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Abstract

With the ever increasing consumption rate of energy, we will run out of fossil fuel

resources sooner than we expect. Also the environmental concerns associated with

the use of fossil fuel become a severe issue. As such, the need for alternative energy

becomes extremely impending. Thermoelectricity is the simplest technology applica-

ble to direct heat-electricity energy conversion with electricity being the best quality

form of energy and heat being the lowest. However, comparing to the front row can-

didates such as wind, photovoltaics, solar heat and biofuel that is possible to replace

fossil fuel, thermoelectrics has received less heed due to its low conversion efficiency.

Nonetheless, its ability to directly convert heat into electricity in an all solid-state

manner still makes it pretty tempting for application as one of the energy sources.

This can be well-justified by the fact that a huge amount of heat exhausted from

a car, a power station or an industrial process is all amendable to thermoelectric

(TE) conversion. What’s more, TE energy conversion is green and environmentally

friendly, the TE devices have no movable parts and are susceptible to be miniaturized,

so they can be shaped as needed and maintenance is minimized.

Since modern TE study is efficiency driven and material oriented fundamental re-

search, developing higher performance TE materials has thus become the ultimate

goal so as to make thermoelectricity a crucial part in this big energy picture.

Among the state of art TE materials, Co4Sb12 based skutterudites have become in-
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creasingly favorable for room temperature (300 K) to 800 K applications. The interest

mainly lies on how such high performance is achieved via ”engineering” its unique

crystal structure - the naturally formed nano-sized ”cage”. Properties of Co4Sb12

based skutterudites can be ”tuned” by filling guest atoms and/or substitutionally

doping. The function of guest atoms is two-fold: One is to decrease the lattice ther-

mal conductivity; the other is to improve the electrical properties. While guest atoms

directly help optimize TE properties, they have certain solubility limit or Filling frac-

tion limit (FFL) in the ”cage”, if surpassed, secondary phases would still contribute

constructively to TE performance. From a solid state physics point of view, those

fillers, dopants and secondary phases are all defects of different dimensionality, there-

fore, Co4Sb12 skutterudites provide a material template to study the interplay of

defects.

Recently, the study of ”cagey” material mainly focuses on the optimization of perfor-

mance of ”multiple-filled” skutterudites. In contrast, single filling is less sufficiently

studied. To study the defect chemistry, a combined theoretical and experimental

study of the single filled skutterudites is indispensable. Also, although the single-

filled Co4Sb12 may not exhibit high performance, understanding a high performance

material is equally important as understanding a low performance material. To this

end, La was chosen to be the guest atom in our work for being the first element in

rare earth group and not having f electrons, which make theoretical calculations more

feasible. So the work herein presented:

1) Experimentally using only one control variable La to implement the filling-doping-

nanocomposite approach that can significantly enhance the TE efficiency compared

to an unfilled one.

2) Theoretically studying the interplay between defects, i.e., the filler atoms and sb

vacancies, that cannot be unequivocally interpreted by experiments.
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More specifically, despite the elements normally filled into the ”cage” are rare earth

elements (Ce,Pr,Nd and Eu) and are named ”rattler” - by definition, they are weakly

bounded in the cages and ”rattle” about their equilibrium position substantially more

than the other atoms in the structure - but the study on ”rattlers” always focus on

their influence on thermal properties yet scarcely on electrical properties. Therefore,

this dissertation seeks to answer questions about:

i) the physical identity of the filler, whether it is a real filler or a ”rattler”.

ii) The influence of f electrons on the rattling behavior.

iii) how does the interplay between the filler atoms and Sb deficiency affect the TE

properties in the system.

We combine a series of experiment study with Density Functional Theory (DFT) cal-

culations. The result not only show a obvious enhancement of TE efficiency compared

to the prisine Co4Sb12 skutterudite, but also revealing an approach to help further

improve the TE properties of other skutterudites and cagey materials.
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Chapter 1

Introduction

1.1 Thermoelectric effects

A discussion of thermoelectric effects naturally starts with the most fundamental

thermoelectric phenomenon,i.e.,the Seebeck effect [1]. As early as 1821 [2], physicist

Thomas Johann Seebeck discovered that when a loop formed by antimony (Sb) and

copper (Cu) joined in two places with a temperature difference in between, current

would flow in the loop (Fig 1.1). This phenomenon is named in honor of him, namely,

the ”Seebeck effect”. More generally, if the temperature at two junctions were to kept

at T1 and T2 (T1>T2) with any two dissimilar materials A and B, a voltage V will be

developed, this voltage is called thermal electromotive force (emf). The magnitude

of V is proportional to the temperature difference at two junctions. And the ratio of

the voltage developed to the temperature gradient is related to an intrinsic property

called the Seebeck coefficient (α).

αab =
dV

dT
(1.1)
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Figure 1.1: Seebeck effect: Electric potential in response to the temperature gradient
(T1 > T2) applied on junctions of two dissimilar materials A and B.

where αab is the Seebeck coefficient, dT = T1 − T2. It is worth mentioning that αab

can also be defined in an open-circuit circumstance.

In 1834, French physicist Jean Charles Athanase Peltier discovered that current flow

through the junctions of two dissimilar conductors would cause heat absorption/re-

lease. This phenomenon is called Peltier effect [2]. It can convert electricity directly

into temperature difference as is shown in Fig. 1.2 [3]. The difference of Fig. 1.2 for

Peltier effect compared to Fig. 1.1 for Seebeck effect is having an external voltage yet

with zero temperature gradient (∆T = 0). The heat dQ it produces in time interval

dt is proportional to the current, and the ratio πab is called the Peltier coefficient:

dQ ∝ Idt = πabIdt = πabq (1.2)

where q is the charge transferred.
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Figure 1.2: Peltier effect: cooling or heating on junctions due to a current flow without
temperature difference.
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Figure 1.3: A schematic illustration of Thomson effect.

The Peltier effect has enabled the second application of thermoelectric devices - solid

state refrigeration. Seebeck and Peltier effects share a subtle and fundamental con-

nection through Thomson relation πab = Tαab.

The last thermoelectric effect, namely, Thomson effect [2] concerns with the heat-

electricity conversion in one compositionally and thermally uniform conductor. It

describes the heating or cooling of a current-carrying conductor with a temperature

gradient. In 1851, Thomson discovered that when current flow through a conductor

with temperature gradient, beside the Joule heat, the conductor would also absorb

or release heat, this phenomenon is called Thomson effect (Fig. 1.3 [3]). The heat

being absorbed or released per unit time dt is proportional to the current density J

and temperature gradient ∆T :

dQ

dt
= βJ∆T (1.3)
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where β is called Thomson coefficient.

The above three Thermoelectric effects find a lot of applications in our daily life,

especially for the Seebeck and Peltier effects, they lay the foundation of thermoelectric

applications. In terms of the device configuration, it is less practical to only include

one leg of the material [4], Fig. 1.4 (a) and Fig. 1.4 (b) are the TE device configuration

of power generation and refrigeration respectively. Both configurations are composed

of n-p leg pairs. The reason for configuring device this way is for connecting them

thermally in parallel but electrically in series, so both electrons and holes are moving

in the same direction pulling heat from one end to the other. In practice, many of

these couples are put together (like in Fig. 1.5 [5]) for ”impedance matching” in order

to optimize the output power [4]. The readers are referred to appendix D for a brief

review of the thermoelectric generators in history.

1.2 Performance of thermoelectric materials: fig-

ure of merit

1.2.1 Thermoelectric efficiency and gauge of performance

Thermoelectric (TE) effect lays the foundation of TE devices while the efficiency

governs the applicability of devices. The efficiency of thermoelectric conversion can

be defined as the ratio of output power per unit time and the received heat per unit

time [2]

η =
P

Qh

(1.4)

The Qh from the equation is the heat received from the hot end, P is the output

power from TE device. The the current flow through the TE generator is I, the

5



Figure 1.4: Model of thermoelectric generator and thermoelectric refrigerator [5].
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Figure 1.5: Thermoelectric module for power generation [5].

corresponding output power is:

P = I2RL (1.5)

where RL is the load. Therefore, for TE generator, it should satisfy the following

equation:

Qh = (αp − αn)THI + κ(TH − TC)− I2R

2
(1.6)

So the total heat generated on the hot end is consist of heat from TE effect and heat

transported away due to the heat conducting, minus the loss due to Joule heating. In

the equation, TH and TC is the temperature from hot end and cold end respectively,

and κ is the total thermal conductivity of the two legs.

κ =
λPAP
LP

+
λnAn
Ln

(1.7)
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And the total Resistance R from n type part and p type part is:

R =
Lnρn
An

+
LPρP
AP

(1.8)

Where A,L and ρ is the cross section area, length and electrical resistivity of one

thermocouple leg respectively. Therefore, for the whole device, the current I can be

expressed as:

I =
(αP − αn)(TH − TC)

RL +R
(1.9)

The corresponding efficiency can be presented as:

η =
I2RL

(αP − αn)T1I − I2R/2 + κ(TH − TC)
(1.10)

Put M = RL/R,given a material, its efficiency will change with M . If taking deriva-

tive of equation 1.10 with respect to M , and put dη/dM = 0, then the highest

conversion efficiency can be:

ηmax =
TH − TC
TH

× M − 1

M + TC/TH
(1.11)

Similarly, for TE cooling, the highest coefficient of performance can be written as:

φmax =
TC

TH − TC
× M − TH/TC

M + 1
(1.12)

And the M in the equation is equal to [1 + Z(TH + TC)/2]1/2. In which Z = α2σ
κ

.

For convenience, one use ZT more often because it is dimensionless. Therefore, we

herein introduced a very important intrinsic parameter that is only related to material

8



properties, figure of merit:

ZT =
α2σT

κ
(1.13)

where α is Seebeck coefficient, σ the electrical conductivity, κ the thermal conduc-

tivity, T the absolute temperature, and α2σ is usually called power factor. And it is

clear that ZT is the gauge of the material performance.

1.2.2 Thermoelectric Figure of Merit, ZT

Per the derivation above, a materials’ figure of merit, or ZT is directly related to the

efficiency and coefficient of performance of the material by the relation [6]

ηmax and φmax ∝ (1 + ZT )
1
2 (1.14)

Therefore, when ZT approaches infinity, ηmax and φmax approach the limit of the

Carnot efficiency ηc. The Carnot efficiency comes from the first term of Eq. 1.11

and 1.12 (TH−TC
TH

and TC
TH−TC

). However, modern TE devices can only achieve a small

fraction of the Carnot efficiency, which makes them insufficient for applications. For

example, if we assume a heat engine operating between the temperature of TH = 800K

and TC = 300K, Fig. 1.6 [7] shows the ratio of power generation efficiency η and

Carnot efficiency ηc plotted as a function of ZT with a Carnot efficiency of 62%. This

plot is used only to ascertain where the greatest return in efficiency gain would be

achieved per unit increase in ZT. As we can see, the goal for an ideal ZT ranges

from 2 ∼ 3 for the biggest return [7], since above ZT =3, the increment of η/ηC per

unit ZT would get marginal. As of now, a ZT≈ 2-3 is still not reachable for most

TE materials. Consequently, improving ZT becomes a priority for all thermoelectric

9



Figure 1.6: The ratio of TE efficiency to the Carnot efficiency (η/ηC) as a function
of the figure of merit, ZT. The maximum efficiency or Carnot efficiency is given by
ηC = (TH − TC)/TH = (800K − 300K)/800K = 63% [7].

study. By the definition of figure of merit, ZT = α2σT
κ

, this problem is naturally

shifted to optimizing three ZT-governing TE properties {σ, α, κ} in their totality.

1.3 Electrical transport in thermoelectric materi-

als

A deep understanding of electron transport behavior including Seebeck coefficient

(α) and electrical conductivity (σ) requires a deep understanding of electron band

structure, Fermi Dirac statistics and Boltzmann transportation function etc, please

refer to appendix A and B for more details about band structure and transport

properties.
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Figure 1.7: The physical explanation of Seebeck effect. [4].

1.3.1 Seebeck coefficient α and electrical conductivity σ

A macroscopic picture of α has been introduced in section 1.1, which provided a over

simplified particle - wise description of how emf is a result of charge carriers flow

under temperature difference. Re-visiting α using a ”band structure” interpretation

would bring more physical insight. Fig. 1.7 illustrates the redistribution of electrons

between the hot side (red area: from the product of DOS and Fermi-Dirac distribution

function) and cold side (blue area) when applying a temperature difference. Electrons

with higher energy on hot side tend to ”re-distribute” on the cold side resulting an

opposing voltage to prevent further current flow in an open circuit circumstance. And

the resulted emf is what defines the α.

In this picture, α is the ”average” entropy transported by the charge carri-

ers. This is consistent with the result of α derived from Boltzmann equation under
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quasi-equilibrium assumption:

α =
kB
q

∫
σ(E) (E−EF )

kBT
(−∂feq

∂E
)dE∫

σ(E)(−∂feq
∂E

)dE
∝ 〈E − EF 〉 (1.15)

in which −∂feq
∂E

is Fermi ”window” factor, and σ(E) is the differential conductivity

that acts as a measure of the contribution of electrons with energy E to the total

conductivity. This equation implies that α is directly proportional to 〈E − EF 〉 that

is exactly the ”average” energy of charge carriers near Fermi level. It also implies

that for a maximum α, the differential conductivity σ(E) should be as asymmetric

as possible with respect to the Fermi level, so the electrons with energies higher than

Fermi Level would not cancel with the electrons with energies lower than Fermi level

that lead to a zero 〈E − EF 〉 term.

The Seebeck coefficient depends on not only the band structure, i.e., the initial and

final state of charge carrier to calculate the average energy, but also the intermediate

scattering mechanisms between the initial and final state. The mott equation of α

divided the contributions to α into two parts:

α =
π2

3

k2BT

q
[

1

n(E)

dn(E)

dE
+

1

µ(E)

dµ(E)

dE
] =

π2

3

k2BT

q
[
g(E)

n(E)
+

1

µ(E)

dµ(E)

dE
] (1.16)

This equation usually applies for degenerate semiconductor in a single-band case [8],

but it can also be used for multi-bands under the circumstance in which bands can

be summed up. The term g(E)
n(E)

is from the band, and the term (1/µ)(dµ/dE) is from

scattering. Therefore, the equation can be viewed as consisting of two terms that

correspond exactly to two contributors to enhance α:

(i) increase the density of states (DOS) near Fermi level.

(ii) enhance the energy dependent scattering.
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From Boltzmann equation, similar equation can be derived for σ:

σ =

∫
σ(E)(−∂feq

∂E
)dE (1.17)

in which σ(E) is the same differential conductivity as in the equation for α, and −∂feq
∂E

is the Fermi ”window” factor. Since Fermi window factor narrow down the electrons

contributing to transport property to those with energy close to Fermi level, thus a

high value of σ(E) within the Fermi window is necessary to increase the σ.

”Drude Model” gives σ a very straight forward explanation by relating the electron

conducting ability to extrinsic parameters of the material:

σ = enµ = ne2
τ(E)

m∗ (1.18)

in which n is the carrier concentration, µ the mobility, τ the relaxation time and m∗

the band effective mass. By increasing either the µ or τ by reducing the chance of

charge carriers being scattered and increasing the time between consecutive scattering

event, we can obtain a high σ.

1.3.2 Trade-off Between Electrical Conductivity and the See-

beck Coefficient

From the figure of merit equation ZT = σα2T
κ

, we know that a high performance TE

material needs to have high power factor (high α and σ), however, this is not the

case in reality because α and σ are adversely dependent. This inter-dependency or

trade-off can be easily explained using σ(E) [9–11] as was introduced in section 1.3.1.

When Fermi level is closer to the band edge, i.e. in a n type semiconductor, this means
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more states are becoming available above the Fermi level than below it. This cause

the asymmetry of DOS with respect to Fermi level. If increasing the doping level in

material to move Fermi level deeper into the band, σ could be increased. However,

this also causes the σ(E) to be more symmetric with respect to Fermi levels, which

results in the decreasing of α.

This can be manifested in a more direct way. Fig. 1.8 shows the relation of carrier

concentration with α and σ for metals and insulators. Between metal and insulator,

with increasing carrier concentration α decreases exponentially, while σ increases from

zero. However, the power factor P (= α2σ) has a maximum at a certain value of the

carrier concentration in the degenerate semiconductor region. Which indicating a

narrow band gap can guarantee a relatively large σ while not sacrificing too much of

α. The theoretical basis is originated from Sofo & Mahan’s paper [12] in which the

optimum band gap of thermoelectric materials is between 6 kBT and 10 kBT . And

this range matches well the temperature for maximum ZT of some state of the art

thermoelectric materials.

Besides being a degenerate narrow band gap semiconductor, other approaches such

as quantum confinement [13] and energy filtering can also help to compromise the

adversely dependent relation between α and σ.

1.4 Thermal transport in thermoelectric materials

The one parameter that describes how the heat is transported in the materials is

called thermal conductivity κ. And usually, the heat can be transported by phonons

(lattice vibrations), and thermalized electrons. Each mechanism contributes to the
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Figure 1.8: The optimization strategy for TE materials [14]

total thermal conductivity κT independently as seen in the following equation:

κT = κph + κe (1.19)

Where κe and κph are the electrical thermal conductivity and lattice thermal conduc-

tivity respectively. Since only charge carriers in the conduction band participate in

thermal transport, the electron contribution to the thermal conductivity κe is directly

related to the σ through the Wiedemann-Franz relation:

κe = σL0T (1.20)

where T is the absolute temperature and L0 is the Lorentz number: 2.44×10−8V 2K−2

[15].

Besides the contribution of charge carriers, phonons’ contribution to κT can be derived
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from kinetic theory [16]:

κph =
1

3
CvυLph (1.21)

where Cv is the specific heat under constant volume, Lph = υτ is the phonon mean

free path (equals to velocity υ times relaxation time τ). Please refer to appendix C

for the whole derivation of this equation.

Thermal conductivity is constrained mainly by four types of scattering: phonon-

phonon (including normal process and umklapp process), electron-phonon, boundary,

and impurity scattering of both electrons and phonons. Electron-electron scattering

is also possible but weakly contributes to electrical and thermal conductivity due to

the constraints imposed by the Pauli exclusion principle. All these types of scattering

processes can take place in parallel and can be reflected in terms of their individ-

ual relaxation time τ . The summation that reflects their parallel relations is called

Mathiessen’s rule:

1

τ
=

1

τph−ph
+

1

τboundary
+

1

τph−el
+

1

τimpurity
+

1

τel−el
(1.22)

This equation concludes that the most dominant scattering mechanism will be the

one which has the shortest mean free path, or shortest relaxation time. However,

Matthiessen’s rule is not universally valid because individual scattering probabilities

cannot be summed unless they are independent of one another.

It is worth mentioning that besides the four major scattering types that reduce ther-

mal conductivity, ”anharmonicity” is another scattering mechanism that is dominant

in ”cagey” materials to reduce thermal conductivity. This scattering mechanism ap-

plies in the Skutterudite materials in this work where guest atoms will be introduced
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into the special ”cages” with strong anharmonic potentials, resulting in off-center

equilibrium positions for the guest atom to rattle around. So the rattlers in Skutteru-

dite material can help effectively reduce thermal conductivity due to anharmonicity,

which can be added into the Mathiessen’s equation as another scattering term.

If explaining scattering mechanism of phonons in terms of its own property-wavelength,

then it is generally true that a phonon is most effectively scattered by objects that

are on the same length scale as its wavelength. Normally, impurities or boundaries

that have only one length scale cannot efficiently scatter phonons. Therefore, a hier-

archy structure with multi-length scales are preferred to scatter phonons and reduce

thermal conductivity.

Although the thermal conductivity can be reduced by various scattering mechanisms

as mentioned above, the scatter center would also have the possibility to scatter

electrons. This is detrimental to electrical properties such as α and σ. Therefore, the

challenge of optimizing these three ZT -governing TE properties σ,α and κ lies in the

fact that these TE properties are inter-dependent. In this case, defect engineering is

often used as an indispensable way to decouple these TE properties. While TE effect is

a physical phenomenon existed in all materials, no TE material have attained its best

performance without defects [17]. In the following chapter, how defects are closely

related to these TE properties and how defect engineering can attain state-of-the-art

TE performance will be introduced.
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Chapter 2

Defect Engineering in the

thermoelectric study

Throughout the entire six decades of modern TE research, the standard protocol

would always follows the same procedure: first identify a promising parent compound

among semiconductors or semimetals, then modify the crystal structure at multi-

ple length scales to obtain the highest possible ZT. And defect engineering plays an

important role in this protocol [17]. So what are defects? What is the defect engi-

neering? The answers to these questions also explain the wide application of defects

in high performance TE material.

By definition, any deviation from the perfect crystal is a defect. Since an ideal

crystal is a highly symmetric geometric form, defects are created by symmetry break-

ing. Defects can also be regarded as the quasiparticles just like electrons, holes and

phonons [17]. In this case, the whole thermoelectricity thus involves three types of

quasi-particles: charges (electrons holes), phonons and defects. And the interactions

between charges and defects, phonons and defects can tune the three TE properties

{σ, α, κ} so as to decouple their inter-dependent relations in terms of tuning electron
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Figure 2.1: Defects categorized by their dimensionality. From left to right, they are:
0-D defects: Point defects; 1-D defects: Dislocation; 2-D defects: Grain boundaries;
3-D defects: Secondary phases

and phonon density of states, or the electron and phonon scattering mechanisms. The

design of what kind of defects or combination of defects to interact with other two

quasi-particles (charges and phonons) so as to lead to a high TE performance can be

regarded as the defects engineering.

Usually, defects can be categorized into various types based on their function, prop-

erty or size. For the convenience of discussing defects in my project, I will categorize

defects based on their dimensionality. As is shown in Figure 2.1. Since my project

only involves 0,2 and 3-D defects in Co4Sb12 skutterudites, I will only expand my

discussion on these three types of defects.

1) 0-D defects. These are often known as point defects. And they can be fur-

ther divided into extrinsic and intrinsic point defects. In filled Co4Sb12 skutterudites,

extrinsic point defects refer to dopants and fillers. They may enhance TE perfor-

mance via optimizing the carrier concentration, reducing the thermal conductivity by
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scattering heat-carrying phonons, and in some special cases, enhancing the Seebeck

coefficient by introducing resonant levels [18]. Meanwhile, the intrinsic point defects

refer to vacancies that are either formed during material preparation, which occur

at finite temperatures as a result of the competition between internal energy and

entropy, or through intentionally designing.

2) 2-D defects. The most common 2-D defect is the grain boundary. 2-D defects

can effectively scatter heat-carrying phonons to reduce the κph, and also enhance the

α via the electron energy filtering scenario. To attain high TE performance, grain

boundaries should scatter phonons more effectively than charge carriers, and scatter

those charge carriers with lower mean energy more effectively than those with higher

mean energy. In filled Co4Sb12 skutterudites with nano-inclusions, the interfaces exist

between nano-inclusions and matrix can be regarded as multitude of grain boundaries.

The different fermi levels on two sides of the boundaries can cause the scattering of

lower energy electrons, so the electron energy filtering effect is more pronounced than

in coarse-grained materials.

3) 3-D defects. These usually refer to secondary phases that can be implemented

in situ or ex situ. The ex situ method usually requires mechanical mixing of host

and secondary phase materials, while the in situ requires precipitation of secondary

phases due to purposely going over the solubility or Filling Fraction Limit in filled

Co4Sb12 skutterudites. The 3-D defects usually co-exist with 2-D defects that can

help increase the Seebeck coefficient by electron energy filtering [19] and decrease

lattice thermal conductivity due to scattering phonons with comparative length.

Although these defects are categorized based on their own characters, they can inter-

act with each other. i.e., one type of defects can lead to the formation of another type
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of defects. A good platform to study how defects interact to affect the TE properties

would be Skutterudites - one of the state of the art thermoelectrica materials, which

is also the focus of this thesis.
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Chapter 3

Skutterudite Thermoelectrics

Since the concept of ”phonon glass electron crystal”(PGEC) has been introduced

by Slack to realize high performance thermoelectric material. Skutterudites have

obtained much attention for the point of view of PGEC considering they usually

have very good electrical properties due to a narrow band gap(∼ 0.2eV). One of the

typical skutterudite compounds Co4Sb12 have large power factor in a temperature

region 600-800 K and have already been used in real life as thermoelectric devices for

power generation.

3.1 Skutterudite crystal structure,band structure

and thermoelectric properties

3.1.1 Crystal structure of Skutterudite

Skutterudites - whose name originated from a mining town, Skutterud, in Norway

by Oftedal in 1928 [20, 21]. It is usually depicted in the binary compounds form of

composition MX3(M : transition metals, such as Co,Fe,Rh or Ir. X: pnicogen atoms,
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Figure 3.1: Body-centered cubic crystal structure of CoSb3 skutterudite with a net
work of corner-sharing octahedra (a) and with a guest atom filled into the dodecahe-
dron cage (b). Transition metals (M), pnictogens (X), and fillers are in blue, yellow
and green, respectively.

such as P, As or Sb) with a complex body-centered structure belonging to the space

group Im3̄. The unit cell contains eight structures with formula MX3 (as shown in

Fig. 3.1(a)), the eight M atoms is at c position and the twenty four X atoms occupy

the g position. The X4−
4 ring formed by four M atoms centered in the cubic structure

formed by eight M atoms. The structure of Skutterudites is usually presented in the

form of 2M4X12 which contains only one half of the unit cell (The box represents

the voids, shown in Fig. 3.1b) that highlights the presence of its single void 2 and

X4 planar,rectangular four-membered rings of pnicogen atoms. Filled skutterudites

(RyM4X12, R is the filling element) are obtained by fully filling or partially filling the

voids.
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3.1.2 Band structure of Skutterudite

The electronic structure of Co4Sb12 has been thoroughly studied over the last decade

[22] using Density Functional Theory (DFT) by different research groups and scien-

tists. In order to validate our calculation of the electronic structure of CoSb3 before

addressing more complex filled CoSb3 skutterudites problems, a careful comparison

of our calculation with others’ is necessary.

The 2×2×2 bcc supercell of Co32Sb96 which contains eight dodecahedron voids were

examined. The band structure and density of states (DOS) of Co32Sb96 are shown in

Fig. 3.2. Our result is comparable to that of Snyder and colleagues calculated for the

same 2×2×2 bcc supercell, except for the small difference in the band gap [23]. As

can be seen from the band structure in Fig. 3.2(a), there is a direct band gap of 0.23

eV at the Γ point between the valence band maximum (VBM) and the conduction

band minimum (CBM). This value is comparable to the LDA and PBE results of 0.22

and 0.17 eV by Sofo et al [22] and is also within the LDA range of 0.195-0.330 eV

depending on the lattice constant calculated by Lefebvre-Devos et al [24]. Even with

quasiparticle GW approach, the band gap is only increased to 0.335 eV [25]. Ham-

merschmidt et al. conducted a systematic study using various exchange correlation

functionals and found a band gap dependence on the applied functionals, which may

affect the band gap by the optimized lattice constant and the amount of Hartree-Fock

exchange included [26]. On the other hand, the DOS shows an indirect pseudogap of

0.57 eV between the first peak of valence DOS located at -0.34 eV below the VBM

and the tiny conduction DOS peak corresponding to the CBM. This value is the same

as the theoretical result of Singh and Pickett [27] and agrees with the experimental es-

timation of 0.5 eV via high temperature electrical resistivity measurement by Dudkin

and Abrilosov [28]. Caillat et al. and Nolas et al. also reported experimental band
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gap of 0.55 eV by transport property and Hall probe measurement [29,30]. Note that

the wide range of band gap values in the literature [31,32] may indicate the necessity

to differentiate between the direct band gap and the indirect pseudogap. Further

based on the partial DOS analysis (Fig. 2a), it can be seen that the first valence

DOS peak at -0.34 eV below the VBM consists of the hybridization from Co’s and

Sb’s p states, whereas the tiny conduction DOS peak corresponding to the CBM is

dominated mainly by Co’s states, largely agreeing with the observation of Zhao et al.

for the same Co32Sb96 supercell [33].

Singh and Pickett uncovered a remarkable feature in the band structure of pristine

skutterudites [27], i.e., a single valence band crossing the psuedogap shows largely

a quasilinear dispersion except for a quadratic shape in a narrow region near the

zone center. Smith et al. recently put forth a theoretical model showing that this

quasilinear gap-crossing band is in fact associated with the massless Dirac bands sim-

ilar to the case of graphene. By varying the Sb atomic coordinates, they revealed

a critical point along the transformation path from perovskite toward skutterudite

where the two massless Dirac bands touch each other and meanwhile are degenerate

with two other massive conduction bands. Accordingly, the Fermi surface becomes

just a topological point at the zone center. Simply by a small structural deviation

from the critical point, the four-fold degeneracy is lifted yielding a small direct band

gap at the Γ point. Since the mineral skutterudite is very near the critical point

in its natural state, the direct gap is found to be small and highly sensitive to the

atomic positions of the Sb atom [22, 34]. As can be seen from the band structure,

the quasilinear valence band symmetrically flanks the Γ point and features a large

dispersion. The slope is +3.03 and -3.02 eVÅ in the Γ-N and Γ-P zone, respectively.

Three conduction bands siting right above it are triply degenerate at the Γ point but

diverge immediately into three separate bands along the Γ-N direction and also into
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a pair of doubly degenerate bands at a lower energy and a singly degenerate band

at a higher energy along the Γ-P direction. It is noteworthy that, unlike the lower

two massive bands which are quadratic, the third higher conduction band mirrors

the gap-crossing valence band in relation to the massless Dirac bands. The slope

is -3.03 and +2.96 eVÅ in the Γ-N and Γ-P zone, respectively, close to that of its

valence counterpart. By turning on SOC effect for the primitive bcc cell of Co4Sb12,

the degeneracy of the three conduction bands are lifted, except for the lower two

bands at the Γ point. The lower two conduction bands are the heavy-electron and

light-electron band, respectively, while the third is a split-off band lying only 0.02

eV above the other two at the Γ point, which is still quasilinear with SOC applied.

In addition, the direct band gap at the Γ point is reduced only slightly to 0.18 eV.

From the small SOC effect shown herein for the primitive lattice Co4Sb12 and in the

literature for compositionally similar LaRu4X12 (X=P, As, Sb) skutterudites [35], it

appears unnecessary to apply SOC toward the electronic structure calculations of the

La-filled systems.

3.2 Research advances of Skutterudites

For Skutterudite materials that have already had good electrical properties (high

power factor σα2), especially for CoSb3 skutterudites, lowering their thermal con-

ductivity has become the focus. And the lattice thermal conductivity takes a large

portion of the total thermal conductivity, therefore, improving the TE properties of

CoSb3 Skutterudites count on lowering the lattice thermal conductivity. In the fol-

lowing sections, we will address how defects were used to decrease the lattice thermal

conductivity in CoSb3 skutterudites in TE material research history as well as how

defects engineering is implemented.
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Figure 3.2: (a) Band structures and total density of states (DOS) for Co32Sb96. (b)
Total and partial density of states (DOS) for Co32Sb96.
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3.2.1 Introduction of 0-D defects in CoSb3 skutterudites

1) Substitutionally doped Skutterudites. Ioffe brought up an observation in

1957 in one of his publications that heavily doped semiconductors make the best ther-

moelectrics. The most conventional and effective way to decrease the lattice thermal

conductivity of Skutterudites is through substitutional doping (0-D defect).The dop-

ing in CoSb3 skutterudites is often heter-electronic doping on either Co site or Sb

site. Co can usually be doped by Fe and Ni; Sb can usually be doped by Ge,Se,Sn

and Te to form ternary compound or multicomponent compound. The principle of

doping is to increase the scattering of phonons by point defects and optimize the

carrier concentration so as to improve TE properties. [36, 37].The earliest research

of CoSb3 focused most on doping on the Co site. The Jet Propulsion Laboratory

studied the TE properties of p-type IrxCo1−xSb3 alloys, the results showed that when

x=0.88, its lattice thermal conductivity can be decreased by 70% compared with the

corresponding binary alloy, and the ZT can reach 0.5 around 700 K.

2) Filled Skutterudites and Filling fraction limit. Filled Skutterudites is from

filling the Sb icosahedron void with guest atoms [20, 38–41]. The alien atoms can

benefit TE properties in following two aspects: First, the phonons can be strongly

scattered by the ”rattling” effect from the alien atoms connecting weakly with the

surrounding atoms due to their small ionic radius and rattling among multiple poten-

tial minima positions in the cage, so the lattice thermal conductivity can be greatly

decreased. We can also call this alien atom ”rattler” in this case. Second, the filling

atom can help adjust and optimize the carrier character and electrical properties.

Recently, more work showed that [37,41–44] the rare earth elements (La, Ce, Pr, Eu

et al.) with a small ionic radius and a large atomic mass can help lower the lattice

thermal conductivity when they are filled into the voids as alien atoms; and some
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alkaline elements with low oxidization valence (Ba, Sr, Ca) can help improve the elec-

tronic properties when filled into the naturally formed voids.

The most frequently studied filling atoms are from Lanthanum and alkaline earth

metal, such as La, Ce, Ca, Ba et al. In 1996, Sales et al. reported a ZT value ≈ 1.4 in

filled skutterudites, which makes Skutterudites the one of the most promising TE ma-

terials in mid-temperature range. Shanghi Institute of Ceramics synthesized p-type

Ce0.28Fe1.52Co2.48Sb12 having a ZT value of 1.1, ηmax can reach above 8%. However,

the nano-sized icosahedron void can not be filled infinitely. Shi et al. [45] studied the

filling fraction limit (FFL) of CoSb3 skutterudite by density functional thoery (DFT)

method. The FFL is shown to be determined not only by the interaction between the

impurity and host atoms but also by the formation of secondary phases between the

impurity atoms and one of the host atoms. The predicted FFLs for Ca, Sr, Ba, La,

Ce, and Yb in CoSb3 skutterudite are in good agreement with reported experimental

data. Fig. 3.3 [45] presents a list of filling elements and their FFLs, which has played

an important role in guiding the optimization strategy for TE properties.

Yang et al. [45, 46] used phonon resonance scattering mechanism to simulate the

phonon interactions in a qusi-local thermodynamic environment. Their study showed

that this scattering mechanism can effectively decrease the lattice thermal conductiv-

ity in Skutterudites. They further proved the existence of this scattering mechanism

experimentally using inelastic neutron scattering. In this system, the interactions be-

tween lattice phonons and localized low frequency phonons can produce some bound

states (resonant states) [45], these resonant states will bound certain phonons and

discrete their wave vectors so as to increase the intensity of phonon scatterings. The

study on phonon resonance scattering also showed that only the phonons that have the

same frequencies as the localized vibration spot can be scattered this way. Therefore,
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Figure 3.3: Calculated filling fraction limits (FFLs,ytheory)vs the experimentally mea-
sured FFLs (yexpt). The solid line represents ytheory = yexpt [45].

if some structure can provide localized vibration modes such as filling the Sb icosa-

hedron voids with multiple atoms with different vibration frequencies to wider the

distribution of localized vibration frequency range, then theoretically more phonons

in the lattice can be scattered. This prediction lay the path for double-filled and

triple-filled Skutterudites. In 2008, based on this theoretical guidance, Shi et al. [47]

synthesized a series of n type Ba and Yb double filled BaxYbyCo4Sb12 compounds,

the TE property measurements showed a much lower lattice thermal conductivity

than single-filled Skutterudites, and much better TE properties over the entire tem-

perature range studied. Among these series of of samples, Ba0.08Yb0.09Co4Sb12 have a

ZT value of 1.36 at 800K, which was the best among all the Skutterudite materials at

that time. Also, Zhao et al. [48] reported that Ba, In double filled Ba0.14In0.23Co4Sb12

have a ZT of 1.34 at 850K. All these reports showed that double filled Skutterudites

can further improve the electronic properties, decrease the lattice thermal conductiv-
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ity. This is the reason for the extensive study of multiple filled Skutterudites recently,

and also why single filling is less heeded.

3.2.2 implementation of 3-D defects in CoSb3 skutterudites

Nanocomposite. The thermoelectric nanocomposite, a new paradim for high perfor-

mance thermoelectrics, consistently attain even greater ZT. The thermal conductivity

of the composites is suppressed significantly by nanosized secondary phases (nanoin-

clusions), well-dispersed within a host matrix. The nanoinclusions with dimensions

smaller than the phonon mean free path and with maximum interface density, can

usually significantly scatter heat-carrying phonons, retarding the lattice thermal con-

ductivity dramatically. To avoid diminished electrical conductivity, however, they

must also be larger than the charge-carrier mean free path in order to minimize ad-

verse carrier scattering. In addition, analogous to filled skutterudites, nanoinclusions

may also increase the power factor (α2σ): the α and σ may be enhanced by energy

filtering and modulated carrier doping, respectively [49–51].

Consequently, many promising skutterudite-based nanocomposites with large ZT

have been reported [52, 53], the most notable (achieving ZT up to 1.43) consisting

of nanoinclusions reportedly synthesized in situ. However, the origin of the nanoin-

clusion materials- originating from either impurity phases of meta-stably filled void,

which means the guest atom is thermodynamically unstable in the void sites-was not

definitively determined. In this thesis, although the nanoinclusions were introduced

in situ by intentionally passing the FFL, the possibility that nanoinclusions were

formed way before over the FFL can not be excluded.
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Chapter 4

Research goal and strategy

This dissertation project began with interest in the roles of a single filler in skutteru-

dite system. Since the study trend has been shifted to multiple filled skutterudites

so fast, single filled skutterudites has scarcely been studied due to its low efficiency.

However, to reveal the physics behind the filling behavior- what is the physical iden-

tity of the guest atom? Be a normal filler or a rattler- requires us to go back to the

most fundamental case-single filled case. To this end, La was chosen as the guest

atom based on two reasons: 1) Rare earth elements were customarily thought to be

good rattlers, by studying La, the first element in rare earth group, we can reveal the

”roles” of La as a guest atom (rattler or filler). 2) La, as the first element in rare

earth group, dose not have f electrons, which ensures more feasible and trustful DFT

calculation results. We started with experimentally preparing a series of La filled

Co4Sb12 samples with various La compositions ranging from below the FFL to above

the FFL. Sb deficiencies occurred during the preparation of the sample due to a high

vapor pressure, thus we had a Sb-vacancy doped Co4Sb12. Also, La-Sb nano-sized

secondary phase precipitated when La content was over the FFL, and the formation

of La-Sb secondary phases would also induce Sb vancancies. With this filling-doping-
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nanocomposite method, we’ve discovered that by using only one control parameter,

the ZT can improve largely compared with the pristine sample. However, the experi-

mental results cannot unequivocally indicate the physical identity of the guest atom,

nor explaining the cause of the dramatic σ change with the occurrence of the La-Sb

secondary phases. Hence, studying the La filled Co4Sb12 theoretically using DFT,

and exploring the role of La became the main goal in this dissertation.

We started the DFT calculations with two different La filling conditions (12.5 at%

and 25 at%) in Co4Sb12 matrix. As a result, the electron band structure, density of

states(DOS), charge density plots were all calculated. The impact of La addition and

Sb deficiencies on band structure were explored. Calculated result acted as a good

support on experimental result. In summary the thermoelectric study combining

with the DFT calculations helped us study the defects chemistry (how point defects

including Sb vacancies and La fillers interact with nanocomposite), and how their

interplay influence the thermoelectric properties, which may shed some light on other

single filled or multiple filled Skutterudites.
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Chapter 5

Experimental procedures and

theoretical calculations

5.1 Synthesis procedures

5.1.1 Synthesis

The melting-annealing-sintering method was used to synthesize the sample. Stoichio-

metric amount of Cobalt (Co) powder (99.998%; Alfa Aesar), Antimony (Sb) powder

(99.9999%; Alfa Aesar R©) and Lanthanum (La) Powder (99.998%; Alfa Aesar) were

mixed thoroughly according to each sample’s compositions. The nominal composi-

tions are LayCo4Sb12 (y=0.1,0.2,0.3,0.4 and 0.6). Admixtures were then placed into

a quartz tube with a piece of quartz wool in the glove box with protection gas. The

quartz wool was used to prevent powders to be sucked into the vacuum system. Then

the quartz tube was evacuated and sealed under high vacuum. Samples were then

placed in a Carbolite R© model CWF 13/23 box furnace for the melting and annealing

process. The furnace was heated to 874K, adwelt for 3 hours, then heated to 1323K
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Figure 5.1: The binary phase diagram of Co-Sb [54].

and held for approximately 30 mins to ensure the homogeneity of the melts. Then

the furnace was cooled to 923 K within 45 minutes and held for 72 hours (see Fig. 5.1

for the phase diagram [54]). After furnace cool the solid in the quartz tube was then

grinded into powder and sintered into a compact disc using Spark Plasma Sintering

(SPS) for characterization.

5.1.2 Spark Plasma Sintering

Spark Plasma Sintering (SPS) is a sintering process that make the densification pos-

sible in a short period of time by sparking or plasma generation [55]. The large spark

pulse current flow through the graphite mold and stacked powder can consolidate a
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Figure 5.2: Schematic diagram of Spark Plasma sintering device [56].

homogeneous, high quality sintered compact due to the uniform heating, surface pu-

rification and activation made possible by dispersing the spark points [56]. Moreover,

the fast cooling rate of the sample and the graphite mold after the pulsed current is

cut off can be as fast as 300 K/min, therefore, the whole sintering process can usually

be done in about 15 minutes. Fig. 5.2 [56] presents the basic configuration of the SPS

system. The system consists of a SPS sintering machine with a vertical single-axis

pressurization mechanism, two punch electrodes with built-in water cooler, a water-

cooled vacuum chamber, a vacuum/air/argon-gas atmosphere control mechanism, a

cooling water control unit, a position measuring unit, a special DC-pulse sintering

power generator, an applied pressure display unit and other interlock safety unites.

In our experiments, a Dr. Sinter Lab, SPS-515S SPS system was used. All sam-

ples were pulverized into powders with a mortar and pestle from the melt process

described above. The powders was then placed into a 12.7 mm diameter graphite die

with graphite foil in between the powder and graphite punches for the ease of removal
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after sintering and a more uniform current flow. The graphite die was then placed in

between graphite spacers with a thermocouple placed in a hole on the side of the die

to measure the temperature of the powder during the sintering. After setting up the

place for the graphite die, the chamber was closed and the furnace was purged and

backfilled with Argon three times to ensure a vacuum environment before sintering.

After applying the heating program, the whole process took about 20 minutes. The

pressure was held at at constant 6.0 kN with DC on:off pulsed of 12:2 units (each

unit=2.8 msecs). The finalized sintered discs would have a 12.7 mm in diameter and

≈ 2-3 mm in thickness.

5.2 TE property measurements

Restricted by the different working temperature range of measuring equipment, all

measurements were conducted both in high temperature (above 300 K) and low tem-

perature (below 300 K) using different apparatuses.

5.2.1 Thermal conductivity measurements

The SPSed samples were in diameter (12.7 mm) that was made specifically for thermal

diffusivity measurement. Before the measurements the disc were coated with a dfg 123

graphite spray for a thin coat of graphite to ensure good thermal homogeneity when

the sample is heated, good absorption of the pulsed laser input and IR detection

for the temperature. The disc is then placed in SiC sample holder and Nezstch R©

Microflash 457 transient technique system for high temperature thermal diffusivity

measurement. Fig. 5.3 shows the basic configuration of the LFA system.

After purging and back-filling with Argon several times, the system was left with a

continuous Argon purge at a flow rate of 75 mL/min before measurement. Sample
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Figure 5.3: The basic configuration of Nezstch R© Microflash 457 transient technique
system for high temperature thermal diffusivity measurement [57].

Figure 5.4: The temperature vs time curve for fitting. The theorectical models [58–60]
in the graph were used to fit the experimental result [57].
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temperature was measured by an S type (Pt:Pt-Rh) thermocouple. While the tem-

perature and baseline was stabilized, a Nd-glass laser was charged and activated to

heat the bottom of the sample. The heat transfer through the sample was detected by

a liquid nitrogen cooled Indium Antimonide (InSb) infared detector. Temperature vs

time is plotted as shown in Fig. 5.4. If the width of the laser pulse is infinitely small

or negligible compared with the sample temperature raising half time, the transfer

of heat in the sample can be simply regarded as one dimensional heat transferring

from top surface to bottom surface without horizontal heat loss through side. And if

adiabatic conditions apply to the environment (that is to say the temperature of the

bottom surface will raise to the maximum point and stay), then we can calculate the

thermal diffusivity through the temperature raising half time t1/2(the time it takes

for the bottom surface to raise the temperature half of the maximum temperature)

and the sample thickness d:

D = 0.1388
d2

t1/2
(5.1)

For the bulk sample we measured, Cowan+Pulse model [58] was used to fit the tem-

perature rising curve, if fits well, the Netzsch LFA Measurement v. 4.8.0 software

can read a value for thermal diffusivity. Then at each temperature point, this whole

process above is repeated. The average thermal conductivity is related to thermal

diffusivity in following equation:

κ = CpρdD (5.2)

Where ρd is the density and Cp is the heat capacity at constant pressure. The density

was calculated using the Archimedes method. In practice, Cp can be measured by dif-

ferential scanning calorimetry (DSC), however, in the case of skutterudite materials
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that function at mid temperature (300 K to 800 K) range, all phonons will be excited

in which a Dulong Petit limit (Cp ≈ 3R) can be used to estimate Cp. Therefore, the

thermal conductivity values were then calculated for the entire temperature range

measured (50 C◦ -475 C◦).

For low temperature thermal conductivity measurement, a steady-state custom de-

signed technique was used. Samples were cut into 2×3×8 mm3 bars with a larger

cross section to lessen the radiation by reducing the surface to volume ratio. Two

samples were mounted to pucks modified from a Quantum Design Physical Prop-

erties Measurement System (QD R© PPMS) pucks (Fig. 5.5 [6]). The details of this

custom designed thermal conductivity system is described elsewhere [61]. The sample

pucks were then placed inside the custom designed low temperature κ measurement

system. Three separate radiation shields were placed over the sample to minimize

any radiation loss. The system was then purged to ≈ 10−5 torr using a Leybold R©

Turbotronik NT 151/361 turbo pump. After inputting the sample dimensions in the

system, the system was then cooled using a cryocooler, APD R©Displex Close Cycle

model CSW-202N cryostat with helium compressor. Measurements were then taken

during warming from 10 K to 300 K. The steady state method of this low temper-

ature κ measurement performs a power P vs ∆T sweep at constant temperature

across the sample using a constant current source measuring the resulting resistance

and calculating the power output from the equation

P = I2R− Ploss (5.3)

where Ploss is the power loss due to radiation at room temperature. The system

software then used the slope of P vs ∆T to calculate the over κ, including looses,
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Figure 5.5: QD-PPMS R© modified mounted puck for low temperature thermal con-
ductivity measurement [6].
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using the equation,

κ =
PL0

A∆T
(5.4)

where L0 is the temperature difference between the leads and A is the cross-sectional

area of the sample.

To remove the radiation affects on the near room temperature κ data, a radiation

correction fitting was used. The power radiated from the sample included in the Ploss

term above is given by Stefan-Boltzmann law

Ploss = Asϑε(T
4
b − T 4

s ) (5.5)

where As is the surface area and ϑ is is the Stefan-Boltzmann constant, ε is the

emissivity. Tb is the base temperature and Ts is the sample temperature, and

Ts = Tb + ∆T (5.6)

For mathematical simplicity, using the Taylor expansion, we will have

Ploss ∝ T 3 (5.7)

which has been simplified by using Taylor expansion. And after applying this T 3 fit

to the κ above about 200 K, it can help to correct the near room temperature κ to

match the high temperature κ.
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5.2.2 Seebeck coefficient and Electrical conductivity mea-

surements

The seebeck coefficient and electrical conductivity were measured simultaneously both

in high and low temperature measurement. After high temperature thermal conduc-

tivity measurements, the disc shape samples were cut into 13×2×3mm3 bars for high

temperature electrical resistivity ρ and Seebeck coefficient α measurements. Sample

dimensions were measured using a Vernier R© caliper and entered into the measurement

system ZEM 35.0 for HT SDC 35 software, along with desired temperature program,

and ∆T between thermocouple probes. Measurement were taken from room tem-

perature to approximately 475 C◦ using the Ulvac R© systems 4-probe method with

two spring loaded thermocouples, on the side of the sample, and two spring loaded

ceramic arms, allowing for thermal expansions, with Ni electrodes holding the sample

in place. Distances between the two thermocouple probles were measured using a

DinoLite R© camera and DinoCapture 2.0 v. 1.4.3 software. Two slics of Nickel foil

were used in between top and bottom Ni electrodes and sample faces to ensure the

best electrical contact. Before measurements, sample was tested for reliable electrical

contacts using a measurement plotting voltage vs current to make sure a linear resis-

tance and thus a good Ohmic contact. After this, a Ni radiation shield was used to

cover the sample for eliminating thermal noise due to radiation effects. The system

was then purged and back-filled with high purity helium gas three consecutive times

with 10 minutes intervals between each purge and fill. The resistivity of the sample

ρ was measured using the equation

ρ =
l

A
R (5.8)

43



in which A is the cross-section area calculated from the measured thickness and width

of the sample, l is the measured distance between the two thermocouple probes, R is

the measured resistance. Seebeck coefficient α measurement use the equation

αAB =
∆V

∆T
(5.9)

where the ∆V and ∆T are measurable quantities that are not reliant on sample di-

mensions. Samples were measured at every 50 C◦ with ∆T intervals of 5,10 and 1.

Low temperature resistivity and Seebeck coefficient were measured using 2 × 3 ×

12mm3 bars still cut from the disc. The sample bar was then mounted on a custom

designed sample puck, as is shown in Fig. 5.6 [6]. And the two parameters (α and σ)

were measured semi-simultaneously on each sample using four probe method during

cooling and warming. Samples were cooled from 300 K to 10 K at a rate of 0.75

K/min using a ∆T between the two ends of the sample of 5 K. At each temperature

point, current was pulsed for ≈ 100 ms while reading the voltage from the voltage

leads on the sample. The current pulsed was first run through the 10 Ω standard

resistor for accuracy of current measurement.

5.2.3 Susceptibility measurements

Due to the special property of our sample, we need to measure susceptibility to

approximate the carrier concentration. Magnetic susceptibility are calculated from

the Q-D PPMS R© system using a Vibrating Sample Magnetometer (VSM). The VSM

applies sinusoidal vibrations to the sample. A few mg of powder were placed inside

a cylindrical snap-in capsule sample holder with the powders centered as closely as

possible to the 35mm mark (Fig. 5.7 [6]). The snap-in capsule is then placed in a
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Figure 5.6: Completely mounted low temperature resistivity and Seebeck coefficient
measurement puck [6].

pick-up arm and placed inside the QD-PPMS R© system for measurement. Samples

were measured using a temperature program. A steady + 5000 Oe magnetic field

is applied the sample and the resulting magnetic moment (M) is measured via the

induced voltage in the pick-up coil surrounding the sample (Fig. 5.8 [6]). And then

the measured magnetic moment from the VSM can be divided by the measured mass

of the powders. Therefore, the mass susceptibility can be calculated via the magnetic

field and the moment per unit mass. The mass susceptibility can be converted to

moles giving the molar susceptibility, which indicates the degree of magnetization of

a material in response to an applied magnetic field.
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Figure 5.7: Bronze trough with 35 mm mark to accurately center the sample in the
sample holder for balancing and thus accuracy of measurement [6].

Figure 5.8: Cartoon of the Vibrating Sample Magnetometer showing the position of
the sample to the pickup coils which measure the magnetic moment of the sample [6].
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5.3 First principle calculations

Density functional theory (DFT) calculations were performed with Vienna ab ini-

tio Simulation Package (VASP, version 5.3.3) [62, 63]. The Kohn-Sham equations

were solved with the projector-augmented wave (PAW) method [64, 65], using the

Perdew-Burke-Ernzerhof (PBE) exchange and correlation functional [66]. Three types

of skutterudite structures were studied, including CoSb3, La-filled CoSb3, and La-

filled CoSb3 skutterudites with single vacancy or double vacancies. The structure

of Co4Sb12 was constructed by expanding the primitive body-centered cubic (bcc)

lattice Co4Sb12 into a 2×2×2 bcc supercell Co32Sb96, which contains eight dodec-

ahedron voids, each enclosed by eight Co atoms and six pairs of Sb atoms. The

structure of La-filled Co4Sb12 was then constructed by filling one of the eight voids in

Co32Sb96, giving LaCo32Sb96 (or equivalently La0.125Co4Sb12) with a filling fraction of

12.5 at% that is close to the lower end of experimentally studied filling range of 10-60

at%. Finally, the structures of La-filled Co4Sb12 with single vacancy were created

by removing one Sb atom at six random positions while those with double vacancies

were created by removing two directly bonded Sb pairs at six random positions, giv-

ing LaCo32Sb95 (or equivalently La0.125Co4Sb11.875) and LaCo32Sb94 (or equivalently

La0.125Co4Sb11.75), respectively. On the basis of our validation of exchange-correlation

functionals against the experimental lattice information of Co4Sb12, the structures of

Co4Sb12 and La-filled Co4Sb12 were first optimized using a nonlocal optB86b-vdW

functional entertaining van der Waals (vdW) correction. Both lattice vectors and

atomic positions were relaxed until the Hellmann-Feynman forces were smaller than

0.01 eV/Å. For the La-filled Co4Sb12 with vacancies, only atomic positions were re-

laxed while the lattice vectors were kept the same as experimental values of Co4Sb12.

All of the optimized structures were then used for static electronic structure cal-
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culations with PBE functional. Non-spin-polarized calculations were performed for

the system without La filling while spin polarization was turned on for the La-filled

systems without and with defects. The Brillouin-zone integrations were performed

on a Γ-centered 4×4×4 k-point grid, the kinetic energy cutoff for plane waves was

set to 500 eV, the convergence criterion for electronic self-consistency was set to 10-

5 eV, and the accurate precision setting was adopted to avoid wrap around errors.

Spin-orbit coupling (SOC) effect was tested for the primitive lattice of the parent

system Co4Sb12 showing that the SOC effect is weak, in agreement with an earlier

expectation. SOC calculations could not be afforded for the La-filled systems without

and with defects due to the large size of the supercell. However, SOC calculations

for other LaRu4X12 (X=P, As, Sb) skutterudites indicate no pronounced SOC effect

in the vicinity of the Fermi level, implying that the SOC effect is negligible for the

La-filled systems under study in the present work. Band structures were sampled in

the reciprocal space along primitive-based high symmetry k-points Γ (0, 0, 0), H (0.5,

-0.5, 0.5), N (0, 0, 0.5), and P (0.25, 0.25, 0.25). Fermi surface was calculated by

using Wannier90 program, and then visualized with XCrysDen program.
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Chapter 6

Probe the Role of La Fillers and

Sb Vacancies in CoSb3

Skutterudites by Density

Functional Theory Calculations

and Experimental Studies

As stated in my research goal and strategy chapter, we will use La as a single con-

trol to investigate the doping-nanocompositing-filling mechanism on TE properties.

Meanwhile, the empty f orbital of La enable us to pry into the physical identity of the

guest atom, as well as the interplay between the La filler and Sb vacancies, which helps

explore the role of guest atom that cannot be explicitly indicated by experimental

results.
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6.1 Experimental and data analysis

Five samples with different La filling fraction (y=0.1,0.2,0.3,0.4 and 0.6) were syn-

thesized and their thermal and electrical properties were characterized following the

procedures described in chapter 5. According to Shi et al. [45], the theoretical FFL

for single La filled in CoSb3 skutterudite is 23 at%, so we purposely vary the filling

factor so that we have both samples with under and over filling fraction limit fillers.

Scanning electron microscopy (SEM) confirms average grain size and electron differ-

ential spectroscopy (EDS) mapping was used to confirm the element composition as

well as the existence of the secondary phase.

XRD structure and magnetic property analysis for La-Sb secondary phase.

We picked out samples with filling factor just below FFL and far above FFL to exam-

ine trace of secondary phases. Fig. 6.1 displays the XRD patterns of the LayCo4Sb12

(y=0.1,0.2,0.4,0.6) skutterudites, from where the main diffraction peaks match with

the standard Co4Sb12 pattern, no extra peaks from other phases were observed. In

enlarged figure attached near 37◦, we can see the peak tends to shift to a higher angle

as more La is filled in Co4Sb12 except La0.6Co4Sb12. Based on Bragg’s law 2dsinθ = λ,

in which d is the space between two parallel planes, and λ is the incident wave length

which is a constant. We can make a rough deduction about the relation of d-spacing

of samples with different filling factors:

dLa0.1Co4Sb12 > dLa0.6Co4Sb12 > dLa0.2Co4Sb12 > dLa0.4Co4Sb12 . Except for La0.6Co4Sb12,

others follow the larger filling factor with a smaller d-spacing rule. This makes us

think that the FFL might be filler-content dependent in La-filled CoSb3. When above

the FFL, filling and formation of secondary phase are competing that results in larger

amount of filler ending up with a smaller FFL. The ”filler” in the cage still plays as

”static point defect” to electron and phonon transportation, but the excess amount

50



Figure 6.1: X-ray diffraction (XRD) pattern for pristine Co4Sb12 and LayCo4Sb12

(y=0.1,0.2,0.4,0.6) samples. The enlarged figure is near 37◦, which is to showcase the
peak shift by La doping.

outside of cage may exist in the form of La-Sb secondary phase. To prove this, we can

either look for evidence through microscopy or transport property. The SEM picture

of La0.4Co4Sb12 (Fig. 6.4) clearly prove the existence of secondary phase (The dark

area), and the EDS analyze the ratio of La to Sb in secondary phase is approximately

2:1, so the form of secondary phase might be La2Sb.

On the transport property, the carrier concentration may be a good indicator of the

existence of the secondary phase. The excess amount of La outside of the cage cannot

be stable without bonding with Sb, this will cause the electrons from Co becoming

itinerant electrons in the matrix. So the increase of carrier concentration while in-

creasing the filling factor of La above FFL would definitely indicate the existence

of secondary phase. However, due to the strong magnetic influence from La atom

on Hall measurement, the Hall data cannot be trusted, instead, the susceptibility of

La0.4Co4Sb12 and La0.6Co4Sb12 were measured as a function of temperature. Based

on Curie-Weiss law χ = χ0 + C
T−θ (C is the specific material curie constant, and is

51



Curie temperature while T is the absolute temperature), χ0 is contributed from the

diamagnetic effect and Van Vleck paramagnetism from Co4Sb12 matrix and Pauli

paramagnetism from free electrons. Therefore, without tedious calculations, we can

roughly deduce that La0.6Co4Sb12 has more carrier concentration than La0.4Co4Sb12

by comparing the y-intercept of the flat part on the plot. Also, based on the litera-

ture study, the temperature and grain size independent diamagnetism from Co4Sb12

is about −7.4× 10−5 to −8.8× 10−5 emu/mol, which is very close to that of Cobalt

ion, and the Van Vleck contribution is even smaller than this. After taking these

two out of the total susceptibility, as is shown in Fig. 6.3, we are able to roughly

approximate the contribution from the La-Sb secondary phase. In order to figure out

the formation of the La-Sb secondary phase, we used Curie-Weiss law to fit Fig. 6.3

that has already taken out the effect from Co4Sb12 matrix or Co ion. All the fitting

parameters are listed in Table 6.1. Based on the relation C =
µ2B

3kBNg2J(J+1)
, in which

N is the number of magnetic atoms per unit volume, g the Lande g factor, µB the

Bohr magneton, J the angular momentum quantum number, the effective magnetic

moment of La0.4Co4Sb12 and La0.6Co4Sb12 is 0.87 and 1.16 respectively. Normal-

izing into one unit cell, we can get ≈ 2.175 and ≈ 2.0 for La-Sb secondary phase

contribution in two samples respectively. La has two oxidation states +3 and +2,

the former one is more stable. But according to J.H. Van Vlecks prediction [67],

the effective magnetic moment from +3 lanthanum is zero, but our data still shows

a relatively steep curve below 20K which is due to paramagnetic contribution. So

we can exclude the +3 La ion contribution. But the effective magnetic moment for

La+2 cannot be found in any literature probably due to its fairly instability. But La

element has paramagnetic property when it forms double hexagonal closed-packed

crystal structure, we think the paramagnetic contribution may be from the secondary

phase La2Sb whose structure is composed of an alternate stacking of La square nets
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Figure 6.2: (a) Crystal structure of La2Sb. The structure is composed of the alternate
stacking of La square nets and LaSb layers. (b) Local coordination of these layers
and the La-La separation [68].

Table 6.1: Equation χ = A+ C
T−B was used to fit the susceptibility data.

A B C
La0.4Co4Sb12 2.07× 10−6 -29.30072 0.09358
La0.6Co4Sb12 0.00129 -107.92649 0.16606

and LaSb layers [68](Fig. 6.2). The LaSb layers are quite stable with La+3 and

showing now magnetism, so the La square nets may have something to do with the

paramagnetism. And this prediction matches pretty well with the EDS result. But

further investigation have to be made on this issue.

Thermoelectric properties. The seebeck coefficient (Fig. 6.5) changes sign when

La is filled to and above 10 at%, which suggests the pristine Co4Sb12 is a p type

semiconductor with the Fermi level lie in the valence band. When 10 at% at of La

was filled in the void, the electrons from La compensate the concentration of holes

and pull up the Fermi level in valence band. Until the valence electrons from filler La
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Figure 6.3: Susceptibility for LayCo4Sb12 (y=0.1, 0.4, 0.6) skutterudites

Figure 6.4: The SEM photo of La0.4Co4Sb12, the dark area is the secondary phase
with La : Sb ≈ 2 : 1
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Figure 6.5: Temperature dependent seebeck coefficient for LayCo4Sb12

(y=0.1,0.2,0.3,0.4,0.6), the sign turns over for rmLa0.2Co4Sb12 at high temper-
ature.

atom totally compensate the holes, a little extra electrons contribution would change

the system into n type semiconductor and push the Fermi level up into conduction

band. The Seebeck sign change of La0.2Co4Sb12 when temperature increases may be

due to the narrow band gap and the position of the Fermi level. Except La0.1Co4Sb12,

the peaks of seebeck coefficient for other samples tend to shift to a higher tempera-

ture as filling factor of La increased, this suggests the band gap changes significantly

with filling. This shift can also move the ZT peak to a higher temperature range

that makes it possible to change the working temperature of the materials (As in

Fig. 6.8). The magnitude of Seebeck coefficient also imply that the carrier concen-

tration of La0.6Co4Sb12 is the highest which matches with our susceptibility result.

From Fig. 6.6 we can also see that the electrical conductivity for La0.1Co4Sb12 shows

a semiconductor behavior, as the addition of La, the electrical conductivity tend
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Figure 6.6: Temperature dependent electrical conductivity for LayCo4Sb12

(y=0.1,0.2,0.3,0.4,0.6). The huge increase of electrical conductivity for
rmLa0.6Co4Sb12 is from deficiency doping.

Figure 6.7: Temperature dependent thermal conductivity for LayCo4Sb12

(y=0.1,0.2,0.3,0.4,0.6). They don’t differ that much at high temperature. The ta-
ble below is to show the T a dependence of κl at low temperature (T<60K)
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Figure 6.8: Figure of Merit of LayCo4Sb12 (y=0.1,0.2,0.3,0.4,0.6)

to have a metallic behavior. The electrical conductivity for La0.6Co4Sb12 is several

magnitude larger than others, especially compared with La0.4Co4Sb12. This can be

explained by the Sb deficiency doping, which validates the existence of La-Sb sec-

ondary phase that cause a large increment of carrier concentration. Fig. 6.7 shows

the temperature dependence of the lattice thermal conductivity of LayCo4Sb12 sam-

ples. While the pristine sample has a very high thermal conductivity of 8.8 W/mK,

the filling of La can effectively reduce it down to below 3 W/mK for La0.6Co4Sb12 at

temperature from 600 K to 700 K. Theoretically speaking, static point defects would

scatter phonons and lower thermal conductivity more effectively at high temperature,

and also when they are at their most disordered states, say, when the cage of skut-

terudite is filled to 50%. However, the FFL of La is only around 20 at%. But when

look at the lattice thermal conductivity for all LayCo4Sb12 (y=0.1,0.2,0.3,0.4,0.6), it

decreases continuously with the increase of y, and this effect is especially manifested

at low-temperature (T< 150K). As the La concentration increases, the suppression of
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κl seems to saturate. The slope of lines at low-temperature (T< 60K) are calculated

to illustrate the T a dependence of κl at low temperature [69], where a=0.9756, 0.3305,

0.2443, 0.3185 and 0.4168, respectively. The observation that κl ∝ T 1 for T<30K

for all samples is a strong indication of the presence of electron-phonon interaction.

The SEM shows that the size of the La-containing secondary phase is 300-500 nm.

Base on the equation λ = θ/T a in which λ is phonon wavelength and θ is the Debye

temperature, T is 300K and a is grain constant, we can roughly know the phonon

wavelength is at the same scale as grain constant that is ≈ 1nm. So the secondary

phase is too large to scatter phonons. But the secondary phase can cause the Sb de-

ficiencies that indirectly bring more point defects into the system, which we believed

is the reason for the slightly decrease in lattice thermal conductivity with an increase

in y. Due to decent PF and a fairly low thermal conductivity, La0.6Co4Sb12 has a ZT

close to 0.4 around 700K as in Fig. 6.8. Not very surprisingly, the increase in ZT for

La0.6Co4Sb12 is largely due to the improve in electron transport properties.

So far, the experimental results only indicated the existence of La-Sb secondary phase

and an observable monotonously increasing σ with La addition. Although the slightly

decrease in κph with La addition can imply that La dose not have a strong influence

on phonon scattering, the evidence is not obvious enough to indicate the physical

identity of the guest atom La, and how it interact with Sb deficiencies to affect the

TE property especially the σ. Therefore, theoretical calculations are necessary.
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6.2 Theoretical calculation result

The first principle calculation and the validation of CoSb3 skutterudite calculation

have been discussed in chapter 4 and 5 respectively. Having assured the calculation

for the parent structure is right, we will start with the calculation result of La filled

Co4Sb12 so as to figure out the role of La.

Exploring the band structure of La0.125Co4Sb12. The spin-polarized electronic

band structure and DOS of LaCo32Sb96 are shown in Fig. 6.9(b). Spin-polarized

calculations for CoSb3 skutterudite have been reported for its surface properties [70],

but are rarely applied to investigate the role of filler atoms. As can be seen from

Fig. 6.9(b), the spin-polarized band structure of La-filled skutterudite bears a large

degree of similarity to the bands of its parent structure as shown in Fig. 6.9(a). This

indicates that the bands of Co32Sb96 are rigid and the low La filling fraction appears

to simply raise the Fermi level to a position slightly above the valley at the N point.

On the other hand, the spin-polarized results reveal a notable feature that the two

spin channels display a large band offset for the conduction bands. For instance,

the CBM at the Γ point for the spin-down channel is raised up with respect to that

for the spin-up channel while the VBMs for both spins are essentially the same. As

a result, the direct band gap is larger for the spin-down channel than the spin-up

counterpart. In addition, the Fermi Energy is located at ca. 0.14 eV above the

CBM of the spin-up channel and at cal. 0.09 eV above the CBM of the spin-down

channel. This spin-polarization effect can be also seen from the DOS curves. The

DOS at the Fermi level for the spin-up channel is enhanced to nearly the high DOS

peak at the expense of that for the spin-down channel which is significantly reduced.

Also based on the partial DOS analysis (Fig. 6.10(b)), it can be seen that the two

spins are nearly degenerate for valence states but show a large DOS offset for the
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conduction states. Again, the DOS at the Fermi level is significant only for the spin-

up channel and it consists of a hybridization of Cos d, Sbs s and p, and the filler

Las d states. The filler Las s state shows negligible contribution to the DOS at the

Fermi level and therefore all of the three electrons in Las valence shells according

to its electronic configuration [Xe]5d16s2 appear to participate in the hybridization

in the form of d states. In addition to the electronic properties, the spin-polarized

calculations also gave a magnetization of 2.35 µB for LaCo32Sb96, in line with the large

band offset between the two spin channels. In terms of energetics, the spin-polarized

solution is 2 meV more stable than the non-spin-polarized solution, indicating that

the ground state of LaCo32Sb96 is the former. However, the energy difference is very

small and therefore there may not be a preference for long-range spin ordering. These

small energy differences indicate that the long-range spin ordering is not favored for

LaCo32Sb96, in agreement with our experimentally observed paramagnetic instead of

ferromagnetic properties. And also this strong spin polarization show the potential

for La filled CoSb3 skutterudite to be good candidate for spintronics material that

concerns spin-dependent electron transport phenomena in solid-state devices.

Sb 5p and La 5d orbital hybridization and its effects. The total density of states

(DOS) and partial DOS of La-filled La0.125Co4Sb12 indicate that both states near CBM

and VBM mainly originated from Co 3d electrons and Sb 5p electrons (Fig. 6.10).

Compared with the pristine Co4Sb12 DOS, the ones with La-filling have some changes

near CBM and VBM. Specifically, the ratio of DOSSb5p/DOSCo3d is decreased from

2.46 for Co4Sb12 to 1.56 for La0.125Co4Sb12 near VBM and increased from 0.14 for

Co4Sb12 to 0.18 for La0.125Co4Sb12 near CBM. This evolution indicates that the energy

of Co 3d electrons and Sb 5p electrons become closer [33], and the p-d hybridization

between Co and Sb has thus been enhanced in La0.125Co4Sb12 [33]. To explain this

enhancement of p-d hybridization between Co and Sb in La-filled CoSb3 system, we
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Figure 6.9: Band structure and total density of states of pristine Co4Sb12 (a) and
La0.125Co4Sb12 (b).
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Figure 6.10: Projected density of states (DOS) for Co4Sb12 (a) and La0.125Co4Sb12

with spin polarization (b).
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Figure 6.11: Differential charge density (DCD) of La0.125Co4Sb12 projected on (11̄1)
plane. A primitive 2×2×2 supercell is filled by one La atom at the central cage to give
the filling factor of 12.5%. The DCD is presented based on the total charge density
(a), and is broken down to a spin-up component (b) and a spin-down component
(c) based on the corresponding spin-up and spin-down charge densities. The unit of
charge density is eV/Å3.

analyzed the partial DOS of La0.125Co4Sb12 in the range of −10eV ∼ 6eV . As in

Fig. 6.12. Although part of 6s states are distributed far below -1eV that are deeply

bounded in valence band, there are still some part of 6s states distributed close to

and slightly above Fermi level, which indicates only part of 6s states would contribute

to electrical conduction.

For 5d electrons, although a very small amount of 5d states are distributed close to

-1eV that are deeply bounded in valence band, most of the 5d states are distributed

close to and above Fermi level, which suggests that the almost all La 5d electrons are

contributing to electrical property in La filled CoSb3 system. Which basically means

that we now have one almost empty s orbital(6s0) and five empty 5d orbitals (5d0)

available. But considering the 6s orbitals is far in distance compared to orbitals with
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Figure 6.12: Partial density of state of La0.125Co4Sb12 in the range of −10eV ∼ 6eV

main quantum number 5, 6s0 orbital is out of option for interaction. Therefore, La

may provide five empty 5d0 orbitals for the p-d hybridization between La and Sb.

This can be shown in figure of differential charge density plot (Fig. 6.11). The red

color represents the electron rich area and the light green color represents electron

depletion area. These two spots clearly show the evidence of charge transfer between

La and Sb that also indirectly prove the hybridization of p-d oribitals between La and

Sb. Therefore, we can say that the enhancement of p-d orbital hybridization

between Co and Sb must stem from the p-d orbital hybridization between

La and Sb. The importance of p-d orbital hybridization between La and Sb thus can

be concluded as follows: 1) According to Zhao et al., it can cause a charge transfer

from La to Sb and produce two types of atomic-scale electric fields near the La-filled

Sb12 icosahedron. Since the framework of Sb12 icosahedron acts as the passage of ma-

jority carriers in La-filled CoSb3, the atomic-scale electric fields with positive charge

at the framework in La-filled Sb12 icosahedron may enhance mobility [33]. This is
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thermoelectrically favorable. 2) The charge transfer can also prove the role of La as

a filler in CoSb3, not a rattler that is supposed to loosely bound with surrounding

atoms. This agrees with the small decrease of κph with La addition even when La

amount is below FFL. In this case, La became part of the host matrix and did not

scatter phonons as greatly as a rattler do.

Multiple band conduction in La0.125Co4Sb12. As described above, La filling raises

the Fermi level to a position slightly above the valleys at the N point (Fig. 6.9(a),(b)),

which correspond to the valley in the middle of Γ-N zone for the primitive bcc cell

(Fig. 6.13). Snyder and coworkers recently pointed out that raising the Fermi level to

the valley of Co4Sb12 leads to twelve isolated Fermi pockets which explain the term

degenerate valleys. They used these ”degenerate valleys” to explain the high electrical

conductivity in Yb0.25Co4Sb12 and call it multiple band conduction. Due to the high

effective mass, the charge carriers in the degenerate valleys at the Fermi level play

a crucial rule for the extraordinary thermoelectric performance at high filling. The

Fermi surface for Co32Sb96 in Fig. 6.14(a) at 0.143 eV above the CBM as indicated

by the red dashed line in Fig. 6.9(a) shows a core pocket in the center of the Brillouin

zone and twelve degenerate half pockets surrounding the core. The core pocket in

Fig. 6.14(a) consists of three layers of iso-energy surface corresponding to the three

lowest conduction bands (the inner two layers are invisible). When 12.5 at% La is

filled in the parent skutterudite giving La0.125Co4Sb12, the number of extra electrons

is 0.375 per unit cell. Compared to the 0.5 electrons per unit cell for Yb0.25Co4Sb12,

this amount of extra electrons is barely enough to lift the Fermi level above the

valley bottom. However, due to the presence of spin-polarization, the Fermi level

for the spin-up channel is indeed located in the degenerate valleys while that for the

spin-down counterpart is below the degenerate valleys (Fig. 6.9(b)). Consequently,
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Figure 6.13: WANNIER90 calculation of band structure of CoSb3 in 1×1×1 primitive
cell.

the Fermi surfaces for the two spin channels show a large difference. As can be

seen in Fig. 6.14(b), the Fermi surface for the spin-down channel only shows a core

pocket while that for the spin-up channel shows large peripheral open pockets joined

together. There are two layers of peripheral pockets (the inner layer being in red) since

the Fermi level is slightly above the second valley band at the N point. This indicates

an asymmetric contributions of two spin channels to the electronic properties, which

may have profound implications for thermoelectrics.
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Figure 6.14: (a) Fermi surface for Co32Sb96 without spin polarization. (b) Fermi
surface for LaCo32Sb96 with spin polarization. The Fermi surface of Co32Sb96 is cal-
culated at 0.143 eV above the conduction band minimum (CBM). The Fermi surface
of LaCo32Sb96 is shown for the spin-up electron and the spin-down electron, respec-
tively.
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6.3 Summary

La filled CoSb3 skutterudites have been prepared with the La filling factor varies

from below to above FFL for the purpose of revealing the role of La in the CoSb3

skutterudite system and observing enhancement of thermoelectric properties due to

over the FFL for single filled skutterudites. The experiment as well as the theoretical

DFT calculation indicate the multi-role of La: 1) first as a filler and static point defect

scattering phonons. 2) then as La-Sb secondary phase, directly cause Sb deficiencies

that also scatter phonons as point defects. La0.6Co4Sb12 achieve a ZT of 0.4 around

700 K which is much better than other LayCo4Sb12 samples with y=0.1, 0.2, 0.3, 0.4

respectively.The improvement of ZT for La0.6Co4Sb12 is mainly contributed from a

slightly decrease of the lattice thermal conductivity and a huge increase of electrical

conductivity. Over the FFL reduce the thermal conductivity much less than expected

due to the filler nature of La. The huge increase of electrical conductivity is due

to the Sb deficiency doping. The band structure of La0.125Co4Sb12 also indicate a

strong polarization in the system indicating La filled CoSb3 may have the potential

to be spintronic material. Although the ZT for La filled CoSb3 skutterudites is not

high enough to compete with other multi-filled skutterudite, this allows us the look

more into the physics. Filling over the FFL, not only can help reduce the thermal

conductivity, but also increase the hybridization between d-p orbitals which may shed

more light on band engineering in order to improve thermoelectric performance on

more single filled skutterudites.

The band structure calculated in this project only concerned about a perfect Co4Sb12

host material which doesn’t match well with experimental result with La addition.

The reason for this is due to the Sb loss during sample preparation in experiment.

Therefore, a band calculation with certain amount of Sb deficiencies is highly desired,
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especially for the explanation of the miscellaneous p to n type change with La addition

and revealing defects chemistry in the system. This will be discussed in next chapter.

69



Chapter 7

Further investigation the role of La

Fillers and Sb Vacancies in CoSb3−δ

Skutterudites by Density

Functional Theory Calculations.

7.1 Project Motivation

In chapter 6, the calculations on perfect CoSb3 skutterudites with La additions were

presented, which showed some discrepancies with the experimental results. The

smooth transition from p type to n type of LayCo4Sb12 (y=0.1, 0.2, 0.3, 0.4, 0.6)

as La content was increased did not match well with the band structure. This dis-

crepancy might originated from the fact that in the sample preparation process, a

small amount of Sb would vaporize due to its small vapor pressure, however, when

DFT calculations were conducted on this system, only a perfect Co4Sb12 matrix was

considered without any loss of Sb. In order to clarify the role of La fillers and Sb
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deficiencies more precisely, we carried out calculations that allowed us to investigate

two cases: i) A comparison of the effect of addition of La on CoSb3−δ skutterudites

without differentiating the contribution from spin-up and spin-down electrons. ii) A

comparison of the effect of amount of Sb deficiencies on La0.125Co4Sb12−δ with dif-

ferentiating the contribution from spin-up and spin-down electrons. The calculations

were still on a 2×2×2 primitive cell. In the first case, only the condition with one Sb

atom loss was considered, so δ is 0.125. In the second case, for calculation simplicity,

only two types of Sb deficiencies were considered: one is only one Sb atom is lost out

of eight atoms, so δ is 0.125(La0.125Co4Sb11.875), the other situation is two Sb atoms

were lost out of eight atoms. so δ is 0.25(La0.125Co4Sb11.75).

7.2 Comparison of band structure of LayCo4Sb11.875

(y=0, 0.125, 0.25) with experimental results.

Band structure of pristine Co4Sb11.875. Either from preparation procedure or over

the FFL, Sb deficiency always constructively contribute to electrical conductivity

which has already been verified in chapter 5 experimental section. As we may think

that with some La filler in the cage that also would donate electrons to the system,

the material would be n type semiconductor consistently. However, this is not the

case from experiment result. The seebeck coefficient indicate a p type behavior for

both Co4Sb12 and La0.1Co4Sb12. As a thumb of rule, when we mention p or n type

material, it is always from band concept, so it is quite necessary to take a look at

the band structure. We start with the pristine Co4Sb11.875 with intentionally taking

one Sb atom out of the system. Fig. 7.1 shows the band structure and the density of

states. The interesting part here are the three very dispersive impurity bands (two
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hole like, one electron like) which are never seen for impurity bands in any skut-

terudite materials before. From the density of states (DOS), we can see that these

dispersive bands are mainly from Sb 5p electrons.

Usually, the impurity band would be very flat and heavy with zero group velocity.

But those three bands are very dispersive indicating they are very conductive! For

Co4Sb11.875, although the Fermi level is within kBT range from one hole-like band,

the part it is close to has almost zero group velocity and large effective mass, so this

dispersion would not contribute to electrical property, which explains the very low

electrical conductivity of Co4Sb11.875 compared to other filled Co4Sb11.875. One more

important result from this band structure is that it perfectly explained the p type of

the pristine Co4Sb11.875 we usually get from measuring the Seebeck coefficient of the

sample. And this can be seen from the proximity of the Fermi level to two hole-like

bands.

Band structures of LayCo4Sb11.875 (y=0, 0.125, 0.25). Fig. 7.2 shows the band

structure of Co4Sb11.875, La0.125Co4Sb11.875 and La0.25Co4Sb11.875 respectively. With

one La atom filled into the cage, the Fermi level has been shifted up into the three

impurity bands in the band gap, since it is still close to two hole-like bands and

stay in one kBT range to conduction band minimum (CBM), this still indicates a

p type behavior which match perfectly with the sign of the Seebeck coefficient for

La0.1Co4Sb12−δ sample. Also, the addition of one La atom makes that one flat im-

purity band in Fig. 7.1(a) more dispersive, as is shown in Fig. 7.1(b). And since

this single impurity band almost touches the Fermi level in Fig. 7.1(b), indicating it

directly contributes to the electrical conductivity in La0.125Co4Sb11.875. As one more

La atom is filled into the cage (y=0.25 is on the FFL for La filled Co4Sb12), Fermi

level continuously shift up, touching the CBM edge, while disturbing the distribution

of three impurity bands.
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Figure 7.1: The band structure (left) and density of states (right) of Co4Sb11.875.
Three dispersive impurity bands can be seen located in the band gap with Fermi level
close by.
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Figure 7.2: The band structure of (a) Co4Sb11.875,(b) La0.125Co4Sb11.875 and (c)
La0.25Co4Sb11.875.

This shifting of Fermi level and dispersive impurity bands can be perfectly regarded

as one example of the interaction between La fillers and Sb deficiencies. While the

amount of La filler control the position of Fermi level, and the Sb deficiencies create

the three dispersive impurity bands. From Fig. 7.1(a)-(c), the shifting of the Fermi

level also affects how dispersive these three impurity bands are and their individual

position. Therefore, we can say that the La filler is very interactive with surrounding

Sb atoms/deficiencies which again prove the ”filler” identity of La instead of ”rattler”.
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7.3 Comparison of band structures of La0.125Co4Sb11.875

and La0.125Co4Sb11.75

The comparison made in section 6.1 indicated the addition of La can shift the Fermi

level so that it can interact with three dispersive impurity bands caused by one Sb

atom loss. In this section, the amount of La filler is fixed while the amount of Sb

deficiencies change. For simplicity, only two cases with one Sb atom loss and two Sb

atoms loss will be considered. Fig. 7.3 shows the band structure of La0.125Co4Sb11.875,

the position of the Sb vacancy was randomly chosen, for comprehensiveness, six dif-

ferent spots were chosen. From the six plots we can see that although the vacancy

positions were different, they all contributed to the three dispersive impurity bands

in the band gap in spite of the shape of these three impurity bands change according

to the Sb vacancy position. The blue bands are from spin-up electrons and the red

bands are from spin-down electrons. Although Fermi level is close to some dispersive

red bands, the parts it is close to have huge effective mass and zero group velocity.

Therefore, the contribution to the electrical property from the red bands can be ne-

glected. This is to say that in La0.125Co4Sb11.875, only spin-up electrons that are

close to Fermi level are constructively contributing to electrical property.

The reason for this is still unknown, but this property can make La filled Co4Sb12

applicable in spintronics solid-state devices. From Fig. 7.4 we know that the three

dispersive impurity bands are mainly from the contributions of Sb atoms nearby the

vacant Sb position.

As Sb deficiencies were increased, more dispersive bands would occur in the band

gap, as is shown in Fig. 7.5. The variation of these changes from Fig. 7.3 to Fig. 7.5

were hard to trace, and it is hard to weigh the contributions to electrical properties

from red (spin-down) and blue (spin-up) bands.
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Figure 7.3: Band structures of single Sb atom vacancy in 2× 2× 2 La0.125Co4Sb11.875

primitive cell. The vacant Sb atom is randomly selected. The blue line represents
the contribution from spin-up electrons and the red line represents the contribution
from spin-down electrons.
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Figure 7.4: Partial charge density of single Sb vacancy band structure. Yellow atoms
are Co, blue atoms are Sb, central purple atom is filled one La atom. The red circle
represents a single Sb vacancy, the grey transparent surfaces are total partial charge
density (including spin up+ spin down). This partial charge density mainly comes
from Sb atoms nearby the vacant Sb position.
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Figure 7.5: Band structure of Sb atom di-vacancy in 2 × 2 × 2 La0.125Co4Sb11.75

primitive cell. The di-vacancy Sb atoms are connected and combinations are randomly
selected. The blue line represents the contribution from spin-up electrons and the red
line represents the contribution from spin-down electrons.
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7.4 Conclusion and Future work

So from all the band structures shown above and comparisons that involve the varia-

tion of filling content as well as the deficiencies amount. Two questions were solved:

i) When considering Sb deficiencies, the band structure indicates a n to p type change

with La addition which perfectly matches our experimental results. ii) The interac-

tion between Fermi level and the dispersive impurity bands in the band gap provides

evidence of strong interaction between La filler and surrounding Sb atoms/deficien-

cies, this directly proved the ”filler” identity of La. And again, with the ZT improved

to 0.4 for La0.6Co4Sb12, it is assured that even without being a ”rattler”, La, as a

filler, can still contribute to improve TE property.

However, one issue still remained unsolved. That is the occurrence of the dispersive

impurity bands with Sb deficiencies. Normally, impurity bands tend to be heavy with

huge effective mass. Our results showed that the impurity bands from Sb deficiencies

are very dispersive and close to Fermi level, which means they actually contribute to

electrical property. Also, the addition of La would only shift the Fermi level, which

indicates that the increasing of electrical conductivity with La addition may be due

to the continuously shifting up of Fermi level that touches the impurity dispersive

bands, and it is Sb deficiency that contribute to electrical conductivity instead of La,

although it seems from the experiment result that the electrical conductivity is in-

creasing with the addition of La. This answer still needs more experimental supports

and can be left as future work.

Another issue remained puzzled is the strong spin polarization in La0.125Co4Sb11.875,

it is very self-explanatory from the band structure that only spin-up electrons are

contributing to electrical properties. And with the increasing of the amount of Sb

deficiencies (in La0.125Co4Sb11.75), the weight of spin-up and spin-down electrons con-
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tribution were hard to be differentiated although the spin polarization still exist. This

has never been observed in any Skutterudites materials nor any other TE materials

before. If can be verified experimentally, a wide application field in spintronics solid

state devices would be opened for filled Skutterudite materials.
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Appendix A Electron band structures and related

norms

Electron band structure and density of states. Band structure describes the

relation of E and k, which are the eigenvalue of energy and momentum respectively

from solving schrodinger equation. Fig. 6 (a) presents the band structure of silicon,

the y-axis is the energy and x-axis is the wavevector. All the captial greek letters

represents the high symmetry points on brillouin zone. For more introduction about

brillouin zone, you can refer to Introduction to solid state physics by C Kittel [16].

This band structure provides a blueprint of what state (E, k) are available for electrons

to occupy in reciprocal space. The electrons would occupy the states with the lowest

energy first, and the energy level below which all states are occupied and above which

all states are empty is called the Fermi level. In Fig. 6 (a), the dash line represents

the Fermi level.

The band structure is a good way to visualize the wavevector-dependence of energy

states, and the possible electronic transitions. However,the actual transition process

depends on how many states are available in both the initial and final energies. The

band structure is not a reliable guide here. Hence, a full density of states across the

whole Brillouin zone will become handy. Fig. 6 (b) shows the full density of states of

silicon.

Fermi-Dirac statistics and Fermi ”window” factor. Bands or density of states

provide the available states for electrons, yet not every single state has the possibility

to be occupied by electrons. The Fermi-Dirac distribution function, provides the
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Figure 6: (a) Band structure of Si. (b) Total density of states of Si.
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probability of occupancy of energy levels by electrons (Fermions).

f(ε) =
1

e(E−µ)/kBT + 1
(1)

where f(ε) is the occupation probability of a state of energy ε, kB is Boltzmann’s con-

stant, µ is the chemical potential (Fermi level when at zero temperature) and T is the

temperature in Kelvin. Fig. 7 shows how the Fermi-Dirac distribution would change

with temperature. From this figure it is clear that at absolute zero the distribution is

a step function. It has the value of 1 for energies below the Fermi level, and a value

of 0 for energies above. For finite temperatures the distribution gets smeared out,

as some electrons begin to be thermally excited to energy levels above the chemical

potential, µ. If taking derivative of f(ε) with respect to energy ε, the Fermi ”window”

factor ∂f(ε)
∂ε

can be obtained. It is a bell-shape function centered at E = Ef , having

a width of ≈ kBT . The Fermi window can be interpreted as a direct consequence of

Pauli exclusion principle, it shows that at a finite temperature only electrons near the

Fermi surface contribute to the conduction process. We will use this in the definition

of α and σ later. Usually the number of electrons can be obtained by multiplying

density of states with Fermi-Dirac distribution.

Effective mass. Effective mass is another parameter that can describe the electrons’

behavior obtained from band structure. It is a quantity that is used to simplify band

structures by constructing an analogy to the behavior of a free particle with that

mass [16]. It is defined as

(
1

m∗ )µν =
1

h̄2
d2E(k)

dkµdkν
(2)

In a three dimensional band structure, the effective mass is a tensor. It also reflects
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Figure 7: The Fermi-Dirac distribution at T=0K and finite temperature. The kBT
range means only the electrons close to Fermi level are constructive to electrical
transport properties.
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the inverse of the band curvature: the lower m∗, the larger is the curvature.

Sometimes, when the effective mass has a different value according to the direction

of the wave vector k, then a density of states effective mass will be used for simplify-

ing purpose. For defining α and σ in next section, the band effective mass will be used.

Semiconductor and metal. The presence of the Fermi level differentiate a semi-

conductor from a metal. For discussion, three terms must be defined. The highest

energy band that contains electrons is called valence band, whereas the lowest en-

ergy empty band is called the conduction band. The band gap is the difference in

energy between the valence and conduction bands. The laws of quantum mechanics

forbid electrons from being in the band gap, thus, an electron must always be in one

of the bands. While both semiconductor and a metal have bands and band gap, for

a pure (intrinsic) semiconductor, the Fermi level usually lies in the band gap; for a

metal, the Fermi level is far deep into either the conduction band or valence band (at

least above ≈ 5kBT from the band edges).

Intrinsic and Extrinsic Semiconductors. Knowing that semiconductor has a

band structure with band gap between conduction and valence band, and the Fermi

level lies in the gap, so electrons from valence band should excite across the band

gap into the conduction band in order to contribute to the electrical property. At

finite temperatures the only charge carriers are the electrons from the conduction

band and holes(can be seen as a carrier with positive charge) from the valence band

that arises as a result of the thermal excitation of electrons to the conduction band.

These charge carriers are called intrinsic charge carriers, and necessarily there are

equal numbers of electrons and holes. In this case, the semiconductor can be called

intrinsic semiconductor. However, in most of the cases, the electrical conductivity
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is still orders of magnitude lower than that of a metal. Therefore, by introducing a

different kind of atom into the intrinsic semiconductor, the electronic structure can

be modified so as to improve the electrical conductivity. Two different kinds of atoms

should be discussed here: When the electrons of the additional atoms are bound

only weakly to their parent impurity atoms, and even at very low temperatures these

electrons can be promoted into the conduction band of the semiconductor. This is

often represented schematically in band diagrams by the addition of ’donor levels’

just below the bottom of the conduction band, as in Fig. 8 (a). The dotted line

represents the existence of additional electrons which may be easily excited into the

conduction band. Semiconductors that have been doped in this way will have a sur-

plus of electrons, and are called n-type semiconductors. In such semiconductors,

electrons are the majority carriers. Conversely, if the addtional atoms cause a deficit

in the number of valence electrons in the material. This introduces electron-accepting

levels just above the top of the valence band, and causes more holes to be introduced

into the valence band, as in Fig. 8. Hence, the majority charge carriers are positive

holes in this case. Semiconductors doped in this way are termed p-type semicon-

ductors. Doped semiconductors (either n-type or p-type) are known as extrinsic

semiconductors. This thesis mainly focus on doped semiconductors.
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Figure 8: A schematic figure of n-type semiconductor and p-type semiconductor.
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Appendix B Electron transport: mobility

By definition, the mobility of electrons characterizes how quickly an electron react

to an applied field. The most basic mobility is called drift mobility, which is derived

from v = eτ
m
E. τ is the relaxation time, characterizing the time traveling between two

collisions for an electron, E is the applied field and v is the corresponding velocity.

The term eτ
m

is called mobility µ. As we can see here, µ is closely related to τ .

In real materials, electrons not only can be scattered by electrons, they can also be

scattered by phonons, boundaries etc. Therefore, the energy dependent mobility µ(E)

in equation 1.16 will get its value depend on what scattering mechanism electrons ex-

perience. For easy reference, the characteristic mobility and relaxation time of a few

non-resonant scattering schemes in thermoelectricity are listed below:

For electron scattering by acoustic phonon modes, the relaxation time calculated

based on a deformation-potential model is

τe =
h4v2ρdE

−1/2

(8π2)3/2kBT∆2(m∗)3/2
(3)

where ρd is the density, m∗ the effective mass, and ∆ the deformation-potential con-

stant. The corresponding mobility is

µ =
(8π)1/2ehv2ρd

3k
3/2
B ∆2

(m∗)−5/2T−3/2 (4)

State of the art TE materials often possess a unit cell with many atoms, hence op-

tical modes are another major source of electron scattering, especially at elevated

temperatures. One should note that the relaxation time approximation doesn’t hold

for polar optical code scattering. Nonetheless, the validity of the relaxation time ap-
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proximation is justified at elevated temperatures, in which case the relaxation time

and mobility are:

τe ∝
E1/2

(m∗)1/2
T and µ ∝ (m∗)−3/2T−1/2 (5)

For electron scattering by ionized-impurity scattering, the correspondent relaxation

time and mobility are,

τe =
8(2)1/2(m∗)1/2ε2E3/2

π3/2Nie4N
[1 + (

3εkBT

e2N
1/3
i

)2]−1 and µ ∝ T 3/2 (6)

where Ni is the impurity concentration. For electron scattering by charge neutral

grain boundary, the correspondent mobility is

µ =
el√

8kBπTm∗
e
− EB

kBT (7)

where EB is the mean energetic barrier between grains, and l the mean grain size.
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Appendix C Thermal conductivity

Thermal conductivity κ is defined as the energy transmitted per unit time across unit

area per unit temperature gradient.

j = −κdT
dx

(8)

Dependence of κ on dT/dx implies that the thermal energy transfer is a random pro-

cess involving scattering, which introduces mean free path of phonons in the prob-

lem. We make a relaxation time kind of approximation: the energy contributed by a

phonon at a point is decided by where it has had its last collision. So phonons coming

from the high temperature end bring more energy than those coming from the low

temperature end. Thus although there is no net number flux, there can be energy

flux travelling from the high T end to the low T end.

Temperature at two ends of a one dimensional rod are (T + ∆T ) and T . The tem-

perature at point x is T (x) and the energy at that point is E(T (x)). Half the

phonons arriving at a point x are from the high temperature side each carrying an

energy E(T (x − υxτ)), the other half are from the low T side and carry an energy

E(T (x+ υxτ)). Number of phonons arriving at x per unit time per unit area of cross

section is 1/2nυx, where υx is the phonon speed in x direction. So the net energy flux

is :

j =
1

2
nυ(T (x− υxτ))− E(T (x+ υxτ))] = nυ2xτ

dE

dT
(−dT

dx
) = −1

3
υ2τCv

dT

dx
(9)

Therefore,

κ =
1

3
Cvυ

2τ =
1

3
Cvlυ (10)
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So lattice thermal conductivity of a crystal is determined by two contributions-specific

heat and mean free path of phonons.
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Appendix D A brief review of the development of

thermoelectric generators

Throughout the history of science, the discoveries of great phenomena or principles

is always followed by people’s motivation to put them in practice. Before we delve

into more physical details about thermoelectric performance, it is necessary to take a

look on some of the developments of thermoelectric devices based on thermoelectric

effect in history [71–75].Since Seebeck effect was discovered, various attempts were

made to use the electromotive force (emf)of the thermogenerators. In 19th century,

there is this device called ”thermopile” developed by Leopoldo Nobili and Macedonio

Melloni, it has a number of thermocouples connected in series and is used for the

measurement of temperature and infrared radiation, which also served as a stable

power supply for physical experiments by Georg Simon Ohm. And then came the

”Markus”thermopile (1864)(Fig. 9),The emf of a single thermocouple was called ”one

twentieth of a Daniel cell” and generated about 55 mV. The negative leg consisted of

a 10:6:6 copper-zinc-nickel alloy, the positive leg of a 12:5:1 antimony-zinc-bismuth

alloy. But it has a disadvantage of the strong oxidation of the contacts that would

increase the internal resistance. And then came the Becquerel thermopile, Clamond

thermopile, The Noe thermopile and Hauck thermopile et al [71].

When the 20th centry came, new design on devices were developed, in 1925, Ther-

mattaix was made for loading lead-acid accumulators (Fig. 10). Around 1950, power

in the kW range was generated in the Russian nuclear reactor ”Romoschka” with

thermogenerators. In 1958, A. F. Joffe described the application of the thermoelec-

tric effect for the use of the bulb heat. From the seventies to the nineties ”Radio-

scope Thermoelectric Generators”(RTGs) are used in the space missions ”Pioneer
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Figure 9: Markus thermopile [71].

Figure 10: Thermattaix
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Figure 11: Cross-sectional view of an RTG

10”,”Pioneer 11”, ”Voyager I”,”Voyager II”,”Galileo”,”Ulysses”,”Cassini” and ”New

Horizons” as power supplies of the space capsules(Fig. 11). In the Voyager mission an

RTG consisted of 300 thermocouples. Since 1977 these thermogenerators still operate

free from maintenance.
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