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ABSTRACT 

 

ADP-forming acetyl-CoA synthetase (ACD; EC 6.2.1.13) catalyzes the reversible 

conversion of acetyl-CoA to acetate coupled to the production of ATP. This enzyme is 

present only in certain acetate-producing archaea and a limited number of bacteria and 

eukaryotes. ACD belongs to the same NDP-forming acyl-CoA synthetase enzyme 

superfamily as succinyl-CoA synthetase (SCS; EC 6.2.1.4) from the citric acid cycle, and 

a similar three-step mechanism involving a phosphoenzyme intermediate was originally 

proposed for this enzyme.  

 ACD has been postulated to be a major acetate-producing enzyme in the 

protozoan parasite Entamoeba histolytica and may contribute to ATP production. 

Biochemical and kinetic characterization of recombinant E. histolytica ACD (EhACD) 

revealed that this enzyme may function in the direction of acetate production for 

generation of ATP and CoA during growth in the high glucose environment of the small 

intestine, and in acetate assimilation to acetyl-CoA in the high acetate environment of 

the lower intestine during colonization. EhACD utilizes multiple substrates including 

propionate and propionyl-CoA supporting an additional proposed role in amino acid 

degradation. EhACD activity is regulated by both ATP and PPi, important energy 

molecules in E. histolytica.  

 The ACD mechanism has been controversial, as a required second 

phosphorylation step was proposed for the Pyrococcus furiosus enzyme. Investigation of 

the catalytic role of the two proposed phosphorylation sites in EhACD revealed that 

His252, the site of phosphorylation in the original three-step mechanism, is essential for 
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activity and His533, the proposed second phosphorylation site, is important but not 

essential. Likewise, Glu213, proposed to play a role in phosphorylation/ 

dephosphorylation of His252, is also required but Asp674 thought to stabilize the 

phosphohistidine is not. These results suggest that EhACD follows a three-step 

mechanism with a single phosphoenzyme intermediate.  

 Additional conserved active site residues were examined for their role in 

catalysis. Asp314 was shown to be essential for activity, possibly in both a catalytic role 

and a structural role. Alteration at this position resulted in complete loss of activity, and 

computational modeling based on the Candidatus Korarchaeum cryptofilum ACD-I 

structure suggests that this residue may be critical for dimerization. Future directions for 

understanding the complex mechanism of ACD and its physiological role are presented.  
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CHAPTER 1 

 

LITERATURE REVIEW OF ACETATE METABOLISM, NDP-FORMING  

ACYL-COA SYNTHETASE ENZYMES, AND ENTAMOEBA HISTOLYTICA 

 

I. INTRODUCTION  

 

Acetate fermentation and assimilation are common processes in cellular 

metabolism spanning all three domains of life. Acetate can be excreted as an end 

product, utilized as a carbon source, and used for modification of proteins by acetylation. 

The conversion between acetyl-CoA and acetate is an important cellular process that 

can be catalyzed by multiple pathways.  One such pathway utilizes a single enzyme, 

ADP-forming acetyl-CoA synthetase (ACD; EC 6.2.1.13; Eq. 1), to reversibly catalyze 

this reaction coupled to ATP hydrolysis or formation.  

acetyl-CoA + ADP + Pi ßà acetate + ATP + CoA    [Eq. 1] 

ACD is part of a superfamily of enzymes involved in the conversion of acyl-CoAs 

to their corresponding acids. Biochemical and structural characterization of this family of 

enzymes has focused on understanding the underlying mechanism. ACD is found in a 

subset of protozoan parasites, including the amitochondriate Entamoeba histolytica 

which causes amoebic dysentery and liver abscess. In this chapter, the common 

pathways of acetate metabolism are introduced along with a thorough background of the 

NDP-forming acyl-CoA synthetase family. Also, the metabolism of E. histolytica centered 

around central carbon metabolism and energy generation is discussed.  
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II. ACETATE METABOLISM 

 

Acetate is a common anion in biology and is a major metabolic end product in a 

variety of organisms. When the incoming carbon flux surpasses the capacity of central 

metabolic pathways, excess acetyl-CoA will undergo fermentation and recycle CoA. An 

additional benefit of acetate fermentation is the generation of energy-containing 

compounds such as ATP. The production of acetate is therefore considered an 

“overflow” metabolism. Fermentation can also be a result of an incomplete or absent 

TCA cycle. Anaerobic fermentation pathways are then used for the primary flow of 

carbon (1). 

 Acetate assimilation as an alternative carbon source may occur under certain 

conditions such as when glucose is diminished (1). Acetate is typically activated to form 

acetyl-CoA, a central metabolic intermediate positioned at the junction of several 

pathways. The high-energy thioester bond between the acetyl group and CoA can be 

used to drive other reactions. Acetyl-CoA is also produced during the breakdown of 

carbohydrates through glycolysis or breakdown of fatty acids via beta-oxidation.  

Acetylation is a common post-translational modification of proteins involved in 

regulating transcription and enzyme activity (2). Histone acetylation levels in the cell 

have also been implicated as a method for maintaining intracellular pH (3). Acetate in its 

protonated form (CH3COOH) will traverse the plasma membrane freely and ionize in the 

neutral pH environment of the cell. Levels of free acetate within the cell must be 

controlled or pH changes could be toxic.  
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Acetate metabolism in archaea 

Methane-producing archaea can be separated into CO2-reducing species and the 

acetoclastic, or acetate-utilizing species. In the acetoclastic methanogens, consisting of 

the genera Methanosaeta and Methanosarcina, the methyl group of acetate is converted 

to methane and the carbonyl group to CO2 (4). However, Methanosarcina and 

Methanosaeta use different strategies for acetate activation into acetyl-CoA. 

Methanosarcina is the only archaeal genus containing a two enzyme pathway typical of 

acetate-producing bacteria (5,6). Acetate is phosphorylated by ATP to form acetyl 

phosphate via acetate kinase (ACK; EC 2.7.2.1; Eq. 2), and then acetyl phosphate is 

converted to acetyl-CoA by phosphotransacetylase (PTA; EC 2.3.1.8; Eq. 3) (FIG 1.1A). 

This pathway functions in reverse to regenerate CoA and serves as a source of ATP. It 

is considered the ‘low affinity’ pathway that functions optimally when acetate 

concentrations are ≥ 30 mM (7).	

acetate + ATP ßà acetyl phosphate + ADP    [Eq. 2] 

CoA + acetyl phosphate	ßà acetyl-CoA + Pi   [Eq. 3] 

 Methanosaeta is able to accomplish acetate activation by a single enzyme, 

AMP-forming acetyl-CoA synthetase (ACS; 6.2.1.1; Eq. 4) (8), which functions through a 

bi-uni-uni-bi ping pong mechanism (7). ACS first binds acetate and ATP and forms the 

enzyme-bound acetyladenylate (acetyl-AMP) intermediate and releases PPi (FIG 1.1B) 

(9). Acetyl-AMP then reacts with CoA to form acetyl-CoA and release AMP.	This 

pathway is considered the ‘high affinity’ pathway preferring acetate concentrations below 

10 mM (7). Both strategies for acetate activation require ATP consumption, and 

consequently result in low energy output for the organism (4). 
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FIG 1.1 Pathways for conversion of acetate to acetyl-CoA. (A) Low affinity pathway 

involving acetate kinase and phosphotransacetylase, using an acetyl phosphate 

intermediate. (B) High affinity pathway involving acetyl-CoA synthetase (AMP-forming) 

which involves an enzyme-bound acyl-AMP intermediate. Obtained with permission from 

(7). 
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acetyl-CoA + AMP + PPi à acetate + ATP + CoA   [Eq. 4] 

ACS is also found in several other archaeal organisms including Ignicoccus 

hospitalis (10), Pyrobaculum aerophilum (11), and multiple halophilic species (12,13). 

ACS serves as the primary acceptor in a novel CO2 fixation pathway within the 

hyperthermophilic crenarchaeon I. hospitalis (10). Analysis of the Ignicoccus enzyme 

revealed an unusual subcellular localization associated with the outermost membrane. In 

contrast to the monomeric or dimeric forms in mesophilic species, ACS forms large 

octameric complexes in Ignicoccus and another hyperthermophilic crenarchaeon P. 

aerophilum (10,11). Most ACSs are limited to utilizing acetate as the acyl substrate, 

however biochemical characterization from a few archaeal species revealed an 

unexpected diversity in substrate utilization (11,14). 

Investigation into acetate production and utilization in multiple halophilic species 

revealed that ACS is responsible for the utilization of acetate, while ACD is responsible 

for acetate formation when grown on glucose (12). Although the two enzymes both 

catalyze interconversion of acetate and acetyl-CoA, they use very different mechanisms 

and share no homology. ACS is widespread throughout the three domains of life; in 

contrast, occurrence of ACD is limited. 

ACD has been thoroughly studied in the anaerobic hyperthermophile Pyrococcus 

furiosus (15-18). P. furiosus derives energy by carbohydrate and peptide fermentation 

and contains several enzymes specialized to this type of metabolism (19). Pyruvate, the 

end product of glycolysis, is converted to acetyl-CoA via the ferredoxin-dependent 

enzyme pyruvate:ferredoxin oxidoreductase (PFOR; EC 1.2.7.1; Eq. 5). 

	 pyruvate + CoA + ferredoxinox à acetyl-CoA + CO2 + ferredoxinred     [Eq. 5]	
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Additional ferredoxin-dependent enzymes convert the peptide catabolism end products 

(branched chain 2-keto acids, aromatic 2-keto acids, and 2-ketoglutarate) to their 

corresponding CoA esters (19). ACD then utilizes these products to produce ATP. P. 

furiosus contains two distinct ACD enzymes, classified as ACDI and ACDII, that vary in 

their substrate specificity allowing this organism to utilize acetyl-CoA as well as the 

branched chain acyl-CoAs and aryl-CoAs produced from peptide fermentation (19). 

Upon further characterization, purified ACD from P. furiosus demonstrated reversible 

activity, however there was no evidence for acetate utilization (17). ACDs from other 

archaeal genera have also been investigated including Archaeoglobus (20,21), 

Thermococcus (22), Haloarcula (23,24), Pyrobaculum (23), and Methanococcus (21).  

Acetate metabolism in bacteria 

Acetate production and utilization have been well studied in bacteria. Escherichia 

coli produces acetate anaerobically via mixed-acid fermentation or aerobically during 

rapid growth on glucose which causes inhibition of respiration. In contrast to the acetate 

utilization pathway in Methanosarcina, the ACK-PTA pathway commonly functions in 

acetate production in bacteria (FIG 1.2). The ACK-PTA pathway is also important for 

maintaining correct concentrations of intracellular acetyl phosphate, which is an 

important signaling molecule in many bacteria (25).  

 In Bifidobacteria and lactic acid bacteria, ACK partners with xylulose-5-

phosphate/ fructose-6-phosphate phosphoketolase (XFP; EC 4.1.2.9 [Eq. 6] and 

4.1.2.22 [Eq. 7]) to produce acetate as part of a modified pentose phosphate pathway 

(26).  
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xylulose 5-phosphate + Pi à  

 acetyl phosphate + glyceraldehyde 3-phosphate + H2O [Eq. 6] 

fructose-6-phosphate + Pi à  

 acetyl phosphate + erythrose 4-phosphate + H2O  [Eq. 7] 

Acetate can also be produced directly from pyruvate via a pyruvate oxidase, POXB (EC 

1.2.5.1; Eq. 8). Oxidative decarboxylation of pyruvate coupled to the reduction of 

ubiquinone produces acetate and CO2 (FIG 1.2). This reaction is postulated to provide 

energy and acetyl groups under microaerophilic environments between the stationary 

and growth phases (1,27). 

 pyruvate + ubiquinone + H2O à acetate + ubiquinol + CO2  [Eq. 8] 

Bacteria can rapidly grow and excrete acetate, however when carbon resources 

deplete, cells undergo a process called the “acetate switch” (1). Cells transition to a 

phase of slower growth accompanied by uptake and utilization of acetate as an essential 

carbon source. Recapture of acetate depends on activation of acetate by ACS (FIG 1.2). 

This reaction is driven by the removal of pyrophosphate (PPi) by pyrophosphatase 

(PPase; EC 3.6.1.1; Eq. 9).  

PPi + H2O à 2 Pi       [Eq. 9] 

Activity of ACS is post-translationally regulated by acetylation on a critical lysine residue 

within the active site (28). Acetylation by a protein acetyltransferase inactivates ACS 

(29), whereas activation takes place by deacetylation by the sirtuin CobB (30). This 

regulation functions as a feedback system in which the activation of acetate is regulated 

by energy (acetyl-CoA) and reducing equivalents (NAD+) (31). Salmonella enterica 
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grown on low levels of acetate resulted in depletion of ATP and growth arrest when 

regulation of ACS was disrupted (31). Consequently, tight regulation of ACS is 

necessary for proper energy balance within the cell.  

The sole bacterial ACD characterized to date comes from the photoheterotrophic 

bacterium Chloroflexus aurantiacus (32), which lacks the PTA-ACK pathway to produce 

acetate. ACD was induced over 10-fold in C. aurantiacus during growth on glucose, 

suggesting it partners with glycolysis.  Additional putative ACD homologs have been 

identified in other bacterial genomes, particularly from acetate-forming syntrophic 

bacteria lacking genes for PTA and ACK, suggesting ACD may serve as an alternative 

for acetate production (33,34). 
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FIG 1.2 Pathways of acetate metabolism in E. coli (A) acAMP = acetyl-AMP; acCoA = 

acetyl-CoA; AckA = acetate kinase; acP = acetyl P; Acs = acetyl-CoA synthetase; CoA = 

coenzyme A; Pi = inorganic phosphate; PPi =pyrophosphate; PPase = pyrophosphatase; 

Pta =phosphotransacetylase. (B) Carbon flux and associated pathways during growth on 

glucose. GS = glyoxylate shunt; TCA = tricarboxylic acid cycle; PoxB = pyruvate 

oxidase; ICL = isocitrate lyase; IclR = repressor of the glyoxylate shunt operon aceBAK; 

FadR = regulator of fatty acid metabolism that also activates iclR. Taken with permission 

for reuse from (35). 
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Acetate metabolism in eukaryotes 

ACS is central to the metabolism of almost all eukaryotic cells to activate acetate 

to acetyl-CoA (7). Eukaryotes usually have two isoforms, one localized to the 

mitochondria and another localized to the cytosol (36,37), although additional evidence 

suggests the cytosolic enzyme also resides with the nucleus (38). The mitochondrial 

enzyme is essential for maintaining energy homeostasis during ketogenic conditions in 

mammals (37), such as fasting or diabetes mellitus, when the liver releases large 

amounts of acetate into the bloodstream (39-41). The cytosolic isoform is associated 

with fatty acid synthesis, particularly supporting tumorogenesis (42), and has been of 

interest in understanding metabolism of tumor cells under hypoxic conditions (43). This 

isoform was also shown to be essential for yeast replicative longevity and predicted to 

produce acetyl-CoA within the nucleus for histone acetylation (38). ACS located within 

the plastid of Arabidopsis was suggested to recycle acetate as a toxic breakdown 

product of other fermentation pathways (44). In humans, endogenous sources of acetate 

that can be recycled via ACS include the breakdown of the neurotransmitter 

acetylcholine by acetylcholinesterase, deacetylation of histones in the nucleus, and 

catabolism of ethanol in the liver (45). Large concentrations of acetate are also produced 

by the gut microbiota which serve as a primary carbon source for adjacent intestinal 

cells, where glucose is limiting (46). 

Regulation of ACS by reversible acetylation as found in bacteria is also 

conserved in the human enzymes (47). NAD+-dependent deacetylases known as sirtuins 

are responsible for activation of ACS by deacetylation (28), but the acetyltransferase 

responsible for acetylation has yet to be identified. Sirtuins are known for regulating 
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gene silencing, energy homeostasis, and aging, suggesting a link between acetate 

metabolism and the aging process (45).  

One ACS isoform is essential for growth of the fungal pathogen Candida albicans 

on a variety of carbon sources (48). De novo fatty acid synthesis via cytosolic ACS is 

essential in the bloodstream form of the parasite, Trypanasoma brucei (49). ACS was 

also recently identified in the cytosol of the protozoan parasite, Leishmania donovanii 

(50).  

ACK was originally thought to be only a bacterial enzyme with the exception of 

the Methanosarcina genus of archaea, however it has now been identified in several 

eukaryotic species (51). The ACK-PTA pathway is found in the green algae 

Chlamydomonas reinhardtii (52) and the oomycete Phytophthora ramorum (51,53). C. 

reinhardtii contains two ACK/PTA pathways (54) that are differentially localized to the 

chloroplast and the mitochondria and function primarily for acetate production under 

dark, anoxic conditions (52).  

In euascomycete and basidiomycete fungi, ACK partners with one or more XFP 

enzymes as part of a modified pentose phosphate pathway using xylulose-5-phosphate 

or fructose-6-phosphate as substrates (51). The only eukaryotic XFP to be characterized 

is from the pathogenic fungus Cryptococcus neoformans. This enzyme, one of two XFPs 

in C. neoformans, has been found to be allosterically regulated (55). A unique PPi-

dependent ACK [Eq. 10] in Entamoeba histolytica converts acetyl phosphate to acetate 

and PPi (56). ACK activity has been detected in extracts of E. histolytica trophozoites, 

which suggests the enzyme is present under normal growth conditions. However, the 

source of the acetyl phosphate substrate is currently unknown as no known partner 
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enzymes are present within the genome. The hypothesized function is to provide PPi for 

glycolysis, but its role remains a mystery.  

 Acetyl phosphate + Pi à acetate + PPi    [Eq. 10] 

 Fungi can also produce acetate from pyruvate through a pyruvate 

dehydrogenase bypass pathway composed of pyruvate decarboxylase (PDC; EC 

4.1.1.1; Eq. 11) and acetaldehyde dehydrogenase (ALD; EC 1.2.1.5; Eq. 12). A deletion 

of two ALD genes in Saccharomyces cerevisiae decreased acetate formation during 

anaerobic growth on glucose, demonstrating a major role in acetate production (57). 

PDC is thought to occupy the branch point between oxidative metabolism through the 

TCA cycle and fermentative metabolism (58). 

 pyruvate à acetaldehyde + CO2     [Eq. 11] 

acetaldehyde + NAD(P)+ + H2O à acetate + NAD(P)H  [Eq. 12] 

Eukaryotic ACD is limited to a few protozoan parasites, having been positively 

identified in Giardia lamblia (59) and E. histolytica (60), and putative acd genes have 

been identified in the genome sequences of Plasmodium falciparum and 

Cryptosporidium muris, corroborating the idea the ACD plays a role in the parasitic 

lifestyle.  Like E. histolytica, G. lamblia is an amitochondriate protozoan parasite that 

relies on substrate-level phosphorylation for energy generation (61).  

Acetate:succinate CoA transferase (ASCT; EC 2.8.3.8; Eq. 13) is present in 

hydrogenosomes of Trichomonas vaginalis (62), and mitochondria of Trypanasomatidae 

(63,64) and the parasitic helminth Fasciola hepatica (65). It functions by transferring CoA 

from acetyl-CoA to succinate, forming succinyl-CoA. This enzyme works in conjunction 
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with succinyl-CoA synthetase in order to produce ATP (Eq. 14). As for ACD, this 

specialized enzyme involved in acetate metabolism is associated with a few parasitic 

organisms, indicating the special role acetate metabolism can play in the parasitic 

lifestyle.  

acetyl-CoA + succinate à succinyl-CoA + acetate   [Eq. 13] 

succinyl-CoA + ADP + Pi à succinate + CoA + ATP  [Eq. 14] 

 Acetyl-CoA hydrolase (ACH; EC 3.1.2.1; Eq. 15) hydrolyzes acetyl-CoA, 

producing acetate and CoA. This reaction is not energy-conserving considering the high-

energy thioester bond is cleaved to only low-energy products. ACH is proposed to 

function by aiding transfer of acetyl units between subcellular compartments (66). 

 acetyl-CoA + H2O à acetate + CoA     [Eq. 15] 

 In summary, several pathways exist for both production and utilization of acetate. 

The three main pathways (ACK/PTA, ACS, and ACD) are each found within all three 

domains of life. The balance between these two processes is tightly regulated in order to 

maintain proper carbon metabolism.  
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III. NDP-FORMING ACYL-COA SYNTHETASES 

 

A newly recognized superfamily of NDP-forming acyl-CoA synthetases was 

identified by Sanchez et al. in 2000 (67). This family is comprised of several metabolic 

enzymes that either utilize NTP to generate an acyl-CoA molecule, or vice versa, use the 

cleavage of the thioester bond to generate an NTP (FIG 1.3A). Members of this enzyme 

family contain five subdomains – two CoA ligase domains, two ATP grasp domains, and 

a CoA binding domain. As the name suggests, the CoA binding domain is the location of 

the CoA binding pocket. The two ATP grasp domains form a cleft capable of opening 

and closing due to nucleotide binding, making these enzymes also part of the ATP-grasp 

family (68). The arrangement of these subdomains is unique between family members 

(FIG 1.3B), yet remarkably the overall mechanism remains the same.  

Some members of this family have independent alpha and beta subunits that 

come together as a heteromer, while in other members the enzyme functions as a 

homodimer with fused alpha and beta subunits connected by a hinge region. Although 

both types usually maintain a similar quaternary structure, the significance of the hinge 

region has not been studied. Catalysis proceeds through a common mechanism 

involving a phosphoenzyme intermediate. The active site is separated into two regions, 

designated Site I and Site II, where different parts of the reaction take place (69). The 

NTP binds within the cleft of the two ATP-grasp domains within Site II and 

phosphorylates N-3 of the imidazole ring of the active site histidine (located within 

subdomain 2). The phosphoryl moiety is then transferred to the acyl substrate within Site 

I, forming a transient acyl-phosphate intermediate that transfers the acyl group to CoA. 
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The catalytic His residue is conserved throughout the entire superfamily with the 

exception of the acetyltransferases (67). Specific members of the superfamily will be 

discussed in the following sections. 
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FIG 1.3 NDP-forming acyl-CoA synthetases. (A) Schematic of the general mechanism 

for this superfamily of enzymes. Green and red arrows indicate products/substrates in 

opposite directions of the reaction. (B) Domain organization of various enzymes within 

the superfamily. Gray connecting bars indicate a hinge region.  
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Succinyl-CoA synthetase 

Succinyl-CoA synthetase (SCS; EC 6.2.1.4 and 6.2.1.5) is the most well-studied 

member of this superfamily of enzymes. Present in almost all organisms, SCS catalyzes 

the sole substrate-level phosphorylation reaction in the citric acid cycle. SCS functions 

as a thiolase, coupling cleavage of the thioester bond in succinyl-CoA to phosphorylation 

of a nucleoside diphosphate [Eq 16].  

 succinyl-CoA + ADP/GDP + Pi ßà succinate + CoA + ATP/GTP [Eq 16] 

SCS functions as a heterotetramer composed of two alpha and two beta subunits 

(70-72). The structures of SCS enzymes from E. coli (73), pig heart (74), and Thermus 

aquaticus (71) have been determined to date. The first structure of SCS from E. coli was 

determined by X-ray crystallography in 1994 (73) and revealed phosphorylation of a His 

residue (His246) located on a loop region within the alpha subunit. The CoA bound to 

the alpha subunit was positioned with the free thiol oriented near the active site His. 

Since the nucleoside was shown to bind 30 Å away on the beta subunit (75), Fraser et 

al. (76) hypothesized that the loop containing the phosphorylated His swings between 

Site I within the alpha subunit to Site II within the beta subunit in order to accomplish a 

phosphoryl transfer to the nucleotide.  

Structural characterization of pig heart SCS with the catalytic alpha His in both 

the dephosphorylated and phosphorylated states further supported this mechanism (74). 

In addition to the catalytic His residue, two Glu residues were implicated to stabilize the 

phosphorylated His intermediate in E. coli SCS (77). The carboxylate group of Glu208α 

interacts with the catalytic His at Site I by accepting a hydrogen bond at N1on the 

imidazole ring. This Glu residue also stabilizes the proton on N1 of the imidazole ring 
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when it is not phosphorylated. Glu197β has been hypothesized to function in a similar 

manner when the phosphorylated His moves to Site II and dephosphorylates.  

While generally specific for succinyl-CoA, SCS varies in NDP specificity. E. coli 

SCS can use both ADP and GDP substrates but prefers ADP (78). T. aquaticus SCS  

can also use both ADP and GDP but prefers GDP (71). Mammals possess two isoforms 

of SCS, one specific for GDP and the other specific for ADP, that are present in different 

tissues (79,80). The nucleotide binding site was determined to be located within the beta 

subunit between the two ATP grasp subdomains (76). Analysis of the open and closed 

GTP-bound structures of pig heart SCS revealed a Gln residue located within the NDP 

binding pocket that interacts with the guanine base (81). That same position is replaced 

by Pro in both E. coli and T. aquaticus SCSs (71,75). However, a Glu residue within the 

binding pocket of the T. aquaticus SCS is replaced by Ala, allowing an additional water 

molecule to bind between the Pro and the guanine base (71).This interaction mimics that 

of the Gln residue in GTP-specific pig heart SCS and determines the preference for 

GDP. 

ATP citrate lyase 

ATP citrate lyase (ACL; EC 2.3.3.8) utilizes ATP hydrolysis in order to convert 

citrate to cytosolic acetyl-CoA and oxaloacetate(OAA) [Eq. 17]. First identified in rat liver 

in 1971 (82), this enzyme has been studied in multiple eukaryotic organisms including 

human (83-87), rat (88), fungi (89), yeast (90), plants (91), and green algae (92). 

Prokaryotic ACL has only been identified in autotrophic bacteria and archaea containing 

a reductive TCA cycle as a CO2 assimilation pathway (90,93,94) and in sulfur-dependent 

archaea (95). This enzyme represents the link between cytosolic carbohydrate 
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metabolism and production of fatty acids. Characterization thus far suggests that ACL 

functions solely as a citrate lyase and does not catalyze the reverse citrate synthase 

activity (96).  

citrate + ATP + CoA + H2O à OAA + acetyl-CoA + ADP + Pi        [Eq. 17] 

Knockdown of ACL in mammalian cells impairs glucose-dependent lipid synthesis, 

increases mitochondrial membrane potential, and decreases cell proliferation (97). ACL 

is required for normal growth and development in plants, resulting in a bonsai-phenotype 

of small stature and organ size when knocked down in Arabidopsis (98). ACL has been 

implicated in tumorigenesis (99) and has been suggested as a potential target for 

chemotherapeutic agents (100).  

ACL consists of an N-terminal region composed of the five subdomains present 

in all NDP-forming acyl-CoA synthetases and a C-terminal region containing a citrate 

synthase domain (FIG 1.3B). ACL from the yeast Rhodotorula gracilis and bacterium 

Chlorobium tepidum were shown to be homotetramers (90,93). In the 1980's, attempts to 

purify and characterize ACL were complicated by the varying levels of phosphorylation 

observed. The enzyme is phosphorylated on serine and threonine residues (101,102) 

and this phosphorylation is regulated by hormones glucagon, insulin, and vasopressin in 

rats (101) and varies depending on tissue localization (101). Two protein kinases 

capable of phosphorylating ACL were identified (102,103). ATP citrate lyase kinase 

phosphorylates Thr446 and Ser454 of the human enzyme, while cAMP-dependent 

protein kinase phosphorylates Ser454. These residues are located within the hinge 

region between subdomains 5 and 1 (83). In vitro phosphorylation of recombinant 

bacterial ACL by protein kinase A increased maximal activity 3- to 6-fold (87). Potapova 
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et al. (87) suggested that phosphorylation only occurs on one of the four subunits, and a 

conformational change prevents phosphorylation on the remaining subunits.  

The enzyme also responds to positive allosteric regulation by phosphorylated 

sugars, particularly fructose-6-phosphate (87). The increase in overall activity is most 

dramatic in the unphosphorylated enzyme. The presence of fructose-6-phosphate also 

caused a large reduction in Km values for ATP and citrate, suggesting a conformational 

change that affects the binding sites of these two substrates. ACL from Chlorobium 

limicola consists of separate alpha and beta subunits encoded by neighboring genes, 

and lacks the region of phosphorylation (96).  

NTP substrate preference varies among ACLs. Hydrogenobacter thermophilus 

prefers ATP, but can utilize GTP at a lower rate (94). However, C. tepidum and C. 

limicola enzymes can only utilize ATP (93,96). Mammalian enzymes can bind GTP, but 

only utilize ATP for catalysis (104).  Inhibition by ADP was first observed for the H. 

thermophilus ACL(94). Recombinant ACL from C. limicola was shown to be 

competitively inhibited by the presence of ADP (96,104). 

  Kinetics analysis of ACL purified from rat liver indicate a double displacement 

mechanism involving a phosphoenzyme intermediate is the most likely mechanism (88). 

Like other NDP-forming acyl-CoA synthetases, the mechanism is believed to proceed 

through a catalytic phosphohistidine analogous to the Hisα of SCS. Mutagenesis of 

His765 in human ACL abolished enzymatic activity, supporting the role of this residue as 

the critical phosphorylated intermediate. This was further confirmed with recombinant 

ACL from C. limicola in which alteration of the catalytic His residue to Ala resulted in 

complete loss of activity (105). Phosphorylation of the catalytic His residue in the 
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absence of citrate and CoA was still observed but at a much lower rate (~1%). However, 

phosphorylation of a His760Ala variant suggests there may be a second unproductive 

phosphorylation site located within the active site.  The first ACL crystal structure was of 

a truncated version of the human enzyme (83). Structural analysis revealed the citrate 

binding site is located within subdomain 2 along with the supposed nucleotide binding 

site in subdomains 3 and 4, similar to E. coli SCS (FIG 1.3B). The enzyme was then 

crystallized with Mg2+-ADP bound revealing the nucleotide binding site within the ATP 

grasp domains (106).  

Acetyl-CoA synthetase 

ADP-forming acetyl-CoA synthetases (ACD; EC 6.2.1.13; Eq. 1) are not 

widespread and are found primarily in acetate-producing archaea (17,18,107) and a few 

eukaryotic (59,108) and bacterial species (32). ACDs have been designated as either 

ACDI or ACDII based on substrate specificity. ACDI primarily reacts with acetyl-CoA 

while ACDII is capable of functioning on branched-chain acyl-CoAs or aryl-CoAs. As 

discussed previously, they catalyze the reversible conversion of acetyl-CoA to acetate, 

forming ATP via substrate level phosphorylation. Structural characterization was limited 

until recently when ACD1 from Candidatus Korarchaeum cryptofilum was crystallized 

under several conditions (69). ACD will be discussed further in later chapters.  

Additional enzymes 

Malyl-CoA synthetase (EC 6.2.1.9) catalyzes a reaction similar to that of SCS 

and is composed of the same arrangement of subdomains. Malate is converted to malyl-

CoA as part of glyoxylate and dicarboxylate metabolism (109). Recombinant enzyme 

from Pseudomonas was purified and characterized, revealing a heterotetramer formation 
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of alpha-beta dimers (110). Mechanistic studies with [γ-32P]ATP indicated a “half-of-the-

sites” reactivity, meaning that only one active site was phosphorylated at a time (111).  

 Pimeloyl-CoA synthetase (EC 6.2.1.14) from Pseudomonas mendocina was 

originally reported as an AMP-forming enzyme (112); however, the original assay did not 

differentiate between AMP and ADP formation. Sequence analysis revealed strong 

similarity to the NDP-forming acyl-CoA synthetases as opposed to AMP forming 

enzymes, indicating pimeloyl-CoA synthetase is likely a member of this enzyme 

superfamily (67). Pimeloyl-CoA is the first intermediate in the biotin synthesis pathway. 

Recombinant pimeloyl-CoA synthetase from P. mendocina formed a tetrameric enzyme 

and exhibited typical Michaelis-Menten kinetics (112).  

 E. coli PatZ (formerly YfiQ) and Salmonella enterica Pat are protein 

acetyltransferases with significant homology to ACD. Each of the five subdomains of the 

NDP-forming acyl-CoA synthetase family is present in the same order as in ACD, along 

with a GCN5-related N-acetyltransferase domain (FIG 1.3B). PatZ is the only known 

acetyltransferase in E. coli and its function is to regulate AMP-forming acetyl-CoA 

synthetase by acetylation (113). The biochemical and kinetic characterization of S. 

enterica PAT revealed the enzyme exists as a monomer but forms a tetramer upon 

acetyl-CoA binding (114). E. coli PatZ demonstrated autoacetylation that changed the 

oligomerization from a tetramer to a more stable and more active octamer (115). The 

acetyltransferase proteins lack the primary catalytic His residue found in the rest of the 

superfamily, and instead that position contains an asparagine residue incapable of being 

phosphorylated.  
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 Although some biochemical, functional, and structural analysis of this superfamily 

of enzymes has been accomplished already, many questions remain. The origin of 

domain shuffling is still a mystery, along with the division of enzymes as either separate 

subunits or fusions.  
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IV. ENTAMOEBA HISTOLYTICA 
	
	

Entamoeba histolytica is a protozoan parasite responsible for amoebic colitis 

(dysentery) and liver abscess in humans. An estimated 500 million people are infected 

each year, with 50 million developing colitis and liver abscess, causing 40,000 – 100,000 

deaths every year (116-118). It is the second leading cause of death by parasitic disease 

worldwide and is endemic to areas of Central and South America, Asia, Africa, and the 

Pacific Islands (116). E. histolytica cycles between two life stages: an infectious cyst and 

vegetative trophozoite (FIG 1.4). The environmentally-resistant cyst is typically ingested 

via contaminated food or water. The cyst passes through the digestive system into the 

small intestine where it undergoes excystation. Trophozoites then migrate to the large 

intestine and multiply via binary fission. E. histolytica typically maintains an 

asymptomatic infection in the colon, however it can break through the intestinal epithelial 

lining and travel through the bloodstream to other organs. Infection of the liver results in 

substantial tissue damage, leading to abscess and death. Some trophozoites undergo 

encystation in the colon and are expelled in order to continue transmission. Cysts are 

highly resistant to disinfectants and can persist for months outside the host in moist 

environments (119).  
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FIG 1.4 Life cycle of Entamoeba histolytica. The parasite cycles between the 

infectious cyst stage and the vegetative trophozoite that colonizes the human large 

intestine. Obtained from Wikimedia commons (File: Entamoebahistolyticalifecycle-

en.svg) 
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Virulence and treatment 

The colon is lined with a thick layer of mucin separating the intestinal microbiota 

from host epithelial cells. Adherence to this layer is essential for infection and is 

mediated by surface lectins that bind galactose (Gal) and N-acetyl-D-galactosamine 

(GalNAc) oligosaccharides (120). E. histolytica virulence is facilitated by contact-

dependent cytotoxicity (121) and secreted proteins. Ingestion of microbes and host cells 

can occur via phagocytosis (122,123) or trogocytosis (124), and the resulting cellular 

material is degraded by a variety of enzymes within the phagolysosome (125).   

The primary line of defense against invasive amoebiasis is metronidazole and 

other nitroimidazole derivatives (126). Originally discovered for the treatment of 

Trichomonas vaginalis infections, metronidazole targets anaerobic organisms. Upon 

entering the cell, metronidazole is reduced on the nitro group by reduced ferredoxin into 

short-lived cytotoxic intermediates (127,128). These compounds cause DNA strand 

breakage, eventually leading to disrupted transcription and cell death. Two 

pharmacokinetics studies showed 42% and 76% penetration of the drug into the colonic 

mucosa (129,130). Although largely effective, metronidazole has limitations because 

only 90% of patients respond to treatment, and parasites persist in 40-60% of treated 

patients (126). A second-line treatment of paromomycin or diloxanide furoate is 

necessary to completely clear infection (126). Furthermore, resistance to metronidazole 

has been demonstrated in vitro (131,132). Although this has not been observed 

clinically, the possibility is of growing concern. Efforts to develop new therapeutic targets 

as well as potential vaccines are currently underway (133-135).  
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Metabolism depends on the environment 

 E. histolytica possesses a uniquely reduced metabolism compared to typical 

eukaryotes, lacking mitochondria and several biosynthetic pathways (136). 

Consequently, the parasite relies heavily on scavenging essential nutrients including 

most amino acids, nucleic acids, lipids, and vitamins. Carbohydrate metabolism depends 

on availability within the environment. Trophozoites first emerge within the small 

intestine where glucose is prevalent and glycolysis is thought to provide the majority of 

energy for E. histolytica (137). However, as E. histolytica travels to the colon, the 

concentration of glucose is very low (138). Glucose transporters of epithelial cells in the 

small intestine have high affinity for glucose and most is removed before nutrients reach 

the colon (139). Consequently, the parasite must adapt to long-term glucose starvation 

in order to survive (140). Glucose starvation has been known to trigger cyst formation in 

other amoeboid species (141-143). Furthermore, Entamoeba competes with prevalent 

intestinal flora for nutrients (144). It has been suggested that E. histolytica secretes a 

beta-amylase enzyme to break down mucin oligosaccharides as a source of 

carbohydrates (145). In contrast, when E. histolytica invades the blood (146) or liver 

tissue (147), exogenous glucose is abundant, but the parasite must deal with other 

stresses. Also present in the colon are high concentrations of short-chain fatty acids, 

including acetate, that are known to be taken up in pH dependent manner by a related 

Entamoeba species (148).  

Glycolysis 

E. histolytica has several adaptations within its glycolytic pathway. The ATP-

dependent phosphofructokinase (PFK; EC 2.7.9.1; Eq. 18) has been replaced by a 



	 28 

pyrophosphate (PPi)-dependent phosphofructokinase (PPi-PFK; 2.7.1.90; Eq. 19). PFK 

is typically an important point of regulation within glycolysis due to its irreversibility and 

allosteric regulation by AMP. However, PPi-PFK is not allosterically regulated and 

constitutes a reversible reaction under physiological conditions (149-151).  

 Fructose-6-phosphate + ATP à fructose-1,6-bisphosphate + ADP  [Eq. 18] 

 Fructose-6-phosphate + PPi ßà fructose-1,6-bisphosphate + Pi  [Eq. 19] 

Pyruvate phosphate dikinase (PPDK; EC 2.7.9.1; Eq. 20) is another PPi-dependent 

enzyme which catalyzes the reversible conversion of phosphoenolpyruvate (PEP) to 

pyruvate replacing the typical pyruvate kinase (PK; 2.7.1.40; Eq. 21) (152).  

PEP + AMP + PPi ßà pyruvate + ATP + Pi    [Eq. 20] 

PEP + ADP ßà pyruvate + ATP     [Eq. 21] 

A potential benefit of using PPi is the conservation of energy from PPi-generating 

anabolic reactions. Also, since the typical “committed step” is now reversible under 

physiological conditions, these enzymes could be involved in both catabolic and anabolic 

processes (153). Another atypical glycolytic enzyme of unknown significance is the 

GDP-dependent phosphoglycerate kinase (GDP-PGK; EC 2.7.2.10), which displays a 

significant preference for GDP over ADP as the phosphoryl acceptor (154).  

 While these adaptations may confer an advantage to Entamoeba, they also 

require a change in the typical regulation of glycolysis. Each glycolytic enzyme of E. 

histolytica has been studied recombinantly (150,155). Elasticity analysis was used to 

understand how central carbon metabolism is regulated in live trophozoites of E. 

histolytica. The initial steps of hexose transporter, hexokinase, and glycogen 

degradation were determined to be the controlling steps (156).  
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As first observed by electron microscopy in 1970 (157), Entamoeba cells contain 

numerous glycogen granules in the cytoplasm. The high glycogen content observed 

when cells are cultured under high glucose serves as an energy reservoir that is capable 

of supporting glycolysis for up to 2 hours after glucose starvation before a significant 

decrease in ATP output or cell viability (156). Glycogen granules and the enzymes for 

their synthesis and degradation have all been characterized (158,159).	

Most organisms employ the allosterically regulated pyruvate dehydrogenase 

complex to couple the conversion of pyruvate to acetyl-CoA and concomitantly produce 

NADH. However, multiple amitochondriate protozoan species lack a pyruvate 

dehydrogenase complex and instead complete the pyruvate to acetyl-CoA reaction via 

oxidative decarboxylation by pyruvate:ferrodoxin oxidoreductase (PFOR; EC 1.2.7.1). 

PFOR uses the cofactor ferredoxin as an electron acceptor to complete this reaction. 

This enzyme is typically found in Archaea, but has been identified in E. histolytica and G. 

lamblia. Both PFOR and ACD are thought to have been acquired by lateral gene transfer 

(160). EhPFOR has been studied in cell extracts (161).	

Amino acid metabolism 

E. histolytica lacks de novo synthesis pathways for the majority of amino acids. 

Consequently, it relies on scavenging in order to supply its amino acid requirements. 

Furthermore, the parasite is also capable of taking up amino acids to use them for 

energy generation (160,162). During glucose starvation, glycolysis-related genes are 

downregulated and amino acid consumption increases (162). Asparagine, aspartate, 

serine, alanine, tryptophan, cysteine, threonine, methionine, glutamine and glutamate 

can all be converted into either pyruvate or a 2-oxoacid (160). PFOR converts pyruvate 
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or 2-oxoacids to CoA esters, from which ACD can produce ATP and the corresponding 

acids.  

Aspartate and asparagine are taken up in the presence or absence of glucose 

(162). Under long-term glucose shortage, methionine gamma-lyase and aspartate 

ammonia lyase are upregulated (163). Aspartate ammonia lyase converts aspartate to 

fumarate and ammonia, and asparaginase converts asparagine to aspartate and 

ammonia. Methionine gamma-lyase, a unique enzyme found only in E. histolytica and 

Trichomonas vaginalis, is capable of breaking down methionine or the potentially toxic 

homocysteine (160) to produce ammonia and 2-oxobutanoate. Flux analysis performed 

by Pineda et al. (156) indicated that amino acid catabolism cannot substitute for glucose 

to maintain ATP levels. However, the lack of a sufficient number of replicates brings 

these conclusions into question.  

E. histolytica is capable of synthesizing just two amino acids, serine and 

cysteine. Cysteine serves a special role in E. histolytica in combatting oxidative stress. 

Typical eukaryotes contain glutathione as a low-molecular weight thiol capable of 

maintaining redox balance. However, E. histolytica does not contain glutathione and 

utilizes cysteine in this role instead (164). Cysteine has been deemed essential for 

growth, motility, adherence, and demonstrated protection against oxidative stress in vitro 

(165,166). Cysteine synthesis is critical to the parasite (167) and occurs via a two-step 

pathway from serine (168). Serine acetyltransferase (EC 2.3.1.30) converts serine to O-

acetylserine by transferring the acetyl moiety from acetyl-CoA. Cysteine synthase (EC 

4.2.99.8) then generates cysteine from O-acetylserine and sulfhydryl, releasing acetate. 
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This pathway is one source of excreted acetate, in addition to the pathways discussed 

later in this chapter.  

Mitosome 

Most eukaryotic organisms contain mitochondria that primarily function in ATP 

generation via oxidative phosphorylation and the electron transport chain. Several 

parasitic protozoan species do not have fully functional mitochondria (169), but instead 

retain highly reduced mitochondrion-related organelles (MROs). The principal functions 

of mitochondria have likely been lost due to adaptation to an anaerobic lifestyle.  For 

some of these parasites such as T. vaginalis, this MRO is known as a hydrogenosome 

which produces molecular hydrogen and ATP (170). E. histolytica and G. lamblia 

possess the most degenerate MRO, known as a mitosome (170). Fe-S cluster synthesis 

was thought to be the solely retained function of mitosomes. However, the system found 

in E. histolytica does not originate from mitochondria but is found in nitrogen-fixing 

bacteria. Furthermore, the localization of this system in either the mitosome or cytosol is 

currently debated. However, a unique sulfate activation has been localized to the 

mitosome in E. histolytica (171,172). Investigations revealed that this sulfate activation 

pathway plays a role in proliferation (172) and encystation (173).	

Excreted products 

E. histolytica excretes three compounds during growth in vitro: acetate, ethanol, 

and alanine (160). The definitive function of alanine secretion is unknown, however it is 

thought to be a mechanism for eliminating excess nitrogen. Ethanol is produced via a 

bifunctional alcohol/acetaldehyde dehydrogenase(ADHE; E.C. 1.2.1.10, 1.1.1.1) enzyme 

that first converts acetyl-CoA to acetaldehyde and then to ethanol, regenerating a 
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molecule of NAD+ at each step (174). There are three potential sources of excreted 

acetate: 1) as a byproduct of cysteine synthesis via cysteine synthase, 2) during 

additional ATP production via ADP-forming acetyl-CoA synthesis, or 3) by acetate 

kinase (FIG 1.5). The relative contributions of each of these pathways to acetate 

production is unknown.  

E. histolytica possesses a unique PPi-producing acetate kinase, and as 

discussed previously in this chapter, there is no known partner enzyme present in the 

genome (51,56,175). The source of the acetyl phosphate substrate has been postulated 

to come from ingested bacteria (175). The role of this enzyme remains to be determined, 

however, characterization of the recombinant enzyme indicates it functions primarily in 

PPi and acetate formation. It is possible that PPi is produced in order to supply the 

unique PPi-dependent enzymes in glycolysis or that PPi is used as a regulatory 

compound.  

The balance between acetate and ethanol production is influenced by 

environmental oxygen concentrations. The first observations under anaerobic growth 

conditions indicated a ratio of ethanol:acetate production of 2:1 (176). This balance was 

then reversed to a 2:1 acetate:ethanol ratio under aerobic conditions. However, both of 

these observations were measured during monoxenic growth and the relative 

contributions from bacteria cannot be determined. Once axenic culture protocols were 

established, E. histolytica excretion was once again studied. Under aerobic growth, 

acetate was the major metabolite produced (60). After exposure to supraphysiological O2 

concentrations, E. histolytica showed a reduction in ethanol production and an increase 

in acetate production during the recovery period compared to unstressed cells (161). 
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PFOR and ADHE were both drastically inhibited by reactive oxygen species. Pineda et 

al. performed metabolic control analysis to understand the acetate and ethanol flux 

under moderate aerobic conditions, mimicking the environment encountered when 

invades tissue adjacent to the colon (177). They observed that PFOR and ADHE were 

major points of regulation of central carbon metabolism. The reported output of ethanol 

and acetate under typical in vitro growth conditions was 26 ± 7 and 3.6 ± 8 nmol min-1 

mg-1 cell protein, respectively.   

Recent knockdown of ACD in E. histolytica trophozoites revealed a significant 

reduction in acetate production in culture (178). Contributions to ATP were negligible, 

but ACD was shown to be important for maintaining acetyl-CoA/CoA homeostasis, 

especially under oxidative stress conditions when ADHE was inhibited. Knockdown of 

ACK showed no reduction in acetate production and no conclusions about the function 

of ACK could be made.  
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FIG 1.5 Acetate metabolism in E. histolytica. ACD = ADP-forming acetyl-CoA 

synthetase; SAT = serine acetyltransferase; CS = cysteine synthase; ACK = acetate 

kinase. 
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V. CONCLUSIONS 
 

 
In summary, acetate metabolism is clearly an important process in many 

organisms, including parasitic protozoans. Both acetate production and assimilation 

occur under different conditions depending on the enzymes present and the cell’s needs. 

ADP-forming acetyl-CoA synthetase functions in acetate metabolism and is part of a 

superfamily of NDP-forming acyl-CoA synthetases that catalyze a set of reactions 

involved in central carbon metabolism and often are involved in energy homeostasis. 

The metabolism of the amitochondriate parasite Entamoeba histolytica is severely 

limited, however an ACD enzyme is present. The research presented in the following 

chapters will explore the function and mechanism of EhACD.  
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BIOCHEMICAL AND KINETIC CHARACTERIZATION OF THE RECOMBINANT  

ADP-FORMING ACETYL-COA SYNTHETASE FROM THE AMITOCHONDRIATE 

PROTOZOAN ENTAMOEBA HISTOLYTICA  

 

Cheryl P. Jones and Cheryl Ingram-Smith 

 

I. ABSTRACT 

 

Entamoeba histolytica, an amitochondriate protozoan parasite that relies on 

glycolysis as a key pathway for ATP generation, has developed an unique extended PPi-

dependent glycolytic pathway in which ADP-forming acetyl-CoA synthetase (ACD; 

Acetate:CoA ligase (ADP-forming) [EC 6.2.1.13]) converts acetyl-CoA to acetate to 

produce additional ATP and recycle CoA. We have characterized the recombinant E. 

histolytica ACD and have shown that the enzyme is bidirectional, allowing it to potentially 

play a role in ATP production or in utilization of acetate. In the acetate-forming direction, 

acetyl-CoA is the preferred substrate and propionyl-CoA was used with lower efficiency.  

In the acetyl-CoA forming direction, acetate is the preferred substrate, with a lower 

efficiency observed with propionate. The enzyme can utilize both ADP/ATP and 

GDP/GTP in the respective directions of the reaction. ATP and PPi were found to inhibit 

the acetate-forming direction of the reaction with IC50 values of 0.81 ± 0.17 mM and 0.75 

± 0.20 mM, respectively, which are both in the range of their physiological 

concentrations. ATP and PPi displayed mixed inhibition versus each of the three 
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substrates, acetyl-CoA, ADP, and phosphate. This is the first example of regulation of 

ACD enzymatic activity, and possible roles for this are discussed. 

 

Citation: Jones, C. P., and Ingram-Smith, C. (2014) Biochemical and kinetic 

characterization of the recombinant ADP-forming acetyl coenzyme A synthetase from 

the amitochondriate protozoan Entamoeba histolytica. Eukaryotic Cell 13, 1530-1537.  
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II. INTRODUCTION 

 

Entamoeba histolytica, a protozoan parasite that causes amoebic dysentery and 

amoebic liver abscess in humans, is a leading cause of morbidity and mortality due to 

parasitic disease worldwide, second only to malaria (1).This parasite has a two-stage life 

cycle, existing as infectious cysts or motile trophozoites that can reside in the anaerobic 

confines of the human colon and cause disease. After ingestion of cysts and excystation 

to release trophozoites, asymptomatic infection can occur when trophozoites remain 

confined to the intestine. However, the parasite can break through the epithelial lining of 

the intestine and enter the bloodstream, resulting in an invasive infection. Cell lysis, 

phagocytosis, and trogocytosis all play a role in pathogenicity and contribute sources of 

nutrients to this metabolically limited parasite (2). 

E. histolytica lacks a functional TCA cycle and oxidative phosphorylation, and 

consequently relies on substrate-level phosphorylation to provide high-energy 

compounds. This amitochondriate protozoan utilizes an unusual PPi-dependent 

glycolytic pathway (FIG 2.1) in which ATP-dependent phosphofructokinase is replaced 

by PPi-dependent phosphofructokinase, and pyruvate kinase is replaced by a PPi-

dependent pyruvate phosphate dikinase (3-5). The pyruvate end-product of glycolysis is 

converted to acetyl-CoA by pyruvate:ferredoxin oxidoreductase (PFOR) rather than 

pyruvate dehydrogenase. Acetyl-CoA can then be broken down to ethanol by a 

bifunctional aldehyde-alcohol dehydrogenase (ADHE) (6) or to acetate by ADP-forming 

acetyl-CoA synthetase (ACD; Acetate:CoA ligase (ADP-forming); EC 6.2.1.13) [Eq. 1].   

 acetyl-CoA + ADP + Pi D acetate + CoA + ATP   [Eq. 1] 
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FIG 2.1 The PPi-dependent extended glycolytic pathway of E. histolytica. Relevant 

steps that produce or utilize ATP and PPi are shown, and enzymes that catalyze 

reactions specific to this pathway are indicated. Dotted arrows represent multiple steps 

that are not shown. Abbreviations: PPi-PFK, pyrophosphate-dependent 

phosphofructokinase; PPDK, pyruvate phosphate dikinase; PFOR, pyruvate:ferredoxin 

oxidoreductase; ACD, ADP-forming acetyl-CoA synthetase; ADHE, bifunctional 

aldehyde-alcohol dehydrogenase. 
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This extended PPi-dependent glycolytic pathway increases ATP output per glucose 

molecule to three when ethanol is produced and to five when acetate is the product. 

ACD was first identified as an acetate-forming activity in E. histolytica extracts, and the 

partially purified enzyme was shown to have activity in both directions of the reaction (7). 

The only other characterized eukaryotic ACD is that from the amitochondriate Giardia 

lamblia (8-10), for which only substantial acetate-forming activity was detected (10).  

Although not widespread, ACD has been identified in all three domains and is 

postulated for the conversion of acetyl-CoA to acetate. In archaea, ACD was first 

identified in Pyrococcus furiosus (11,12), a thermophilic anaerobe that ferments 

carbohydrates and peptides, and has now been identified in a number of other archaea, 

including the thermophilic anaerobes Pyrococcus woesei, Desulfurococcus amylolyticus, 

Hyperthermus butylicus, and Thermococcus celer (13,14), the hyperthermophilic 

anaerobic sulfate reducer Archaeoglobus fulgidus (15), and the halophilic aerobe 

Halobacterium saccharovorum (13,14). Native ACD has been purified from P. furiosus 

(11,12) and Haloarcula marismortui (16), and recombinant ACDs from P. furiosus (17), 

A. fulgidus (18), Methanococcus jannaschii (18), H. marismortui (16), Pyrobaculum 

aerophilum (16), and Thermococcus kodakarensis (19) have been characterized.  

 A similar role for ACD in acetate production has been proposed in bacteria. Most 

bacteria have phosphotransacetylase (PTA) and acetate kinase (ACK), which form a 

predominant pathway for acetate production from acetyl-CoA. ACD from the 

phototrophic Chloroflexus aurantiacus has recently been purified and the recombinant 

enzyme characterized (20). The syntrophs Pelotomaculum thermopropionicum (21) and 

Syntrophus aciditrophicus (22), and the propionic acid producing Propionibacterium 
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acidipropionici (23) all lack genes for the PTA-ACK pathway and instead have acd 

genes. ACD has been identified in proteome analysis of P. acidipropionici cells grown 

under acetate-producing conditions, but the enzyme has not been purified or 

characterized (23). Likewise, the acetate-producing archaea listed above that have ACD 

lack genes encoding the PTA-ACK pathway. 

 ACD is part of a superfamily of nucleoside diphosphate-forming acyl-CoA 

synthetases, which includes the closely related citric acid cycle enzyme succinyl-CoA 

synthetase (SCS; EC 6.2.1.4) as well as ATP citrate lyase (EC 2.3.3.8) and malate 

thiokinase (EC 6.3.1.9) (9). SCS has been extensively studied kinetically and structurally 

(24-26), and a three-step enzymatic mechanism has been proposed (27) [Steps 1-3]:  

 Step 1:   succinyl-CoA + Pi D E~succinyl-P + CoA 

 Step 2:   E~succinyl-P D E-His~P + succinate 

 Step 3:   E-His~P + ADP D ATP 

Based on their studies with P. furiosus ACD, Brasen et al. (28) proposed that ACD 

proceeds through a mechanism similar to that of SCS, but with an additional step in 

which the phosphoryl group is transferred from a His residue on the α subunit to a His 

residue on the β subunit before transfer to ADP in the final step to produce ATP. 

Here we report the biochemical and kinetic characterization of the recombinantly 

produced ACD from the intestinal parasite E. histolytica, revealing its ability to function in 

either acetate production or utilization in vitro. Our results confirm that both the acetyl-

CoA forming and acetate-forming activities of ACD are present in cell lysate from E. 

histolytica trophozoites. Inhibition studies suggest E. histolytica ACD (EhACD) is 

regulated through inhibition by ATP and PPi in the acetate-forming direction.   
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III. MATERIALS AND METHODS 

 

Materials 

Chemicals were purchased from Sigma-Aldrich, VWR International, Gold 

Biotechnology, Fisher Scientific, Atlanta Biological, Life Technologies, and J R Scientific.  

Growth of E. histolytica trophozoites and preparation of cell lysate 

 E. histolytica strain HM-1:IMSS (kindly provided by Dr. Lesly Temesvari, 

Clemson University) was cultured axenically at 37°C in TYI-S-33 medium (29). Cells 

were harvested by incubation on ice for 10 minutes and centrifugation at ~350 x g for 5 

minutes at 4°C. The pellet was resuspended in 0.8 ml lysis buffer (50 mM Tris-HCl [pH 

7.3], 1 mM AEBSF, 0.015 mM E-64, 0.02 mM Pepstatin A, 5 mM 1,10-Phenanthroline) 

and disrupted by five cycles of freezing in a dry ice/ethanol bath and thawing at 37°C. 

The cell lysate was kept on ice, and enzymatic activity was assayed immediately using 

the DTNB and hydroxamate assays described below. Total protein concentration was 

determined using the Bradford method (30) with bovine serum albumin as standard. 

Production and purification of E. histolytica ACD 

 A codon-optimized E. histolytica acd gene was synthesized by Genscript and 

cloned into pET21b (Novagen) for production of recombinant E. histolytica ACD in 

Escherichia coli. The pET21b-ACD plasmid was transformed into E. coli 

Rosetta2(DE3)pLysS cells (Novagen) and cultures were grown in Luria-Bertani medium 

(LB) containing 50 µg ml-1 ampicillin and 34 µg ml-1 chloramphenicol shaking at 200 rpm 

at 37°C to A600 ~0.8. Protein production was initiated by the addition of isopropyl β-D-1-

thiogalactopyranoside (IPTG) to a final concentration of 0.5 mM. Cultures were grown 
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overnight at ambient temperature and harvested by centrifugation. Cells were 

suspended in ice-cold buffer A (25 mM Tris-HCl, 150 mM NaCl, 10% glycerol, 20 mM 

imidazole [pH 7.4]) and disrupted by two passages through a French pressure cell at 

138 MPa. The cell lysate was clarified via ultracentrifugation at ~ 98,000 x g for 1 hour at 

4°C, and cell-free extract was applied to a 5 ml HisTrap HP nickel affinity column (GE 

Healthcare) equilibrated with buffer A. After extensive washing with buffer A to remove 

unbound protein, the column was developed with a linear gradient from 0 to 0.5M 

imidazole in buffer A. Fractions containing active enzyme were pooled, dialyzed 

overnight in buffer (25 mM Tris-HCl, 10% glycerol, [pH 7.0]), aliquoted, and stored at -

80°C. The enzyme was judged to be electrophoretically pure by SDS-PAGE analysis. 

Protein concentration was determined from the absorbance at 280 nm using the Take3 

Micro-volume plate (BioTek). 

Determination of molecular mass 

The native molecular mass of EhACD was determined by gel filtration 

chromatography through a Superose 12 column (GE Healthcare) pre-equilibrated with 

50 mM Tris-HCl, 150 mM NaCl [pH 7.0]. The column was calibrated with cytochrome C 

(12.4 kDa), carbonic anhydrase (29 kDa), albumin (66 kDa), amylase (200 kDa), 

apoferritin (443 kDa), and thyroglobulin (669 kDa), and developed at a flow rate of 0.5 ml 

per minute. 

Determination of kinetic parameters for EhACD 

 Pseudo-first order reaction kinetics determinations were performed in both 

directions of the reactions. Enzymatic activity in the acetate-forming direction was 

determined by measuring the release of CoASH from acyl-CoA using Ellman’s thiol 
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reagent (5,5'-dithio-bis-[2-nitrobenzoic acid], DTNB) (31). Production of NTB2- by CoASH 

cleavage of DTNB was measured spectrophotometrically at 412 nm. Reaction mixtures 

(50 mM Tris-HCl, 0.3 mM DTNB, 6 mM HEPES (used to solubilize DTNB) [pH 7.3]) with 

varied substrate concentrations were pre-incubated at 37°C for 5.5 minutes. Assays 

were performed in 96-well plates in 0.2 ml reaction volumes. Reactions were initiated by 

the addition of enzyme, and absorbance was measured every 4 seconds at 37°C using a 

Synergy HT Multi-Mode Microplate Reader (BioTek). Initial velocities were converted to 

µmol CoASH formed using an extinction coefficient of ε = 13.6 mM-1 cm-1 for the 

thiophenolate NTB2- anion. One unit of activity is defined as 1 μmol product per minute 

per mg protein. In determination of kinetic parameters for acetate formation, non-varied 

substrate concentrations were held at 0.3 mM acetyl-CoA, 8 mM KH2PO4, and 5 mM 

MgCl2:ADP or 6 mM MgCl2:GDP. For propionate formation, non-varied substrate 

concentrations were held at 0.3 mM propionyl-CoA, 12.5 mM KH2PO4, and 3 mM 

MgCl2:ADP. 

 Activity in the acetate-forming direction was confirmed using the 

hexokinase/glucose-6-phosphate dehydrogenase coupled assay (32). This assay 

couples ATP formation to the reduction of NADP+ to NADPH, which is measured 

spectrophotometrically at 340 nm. Reaction mixtures (100 mM Tris-HCl [pH 7.3], 5.5 mM 

glucose, 1 mM NADP+, 0.2 mM DTT) with varied concentrations of substrates were pre-

incubated at 37°C for 5.5 minutes, hexokinase and glucose-6-phosphate dehydrogenase 

were added, and the reactions were initiated by the addition of ACD. Assays were 

performed in 96-well plates in 0.2 ml reaction volumes and absorbance was measured 

every 4 seconds at 37°C using a Synergy HT Multi-Mode Microplate Reader (BioTek). 
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Initial velocities were converted to μmol ATP formed using an extinction coefficient ε = 

6.22 mM-1 cm-1 for NADPH. Concentrations of non-varied substrate used for both the 

DTNB assay and coupled enzyme assay were identical.   

 Enzymatic activity for detection of acetyl-CoA formation was determined using 

the hydroxamate assay (33,34). Reaction mixtures (50 mM Tris-HCl [pH 7.5], 300 mM 

hydroxylamine-HCl [pH 7.0]) with varied substrate concentrations were pre-incubated at 

37°C for 5.5 minutes and reactions were initiated by the addition of enzyme. Reactions 

(0.15 ml) were terminated by the addition of one volume of stop solution (2.5% FeCl3,2 N 

HCl,10% trichloroacetic acid) and the absorbance at 540 nm was measured. Product 

formation was determined by comparison to an acetyl-CoA standard curve. For acyl 

substrates prepared in ethanol, the final concentration of ethanol in the reaction was 

kept to 2.5%, which was determined not to affect enzymatic activity. One unit of activity 

is defined as 1 mmol of acetyl-CoA produced per minute per mg protein. In determination 

of kinetic parameters for acetyl-CoA formation, the non-varied substrates were held at 

100 mM acetate, 1 mM CoA, 20 mM MgCl2:ATP, and 25 mM MgCl2:GTP. For 

determination of kinetic parameters for propionyl-CoA formation, the non-varied 

substrates were held at the following concentrations: 250 mM propionate, 3 mM CoA, 

and 20 mM MgCl2:ATP. 

 Apparent kinetic parameters were determined by varying the concentration of a 

single substrate while the concentrations of the other two substrates were held constant. 

For determination of the apparent steady-state kinetic parameters Km, kcat, and kcat/Km 

and their standard deviations, nonlinear regression in KaleidaGraph (Synergy Software) 

was used to fit the data to the Michaelis-Menten equation.  
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Determination of inhibition parameters 

 Various metabolic intermediates were tested as effectors of ACD. IC50 values 

(the effector concentration that provides half maximal inhibition) for inhibitors were 

determined at Km substrate concentrations by measuring the decrease in enzymatic 

activity as a function of increasing concentrations of inhibitor. Non-linear regression 

analysis in GraphPad Prism 5 (GraphPad Software) was used to fit the data to the log 

[inhibitor] vs. response curve to determine IC50 values. To examine the mode of 

inhibition, enzymatic activity was assayed in each direction in a four-by-four matrix of 

varied inhibitor concentrations versus varied concentrations of one substrate, with the 

other two substrates held constant. Linear regression in KaleidaGraph (Synergy 

Software) was used to resolve the point of intersection of the inverse plots.   
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IV. RESULTS 

 

General characterization 

The limited characterization of partially purified native E. histolytica ACD reported 

by Reeves et al. (7) indicated the enzyme has a narrow nucleotide specificity. To allow a 

more thorough characterization of the E. histolytica ACD (EhACD), we produced the 

recombinant enzyme in E. coli. A codon-optimized gene was synthesized by Genscript 

and cloned into the pET21b E. coli expression vector (Novagen), which encodes for 

addition of a C-terminal His6 tag to the recombinant protein. The calculated subunit 

molecular mass of the recombinant His-tagged protein is 78999 Da. The molecular mass 

of the purified enzyme was estimated to be ~150 kDa by gel filtration chromatography, 

suggesting EhACD is dimeric as for the G. lamblia ACD (10). The optimum temperature 

for ACD activity was determined to be 55°C in the acetyl-CoA forming direction but could 

not be determined in the acetate-forming direction due to limitations of the equipment 

used for measurements. This unexpectedly high optimal temperature may be an artifact 

from the assay conditions or represent unusual stability of this protein, but was not 

analyzed further. However, activity was routinely assayed at 37°C, the temperature E. 

histolytica trophozoites would typically encounter within the human host. The enzyme 

had approximately 70% activity at this temperature versus its optimum temperature.  

The requirement for a divalent cation was examined and ACD was found to have 

the highest activity with Mg2+ and Mn2+ and substantial activity with Co2+ in both 

directions of the reaction, but only weak activity with Ni2+, Zn2+, Ca2+, and Cu2+ (FIG 2.2).  

The preference for Mg2+, Mn2+, and Co2+ is similar to that of other ACDs (10,11,18).  
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FIG 2.2 Divalent cation specificity of EhACD.  Activities were determined in each 

direction of the reaction using saturating substrate conditions in the presence or absence 

of metals (3 mM final concentration in the acetate-forming direction and 20 mM final 

concentration in the acetyl-CoA forming direction). Activities are normalized to the 

activity observed with Mg2+. Black bars: activity in the acetate-forming direction. Gray 

bars: activity in the acetyl-CoA forming direction. Activities are the mean ± SD of three 

replicates. 

 

 

 

 

 

 

 



	 66	

ACD enzymatic activity was observed in both directions of the reaction, and the 

reaction rate was linearly dependent on enzyme concentration. Specific activity in the 

acetate-forming direction (85 ± 1.2 µmol min-1 mg-1) was approximately half that 

observed in the acetyl-CoA forming direction (180 ± 2.0 μmol min-1 mg-1). Similarly, 

measurement of ACD specific activity in E. histolytica cell extract showed that activity in 

the acetate-forming direction was approximately half that in the acetyl-CoA forming 

direction (0.14 ± 0.022 μmol min-1 mg-1 versus 0.29 ± 0.004 μmol min-1 mg-1). In contrast, 

ACD activity in Giardia cell extracts could only be detected in the direction of acetate 

formation (10). Although the purified recombinant Giardia ACD had activity in both 

directions of the reaction, the acetyl-CoA forming activity was ~4% of the acetate-

forming activity (9). 

EhACD has a limited acyl-CoA substrate range, with the highest activity 

observed with acetyl-CoA and lower activity observed with propionyl-CoA (16 ± 2.8% 

activity versus that with acetyl-CoA). Less than 1% activity was observed with isobutyryl-

CoA and isovaleryl-CoA at 0.3 mM final concentration, and no activity was observed with 

butyryl-CoA, succinyl-CoA, or phenylacetyl-CoA. ADP and GDP gave the highest activity 

(100 ± 1.0% and 106 ± 3.7% activity, respectively), although activity was also observed 

with IDP (28 ± 3.8%), CDP (7.0 ± 0.2%), and UDP (2.8 ± 0.1%); no activity was 

observed with TDP as substrate. PPi was tested with AMP as the phosphoryl acceptor 

but no activity was observed under the conditions tested.  

In the acyl-CoA forming direction, acetate was the favored substrate, and 

propionate and butyrate could also be used with relative activities of 72 ± 1.5%, and 5.6 

± 0.2%, respectively, versus acetate. Less than 4% activity was observed with 
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isobutyrate, valerate, isovalerate, hexanoate, heptanoate, octanoate, succinate, or 

phenylacetate as the acyl substrate. Activity observed with ATP (representing 100% 

activity) was nearly double that with GTP (57 ± 0.4%) and substantially higher than the 

activities observed with ITP (15 ± 0.2%), CTP (4.1 ± 0.3%), or UTP (1.6 ± 0.2%); no 

activity was observed with TTP or PPi.  

Kinetic parameters 

 Kinetic parameters for EhACD were determined in both the acetate-forming and 

acetyl-CoA forming directions (TABLE 2.1). Activity decreased above 6 mM ADP or 25 

mM ATP in the respective directions of the reaction, so the concentrations of these 

substrates were held below saturation in determination of kinetic parameters. Under 

these conditions, acetyl-CoA and Pi in the acetate/ATP forming direction and acetate 

and CoA in the acetyl-CoA forming direction followed Michaelis-Menten like kinetics. The 

enzyme displayed similar Km values for acetyl-CoA and propionyl-CoA in the acetate-

forming direction of the reaction. However, the turnover rate kcat was approximately 5-

fold higher with acetyl-CoA versus propionyl-CoA, resulting in ~4-fold higher catalytic 

efficiency with acetyl-CoA. The Km for Pi was similar with acetyl-CoA or propionyl-CoA as 

the acyl substrate, but the Km for ADP was reduced ~2-fold with propionyl-CoA versus 

acetyl-CoA. Similar Km and kcat values were observed with ADP and GDP (TABLE 2.1). 

The Km values observed for EhACD are similar to those reported for the Giardia ACD 

(0.02 mM, 0.23 mM, and 1.59 mM for acetyl-CoA, ADP, and Pi, respectively) (10). 

As the enzyme assay used for determination of kinetic parameters in the acetate-

forming direction of the reaction measures CoA release in the first step, we confirmed 

our results using a coupled enzyme assay that measures ATP production in the last step  
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TABLE 2.1 Apparent kinetic parameters for EhACD in each direction of the 
reaction. 

 

Varied Substrate Km (mM) kcat (sec-1) kcat/Km 
(sec-1 mM-1) 

 
Acetate-forming direction 

Acetyl-CoA    0.04 ± 0.001   110 ± 1.6    2600 ± 370 
Phosphate      1.8 ± 0.18   120 ± 7.8        65 ± 2.3 

ADP      1.6 ± 0.15   140 ± 1.2        89 ± 7.9 
GDP      1.9 ± 0.14   170 ± 5.2        90 ± 8.3 

    
Propionyl-CoA  0.032 ± 0.002     21 ± 0.6      650 ± 63 

Phosphate      1.5 ± 0.09     18 ± 0.6        12 ± 0.5 
ADP    0.71 ± 0.09     24 ± 0.3        34 ± 3.4 

    
Acetyl-CoA forming direction 

Acetate       14 ± 0.6   240 ± 2.7        16 ± 0.5 
CoA    0.20 ± 0.01   220 ± 4.3    1100 ± 57 
ATP       12 ± 0.4   320 ± 4.4        27 ± 0.7 
GTP       10 ± 0.1   180 ± 1.6        18 ± 0.1 

    
Propionate       29 ± 1.4   190 ± 1.5       6.3 ± 0.3 

CoA      1.6 ± 0.05   260 ± 2.0      160 ± 4.3 
ATP      7.2 ± 0.7   240 ± 7.1        33 ± 2.2 
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of the reaction. Similar Km and kcat values were observed with this assay (acetyl-CoA, 

0.017 ± 0.001 mM, 130 ± 14 sec-1; KH2PO4, 2.1 ± 0.21 mM, 180 ± 16 sec-1; ADP, 0.94 ± 

0.16 mM, 140 ± 7.2 sec-1). 

In the acetyl-CoA forming direction of the reaction, the Km for acetate was ~2-fold 

higher than that for propionate (TABLE 2.1); however, the kcat values were similar for 

both substrates, unlike in the opposite direction. Thus, the catalytic efficiency of EhACD 

with acetate was only 2.6-fold higher than with propionate. The Km for CoA was ~2-fold 

elevated with propionate versus acetate as the acyl substrate, but the Km for ATP was 

slightly reduced. The Km values for ATP and GTP were similar, but the turnover rate was 

1.8-fold reduced with GTP. The overall catalytic efficiency with ATP was only 1.5-fold 

higher than with GTP, indicating that both are suitable substrates. Although weak activity 

was observed with butyrate, kinetic parameters could not be determined as the enzyme 

was unsaturable for butyrate even at concentrations as high as 1 M. 

Enzyme inhibition 

Since ACD can function to produce either ATP or acetyl-CoA, regulation of this 

enzyme may be important for maintaining proper levels of these metabolites in the cell. 

An array of metabolic intermediates was tested as effectors for ACD (FIG 2.3). ATP and 

PPi were found to be potent inhibitors in the acetate-forming direction of the reaction, 

producing greater than 95% inhibition at 10 mM final concentration (FIG 2.3). 

Additionally, 50% or less activity was observed in the presence of 10 mM glyoxylate (32 

± 2%), NAD+ (47 ± 3%), or glucose-6-phosphate (50 ± 5%). In the acetyl-CoA forming 

direction, only weak to moderate inhibition was observed with any of the compounds 

tested (FIG 2.3). PPi had only a moderate effect in this direction, reducing activity to 64 ±  
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FIG 2.3 Effect of various metabolites on EhACD activity. Activities were determined 

in each direction of the reaction using Km concentrations of substrate in the presence or 

absence of the indicated metabolites at a final concentration of 10 mM. Note that ATP 

was tested only in the acetate-forming direction since it serves as a substrate in the 

acetyl-CoA forming direction. Activities are normalized to the activity observed in the 

absence of added metabolites. Black bars: activity in the acetate-forming direction. Gray 

bars: activity in the acetyl-CoA forming direction. Activities are the mean ± SD of three 

replicates. Abbreviations: cAMP, cyclic AMP; AcP, acetyl phosphate; G6P, glucose 6-

phosphate; F6P, fructose 6-phosphate; F16BP, fructose 1,6-bisphosphate.  
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4% when present at 10 mM final concentration in the reaction. ATP is a substrate in this 

direction, and although it does inhibit at higher concentrations, we did not examine this 

further.  

In addition to the intermediates shown in FIG 2.3, glyceraldehyde-3-phosphate, 

phosphoenolpyruvate, and oxaloacetate were tested but only in the acetyl-CoA forming 

direction because they interfere with the assays used for the acetate-forming direction. 

None of these compounds resulted in any substantial inhibition in this direction, with 85 ± 

0.3%, 85 ± 5.1%, and 90 ± 1.4% activity observed, respectively. IC50 values for ATP and 

PPi in the acetate-forming direction were determined to be 0.81 ± 0.17 mM for ATP and 

0.83 ± 0.27 mM for PPi. The estimated intracellular concentrations of ATP and PPi in E. 

histolytica trophozoites grown in the presence of glucose are 5 ± 2 mM and 0.45 mM 

(35), respectively, suggesting that regulation of the acetate-forming activity of ACD by 

ATP and PPi is biologically relevant. The mode of inhibition by each of these compounds 

was determined by kinetic analysis in which the concentration of inhibitor was varied 

versus one substrate and the concentrations of the other two substrates were held 

constant. These analyses suggest mixed inhibition by ATP (FIG 2.4) and PPi (FIG 2.5) 

versus each substrate. 
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FIG 2.4 The inhibitory effect of ATP versus ADP, acetyl-CoA, and phosphate in the 

acetate-forming direction. Activity was determined in the presence of varying ATP 

concentrations with concentration of one substrate varied and the others held constant. 

ATP concentrations used were 0 mM (●), 0.2 mM (○), 0.35 mM (■), and 0.5 mM (□). 

ATP inhibition patterns observed versus (A) ADP, (B) acetyl-CoA, and (C) KH2PO4. 

Activities are the mean ± SD of three replicates.
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FIG 2.5 The inhibitory effect of PPi on ADP, acetyl-CoA, and phosphate in the 

acetate-forming direction. Activity was determined in the presence of varying PPi 

concentrations with concentration of one substrate varied and the others held constant. 

PPi concentrations used were 0.6 mM (●), 2 mM (○), 3.5 mM (■), and 6 mM (□). PPi 

inhibition patterns observed versus (A) ADP, (B) acetyl-CoA, and (C) KH2PO4. Activities 

are the mean ± SD of three replicates. 



	 74	

V. DISCUSSION 

 

Substrate specificity of EhACD and comparison to other characterized ACDs  

Although ACD is not widespread, characterization of P. furiosus ACDs has 

demonstrated that there are at least two different isoforms (11,12). This was confirmed 

by characterization of additional enzymes from A. fulgidus (18) and T.kodakarensis (19). 

The ACD I isoforms prefer acetate and acetyl-CoA and can typically utilize propionate, 

butyrate, and propionyl-CoA as well, but do not tend to use longer or branched chain 

acyl/acyl-CoA derivatives (11,12,16,18,20). The ACD II isoforms prefer longer acyl/acyl-

CoA derivatives such as phenylacetyl-CoA/phenylacetate and indoleacetate as 

substrates (12,18,19). Based on our characterization of recombinant EhACD and the 

previous characterization of the partially purified native EhACD (7), this enzyme belongs 

to the ACD I class. The Giardia enzyme also appears to belong to this class (10). 

All ACDs utilize ADP but the ability to accept GDP as a substrate varies 

(11,12,16). In contrast to SCS which has an isozyme specific for each (24), and the G. 

lamblia ACD which functions only with ADP (10), EhACD is able to utilize ADP and GDP 

interchangeably with similar Km and kcat values for each. However, EhACD may be more 

likely to utilize ADP in vivo since the estimated intracellular concentration of ADP is 

higher than that for GDP (3.3 ± 1.2 mM versus 0.7 mM, respectively (35)). Furthermore, 

the intracellular concentration for ADP is above the Km value for ADP whereas that the 

intracellular GDP concentration is below the Km value. Like EhACD, Entamoeba 

phosphoglycerate kinase can use both ADP and GDP but shows a strong preference for 
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GDP as judged by an order of magnitude difference between the Km values for these 

substrates (4). 

In the acetyl-CoA forming direction of the reaction, the enzyme does not show a 

clear preference for ATP or GTP as the kinetic parameters with each substrate are 

similar. The fact that the intracellular concentrations of ATP and GTP (5 ± 2 mM and 1.8 

mM, respectively (35)) are both below the Km values for these substrates may suggest 

that the acetate/ATP-forming direction of the reaction is favored in the cell, even though 

the purified enzyme has similar activity in both directions. The higher catalytic efficiency 

observed with either substrate in the acetate-forming direction versus the acetyl-CoA 

forming direction is consistent with this. 

A comparison of the characterized ACD I enzymes reveals a great deal of 

variability. All of the characterized enzymes catalyze the acetate/ATP forming reaction, 

but an acetyl-CoA forming activity was not detected or was very low for the ACDs from 

G. lamblia (8-10), P. aerophilum (16), and M. jannaschii (18). A range of Km values has 

been observed for each substrate in both directions of the reaction (TABLE 2.2). Within 

the archaea, for which six ACD I enzymes have been characterized, the Km for a given 

substrate in the acetyl-CoA forming direction showed up to an 11-fold range in values. In 

the acetate/ATP forming direction, Km values ranged up to 41-fold for acetyl-CoA. The 

Km values observed for the single characterized bacterial ACD from C. aurantiacus were 

within the range of values observed with the archaeal enzymes. Likewise, the Km values 

observed for the G. lamblia enzyme were within or near those for the archaeal enzymes.  

For EhACD, the Km values for acetyl-CoA and Pi were comparable to those for 

other enzymes, but the Km for ADP was substantially higher. In the acetyl-CoA forming  
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TABLE 2.2 A comparison of Km values for characterized ACD I enzymes 
 

Substrate Archaeal ACDs 
Km (µM) 

Bacterial ACDf 
Km (µM) 

Giardia ACDg 
Km (µM) 

EhACD 
Km (µM) 

Acetyl-CoA 10a – 410b 37 20 40 
Phosphate 100d – 1300b,c 1000 1590 1800 
ADP 7a – 150d 91 230 1600 
     
Acetate 340a – 1700b 900 NA 14000 
CoA 5.6e  – 60b 24 NA 200 
ATP 56e – 477d 570 NA 12000 
 
a Archaeoglobus fulgidus (18) 
b Haloarcula marismortui (16) 
c Pyrobaculum aerophilum (16) 
d Pyrococcus furiosus (12) 
e Thermococcus kodakarensis (19) 
f Chloroflexus aurantiacus (20) 
g Giardia lamblia (10) 
 
ND, no activity detected in the direction of acetyl-CoA formation. 
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direction, the Km value for CoA was slightly above the range observed for other ACDs. 

However, the Km for acetate was 8-fold higher than the highest Km observed for any 

other ACD, and the Km for ATP was over 20-fold higher. This may suggest that acetyl-

CoA formation is not the preferred direction of the reaction and that E. histolytica may 

employ this direction only under specific environmental or physiological conditions (see 

below). 

Role of the extended glycolytic pathway 

 The PPi-dependent extended glycolytic pathway branches after production of 

acetyl-CoA from pyruvate. In one branch, ACD is responsible for production of acetate 

and ATP; in the other, acetyl-CoA is metabolized to ethanol by ADHE (6). Montalvo et al. 

(36) and Reeves et al. (7) showed that ethanol and acetate are produced at 

approximately a 2:1 ratio under anaerobic conditions versus a 1:2 ratio under aerobic 

conditions. More recently, Pineda et al. (37) found an ethanol to acetate ratio of 3.9:1 

produced in cells growing under standard conditions. Upon exposure to oxygen 

saturated medium, however, the flux through acetate increased for up to 90 minutes. 

The flux through ethanol decreased but gradually recovered over time. Overall, these 

results suggest ethanol and acetate are both important end products of glycolysis, and 

that flux through both of these pathways may be necessary to generate sufficient ATP 

while still providing for NAD+ recycling. 

ACD may also play a role in ATP production from amino acid catabolism 

In addition to increasing ATP production from glycolysis, the presence of ACD 

and PFOR allows certain amino acids to be catabolized for ATP production. E. 

histolytica trophozoites scavenge a number of amino acids. Asparagine, aspartate, and 
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tryptophan are broken down to pyruvate, and methionine, threonine, and homocysteine 

are broken down to 2-oxobutanoate (38). PFOR converts these products respectively to 

acetyl-CoA and propionyl-CoA (7,39,40), which can then serve as substrates of ACD for 

ATP production. 

Regulation of ACD activity 

Although metabolic flux analysis using kinetic modeling suggested that ACD has 

little regulatory effect over glycolysis (35), its roles in amino acid degradation were not 

taken into account. Contrarily, one might expect that ACD’s position in the extended 

glycolytic pathway of E. histolytica makes it a prime site for regulation in order to 

properly maintain ATP and acetyl-CoA concentrations. In fact, we have found that 

EhACD is regulated by both ATP and PPi in the acetate-forming direction with IC50 

concentrations that are within the physiological range based on the estimated 

intracellular concentrations for each (35). An excess of ATP would indicate that energy 

needs of the cell are being met, and thus additional ATP production by ACD would be 

unnecessary. This would prevent costly depletion of acetyl-CoA, which could instead be 

used by other pathways.  

PPi serves as a phosphoryl donor for two PPi-dependent glycolytic enzymes in E. 

histolytica (4). A buildup of PPi may signal a backup in glycolysis that would again 

warrant inhibition of ACD to prevent depletion of acetyl-CoA. Finally, regulation of ACD 

by two components of the glycolytic pathway may provide a means for shunting acetyl-

CoA to ADHE for ethanol production to regenerate NAD+, thus maintaining a proper 

balance between these two alternative pathways.  
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Differences between G. lamblia and E. histolytica allow these microorganisms to 

occupy diverse habitats 

 Although E. histolytica and G. lamblia rely on similar extended PPi-dependent 

glycolytic pathways, the E. histolytica ACD is able to function in both the acetate-forming 

and acetyl-CoA forming directions of the reaction, whereas the Giardia enzyme is limited 

to just the acetate-forming direction (10). This divergence may have arisen due to the 

different environments these parasites inhabit during infection. Entamoeba trophozoites 

reside in the mucus layer of the colon where bacterial microflora produce high amounts 

of the small chain fatty acids (SCFA) acetate, propionate, and butyrate (41). Giardia 

colonizes the small intestine in which the SCFA concentration is relatively low (41), and 

thus it is unlikely that ACD will be needed to function in acetate utilization. 

 The total SCFA concentration in the human colon is approximately 100-120 mM, 

with relative molar ratios of 57:22:21 acetate:propionate:butyrate (41), giving 

approximate concentrations of 57-68 mM for acetate, 22-26 mM for propionate, and 21-

25 mM for butyrate. Acetate and propionate concentrations are thus in a range that 

would suggest ACD’s activity in the acetyl-CoA forming direction may be physiologically 

relevant and that ACD may switch from acetate/ATP production when glucose is present 

to SCFA utilization when glucose becomes limiting.   

Concluding remarks 

Although we have speculated on the roles of ACD in Entamoeba, experimental 

confirmation still remains. In addition to Entamoeba and Giardia, ACD may also be 

present in other parasites including Cryptosporidium muris, Blastocystis hominis, and 

Plasmodium falciparum. The possible existence of ACD in Plasmodium is of particular 
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interest, not only because of its enormous public health significance, but also because 

they retain fully functional mitochondria. Within the complex life cycle of Plasmodium, the 

intraerythrocyte stages rely primarily on the incomplete oxidation of blood glucose by 

glycolysis to produce ATP (42,43), and thus ACD may play a similar role as in 

Entamoeba. Whether ACD plays similar roles in other parasites must still be 

investigated, and may provide insight into energy metabolism in these important 

eukaryotic pathogens.    
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CHAPTER 3 

 

INVESTIGATING THE MECHANISM OF ADP-FORMING ACETYL-COA SYNTHETASE 

FROM THE PROTOZOAN PARASITE ENTAMOEBA HISTOLYTICA 

 

Cheryl P. Jones, Kirin Khan, and Cheryl Ingram-Smith 

 

I. ABSTRACT 

 

ADP-forming acetyl-CoA synthetase catalyzes the reversible conversion of 

acetyl-CoA to acetate to generate ATP via substrate level phosphorylation or to activate 

acetate to acetyl-CoA. Investigation of the Pyrococcus furiosus ACD suggested a novel 

four-step mechanism involving two phosphohistidine intermediates. The Pyrococcus 

enzyme is an α2β2 heterotetramer with one phosphorylated His in each subunit. In this 

study, the enzymatic mechanism of E. histolytica ACD was investigated through kinetic 

characterization of site-altered variants. The homodimeric E. histolytica enzyme has α 

and β domains fused into a single subunit. Our results indicate that of the two proposed 

phosphorylation sites, only His252 (equivalent to Hisα of P. furiosus ACD) is essential 

but His533 (equivalent to Hisβ) is important for activity but not essential. Glu213, 

proposed to be involved in phosphorylation of Hisα, was also shown to be essential and 

replacements at this position resulted in complete loss of activity. Asp674, thought to 

play a role in stabilization of the phosphorylated His, plays an important role in catalysis 
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as replacement with Ala resulted in substantial loss of activity that was partially 

recovered by more conservative replacement with Glu. Our kinetic data, isotopic labeling 

and distance calculations within the active site of the recently solved structure of 

Candidatus Korarchaeum cryptofilum ACDI challenge the proposed four-step 

mechanism and suggest that there is a single essential phosphorylated His, at least for 

ACD enzymes with fused α and β domains. 
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II. INTRODUCTION 

 

ADP-forming acetyl-CoA synthetase (ACD; E.C 6.2.1.13), belonging to the NDP-

forming acyl-CoA synthetase enzyme superfamily (1), is an acetate thiokinase capable 

of substrate-level phosphorylation (Eq. 1). Previously characterized ACD enzymes vary 

in their substrate preference and ability to catalyze the reverse reaction (2-5), leading to 

the designation of ACD I and II subtypes based on substrate utilization (6).  

 acetyl-CoA + NDP + Pi  ⇌ acetate + CoA + ATP    [Eq. 1] 

ACD has been identified in a number of acetate-producing prokaryotes, including 

multiple archaeal species (2,7,8) and the bacterium Chloroflexus aurantiacus (4), that 

lack the traditional acetate kinase/phosphotransacetylase pathway for acetate 

production. ACD is also present in the parasitic protozoan species Entamoeba histolytica 

(9) and Giardia lamblia (10) which are both anaerobic intestinal parasites that lack 

mitochondria. In E. histolytica, ACD may function in energy conservation by providing 

ATP via substrate level phosphorylation (11) and CoA recycling (12), but may also 

function in the reverse direction for acetate utilization (11). Putative ACD sequences 

have also been identified in other parasitic protozoan species such as Plasmodium 

falciparum and Cryptosporidium muris (11).  

Succinyl-CoA synthetase (SCS; EC 6.2.1.4), the most well-studied member of 

the enzyme superfamily to which ACD belongs, consists of five domains arranged in two 

subunits designated as alpha and beta. These five subunits are present in ACD but are 

arranged differently within the primary sequence (FIG 3.1A). SCS is a heterotetrameric  
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FIG 3.1 Comparison of ACD and SCS. (A) Diagram of the domain organization in ACD 

and SCS. Each is comprised of five domains arranged in a unique pattern. The optional 

hinge region present in some ACD enzymes is represented by the black rectangle. (B) 

Sequence alignment of E. coli SCS and ACD from multiple organisms. α and β indicate 

the respective subunit for those enzymes in which the alpha and beta domains are 

separate subunits. 
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enzyme with two active sites, one residing in each alpha-beta dimer (13). Most 

prokaryotic ACDs exist as a heterotetramer of two alpha and two beta subunits, as for 

SCS (1). The only known exception with more than two α-β units is ACD from C. 

aurantiacus, which is a homotetramer (4). Eukaryotic G. lamblia and E. histolytica ACDs 

(3,11), along with Archaeal Archaeoglobus fulgidus and Methanococcus janaschii ACDs 

(14), are encoded by a single gene and have fused alpha and beta domains connected 

by a novel hinge region. This represents a unique adaptation that adds complexity to this 

class of enzymes.  

Structural analyses of SCS from E. coli (15), pig heart (16) and Thermus 

aquaticus (17,18) have revealed the active site and substrate binding sites. The three-

step mechanism of SCS proceeds through a single phosphorylated enzyme 

intermediate.  

 Step 1:  succinyl-CoA + Pi + E ⇌ E~succinyl-P + CoA 

 Step 2:  E~succinyl-P ⇌ E-Hisα-P + succinate 

 Step 3:  E-Hisα-P + ADP ⇌ E + ATP 

The succinyl-CoA and phosphate binding pockets are located in the alpha subunit of 

SCS in a region designated as Site I. After binding succinyl-CoA, a succinyl-phosphate 

intermediate is formed and CoA is released (Step 1). The phosphoryl group is then 

transferred to a His residue (Hisα) located within a loop in the alpha subunit (designated 

as the phosphohistidine loop) and succinate is released (Step 2). It was postulated that a 

conformational change subsequently swings this phosphohistidine loop from its Site I 

position to a position closer to the nucleotide binding site of the beta subunit (Site II) 

(15). The phosphoryl group is then transferred to a nucleotide diphosphate and the 
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newly formed nucleotide triphosphate is released (Step 3). Two additional glutamate 

residues of E. coli SCS have been investigated and determined to be crucial for the 

phosphorylation and dephosphorylation of the active site histidine (19). 

The mechanism of ACD was originally thought to be analogous to that of SCS; 

however, Brasen et al. (20) observed phosphorylation of both alpha and beta subunits of 

P. furiosus ACD (PfACD) when incubated with 32P-labeled ATP or Pi. They proposed a 

four-step mechanism containing an additional phosphoryl transfer step (Step 3) to a 

separate His residue located in the beta subunit (Hisβ).   

 Step 1:  acetyl-CoA + Pi + E ⇌ E~acetyl-P + CoA 

 Step 2:  E~acetyl-P ⇌ E-Hisα-P + acetate 

 Step 3:  E-Hisα-P ⇌ E-Hisβ-P 

Step 4:  E-Hisβ-P + ADP ⇌ E + ATP 

Recently, the first structural characterization of an ACD from the 

hyperthermophilic archaea Candidatus Korachaeum cryptofilum (ckcACD) was 

performed (21). This enzyme was crystallized with different ligands to reveal nine 

structures that include multiple structures showing the phosphorylated Hisα 

intermediate. This study confirmed the postulated swinging mechanism of the 

phosphohistidine loop from Site I to Site II of the active site.  

In this study, we investigate the role of four primary residues within E. histolytica 

ACD (EhACD) and assess their roles through kinetic characterization of site-altered 

enzyme variants and isotopic labeling to examine phosphorylation. Our results contradict 
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the proposed four-step mechanism for PfACD and instead agree with the original three-

step mechanism proposed for SCS (15).  
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III. MATERIALS AND METHODS 

 

Materials 

Chemicals were purchased from Sigma-Aldrich, VWR International, Gold 

Biotechnology, Fisher Scientific, Life Technologies, and J R Scientific. Primers were 

purchased from Integrated DNA Technologies 

Sequence alignment 

 Putative ACD amino acid sequences were identified by PSI-BLAST 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins) (22) using the E. histolytica ACD 

sequence as the query (GI: 67481881). Sequences were aligned using ClustalW 

(http://www.ebi.ac.uk/Tools/msa/clustalo/) (23). 

Site-directed mutagenesis of acd 

Site-directed mutagenesis of an Escherichia coli codon-optimized E. histolytica 

acd gene was performed using the Quikchange Lightning Kit (Stratagene, Inc.) 

according to manufacturer’s specifications. Primers used are listed in TABLE 3.1. 

Alterations were confirmed by sequencing by Clemson University Genomics Institute 

(CUGI).  

Heterologous production of enzyme variants 

Plasmids were transformed into E. coli Rosetta2(DE3)pLysS cells (Novagen). 

ACD and its variants were purified as in (11). Briefly, cells with the altered or unaltered 

pET21b-ACD constructs were grown in LB medium and protein production was induced 

by the addition of IPTG. Cells were resuspended in ice-cold buffer A (25 mM Tris-HCl, 

500 mM NaCl, 10% glycerol, 25 mM imidazole [pH 7.3]) and disrupted. Cell-free extract  
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TABLE 3.1 Primers used for site-directed mutagenesis. 
 

Variant Dir Primer Sequence 
His252Ala F 

R 
5’ GCAGCGGCCATGAGTGCTACCGGTAGCCTGGCC 3’ 
5’ GGCCAGGCTACCGGTAGCACTCATGGCCGCTGC 3’ 

His533Ala F 
R 

5’ GAGTCCGGATATTATGGCTAAAACCGATGTTGG 3’ 
5’ CCAACATCGGTTTTAGCCATAATATCCGGACTC 3’ 

His533Asp F 
R 

5’ GAGTCCGGATATTATGGATAAAACCGATGTTGGCGG 3’ 
5’ CCGCCAACATCGGTTTTATCCATAATATCCGGACTC 3’ 

His533Glu F 
R 

5’ GAGTCCGGATATTATGGCGAAAACCGATGTTGGCGG 3’ 
5’ CCGCCAACATCGGTTTTCTCCATAATATCCGGACTC 3’ 

His533Lys F 
R 

5’ GAGTCCGGATATTATGAAGAAAACCGATGTTGGCGG 3’ 
5’ CCGCCAACATCGGTTTTCTTCATAATATCCGGACTC 3’ 

His533Asn F 
R 

5’ GAGTCCGGATATTATGAACAAAACCGATGTTGGCGG 3’ 
5’ CCGCCAACATCGGTTTTGTTCATAATATCCGGACTC 3’ 

His533Gln F 
R 

5’ GAGTCCGGATATTATGCAGAAAACCGATGTTGGCGG 3’ 
5’ CCGCCAACATCGGTTTTCTGCATAATATCCGGACTC 3’ 

His533Arg F 
R 

5’ GAGTCCGGATATTATGCGTAAAACCGATGTTGGCGG 3’ 
5’ CCGCCAACATCGGTTTTACGCATAATATCCGGACTC 3’ 

Asp674Ala F 
R 

5’ CCCGGAAATCTCTGAAGTTGCTATTAATCCGCTGGCCGTG 3’ 
5’ CACGGCCAGCGGATTAATAGCAACTTCAGAGATTTCCGGG 3’ 

Asp674Glu F 
R 

5’ GAAATCTCTGAAGTTGAAATTAATCCGCTGGCC 3’ 
5’ CCGCCAACATCGGTTTTACGCATAATATCCGGACTC 3’ 

Asp674Asn F 
R 

5’ GAAATCTCTGAAGTTAATATTAATCCGCTGGCC 3’ 
5’ GGCCAGCGGATTAATATTAACTTCAGAGATTTC 3’  

Glu213Ala F 
R 

5’ GTCTATCCTGATGTACATCGCAAGTATCAAAGATGCCAAA 3’ 
5’ TTTGGCATCTTTGATACTTGCGATGTACATCAGGATAGAC 3’ 

Glu213Asp F 
R 

5’ TCCTGATGTACATCGACAGTATCAAAGATGCC 3’ 
5’ GGCATCTTTGATACTGTCGATGTACATCAGGA 3’ 

Glu213Gln F 
R 

5’ TCCTGATGTACATCCAAAGTATCAAAGATGCC 3’ 
5’ GGCATCTTTGATACTTTGGATGTACATCAGGA 3’ 
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was applied to a 5 ml HisTrap HP nickel affinity column (GE Healthcare) equilibrated 

with buffer A and protein was eluted using a linear gradient from 0.025-0.5M imidazole. 

Fractions containing enzyme were pooled, dialyzed overnight in 25 mM Tris-HCl, 10% 

glycerol [pH 7.3], aliquoted, and stored at -80°C. Enzyme was verified to be 

electrophoretically pure by SDS-PAGE analysis . Protein concentration was determined 

spectrophotometrically using the Take3 Micro-volume plate (BioTek).  

Determination of kinetic parameters 

Enzymatic activity in the acetate-forming direction was determined by measuring 

release of CoASH from acyl-CoA using Ellman’s thiol reagent (5,5'-dithio-bis-[2-

nitrobenzoic acid], DTNB) (24). Production of NTB2- by CoASH cleavage of DTNB was 

measured spectrophotometrically at 412 nm. Assays were performed in 96-well plates in 

0.2 ml reaction volumes. Reaction mixtures contained 50 mM Tris-HCl, 0.3 mM DTNB, 

and 6 mM HEPES (used to solubilize DTNB) [pH 7.3]) with varied substrate 

concentrations. Reactions were pre-incubated at 37°C for 5.5 minutes and initiated by 

the addition of enzyme. Absorbance was measured every 4 seconds at 37°C using a 

Synergy HT Multi-Mode Microplate Reader (BioTek). Initial velocities were converted to 

µmol CoASH formed using an extinction coefficient of ε = 13.6 mM-1 cm-1 for the 

thiophenolate NTB2- anion. One unit of activity is defined as 1 μmol product per minute 

per mg protein. 

Enzymatic activity in the acetyl-CoA forming direction was determined using the 

hydroxamate assay (25,26). Reaction mixtures contained 50 mM Tris-HCl [pH 7.3] and 

300 mM hydroxylamine-HCl [pH 7.0] with varied substrate concentrations in a volume of 

0.15 ml. Reactions were pre-incubated at 37°C for 5.5 minutes, initiated by the addition 
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of enzyme and incubated at 37°C, and terminated after a specified amount of time by the 

addition of one volume of stop solution (2.5% FeCl3/2 N HCl/10% trichloroacetic acid). 

Product formation was determined by absorbance at 540 nm and comparison to a 

standard curve. One unit of activity is defined as 1 µmol of acetyl-CoA produced per 

minute per mg protein. Saturating substrate concentrations for each variant are 

summarized in TABLE 3.2.  

Apparent kinetic parameters were determined by varying the concentration of a 

single substrate while the other substrates were held at constant saturating 

concentrations. For determination of the apparent steady-state kinetic parameters Km 

and kcat and their standard deviations, nonlinear regression in KaleidaGraph (Synergy 

Software) was used to fit the data to the Michaelis-Menten equation. 

Radiolabeled phosphorylation assay 

In order to detect phosphorylated enzyme intermediates, 17 µg enzyme was 

incubated for 15 minutes at 37°C with either 2.5 µCi of [γ-32P]ATP (10 mM) or 1 µCi 32Pi 

(4 mM) and 0.3 mM acetyl-CoA. Mixtures also contained 50 mM Tris-HCl [pH 8.0]. An 

equal volume of 2X SDS buffer (5% β-mercaptoethanol, 2% SDS, 25% glycerol, 0.625 M 

Tris-HCl pH6.8, 0.01% bromophenol blue) was added to the solution and 15 µl was 

subjected to SDS-PAGE. The gel was dried overnight and autoradiographed. Image 

quantification was performed using ImageJ. Statistical analysis was performed using 

paired one-tail t-tests.  
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Distance Calculations 

The ckcACDI-c structure (4XZ3) was obtained from the PDB database. Distance 

was measured between two atoms using the ‘monitor distance’ function in Accelrys 

Discovery Studio 3.5.  
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TABLE 3.2 Optimized assay conditions for wild type and variant enzymes. 
 
  Acetyl-CoA forming direction 

  

Acetate-forming direction 

Enzyme 
µg 
enz 

Time 
(min) 

mM 
acetate 

mM 
CoA 

mM 
MgATP 

µg 
enz 

µM 
AcCoA 

mM 
Pi 

mM 
MgADP 

WT 1.1 15 100 1 20 0.019 300 8 5 
His533Arg 13.4 15 75 0.4 12.5 0.36 300 8 3 
His533Lys 7.4 25 100 0.8 15 0.74 300 8 5 
His533Ala 8.2 10 4 0.6 12.5 0.82 200 8 3 
His533Asn 9.1 45 50 0.2 20 1.52 300 8 5 
His533Gln 10.2 45 30 0.3 15 1.13 300 10 4 
His533Asp 27.8 45 75 0.4 12.5 11.1 300 8 5 
His533Glu 24.8 50 5 0.8 15 9.9 300 6 3 
Asp674Ala 21 10 6 1 20 0.82 300 10 3 
Asp674Asn 17.9 30 5 0.2 20 1.5 300 8 6 
Asp674Glu 0.91 20 200 0.7 25 0.09 300 8 5 
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IV. RESULTS 

 

His252 (Hisα) and His533 (Hisβ), the two His residues proposed to be directly 

phosphorylated during the ACD reaction (20), are conserved among ACDs but only Hisα 

is conserved across the NDP-forming acyl-CoA synthetase superfamily (FIG 3.1B). 

These residues were individually changed to alanine and the variants were assayed for 

activity in each direction of the reaction. Similar to what was observed with P. furiosus 

ACD (20), the His252Ala variant was not active in either direction confirming this residue 

is essential for activity (FIG 3.2A). Surprisingly, the His533Ala variant retained weak 

activity in both directions.  

To investigate this further, additional variants were created in which His533 was 

altered to the positively charged residues Arg and Lys, the neutral Asn and Gln, and 

negatively charged Asp and Glu. Although each of the His533 variants had less than 

25% activity compared to wild-type, activity corresponded to the charge of the 

replacement residue (FIG 3.2A). Substitution of His with a positively charged residue 

resulted in higher activity than replacement with an uncharged residue. Replacement 

with a negatively charged residue was the most deleterious (FIG 3.2A).  

Apparent kinetic parameters were determined for the His533 variants in both 

directions of the reaction. In the acetate-forming direction (TABLE 3.3), Km values for 

acetyl-CoA and ADP were slightly decreased for the variants versus the wild type. The 

Km values for Pi were more variable, ranging from a 10- to 12-fold decrease observed 

with the His533Glu and His533Arg variants to a 1.8-fold increase with the His533Lys  
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FIG 3.2 Percent activity of EhACD variants. Activity was determined in the acetyl-CoA 

forming direction (solid red) and in the acetate-forming direction (blue diagonal pattern). 

Activities are represented as a percentage of the activity observed for the wild type 

enzyme (100%). Activity was normalized to wild-type. (A) Activity of the His252 and 

His533 variants. (B) Activity of the Glu213 and Asp674 variants. 
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TABLE 3.3 Apparent kinetic parameters of the His533 variants in the acetate-

forming direction.  

 

Acetate-forming direction Km (mM) Fold 
Change kcat (sec-1) Fold 

Change 
Acetyl-CoA WT# 0.043 ± 0.005  111 ± 2  

His533Arg 0.016 ± 0.003 -2.7x   17.6 ± 1.4 -6.3x 
His533Lys 0.030 ± 0.003 -1.4x       2.35 ± 0.21 -47x 
His533Ala 0.010 ± 0.001 -4.3x     2.68 ± 0.09 -41x 
His533Asn   0.015 ± 0.0003 -2.9x     1.39 ± 0.06 -80x 
His533Gln 0.019 ± 0.004 -2.3x     1.73 ± 0.13 -64x 
His533Asp 0.027 ± 0.008 -1.6x     1.62 ± 0.17 -69x 
His533Glu    0.012 ± 0002 -3.6x       0.12 ± 0.001 -925x 

ADP WT# 1.56 ± 0.15   138 ± 1  
His533Arg 0.64 ± 0.18  -2.4x   19.6 ± 1.8 -7x 
His533Lys 0.97 ± 0.14 -0.6x     3.27 ± 0.46 -42x 
His533Ala 0.41 ± 0.03 -3.8x     2.80 ± 0.14 -49x 
His533Asn 0.57 ± 0.15 -2.7x     1.37 ± 0.08 -101x 
His533Gln 1.28 ± 0.08 -1.2x     2.48 ± 0.10 -56x 
His533Asp 0.60 ± 0.08 -2.6x     1.71 ± 0.09 -81x 
His533Glu 1.19 ± 0.08 -1.3x     0.27 ± 0.03 -511x 

Pi WT# 1.77 ± 0.18  115 ± 8  
His533Arg 0.15 ± 0.03 -11.8x   13.9 ± 1.0 -8.3x 
His533Lys 3.25 ± 0.35 +1.8x     3.12 ± 0.37 -37x 
His533Ala 0.75 ± 0.10 -2.4x     2.26 ± 0.09 -51x 
His533Asn 0.94 ± 0.25 -1.9x     1.49 ± 0.11 -77x 
His533Gln 0.86 ± 0.21 -2x     1.76 ± 0.12 -63x 
His533Asp 0.25 ± 0.08 -7x    1.66 ± 0.14 -69x 
His533Glu 0.18 ± 0.04 -9.8x    0.22 ± 0.01 -523x 

 
# as reported in (11) 
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variant when compared to wild-type (TABLE 3.3). However, kcat values displayed 

significant decreases for all of the variants. The most severe decrease in kcat value was 

observed for the His533Glu variant, and the least severe decrease was observed with 

the His533Arg variant (TABLE 3.3).  

In the acetyl-CoA forming direction of the reaction (TABLE 3.4), Km values for 

CoA were only mildly affected with the exception of the His533Gln and His533Asp 

variants, both of which displayed an 18-fold reduction for CoA. Likewise, the Km values 

for ATP were not substantially affected, except for the His533Asp variant for which the 

Km was decreased 10-fold.Km values for acetate showed the greatest effect for all 

variants, ranging from an 8- to 45-fold decrease compared to wild-type (TABLE 3.4). The 

kcat values for all of the His533 variants were greatly reduced, ranging from ~40-fold 

decreased (His533Arg) to over 1300-fold decreased (His533Asp). Replacement of His 

533 with a positively charged residue had the least deleterious effect whereas 

replacement with a negatively charged residue had the most severe effect (TABLE 3.4).  

Glu212α and Glu197β were originally identified in E. coli SCS for their role in 

phosphorylation and dephosphorylation of the catalytic Hisα residue (16). Therefore, we 

wanted to investigate the potential roles of the homologous residues in EhACD, Glu213 

and Asp674. Substitution of Glu213 with Ala, Asn, or Asp resulted in little to no activity 

(FIG 3.2B), suggesting that this residue is essential. 

Asp674 is analogous to E. coli SCS Glu197β and P. furiosus ACDI Asp212β 

(FIG 3.1). Substitution of Asp674 with Ala or Asn markedly reduced activity that was 

partially rescued when replaced with Glu (FIG 3.2B), consistent with corresponding 

changes in P. furiosus ACD (20) and E. coli SCS (19). Apparent kinetic parameters for  
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TABLE 3.4 Apparent kinetic parameters of the His533 variants in the acetyl-CoA 

forming direction. 

 
Acetyl-CoA forming 

direction Km (mM) Fold 
Change kcat (sec-1) Fold 

Change 
Acetate WT#    14 ± 0.61  233 ± 2.7   

His533Arg 1.7 ± 0.8 -8x    5.6 ± 0.09 -42x 
His533Lys 0.84 ± 0.60 -17x    3.4 ± 0.04 -69x 
His533Ala 0.68 ± 0.10 -21x    3.3 ± 0.09 -71x 
His533Asn 0.76 ± 0.70 -18x    1.5 ± 0.02 -160x 
His533Gln 0.55 ± 0.20 -25x    1.2 ± 0.02 -194x 
His533Asp 0.31 ± 0.02 -45x  0.18 ± 0.01 -1294x 
His533Glu 0.40 ± 0.01 -35x    0.26 ± 0.002 -896x 

CoA WT# 0.20 ± 0.01  328 ± 5.3  
His533Arg   0.10 ± 0.004 -2x    7.0 ± 0.15 -47x 
His533Lys 0.13 ± 0.01 -1.5x    4.1 ± 0.04 -80x 
His533Ala 0.07 ± 0.01 -3x    4.2 ± 0.08 -78x 
His533Asn   0.08 ± 0.004 -2.5x  2.0 ± 0.1 -161x 
His533Gln 0.011 ± 0.001 -18x    1.3 ± 0.03 -252x 
His533Asp 0.011 ± 0.001 -18x  0.25 ± 0.01 -1312x 
His533Glu 0.26 ± 0.02 +1.3x    0.27 ± 0.003 -1215x 

ATP WT#    12 ± 0.40  320 ± 4.4  
His533Arg   2.5 ± 0.16 -5x    6.6 ± 0.06 -48x 
His533Lys   1.7 ± 0.10 -7x    3.7 ± 0.09 -86x 
His533Ala   2.2 ± 0.10 -5x    3.3 ± 0.03 -97x 
His533Asn 7.7 ± 0.6 -1.6x    2.0 ± 0.10 -160x 
His533Gln   2.5 ± 0.13 -5x   1.4  ± 0.03 -230x 
His533Asp   1.2 ± 0.20 -10x  0.25 ± 0.01 -1280x 
His533Glu   3.9 ± 0.10 -3x    0.28 ± 0.002 -1140x 

 
# as reported in (11) 
 

  



	 104	

the Asp674 variants revealed only weak changes in Km for any substrate in either 

direction of the reaction with the exception of acetate, for which Km values decreased 

over 10-fold for the Asp674Ala and Asp674Glu variants (TABLE 3.5). The Asp674Glu 

variant showed very modest reductions in kcat as compared to the Asp674Ala and 

Asp674Asn variants, suggesting that the negative charge is important at this position 

(TABLE 3.5).  

 Our kinetic results suggest that His252 and Glu213 residues are essential 

residues; however, His533 and Asp674 are important for catalysis but not critical. Thus, 

we wanted to analyze the influence of these residues on phosphorylation of the enzyme 

during catalysis. Phosphorylation was assessed using isotopic labeling with either [γ-

32P]ATP or 32Pi + acetyl-CoA and analyzed using autoradiography. Phosphorylation of 

wild type EhACD was observed under both conditions (FIG 3.3). The His252Ala variant 

was not phosphorylated by [γ-32P]ATP or 32Pi + acetyl-CoA (FIG 3.3A), consistent with 

the lack of activity of this variant. In contrast, the His533Ala variant was phosphorylated 

from both directions.  Quantitative analysis indicated that this variant was 

phosphorylated at levels similar to the wild type enzyme by 32Pi + acetyl-CoA, and ~20% 

less by [γ-32P]ATP (FIG 3.3C). Phosphorylation was abolished in His252Ala, confirming 

that this residue is essential for formation of the phosphorylated enzyme intermediate 

(FIG 3.3A). A time course of phosphorylation for the wild-type and the His533Ala 

enzymes showed no discernible difference in labeling between 15 seconds and 15 

minutes, as judged by autoradiography (data not shown).  

 Phosphorylation of the Asp674Ala variant was observed by both 32Pi + acetyl-

CoA and [γ-32P]ATP (FIG 3.3B). Labeling by 32Pi + acetyl-CoA was reduced to 62 ± 3.5% 
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and to 47 ± 5.3% versus the wild type enzyme using [γ-32P]ATP (FIG 3.3D). In contrast, 

the Glu213Ala variant was phosphorylated by [γ-32P]ATP but not by 32Pi + acetyl-CoA 

(FIG 3.3B). Labeling by [γ-32P]ATP was similar to that for the wild type enzyme, whereas 

labeling by 32Pi was absent (FIG 3.3D). This is consistent with the lack of enzymatic 

activity for the Glu213 variants. 
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FIG 3.3 Isotopic labeling of EhACD to detect phosphorylation. Enzymes were 

labeled with 32P in the presence of acetyl-CoA + Pi (top panels) or ATP (bottom panels). 

(A) Analysis of the His252Ala and His533Ala variants versus wild type. (B) Analysis of 

the Glu213Ala and Asp674Ala variants. 
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TABLE 3.5 Apparent kinetic parameters of the Asp674 variants in both directions 

of the reaction. 

 

Acetyl-CoA forming direction Km (mM) Fold 
Change kcat (sec-1) Fold 

Change 
Acetate WT#    14 ± 0.61   233 ± 2.7   

Asp674Ala   1.3 ± 0.10 -11x   2.9 ± 0.1 -80x 
Asp674Asn 0.96 ± 0.05 -15x   1.3 ± 0.1 -179x 
Asp674Glu   3.9 ± 0.25 -3.6x 50.3 ± 1.8 -4.6x 

 
CoA WT# 0.20 ± 0.01   328 ± 5.3   

Asp674Ala 0.12 ± 0.01 -1.7x   4.2 ± 0.1 -78x 
Asp674Asn 0.041 ± 0.004 -5x   1.2 ± 0.1 -273x 
Asp674Glu 0.24 ± 0.02 +1.2x 44.3 ± 0.1  -7.4x 

 
ATP WT#  12 ± 0.4   320 ± 4.4   

Asp674Ala 4.0 ± 0.4 -3x     3.2 ± 0.03 -99x 
Asp674Asn 2.8 ± 0.2 -4x     1.2 ± 0.02 -267x 
Asp674Glu 4.6 ± 0.2 -2.6x 53.0 ± 1.2 -6x 

 
Acetate-forming direction     

Acetyl-CoA WT#   0.043 ± 0.005  111 ± 2   
Asp674Ala   0.012 ± 0.002 -3.6x     2.45 ± 0.18 -45x 
Asp674Asn   0.016 ± 0.002 -2.7x     1.26 ± 0.11 -88x 
Asp674Glu   0.022 ± 0.002 -2x 

 
    15.8 ± 0.61 -7x 

ADP WT#  1.56 ± 0.15  138 ± 1   
Asp674Ala  1.42 ± 0.11 -1.1x     2.86 ± 0.15 -48x 
Asp674Asn  0.43 ± 0.01 -3.6x     1.20 ± 0.11 -115x 
Asp674Glu 1.44 ± 0.08 -1.1x 

 
  25.0 ± 2.4 -5.5x 

Pi WT# 1.77 ± 0.18  115 ± 8   
Asp674Ala 0.39 ± 0.03 -4.5x     2.64 ± 0.17 -44x 
Asp674Asn 0.57 ± 0.05 -3.1x     0.93 ± 0.04 -124x 
Asp674Glu 2.84 ± 0.88 +1.6x   24.5 ± 5.0 -4.7x 

 
# as reported in (11) 
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V. DISCUSSION 

 

The catalytic Hisα is a defining feature of ACD enzymes 

NDP-forming acyl-CoA synthetases participate in phosphoryl transfer through a 

catalytic His residue. This phosphorylation was first observed in the structure of E. coli 

SCS (27) and mutagenesis of this phosphorylated His residue in multiple forms of ATP 

citrate lyase abolished enzymatic activity (28,29). Likewise, alteration of this His residue 

in EhACD (His252) renders the enzyme completely inactive and incapable of 

phosphorylation. 

This catalytic Hisα residue is a defining feature of ACD enzymes and can be 

useful in classifying putative enzymes from other organisms. This is especially important 

in distinguishing between ACD and acetyltransferases such as PatZ from E. coli. These 

acetyltransferases share homology with ACD (1) and have the same arrangement of 

domains as ACD even though domain shuffling is uniquely common within this 

superfamily of enzymes (1). However, acetyltransferases lack the critical catalytic Hisα 

residue enabling them to be easily distinguished from acyl-CoA synthetases.  

Role of Glu213 in phosphorylation of Hisα  

E. coli SCS has two critical glutamate residues that play a role in phosphorylation 

of the catalytic Hisα (16). Glu208α of SCS is conserved in ACDs and was shown to 

interact directly with Hisα by accepting a hydrogen bond with N1 of the imidazole ring in 

order to leave N3 unprotonated and thus stabilize the phosphohistidine (16). This 

interaction was again confirmed with ckcACDI (21). Alteration of the homologous EhACD 

residue Glu213 to Ala resulted in complete loss of activity. Even conservative 
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replacement with Asp still resulted in barely detectible activity, which is consistent with 

the highly reduced activity of Glu218Asp from P. furiosus ACD (20). It appears that ACD 

has very little flexibility at this position. Isotopic labeling of the Glu213Ala variant are 

intriguing because phosphorylation is eliminated when the enzyme is incubated with 

acetyl-CoA and 32Pi, but not when incubated with [γ-32P]ATP, showing Glu213 is 

essential for phosphorylation of Hisα in Site I but not for phosphorylation by ATP. This 

suggests that phosphorylated Hisα is stuck in its Site II position and is unable to “swing” 

back into the Site I position when Glu213 is absent. Alternatively, the Glu213Ala enzyme 

may be phosphorylated on a residue other than Hisα and this would be unaffected by 

Glu213.  

Role of Asp674 in stabilization of phosphorylated Hisα 

Glu197β in E. coli SCS was proposed to participate in stabilization of the 

phosphorylated Hisα when positioned at Site II (19). The equivalent residue in EhACD is 

Asp674 located in the ATP grasp domain. Alteration of this residue to Ala or Asn 

resulted in a drastic loss of activity; however, replacement by Glu maintained partial 

activity. This suggests that the carboxyl group of this Asp residue is important for 

catalysis, which is consistent with the previously observed function of this residue. In the 

ckcACDI structure, the equivalent Asp209β hydrogen bonds with the side chain of 

Thr255α and the backbone nitrogen of His254α when the phosphohistidine segment is 

pointing toward Site II (21). Consistent with this, the lack of a functional side chain in the 

Asp674Ala variant reduced but did not eliminate the ability of ACD to be phosphorylated 

in both directions of the reaction. Thr255α is conserved within all ACDs but is replaced 
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by Ala in SCS (FIG 3.1B). Thus, if this Asp in ACD functions similarly to the equivalent 

Glu in SCS, the hydrogen bonding pattern must differ. 

The necessity of Hisβ phosphorylation remains undetermined 

The reduced activity of the His533 variants undoubtedly establishes that this 

residue is important for optimal catalysis in EhACD. However, the exact role it plays in 

the catalytic mechanism remains unclear. Replacement of His68β in ckcACDI reduced 

activity to ~ 1% that of the wild type enzyme when changed to Asn and 0.3% activity 

when changed to Ala (21). These results are consistent with the effects of alterations at 

His533 of EhACD, which resulted in highly reduced activity with the exception of 

His533Arg. Multiple sequence alignment of members of the NDP-forming acyl-CoA 

synthetase family demonstrated that this position is either occupied by a His as in ACD, 

or by an Arg residue as in SCS, ACL, and MCS (1). Therefore, it was not entirely 

surprising that the His533 variant with the highest activity was His533Arg. The partial 

recovery of activity of the His533Arg variant versus the other variants suggests that 

these two residues may have overlapping functions. The four-step mechanism in which 

Hisβ is directly phosphorylated would oppose that possibility, since Arg would not 

typically be capable of phosphorylation. Alternatively, if ACD-Hisβ is directly 

phosphorylated, this step may potentially be bypassed when that His is replaced.  

Isotopic labeling by [γ-32P]ATP and by 32Pi and acetyl-CoA suggests the 

His533Ala variant is phosphorylated in both directions of the reaction, just as for the 

wild-type enzyme. This result is inconsistent with the proposed four-step mechanism as 

phosphorylation by [γ-32P]ATP would be expected to be absent or highly reduced when 

the functional side chain of His533 was eliminated. This result warrants further analysis 
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in order to determine whether the mechanism indeed proceeds through a second 

phosphoenzyme intermediate.  

The ckcACDI structure co-crystallized with the non-hydrolyzable ATP analog 

AMPPCP has the catalytic Hisα residue oriented toward the beta subunit (21). Weiße et 

al. (21) indicate that this structure supports the four-step reaction mechanism proposed 

by Brasen et al. (20) because the distance is too great for direct transfer of the 

phosphate group between Hisα and ATP. The distances they use to draw this 

conclusion are between AMPCP, an ADP analog, and the two His residues. They are 

reported as 8.7 Å between AMPCP and His254α, 6.7 Å between AMPCP and 

His68β, and 7.1 Å between His254α and His68β.  

However, these do not accurately represent the distance for phosphate transfer. 

Instead, we measured the distance between the terminal phosphate of AMPPCP, an 

ATP analog, and the N3 position of the imidazole ring of His254α and found it to be just 

5.7 Å, shorter than the distances for phosphoryl transfer from ATP to Hisβ (7.9 Å) and 

then to His254α (9.0 Å) (FIG 3.4). Distances were also calculated for the alternative N1 

position of His68β and these too were greater than the direct distance between 

AMPPCP and His254α (8.5 Å to His254α and 6.2 Å to the terminal phosphate group of 

AMPPCP). Thus, direct phosphorylation of His254α by ATP is more likely than 

phosphorylation of His68β followed by transfer to His254α, consistent with a three-step 

mechanism as for SCS rather than a four-step mechanism. 

An interesting phenomenon in ACL may explain the additional phosphorylation 

observed in PfACD (20). Isotopic labeling revealed that low levels of phosphorylation 

occur in Chlorobium limicola ACL after long periods of time when the catalytic Hisα was 
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altered. This group suggested that a second unproductive phosphorylation site may be 

present within the active site. This phenomenon may hold true for at least some ACDs 

as well.  

Conclusion 

We have demonstrated the importance of four residues involved in catalysis of E. 

histolytica ACD and their contributions to phosphorylation of the enzyme. We propose 

that EhACD follows a three-step mechanism analogous to that of SCS rather than the 

four-step mechanism involving two phosphoenzyme intermediates as proposed by 

Brasen et al. (20); however, more direct evidence related to the mechanism is needed. 

The dimeric EhACD has fused alpha and beta domains, resulting in a different subunit 

structure than PfACD and ckcACDI, both of which are heterotetramers with separate 

alpha and beta subunits. As a result, ACDs may fall into two classes based on subunit 

structure, one of which can directly transfer the phosphate group between Hisα and ATP 

and the other of which relies on a two-step transfer to bridge that distance. 
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FIG 3.4 Distance measurements in Site II of ckcACDI. The ckcACDI structure 

crystallized with CoA and MgAMPPCP with Hisα in Site II of the active site was obtained 

from PDB (accession #4XZ3). His254α is shown in purple and His68β is shown in blue. 

MgAMPPCP is colored by element: C (gray), P (orange), O (red), N (purple), H (light 

gray), and Mg (green). The distance between N3 of Hisα and P of AMPPCP (yellow line) 

is 5.7 Å. The distances between Hisα and Hisβ (orange line) and between Hisβ and P of 

AMPPCP (green line) are 9 Å and 7.9 Å, respectively.  
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CHAPTER 4 

 

PROBING THE FUNCTION OF ADDITIONAL RESIDUES WITHIN ADP-FORMING 

ACETYL-COA SYNTHETASE OF ENTAMOEBA HISTOLYTICA USING 

COMPUTATIONAL MODELING AND SITE-DIRECTED MUTAGENESIS 

 

Cheryl Jones, Noah Smith, and Cheryl Ingram-Smith 

 

I. ABSTRACT 

 

The ADP-forming acetyl-CoA synthetase (ACD) from Entamoeba histolytica 

belongs to the NDP-forming acyl-CoA synthetase superfamily. Interest in this family of 

enzymes has increased due to their role in the central carbon metabolism of almost all 

organisms. The most well-studied enzyme of this family is succinyl-CoA synthetase from 

Escherichia coli. However, structural characterization of ACD from Candidatus 

Korarchaeum cryptofilum has added great insight into ACD function. In order to probe 

the functional role of proposed active site residues of the E. histolytica ACD, site-altered 

variants were produced for Gln159, Lys534, and Asp314. Characterization, along with 

computational modeling of these residues, gives evidence regarding their potential 

significance.  
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II. INTRODUCTION 

 

ADP-forming acetyl-CoA synthetase (ACD; EC 6.2.1.13) is an acetate thiokinase 

that catalyzes the reversible conversion of acetate to acetyl-CoA. ACD was first 

identified in Entamoeba histolytica extracts in 1977 (1) and was later recombinantly 

produced, purified, and characterized (2). Investigation into the catalytic mechanism of 

E. histolytica ACD has confirmed the importance of the primary catalytic Hisα residue (C. 

Jones, K. Khan, and C. Ingram Smith, in preparation). Crystal structures of the separate 

alpha and beta subunits from Pyrococcus horikoshii (accession numbers 1WR2 and 

2CSU) were solved in 2005 but gave incomplete information regarding the quaternary 

structure of ACD. Recent structural characterization of ACDI from Candidatus 

Korarchaeum cryptofilum revealed insight into the tertiary and quaternary structure (3). 

ACD contains two distinct locations of the active site, designated Site I and Site II (3). 

Acetyl-CoA and Pi bind to the enzyme in Site I, forming a transient acetyl-phosphate 

bound intermediate, and releasing CoA. The phosphoryl moiety is then transferred to N3 

of the imidazole ring on the catalytic His residue located on the phosphohistidine loop of 

Site I. It was previously postulated that this loop then swings to site II to transfer this 

phosphoryl group to ADP to form ATP. Analysis of the Ca. K. cryptofilum structure 

revealed that an α-helix of the phosphohistidine loop partially unravels in order to “swing” 

to Site II (3). The NDP substrate bound within Site II is then phosphorylated, returning 

the enzyme to its normal state. 

Some NDP-forming acyl-CoA synthetases directly phosphorylate the NDP 

substrate. However, Brasen et al. (4) proposed that ACD requires an additional 
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phosphoryl transfer step involving a second His residue, utilizing the following four-step 

mechanism:  

Step 1:  E + acetyl-CoA + Pi ßà E~acetyl-P + CoA 

Step 2:  E~acetyl-P ßà E~Hisα-P 

Step 3:  E~Hisα-P ßà E~Hisβ-P 

Step 4:  E~Hisβ-P + ADP ßà E + ATP 

 Crystal structures of Ca. K. cryptofilum solved in the presence of various ligands 

demonstrated the Hisα residue phosphorylated in both Site I and Site II; however, a 

structure in which the Hisβ residue was phosphorylated was not obtained (3). 

Characterization of Hisβ variants has shown this residue to be important for catalysis (4), 

but our results suggest that it is not essential (C. Jones, K. Khan, and C. Ingram-Smith, 

in preparation).   

 Other enzymes within the NDP-forming acyl-CoA synthetase superfamily have 

been structurally characterized, including human ATP-citrate lyase (ACL) (5,6), and 

succinyl-CoA synthetase (SCS) from Escherichia coli (7-11), pig heart (12-14), and 

Thermus aquaticus (15,16). The significant shuffling of domains within this family poses 

a challenge in comparing structural data from one enzyme to another. Yet, the 

increasing number of structures available signifies that we are working toward a deeper 

understanding of the common and defining features between enzymes in this family.  

 Here we continue to investigate the role of additional residues in E. histolytica 

ACD (EhACD) and construct a homology model based on the recently solved Ca. K. 

cryptofilum ACD (ckcACD) structure.  
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III. MATERIALS AND METHODS 

 

Materials 

Chemicals were purchased from Sigma Aldrich, Gold Biotechnology, Fisher 

Scientific, or VWR. Oligonucleotide primers were purchased from Integrated DNA 

Technologies, Inc.  

Sequence Alignment 

Amino acid sequences annotated as ADP-forming acetyl-CoA synthetases were 

acquired from NCBI and additional sequences were identified using PSI-BLAST 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins) (17) with the E. histolytica ACD 

sequence (GI: 67481881) as the query. The multiple sequence alignment was 

constructed using ClustalOmega (http://www.ebi.ac.uk/Tools/msa/clustalo/) (18). 

Site-directed mutagenesis 

The codon-optimized E. histolytica acd gene, cloned into pET21b which provides 

for an addition of a C-terminal 6xHis tag, was subjected to site-directed mutagenesis 

using the QuikChange II kit (Agilent Technologies, Inc.). Mutagenesis primers used are 

as follows: Gln159Asp, (F) GTGGCCTTCATCTCTGACAGTGGCGCACTGTGT and (R) 

ACACAGTGCGCCACTGTCAGAGATGAAGGCCAC; Asp314Ala, (F) 

CCGGGTGTGATTAGTACGGCTCGCCTGGTTAGCGTTCATG and (R) 

CATGAACGCTAACCAGGCGAGCCGTACTAATCACACCCGG; Lys534Arg, (F) 

GAGTCCGGATATTATGCATCGAACCGATGTTGGCGG and (R) 

CCGCCAACATCGGTTCGATGCATAATATCCGGACTC. The His533Ala Lys534Arg 

variant was constructed using the mutagenized EhACD His533Ala pET21b plasmid and 
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the following primers: (F) GAGTCCGGATATTATTGGCTCGAACCGATGTTGGCGG and 

(R) CCGCCAACATCGGTTCGAGCCATAATATCCGGACTC. Mutagenesis was 

confirmed via DNA sequencing (Clemson University Genomics Institute).  

Production of EhACD variants 

E. coli Rosetta2 (DE3) pLysS cells (EMD) carrying pET21b containing the 

mutated acd gene were grown in LB medium to an optical density of 0.6 at 600 nm. ACD 

protein production was induced by adding IPTG to a final concentration of 1 mM, and 

cells were grown overnight shaking at 200 rpm at room temperature. Cells were 

harvested by centrifugation and EhACD was purified by nickel affinity chromatography 

as described previously (2).  

Enzyme assays 

EhACD activity was determined in the acetyl-CoA forming direction using the 

hydroxamate assay (2,19). Initial activity assays were conducted at 37°C using the 

saturating substrate concentrations determined for the wild-type enzyme (2): 50 mM 

Tris-HCl pH 7.3, 300 mM hydroxylamine pH 7.0, 20 mM MgCl2-ATP, 1 mM CoA, and 

100 mM sodium acetate. The reaction volume was 150 µl and reactions were terminated 

by the addition of an equal volume of a solution containing 2.5% FeCl3 and 10% 

trichloroacetic acid in 2N HCl. Saturating substrate concentrations for Gln159Glu were 

450 mM sodium acetate, 1 mM CoA, 40 mM MgCl2, and 15 mM ATP. Assays for kinetic 

characterization of Gln159Glu were carried out for 30 minutes at 37°C. Kinetic 

parameters were determined as previously described (2), using non-linear regression 

(Kaleidagraph, Synergy software).  
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Generation of homology models 

The Ca. K. cryptofilum ACDI is a heterotetramer of two alpha and two beta 

chains (3). Since EhACD is a dimer in which the subunits represent a fusion of the alpha 

and beta domains, two chains were used to align the sequences and generate homology 

models based on the Ca. K. cryptofilum template structures using Accelrys Discovery 

Studio 3.5 software. Three models were generated based on different conformations of 

the catalytic residues. For each, the model with the lowest DOPE (discreet optimized 

protein energy) score was selected for further analysis. Model 1, based on Ca. K. 

cryptofilum 4YBZ, shows ACD complexed with ADP and the catalytic Hisα at Site 1. 

Model 2, based on Ca. K. cryptofilum 4YYM, shows ACD in complex with coenzyme A, 

Ca-AMPCP (ADP analog) and HgCl+, and the Hisα is positioned near Site I. Model 3 is 

based on Ca. K. cryptofilum 4XZ3 and shows ACD in complex with CoA and Mg-

AMPPCP (ATP analog) and the phosphorylated Hisα in Site II. In silico analysis of 

Asp314Ala and Asp314Glu alterations was performed by altering the residue within the 

sequence of both chains and subsequently building a homology model based on 4XYM.  
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IV. RESULTS

Gln159, conserved in ACD sequences (FIG 4.1A) but replaced by Arg in other 

family members such as SCS, ACL, and malyl-CoA synthetase (MCS) (20), is predicted 

to interact with the phosphohistidine loop based on the function of the Arg residue in E. 

coli SCS (11). Altering this Gln to a Glu substantially decreased activity to approximately 

8% that of the wild-type enzyme (FIG 4.1B). Kinetic characterization of the Gln159Glu 

variant revealed a 13-fold decrease in kcat (TABLE 4.1). The Km values for CoA and ATP 

showed only minor changes compared to wild-type, but the Km for acetate increased 6-

fold.  

The catalytically important His533 and the adjacent Lys534 are conserved in 

ACD, pimeloyl-CoA synthetase, acetyltransferases, and several predicted acyl-CoA 

synthetases (20). However His533 is homologous to an Arg and Lys534 is homologous 

to a Gly residue in SCS, MCS, and ACL. A Lys534Arg variant and a His533Ala 

Lys534Arg double variant were generated and analyzed. The double variant had little to 

no activity (<0.5%), however the Lys534Arg variant retained ~12% activity (FIG 4.2).  

Homology models of E. histolytica ACD were generated based on structures from 

Ca. K. cryptofilum (FIG 4.3). EhACD, which is a homodimer (2), shares 37% identity with 

ckcACD, a heterotetramer (3). There are two active sites within ACD; the 

phosphohistidine loop containing His252α is capable of changing conformation to 

occupy either Site I (FIG 4.4 and 4.5) or Site II (FIG 4.6A). Site II is the location of the 

ADP/ATP binding site and His533β (FIG 4.6B). As seen in Figure 4.6C, Lys534 is 

oriented on the opposite side of His533.  
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Asp314, conserved among all known NDP-forming acyl-CoA synthetases (20), is 

predicted to interact with the phosphohistidine loop (7), but was also demonstrated to 

play a role in oligomer formation in E. coli SCS (21). Attempts to produce the Asp314Ala 

variant were unsuccessful. Therefore, in silico analysis was used to attempt to 

understand whether Asp314 contributes to the structural integrity of the enzyme. Asp314 

is located within an α-helix near the catalytic His residue (FIG 4.7A), and participates in 

hydrogen bonds between the two chains (example shown in FIG 4.7B). Hydrogen 

bonding occurred at the interface of the two monomers between Asp314 on one chain 

and residues 240-242 on the opposite chain. In all models generated, Asp314 was 

responsible for three out of ten total intermolecular hydrogen bonds between the 

monomers. Asp314Ala and Asp314Glu alterations were generated in silico and revealed 

that Asp314Glu was capable of hydrogen bonding in a similar fashion (FIG 4.7D), while 

Asp314Ala lost the ability (FIG 4.7C). Loss of this bonding may prevent oligomerization, 

which subsequently affects stability.   
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FIG 4.1 EhACD Gln159. (A) Sequence alignment of Gln159 in ACDs. (B) Activity of 

Gln159Asp variant compared to wild-type in the acetyl-CoA forming direction.  
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TABLE 4.1 Kinetic parameters for the Gln159Glu variant in the acetyl-CoA forming  

direction.  

 

Substrate Enz Km 
(mM) 

Fold 
change 

kcat 
(sec-1) 

Fold 
change 

Acetate WT  14 ± 0.6 +6.4x        233 ± 2.7 -13x 
 Q159E        89 ± 9          18 ± 0.5 

          
CoA WT     0.20 ± 0.01 -1.3x        328 ± 5 -14x 

 Q159E     0.16 ± 0.01          24 ± 0.3 

          
ATP WT        12 ± 0.4 -2.9x       320 ± 4 -15x 

 Q159E 4.1 ± 0.2         22 ± 0.01 
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FIG 4.2 Activity of Lys534 variants in the acetyl-CoA forming direction. 
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A       B 

 

 

FIG 4.3 Ribbon diagram of EhACD homology model based on 4YBZ. (A) Top view 

(B) Front view. Chain A is shown in green and Chain B in blue.  
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FIG 4.4 Active sites of EhACD with the phosphohistidine loop pointed toward Site 

I. Homology model of EhACD based on 4XYM. The phosphohistidine loop of Chain A is

colored in pink and the phosphohistidine loop of Chain B is colored in blue. The position 

of the two active sites of Chain A are as designated.  
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FIG 4.5 Targets of site-directed mutagenesis. Within Site I: Gln159 (light blue), 

Glu213 (yellow), His252 (red), Asp314 (purple). Within Site II: His533 (orange), Lys534 

(green), Asp674 (dark blue).  
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FIG 4.6 Homology model of EhACD with the phosphohistidine loop pointed toward 

Site II. This structure was modeled based on 4XZ3, which includes CoA and AMPPCP 

as ligands. (A) Ribbon diagram of the dimer with the phosphohistidine loops shown in 

pink (chain A) and blue (chain B). (B) Proximity of His252α (pink) and His533β (purple) 

to the AMPPCP ligand. (C) Lys534 (blue) has an orientation opposite of His533β 

(purple).  
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FIG 4.7 In silico analysis of Asp314. Chain A is shown in green and Chain B is shown 

in blue.  (A) Asp314 of Chain B is part of an α-helix located parallel to an α-helix of the 

phosphohistidine loop of Chain A. His252 (green) and Asp314 (orange) are shown in ball 

and stick model. (B) Asp314 (orange) is predicted to hydrogen bond with a side chain O 

of Ser242 (yellow) and a main chain N of Gly240 (pink) on the opposite chain. Hydrogen 

bonds are indicated by dotted green lines. (C) In silico analysis of alteration of Asp314 to 

Ala shows a loss of intermolecular hydrogen bonding, whereas (D) Asp314Glu is 

predicted to hydrogen bond with Gly240 (pink) and Lys241 (purple). 
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V. DISCUSSION 

 

Gln159 is located within a set of conserved residues [Ser-Gln-Ser-Gly-Ala] that 

reside in Site I. These residues are near the acetyl-CoA/acetate binding pocket and are 

part of an α-helix. This helix is one of two helices designated by Fraser et al. (8) as 

power helix 1 and power helix 2 due to their role in the coordination of the 

phosphorylated histidine. The Gly-Ala residues of this motif in power helix 1 are thought 

to interact with the acetyl moiety of acetyl-CoA (3). Given the proximity of Gln159 to the 

acetate binding pocket as well as the increased Km for acetate, we hypothesize that 

alteration of Gln159 disrupts acetate binding or coordination. However, replacing Gln 

with the negatively charged Glu may also disrupt power helix 1, causing inefficient 

catalysis. Further characterization with additional variants such as Gln159Ala and 

Gln159Asn could provide additional insight regarding the function of this residue.  

 Although E. histolytica ACD consists of fused alpha and beta subunits, the hinge 

region connecting the subunits is very short. Consequently, homology modeling based 

on the heterotetrameric structure resulted in significant overlap with very few diverging 

residues. In contrast to SCS, a single active site of ACD consists of residues from both 

chains, demonstrating the necessity for dimer formation. However, it remains unclear if 

the active sites can function simultaneously or have any affect on one another.  

 Before structural information was available, we hypothesized that alteration of 

Lys534 could potentially compensate for the reduced activity observed in His533 

variants (C. Jones, K. Khan, C. Ingram-Smith, in preparation). These adjacent residues 

share the same pattern of conservation within the enzyme superfamily. The Arg-Gly 
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residues in SCS and the corresponding His-Lys residues of ACD could potentially result 

in a positively charged environment. The reduced activity of the Lys534Arg variant 

indicates that this residue is necessary for maximal catalysis but that the positive charge 

alone is not sufficient, and that appropriate side chain length is also important. Homology 

modeling revealed that the side chain of Lys534 has an orientation opposite that of 

His533. This suggests that Lys534 is unable to compensate for the lack of His533 in 

providing the positive charge environment needed. However, the corresponding Lys69β 

residue in ckcACDI was shown to interact with the ADP substrate by both the side-chain 

amine and the backbone nitrogen. Kinetic analysis should be performed in order to 

determine if the absence of Lys534 affects the Km of ADP as a substrate.  

Asp314 is located at the interface of the two monomers of ACD and participates 

in hydrogen bonding with residues on the opposite chain. After repeated failed attempts 

at production and purification, we hypothesized that alterations of this residue may result 

in an unstable protein product. Structural modeling supports this theory, as in silico 

alteration of Asp314 to Ala resulted in disruption of intermolecular hydrogen bonding, 

potentially preventing proper oligomerization.  

In summary, the new structural information available for ACD provides a basis for 

understanding the function and mechanism of this enzyme. Multiple residues were 

identified to influence activity or structure, including Gln159 and Asp314 of the alpha 

subunit and Lys534 of the beta subunit. However, a crystal structure of the fused alpha-

beta enzyme of E. histolytica would be useful in the future.  
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORKS 

 

ACD’s role in cellular metabolism 

ADP-forming acetyl-CoA synthetase is responsible for the interconversion of 

acetyl-CoA and acetate coupled to the formation of ATP. This is an energy conserving 

reaction that exchanges one high-energy bond for another.  The amitochondriate 

parasite Entamoeba histolytica lacks many typical eukaryotic metabolic pathways, 

making the conservation of energy especially important. Thus, we believe that ACD 

could be important for maintaining energy homeostasis in E. histolytica under the varying 

conditions it encounters.  

 Pineda et al. (1) demonstrated that ACD is responsible for acetate production by 

E. histolytica during growth on glucose in vitro and theorized that it functions to recycle 

CoA. Although they found that ACD’s contribution to the ATP pool was not significant 

during in vitro growth, the nutrient environment surrounding the cell differs greatly when 

inside the host compared to the controlled environment in culture. Thus, these in vitro 

results may not be truly representative of ACD’s role in ATP production.  

As our results have shown that ACD is subject to inhibition by ATP in the 

acetate-forming direction of the reaction (2), ACD function in the cell is likely regulated 

by the AMP:ATP ratio. If ATP levels drop and AMP levels rise, ACD is capable of 

producing additional ATP for the cell and concomitantly producing acetate (FIG 5.1A). In 

addition, if acetyl-CoA levels are in excess, they can be shuttled through ACD as a type 
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of overflow metabolism in order to recycle CoA and conserve energy through ATP 

production (FIG 5.1B). When ATP is plentiful, excess ATP could then be redirected 

towards activation of acetate in order to utilize this potential carbon source (FIG 5.1C). 

This would be particularly useful within the acidic microenvironment of the colon where 

the concentration of short-chain fatty acids such as acetate and propionate are high, and 

these compounds can diffuse through the membrane. When acetic acid enters the cell in 

its protonated form, it quickly dissociates into acetate and a proton at the neutral 

intracellular pH. As this could be toxic to the cell, activation by ACD would serve as a 

method of detoxifying acetate and maintaining intracellular pH (FIG 5.1D).  

 ACD may also function in activating acetate that is produced from endogenous 

sources. Cysteine has been determined to be essential for its redox capacity in E. 

histolytica (3) and consequently, the cysteine synthesis pathway has been maintained. 

Cysteine synthesis occurs through acetylation of serine and release of acetate when the 

sulfide group is added. ACD could theoretically function in a loop to recycle the acetate 

into another acetyl-CoA molecule to refuel cysteine synthesis (FIG 5.1E).  
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FIG 5.1 EhACD may function as a reversible enzyme in response to the cell’s 

needs. Acetate is represented by orange pentagons, ATP by green ovals, ADP by 

purple ovals, and AMP by pink ovals. (A) Under low ATP concentrations, ACD can 

function in the acetate-forming direction and supplement ATP levels. (B) When acetyl-

CoA is in excess, ACD could function in the acetate-forming direction as a type of 

overflow metabolism. (C) When ATP concentrations are high, ACD is inhibited in the 

acetate-forming direction and would instead use the excess ATP to activate acetate to 

acetyl-CoA. (D) Exogenous acetate may diffuse into the cell or be taken in by fluid-phase 

endocytosis. When acetate is in excess, ACD can negate its potentially toxic effects by 

converting it to acetyl-CoA. (E) ACD could also function by using endogenous sources of 

acetate, such as from cysteine synthesis.  
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These assumptions are based on characterization of the recombinant enzyme (2) 

and therefore further experimental evidence is needed to fully explore the role of ACD 

within E. histolytica. These possible scenarios can be investigated by changing culture 

media conditions (pH, acetate concentrations, etc.) and comparing wild-type and ACD 

knockdown cell lines. 

Enzymatic mechanism 

Based on the characterization of site-altered variants and isotopic labeling by 

phosphorylation, we hypothesize that ACD proceeds through a three-step mechanism 

similar to that for succinyl-CoA synthetase (FIG 5.2). Acetyl-CoA and Pi bind within Site I 

and form a transient acetyl phosphate intermediate. This intermediate phosphorylates 

the Hisα residue within Site I. Crystal structures of ACD were obtained with Hisα 

phosphorylated in Site I (4), suggesting a binding event or release of CoA may be 

required for the conformational change of the phosphohistidine loop to occur. One 

possibility is that upon ADP binding, the phosphorylated Hisα moves into position within 

Site II and phosphorylates ADP to form ATP. The opposite reaction also takes place. 

ATP binds within Site II and causes Hisα to move into Site II where it becomes 

phosphorylated. Then Hisα-P moves back to Site I where it can transfer the phosphoryl 

group to acetate. Acetyl phosphate then acetylates CoA and releases phosphate.  
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FIG 5.2 Schematic of the proposed three-step ACD mechanism. Green ovals 

represent Site I and blue ovals represent Site II. The transferred phosphate group is 

shown as a purple triangle. 
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Glu213 is required for stable phosphorylation of Hisα by the acetyl phosphate 

intermediate within Site I to occur. However, isotopic labeling revealed His252 may be 

phosphorylated within Site II when Glu213 is absent, so it is not necessary for ATP 

phosphorylation of Hisα. This variant could be a useful tool for determining the crystal 

structure of ACD with a phosphorylated Hisα in Site II. The absence of His533 does not 

prevent phosphorylation from occurring in either direction, challenging the four-step 

reaction proposed by Brasen et al. (5) in which His533 is directly phosphorylated during 

the catalysis.  

Asp674 is important for optimal phosphorylation to occur, and based on the 

homologous residue within ckcACDI (4), is thought to help stabilize Hisα when located in 

Site II. Asp314 located within power helix 1, is likely important for the structural integrity 

of the enzyme. Lys534 alteration resulted in reduced activity, and this residue is 

postulated to bind the ADP/ATP substrate. Kinetic characterization of Gln159Glu 

suggests a role for this residue in acetate binding or coordination. Future structural 

analysis using the recently generated model combined with kinetic characterization will 

enhance our understanding of the function and mechanism of this enzyme. In addition, 

an EhACD crystal structure is in the final stages of refinement (S. Swaminathan, 

personal communication) and will allow direct analysis of the active sites of the 

homodimeric EhACD and comparison to the heterotetrameric archaeal ACDs. 
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