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Abstract

Wildfire spread via fire spotting phenomenon has three major stages, namely formation
and break-off of firebrands from vegetative structures, lofting and transport of them through the
ambient velocity field, and finally deposition of firebrands upon landing and ignition of spot fires.
This dissertation develops novel models in different areas related to fire spotting phenomenon and
integrates them to improve understanding of the firebrand flight through a multiphysics model. In
this regard, a mechanical break-off model for the formation of cylindrical firebrands from coniferous
trees is proposed; And by geometric scaling analysis, it is shown that the firebrand surface area
scales on the mass raised to the 2/37%* power. By applying a non-linear regression model to the
available experimental data on firebrands, a predictive statistical model for estimating mass and
shape distribution of firebrands is proposed, that can be used as realistic input into the current fire
spotting models. Further, the aerodynamic behavior of the cylindrical firebrands is characterized by
conducting free-fall experiments where it is shown that the governing equations of the transport are
highly sensitive to the initial conditions of the release. On this matter, near field dynamics of highly
buoyant bent-over plumes are thoroughly characterized and, it is shown, analytically, that the steep
trajectories of wildfire plumes necessitate for the inclusion of the boundary layer shearing effects
in the mathematical models of the velocity field. Moreover, for the first time, the most extensive
large scale wind tunnel experiments of the lofting and downwind transport of non-combusting model
firebrands is conducted. It is found that the normalized landing location of firebrands with their
maximum rise height have similar probability density functions (PDF) regardless of the aspect ratio.
This implies that unlike previous studies the lofting and transport cannot be decoupled. Given the
wind tunnel experiment results, a highly scalable coupled stochastic parametric model for firebrand
flight is developed by synthesizing OpenFOAM and MATLAB solutions. This model couples the fine

resolution time-varying Large Eddy Simulation (LES) resolved velocity field of the jets/plumes in
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non-uniform cross-flow boundary layers with the fully deterministic 3D 6-D.O.F. firebrand transport
model. Comparisons between the experiments and corresponding numerical simulations with this
model show very good agreement in estimating the average statistics of the flight. Also, it is shown
that the transport equations are highly sensitive to the spatial and temporal variations in the ambient

velocity field.
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Chapter 1

Introduction

Detrimental consequences of Climate Change such as temperature rise, severe and frequent
droughts, and changes in precipitation patterns along with the increased development in rural areas
especially at wild-land urban interface (WUI), and change in fuel management policies have caused
a drastic increase in the risk of wildfires over the past few decades [Caton et al., 2016]. Each year on
average, wildfires burn almost 865 million acres of land throughout the globe in which the United
States’ share is approximately 7 to 9 million acres [Howard, 2014]. The situation is not different in
other parts of the world; For instance, every year, forest fires are destroying more than 6% of the
forests in Iran [Allard, 1990]. Wildfires expose people, property, infrastructure, and ecosystems to
a pervasive threat that is projected to increase even more in the future [Foster, 2014]. As a result,
wildfires are becoming costlier than current estimates, which is between $20 — $125 billion annually

in the U.S. [Howard, 2014].

Apart from the economic burden on the federal government, and social and ecological hard-
ship on the local communities and the ecosystem, the main responsibility once a wildfire happens
is to contain and protect people and their properties. To this end, understanding wildfire spread
mechanisms is of paramount importance. Despite wildfires can propagate by convective heat trans-
fer and radiation, there is a growing body of evidence to suggest that firebrand showers are the
source of heat transfer [Coleman et al., 2013] that leads to fire spotting and further ignitions which
are called spot fires. Although flame impingement on the fuel beds (convective heat transfer), and

radiation can cause fire spread in forests, firebrand spotting is a major cause of fire spread at WUIs



and subsequently, property and infrastructure destruction as well as potential loss of lives [Manzello

et al., 2007; Wei et al., 2009)].

Fire spotting phenomenon is a complex multi-physics phenomenon that involves firebrand
lofting through the envelope of buoyant plumes and thermals formed above the flame zone, various
lofting to downwind transport transition scenarios [Tohidi and Kaye, 2013], flight through the at-
mospheric boundary layer [Albini, 1983a], and fire ignition upon landing. Multitude factors such as
size, shape, number, and mass of firebrands, moisture content of the fuel bed, dynamics of the fire
plume, terrain, meteorology and the time of exposure to radiant and convective heat fluxes [Boonmee
and Quintiere, 2002] are involved in estimating the susceptibility of a region to spot fires. Amongst
these, firebrand flight is one of the most complex, stochastic, and highly nonlinear processes that
strongly affects the downwind travel distance of the firebrands and eventually fire spread. Hence,

the goal of this study is to improve understanding of the firebrand flight.

Since the transport process depends on the size and shape of the individual particles, the
first step is to understand the formation of firebrands. So far, several studies have been conducted to
examine the generation of firebrands [Huang et al., 2007; Manzello and Maranghides, 2007; Manzello
et al., 2008, 2009; Suzuki et al., 2012a,b, 2013]. Nonetheless, almost all of them are conducted in
the absence of wind field and do not provide a predictive model for the distribution of mass and
shape upon landing. Also, very little studies [Barr and Ezekoye, 2013] have focused on investigat-
ing the break-off process from vegetative/woody structures. To date, there are many works done
on the transport of wind-borne debris and firebrands [Tarifa et al., 1965, 1967; Lee and Hellman,
1969, 1970; Albini, 1979, 1981; Fernandez-Pello, 1982; Albini, 1983a,b; Tachikawa, 1983, 1988; Woy-
cheese et al., 1997; Woycheese and Pagni, 1999; Woycheese et al., 1998; Holmes, 2004; Anthenien
et al., 2006; Sardoy et al., 2006; Baker, 2007; Sardoy et al., 2007; Visscher and Kopp, 2007; Sardoy
et al., 2008; Richards et al., 2008; Bhutia et al., 2010; Richards, 2010; Karimpour and Kaye, 2012;
Koo et al., 2012; Richards, 2012]. However, in the majority of these studies, there are simplify-
ing assumptions in the aerodynamic model that either decouples lofting from transport or converts
the 3D trajectories of firebrands to a 2D phenomenon. Also, despite the flight is highly affected
by the turbulence characteristics of the velocity field and buoyancy of the fire plume, dynamics

of the generated velocity field by the interaction of the fire plume and the boundary layer is not



effectively considered. In fact, the velocity field of the wildfires which can be approximated as the
flow of a buoyant plume in a non-uniform cross-flow boundary layer, is considered as a steady or a
quasi-steady flow field in most of the studies [Sardoy et al., 2007, 2008; Koo et al., 2012]. Besides,
the near field dynamics of the buoyant plumes through non-uniform boundary layer cross-flows are
overlooked by considering a uniform cross-flow [Hoult et al., 1969; Briggs, 1975a,b, 1984; David-
son, 1986; Contini and Robins, 2001; Contini et al., 2009, 2011]. Hence, there is no data on the
near-field effects of the highly buoyant bent-over plumes on the modeling of firebrand transport.
Further, there has been little work done on the flight of thin disk and cylindrical shape firebrands,
although there is a strong evidence to suggest that they are very well representative of the gener-
ated firebrands during wildfires at WUIs [Manzello et al., 2008; Koo et al., 2012]. More importantly,

almost all of the existing models and studies suffer from the lack of thorough experimental validation.

Given the synopsis of studies related to firebrand transport, the first objective of the present
work is to understand the firebrand formation and the role of shape on the flight. The second ob-
jective is to investigate the influence of near-field dynamics of the highly buoyant bent-over plumes
as well as temporal and spatial variations in their velocity field on the lofting and downwind travel
distance of firebrands. Lastly, this study aims to provide a comprehensive model validation data
set for the flight of rod-like firebrands, and develop a coupled stochastic parametric numerical flight

model which is experimentally validated.

On this matter, the dissertation is composed of seven themed chapters in addition to this
introduction. Chapter two discusses the break-off process, and the firebrands’ mass and shape
distributions. Then, the aerodynamics of the flight of cylindrical shape firebrands are characterized
in chapter three. Through chapter four, dynamics of the highly buoyant plumes bent-over in a
non-uniform boundary layer cross-flow is discussed in detail. The fifth chapter presents the most
comprehensive large-scale wind tunnel experiments of the lofting and downwind travel distance
of rod-like firebrands that are ever conducted. Also, the sixth chapter presents the development
procedure of the highly scalable coupled stochastic parametric model for firebrand transport. In
this regard, chapter seven deals with detailed experimental validation of the developed model, and

finally concluding remarks are given in chapter eight.
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Chapter 2

Statistical description of firebrand
size and shape distribution from
coniferous trees for use in
Metropolis Monte Carlo
simulations of firebrand flight

distance

The process of ember /firebrand formation, lofting, wind driven transport, and resulting spot
fire ignition during a wildfire is still poorly understood. Lack of a tractable firebrand formation model
along with a detailed statistical description of the size and shape distribution of typical firebrand that
could be used in simulations of firebrand flight and combustion may result in unrealistic outcomes.
In this regard, a simple, yet quite informative, mechanical failure model of the firebrand break-off
process is proposed. This model suggests that the previous laboratory scale firebrand generation

experiments would likely provide a reasonable analogue for the formation process in a full scale



wildfire. In addition, geometric scaling analysis is conducted and shows that the firebrand surface
area scales with the firebrand mass raised to the 2/37%* power. This is in close agreement with
measurements of firebrand from previously published data in the literature that are obtained under
controlled laboratory combustion of coniferous tress of different sizes. Also, a detailed statistical
characterization of the size and shape of these firebrands are presented. A nonlinear regression
model on the firebrands’ data led to the generation of a set of virtual firebrands. The resulting data
could be used as inputs to a Monte-Carlo simulation of firebrands’ transport through the velocity
field induced by the interaction of a fire plume and the atmospheric boundary layer. Moreover, it
is shown that the size distribution of firebrands is more dependent on the mechanics of combustion

and limb failure than on a simple geometric relationship with the tree height.

2.1 Introduction

Wildfires are a major threat to people and property. In 2010 there were over 70,000 wildfires
recorded in the US by the National Interagency Fire Center NIFC [2011], which burned over 3.4
million acres. In an average year over 1,000 homes, 1,000 outbuildings and 40 businesses are destroyed
by wildfires in the US. In 2014 only San Diego County wildfires burned over 29,300 acres of land
which resulted in damage or destruction of more than 55 properties. So far, this has caused the total
cost of $60 million (2014 USD) and damage estimate still continues [Repard, 2014]. Also on June
2012 Waldo Canyon fire, the most destructive fire in Colorado fire history in terms of consumed
homes after Black Forest fire [Parker et al., 2013], burned a total of 18,247 acres in Colorado and
Manitou Springs area that led to evacuation of more than 32,000 residents and ultimately insurance
claims totaling more than $453.7 million [Murphy, 2013]. Wildfires are becoming even costlier as
more people choose to live at the wildland urban interface (WUI).

Once a wildfire starts the main goal of responders is containment and protection of people
and property. In order to do this one needs to understand how wildfires spread, and how they
cause home ignitions. Wildfire spread is a complex multi-physics phenomenon that depends on
the available fuel (vegetation and moisture content), topography, and meteorology. Wildfires can
spread by ignition due to radiant heat transfer from burning vegetation to surrounding fuel sources
[Sardoy et al., 2008], flame impingement on un-burned fuels [Tran et al., 1992], and fire spotting from

firebrands blown ahead of the fire front [Fernandez-Pello, 2009]. Fire spread can also be strongly
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influenced by the terrain and atmospheric conditions [Mermoz et al., 2005]. Various models have
been developed to predict fire spread from radiation and convection [Tran et al., 1992], from firebrand
spotting [Albini, 1979], and by using clustered network models [Porterie et al., 2007].

There is strong evidence to suggest that firebrand showers, when firebrands are cast down-
wind, is a source of heat transfer [Coleman et al., 2013] and, while radiant and convective fire
propagation is responsible for the destruction of forests, firebrand spotting is a major cause of home
destruction at the WUI [Manzello et al., 2007a; Weiser, 2009]. For instance, in large forest fires
as the fire front reaches residential neighborhoods, the density of vegetation often decreases due to
landscaping of the houses and communities, and wildfire management techniques such as creating
designated defensible space around buildings and mechanical thinning close to WUIs [Nader, 2007;
Syphard et al., 2014]. As a result the intensity of the fire decreases [Dupuy and Morvan, 2005]. Then
propagation occurs mainly via either a ground fire or spotting. Spotting can also be a significant
hazard to firefighters. While it is relatively easy to monitor the location of fire front in a fire, it is
much harder to predict the location of spot fires created by firebrands transported by wind ahead of
the fire front. Such spot fires can potentially trap firefighters, or residents who have yet to evacuate
[Sullivan, 2009].

Firebrand transport is a complex process involving firebrand lofting into the atmosphere
by buoyant plumes (continues release of buoyant fluid [Morton, 1965]) and thermals (finite release
of buoyant fluid [Turner, 1969]) formed above the fire, downwind transport by atmospheric winds
[Albini, 1983b], and ignition upon landing. During all these steps, lofted firebrands combust through
pyrolysis and charring [Tse and Fernandez-Pello, 1998]. A schematic diagram is shown in figure 2.1.
Spotting is, also, highly stochastic. The lofting height will depend on the size and shape of the
individual firebrands and the buoyancy of the fire plume. Turbulence characteristics of the plume,
also, affects the induced velocity field through which lofting occurs. Karimpour and Kaye [2012]
show that ignoring turbulence fluctuations underestimates the aerodynamic forces that are being
exerted on firebrands. The downwind transport distance will depend on the velocity and turbulence
characteristics of the wind and the physical properties of the firebrands. The combustion rate will
depend on the size, shape, density, and chemical properties of the firebrand. Finally, the potential for
creating a spot fire upon landing will depend on the remaining fuel and heat content of the firebrand
on impact, and the available fuel sources at the point of impact. On this note, the formation of

firebrands from burning vegetation is a complex phenomenon that is influenced by the size of the
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Figure 2.1: Schematic diagram of the spotting process from firebrand formation and break-off
through lofting, wind driven transport, and spot fire ignition.

tree due to self-similarity characteristics of the vegetative structures [Mandelbrot, 1983; Barr and
Ezekoye, 2013], the fire intensity, and the wind speed which varies with height. Even the interaction
of the wind with a non-combusting tree is complex. As the wind speed increases, the frontal area
of the tree reduces as the leaves and branches align with the wind direction. The drag coefficient
of the tree decreases with increasing wind speed, and the total drag scales linearly with the wind
speed [Guan et al., 2000; Kane and Smiley, 2006; Wilson et al., 2010].

To date, several studies have been conducted to examine the generation of firebrands from
individual burning trees in the absence of a wind field [Manzello et al., 2007b,c, 2008a, 2009]. For the
tested coniferous trees it is observed that the firebrands were predominantly cylindrical in shape, see
details of experiments in Manzello et al. [2007b, 2009]. There appears to be no controlled laboratory
data in the literature on firebrand generation rates from collections of trees, or from trees in a wind
field. Parameterization of the shape of firebrands is often in terms of mass, surface area, and shape,

though Huang et al. [2007] did a series of experiments to parametrize disk shaped firebrands in terms
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of their mass and Stokes equivalent diameter. In addition, Barr and Ezekoye [2013] have developed
a model for predicting the size distribution of brands being lofted from a fractal tree that is based
on mechanical breakage models which are coupled to a thermal decomposition model.

Once the firebrands are formed they are lofted into the atmosphere and blown down wind
by the ambient wind field. There are a number of models in the literature on lofting and wind
driven transport which primarily build on the work of Albini [1979, 1981, 1983b,a] who presented
a range of models for the lofting and transport of firebrands. These models have been extended to
look at lofting in more detail [Woycheese et al., 1998a], bent line-fire plumes [Sardoy et al., 2008],
and various criteria for transition from lofting to transport [Woycheese et al., 1998b]. More detailed
reviews of these models are available in the literature; see, [Woycheese and Pagni, 1999; Koo et al.,
2010]. These models are often coupled with combustion models to account for the change in firebrand
mass and volume during flight. Combustion occurs on the firebrand surface and, therefore, the rate
of combustion depends on the shape and surface area of the firebrand.

All firebrand transport models are based on the wind borne debris flight equations of
Tachikawa [2012, 1988] who presented equations for the flight of solid objects in terms of their
mass and shape. Different equations have been developed for compact debris (approximately spher-
ical), rod-like debris, and plate-like debris [Richards et al., 2002]. On this note, a combustion model
for different firebrand shapes is investigated by Baum and Atreya [2014].

Ignition of spot fires caused by landing firebrands depends on the state of the fuel bed the
firebrands land on and the time of exposure to radiant and convective heat fluxes [Boonmee and
Quintiere, 2002]. Spot fire ignition therefore depends on the size, number, temperature, and heat
capacity of the landing firebrands, and the available fuel at ground level. This process has been
investigated through a series of experiments by Manzello et al. [2008a].

In summary, the lofting height, flight distance, combustion rate, and spot fire ignition
potential of an firebrand are strongly dependent on the firebrand shape and mass. One approach
to fully understand the risk of spot fire formation during a wildfire is to run the models discussed
above for a broad range of statistically appropriate firebrand sizes and shapes using Monte Carlo
type simulations similar to those conducted to understand the risk of wind borne debris in severe
storms by Karimpour and Kaye [2012]. However, a detailed characterization of the formation, size,
and shape of firebrands is lacking within the literature. The main objective of this study is to

begin to fill this gap by presenting simple physical models for firebrand formation and break-off
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and characterizing firebrand geometric properties by detailed statistical analysis of available data
on firebrand size and mass from coniferous trees of various heights.

The remainder of the paper is structured as follows. In Section (2.2) a simple model and
scaling analysis of firebrand geometry is presented followed in Section (2.3) a mechanical model for
firebrand break-off that can be applied to both laboratory test burns and to real wildfire events.
In Section (2.4) preliminary statistical analysis of available firebrand geometric data is presented
relating firebrand surface area, mass, and aspect ratio. These results are used in Section (2.5)
to develop a statistical description of the firebrand size and shape and to present a method for
developing statistically appropriate sets of virtual firebrands for use in Monte Carlo simulations.

The results are discussed and conclusions are drawn in Section (5.5).

2.2 Firebrand geometry

There is currently a substantial amount of data published in the literature on the size and
shape of firebrands from various pine trees (Douglas pine and Korean pine) [Manzello et al., 2007b,
2008b, 2009]. These papers present the results of a series of experiments in which individual trees
were set alight and allowed to burn under controlled laboratory conditions. During the burning, the
firebrands that fell from the trees were extinguished and then weighed and measured. Results were
presented for the weight distribution, size distribution and surface area. A total of 1337 firebrands
were collected and measured from five different tree burning tests. The results suggest that the mass
distribution is significantly skewed toward low mass firebrands (80% of firebrands had a mass of 0.2
g or less). Through these studies, it is also shown that the firebrand surface area is scaled on the
firebrand mass, although the exact nature of the scaling is not discussed.

Based on the observations of [Manzello et al., 2007b, 2008b, 2009] from burning coniferous
trees in no wind condition, the generic shape of a firebrand can be characterized as a long thin
cylinder of length L, diamater D and density p (assumed constant), see figure 2.2. The volume V

and surface area s are given by

D?L D?
T and s=7rDL+ - (2.1)

V=" 2
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respectively. The mass of the firebrand is m = pV and the aspect ratio is denoted by
(2.2)

If one assumes that in most of the firebrands L > D or n > 1, then the effective surface area can
be approximated by
s~ mDL. (2.3)

The mass and surface area of an firebrand can be written in terms of the firebrand length and the

s = DL

D
\ v=nD?L/4

Figure 2.2: Schematic of a cylindrical firebrand showing the length, diameter, volume, and approx-
imate surface area.

firebrand aspect ratio,

m:p% and s=—+4 —. (2.4)

Provided the aspect ratio is relatively large (n > 1), then the equation for the firebrand surface area

(2.4) is dominated by the first of the two terms. Ignoring the second term one can write

o\ 1/3
L=/ <4m”> (2.5)
0 pT
which can be simplified to
L 83[)2
=D T 16mm? (2:6)

Therefore, given mass and surface area information, it is possible to approximate the firebrand aspect
ratio by expression (2.6).

Assuming for a moment that the aspect ratio of all the firebrands (generated from coniferous
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trees in no wind condition) is the same, then both the mass and surface area will only be functions
of the firebrand length. The mass will scale on the L? and the surface area on L?. Therefore, the
cube root of the mass and square root of the surface area will scale linearly on the firebrand length.
That is,

m'/3 ~ L~ s'/2, (2.7)

and therefore,

s ~m?/3, (2.8)

The same approximate scaling result can be gained from dimensional analysis as the dimensions
of volume and surface area are [V] = L3 and [S] = L?, respectively. For a given density, one

non-dimensional group (II) can be formed. Possible forms for the II include

s
I = m2/3

or IIhy=—==n. (2.9)

Sl

In order to test this scaling relationship the mass and surface area data in the literature
[Manzello et al., 2007b, 2008a, 2009] is re-plotted on a log-log scale in figure 2.3. Also, shown is a line
with a slope of 2/3 indicating the power law relationship derived in (2.8) and (2.9). Specifics of the

experimental data can be found on table 2.1. Figure 2.3, clearly illustrates two points. First, the

Table 2.1: Characteristics of the isolated burnt trees in the absence of wind. In the table, abbrevi-
ations M.C. and N.A. stand for Moisture Content and Not Available, respectively.

Vegetation Type Source Height (m) | Girth (m) | M.C. at Ignition
Douglas-fir 2.6 1.5 (10-50)%+10%
Douglas-fir Manzello et al. [2007b] 5.2 3.0 (10-50)%£10%
Korean Pine Manzello et al. [2009] 3.6 N.A. (10-80)%=£15%
Korean Pine Manzello et al. [2008b] 4.0 N.A. (10-80)%+15%

broad trend in the data strongly agrees with the scaling proposed in (2.8) and (2.9). Second, there
is substantial variability around this underlying trend. This variability is because the assumption of
a fixed aspect ratio which is clearly not correct. Variation in the aspect ratio of the firebrands will
result in variation about the power law trend shown in figure 2.3.

The data plotted in figure 2.3 is derived from four separate experiments in which conifers
of different heights were burnt. The dependence of firebrand size and shape on tree height is shown

in figures 2.4 and 2.5. The mean and standard deviation of the firebrand mass, surface area, aspect
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Figure 2.3: log-log scale plot of measured firebrand surface area versus mass for different tree sizes.
Also shown is a line (not fitted) of slope o = 2/3 to illustrate the power law scaling relationship
given in (2.8). Data is excerpted from Manzello et al. [2007b, 2008a, 2009] studies.

ratio, length, and diameter are plotted versus the height of the tree from which they fell. While there
is significant variation in these parameters from tree to tree there is no strong correlation between

them and the height of the tree from which they fell.

2.3 Firebrand formation model

The failure of trees, when the energy of distortion, whether due to uprooting or bending
moments on the branches, exceeds the yield energy of the tree material, is a very complex problem
[Vogel, 1996]. Tree crowns have highly complex fractal geometries [Zeide and Pfeifer, 1991; Zhang
et al., 2007] and a canopy frontal area that changes with the wind speed [Spatz and Bruechert,
2000]. There is also evidence that the drag coefficient of a tree crown varies with wind speed [Wilson
et al., 2010; Kane and Smiley, 2006]. Trees also exhibit complex dynamic responses to wind loads
that can lead to a broad range of failure mechanisms [James et al., 2006]. A full predictive model
for firebrand formation through t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>