PGG in bovine serum albumin (BSA) NPs that are 

conjugated with anti-elastin antibodies.  We will study drug loading efficiency, in vitro 

release, drug activity, and cellular uptake of NPs.  We will study in detail about elastin 

morphology, degradation, and regeneration by fastin and desmosine analyses and by 

transmission electron microscopy (TEM) and histology.  Using ultrasound imaging, 

mechanical properties of the aorta will be assessed to see whether elastin regeneration 

helps biomechanically to restore arterial function.  As calcification is seen in AAAs, we 

will also test if duel therapy of EDTA NPs to remove calcium and PGG NPs to restore 

arterial elastin will be beneficial.  
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Rational 

 

It has been established that elastin degradation is a primary cause of AAA171, and 

whether AAA is large or small, regression of it and restoration of normal arterial 

architecture would be preferable.  Although no one previously could show elastin 

regeneration, our group demonstrated the protective effect of PGG in terms of protecting 

damaged and non- damaged elastin from protease degradation and the ability of PGG to 

help tropoelastin molecules to assemble and make new crosslinked elastin by vascular 

smooth muscle cells121.  We have already developed NPs that target to AAA.  We would 

like to use these NPs to deliver PGG at the site of aneurysms.  Such site-specific targeting 

of PGG would help arterial elastin restoration.  With the regeneration of elastin, we can 

reverse the progression of aneurysms.  

 

Aim3 

 

To investigate whether elastin-specific vascular calcification associated with 

AAA can be first removed when targeted nanoparticles deliver chelating agent EDTA to 

the site of vascular calcification and if PGG targeted delivery thereafter can regenerate 

elastic lamina. 

 

Approaches  

 

In the rat model of calcium chloride, NP based EDTA therapy will be optimized 

and NP based PGG will be used.  We will create a moderate stage aneurysm and will 

treat them first with EDTA nanoparticles.  After that, we will treat them with PGG 

nanoparticles.  After six (6) weeks and organ harvesting, we will study in detail about 
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elastin regeneration by desmosine analysis.  Circumferential strain of the aorta will be 

assessed to see whether elastin regeneration helps biomechanically to restore arterial 

function.  

 

Rational  

 

Degeneration of elastin plays a crucial role in the pathology and progression of 

AAA, a disease characterized by the loss of structural integrity of the arterial wall.  AAA 

is often associated with calcification, which increases the risk of AAA rupture 4.  Current 

option for AAA is the replacement of weakened aorta with a vascular graft.  Our group 

has shown earlier that treatment with pentagalloyl glucose (PGG) increased elastin matrix 

deposition by healthy and aneurysmal vascular smooth muscle cells in vitro 121.  

Furthermore, we have shown that EDTA nanoparticles can remove calcification from 

calcified artery with minimal dose of EDTA using the same nanoparticles technology 172.  

We would like to use combination therapy of EDTA and PGG to be delivered at the site 

of aneurysms.  Such dual therapy of EDTA followed by PGG would help reduce 

calcification and promote arterial elastin restoration, thus reversing the disease.  

 

 



 

46 
 

CHAPTER IV 

 

PREVENTION OF ABDOMINAL AORTIC ANEURYSM PROGRESSION BY 

TARGETED INHIBITION OF MATRIX METALLOPROTEINASE ACTIVITY  

WITH BATIMASTAT-LOADED NANOPARTICLES 

 

 

Abstract 

 

Rationale 

 

The side effects caused by MMP inhibitors in cancer patients led to the use of 

substantially lower doses of MMP inhibitors in clinical trials for aneurysm prevention.  

Clinical trials of systemic delivery of a MMP inhibitor, propranolol—which is a beta-

blocker—did not show significant changes in the growth rate of aneurysms, but caused 

systemic side effects and reduced patient compliance, thus dampening enthusiasm for 

pharmacological therapy for AAA.  Because our targeted treatment’s site-specificity 

permits very low doses of the drug to be used, this therapy will be an attractive option for 

preventing expansion of aneurysms in patients without systemic side effects. 

 

Objective 

 

Our previous study showed that poly D, L-lactide (PLA) nanoparticles (NPs) 

conjugated with an anti-elastin antibody can be targeted to the site of an aneurysm in a rat 

model of AAA.  Here, we tested whether such targeted NPs can deliver the MMP 

inhibitor batimastat (BB-94) to the site of an aneurysm and prevent aneurysmal growth. 

 

Approach and Results 

 

BB-94-loaded PLA NPs-targeted to the aneurysmal aorta were studied in a 

calcium chloride injury-induced AAA in rats.  Intravenous injections of elastin antibody-
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conjugated BB-94-loaded NPs (EL-NP-BB94) targeted the site of aneurysms and 

delivered BB-94.  Such targeted delivery inhibited MMP activity, elastin degradation, 

calcification, and aneurysmal development in the aorta (269% expansion in control vs. 

40% EL-NP-BB94) at a low dose of BB-94.  The systemic administration of BB-94 alone 

at the same dose was ineffective in producing MMP inhibition.  

 

Conclusions 

 

Targeted delivery of MMP inhibitors using NPs may be an attractive strategy to 

inhibit aneurysmal progression. 

 

Introduction 

 

Abdominal aortic aneurysm (AAA) characterized by dilation of the abdominal 

aorta, is one of the top-10 causes of death among older men.173  Although the cause of 

AAA remains unknown in the majority of cases, several key regulators of AAA 

pathogenesis are known.  Matrix metalloproteinases (MMPs) have been shown to play a 

major role in progressive extracellular matrix (ECM) degradation in AAA.174,175.  Under 

inflammatory conditions, infiltrating macrophages, vascular smooth muscle cells, 

endothelial cells, and adventitial fibroblasts secrete pro-MMPs; cleavage of the pro-MMP 

subunit activates the MMPs, causing ECM degradation.  MMP activity may be naturally 

suppressed by tissue inhibitors of matrix metalloproteinases (TIMPs), which comprise a 

family of four protease inhibitors:  TIMP1, TIMP2, TIMP3, and TIMP4.176.  An improper 

balance between MMPs and TIMPs shifts equilibrium towards matrix degradation in 

http://en.wikipedia.org/wiki/TIMP1
http://en.wikipedia.org/wiki/TIMP2
http://en.wikipedia.org/wiki/TIMP3
http://en.wikipedia.org/wiki/TIMP4
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several vascular conditions, such as AAA, atherosclerosis, hypertension, and 

calcification.177 

Several types of MMPs are expressed in AAA tissue, including MMP-1, MMP-2, 

MMP-3, MMP-9, and MMP-12.78 MMP-9 and MMP-2 knockout mice do not develop 

aneurysms, suggesting that these MMPs play a major role in the development of AAA3.  

A number of synthetic MMP inhibitors (e.g., doxycycline- and hydroxamate-based) are 

known to decrease MMP activity178 and prevent medial destruction.179.  Synthetic MMP 

inhibitors with a hydroxamate (-CONHOH) group bind zinc atoms and suppress MMP 

enzymes180.  Among the many hydroxamate-based MMP inhibitors are marimastat, 

solimastat, prinomastat, cipemastat, and Batimastat (BB-94)181,182.  It has been shown that 

BB-94 was one of the first synthetic MMP inhibitors to be tested clinically to reduce 

MMPs in cancers with advanced malignancies183.  However, its effectiveness is limited 

by its poor water solubility when administered orally, requiring parenteral administration. 

In several studies, systemic administration of MMP inhibitors effectively reduced 

aneurysmal onset in animal models182,184, but systemic delivery can cause off-target 

inhibition of the MMP activities essential for normal homeostasis185.  Although there are 

no in vivo studies of targeted delivery of MMP inhibitors to the aneurysm site, a recent in 

vitro study showed the potential of delivering doxycycline-loaded nanoparticles (NPs)  

for localized elastic matrix stabilization and regenerative repair in AAA166.  Doxycline 

was also shown to reduce mRNA stability for MMP-2 and inhibit MMP activity that way186.  

In this study, we tested the hypothesis that systemic delivery of elastin-antibody 

conjugated polymeric nanoparticles loaded with BB-94 would be targeted specifically to 
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the aneurysm site, will slowly release the drug at the aneurysm site, and inhibit local 

MMP activity and subsequent aneurysms.  Such targeted MMP inhibition would require 

smaller and less frequent drug doses than systemic administration, which would minimize 

systemic side effects. 

 

Materials and Methods 

 

Synthesis of Batimastat-Loaded Nanoparticles (EL-NP-BB94) 

 

Poly (D,L-lactide) (PLA) NPs were prepared using the solvent-diffusion-based 

nano-precipitation method.167  PLA (10 mg, average MW 75k-120k) (Sigma Aldrich, St. 

Louis, MO) was dissolved in 1 ml acetone (VWR International, Radnor, PA).  1,2-

distearoyl-sn-glycero-3-phosphoethanolamine-N-(methoxy(polyethylene glycol) – 2000) 

(2 mg, DSPE-PEG (2000) Maleimide, Avanti Polar Lipids, Inc., Alabaster, AL) and BB-

94 (Sigma Aldrich, St. Louis, MO) were dissolved in dimethylsulfoxide (Sigma Aldrich, 

St. Louis, MO), and this solution was then added to the PLA solution.  The polymer 

solution was added drop-wise (16 µl/sec) to water and kept under sonication (Omni 

Ruptor 4000) for 20 minutes at 4°C.  Following sonication, the particles were washed 

twice with distilled water by centrifugation at 14000x g for 30 minutes at 4°C and then 

re-suspended in distilled water.  The non-solvent (water) to solvent (acetone) ratio was 

1:15 for all experiments.  Three different batches containing ratios of 5:1, 10:1, and 15:1 

polymer to BB-94 were prepared in which the ratio between the two polymers (PLA:  

DSPE-PEG(2000) Maleimide) was 4:1. 
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Nanoparticle Yield 

 

The total final dry weight of the NPs was recorded, and NP yield was calculated 

using the formula shown below: 

 

 

Nanoparticle Characterization  

 

Particle size, ζ-potential and Transmission Electron Microscopy (TEM) were 

performed to characterize the NPs.  The NP suspension (1 mg) was diluted in HPLC-

grade water, and the ζ-potential and particle size were measured with a 90Plus particle 

size analyzer (Brookhaven Instruments Co., Holtsville, NY).  Transmission Electron 

Microscopy (TEM) was used to study NPs morphology.  A drop of 0.1 mg/ml NPs-water 

suspension was placed on a formvar-coated copper grid and dried overnight in vacuum 

desiccator.  Grid-mounted samples were imaged using a Hitachi H7600 TEM. 

 

Nanoparticle Degradation Studies 

 

Blank NPs were suspended in phosphate buffered saline (PBS) and stirred at 37oC 

to test the polymer degradation.  Degradation of the NPs was monitored by measuring the 

weight of the remaining NPs at different time points (1, 7, 14, 21, and 28 days) after 

lyophilization.  The percent weight loss was calculated using the difference between the 

remaining dry weight and the initial weight.  We also tested blank NPs degradation by gel 

permeation chromatography (GPC). Nanoparticles (5 mg) were suspended in 5 mL of DI 

water at stirred at 37oC.  At week 1 and week 4, NPs were isolated by filtration and 

lyophilized.  NPs were dissolved in chloroform at a concentration of 1mg/ml.  The 
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solution was filtered directly into chromatography vials using 0.2µm PTFE filters.  

Polymer molecular weight was assessed by Size Exclusion Chromatography/Gel 

Permeation Chromatography(SEC/GPC) using a Shodex KF-804L column on a Waters 

HPLC/GPC system equipped with an Autosampler, column heater, and refractive index 

(RI) Detector.  Chloroform was used as the mobile phase at a flow rate 0.65 ml/min, and 

the column was kept at 30°C during all separation runs.  The injection volume for GPC 

analysis was 50 µL.  Polystyrene standards of 9, 35, 50, 100 and 200 kDa were used as 

markers, and a control sample of PLA (Average MW 75,000-120,000 kDa) was used to 

validate the calibration curve reliability. 

 

Loading Efficiency and Release Profile of BB-94  

 

Loading efficiency was calculated by dissolving NPs in dimethylsulfoxide, 

determining BB-94 concentration at λ (max) = 285 nm using UV spectrophotometry, and 

using the equation shown below: 

 

 

To study release kinetics, a known amount of NPs was suspended in phosphate 

buffered saline (PBS) and incubated at 37°C on a shaker.  Suspensions were centrifuged 

for 30 minutes at 10000×g at room temperature (RT).  The supernatant was removed, and 

the sediment was freeze-dried and characterized for BB-94 concentration by dissolving it 

in 100 µl dimethylsulfoxide and measuring absorbance by UV spectrophotometry. 

 Percent release was calculated as the following: 
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Conjugation of Elastin Antibody to NPs 

 

Traut’s reagent (34 µg, G-Biosciences, Saint Louis, MO) was used for thiolation 

of 10 µg of rabbit anti-rat elastin antibody (United States Biological, Swampscott, MA), 

and the mixture was incubated in HEPES buffer (20 mM, pH=9.0) for an hour at room 

temperature.  Thiolated antibodies were rinsed with HEPES buffer and added to the NPs 

(4 µg antibody per 1 mg NPs) and then incubated overnight for conjugation.  After 

incubation, antibody-conjugated NPs were washed twice with PBS, centrifuged (10000 

rpm for 10 minutes), and suspended in 0.3% rat serum albumin for an in vivo study 

animal study.167  

 

BB-94 Activity 

 

To test if the BB-94 loaded in the NPs was still in active form, sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) zymography was performed.  

Briefly, NPs were dissolved in dichloromethane (Aldrich, MO) and DI water at a ratio of 

3:1.  This mixture was mixed vigorously and centrifuged for 10 minutes at 10000×g to 

extract BB-94 from the NPs.  The DI water containing BB-94 was subsequently collected 

and lyophilized.  The activity of the extracted BB-94 from the NPs was tested by two 

different methods. In the first approach, culture medium collected from rat aortic smooth 

muscle cell (RASMC) cultures was loaded into a SDS-PAGE zymography gel, and 

extracted BB-94 was added to the development buffer(500ng/ml) (50 mM Tris Base, 5 

mM CaCl22H2O, 200 mM NaCl, 0.02% brij 35).  After 24 hours incubation in the 

development buffer, gels were stained with 0.5% coommasie blue for an hour at room 

temperature and were destained with 5% water, 40% methanol, 10% acetic acid.  After 
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this, the gels were photographed using epi-illuminated white light in a Bio-Rad Gel Doc 

instrument.  Zymography bands were quantified using Image J software and data was 

reported as RDU. In the second approach, BB-94 activity was tested in RASMCs 

cultures.  Briefly, RASMCs were grown to 80% confluency at 37°C and 5% CO2 in 

DMEM containing 10% FBS and 1% penicillin-streptomycin (ScienCell Research 

Laboratories, Carlsbad, CA).  After 24 hours, cells were treated with extracted BB-94 

(500 nM) in serum-free medium for 24 hours.  After treatment, conditioned medium was 

collected.  The total protein of the culture medium was quantified using Bicinchoninic 

Acid (BCA) protein assay (Pierce, Rockford, IL) with 10 µg total protein loaded per well 

and prestained molecular weight standards (Precision Plus Protein Standard, Bio-Rad, 

Hercules, CA).  Gel zymography was performed as described in the previous section. 

 

Reverse Zymography for TIMP Activity 

 

Equal amounts of protein from RASMC-conditioned cell culture media (BB-94 

treated or control) were loaded in 15% reverse zymogram gel containing 1.5% gelatin 

and collagenase (20 units) under nondenaturing and nonreducing conditions.  After 24 

hours incubation in the development buffer, gels were stained with 0.5% coommasie blue 

for an hour and were destained.  The gel pictures were captured using epi-illuminated 

white light and a Bio-Rad Gel Doc instrument; bands were analyzed and quantified using 

Image J, and data was reported as RDU. 
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RASMCs and Rat Aortic Endothelial Cells (RAOEC) 

 

A standard MTT assay was performed to measure the cytotoxicity of NPs to 

RASMCs and RAOECs.  RASMCs and RAOECs were cultured with NPs for 24 hours.  

MTT colorimetric assays (Sigma Aldrich, St. Louis, MO) were performed according to 

the manufacturer’s protocol to confirm cell viability.  Control and NP-treated cells were 

washed with PBS and incubated for 3 hrs. with 3-(4,5-dimethyl-thiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) solution (5 mg/ml).  Formazan crystals formation 

was detected at 570 nm and viability was shown as % MTT reduction compared to 

control.  MTT activity was normalized to control. 

 

Elastin-Antibody Conjugated Nanoparticle Uptake by Macrophages 

 

Elastin-antibody conjugated NPs were loaded with fluorescent dye, 1, 1-

dioctadecyl-3, 3, 3, 3-tetramethylindotricarbocyanine iodide (DIR), as described 

previously167.  Macrophages (RAW 264.7, ATCC® TIB-71™) were grown in 24-well 

tissue culture plates followed by incubation with EL-DIR-NPs (1 mg/ml) at 37°C in 5% 

CO2 for 4 hours and 24 hours.  Cells were washed three times with sterile PBS and 

imaged before and after washing using EVOS® XL Cell Imaging System to determine NP 

uptake.  As controls for charge and size, we prepared two different batches of NPs, one 

with positive surface charge and one with smaller NP size.  To create a positive surface 

charge, NPs were coated with chitosan187 (molecular weight 600K-800K) (ACROS, NJ).  

To study cytotoxicity, rat bone marrow macrophage cells (Cell Biologics, Inc., RA-

6030F) were grown in 24-well tissue culture plates followed by incubation with BB94 

NPs (0.5, 1, 2 mg/ml).  A standard Live /Dead assay was performed after 24 hours. 
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Feasibility of Nanoparticle Targeting in vivo  

 

Local elastin damage in the rat abdominal aortic region was induced by 

perivascular application of calcium chloride.69  After ten days, rats were divided into two 

groups and went through treatment with batimastat loaded NPs or blank NPs.  Briefly, 19 

male Sprague-Dawley (SD) rats (5-6 weeks old) were placed under general anesthesia 

(2% to 3% isoflurane).  The infrarenal abdominal aorta was exposed and treated 

periadventitially by placing 0.50 mol/L CaCl2-soaked sterile cotton gauze on the aorta for 

15 minutes.  The treated area was flushed with warm saline, and the abdominal incision 

was closed with sutures.  Animals were allowed to recover and were given a normal diet 

for ten days.  Adventitial inflammation and elastic lamina degradation has previously 

been shown to occur within ten days in this model.  NPs loaded with BB-94 and 

conjugated with elastin antibody (named EL-NP-BB94 henceforth, ~10mg/kg body wt.) 

were suspended in 200 μl of 0.3% rat serum albumin (Sigma Aldrich, St. Louis, MO) and 

were injected through the tail vein (n=5).  Control animals received elastin antibody-

conjugated blank NPs (named EL-NP-Blank henceforth) (n=5).  Three additional rats 

were injected with elastin antibody conjugated and DIR dye-loaded NPs (named EL-NP-

DIR henceforth) to monitor delivery of the NPs by in vivo imaging.  As a negative 

control, IgG antibody-conjugated NPs loaded with DIR dye (named IgG-NP-DIR 

henceforth) were injected through the tail vein (n=3).  To study if the systemic delivery of 

low-dose BB-94 affects MMP activity in the aorta, three rats received the same amount 

of BB-94 (600 µg of BB-94 /kg body wt.) dissolved in 200 µL PBS solution with 0.01% 

Tween 20 (Merck, Germany) by intraperitoneal injection.  
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Two days (48 hrs.) after treatment, the rats were euthanized and thoracic and 

abdominal aortic tissue segments were explanted and snap-frozen in liquid nitrogen.  

Total protein from the aortic samples was extracted by pulverizing liquid nitrogen-frozen 

tissue samples and homogenizing them in RIPA extraction buffer (50 mM Tris-HCl pH 

7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 1% Sodium deoxycholate, 0.1% 

SDS, with protease inhibitor cocktail) (Roche Diagnostic GmbH, Germany) according to 

the manufacturers protocol.  Sections of thoracic and abdominal aortic tissue were 

embedded in Optimal Cutting Temperature compound (OCT) for cryostat sectioning.  For 

DIR-loaded NP groups, whole fresh aorta and all organs were harvested and imaged 

using Caliper IVIS Lumina XR (Hopkinton, MA) with Ex/Em of 745/795 nm for 

studying targeting and bio distribution of NPs.  

 

MMP Activity in Rat Aorta 

 

The total protein from the harvested aortic tissue after 48 hours of treatment was 

quantified using the BCA protein assay kit (Pierce, IL).  An internally quenched peptide 

substrate, which is specific to MMP-2 and 9 (excitation 280 nm, emission 360 nm, MMP 

Substrate III, Anaspec, CA), was used to measure the MMP activity.  One mg of 

substrate dissolved in 50 µl dimethylsulfoxide was diluted in 10 ml of development 

buffer (50 mM Tris Base, 5 mM CaCl22H2O, 200 mM NaCl, 0.02% brij 35).  

Development buffer (96 µl) was mixed with 2 µl of the extracted protein along with 2 µl 

of substrate stock solution and incubated for one hour at 37°C.  Endpoint florescence 

intensity was read using a fluorescence plate reader.  
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Nanoparticle Targeting to Inhibit Aneurysm Progression 

 

To study long-term aneurysmal inhibition, another set of 13 rats was used.  AAAs 

were induced by perivascular application of calcium chloride69.  Ten days after injury, 

NPs (~10mg/kg body wt.) were injected via tail vein once a week for four weeks (n=5 

EL-NP-BB94, n=5 EL-NP-Blank, and n=3 EL-NP-DIR).  Rats were euthanized on day 

38, and organs and aorta were harvested. IVIS imaging was used to confirm targeting and 

bio distribution in the EL-NP-DIR group.  Aortic tissues from the EL-NP-Blank and EL-

NP-BB94 groups were harvested as described above. 

 

In situ Zymography 

 

To examine the activity of MMPs in the aortic tissue samples in situ, zymography 

was performed on histological sections of aorta isolated at 48 hours and 38 days after NP 

injection.  Gelatinolytic activity was demonstrated in unfixed cryostat sections (8 μm 

thick) using DQ-gelatin as a substrate (Life, IL).  Cryostat sections of the abdominal aorta 

were air-dried for 10 minutes.  One part DQ-gelatin (1 mg/ml of DI water) was mixed 

with nine parts 1% agarose (Promega, WI) in PBS containing DAPI (1 μg/ml) (Life 

Technologies, IL).  A drop of the mixture was added to each section, and each section 

was then incubated in development buffer for one hour at 37 C.  As a positive control, in 

one sample MMP activity was blocked by MMP inhibitor 1, 10-phenanthroline 

monohydrate (0.2mmol/L) (Life Technologies, OR).  Images were captured using 

EVOS® XL cell imaging system. 
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Histological Analysis  

 

Formalin-fixed samples were embedded in paraffin, and 5 µm sections were 

mounted on glass slides and heated overnight to adhere the tissues to the slides and melt 

the paraffin.  Subsequently, the slides were deparaffinized with xylenes and graded 

ethanol and stained with hematoxylin and eosin for tissue morphology, Verhoeff-van 

Gieson (VVG) for elastic fibers, and Alizarin Red S with a Light Green SF counterstain 

for calcification.   

 

Immunostaining for Macrophages (CD80) 

 

 Aortic sections from the 38 day aneurysm study were used.  Tissues preserved 

with formalin were embedded in paraffin and sectioned as previously described.  

Subsequently, the slides were deparaffinized with xylenes and graded ethanol, and 

antigen retrieval was done using the HCl method.  The slides were incubated overnight at 

room temperature with the primary antibody, Mouse Anti Rat CD80 (Bio-Rad, Hercules, 

CA).  Subsequently, the slides were incubated for 1 hour with the secondary antibody, 

Cy7 goat anti-mouse IgG (H+L) (Bioss Inc., MA), and DAPI nucleic acid stain and then 

imaged with a fluorescent microscope, EVOS® XL Cell Imaging System.   

 

Aneurysmal Development  

 

Initial external diameter was measured at the time of the CaCl2 injury.  Final 

aortic diameter was recorded before euthanasia on day 38.  Aneurysmal development was 

calculated as shown below: 
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Statistical Analysis 

 

In vitro experiments were performed in triplicate and repeated twice; for in vivo 

studies, five animals were used per group per time point.  Student’s t test was performed 

using Microsoft Excel, and exact permutation test was performed using the NPAR1WAY 

procedure in SAS.  The data are expressed as the mean ± standard deviation; results were 

considered to be significant when P-values ≤0.05. 

 

Results 

 

Nanoparticle Characterization 

 

NPs were prepared with three different initial BB-94 concentrations (5:1, 10:1, 

15:1 polymer-to-drug ratio).  No significant differences were found for the percent yield 

of NPs among the three batches.  Increasing the initial BB-94 concentration during NP 

preparation did not increase the final BB-94 loading in the NPs.  Particle-surface charge 

was dependent on initial polymer to BB-94 ratios.  All BB-94-loaded NPs were 

negatively charged; however, a higher polymer to BB-94 ratio led to a more negative 

surface charge (see Table 2). 

 

NP Degradation and BB-94-Release Study 

 

A higher polymer-to-BB-94 ratio led to a smaller NP size, which was confirmed 

visually by TEM (See Figure 12).   

When suspended in DI water, Blank-NPs lost substantial weight (65±4.5%) in 

four weeks; the majority of weight loss occurred in the first week (45.65±6.8) (See Figure 

13).  
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Table 2.  Characterization of nanoparticles and BB-94 loading.   

 

Polymer/ 

BB-94 ratio 

% Yield 

n=4 

% Loading 

n=3 

NP size (nm) 

n=3 

ζ-potential (mV) 

n=3 

15:1 62.9± 33.9 5.7 ± 2.5 123.8 ± 24.9# -83.1 ±2.8#* 

10:1 44.2 ± 3 8.4 ± 2.7 153.5 ± 26.8# -47.2±5.5#* 

5:1 38.4 ± 18 6.7 ± 0.4 196.3 ± 3.3 -29.1±5.1 

 

*Represents statistical significance (Student’s unpaired t-test, P < 0.05),  

#Represents statistical significance (exact permutation test, P < 0.05) compared to 5:1 

group. 

 

 

 
 

Figure 12.  TEM images of 15:1, 10:1, and 5:1 polymer to BB-94 ratio NPs. 

 

 

 

 
 

Figure 13.  Weight loss of blank NPs over four weeks. 
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This data was also corroborated by NP degradation seen in the GPC study.  

Polymer nanoparticles as prepared showed one broad peak at retention time at ~9 

min.  With time, low molecular weight products (with retention time ~12-13 min) 

appeared suggesting polymer degradation (See Figure 14). 

 In vitro BB-94 release from the NPs was gradual and lasted for up to eight days. 

Although final BB-94 loading was similar for all polymer-to-BB-94 ratios, the BB-94 

release profile varied with the starting BB-94 concentration (See Figure 15).  Slower 

release was observed in NPs with a 5:1 polymer-to-BB-94 ratio, while significant burst 

release was observed when the initial BB-94 concentration was lower (10:1 or 15:1 

polymer: BB-94 ratio).  BB-94 release was more controlled for the batch with a higher 

starting BB-94 concentration (5:1 polymer: BB-94 ratio), so these NPs were chosen for 

further study.  

 

Activity of BB-94  

 

The activity of the BB-94 loaded in the NPs was examined using gel zymography.  

When extracted BB-94 was added to the development buffer, pro-MMP-2 (72 kDa), 

active MMP-2 62kD), and MMP-9 (92 kDa) activities were inhibited completely (See 

Figure 16).  

When BB-94 extracted from the NPs was added to the RASMC cultures, ninety 

percent of MMP-9 (92 kDa) and ten percent of MMP-2 (62 kDa) activity were inhibited. 

Notably, more MMP-2 remained in the pro-form (inactivated, 72kD) when BB-94 was 

added to cell cultures (See Figure 17).  
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Figure 14.  GPC curves show peaks for degradation products at retention time (~13 min) 

at week 1 and 4. 

 

 

 

 

 
 

Figure 15.  Release kinetics of BB-94 for 8 days. 
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Figure 16.  Gel zymography study when BB-94 was used in development buffer. * 

(Student’s unpaired t test, P < 0.05) and # (exact permutation test, P < 0.05). (n=6 for 

zymography). Dashed line represents the mean value. 

 

 

 

 

 
 

Figure 17.  Gel zymography study:  Conditioned media. * (Student’s unpaired t test, P < 

0.05) and # (exact permutation test, P < 0.05). (n=6 for zymography). Dashed line 

represents the mean value. 
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There was no significant difference in the expression of tissue inhibitors of 

metalloproteinase-2 (TIMP-2) (21 kDa) between control and BB-94-treated cells (See 

Figure 18).  These results suggest that BB-94 loaded NPs inhibited MMPs without 

affecting TIMP-2 levels. 

 

NP Cytotoxicity and Cellular Uptake  

 

RAOEC and RASMC viability showed no significant change in 24 hours in the 

presence of NPs when compared to the control (See Figure 19A&B).  We have already 

shown that such NPs are not taken up by VSMCs167.  Inflammatory cells such as 

macrophages are commonly present at the site of AAA.  Thus, we determined if our NPs 

were resistant to macrophage uptake.  NPs labelled with a DIR dye were incubated with 

macrophage cell cultures for 24 hours (ζ-potential: -29.1±5.1, size: 196.28±3.2 nm).  Due 

to the negatively charged surface of the chosen NPs, no macrophage uptake was observed 

(See Figure 19-a1,a2,a3).  When the surface-charge was changed to positive with the 

addition of chitosan, (ζ-potential: +20.28±4.93), NPs could be seen in the cell cytoplasm 

which suggests that they were taken up by macrophages (See Figure 19C- b1,b2,b3).  

When NP size was changed to ~125 nm and the surface charge remained negative (ζ-

potential: -83 ±2.8), there was again significant uptake by macrophages (See Figure 19C- 

c1,c2,c3).  Overall, ~200 nm NPs with negative surface charge that were chosen for further 

studies were resistant to macrophage uptake.  Bone marrow macrophages viability 

showed no significant change in 24 hours for blank and BB-94 loaded NPs at thirteen 

fold concentration used in vivo (See Figure 19D). 
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Figure 18.  Reverse gel zymography(n=4). 

 

 

 

 
 

Figure 19.  Cells viability and uptake in presence of NPs. * (Student’s unpaired t test, P < 

0.05) and # (exact permutation test, P < 0.05) (n=6).  Dashed line represents the mean 

value. 
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In vivo NP Targeting and MMP Inhibition  

 

 We have shown that NPs with a surface conjugated anti-elastin antibody can 

target the site of aortic injury in this animal model.167  We confirmed in vivo targeting, by 

observing localized fluorescence at the injury site of the abdominal aorta for the EL-NP-

DIR group, suggesting excellent targeting to the injured aorta (See Figure 20A), while no 

fluorescence was observed in the injured aorta for control IgG-NP-DIR group (See Figure 

20A).  

 We next examined if NPs loaded with BB-94 would target the injury site and 

inhibit local MMP activity.  Fluorescence intensity data when normalized to total protein 

content showed that the abdominal aorta had ~50% higher MMP activity than the 

thoracic aorta in the EL-NP-Blank group (See Figure 20B).  This result suggests that 

MMPs were activated by CaCl2-mediated injury and that blank NPs targeted to the 

abdominal aorta did not suppress MMP activity.  The EL-NP-BB94 group showed 56% 

lower MMP activity in the abdominal aorta in comparison to the thoracic aorta, 

suggesting that MMP activity was completely suppressed at the injury site (See Figure 

20B).  When the same concentration of BB-94 was delivered by intraperitoneal injection 

(IP), MMPs in the abdominal aorta showed 63% higher activity than the thoracic aorta, 

suggesting that systemic delivery of the same dose of BB-94 was ineffective in 

suppressing local MMP activity in the abdominal aorta (See Figure 20B).  These results 

were further confirmed by in situ zymography studies on histological sections of 

abdominal aorta in different groups.  The green fluorescence in this assay is caused by the  
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Figure 20.  Targeting and MMPs activity after 10 days. * (Student’s unpaired t test, P < 

0.05) and # (exact permutation test, P < 0.05) (n=5). Dashed line represents the mean 

value. * Indicates lumen. Bar = 100 μm. 
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enzymatic degradation of DQ gelatin, which directly corresponds to the MMP activity in 

the sections.  Intense green fluorescence corresponding to higher MMP activity was 

found in the sections of the abdominal aorta in the control animals receiving EL-NP-

Blank or IP injected BB-94 (IP-BB-94); a significant suppression of MMP activity was 

observed in the BB-94 NP group (EL-NP-BB94), (See Figure 20C).  This was similar to 

the positive controls, where MMP activity was inhibited by the addition of 1, 10-

Phenanthroline during in situ zymography.  

 

Long-term Targeting and Bio Distribution of NPs 

 

With encouraging results in the 48-hour targeting experiment, we next determined 

if such targeting can inhibit MMP activity and aneurysmal development for prolonged 

periods.  Because our BB-94-release study showed slow release for up to seven days, we 

decided to inject elastin-antibody conjugated NPs once weekly for four weeks.  After 

injections (4 injections over a total of 38 days after first CaCl2 injury), a three-fold 

increase was seen in the fluorescence signal in the abdominal aorta for the EL-NP-DIR 

group as compared to a single injection (Figure 21A compared to Figure 20A), indicating 

more NPs accumulated at the injury site.  The fluorescence signal of DIR (% 

florescence/dry weight of organ) increased in the abdominal aorta from 26.3 to 78.7%.  

At the same time, the signal decreased from 0.78 to 0.003% for the kidneys, from 15 to 

2.7% for the liver, and from 48 to 18% for the spleen in comparison to the 2-day study 

(Figure 21 B).  These data show that additional NPs accumulated at the injury site, while 

other organs were clearing non-targeted NPs.  More importantly, the NPs were seen  
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Figure 21.  Targeting after 4 weeks. Cross-section of abdominal aorta showing 

NPs(purple). Matrix metalloproteinase activity in abdominal aortic sections by in situ 

zymography at 38 days. 

 

 



 

70 
 

 

infiltrating from the adventitial side of the aneurysmal aorta through the vasa vasorum 

rather than from the luminal side and then attaching to the degraded elastic lamina deep 

within the medial layer (See Figure 21C).  

 

Long-Term Inhibition of MMPs and Aneurysmal Development 

 

 When NPs were injected weekly for four weeks after CaCl2 injury, MMP activity 

was still suppressed in animals receiving EL-NP-BB94 NPs (similar to the 48-hour 

study), while MMPs remained elevated in the EL-NP-Blank group (Figure 21D).   

  

 

Figure 22.  Histological analysis at 38 days. 

 

Hematoxylin and eosin staining showed significant inflammation in the adventitia in the 

EL-NP-Blank group, while the EL-NP-BB94 group maintained greater structural 

integrity and had little inflammation (Figure 22A and Figure 22E respectively).  

Verhoeff-van Gieson (VVG) staining revealed the elastic lamina was broken and 

damaged in the EL-NP-Blank group while elastin preservation was observed in the EL-
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NP-BB94 group (Figure 22B and Figure 22F). Similarly, alizarin red S staining showed 

heavy medial calcification in the EL-NP-Blank group and a substantial reduction in 

calcification in the BB94-treated group (EL-NP-BB94) (Figure 22C and Figure 22G).  

Macrophage immunohistochemistry revealed that the blank NPs group had a higher 

density of M1 macrophages in the adventitia and ruptured media in comparison to the 

BB-94 group (Figure 22D and Figure 22H). 

 

 

Discussion 

 

 This study demonstrates that the use of targeted NPs carrying a potent MMP 

inhibitor can successfully inhibit local MMP activity in inflammatory vascular conditions 

such as AAA.  We optimized NP size, surface charge, and BB-94 loading. Our data agree 

with the literature:  During NP preparation, the particle size increased with increasing 

drug concentration and the negative surface charge decreased.188  Particle size and drug 

loading are important parameters that dictate the release of a drug from NPs.  The 

negative surface charge facilitates electric repulsion among NPs, thus increasing NP 

stability.189  Surprisingly, increasing initial BB-94 concentration did not lead to a higher 

amount of BB-94-loading, with the maximal loading being only 6-8% of BB-94 in PLA.  

This may have occurred due to the physical properties of the original drug.190  Although 

drug-loading was similar, drug dispersion within NPs, and thus ultimate release, varied 

with initial drug concentration.  Our study shows that higher polymer content (15:1 and 

10:1 polymer to BB-94 ratio) results in burst release on day 1.  This may have occurred 

due to the smaller particle size with higher surface area for drug diffusion.  NPs in the 5:1 
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polymer-to-BB-94-ratio batch had the biggest particle size and showed a more-controlled 

release because of either lower surface area or better drug encapsulation.  Our NP 

degradation data with blank NPs showed significant weight loss after 7 days and an 

increase in polymer degradation products as assessed by GPC, suggesting that drug 

diffusion and polymer degradation occurred simultaneously.  

Maintaining drug activity during NP synthesis is necessary for success in 

targeting.  We showed that BB-94 extracted from NPs suppresses MMP activity both in 

gel zymography and in cell cultures.  We found that BB-94 added to the development 

buffer during gel zymography was more effective in inhibiting MMPs (both the active 

and pro forms) than when it was added to cell culture media.  It is possible that BB-94 

dissociated during gel electrophoresis when the cell culture media was loaded in gels, 

thus causing lower MMP inhibition.  The findings from reverse zymography showed no 

significant difference in the expression of TIMP-2 protein within the groups; this is 

consistent with the literature showing that BB-94 has no effect on TIMPs.191  

Particle size and charge are important criteria in targeting NPs to the vasculature.  

It has been shown that NP-targeting of vascular ECM in an aneurysm site occurred for 

particle sizes below 200 nm.167  That study also showed that a negatively charged NP 

surface prevents NP uptake by vascular smooth muscle cells.  Because macrophages are 

phagocytic and present at the aneurysmal site, we determined if a negative surface charge 

would also prevent the uptake of NPs by macrophages.  We showed that macrophages do 

not take up ~200 nm BB-94-loaded NPs (5:1 polymer to BB-94 ratio, negative surface 
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charge).  Based on these results and previous VSMC-uptake results, these NPs would 

remain in the ECM.  

Elastin-antibody conjugation on the NP surface also allowed us to target these 

NPs to the site of elastin damage found in the aneurysm site due to the fact that this 

antibody recognizes only core amorphous elastin that is exposed during elastic lamina 

degradation.167  Our data with DIR dye-loaded NPs confirmed that they targeted only the 

injury site while sparing the healthy aorta.  More importantly, we found that NPs entered 

preferentially from the adventitial side through the vasa vasorum and lodged deep in the 

media when delivered systemically.  This is clinically advantageous because the 

intraluminal thrombus generally present in an aneurysm can obstruct NP-targeting from 

the luminal side.  Notably, more degradation and inflammation is seen clinically in the 

adventitia.192 

MMPs, in particular MMP-9 (gelatinase B/92 kDa) and MMP-2 (gelatinase A/72 

kDa), play a significant role in AAA development and progression.78  The goal of 

targeted treatment is to suppress MMP activity at the site of AAA so that further ECM 

degradation can be prevented.  Our MMP fluorogenic assay showed that the MMP-2 and 

MMP-9 activity (represented as a ratio of abdominal aorta over thoracic aorta in the same 

animal) was 50% higher in the EL-NP-Blank and BB-94 IP groups, suggesting that 

sustained MMP activation was induced by CaCl2 injury and was not inhibited in the 

abdominal aorta by these treatments.  Only when BB-94 was delivered by targeted NPs 

(EL-NP-BB94) was a significant decrease in MMP activity seen in the abdominal aorta 

for prolonged periods, suggesting that targeted NPs delivered BB-94 at the site of injury 
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and inhibited local MMP expression.  This can occur by the suppression of macrophage 

activation as we have observed; this result is consistent with previous studies103.  These 

data are corroborated by the qualitative in situ zymography findings on histological 

sections of the abdominal aorta, which show suppression of gelatinolytic activity in 

tissues in the EL-NP-BB94 group alone 193.  Others have shown that a daily IP injection 

of 15 mg of BB-94 inhibited the expansion of AAA in elastase-induced aneurysms in rats 

However, the study lasted for only seven days, and AAA was treated only by the 

systemic inhibition of MMPs.  We show that targeted NPs with very low concentrations 

of BB-94 injected only once weekly (equivalent to 25 µg total BB-94/animal/day) can 

significantly inhibit aneurysm expansion in a four week study.  This corresponds to a 

580-fold lower BB-94 concentration than others have used systemically103.  Several 

clinical trials for systemic MMP inhibition as a cancer treatment failed because of poor 

bioavailability, dose limiting toxicity, and systemic side effects, such as musculoskeletal 

problems, which limited the dose that could be tolerated.168  The side effects caused by 

MMP inhibitors in cancer patients led to the use of substantially lower doses of MMP 

inhibitors in clinical trials for aneurysm prevention170.  The propranolol treatment was 

successful in aneurysm-prone turkeys and caused an increase in the tensile strength of 

tissue rings from the abdominal aorta.194  However, clinical trials of the systemic delivery 

of, beta-blockers like propranolol, did not show significant changes in the growth rate of 

aneurysms, but caused systemic side effects and reduced patient compliance11,169, thus 

dampening enthusiasm for pharmacological therapy for AAA.  Because our targeted 

treatment’s site-specificity permits very low doses of the drug, such therapy will be an 
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attractive option for preventing the expansion of aneurysms in patients without causing 

systemic side effects. 

In conclusion, we demonstrate that targeted delivery of very small doses of MMP 

inhibitor BB-94 by NPs is an effective way to suppress MMP activity and aneurysmal 

development in an experimental rat model of AAA. 
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CHAPTER V 

 

TARGETED THERAPY WITH NANOPARTICLE LOADED WITH 

PENTAGALLOYL GLUCOSE (PGG) PROTECTS VASCULAR  

ELASTIC LAMINA FROM MMP-MEDIATED DEGRADATION  

AND PREVENTS PROGRESSION OF ABDOMINAL  

AORTIC ANEURYSM (AAA) 

 

 

Abstract 

 

Rationale 

 

It has been established that elastin degradation is a primary cause of AAA171, and 

whether AAA is large or small, regression of it and restoration of normal arterial 

architecture would be preferable.  Although no one previously could show elastin 

regeneration, our group demonstrated the protective effect of PGG in terms of protecting 

damaged and non-damaged elastin from protease degradation and the ability of PGG to 

help tropoelastin molecules to assemble and make new crosslinked elastin by vascular 

smooth muscle cells121.  We have already developed NPs that target to AAA.  We would 

like to use these NPs to deliver PGG at the site of aneurysms.  Such site-specific targeting 

of PGG would help arterial elastin restoration.  With the regeneration of elastin, we can 

reverse the progression of aneurysms. 

 

Objective 

 

Degeneration of elastin plays a vital role in the pathology and progression of 

abdominal aortic aneurysm (AAA), a disease that is characterized by damage to the 

arterial wall.  Our previous study showed that pentagalloyl glucose (PGG), a core 

derivative of tannic acid, hinders the development of AAAs in a clinically relevant 
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animal model when applied locally.  In this study, we tested whether targeted 

nanoparticles (NPs) can deliver PGG to the site of an aneurysm and prevent aneurysmal 

growth by protecting elastin. 

 

Approach and Results 

 

PGG-loaded albumin NPs with a surface-conjugated elastin-specific antibody 

were prepared and characterized by size, surface charge, PGG release, cellular toxicity, 

and uptake.  Aneurysms were induced by calcium chloride-mediated injury to the 

abdominal aorta in rats.  NPs were injected into the tail vein after 10 days of CaCl2-

injury.  Rats were euthanized after 38 days, and aneurysmal development was studied.  

PGG-loaded NPs were non-toxic and were not taken up by vascular smooth muscle cells, 

macrophages, or endothelial cells in vitro.  NPs with a surface tethered elastin antibody 

targeted and delivered PGG to the aneurysmal site.  Such PGG delivery led to reduction 

in macrophage recruitment, matrix metalloproteinase (MMP) activity, elastin 

degradation, calcification, and development of aortic aneurysm as compared to control 

blank NPs(57±25% vs. 158±47% dilation, respectively). 

 

Conclusions 

 

Targeted delivery of PGG protects aortic elastin from further degradation in 

aneurysm-prone arterial segments.  It offers the potential for the development of effective 

and safe therapies for AAA.  
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Introduction 

 

Abdominal aortic aneurysm (AAA) is a vascular disease characterized by the 

expansion of the abdominal aorta due to structural weakening of the aortic wall.  Five-to-

nine percent (5-9%) of people over 65 years of age suffer from AAA; the mortality rate 

for ruptured AAAs is 90%.195  The cause of AAA is unknown in the majority of cases; 

however, the key regulators involved in the pathogenesis of this disease are known.  

Animal studies show the possible efficacy of medications like statins, RAS inhibitors, 

beta adrenoceptor blockers, nonsteroidal anti-inflammatory medications, and macrolides 

in the treatment of AAA, but relevant clinical studies are limited196.  Extracellular matrix 

(ECM) degradation of the wall of the aorta is a key contributor to the progression of the 

disease 197.  Matrix metalloproteinases (MMPs) are enzymes that are responsible for the 

degradation of ECM components.  As inflammation progresses, infiltrating cells secrete 

pro-MMPs, which are activated extracellularly and degrade the ECM, specifically elastin 

laminae198.  Thus, one approach to mitigate the progression of AAA is to treat the injury 

site with MMP inhibitors, such as hydroxyamate-based MMP inhibitors like 

batimastat103, marimastat199, and prinomastat97.  Our group has previously shown a 

significant reduction in the development of AAA with the targeted delivery of batimastat, 

a hydroxyamate-based MMP inhibitor200.  However, enzyme inhibitors can only stop 

further degradation but cannot reverse the disease. 

To completely restore the structural integrity of the aortic wall, it is necessary not 

only to prevent degradation, but to also allow for regeneration of the elastic lamina.  In 

previous studies, we have shown that a plant-derived polyphenolic tannin, pentagalloyl 
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glucose (PGG), has the ability to prevent elastolytic degradation by binding to enzyme 

cleavage sites on elastin.  This high affinity of PGG to elastin allows PGG to form a 

protective coating that prevents further degradation14.  We showed that a single 

periadventitial administration of PGG prior to CaCl2 injury in rats prevented degradation 

of elastin and hindered AAA development.  Recently, we have shown that PGG 

significantly increased insoluble elastin in rat aortic smooth muscle cells (RASMCs) 

from both healthy and aneurysmal aortae121.    

In this study, we tested the hypothesis that PGG-loaded bovine serum albumin 

(BSA) NPs with a surface conjugated elastin antibody will allow for the targeted delivery 

of PGG to the site of aortic aneurysm in a CaCl2 mediated injury model.  We show that 

such systemic therapy both specifically targets the aneurysmal site while sparing the 

healthy aorta and delivers PGG to the site.  This local release of PGG provides a 

protective barrier for elastin from degradation in early stage aneurysm.  We further show 

that such NP therapy allows regeneration of the damaged elastic lamina and significantly 

suppresses aneurysmal expansion of the aorta.  

 

Materials and Methods 

 

PGG-Loaded NPs Preparation 

 

Bovine serum albumin (BSA) NPs were prepared by coacervation201. 

Nanoparticles (NPs) were obtained by dissolving 250 mg of BSA (Seracare, MA, U.S.A.) 

in 4 mL of deionized (DI) water.  Pentagalloyl glucose (PGG, 125 mg) was dissolved in 

400 µl of dimethyl sulfoxide and added slowly to the BSA solution.  After an hour of 

stirring, the mixture was added dropwise to 24 mL of ethanol under continuous 
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sonication (Omni Ruptor 400 Ultrasonic Homogenizer, Omni International Inc, 

Kennesaw, GA) for half an hour.  Glutaraldehyde (EM grade 70%, EMS, PA, USA) was 

added during stirring at different concentrations of 0.3, 0.7, 1, 12, and 100 μg/mg protein 

(BSA).  These batches are named 0.3, 0.7, 1 and 12 hereafter. 

 

DIR Loaded NPs Fabrication 

 

Nanoparticles (NPs) were obtained by dissolving 250 mg of bovine serum 

albumin (BSA; Seracare, MA, U.S.A.) in 4 mL of deionized water.  2.5 mg of fluorescent 

dye, 1, 1-dioctadecyl-3, 3, 3, 3-tetramethylindotricarbocyanine iodide (DIR) was 

dissolved in 100 µl of acetone and added later to the BSA solution.  After an hour of 

stirring, the mixture was added dropwise to 24 ml of ethanol under continuous sonication 

(Omni Ruptor 400 Ultrasonic Homogenizer, Omni International Inc., Kennesaw, GA) for 

half an hour.  For crosslinking, glutaraldehyde (EM grade 70%, EMS, PA, U.S.A.) was 

added during.  For animal studies to get the highest loading, 42 µg glutaraldehyde per mg 

BSA was used.  For in vitro studies, different recipes were followed.  For normal 

negatively charged ~200 nm sized particles, 12 µg glutaraldehyde per mg BSA was used 

and nanoparticles were conjugated as will be described in the next section.  For positively 

charged ~200 nm sized particles, 12 µg glutaraldehyde per mg BSA was used.  For 

negatively charged ~50 nm sized particles, 6 µg glutaraldehyde per mg BSA was used 

and sonication time was 60 min. 
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Conjugation of Elastin Antibody to NPs 

 

Ten milligrams (10 mg) of pentagalloyl glucose (PGG)/DIR loaded NPs were 

incubated with 2.5 mg heterobifunctional crosslinker α-maleimide-ω-N-

hydroxysuccinimide ester poly (ethylene glycol) (Maleimide-PEG-NHS ester, MW 2000 

Da, Nanocs Inc., NY, U.S.A.) to achieve a sulfhydryl-reactive particle system.  Traut’s 

reagent (34 µg, G-Biosciences, Saint Louis, MO) was used for thiolation of 10 µg of 

rabbit anti-rat elastin antibody (United States Biological, Swampscott, MA), and the 

mixture was incubated in HEPES buffer (20 mM, pH=9.0) for an hour at room 

temperature.  Thiolated antibodies were rinsed with HEPES buffer and were added to 

NPs (4 µg antibody per 1 mg NPs) and incubated overnight for conjugation.  

 

Nanoparticle Yield 

 

To quantify the NP yield, the total final dry weight of the NPs was recorded, and 

NP yield was calculated using the formula below: 

 

 

 

Characterization of PGG Loaded Albumin NPs— 

Particle Size, Zeta Potential  

 

Particle size and zeta potential of the NPs in suspension were determined using a 

90Plus Particle Size Analyzer (Brookhaven Instruments Co., Holtsville, NY).  

Loading efficiency of PGG in the NPs was quantified by determining PGG 

concentration in the washed out ethanol at λ (max) = 765 nm using UV 

spectrophotometry and the equation shown below: 
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In vitro Release Studies 

Release kinetics was determined by suspending a known amount of NPs in 

phosphate buffered saline at 37°C on a shaker.  Suspensions were centrifuged for 15 

minutes at 4000×g at room temperature for various periods of time.  The supernatant was 

collected and analyzed for PGG concentration by the addition ferric chloride, which 

binds to PGG, and the absorbance was read at 765 nm with a spectrophotometer.  Percent 

release was calculated as: 

 

 

 

In vitro Cytotoxicity of PGG Loaded NPs  

 

Rat aortic smooth muscle cells, rat aortic endothelial cells and rat bone marrow 

macrophage cells (Cell Biologics, Inc., RA-6030F) were cultured and then incubated with 

NPs for blank (0.5 mg/ml) and PGG-NPs (0.5 mg/ml) for 24 hours.  A Live/Dead assay 

(Life Technologies, Inc., MD, U.S.A.) was performed according to the manufacturer’s 

protocol to confirm cell viability.  Cell number was calculated from the activity of lactate 

dehydrogenase (LDH) using CytoTox 96® Non-Radioactive Cytotoxicity Assay 

(Promega). 

 

Macrophage Uptake of NPs  

 

Elastin-antibody conjugated NPs were loaded with the fluorescent dye, DIR (EL-

NP-DIR), as described above.  Macrophages (RAW 264.7, ATCC® TIB-71™) were 

grown in 24-well tissue culture plates and subsequently incubated with EL-NP-DIR (1 

mg/ml) at 37°C in 5% CO2 for 24 hours.  Cells were washed afterwards with sterile 
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phosphate buffered saline for a total of three washes.  Cells were imaged before and after 

the washing step using the EVOS® XL Cell Imaging System to determine NP uptake.  

Two different batches of NPs were prepared as controls for charge and particle size.  One 

batch was prepared with a positive surface charge, and another batch was prepared with a 

smaller particle size as described in DIR loaded NPs fabrication section.  Positive surface 

charge was created by coating the NPs with deacetylated low molecular weight chitosan2 

(Sigma, St. Louis, MO).  Normal NPs were conjugated with elastin antibody while we 

didn’t conjugate other two batches. 

 

In vivo Study—Early Stage Aneurysm  

 

The rat abdominal aortic section (infrarenal) was subjected to perivascular 

application of calcium chloride to induce local elastin degradation200.  

Briefly, male Sprague-Dawley rats (5-6 weeks old) (n=24) were placed under 

general anesthesia by inhalation of 2% to 3% isoflurane.  Calcium chloride was applied 

periadventitially by placing a 0.50 mol/L CaCl2-soaked sterile cotton gauze pad on the 

infra-renal abdominal aorta for 15 minutes.  Afterwards, warm saline was used to flush 

the area, and sutures were used to close the incision.  Animals were given a normal diet 

for ten days.  Three animals were euthanized to study histological Changes after ten days.  

NPs loaded with PGG and conjugated with an elastin antibody (EL-NP-PGG, ~10mg/kg 

body wt.) were suspended in 200 μl of phosphate buffered saline and injected into rats 

(n=6) through the tail vein once every two weeks for a total of four weeks (2 injections 

total).  Control animals received elastin antibody-conjugated blank NPs (EL-NP-Blank) 

(n=6).  Nine other rats were injected with elastin antibody conjugated and 1, 1-
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dioctadecyl-3, 3, 3, 3-tetramethylindotricarbocyanine iodide (DIR) dye-loaded NPs (EL-

NP-DIR) to study the delivery of the NPs to the abdominal aorta through in vivo imaging.  

From these nine rats, three were euthanized one week after the first injection; the other 

three were euthanized two weeks after the first injection.  The last three received one 

extra injection in week two for a total of two injections, and these rats were euthanized 

after four weeks.  After euthanizing rats, the whole body and the individual organs were 

imaged using a Caliper IVIS Lumina XR (Hopkinton, MA) with Ex/Em of 745/795 nm, 

to calculate the biodistribution and targeting of the NPs to the site of injury in the aorta.  

Biodistribution was calculated based on the equation below: 

 

 

Rats from the EL-NP-Blank and EL-NP-PGG groups were euthanized on day 38, 

and tissues were harvested and snap frozen or formalin fixed for further analysis.  

 

Ultrasound Analyses of the Abdominal Aorta 

 

A high-frequency ultrasound device (Vevo 2100, VisualSonics, Toronto, Canada) 

utilizing a linear array probe (MS 400D, frequency 30–55 MHz) was used to complete 

ultrasound imaging of the abdominal aorta.  During the imaging, the animals were kept 

under light anesthesia by inhalation of 2% isoflurane, and fixed in the dorsal position on 

the imaging table.  Vevo 2100 analysis software was used to process M-Mode ultrasound 

data.  Three different cardiac heart beats were recorded for each M-Mode measurement 

made.  Systolic and diastolic diameters were measured, and this data was used to 
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calculate the circumferential cyclic Green-Lagrange strain with the assumption that strain 

is uniform around the vessel according to the following equation:  

 

 

Where, Dsys = Systolic internal diameter and Ddia = Diastolic internal diameter 

 

Measurement of Matrix Metalloproteinase (MMP) Activity  

in the Aorta and In Situ Zymography  

 

Aortic tissues frozen in liquid-nitrogen were pulverized and homogenized in 

RIPA extraction buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% 

Triton X-100, 1% Sodium deoxycholate, 0.1% SDS, with protease inhibitor cocktail) 

(Roche Diagnostic GmbH, Germany) in accordance with the manufacturer’s protocol to 

extract protein from the aortic tissues.  The total protein from the explanted aortic tissue 

after 38 days was quantified using the BCA protein assay (Pierce, IL). MMP-2 and 

MMP-9 activity were measured using an internally quenched peptide substrate (excitation 

280 nm, emission 360 nm, MMP Substrate III, Anaspec, CA).  One mg of the substrate 

was dissolved in 50 µL of dimethyl sulfoxide, and the solution was diluted in 10 mL of 

development buffer (50 mM Tris Base, 5 mM CaCl22H2O, 200 mM NaCl, 0.02% brij 

35). 2 µL of substrate stock solution and 2 µL of the extracted protein were mixed with 

96 µL of the development buffer and incubated for one hour at 37°C.  A fluorescent plate 

reader was used to read endpoint florescence intensity.  

To examine the activity of MMPs in the aortic tissue samples in situ zymography 

was performed on frozen sections.  Gelatinolytic activity was demonstrated in frozen 

sections (8 μm thick) using DQ-gelatin as a substrate (Life Technologies, IL).  Cryostat 
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sections of abdominal aorta were air-dried for 10 minutes at 4°C.  One part DQ-gelatin (1 

mg/ml of DI water) was mixed with nine parts 1% agarose (Promega, WI) in phosphate 

buffered saline containing DAPI (1 μg/ml) (Life Technologies, IL).  A drop of the 

mixture was added to each section and incubated in development buffer for one hour at 

37 C.  As a positive control, in one sample MMP activity was blocked by MMP 

inhibitor 1, 10-phenanthroline monohydrate (0.2mmol/L) (Life Technologies, OR). 

Images were captured using the EVOS® XL cell imaging system. 

 

Desmosine Content  

 

The snap frozen samples of rat aortas (abdominal) were pulverized, lyophilized, 

and hydrolyzed in 6N HCl at 95C for 12 h.  The samples were dried under a continuous 

stream of nitrogen gas (~45 minutes) and subsequently reconstituted in 1.0 mL of 0.01 N 

HCl.  The desmosine content was measured using an Enzyme Linked Immunosorbent 

Assay kit (MyBioSource, San Diego, U.S.A., catalog number MBS748709) according to 

the manufacturer’s protocol.  For comparison, three healthy abdominal aortas (non-

injured) were studied for desmosine content. 

 

Lysyl Oxidase (LOX) Activity Assay  

 

Aortic tissue snap frozen in liquid nitrogen was pulverized and homogenized in 

500 µl of 6 M urea, 50 mM Tris (pH 7.4), 1 mM PMSF Protease Inhibitor, 1 µM 

pepstatin A, and 6 µM leupeptin.  The homogenates were shaken on a plate shaker at 4°C 

overnight.  The homogenized tissues were then centrifuged at 10,000g for 30 min at 4°C.  

The pellets were then suspended in the same buffer and homogenized and centrifuged 
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again.  The supernatant was collected, and LOX activity was measured by quantifying 

LOX concentration using the Amplite Fluorimetric LOX Assay Kit (AAT Bioquest, 

Sunnyvale, CA, U.S.A., catalog number 15255)202. 

 

Aneurysmal Development  

 

Initial external diameter was measured at the time of CaCl2 injury.  Final aortic 

diameter was recorded before euthanasia on day 38.  Aneurysmal development was 

calculated as mentioned before. 

 

Histological Analysis  

 

Formalin-fixed samples were embedded in paraffin, and 5 µm sections were made 

and mounted on glass slides.  The slides were heated overnight 55-60°C to adhere the 

tissues to the slides and melt the paraffin.  Subsequently, the slides were deparaffinized 

with xylenes and graded ethanol and stained with Verhoeff-van Gieson (VVG) staining 

for elastic fibers, Alizarin Red S staining with a Light Green SF counterstain for 

calcification, hematoxylin and eosin staining for tissue morphology, and phenol staining 

for PGG. 

 

Immunostaining for Macrophages (CD68) 

 

Tissues preserved with formalin were embedded in paraffin and sectioned as 

previously described.  Subsequently, the slides were deparaffinized with xylenes and 

graded ethanol, and antigen retrieval was done using citrate buffer (Millipore, MA, 

Catalog number 21545).  The slides were incubated overnight at 4°C with the primary 

antibody, Mouse Anti Rat CD68 (AbD Serotec, Catalog number, MCA341GA).  Staining 
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was completed using a DAB kit (Enzo Life Sciences, NY, Catalog number ADI-950-122-

0100). 

 

Immunofluorescence for PECAM-1 (CD31) 

 

Tissues from DIR rats preserved with formalin were embedded in paraffin and 

sectioned as previously described.  Subsequently, the slides were deparaffinized with 

xylenes and graded ethanol, and antigen retrieval was done using citrate buffer 

(Millipore, MA, Catalog number 21545).  The slides were incubated overnight at 4°C 

with the primary antibody, Rabbit Anti Rat CD31 (Novus Biologicals, Catalog number, 

Nb100-2284).  Staining was completed using TRITC conjugated goat anti-rabbit IgG 

(Jackson ImmunoResearch Laboratory, Catalog number 111-025-003). 

 

Alanine Aminotransferase (ALT) Analysis 

 

Blood was drawn via a heart stick with a 3 mL syringe, and the blood was 

centrifuged at 3000 rpm for 3 min.  The serum was examined for the activity of Alanine 

Aminotransferase (ALT) using a commercially available kit (Sigma, St. Louis, MO, 

Catalog number, MAK052). 

 

Histological Analysis of Liver 

 

Formalin-fixed samples were embedded in paraffin, and 5 µm sections were 

mounted on glass slides and heated overnight to adhere the tissues to the slides and melt 

the paraffin.  Subsequently, the slides were deparaffinized with xylenes and graded 

ethanol and stained with hematoxylin and eosin for tissue morphology.  
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Statistical Analysis 

 

Data were analyzed by one-way ANOVA followed by Tukey’s test or Dunnett’s 

test.  Levene's test was used to verify the homogeneity of variances and normality 

assumption was checked using a Shapiro-Wilk test.  Dunnett's procedure was used when 

comparing all other treatments to a reference and Tukey's was used for all pairwise 

comparison.  

Exact permutation test was performed using the NPAR1WAY procedure in SAS.  

The data are expressed as the mean ± standard deviation; results were considered to be 

significant when P-values ≤0.05. 

 

Results 

 

Nanoparticle Yield and Loading  

 

BSA NPs were prepared with the coacervation method.  The batch with 12 µg 

glutaraldehyde/mg BSA had the best yield (~61%), which was significantly higher than 

the yield for other batches (See Figure 23A).  The batch with 12 µg glutaraldehyde/mg 

BSA also showed good PGG loading as compared to the other batches (See Figure 23B).  

 

Particle Size and ζ-Potential 

 

NP size increased with increasing glutaraldehyde concentration during NP 

preparation. Increased size led to a decrease in ζ-potential; however, all NPs showed 

negative surface charge (See Figure 24).    
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Figure 23.  Yield and Loading of NPs with 0.3, .7, 1 and 12 µg glutaraldehyde per mg of 

BSA. (n=3). (*, P<0.05, Dunnett’s test, compared to the 12 µg group). 
 

 

 

 

 
 

Figure 24.  Zeta potential and particle size of NPs with 0.3, 0.7, 1 and 12 µg 

glutaraldehyde per mg of BSA. (n=3). (*, P<0.05, Dunnett’s test, compared to the 12 µg 

group). 
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In vitro PGG Release from Nanoparticles 

 

The PGG was released within 10 days with significant burst release in the first 

few hours from all batches of NPs except the batch in which 12 µg glutaraldehyde/mg 

BSA was added during sonication.  This particular batch showed more controlled release 

of PGG that lasted for 60 days (See Figure 25); thus, these NPs were chosen for further 

studies.  

 

In vitro Cytotoxicity and Macrophage Uptake  

 

The rat aortic smooth muscle cell (RASMCs), the rat aortic endothelial cell 

(RAOEC), and the rat bone marrow macrophage (BMM) viability as assessed by live-

dead assays showed no significant change after 24 hours of incubation with NPs in 

comparison to the control (See Figure 26).  

No significant changes were observed in number of cells based on LDH assay 

(See Figure 27). 

Because many macrophages are present at the AAA site, we assessed macrophage 

uptake of NPs in vitro.  NPs loaded with 1, 1-dioctadecyl-3, 3, 3, 3-

tetramethylindotricarbocyanine iodide (DIR) dye (ζ-potential~ -31, size~ 200 nm) were 

incubated with cells for 24 hours.  Macrophage uptake was not detected due to the 

negative charge and optimum size of the NPs (See Figure 28, I and II).  When the 

surface-charge was changed to be positive with the addition of chitosan, (ζ-potential: 

+13, size~ 200 nm) or when NPs were smaller (ζ-potential: -37, size~ 50 nm), NPs were 

seen in the cell cytoplasm, indicating cellular uptake (See Figure 28, III-VI).  Thus, we  
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Figure 25.  Release kinetics of PGG over 60 days. 
 

 

 

 
 

Figure 26.  Cell viability. 
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Figure 27.  Cells viability quantification. 
 

 

 

 
 

Figure 28.  NPs uptake by macrophages. 
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used NPs with negative surface charge and ~200 nm particle size for animal studies 

because they were resistant to macrophage uptake.  

 

Biodistribution of NPs 

 

We used a calcium chloride-mediated acute perivascular injury model to cause 

elastin degradation and aneurysmal expansion in the infrarenal abdominal aorta of rats.  

Ten days after injury, DIR dye-loaded NPs were systemically administered via tail vein 

injection.  The NPs targeted the injured aortic elastic lamina sites within the first few 

hours and were retained even after one week as measured by fluorescence intensity 

(IVIS, 59±8% targeting based on per weight basis).  NPs remained at the site of elastin 

damage in the aorta after two weeks with no additional injections, although the amount of 

NPs decreased (36±5%).  With the addition of another injection at two weeks, targeting 

to the damaged aorta was restored to 67±13% when tested at four weeks, suggesting that 

one injection every two weeks can successfully keep NP targeting at a high level (See 

Figure 29). 

The fluorescence signal of DIR (% florescence/dry weight of organ) after 4 weeks 

decreased from 5.6% to 4.7% for the kidneys, from 2.6 to 1.6% for the liver, and from 30 

to 20% for the spleen in comparison to the fluorescence observed after 1 week (See 

Figure 30).  These results show that NPs accumulated at the injury site, while other 

organs were clearing non-targeted NPs.  

More significantly, infiltration of the NPs was seen from the vasa vasorum on the 

adventitial side rather than from the luminal side (See Figure 31A) while nanoparticle did 

not stay in vasa vasorum (See Figure 31B). 
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Figure 29.  DIR NPs after one, two and four weeks in different organs. 
 

 

 

 

 
 

Figure 30.  Organ distribution of fluorescent NPs after one, two, and four weeks. (#P < 

0.05, Tukey's test, for pairwise comparison). (n=3 per time point) 
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Figure 31.  Cross-section of abdominal aorta showing NPs(purple) and vasa 

vasorum(Red). 
 

 

Histological Analysis of the Abdominal Aorta  

 

Histological sections of aortae 10 days post calcium chloride injury showed 

elastin damage (See Figure 32). 

After confirming elastin damage 10 days post injury, in order to study the effect 

of targeted delivery of PGG, we systemically injected either EL-NP-PGG or EL-NP-

Blank (control without PGG) NPs ten days after CaCl2 injury once every two weeks.  

Hematoxylin and eosin staining showed significant inflammation in the adventitia in the 

EL-NP-Blank group with a degraded medial layer (See Figure 33A), while the EL-NP-

PGG group maintained greater structural integrity and had little inflammation after 38 

days (See Figure 33B).  Verhoeff-van Gieson (VVG) staining revealed that the elastic 

lamina was broken and damaged in the EL-NP-Blank group (See See Figure 33C) while  
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Figure 32.  Histological section of abdominal aorta 10 days after calcium chloride injury. 

 

 

 

 

 
 

Figure 33.  Histological analysis. 
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the elastic lamina was preserved in the EL-NP-PGG group (See Figure 33D).  Alizarin 

Red-S staining showed heavy medial calcification in the EL-NP-Blank group (See Figure 

33E), and a substantial reduction in calcification in the EL-NP-PGG group (See Figure 

33F).  For histological confirmation of PGG delivery by the NPs, aortic tissues were 

stained with a phenol-specific stain.  Only the EL-NP-PGG group showed phenol specific 

staining surrounding the elastic lamina (See Figure 33H), while the EL-NP-Blank group 

showed no phenolic staining (See Figure 33G), clearly suggesting that NPs delivered 

PGG to the aneurysmal site.  Macrophage immunohistochemistry showed pan-

macrophage marker (CD68) in EL-NP-Blank group adventitia (See Figure 33I1-4) while 

EL-NP-PGG group doesn’t show CD68 (See Figure 33J1-4).  

Moreover, full aortic sections were shown in all six rats of each group (See Figure 

34). 

 

Circumferential Strain Assessment with  

High-Frequency Ultrasound 

 

Circumferential strain for young healthy rats before calcium chloride injury was 

12.25±1.28% (See Figure 35A).  It was reduced to 3.27±2.7% for the EL-NP-Blank 

group at 38 days after injury suggesting stiffening of the aorta (See Figure 35B).  

Circumferential strain for the EL-NP-PGG group was similar to the healthy control 

11.93±1.38% after 38 days, clearly suggesting that PGG maintained healthy elastic 

lamina and aortic elasticity (See Figure 35C). 
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Figure 34.  Hematoxylin and eosin staining of whole aortic sections. 
 

 

 

 

 

 
 

Figure 35.  M-mode tracings and circumferential cyclic strain over 38 days. 
 

 

MMP Activity  

 

We next examined if NPs loaded with PGG inhibited local MMP activity at the 

site of AAA. Snap frozen tissues were collected, and MMP activity was measured with a 

MMP fluorogenic substrate assay.  When normalized to total protein content and reported 

as abdominal/thoracic aorta, fluorescence intensity data, the EL-NP-Blank group showed 
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a 250% increase in MMPs as compared to the healthy thoracic aorta.  In the EL-NP-PGG 

group, MMP activity was suppressed to healthy levels (See Figure 36A).  This result was 

further confirmed by in situ zymography for MMPs where high activity was seen in the 

EL-NP-Blank group, while minimal MMP activity was seen in EL-NP-PGG group (See 

Figure 36A B).  

 

Elastin Remodeling at the Aneurysm Site 

 

Lysyl Oxidase (LOX) activity assay:  When blank NPs were delivered (EL-NP-

Blank), lysyl oxidase (LOX) activity in the abdominal aorta was reduced to 50% of the 

healthy thoracic aorta, showing suppression of elastin remodeling.  When PGG loaded 

NPs were delivered (EL-NP-PGG), there was a 250% increase in LOX activity as 

compared to the healthy thoracic aorta (See Figure 37), confirming that PGG supports 

LOX production at the aneurysm site. 

Desmosine content (characteristic of elastin crosslinking):  Healthy non-injured 

abdominal aortas had 1606±173 pmole desmosine per mg dry tissue.  Desmosine content 

of the aortic samples showed a significant decrease in the EL-NP-Blank group (446±110 

pmole/mg dry tissue), showing degradation of elastic fibers.  In contrast, the EL-NP-PGG 

group showed restoration of healthy desmosine levels (1405±328 pmole/per mg dry 

tissue) confirming elastin preservation due to PGG delivery (See Figure 38).  

 

Aneurysmal Development 

 

The control group (EL-NP-Blank) showed an increase in aortic diameter 

(158±43%) at 38 days after CaCl2-mediated injury, suggesting that targeted blank NPs  
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Figure 36.  MMP activity (-2 and -9) by fluorogenic substrate and in situ zymography. * 

Indicates lumen. Bar = 400 μm. (*P < 0.05, Tukey's test,) (n=3). 

 

 

 
 

Figure 37.  LOX activity. (*P < 0.05, Tukey's test,) (n=3). 
 

 

 
 

Figure 38.  Desmosine content of aorta. (*P < 0.05, Tukey's test,) (n=3). 
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did not have any therapeutic effect on aneurysmal development.  However, when PGG-

loaded NPs were injected, a significant suppression of aneurysmal development was seen 

(3 fold) (p-value <0.05, using exact permutation test) (See Figure 39). 

 

Hepato-Toxicity of NPs 

 

PGG exposure had minimal cytotoxic effects in rats.  Noticeable changes 

indicative of hepatotoxicity were not observed in hematoxylin and eosin stained sections 

of liver (See Figure 40).  In addition, the levels of serum alanine aminotransferase (ALT), 

an enzyme used to assess liver function, were consistently within the acceptable range of 

5 to 45 U/L (EL-NP-Blank rats, 13±0.7 U/L, and EL-NP-PGG rats, 17.8±0.9 U/L), and 

these results are comparable with previous studies14. 

 

Elastin Remodeling at the Aneurysm Site for BB-94 NPs Group  

 

In the previous chapter, we investigated the treatment of AAA using BB-94 

loaded nanoparticles.  To compare PGG and Bb-94 we measure LOX and desmosine for 

those samples from previous study.  While batimastat reduced the MMP activity, it was 

only slightly effective in increasing the desmosine content of the aorta, (851±192 pmole 

desmosine per mg dry weight of tissue) (See Figure 41). 

Batimastat did not affect the LOX activity as it is shown in Figure 42. 

 

Discussion 

 

This study demonstrates that the use of targeted NPs carrying PGG, a potent 

protector of elastin, can successfully inhibit the progression of AAA, and that such 

delivery offers an attractive strategy for the treatment of this disease.  
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Figure 39.  Expansion of external diameter in two groups after 38 days. #, P < 0.05, Exact 

permutation test compared to EL- NP-Blank group. (n=6) 
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Figure 40.  The liver histology data. 

 

 

 

 

 
 

Figure 41.  Desmosine content of EL-NP-Blank group vs EL-NP-BB94 group. 

Tukey's test, * P < 0.05 (n=3). 
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Figure 42.  Analysis for LOX content of EL-NP-Blank group vs EL-NP-BB94 group. 

 

 

We first optimized NP size, surface charge, and PGG loading by varying the 

amount of crosslinker during NP fabrication.  The particle size, loading, and yield 

increased with increasing glutaraldehyde concentration, which is similar to what has been 

reported earlier_.  When 12 µg glutaraldehyde/ mg BSA was used, we obtained NPs (ζ-

potential~ -20mV, size ~200 nm) optimal for targeting the ECM in aortic aneurysm 

according to previously reported values 167.  Also, as reported previously203, the amount 

of glutaraldehyde cross linking is a crucial parameter for drug release from the NPs.  We 

found that the 12 µg glutaraldehyde/mg BSA batch had the longest release profile for 

PGG.  Thus, these were chosen for further in vivo studies.  

We wanted our NPs to target the degraded elastic lamina present in the ECM and 

not be removed by phagocytosis by resident macrophages.  Macrophages are present at 

the aneurysmal site204 and are responsible for phagocytosis.  Our NPs showed minimal 
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uptake by macrophages.  To confirm the mechanisms of uptake, we also made the same 

size NPs but with a positive surface charge or smaller NPs with negatively charged 

surfaces.  Both were taken up by macrophages in vitro.  This data clearly suggests that 

both size (~200 nm) and negative surface charge were responsible for minimizing uptake 

by macrophages.  However, the in vitro results show minimal uptake but the mechanism 

of targeting can be a combination of both macrophages uptake and anti-elastin/elastin 

attachment in vivo.  

Biodistribution data showed that NPs clearance occurs in spleen and liver as it 

was shown before205.  It is possible that nanoparticles, are taken up primarily by Kupffer 

cells in the liver. 

Phenol staining of histological sections clearly showed that PGG was indeed 

released at the aneurysmal site by targeted NPs, and it bound to elastin and protected it 

from further damage, as the aorta appeared healthy and the elastic lamina was preserved 

in the PGG group as compared to the blank NP group.  Considering the loading, burst 

release of nanoparticles and targeting, 80 µg PGG will be released in first 5 hours that is 

enough to preserve elastin fibers.  

Local inflammatory cells and vascular smooth muscle cells secrete MMPs in 

aneurysmal tissue3.  MMP-9 and -2 play significant roles in AAA development as it has 

been shown that MMP-9 and -2 knockout mice are protected from aneurysm formation 

and progression206.  The goal of targeted treatment is either to suppress MMP activity at 

the site of AAA or to protect elastin fibers from further degradation by blocking sites on 

elastin that MMPs act on during degradation.  We have previously shown that PGG binds 
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tightly to elastic lamina and prevents its degradation by MMPs14.  In situ zymography 

showed that the MMP activity was significantly suppressed in the EL-NP-PGG group as 

compared to the EL-NP-Blank group.  This may be because PGG binding to elastin 

caused inhibition of elastin degradation and release of elastin peptides.  It is known that 

elastin peptides are chemotactic to macrophages207.  We also saw decreased macrophage 

response at the aneurysm site that may be the cause of lower MMP activity seen in the 

PGG group.  This suggests that PGG protects elastin, and less elastin peptides are present 

in the EL-NP-PGG group.  Therefore, elastin-derived peptide-mediated inflammatory cell 

recruitment is reduced208.  However, we have looked at CD68, but more studies are 

needed to quantify M1 and M2 macrophages population.  

Histological analysis of aortae showed inflammatory thickening of the aneurysm 

wall 209 that is an indicator of inflammatory AAA while EL-NP-PGG group did not show 

inflammation. 

It has been shown in human AAA samples that desmosine content is significantly 

reduced in aneurysm samples in comparison to healthy aortic samples210, which is what 

we have also observed in this study.  Clearly, CaCl2 mediated injury caused elastin 

degradation as seen by histology and significantly lower desmosine content (446±110 

pmole/mg dry tissue), an elastin-specific cross-linking amino acid, in the blank NP group.  

The EL-NP-PGG group showed intact elastic lamina by histology and desmosine content 

similar to that of the healthy uninjured abdominal aorta (1405±328 pmole /per mg dry 

tissue for the EL-NP-PGG group and 1606±173 pmole desmosine per mg dry tissue for 

the healthy non-injured abdominal aorta).  We wanted to test if these results were due to 
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lower inflammation and MMP activity or if there was active elastic fiber remodeling by 

VSMCs in the PGG group.  We have previously shown that the MMP inhibitor 

batimastat also prevents aneurysm expansion200.  While batimastat reduced MMP 

activity, it was only slightly effective in increasing the desmosine content of the aorta, 

(851±192 pmole desmosine per mg dry weight of tissue).  PGG delivery remarkably 

allowed for the preservation of desmosine content similar to the healthy aorta despite 

aortic injury induced by calcium chloride 10 days prior to NP delivery.  

To further test why PGG delivery caused restoration of healthy elastic lamina, we 

chose to study the activity of LOX.  LOX is an extracellular copper-containing enzyme 

that catalyzes the formation of aldehydes from lysine residues in elastin precursors, 

resulting in cross-linking of elastin, which is essential for the integrity and elasticity of 

mature elastin211.  In our study, tissues from the EL-NP-PGG group showed 150% 

increase in the production of LOX, which was significantly lower in the abdominal tissue 

of the EL-NP-Blank group.  On the other hand, batimastat delivery did not result in a 

difference in LOX activity.  This increased LOX production at the AAA site only in the 

PGG group would lead to crosslinking of tropoelastin molecules secreted by cells and 

may have allowed for the creation of healthier elastic lamina.  This was evident in 

histological sections only from the PGG group.  We have also shown previously that 

LOX production increases when aneurysmal vascular smooth muscle cells are treated 

with PGG in vitro and that in turn increased insoluble elastin production by cells121.  This 

observation was confirmed in vivo in the present study.  Although the exact mechanism 

by which PGG increases LOX production by cells is unknown, we hypothesize that 

https://en.wikipedia.org/wiki/Enzyme
https://en.wikipedia.org/wiki/Lysine
https://en.wikipedia.org/wiki/Elastin
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polyphenols like PGG lock in soluble tropoelastin molecules secreted by cells in the 

extracellular matrix.  This then signals cells to produce more LOX to crosslink this 

tropoelastin and create elastic fibers.  We have also shown that fibrillin levels increase in 

vivo when cells are treated with PGG.  Fibrillin is an essential glycoprotein found at the 

periphery of mature elastic fibers212.  Others have shown that LOX gene transfer resulted 

in partial prevention of the development of CaCl2-induced AAA213.  Thus, PGG works 

by dual action.  It binds to degraded elastic fibers and protects it from further degradation 

(stabilization), but at the same time it locks in tropoelastin secreted by cells to regenerate 

lost elastic lamina (regeneration).  With targeted delivery of PGG, the protection of 

elastin from further damage and ongoing elastin regeneration leads to suppression of 

aneurysmal development in the aorta as shown by lower aneurysmal expansion in the EL-

NP-PGG group (57% expansion) compared to the EL-NP-Blank group (158% 

expansion). 

Finally, we also show that the NPs and PGG delivery were not hepato-toxic.  ALT 

is released into the blood due to the loss of liver cells.  Therefore, an increase in this 

enzyme is a sign of liver cell damage214.  ALT levels were not altered by NP injection, 

and the livers appeared to be normal in histological stainig, suggesting that NPs are not 

toxic to the liver in this 38 day study.  

In conclusion, we show that targeted delivery of PGG by NPs is an effective way 

to protect elastin fibers against further damage and restore healthy elastic lamina in an 

experimental rat model of AAA.  Thus, such targeted PGG therapy leads to suppression 

of aneurysm development. 
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CHAPTER VI 

 

REVERSAL OF ELASTIN CALCIFICATION AND ANEURYSM IN A  

RAT MODEL USING DUAL TARGETED THERAPY WITH  

EDTA- AND PGG-LOADED NANOPARTICLES 

 

 

Rationale 

 

Degeneration of elastin plays a crucial role in the pathology and progression of 

abdominal aortic aneurysms (AAA), a disease characterized by the loss of structural 

integrity of the arterial wall.  AAA is often associated with calcification, which increases 

the risk of AAA rupture4.  Current option for AAA is the replacement of weakened aorta 

with a vascular graft.  Our group has shown earlier that treatment with pentagalloyl 

glucose (PGG) increased elastin matrix deposition by healthy and aneurysmal vascular 

smooth muscle cells in vitro121.  Furthermore, we have shown that EDTA nanoparticles 

can remove calcification from calcified artery with minimal dose of EDTA using the 

same nanoparticles technology172.  We would like to use EDTA and PGG and deliver it at 

the site of aneurysms.  Such dual therapy of EDTA followed by PGG help reducing 

calcification and arterial elastin restoration.  

 

Objective 

 

Our previous study showed that EDTA loaded nanoparticles (NPs) conjugated 

with an anti-elastin antibody can be targeted to the site of calcification in a calcium 

chloride rat model.  Here, we tested whether EDTA NPs can first remove calcification 

associated with AAA and then if PGG delivery to the site of aneurysm can regenerate 

damaged elastin. 
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Approach and Results 

 

Albumin nanoparticles (NPs) with surface conjugated elastin-specific antibody 

that targets only degraded elastic lamina and loaded with either EDTA or PGG were 

prepared.  The calcium chloride induced rat model of abdominal aortic aneurysm was 

used.  The animals were divided into four groups.  A moderate stage aneurysm and 

calcification was allowed to develop for four weeks and one group of animals received 

tail vein injection of EDTA NPs (twice a week).  Two weeks after EDTA therapy (total 6 

weeks), these rats received PGG loaded NPs (once every two weeks).  In other three 

groups, aneurysm was allowed to progress for six weeks.  At that point, one group 

received blank NPs, and one group received PGG NPs (once every two weeks).  As a 

control, one group received an MMP inhibitor, BB-94 loaded NPs (once a week).  After 

12 weeks, the rats were euthanized, and disease development, calcification, and elastic 

lamina restoration was studied.  EDTA followed by PGG NP delivery lead to reduction in 

macrophage recruitment, MMP activity, elastin degradation and calcification in the aorta 

as compared to control blank, BB-94, and PGG NPs delivery alone.  It restored vascular 

elastic lamina and improved vascular function as observed by improvement in 

circumferential strain. 

 

Conclusions 

 

Dual targeted therapy may be an attractive option to remove mineral and restore 

healthy arterial structures in moderately developed aneurysmal disease. 
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Introduction 

 

Clinically, abdominal aortic aneurysms (AAAs) are characterized by chronic 

inflammation and degradation of extracellular matrix (ECM) components by proteolytic 

enzymes like matrix metalloproteinases (MMPs).  This can lead to inflammatory 

infiltration in the adventitia and calcification and degeneration of medial elastic lamina195,215.  

The infiltrating cells, including B and T cells, mast cells, macrophages, and neutrophils 

secrete proinflammatory mediators, leading to the acceleration of matrix degradation and 

causing weakening of the blood vessel wall216.  Calcification is frequently found within 

the aneurysm wall, and the calcified region has a higher stiffness than the surrounding 

arterial wall217.  Although abdominal aortic aneurysm is a life-threatening disease, there 

are no pharmacological therapies available to stop growth and reverse the disease.  

Several drug therapies in animal models have been shown to be successful in preventing 

aneurysm formation, but were started at the onset of aneurysm218.  Such studies provide 

insight into the mechanisms of aneurysm formation, but do not provide therapy for 

already developed aneurysms.  Over ninety percent of patients are diagnosed at a 

moderate stage of aneurysm, and therapies are critically needed to reverse these.  

Currently, such patients are monitored for aneurysmal expansion by ultrasound; when the 

diameter of the diseased aorta exceeds 5.5 cm surgical replacement, surgical replacement 

with a vascular graft is recommended.  This threshold is arbitrary as it has been shown 

that at that size rupture risk exceeds interventional risk but ten percent of deaths occur 

below this expansion.    
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Perivascular application of calcium chloride to the infra-renal aorta of rats is a 

common model for aortic abdominal aneurysm (AAA).  It shows noticeable 

inflammatory infiltrates including macrophages and medial elastin calcification similar to 

that seen clinically67.  Our group has previously shown that systemic delivery of elastin-

antibody conjugated, poly (D,L-lactide) nanoparticles loaded with hydroxamate-based 

MMP inhibitor batimastat (BB-94) causes suppression of AAA when delivered at the 

onset of disease200.  We have also shown that EDTA-loaded bovine serum albumin 

(BSA) nanoparticles with a surface conjugated elastin antibody deliver EDTA to the 

aneurysm site and remove mineral when applied at an early stage of the disease172.  

However, both these studies were initiated at a very early stage of the disease.  To mimic 

the clinical situation and treat moderate-size aneurysms, we designed this study to test if 

targeted nanoparticles can regress already developed aneurysms in rats.  It has been 

previously shown that calcification is a sign of the inflammatory process involved with 

the degeneration of the arterial wall, and it is correlated with increased risk of aneurysm 

rupture4.  Here, we used a dual-therapy approach:  First, we employed targeted 

nanoparticle-based delivery of EDTA to removed mineral deposits in arteries.  Then, we 

targeted delivery of pentagalloyl glucose (PGG), a polyphenol known to stabilize elastin 

and increase elastic fiber deposition14.  We show that such dual therapy removes mineral 

deposits from calcified arteries and restores elastic lamina in the aneurysmal wall, leading 

to improvement in vascular elastance.  
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Materials and Methods 

 

Study Design 

 

 The purpose of this study was to investigate the effect of calcium removal and 

elastin preservation on calcium chloride-induced abdominal aortic aneurysm in a rat 

model.  We used anti-elastin conjugated nanoparticles loaded with DIR to target the 

injury site.  Further, we loaded the nanoparticles with either EDTA, BB-94 or PGG to see 

their therapeutic effect, if any, on AAA.  In addition to histological analysis, we 

measured diameter change, MMP activity, desmosine, LOX and calcium content to 

investigate the effect of these treatments.  Sample sizes were determined by power 

analysis using our lab’s previously published data as preliminary data.  A power analysis 

with 90% power and α = 0.05 indicated that a sample size of a minimum of six rats per 

group was required for diameter change.  Data analyses were not blinded.  Outliers were 

not excluded. 

 

Preparation of DiR-loaded, EDTA-loaded  

and PGG-loaded nanoparticles  

 

Bovine serum albumin (BSA) NPs were prepared by coacervation201.  Briefly, 

DIR-loaded nanoparticles (NPs) were obtained by dissolving 250 mg of bovine serum 

albumin (BSA; Seracare, MA) in 4 mL of deionized water.  Then, 2.5 mg of the 

fluorescent dye 1, 1-dioctadecyl-3, 3, 3, 3-tetramethylindotricarbocyanine iodide (DIR) 

was dissolved in 100 µl of acetone and added to the BSA solution.  After an hour of 

stirring, the mixture was added dropwise to 24 mL of ethanol under continuous 

sonication (Omni Ruptor 400 Ultrasonic Homogenizer, Omni International Inc., 
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Kennesaw, GA) for half an hour.  For crosslinking, glutaraldehyde (EM grade 70%, 

EMS, PA) was added during stirring (42 µg per mg of BSA).  Next, 10 mg of DIR-loaded 

NPs (DIR-NPs) were incubated with 2.5 mg heterobifunctional crosslinker α-maleimide-

ω-N-hydroxysuccinimide ester poly (ethylene glycol) (Maleimide-PEG-NHS ester, MW 

2000 Da, Nanocs Inc., NY) to achieve a sulfhydryl-reactive particle system.  Traut’s 

reagent (34 µg, G-Biosciences, Saint Louis, MO) was used for thiolation of 10 µg of 

rabbit anti-rat elastin antibody (United States Biological, Swampscott, MA), and the 

mixture was incubated in HEPES buffer (20 mM, pH=9.0) for an hour at room 

temperature.  Thiolated antibodies were rinsed with HEPES buffer and were added to 

NPs (4 µg antibody per 1 mg NPs) and incubated overnight for conjugation. 

EDTA-loaded nanoparticles were obtained by dissolving 200 mg of bovine serum 

albumin (BSA; Seracare, MA) and 100 mg ethylenediaminetetraacetic acid disodium salt 

(EDTA) (Fisher scientific, NJ) in 4 mL of deionized water and pH was adjusted to 8.5.  

The aqueous solution was added drop-wise to 16 mL ethanol under probe sonication for 1 

hour.  For crosslinking, glutaraldehyde was added during sonication (10 µg per mg of 

BSA).  The elastin antibody conjugation procedure was similar to that of DiR-loaded 

NPs. 

PGG-loaded nanoparticles were obtained by dissolving 250 mg of BSA (Seracare, 

MA) in 4 mL of deionized (DI) water. Pentagalloyl glucose (PGG, 125 mg) was 

dissolved in 400 µl of dimethyl sulfoxide and added slowly to the BSA solution.  After an 

hour of stirring, the mixture was added dropwise to 24 mL of ethanol under continuous 

sonication for half an hour.  Glutaraldehyde was added during stirring at a concentration 
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of 12μg/mg protein (BSA).  The elastin antibody conjugation procedure was similar to 

that of DiR-loaded NPs. 

 

In vivo Study  

 

Calcium Chloride-Injury Model 

 

Perivascular application of calcium chloride was used to create aneurysms in the 

abdominal aorta of the rats69.  By 30 days, elastic lamina showed extensive calcification 

and degradation with a moderate increase in external diameter that mimics clinically 

moderate stage of the disease.  We chose this time point to start the treatments to reverse 

AAA.  The diagram in Figure 1 depicts details of the animal experimentation.  Briefly, 

Sprague-Dawley rats (5-6-weeks-old) were placed under general anesthesia (2% to 3% 

isoflurane).  A 0.50 mol/L CaCl2-soaked sterile cotton gauze was placed on the exposed 

infrarenal abdominal aorta for 15 minutes.  Afterwards, the area was flushed with warm 

saline and sutures were used to close the abdominal incision.  After surgery, the animals 

were given a normal diet and allowed to recover for thirty days.  Either DiR dye-loaded 

or drug-loaded NPs were then introduced. 

 

Targeting and Bio-distribution of NPs 

 

Thirty days after the initial CaCl2 injury, rats were injected with elastin antibody 

conjugated and DIR dye-loaded NPs (EL-NP-DIR) via the tail vein.  After 24 hours, the 

rats were euthanized.  The entire body and the individual organs were imaged using a 

Caliper IVIS Lumina XR (Hopkinton, MA) with Ex/Em of 745/795 nm to calculate 
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biodistribution and targeting of NPs to the site of injury in the aorta.  Biodistribution was 

calculated as mentioned before. 

 

Reversal of Moderate-Size Aneurysms with Drug Therapy 

 

Thirty days after perivascular application of calcium chloride, the rats were 

divided into four separate treatment groups (n=6 per group).  One group of rats received 

tail vein injection of NPs loaded with EDTA and conjugated with elastin antibody (EL-

NP-EDTA, ~10 mg/kg body wt.) suspended in 200 µL of PBS twice a week; the other 

three groups did not receive any treatment.  After the first two weeks, the EDTA-treated 

group was given NPs loaded with PGG and conjugated with an elastin antibody once 

every two weeks for four weeks (EL-NP-EDTA+NP-PGG ~10mg/kg body wt.).  The 

second group of six rats was given NPs loaded with PGG and conjugated elastin antibody 

(EL-NP-PGG, ~10mg/kg body wt.) once every two weeks over four weeks.  A third 

group of six rats was given NPs loaded with BB-94 and conjugated elastin antibody (EL-

NP-BB94, ~10mg/kg body wt.) once every week for four weeks.  Finally, the last group 

of six rats received blank NPs conjugated with elastin antibody once every two weeks for 

four weeks (EL-NP-Blank~10mg/kg body wt.).  Two weeks after completing treatment, 

the rats were then euthanized.  The entire study lasted for 12 weeks total.  After 

euthanasia, the tissues were harvested.  They were either snap frozen or fixed in formalin 

for further examination.  
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MMP Activity in Rat Aorta and In situ Zymography 

 

The snap frozen samples of the abdominal aorta were pulverized and 

homogenized in RIPA extraction buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM 

EDTA, 1% Triton X-100, 1% Sodium deoxycholate, 0.1% SDS, with protease inhibitor 

cocktail) (Roche Diagnostic GmbH, Germany) in accordance with the manufacturer’s 

protocol to extract protein from the aortic tissues.  A BCA protein assay (Pierce, IL) was 

used to quantify the total protein in the harvested aortic tissue.  MMP activity was 

measured with an internally quenched peptide substrate (excitation 280 nm, emission 

360nm, MMP Substrate III, Anaspec, CA).  One mg of substrate dissolved in 50 µl of 

DMSO was diluted in 10 ml of development buffer (50 mM Tris Base, 5mM 

CaCl2•2H2O, 200mM NaCl, 0.02% brij 35).  The development buffer (96 µl) was mixed 

with 2 µl of extracted protein along with 2 µl of substrate stock solution and then 

incubated for an hour at 37°C.  A fluorescence plate reader was used to read the endpoint 

florescence intensity.  

In situ zymography was performed on frozen sections to evaluate MMP activity in 

the aortic tissue samples.  Sections of the abdominal aorta obtained from sectioning with 

a cryostat (8 µm) were left to air-dry for 10 min at 4°C.  One part DQ-gelatin (1mg/ml of 

DI water) was mixed with nine parts 1% agarose (Promega, WI) in PBS containing DAPI 

(1 µg/ml) (Life Technologies, IL).  Each section was treated with a drop of the mixture 

and then incubated at 37°C for one hour in the development buffer.  MMP inhibitor 1, 

10-phenanthroline monohydrate (0.2 mmol/L) (Life Technologies, OR), was used to 

block the MMP activity of one of the samples, which was used as a positive control.  
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Afterwards, an EVOS® XL cell imaging system was used to capture images of the 

samples. 

 

Desmosine Content of the Aorta 

 

The snap frozen samples of the abdominal aorta were pulverized, lyophilized and 

hydrolyzed in 6N HCL at 95°C for 12 h14.  Using nitrogen gas supplied in a continuous 

stream, the samples were dried.  Afterwards, they were reconstituted in 1.0 mL of 0.01 N 

HCL. An ELISA kit (MyBioSource, San Diego, CA) was used to measure the desmosine 

content in accordance with the protocol set by the manufacturer.  Another group of six 

healthy non-injured abdominal aortas were also studied for comparison. 

 

Lysyl Oxidase (LOX) Activity Assay 

 

After being snap frozen in liquid nitrogen, the aortic tissues were pulverized and 

then homogenized in 500 µl of 6 M urea, 10mM Tris (pH 7.4), 1mM PMSF Protease 

Inhibitor, 1µM pepstatin A, and 6 µM leupeptin.  These homogenates were then placed 

on a plate shaker and shaken overnight at 4°C.  The homogenized tissues were then 

centrifuged at 10,000 g for 30 min at 4°C.  The same buffer was used again to suspend 

the pellets, which were subsequently homogenized and centrifuged.  Using the LOX 

Assay Kit (AAT Bioquest, Sunnyvale, CA) to quantify the LOX concentration in the 

supernatant, LOX activity was measured202. 

 

Calcium Assay 

 

Total calcium content was measured after lyophilizing.  Lyophilized tissue was 

hydrolyzed in 6N HCl at 95°C and dried under a continuous stream of nitrogen gas (~45 
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minutes).  The tissue was subsequently reconstituted in 0.01 N HCl and samples were 

analyzed using the Spectro Acros ICP Spectrometer (SPECTRO Analytical Instruments, 

Kleve, Germany) at the Clemson University Agricultural Service Laboratory.    

 

Ultrasound Analyses of the Abdominal Aorta 

 

A high-frequency ultrasound device (Vevo 2100, VisualSonics, Toronto, Canada) 

utilizing a linear array probe (MS 400D, frequency 30–55 MHz) was used to image the 

abdominal aorta.  During imaging, the animals were kept under light anesthesia by 

inhalation of 2% isoflurane and fixed in the dorsal position on the imaging table.  

 

Circumferential Strain Assessment with High-Frequency Ultrasound 

 

Vevo 2100 analysis software was used to process M-Mode ultrasound data.  

Three different cardiac heart beats were recorded for each M-Mode measurement made.  

Systolic and diastolic diameters were measured, and this data was used to calculate the 

circumferential cyclic Green-Lagrange strain with the assumption that strain is uniform 

around the vessel according to the equation below: 

 

 

 

Aortic External Diameter Change 

 

Initial external diameter was measured at the time of the CaCl2 injury.  Final 

aortic diameter was recorded before euthanasia (12 weeks after injury).  Additionally, we 

euthanized a group of rats 30 days after injury to observe diameter change at the onset of 

drug therapy.  Aortic external diameter change was calculated as mentioned before. 
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Histological Analysis 

 

Formalin-fixed samples were embedded in paraffin, and 5 µm sections were 

mounted on glass slides and heated overnight to adhere the tissues to the slides and melt 

the paraffin.  Subsequently, the slides were deparaffinized with xylenes and graded 

ethanol and stained with hematoxylin and eosin for tissue morphology, Verhoeff-van 

Gieson (VVG) for elastic fibers, phenol staining for PGG, Masson's trichrome for 

collagen and Alizarin Red S with a Light Green SF counterstain for calcification.  Liver 

samples were treated the same way and stained with hematoxylin and eosin for tissue 

morphology. 

 

Immunohistochemistry for Macrophages, Osteopontin (OPN) 

and Smooth Muscle Cells (VSMCs) 

 

Tissues preserved with formalin were embedded in paraffin and sectioned as 

previously described.  Subsequently, the slides were deparaffinized with xylenes and 

graded ethanol, and antigen retrieval was done using citrate buffer (Millipore, MA).  The 

slides were incubated overnight at 4°C with the primary antibody, Mouse Anti Rat CD68 

(Bio-Rad, Hercules, CA) or Rabbit Anti Rat Osteopontin (Rockland Immunochemical, 

PA).  Staining was completed using a DAB kit (Enzo Life Sciences, NY).  

Counterstaining followed using hematoxylin or eosin.  For VSMCs, the slides were 

incubated overnight at 4°C with the primary antibody, mouse smooth muscle actin (Santa 

Cruz Biotechnology, CA).  Staining was completed using a mouse-HRP AEC kit (Enzo 

Life Sciences, NY). 
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IFN-γ 

 

Blood was drawn via a heart stick with a 3 mL syringe, and after allowing 30 min 

for clotting, the blood was centrifuged at 3000 rpm for 3 min.  Rat serum was examined 

for IFN-γ using a rat ELISA kit (R&D system, MN). 

 

Alanine Aminotransferase (ALT) Analysis 

 

The serum was examined for the activity of alanine aminotransferase (ALT) using 

a commercially available kit (Sigma, St. Louis, MO). 

 

Statistical Analysis 

 

Data were analyzed by one-way ANOVA followed by Tukey’s test.  Levene's test 

was used to verify the homogeneity of variances and normality assumption was checked 

using a Shapiro-Wilk test.  Tukey's test was used for all pairwise comparison.  

An exact permutation test was performed using the NPAR1WAY procedure in 

SAS.  The data are expressed as the mean ± standard deviation; results were considered 

to be significant when P-values ≤0.05. 

 

Results 

 

Nanoparticles Delivery Design 

 

Study designed was shown in Figure 43 for targeting or therapeutic purposes. 

 

Aortic Disease Status at the Onset of Targeted Therapy 

 

Aortic aneurysm and calcification were allowed to develop for 30 days after the 

initial CaCl2 injury.  Aortic external diameter increased to 127±20.6% after 30 days.   
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Figure 43.  Schematic representation of the experiment. 

 

 

Desmosine content of the aortas decreased from 1808±290.5 to 421.9±104 pmole/mg dry 

tissue after 30 days.  Calcium content of the aortas was 43±3 µg/mg dry weight after 30 

days.  In situ zymography on frozen sections of abdominal aorta from 30 days after 

surgery showed high activity of MMPs (See Figure 44, A1).  Histological studies further 

corroborated quantitative data for calcification and elastin damage 30-day post-surgery 

(See Figure 44, A2, A3).  

 

NP Targeting to Diseased Aorta 

 

Elastin antibody conjugated and DiR dye loaded NPs were injected in tail vein at 

30 days’ post-surgery.  The NPs targeted the injured aortic elastic lamina sites within the 

first 24 hours as measured by fluorescence intensity (IVIS, 42±22% targeting based on  
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Figure 44.  In situ zymography, alizarin red and VVG for aortic samples 30 days after 

injury. 

 

 

per weight basis) (See Figure 45A).  The fluorescence signal of DIR (% florescence/dry 

weight of organ) after 24 hours was 3.6±1.5% for the kidneys, 20±7% for the liver, and 

20±14% for the spleen (See Figure 45B).  More significantly, infiltration of the NPs was 

seen from adventitial section to the medial section which elastin is damaged (See Figure 

45C).  In a previous work we have shown, once NPs get there, they stay up to 14 days at 

the site of injury.  Based on this information we chose to inject drug loaded NPs every 

two weeks for the therapeutic studies.  

 

Dual Therapy for Calcified Aneurysms 

 

Calcification Assessment 

 

When blank NPs (EL-NP-Blank) or NPs loaded with an MMP inhibitor BB-94 

(EL-NP-BB94) were delivered, aortic calcification increased (67.80±16 µg and 

53.82±12.97 µg calcium/mg dry weight of aorta respectively).  When only PGG NPs 

(EL-NP-PGG) were delivered, aortic calcification did not increase, but remained similar 

to starting levels (34.8±6 µg calcium /mg dry weight of aorta).  Only when delivery of  
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Figure 45.  NP accumulation after intravenous injection of EL-NP-DIR, 30 days after 

injury at the site of elastin damage. 

 

 

EDTA NPs was followed by PGG NPs did we see significant reduction in calcification 

(16.8±4.2 µg calcium /mg dry weight of aorta) (See Figure 46). 

Alizarin Red S staining for calcification with a Light Green SF counterstain 

showed very heavy calcification in the EL-NP-Blank (See Figure 47 B1) and EL-NP-

BB94 groups (See Figure 47 B2), especially in the media and adventitia.  Calcification 

was moderate in the EL-NP-PGG group (See Figure 47 B3).  Calcification was minimal  
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Figure 46.  Calcium content of aorta in different groups. (#P < 0.05, Tukey's test,) (n=6). 

 

 

 

 
 

Figure 47.  Histological analysis. 
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to nonexistent in dual therapy with EL-NP-EDTA followed by EL-NP-PGG (See Figure 

47 B4).  Immunohistochemical stain for osteopontin (OPN) was positive in the EL-NP-

Blank (See Figure 47 C1) and EL-NP-BB94 (See Figure 47 C2) groups and correlated 

with high calcification.  OPN was observed, but was not abundant in the other groups 

(See Figure 47 C3 and C4). 

We used FeCl3 stain to look at PGG binding to elastin.  As expected, no phenol 

staining (black-gray for PGG) was seen in the EL-NP-Blank and EL-NP-BB94 groups 

(See Figure 47 D1 and D2).  Staining was intense in the EL-NP-EDTA+NP-PGG group 

(See Figure 47 D4) as compared to the EL-NP- PGG group (See Figure 47 D3), 

suggesting a higher amount of PGG attached to elastin after removal of mineral by 

EDTA. 

 

Aortic External Diameter Change 

 

Aortic external diameter increased from 127±20.6% to 185±25% when control 

blank NPs were injected (EL-NP-Blank), suggesting that targeted blank NPs did not 

inhibit aneurysmal growth (See Figure 48 A, B).  However, when EL-NP-PGG or EL-

NP-EDTA+EL-NP-PGG NPs were injected, a significant suppression of aortic external 

diameter change was observed (66±21% and 25±7% respectively).  Moreover, NP 

delivery of BB94 (EL-NP-BB94) showed no reversal of aortic external diameter 

(156±17%).  
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Figure 48.  Diameter change. #, P < 0.05, exact permutation test. (n=6). Wooden sticks 

were kept as reference for external diameter change measurement. 

 

 

MMP Activity and In situ Zymography 

 

We examined if delivery of NPs loaded with PGG, BB-94 or EDTA followed by 

PGG would inhibit local MMP activity at the injury site.  Fluorescence intensity data 

normalized to total protein content showed highest activity in the EL-NP-Blank group, 

clearly suggesting that blank NPs did not reduce MMP activity.  All other groups (EL-

NP-PGG, EL-NP-BB94, and EL-NP-EDTA + EL-NP-PGG) showed significant 

suppression of MMP activity (See Figure 49A).  In situ zymography confirmed the 

quantitative results (See Figure 49B).  
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Figure 49.  MMP activity (-2 and -9) by fluorogenic substrate and in situ zymography. . * 

Indicates lumen. Bar = 400 μm.  (#P < 0.05, Tukey's test,) (n=6). 

 

 

Histological Analysis:  Aortic Inflammation  

 

Hematoxylin and eosin staining in EL-NP-Blank and EL-NP-BB94 groups 

showed significant adventitial inflammation with large macrophage infiltration in the 

media.  Minimal inflammation was seen in the EL-NP-EDTA+NP-PGG group (See 

Figure 50d).  Masson trichrome stain revealed that collagen deposition was abundant in 

the EL-NP-Blank (See Figure 50e) and EL-NP-BB94 (See Figure 50f) groups while 

muscle fibers were minimal.  Collagen deposition was lower in the EL-NP-PGG group 

(See Figure 50g) and minimal in EL-NP-EDTA+NP-PGG group (See Figure 50h).  

Smooth muscle staining was integrated where elastin fibers were regenerated in EL-NP-

PGG and EL-NP-EDTA + EL-NP-PGG groups. 
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Figure 50.  Hematoxylin and eosin (H&E) staining, Masson trichrome staining. 
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Immunostaining for Macrophages (CD68) and Smooth Muscle Cells 

 

 EL-NP-Blank group (See Figure 51i) showed adventitial granuloma and intense 

pan-macrophage (CD-68) stain.  In EL-NP-BB94 (See Figure 51j) and EL-NP-PGG (See 

Figure 51k) groups adventitia was positive for pan-macrophages, but with lower staining 

than blank NPs.  The dual therapy group EL-NP-EDTA + EL-NP-PGG group had the 

least amount of CD68 staining (See Figure 51l).  Depletion of medial VSMCs was 

observed in both EL-NP-Blank (See Figure 51m) and EL-NP-BB94 (See Figure 51n) 

groups while more medial VSMCs were found in EL-NP-PGG (See Figure 51o) and EL-

NP-EDTA + EL-NP-PGG (See Figure 51p) groups.  

 

Systemic IFN- γ levels 

 

 EL-NP-Blank group had the highest amount of IFN- γ (23.7±7.6 pg/ml) in serum, 

followed by EL-NP-BB94 (11.2±4.8 pg/ml).  IFN- γ levels in dual therapy group (EL-

NP-EDTA + EL-NP-PGG) and EL-NP-PGG were below detectable levels.  

 

Restoration of Elastic Lamina 

 

We tested if drug therapy restored already degraded elastic lamina.  Lysyl oxidase 

enzyme activity and desmosine content was measured, as was VVG histological staining 

for elastic lamina.  We also tested circumferential strain with ultrasound at the end of the 

study. 

 

LOX Activity 

 

LOX analysis of abdominal aortic samples, as measured by ratio of thoracic aorta 

of the same animal showed a significant decrease in LOX in the EL-NP-Blank and EL- 
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Figure 51.  CD68 macrophages and VSM IHC. 
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NP-BB94 groups, suggesting elastin crosslinking was inhibited.  However, EL-NP-PGG 

and EL-NP-EDTA + EL-NP-PGG groups showed a significant increase in LOX activity 

(See Figure 52).  

 

Desmosine Content 

 

Desmosine content of abdominal aortic samples in EL-NP-Blank was further 

reduced from 421.9±104 to 205±56 pmole desmosine/mg dry tissue, suggesting further 

elastin degradation.  EL-NP-BB94 group had 317±177 pmole desmosine/mg dry, 

suggesting BB94 treatment also did not prevent elastin degradation (no significant 

differences between EL-NP-BB94 and EL-NP-Blank).  Desmosine content in the EL-NP-

PGG group was significantly higher than in the EL-NP-Blank group (571±113pmole 

desmosine/ mg dry tissue).  The EL-NP-EDTA + EL-NP-PGG group had the highest 

amount of desmosine among four groups (940±261pmole desmosine/mg dry tissue), 

clearly showing increased elastic lamina crosslinking.  A healthy non-injured aorta has 

1808±290.5 pmole desmosine/ mg dry tissue (See Figure 53). 

 

VVG Stain for Elastic Lamina 

 

Histological evaluation of elastic lamina further confirmed quantitative results. 

VVG staining for elastic lamina in aortic sections showed severe damage in the EL-NP-

Blank (See Figure 54C1) and EL-NP-BB94 (See Figure 54C2) groups, while the elastic 

lamina was partially damaged in the EL-NP-PGG (See Figure 54C3) group. However, 

elastic lamina had a natural wavy pattern as seen in healthy aortas in dual therapy group 

(EL-NP-EDTA + EL-NP-PGG) (See Figure 54C4).  
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Figure 52.  LOX activity in the abdominal part (CaCl2 injured) over the thoracic aorta 

(non-injured, healthy). (#P < 0.05, Tukey's). n=6 
 

 

 

 
 

Figure 53.  Desmosine content of aorta of all four-groups+healthy aorta+ 30 days post 

injury. (#P < 0.05, Tukey's). n=6 
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Figure 54.  Verhoeff-van Gieson (VVG) staining. 

 

 

Circumferential Strain 

 

 Healthy rat circumferential strain was ~13.7±1.5% (n=6).  In this study, we 

measured circumferential strain at two time points, 30 days after injury (before any 

treatment began (Week 4)) and Week 12 and after the treatments finished and before 

euthanasia (See Figure 55).  We have shown both values for each group and compared 

Week 4 with Week 12 in each group.  At 30 days, there was significant decrease in 

circular strain in abdominal aortas, suggesting stiffening of the artery due to loss of 

elastin, deposition of collagen, and aortic mineralization. EL-NP-Blank and EL-NP-BB94 

did not show any significant improvement in these values after 8 weeks, while both PGG 

groups (EL-NP-PGG) and (EL-NP-EDTA+EL-NP-PGG) showed significant  



 

136 
 

 
 

Figure 55.  Circumferential strain of all four groups at week 4, after injury and before any 

treatment compared to Week 12 after treatment. (*P < 0.05, Tukey's test,) (n=6). Dashed 

line shows the circumferential strain in a healthy rat with no injury. 

 

 

improvement in circumferential strain, suggesting that elastin regeneration helps restore 

aortic biomechanics. 

 

Liver Function:  Alanine Aminotransferase (ALT) Analysis  

 

 Serum ALT, an enzyme used to assess liver function, was consistently within the 

acceptable range of 5-to-45 U/L (7.8±0.5 U/L for EL-NP-Blank, 6.4±0.1 U/L for EL-NP-

BB94, 5.2±0.6 U/L for EL-NP- PGG, and 6.7±0.5 U/L for EL-NP-EDTA + EL-NP-PGG 

rats).  No differences were observed in liver histological sections stained with 

hematoxylin and eosin, suggesting that our treatment did not have any toxic effect on the 

liver. 
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Discussion 

 

The ultimate goal of pharmacological therapy for AAA is to promote regression 

of the disease and decrease the chance of surgery and rupture.  Animal studies have been 

performed using different medications, like statins, angiotensin-converting enzyme 

(ACE) inhibitors, angiotensin receptor blockers and inhibitors of MMP218.  However, 

these pharmacological treatments were started at the onset of AAA induction, and these 

drugs reduced either inflammation or enzyme activity, but were unable to restore ECM 

milieu.  

Contrast agent targeting to AAA for enhanced imaging has been described219.  

Our group is working on targeted therapy for AAA that can halt or regress the disease 

with pharmacological agents. 

In our previous work, we have shown that an MMP inhibitor like BB-94, if 

targeted early, can halt the progression of AAA in a rat model200.  Similarly, we have 

shown that EDTA targeting can remove early mineral deposits in CaCl2 injury rat 

model172.  Both treatments were initiated near the initiation of the diseases.  However, 

pharmacological therapies cannot be preemptively used in patients as a precautionary 

measure.  Once diagnosed, patients will already have developed aneurysm.  Therefore, in 

this study, we validated the combinational use of targeted NPs carrying a chelating agent 

to remove calcification followed by delivery of PGG, a potent elastin protectant to 

reverse already developed calcified aneurysms in rats.  We included delivery of BB-94, 

an MMP inhibitor to test if merely suppressing further degradation of ECM restores 

degraded elastic lamina.  
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Different degrees of calcification are present in most AAAs220.  Systemic EDTA 

therapy has been touted and used in many countries to improve vascular function, but it is 

still controversial221.  A recently concluded clinical trial (TACT) of systemic therapy for 

coronary disease showed slightly improved cardiovascular function that did not reach 

statistical significance and is therefore not FDA-approved222.  Systemic EDTA therapy 

can chelate calcium in the serum and can also lead to bone loss and hypocalcemia221.  

Our approach of targeted EDTA therapy requires a 20-times-lower chelating agent that is 

encased in a nanoparticle and is specifically targeted to elastin calcification sites.  In this 

study, we aimed to test if advanced calcification (30 days after injury) can be removed by 

targeted NP-based EDTA therapy.  As expected, delivery of blank NPs did not inhibit 

calcification progression.  Importantly, BB-94 delivery, although successful in inhibiting 

MMP activity at the site of AAA, was unable to prevent further calcification of the aorta.  

These data clearly show that suppression of a degradation pathway alone is insufficient to 

regress an aneurysm or existing calcification.  When PGG NPs were delivered, we saw 

inhibition of further calcification.  PGG has an affinity for proline-rich proteins like 

collagen and elastin, allowing for the formation of hydrogen bonds223.  It has been shown 

that amino and carboxyl groups are potential nucleation site for calcification on elastin224.  

PGG has many phenolic hydroxyl groups, and they can interact with these binding sites 

and form hydrogen bonds.  In this way, nucleation sites for calcium binding may have 

been blocked, and therefore, elastin was protected from further calcification.  Phenolic 

stain confirms PGG binding to elastin.  This shows that even though PGG does not have 

the ability to remove calcium, it can protect elastin and possibly make a hydrogen bond 
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and block nucleation sites on elastin.  Strikingly, when we used EDTA NPs first to 

remove mineral deposits and then applied PGG NPs in a sequential manner, we saw not 

only suppression of further mineralization, but regression of deposited mineral.  After 

EDTA treatment, we saw a higher amount of PGG bind to the elastin, which led to 

blocking calcification and degradation sites.  Others have shown that OPN is abundant in 

calcified tissue and is an important regulator of arterial mineral deposition225.  Moreover, 

it has been confirmed that the aortic tissues of aneurysmal patients have more OPN than 

non-aneurysmal patients226.  In this study, OPN levels in the tissue correlated with the 

extent of calcification:  The highest OPN occurred in the blank NP group, and the lowest 

in the dual therapy group. 

Inflammation with macrophage infiltration is an important feature of AAA227.  

Pan-macrophage presence at the site of injury was abundant in the EL-NP-Blank and EL-

NP-BB94 groups.  MMP inhibitor BB-94 was unable to reduce inflammatory conditions.  

When PGG alone was delivered (EL-NP-PGG group), we saw significant reduction in 

macrophage presence.  However, when dual EDTA therapy was followed by PGG (EL-

NP-EDTA+NP-PGG group), a complete lack of macrophage presence was seen.  It is 

known that elastin fragments (EFs) or elastin degradation products (EDPs) at the site of 

injury are chemotactic to macrophages, and this mechanism is mediated by elastin 

binding proteins228.  Thus, suppression of elastin degradation may have further led to 

suppression of macrophage activity in the area and significant suppression of MMP 

activity in PGG groups.  Another reason for suppression of macrophages in the EL-NP-

EDTA+ EL-NP-PGG group may be reduction in calcification.  It has been shown that 
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OPN is a potent chemotactic factor for macrophages229; we saw reversal of OPN 

expression after removal of mineral, and this may have also lead to suppression of 

macrophages.  CaCl2-mediated aneurysm was accompanied by depletion of the medial 

layer of smooth muscle cells, which others have reported230.  In EL-NP-blank, EL-NP-

BB94 and EL-NP-PGG groups, we found depletion of VSMCs where the elastin was 

damaged.  Higher staining for viable VSMCs was observed in dual therapy (EL-NP-

EDTA+EL-NP-PGG group), probably due to removal of mineral deposits and lowering 

of inflammatory milieu in the aorta.  Systemic inflammation was tested by looking at 

serum IFN-γ levels in rats.  IFN-γ was detected in the serum of AAA patients; 

additionally, AAA sections and tissue extracts from mice contained high levels of IFN-

γ231.  We observed a higher level of IFN-γ in serum of the EL-NP-Blank and EL-NP-

BB94 groups compared to the EL-NP-PGG and EL-NP-EDTA+NP-PGG groups.  This 

clearly suggests suppression of local inflammation led to suppression in systemic 

inflammatory markers.  

Next, we looked at the elastin content of the aorta after the targeted therapy.  We 

have shown earlier that PGG treatment of vascular smooth muscle cells from aneurysmal 

aortas in culture shows enhanced deposition of insoluble elastin fibers121.  We 

hypothesize that due to PGG’s multifunctional nature, when it binds to degraded elastin 

in the ECM, it has additional binding sites that can bind and anchor soluble tropoelastin 

precursors secreted by cells.  This in turn can lead to increased lysyl oxidase (LOX) 

enzyme synthesis by cells to crosslink the tropoelastin.  LOX is an important enzyme in 

elastin fiber assembly that facilitates covalent crosslinking of elastin precursors by 
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oxidizing peptidyl lysine to aminoadipic semialdehydes232.  It has been shown that 

reduced LOX activity is involved in the pathogenesis of AAA233,234.  As expected, 

aneurysmal aorta in the blank NP group showed significantly lower LOX activity as 

compared to healthy thoracic aorta.  Delivery of BB94 did not change LOX activity, 

suggesting that expression of MMPs and LOX are independently controlled.  When PGG 

was delivered either alone or after EDTA therapy, we saw significant increases in LOX 

activity similar to previous data from in vitro cell cultures121. 

We also looked at the desmosine content of the aorta, another marker for elastin 

maturation.  It has been shown that levels of desmosine are significantly lower in 

aneurysmal specimens from human patients with AAA210,235 than in controls, suggesting 

loss of mature crosslinked elastin.  We have observed that desmosine content is lower in 

all four groups compared to healthy aortas.  In our AAA model, we also observed a 

significant loss of desmosine as compared to healthy aorta levels, suggesting elastin 

degradation at the site in blank NP and BB94-NP groups.  When PGG was delivered, we 

observed an increase in desmosine content in the aneurysmal aorta.  Moreover, in the 

dual therapy group (EL-NP- EDTA /-PGG), desmosine content was significantly higher 

than in the PGG-alone group.  This suggests that calcification can be a burden to elastin 

regeneration; when calcium was removed by EDTA delivery, elastin regeneration was 

facilitated.  Our histological evaluation of elastin lamina with VVG stain corroborated 

LOX and desmosine data, showing wavy intact elastic lamina in the dual therapy group 

only, clearly showing regeneration of medial elastic layers after dual therapy. 
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We next looked at whether elastin regeneration led to improvement in tissue 

biomechanical parameters.  It has been shown that loss of circumferential strain is the 

result of aneurysmal aortic degeneration236.  Circumferential strain decreased in the EL-

NP-Blank group, suggesting stiffening of the aorta.  There was a very small increase in 

the EL-NP-BB94 group, but this increase was not statistically significant compared to the 

EL-NP-Blank group.  Circumferential strain was increased after treatment with PGG 

alone and in dual therapy of EDTA and PGG (EL-NP-PGG and EL-NP-EDTA+EL-NP-

PGG groups) suggesting that the functionality of the aorta in terms of elastance can be 

restored by elastin regeneration.  Aneurysmal development as assessed by external 

diameter of aorta had progressed unhindered in blank NP and BB94-NP groups.  Delivery 

of PGG led to aneurysmal regression compared to the EL-NP-Blank and EL-NP-BB94 

groups.  The EL-NP-EDTA+EL-NP-PGG group completely reversed aneurysmal 

dilation, and the aorta size was equivalent to the healthy aorta, suggesting that the 

combinational treatment of removing calcium by EDTA and regenerating elastin by PGG 

treatment may be the best strategy to reverse the disease.  

 A significant portion of NPs in this therapy go to kidneys, spleen, and liver 

although we observed a significant decrease in NP content in the liver and kidneys two 

weeks after injections.  Thus, we hypothesize these NPs are cleared by the 

reticuloendothelial system (RES system)237.  We looked at ALT levels in livers of treated 

rats. The ALT is the most sensitive indicator of hepatic injury238.  The ALT level was the 

same among the four groups, and livers appeared normal in histological sections, 

suggesting that NPs were not toxic to the liver in this 12-week study.  
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In conclusion, we show that targeted dual NP therapy of EDTA followed by 

delivery of PGG is an effective way to reverse moderately developed aortic aneurysms 

and elastin calcification.  It regenerates elastic lamina and restores healthy elastic lamina 

in an experimental rat model of aortic aneurysms.  Thus, such therapies could be 

promising approach for patients with diagnosed with moderate-level AAA disease. 
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CHAPTER VII 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

Conclusions 

 

Elastin is an essential protein for maintaining elasticity of tissue.  Degraded 

elastin can initiate inflammatory response.  Also, damaged elastin can be a site of calcium 

nucleation.  On the other hand, regeneration of elastin is impossible in adulthood.  

Therefore, protecting elastin from degeneration and its regeneration can be valuable in 

reversal of small aneurysms when it’s diagnosed.  We have developed nanoparticles that 

can be targeted to the aneurysm site by use of unique elastin antibody that recognizes 

only degraded elastin.  First, we show that MMP inhibition with targeted nanoparticles 

loaded with an MMP inhibitor BB-94, we could suppress local MMP activity and inhibit 

initiation of elastin degradation and aneurysms in rats.  Such MMP inhibitor therapy can 

only prevent further degradation of elastin; however, it cannot restore degraded elastin.  

Therefore, we chose PGG delivery as our option.  We show that PGG can be loaded in 

polymeric nanoparticles and can be released slowly over a period of 60 days by altering 

nanoparticle preparation methods.  When such NPs were systemically delivered, they 

accumulated at aneurysmal site are released active PGG that prevented aneurysmal 

expansion of the aorta.  In advance stage of aneurysms, there is a significant calcification 

present in the aorta.  We, therefore, tried dual therapy of EDTA (to remove mineral) 

followed by PGG (to stop degradation of elastin and regenerate lost elastin).  Such dual 

therapy reversed aortic calcification and regressed aneurysmal expansion.  This was the 

first time anyone has shown reversal of advance stage aneurysms in small animals.   
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Recommendation for Future Work 

 

1. PGG is known to reduce MMPs.  In our studies, we have shown that it 

reduces the number of macrophages in vivo.  It would be interesting to 

investigate its mechanisms in macrophages suppression.  Two approaches 

can be followed for this study:  1. Whether PGG interferes with metabolic 

pathways of macropahges.  Macrophages can be isolated from aneurysmal 

tissue (human or animal) and can be characterized using flow cytometry. 

After culturing them in vitro, they can be treated by PGG or PGG NPs.  To 

study the metabolic pathway, oxidative metabolism can be measured after 

incubation with PGG or PGG NPs in different time points.  2.  Whether 

PGG alters signal transduction pathways239.  To understand this, one of the 

important tests that can be done is chemotaxis assay.  The chemotactic 

effects of the PGG conditioned media can be tested in vitro using isolated 

macrophages as mentioned earlier. 

 

2. In this dissertation research, we have tried two injections of PGG 

nanoparticle because of lower targeting after two weeks compared to one 

week after injection.  It’s worth trying one injection of PGG nanoparticles to 

see if that can give the same result that two injections do as single shot 

treatment is preferred. 

 

3. In this dissertation research, we used the Calcium chloride model of 

aneurysm.  There are no animal models that faithfully recapitulate all 

features of human AAA.  It would be useful to show that this technology is 

valid and useful in other animal models like the angiotensin II-induced 

abdominal aortic aneurysm in LDL receptor knockout mice or elastase 

infusion of abdominal aorta in rats.  Calcium chloride model shows 

calcification, adventitial inflammation, and medial elastin damage but 

doesn’t show any internal diameter change.  Elastase perfusion has all the 

features of human AAA except calcification; however, it creates artificial 

faster degradation of elastin in the media causing rapid aneurysms.  Ang II 

model is only systemic treatment model that creates AAA.  It seems to show 

all aspects of human AAA although it is not specified to a region of interest 

like abdominal or thoracic aorta and AAA develop sporadically in 50% of 

animals.  None of these three animal models led to aortic rupture as seen in 

humans.  There is just one animal model that leads to aortic rupture.  By the 

time they are 5 weeks old, broad-breasted white male turkeys have 

spontaneously developed AAA. The majority of these turkeys will die due 

to aneurysms that dissect the aorta when they are fed B-aminopropionitrile 

(BAPN). This can be a very useful model because of the size of aorta and 

also because it is a naturally occurring disease240.  The only limitation is to 

get anti-turkey antibodies. Such antibodies can be generated in house.  

Another interesting model could be B-aminopropionitrile monofumarate–
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induced aortic dissection in rats241 which can be very easy if successful, 

because there is no surgery involved and aneurysm can be developed using 

diet.  The only drawback is that; aneurysm won’t be localized to the 

abdominal aorta. 

 

4. Elastin gene in quiescent in adults, therefore finding new stimuli can be a 

very helpful clue to rectify the pathogenesis of diseases associated with 

elastin gene dysfunction.  Thus, an interesting and essential experiment will 

be to investigate the effect of PGG on elastin gene in vitro and in vivo. 

 

5. The contractile smooth muscle cells could switch to the synthetic phenotype 

in response to pathological stimuli like thoracic aortic aneurysms242.  An in 

vitro experiment studying the effect of PGG on smooth muscle cells would 

be very interesting to see whether or not aneurysmal smooth muscle cells 

change phenotype from contractile to synthetic in presence of PGG.  It can 

be done by isolating smooth muscle cells from aneurysmal tissue (human or 

animal).  After culturing the cells, if their contractile phenotype (muscle 

(SM) α-actin (ACTA2), and SM22α (TAGLN) ) is confirmed, PGG 

treatment can be started and phenotype changes can be studies using 

immunofluorescence at different time points. 

 

6. It has been shown that AAAs varies from relatively non-inflammatory to 

inflammatory243.  In this dissertation, we looked at CD163 and CD68 

expression, but it has been shown that there are many other macrophages, T-

lymphocytes and B-lymphocytes244 present at the site of the aneurysm.  It 

would be beneficial to look at those markers and investigate the 

inflammatory response more accurately when treating with PGG.  Also 

detailed study of time course of inflammation after PGG delivery is 

warranted. 

 

7. For AAAs less than 5 cm, ultrasound is the only effective way to identify 

size. Computed tomography (CT) or CT angiography (CTA) are 

recommended as the aneurysm approaches or exceeds 5 cm or rapid 

enlargement occurs, as these imagining techniques deliver an improved 

outline of the disease. Magnetic resonance imagining (MRI) and magnetic 

resonance angiography (MRA) are also acceptable alternatives for patients 

who cannot consume iodinated contrast material due to improper renal 

function. There is no foolproof way to predict rupture risk in human patients 

based merely on diameter change, although size is commonly used to 

predict rupture risk. Variability in aorta diameter (1.5cm-2.5cm), systolic 

blood pressure, growth rate, wall stress and asymmetry index between 

patients prevents a simple evaluation based on maximum AAA diameter 

from effectively evaluating all patients245.  While our data has demonstrated 

that elastin-targeted NPs bind to regions of elastic lamina damage in 
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aneurysmal aorta, it is possible to establish a quantitative relationship 

between NP binding and extent of elastin degradation and the aortic rupture 

point.  This could be a platform to predict risk of rupture by imaging a 

patient with aneurysm.  Finding a relationship between elastic damage and 

nanoparticle accumulation will be a tool to predict risk of aortic rupture.  

Gold nanoparticles could be made with surface elastin antibody that 

recognizes degraded elastin only and accumulation of gold as assessed by 

CT can be used as a measure of rupture risk in humans. 

 

8. In this dissertation research, we have not looked at biomechanical properties 

of aorta, although mechanical failure of aneurysmal aortic wall causes 

rupture and from a biomechanical standpoint, AAA rupture is related to 

mechanical wall stress.  Separate groups of rats will be needed for this 

experiment.  Biomechanical studies could be carried out on abdominal aorta 

close to renal and iliac bifurcations in treated rats vs control rats.  Uniaxial 

tensile tests could be performed to measure the mechanical strength (UTS) 

and maximum extension at failure of aortic rings.  We have shown that 

EDTA-PGG combination treatment removes mineral and restores elastin in 

the media and regresses already formed aneurysms.  It will be very 

important to see whether this combination treatment actually improves 

biomechanical function of the aorta and restores it back to the healthy status. 

 

9. Approximately 6% of the population of the United States is affected by 

brain aneurysms. Every year over 30,000 people in the U.S. suffer 

aneurysmal subarachnoid hemorrhage. Brain aneurysms also tend to occur 

with aging. Considering this novel nanoparticle technology targeting to 

elastin damage in arteries, one of the most important approach that we could 

follow is to test if such NPs can target brain aneurysm. 

 

10. EL-BB-94 NPs were optimized to target degraded elastin, deliver BB-94 to 

the site of injury, and suppress MMPs with minimal dose. BB94 has been 

used already in many cancer studies246,247 but can be a problematic drug 

when administered systemically because of musculoskeletal pain and 

inflammation248.  So, it is entirely possible that BB-94 could be employed as 

a more successful therapy using the methodology of nanoparticle 

deployment described here.  Additionally, NP surfaces could be modified to 

target known markers to specific cancers249,250. 
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