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ABSTRACT 

The goal of this dissertation is to better understand cellular mechanics across 

length scales for the development of computational models of tissue behavior. To this 

end, we had two major approaches, multidimensional and multimodal. Firstly, to use a 

model that better mimics in vivo like cellular environment, microtissue (spheroid) cell 

culture system was used to study cell mechanics. Secondly, a novel technique was 

designed to study single cell mechanics in multiple dimensions. 

Cell mechanical properties are directly related to the composition and 

organization of the cytoskeleton, which is physically coupled to neighboring cells 

through adherens junctions and to extracellular matrix through focal adhesion complexes. 

As such, we hypothesize that the variations in cellular interactions affects cell mechanics. 

To test our hypothesis, cardiomyocytes and vascular smooth muscle microtissues were 

cultured under several conditions that limited the cell-cell and cell-matrix interactions. 

Cell interactions facilitated by integrin β1, connexin 43, and N-cadherin was inhibited 

and their effect on cell stiffness was characterized by atomic force microscopy (AFM). 

Currently, there does not exist a single technique that can measure mechanics of a 

single cell in two different dimensions. To address this gap, we designed a novel set up 

that combines two different single cell mechanics measurement techniques, AFM and 

carbon fiber. This combination allows for characterization of mechanical properties of 

single cells in multiple dimensions. 

The results of these studies provide insights from a basic science perspective. The 

results provide information regarding cell mechanics in multiple dimensions at both 
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single cell as well microtissue level. The ultimate fulfillment of this work would be its 

incorporation into a multiscale model, leading to the ability to tie macro- scale behaviors 

to nano- scale phenomenon. Such models may help to better understand tissue behavior 

and further our understanding of the etiology of many diseases. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Motivation 

Cells in the body undergo mechanical stress every day. These stresses are 

particularly enhanced during injury or disease, such as atherosclerosis or myocardial 

infarction. Designs of successful treatments require characterization of effects of cellular 

interactions in cardiac as well as vascular cells. Various studies have indicated points of 

focal adhesions and adherens junctions as the principal sites of mechanical signalling in 

cell-cell and cell-matrix interactions respectively. So to better understand the importance 

of cellular junctions in its mechanics, first part of this study aims at understanding effects 

of blocking cell-cell and cell-matrix interactions on vascular smooth muscle cells and 

cardiomyocyte cellular microtissues. In order to have a better representation of in vivo 

like environment, studies were performed on scaffold free 3D culture system of cellular 

microtissues (spheroids) as they are known to mimic cellular microenvironment 

compared to 2D adherent culture.  

Second part of this projects aims at characterizing multidimensional mechanics on 

a single cell by multiple modes. Muscle cells are known to generate active and passive 

forces both radially and axially as they contract. But, currently there are no techniques 

known to us that can quantify this bidirectional mechanics simultaneously. So our goal 

was to develop a technique that will bridge this gap. Future goal of this project is to 

building a computational model that can predict mechanical properties of cells based of 
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their microenvironment. In future, we hope to have a model, which on refinement can be 

applied to study tissue mechanics and can be used to design better cell-based therapies for 

cardiovascular diseases. 

 

1.2 Research aims 

 

1.2.1 Aim 1: Determine effects of cellular interactions on mechanical properties of 

vascular smooth muscle cells (VSMC) in 3d culture 

We hypothesize that the heterogeneity observed in cells from a single population 

may partly be due to cell-cell and cell-matrix interactions in a given cell sample. In order 

to mimic more in vivo like cellular environment this study involved used scaffold free 

three dimensional cellular microtissues (spheroid) model. Specific cellular junctions of 

N-cadherin and integrin β1 were blocked using specific antibodies and its effects on cell 

mechanics were accessed by performing atomic force microscopy cytoindentation studies 

on day 5 microtissues. 

 

1.2.2 Aim 2: Determine effects of cellular interactions on mechanical properties of 

cardiomyocytes (CM) in 3d culture 

We hypothesize that the heterogeneity observed in cells from a single population 

may partly be due to cell-cell and cell-matrix interactions in a given cell sample. In order 

to mimic more in vivo like cellular environment this study involved used scaffold free 

three dimensional cellular microtissues (spheroid) model. Specific cellular junctions of 
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N-cadherin and connexin 43 were blocked using specific antibodies and its effects on 

mechanical properties were assed using atomic force microscopy. 

 
1.2.3 Aim 3: Characterize radial and axial mechanics simultaneously on an individual 

isolated cardiomyocyte 

With this aim our goal was to design a technique that can quantify both axial and 

radial mechanics on a single cell simultaneously. To this end, we combined carbon fiber 

technique that can manipulate and measure axial cells with atomic force microscopy, 

which is commonly used to manipulate and measure radial mechanics.  

 

1.3 Significance 

 
Cardiovascular diseases are the number one cause of mortality in United States. 

However, in spite of its gravity, not enough work has been done to improve the time 

required to cure these diseases.  There are a wide variety of cardiovascular diseases 

whose etiology are either known or suspected to be related to abnormal cell mechanics, 

alteration of cellular mechanotransduction processes, or changes in tissue structure. But, 

research on how variations in cellular interactions affect its mechanics is still limited. 

Also, not enough information is available about multidirectional forces experienced by 

cells. 

This study represents first attempt at understanding effects of cell-cell and cell-matrix 

interactions at microtissue level. Through this study we also present a novel design that 

combines AFM and CF techniques to characterize active and passive forces and 
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mechanics on a single isolated cardiomyocyte simultaneously. The results of these studies 

provide insights from a basic science perspective about the effects of cellular 

microenvironment (cell-cell and cell-matrix interactions, loading and unloading) on its 

mechanics.  

To better understand cell’s mechanics, it is important to closely translate results from 

in vitro experiments into mathematical relationships for in silico models. We believe, 

insights available from this study at single cell and microtissue level regarding the 

mechanical properties of cells we well as their response to different mechanical stimuli 

can be potentially used to develop tissue to organ level computational models. Such 

models may help to gain information on complex physiological properties or conditions 

and better understand tissue behavior and disease progression. 
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CHAPTER TWO 

CURRENT STATE OF KNOWLEDGE 

1.4 Cardiomyocytes 

Cardiomyocytes (CM) account for 30% of the total number of cells within the 

myocardium (1, 2). They are required to contract in unison in order to provide effective 

pump action that can ensure adequate blood perfusion of the various organs and tissues 

(3). Cardiac muscle cells or CM are distributed throughout the heart but pacemaker cells 

are the ones that determine the natural beating frequency of cardiac muscle (4). They 

have the ability to contract due to the presence of highly organized cytoskeleton. The 

cytoplasm of myocytes, is filled with myofibrils, which are contractile bundle of fibers 

composed of many functional units called sarcomeres (5). The ends of myofibrils are 

anchored to the sarcolemma and the transmission of forces developed by the contracting 

myofibrils is secured by highly specialized cell-cell junctions, the intercalated discs (6). 

Different cardiac cells act coherently with each other through intracellular 

junctions (e.g. gap junctions) forming a three dimensional (3D) syncytium (7). Two 

different intercellular adhesive junctions are found in the intercalated discs: adherens 

junctions and desmosomes, which anchor actin cytoskeleton and intermediate filaments, 

respectively, at the plasma membrane of adjoining cells, thereby provide mechanical 

attachment between the cells, and support the structural and functional integrity of the 

tissues (8). Cardiac development is also regulated by the extracellular matrix, which 

forms a mesh of structural and signaling networks encapsulating and connecting the cells 

(9). The cellular responses observed in cardiomyopathies arise from the detection of 
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functional changes mediated primarily by ECM–sarcomere connections and collectively 

aim to maintain sufficient contractile force and prevent progression to heart failure 

(10). The responses of cardiomyocytes to systemic stress or genetic abnormalities are 

modulated by mechanosensitive mechanisms within the cardiomyocyte (11-13). A 

complex network of proteins that connects the sarcomere to the ECM forms the basis of 

the mechanotransduction. Changes in wall stress induce signaling pathways that are 

associated with the development of cardiac pathology (10). 

 

Figure 0.1: Schematic of heart, myocardium, cardiomyocytes, and sarcomeres (14). 
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1.5 Vascular smooth muscle cells 

Vascular smooth muscle cells (VSMCs) are essential for good performance of the 

vasculature. The alter the lumen diameter thereby enabling blood vessels to maintain 

appropriate blood pressure by the process of contraction and relaxation. VSMCs also play 

important role in vessel remodeling in physiological conditions like exercise, pregnancy 

or after injury (15). Under these conditions, these cells synthesize large amounts of 

extracellular matrix components and increase proliferation and migration (16).  

VSMCs express a wide range of phenotypes in vivo and in vitro cultures. The 

extremes of spectrum of their phenotypes have been termed ‘contractile’ and ‘synthetic’ 

by early investigators based on their primary functions of contraction and synthesis of 

extracellular matrix proteins (17). The contractile state is what is considered to be the 

primary state of VSMC in the normal adult aorta, while the synthetic phenotypes are seen 

in vivo during development and in response to injury followed by tissue repair (17). 

Pathologies such as atherosclerosis, hypertension, and diabetes dramatically affect the 

phenotype of the VSMC and the alteration of VSMC phenotype contributes to these 

disease states (15). During repair of vascular injury, dedifferentiated VSMCs participate 

in the formation of neointima by decreasing the expression of contractile proteins and 

increasing proliferation, migration, and matrix protein synthesis (18).  
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Figure 0.2: Summary of characteristics of SMC phenotypes, which vary along a 
continuum from synthetic and proliferative to contractile and quiescent. The position 
along this continuum is modulated by a variety of extracellular signals. ECM, 
extracellular matrix; RER, rough endoplasmic reticulum; SMC, smooth muscle cell (19).  

 

1.6 2D Vs. 3D cell culture 

Since the advent of routine cell culture more than forty-five years ago, the most 

common cell culture approach has been two dimensional (2D) on cell culture polystyrene 

or glass surface (20). Thousands of publications from cancer drug screening to 

developmental biology have relied on 2D adherent cell cultures (21). This approach 

provides a well-controlled, homogeneous environment that sustains cell proliferation for 

most cell types (22). However, 2D culture is far too simplistic and overlooks many 

parameters important for tissue physiology including mechanical cues, communication 
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between a cell and its matrix and communication between adjacent cells. For example, 

cells in natural environment not only adhere to each other but, are also embedded in an 

extracellular matrix (ECM) containing proteins like collagens, integrins, laminin, and 

fibronectin, which will affect cell shape (23), polarity (24), tension (25), differentiation 

(26) and help to organize communication between the cells (27). This results in 

significant differences in biological responses from cells in monolayer culture compared 

to those in organ or tissue in vivo. 

Due to lack of 2D cell culture technologies to display tissue-like phenotypes, 

biologists are turning towards 3D cell culture options. Multicellular tumor spheroids 

(MCTS) have been used widely for over two decades and their utility is now receiving 

wider appreciation. MCTS reproduce the tumor microenvironment more accurately than 

2D cultures (29-33), which have profound implications for tumor biology, particularly 

with respect to altered gene expression and sensitivity to chemotherapeutic agents (34). 

Hence, it is justified that 3D culture is clinically and biologically more relevant to in vitro 

models and it more closely mimics the native environment of the tissue. In addition, 

physical, chemical, and biological properties of a scaffold or vessel can be manipulated to 

manufacture unique materials to suit various purposes (35). 
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Figure 0.3: Differences in environmental cues in 2D vs. 3D cell culture. Adhesive, 
topographical, mechanical, and soluble cues. The cues encountered by a cell are 
strikingly different in adherent cell culture as compared to a typical 3D ECM (28). 

 
 

1.7 3D Cell culture techniques 

Two major approaches towards 3D cell culture are the ones with and without 

scaffolds. Seeding scaffolds, on which cells can re-establish their 3D structure, is 
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currently the standard technology. Scaffolds serve as substrate on which cell populations 

can attach and migrate, be implanted with combinations of specific cell types, as a cell 

delivery vehicle and be utilized as a drug carrier to activate specific cellular functions in a 

localized region (36). Scaffolds can be made out of natural substances or synthetic 

polymers. However, these matrices bear biological information and elicit biological 

response, which might differ from the response found in the natural environment (37). 

The inability of biomaterial scaffolds to functionally integrate into surrounding tissue is 

one of the major concerns to developing new biomaterials and tissue-engineering 

scaffolds (38). De-cellularized scaffolds serve as a great biocompatible material but with 

a risk of immunogenicity. Recent advancement to scaffold fabrication is electro spinning 

wherein very thin polymer fibers are spun to form web like scaffolds, which provide cells 

with more natural 3D environment (39).  

 
 

Figure 0.4: (A) Schematic of technologies for assembling building blocks at different 
scales. The size of each biological entity is shown above the scale axis, while the sample 
size that each assembly technology can manipulate is shown below the scale 
axis. (B) Schematic of multiscale assembly strategies from bottom to top for engineering 
3D tissue constructs. The assembly strategies can follow paths starting with biomolecules 
or cells and can be integrated in the engineering of the final 3D tissue constructs (40). 
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Figure 0.5: Different approaches to generation of scaffold free spheroids (41). 

An alternative to scaffold based approach is scaffold free concept that involves 

formation of cellular aggregates called spheroids. Spheroid cultures are versatile and bio 

mimicry tool in many areas of (regenerative) medicine, basic science, and more 

application-oriented approaches (22). They are simple 3D models that form due to the 

tendency of cells to aggregate and can be generated from wide range of cell types (21).  

Cellular spheroids can be generated by multiple techniques such as, (i) gravity-enforced 

assembly of microspheres in hanging drop (24); (ii) cultivation in spinner flasks, static 

liquid overlay technique (LOT), gyratory shakers, roller bottles (42, 43); (iii) 

centrifugation (44); or non adhesive surfaces (45). Hanging drop technique is one of the 

oldest. It was invented by Harrison in 1907 and involves aggregation of cells in the 
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bottom of a drop after inverting a plate with drops of cell suspension (46). Spinner flasks 

enable spontaneous cell aggregation. In LOT, suspended cells are cultured on non-

adherent substrates, and this causes cells to aggregate instead of adhering to the surface 

(47). For the purpose of this project, we will be focusing on investigating intercellular 

and cell matrix interaction on cell mechanics in a 3D environment and will be using 

hanging drop spheroid culture technique for the same. 
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CHAPTER THREE 

CELL MECHANICS: MANUPILATION AND MEASUREMENT 
 

1.9 Cell mechanics and cellular junctions 

Cells are integrated into tissues by several types of specialized intercellular 

junctions. Adherens junctions and desmosomes play an important role in integrating 

cytoskeletons of constituent cells into a mechanical syncytium, which is key to 

physiological tissue function (1-3). In developing organisms, mechanical forces 

generated by individual cells are transmitted and coordinated along intercellular junctions 

into tissue-level deformations that drive morphogenesis (4, 5). In adult organisms, 

intercellular junctions provide tissues with the strength necessary to withstand external 

forces, such as pulsatile shear stresses in blood vessels. In addition to providing 

mechanical strength, cellular junctions are dynamic, giving tissues fluidity by allowing 

neighbor exchange during development (6) and collective migration during wound 

healing (7). Complex signaling pathways regulate intercellular junctions, allowing single 

cells to organize into tissues or leading to tissue disaggregation (8). 

 The interactions of cardiac cells with the anisotropic structure of myocardium are 

paramount for regulation of the tissue properties such as synchronous contractility (9-12). 

Particularly, cellular organization and the orientation of the actin fibers, through contact 

guidance process, significantly influence the contractile force generated throughout the 

tissue (10-12). So, cardiovascular tissue remodeling in a diseased state (e.g. 

atherosclerosis, arrhythmia) can affect the extracellular matrix (ECM) composition (e.g. 

excessive collagen deposition) and consequently lead to poor cellular organization and 
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tissue contractility (13, 14). It has also been shown that junctional markers such as N-

cadherin and connexin 43, which are responsible for mechanical and electrical signal 

propagation, are significantly influenced by cellular organization (15). Along with 

biophysical cues, ECM also provides biochemical cues such as various growth factors 

and ligands within the myocardium. It has been established that cells interact with the 

matrix through a combination of proteins collectively known as focal adhesion complex. 

Various transmembrane proteins such as vinculin and integrin β1 help in direct 

attachment of cell cytoskeleton to ECM and thus help in bidirectional transfer of 

biochemical and mechanical cues (16). For example, integrin β1 help in 

mechanotransduction between ECM and cardiomyocytes of cardiac fibroblasts (16, 17). 

They also assist in chemical signaling when any ligand binds to either intercellular 

receptor (inside-out signaling) or to extracellular receptor (outside-in signaling); initiating 

cascade of events. Stress applied through integrin specific adhesion sites increases 

cytoskeletal stiffening (18), activates second messenger formation (19), and induces 

tyrosine phosphorylation of the proteins anchored to the cytoskeleton (20). Integrin β1 

are also characterized to play a definite role in myofibrillogenesis, cellular phenotypes 

and cell migration (17). 
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Figure 0.1: Mechanotransduction pathways and force sensing structures at cell-cell and 
cell-ECM junctions (21). 

 

 Like cell-ECM, cell-cell interactions also play a crucial role in maintaining the 

intercellular communication between cells. Homogeneous or heterogeneous cell types 

communicate intercellularly either through gap junctions or adherens (12). Gap junctions 

are intercellular proteins that allow the direct flow of molecules, solutes and ions from 

one cytoplasm to another in between the adjacent cells (22). In addition, gap junctions are 
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mainly responsible for electrical impulse propagation between the two couples cells. The 

most identified gap junctions in heart have been connexin 43, 45, and 40 (22, 23). 

Various studies have observed that connexin 43 gets expressed at either homogeneous 

cellular junction such as in between cardiomyocytes or and at heterogeneous cellular 

junctions between cardiomyocyte and cardiac fibroblast cells (23). Due to the presence of 

gap junction molecules, an electrical syncytium is established in between the myocardial 

cells, which thereby ensures synchronous contraction of the tissue within the myocardium 

(24). 

1.10 Techniques to manipulate and measure cell mechanics 
 

Measuring mechanical properties of any material, including cells requires 

application of some kind of force to it and record its deformation response. Forces can be 

applied in many modes, tension or compression; uniaxial or biaxial; bending, twisting, 

torsion, or shear. Techniques available to apply controlled deformation and forces on part 

of, or an entire cell (Figure 0.2) (Table 0.1). These techniques include but are not limited 

to magnetic bead cytometry (25-27), optical tweezers (28-30), cell stretchers (31-34), 

flow rheometry (33, 35, 36), and atomic force microscopy (AFM) (37). Along with 

variety of tools available to manipulate cell mechanics, a wide array of techniques have 

been developed that can measure the mechanical properties of cells on spatially accurate 

length scales (38). Techniques that can monitor the ability of a cell to generate forces and 

deform its environment are micro pillar arrays (39) and traction force microscopy (TFM) 

(40, 41). 
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Figure 0.2: Various techniques used to apply force on cells (21). 
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Table 0.1: Summary of methods and techniques in cellular biomechanics (42) 

Method Principle Range of forces that can be 
applied or detected 

Atomic force 
microscopy 

(AFM) 

Relative deformation of cantilever tip and 
substrate (cell) is used to estimate forces. 

~10 pN  ≤  Fx ≤ ? 

Micropipette 
aspiration 

Gentle suction is applied to micropipette 
attached to cell. 

10–20 pN ≤ Fx ≤ ? 

Stretching devices Flexible membrane is attached to structures 
that enable membrane to be stretched 

Qualitative-at least 25% 
from unstretched state 

Carbon fiber (CF)-
based systems 

Carbon fibers are attached directly to a cell 
and controlled mechanically using feedback 

systems. 

? ≤ Fx ≤ 5 µN 

Magnetic 
tweezers/magnetic 
twisting cytometry 

Magnetized ferromagnetic or 
superparamagnetic beads are moved by 

weaker directional magnetic 
fields/gradients. 

2 pN ≤ Fx ≤ 50 nN 

Optical tweezers Dielectric beads of high refractive index are 
moved using laser beams. 

~2 pN ≤ Fx ≤ 600 pN 

MEMS in silicon Movable parts are fabricated in silicon and 
various methods such as piezo actuation are 

used to move them. 

0.5 nN ≤ Fx ≤ 1.5 µN 

Flow chambers Enclosed chambers with inlet and outlets 
for fluid flow are used to subject cells to 

fluid shear stress. 

30 Pa ≤ Px ≤ ? 

Elastic substratum 
method 

Wrinkling patterns developed in artificial 
flexible sheets are used to infer cell traction 

forces. 

Qualitative 

Flexible sheets with 
embedded beads 

Displacements of beads within flexible 
sheets are used to infer cell traction forces 

140 nN ≤ Fx ≤ ? 

Flexible sheets with 
micropatterned dots 

or grids 

Deformation of grid or dot patterns from 
ideal is used to infer cell traction forces. 

70 nN ≤ Fx ≤ ? 

Array of vertical 
microcantilevers 

Horizontal deflection of individual vertical 
microcantilevers is used to infer traction 

forces. 

50 pN ≤ Fx ≤ 100 nN 

Micromachined 
horizontal 
cantilever 

Horizontal deflection of cantilever with 
attachment pad is used to infer traction 

force. 

~2 nN ≤ Fx ≤ 100 nN 
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1.11 Atomic force microscopy (AFM) 

The AFM is a high-resolution surface characterization technique that is been 

routinely used for imaging and mechanical characterization of a range of biological 

samples (37). AFM measurement uses a micron-sized tip/probe connected to a micro-

fabricated cantilever beam to deform and interact with the sample. It can be used to probe 

surface topography as well as interaction forces with subnano-meter and pico-newton 

resolution (38). One of the most widespread uses of AFM in cell mechanics is for force 

spectroscopy to measure cellular elasticity and rheology. To measure the cell elasticity, 

the tip of AFM cantilever is pressed against the cell while the force and the imposed 

cellular deformation are monitored. Considering the tip geometry and using appropriate 

contact model, the elasticity of the cell can be computed from the measured force versus 

indentation data (43). The most commonly used model for interpreting the depression-

force relationship is referred to as the Hertzian (44, 45) model and ssumes semi-infinite, 

linearly elastic, homogeneous substance. As the levels of force and deformation can be 

very accurately measured over time, AFM has been applied for a variety of rheological 

measurements. Using a feedback loop levels of stress and strain can be controlled over 

time, following indentation of the cell via the cantilever.  

Cell biology and medicine are particularly interested in the capability of AFM to 

monitor changes in cell elasticity under different pharmacological and genetic 

perturbation (46, 47).   
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Figure 0.3: Schematic representing how the atomic force microscope generates force-
distance curves for a cell receptor and ligand (48). 
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1.12 Carbon fiber (CF) technique 

This technique involves the use of carbon fibers mounted in glass capillaries 

attached to precise position control device with feedback control mechanism. CFs are 

attached to cells and used as a means to apply active forces and record forces generated 

by the cell. The image of CFs is projected through optics onto a photodiode array, which 

converts this into a usable signal for the feedback control system. The optical system is 

also connected to an image recording system and can be used to capture and record 

changed in the length of the cell (Figure 0.4(A)) (42). This technique has the potential to 

be applied to variety of cell types but currently it is mainly used to investigate mechanics 

of single cardiac myocytes. Yasuda et al. (49) used this method to characterize mechanics 

of single rat cardiac myocyte under isometric and physiologically loaded conditions. 

Nishimura et al. (50) also performed similar studies by making modifications and 

improvements to the feedback control system used by Yasuda et al. Iribe et al. (51) made 

further modifications to this set up by introducing the use of bidirectional control instead 

of the single-sided control used by Yasuda et al. and Nishimura et al. which reduced 

sarcomere blurring (Figure 0.4(B)). CF approach provides true, closed-loop mechanical 

control of a single cell, in which the compliance of the measurement system can be 

controlled independently of its displacement, thereby allowing exploration of cellular 

mechanics over the full range of forces, displacements, and velocities that are required to 

fully specify the parameters for an active, viscoelastic model of cellular mechanics (42). 
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Figure 0.4: Schematic of carbon fiber (CF) set up. Active control of pairs CFs for studies 
of cardiomyocyte mechanics. A) Schematic showing the general principle of operation of 
the CF system used by Yasuda et al. (42, 49) B) Experimental set up and images of CFs 
attached to individual cardiac myocytes (from Iribe et al.) (42, 51). 
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CHAPTER FOUR 

CHARACTERIZING EFFECTS OF BLOCKING CELLULAR INTERACTIONS ON 
MECHANICAL PROPERTIES OF CARDIOMYOCYTE AND VASCULAR SMOOTH 

MUSCLE CELL SPHEROIDS 
 

1.14 Introduction 

Mechanical properties of cells, especially stiffness of cells and their surrounding 

extracellular matrix are critical for many biological processes including cell growth, 

division, differentiation, motility, and tissue homeostasis (1, 2). Changes in cell 

mechanical properties are also often found to be closely associated with various disease 

conditions. Monitoring mechanical stiffness of living cells can therefore provide a way to 

monitor cell physiology, detect and diagnose diseases, and also evaluate the effectiveness 

of drug treatments (3, 4). Multiple methods have been developed over the years to 

measure cellular stiffness, elasticity. One of the most widely used methods to characterize 

mechanical properties of cells and tissues is atomic force microscopy (AFM) (5). It is a 

microindentation technique wherein an indenter with well-defines geometry is used to 

indent into cells.  

Cells sense and respond to physical stimuli from the environment by the process 

called mechanotransduction. Various studies (6-9) have indicated points of focal 

adhesions and adherens junctions as the principal sites of mechanical signalling in cell-

cell and cell-matrix interactions respectively. The interaction between cardiac cells with 

anisotropic structure of myocardium is crucial for the regulation of tissue properties such 

as synchronous contractility (10-13). Extracellular matrix provides biophysical and 

biochemical cues such as various growth factors and ligands within the myocardium. 
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Cells interact with the matrix through a combination of proteins called focal adhesion 

complex. Various transmembrane proteins like vinculin and integrin β1 help in direct 

attachment of cell cytoskeleton to ECM and help in bidirectional transfer of 

biochemical/mechanical signals (14). Cell-cell interactions mediated by either gap or 

adherens junctions also play an important role in maintaining intercellular 

communication between cells (13). Most commonly identified gap junctions in heart cells 

are connexin 43, 45, and 40 (15). Studies have shown that connexin 43 and 45 are 

expressed in cardiac cells at homogeneous (between cardiomyocytes) and heterogeneous 

(between cardiomyocytes and cardiac fibroblasts) cellular junctions (16). Cardiovascular 

cells are also known to communicate with each other intercellularly through adherens 

junctions, which are transmembrane proteins that interconnect the actin/intermediate 

filaments of adjacent cells (13). These proteins are known to mechanically couple the 

cells and participate in myofibril organization along with other proteins such as integrin 

β1 (17).  

Realizing the importance of cellular interactions, the goal of our study was to 

understand the effects of blocking cell-cell and cell-matrix interactions, particularly 

integrin β1 and N-cadherin interactions in vascular smooth muscle cells (VSMCs) and 

integrin β1 and connexin 43 interactions in cardiomyocytes (CMs) on the mechanical 

properties (stiffness) of cells. In order to have a better representation of in vivo like 

environment, studies were performed on scaffold free 3D culture system of cellular 

microtissues (spheroids).  
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Our study involves the use of 3D cell culture approach that will enable us to better 

mimic the native tissue form. Traditional 2D culture have not been able to replicate 

biological characteristics due to differences in cellular interactions among cells on flat 

plates as compared to in vivo tissues (18, 19). Various techniques such as filter inserts, 

polymer scaffolds, hydrogels, microfluidic chips, etc. have been developed to overcome 

this limitation (20-24). Among these methods, cell aggregate or spheroid culture method 

have been widely used for practical applications such as drug development and stem cell 

differentiation as they mimic tissue characteristics well (25, 26). Various techniques have 

been developed over the years to form spheroids such as hanging drop, spinner flasks, 

non-adherent surfaces, micro-fabricated scaffolds, microfluidic chips, stimulus-

responsive hydrogels and magnetic levitation (27-31). Our study involves use of hanging 

drop technique, as it is a relatively easy approach not requiring any special skill sets or 

equipment.   

1.15 Materials and methods 

Cell isolation and culture 

Primary cardiomyocytes (CMs) isolated from neonatal (3 day) rat hearts were 

used in his used. To isolate the cells, heart was removed, minced and subjected to 

collagenase dissociation by following established protocol (32). Aortic smooth muscle 

cells (VSMCs) were isolated from week 12 Sprague-Dawley rats as outlined in 

appendix A. The isolated cells were allowed to culture in T75 flasks under standard 

conditions (37°C, 5% CO2) supplemented with media containing DMEM (Dulbeccos 

Modified Eagles Medium) (Hyclone, Fisher scientific), 10% fetal bovine serum (FBS) 
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(Atlanta Biologicals), and 1% antibiotic/antimycotic solution (Gibco life technologies). 

Cells were passaged and replicated once they were 80% confluent to increase cell 

volume. VSMCs used in the experiments were from passages 5 through 8. Each cell 

type used in this study was subjected to 5 different media conditions, with different 

antibodies, to assess the influence of cellular interactions. The control media used for all 

experiments was: DMEM supplemented with 10% FBS and 1% streptomycin/penicillin. 

The culture conditions were varied by mixing the control media with different 

antibodies at a 5-µg/ml concentration (33). The list of antibodies used along with their 

manufacturer details are summarized in Table 0.1. 

CMs were subjected to following media conditions:  

control, control + 5 µg/ml IgG, control + 5 µg/ml anti-integrin β1, control + 5 µg/ml 

anti-connexin 43 and control + 5 µg/ml of both anti-connexin 43 and anti-integrin β1.  

VSMCs were treated with following media conditions: 

control, control + 5 µg/ml IgG, control + 5 µg/ml anti-integrin β1, control + 5 µg/ml 

monoclonal anti-N-Cadherin and control + 5 µg/ml of both anti-N-Cadherin and anti-

integrin β1.  

In order to explain the importance of culturing cells in 3D, we first performed 

experiments on CM cultured in monolayer and compared the results it to a freshly 

dissected neonatal rat heart. Significant differences were measured in apparent elastic 

modulus of cells in monolayer compared to that of heart tissue. Studies also involved 

culturing cardiomyocytes microtissues with fibroblast inhibitor cytosine arabinoside 

(AraC) and measuring cell mechanics.  
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   Table 0.1: Summary of antibodies (Ab) used 

Antibodies (Ab) Manufacturer Type Ab for CMs Ab for VSMCs 

Anti-integrin β1 Sigma Aldrich Polyclonal 
Rabbit IgG 

!  !  

Anti-connexin 43 Sigma Aldrich  Polyclonal 
Rabbit IgG 

!  x 

Anti-N-cadherin Sigma Aldrich Monoclonal 
Rat 

x !  

IgG Sigma Aldrich Rat IgG !  !  

 

Preparing cellular microtissues 

CMs and SMCs microtissues (spheroids) for created using hanging drop 

technique (figure 1). The cell density of isolated CMs and passaged VSMCs was obtained 

using ScepterTM2.0 cell counter (EMP Millipore). The suspension was then diluted with 

appropriate media conditions so as to have 5000 cells per 20-µl cell suspension droplets.  

For each media type, approximately 50 drops were carefully plated in two hydrophobic 

lids of 10 cm diameter tissue culture dishes. A water bath (8 ml PBS + 2 ml of control 

media) was created in the petri dish to avoid vaporization of cellular droplets. Cells were 

allowed to aggregate by gravity, by storing the petri dishes under standard cell culture 

conditions (37°C and 5% CO2) immediately after plating. The suspended state of the 

drops provided the environment for spheroid formation to occur.  
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Figure 0.1: Schematic of the protocol followed to form cellular spheroids 

Spheroid formation analysis 

To assess spheroid formation, images were taken with a digital camera mounted 

on an upright optical microscope through the lid of the dish after 5, 7 and 10 days. From 

these images, the projected area of the spheroids was measured with image processing 

software ImageJ. All images were converted to simplified threshold images under the 

same converting conditions and the edges of the spheroids were then detected using a 

selection too. Feret’s diameters of the detected spheroid edges were measured initially as 

pixels, and converted to micrometers by comparing to a reference length (18). For each 

media condition, at least 20 spheroids were imaged throughout all time points. Area of 

microtissues under each condition were calculated. 
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Atomic Force Microscopy (AFM) measurements 

In order to transfer spheroids for AFM analysis, pipette tips were cut at the middle 

and used to suction individual drops to avoid disturbing the integrity of the spheroids. 

Five spheroids for each media condition were transferred to the middle of a poly-L-lysine 

(Sigma-Aldreich) coated Fluorodish®(world precision instruments). Fluorodishes were 

left in the incubator for 2h at 37°C, 5% CO2 for the spheroids to attach to the bottom.  

Once the spheroids were attached to the flurodishes, AFM measurements were 

performed. All AFM experiments were carried out using Asylum Research MFP-3D 

AFM (Asylum Research, Santa Barbara, CA, USA) in contact mode under fluid 

conditions. 5 µm diameter borosilicate prove with silicon nitride triangular cantilever 

(450 µm length, 50 µm width) (CP-PNP-BSG, NanoandMore, USA) was used to 

mechanically probe each spheroid. Before each experiment, the deflection sensitivity 

(nm/V) was measured by indenting into a clean glass Fluorodish® in water. The tip was 

also calibrated prior to each experiment using thermal calibration in order to use the most 

accurate spring constant measures for calculations. The spring constant of the tip used 

ranged from 0.221 - 0.457 N/m.  
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Figure 0.2: Raw data collected from AFM. (L) Raw data: typical deflection of the 
cantilever vs. piezo movement graph obtained from AFM indentation. (R) AFM 
cantilever aligned on a cardiomyocyte microtissue before indentation. 

For each condition, at least 6 indentations in 3 randomly chosen locations for 3 

spheroids were made at 2-4 µm/s at a scan rate of 0.1-0.2 Hz. The force-distance curves 

were exported from the AFM Software and converted with custom written MATLAB 

script (MathWorks, Natick, MA, USA) to normalize the contact point. Contact point was 

defined as the point where the slope of the curve changed, with a slope sensitivity that 

varied from 0.005 to 0.01, depending on the level of noise. The stiffness (apparent elastic 

modulus) was then calculated using the spherical Hertz contact mode, according to the 

following equation: 

𝐹 =
4
3

𝐸
(1− υ!) 𝑅𝛿! 

Where F is the measured force (N), E is the apparent elastic modulus calculated 

(Pa), R is the probe radius (m), υ is the Poisson’s ratio (0.5) (5) and δ is the indentation 

depth (m). 

One-way ANOVA with Tukey Test for means comparisons with p<0.05 significance 

was used for statistical analysis of AFM results on the software Origin 8.5. 
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Figure 0.3: Sample force curve with Hertz model fit to the first 500nm of indentation 

Scanning electron micrograph (SEM) 

 SEM was performed on the CM microtissues to study the effects of AraC on the 

phenotype of the spheroids. Following protocol was followed to prepare spheroids for 

SEM: 

Primary Fixation: Immerse sample in 2.5% glutaraldehyde in 0.1M Cacodylate buffer, 

pH 7.4 for 2 hours at room temperature or at 4° C (in refrigerator) overnight. 

Primary Wash: 3 washes (each 5 minute duration) in 0.1 M cacodylate buffer pH 7.4 

Secondary Fixation: Immerse sample in 1% osmium tetroxide (aqueous) pH 7.4 for 1 

hour at room temperature and in a light tight container. 

Secondary Wash: 3 washes (each 5 minute duration) in 0.1 M cacodylate buffer pH 7.4 
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Dehydration: 1 x 10 min. in 25% ethanol1 x 10 min. in 50% ethanol1 x 10 min. in 70% 

ethanol1 x 10 min. in 85% ethanol1 x 10 min. in 95% ethanol2 x 10 min. in 100% 

ethanol1 x 10 min. in 100% ethanol (EM grade) 

Critical Point Dry: This automated process takes approximately 40 minutes to complete. 

Mounting: Mount the sample, which is now completely dried, onto metal stub with 

double-sided carbon tape. 

 

Immunostaining 

Fixation 

The spheroid staining protocol from Weiswald et al. (34) was followed with some 

modifications. Approximately 5 spheroids for each condition on day 5 were fixed and 

impermeabilized with a solution of PBS with 4% paraformaldehyde (PFA) and 1% Triton 

X-100 for 3h at 4°C. Afterwards, the samples were washed 3 times in PBS, lasting 10 

min each. Then, dehydration and rehydration in methanol of different concentrations at 

4°C in PBS followed: 25% (15 min), 50% (15 min), 75% (15 min), 95% (15 min), 100% 

(2h), 95% (15 min), 75% (15 min), 50% (15 min), 25% (15 min). Next, the samples were 

washed in PBS (3 x 10 min). At this point, samples could be stored up to one month. 

Staining 

The samples were blocked overnight at 4°C in a solution of PBST – PBS + 0.1% 

Triton X-100 containing 3% Bovine Serum Albumin (BSA).  Then, they were washed 

with PBST 2 times for 15 min. Since the samples already had primary antibodies in them, 
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they were incubated with secondary antibodies for 24h at 4°C. Washing step with PBS 

lasting 10 min followed this. Actin was stained with Phalloidin 488 for an hour followed 

by DAPI staining for nuclei for 30 min. Samples were than washed with PBS (thrice, 10 

min each) and stored at 4°C in PBS until ready to image. 

Table 0.2: Summary of the specific stains used to confirm blocking of cellular 
interactions 

CMs Microtissues VSMCs Microtissues 

Media conditions 
(1°Ab used) 

Staining and (2°Ab 
used) 

Media conditions 
(1°Ab used) 

Staining and (2°Ab 
used) 

No antibody control Phalloidin 488, DAPI No antibody control Phalloidin 488, DAPI 

Anti-integrin β1 in 
rabbit 

TRITCI anti-rabbit, 
Phalloidin 488, DAPI 

Anti-integrin β1 in 
rabbit 

TRITCI anti- rabbit, 
Phalloidin 488, DAPI 

Anti-connexin 43 in 
rabbit 

Cy 7 anti-rabbit, 
Phalloidin 488, DAPI 

Anti-N-cadherin in 
mouse 

Alexa fluor anti-
mouse, Phalloidin 
488, DAPI 

Anti-integrin β1 in 
rabbit + Anti-
connexin 43 

TRITCI anti-rabbit, 
Cy 7 anti-rabbit, 
Phalloidin 488, DAPI 

Anti-integrin β1 in 
rabbit + Anti-N-
cadherin 

TRITCI anti- rabbit, 
Alexa fluor anti-
mouse Phalloidin 
488, DAPI 

 
 

1.16 Results 

CM blocking studies on adherent cells 

 In order to explain the importance of culturing cells in 3D, we first performed 

experiments on CM cultured in monolayer and compared the results it to a freshly 

dissected neonatal rat heart. Significant differences were measured in apparent elastic 

modulus of cells in monolayer compared to that of heart tissue. 
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Figure 0.4: Apparent elastic modulus of CM cultured on traditional 2D surface at day 5 in 
culture compared to that of three day old neonatal rat heart Data presented percent error. 

 

 

CM Microtissues 

We are successfully able to form cardiomyocyte spheroids under antibody 

blocking conditions (Figure 0.5). Results suggest that there is no significant difference in 

the volume of control and experimental conditions of spheroids over days 4 through 7 in 

culture. Differences in the area (Figure 0.6) of spheroids at day 3 and day 10 in culture 

are indicative of the rate of spheroid formation as well as disintegration under various 

conditions. 
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Figure 0.5: Pictures of cardiomyocyte microtissues in culture under different media 
conditions using hanging drop technique over a period of 10 days. Scale bar ‘               ‘ = 
100 µm 
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Figure 0.6: Analysis of area of cardiac microtissues under different media conditions over 
10 days in hanging drop culture. Data presented as mean ± SD 

 
The mean apparent elastic moduli of day 5 cardiomyocyte microtissues with 

different media conditions are shown in Figure 0.7. The cells with no antibodies control 

and IgG control had average elastic moduli of 4.34 kPa and 5.26 kPa respectively. The 

cells under experimental (with antibodies) conditions had elastic moduli ranging from 

3.87 kPa to 4.11 kPa. The drop is elastic moduli in experimental studies compared to 

control were considered statistically significant (p<0.05) in most cases. Both, anti-

integrin β1 and anti-connexin 43 groups were significantly less stiff compared to control 

groups. All the antibody groups were significantly different from each other. The 

microtissues with antibodies were significantly less stiff compared to IgG control. The 

samples with connexin 43 antibodies were least stiff. There was no significant difference 

was observed on replicate indentations at same cellular location on each microtissue. 
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Figure 0.7: The apparent elastic moduli of cardiomyocyte microtissues under different 
media conditions at day 5 in culture (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). 

 

 
 
Figure 0.8: Scanning electron micrographs (SEM) displaying day 4 microtissues of 
cardiomyocytes.(L) Microtissues treated with control media. Cells produce extensive 
ECM within which the cells are held and barely distinguishable. (R) Microtissues treated 
with AraC media. The surface appears rough indicating AraC affects cellular 
environment.  
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VSMC Microtissues  

We are successfully able to form cardiomyocyte spheroids under antibody 

blocking conditions Figure 0.10. Analysis of the area (Figure 0.9) of the spheroids 

suggests that spheroids blocking cell-cell interactions individually and in combination 

affects the rate and compactness of spheroid formation. 

  

Figure 0.9: Analysis of area of vascular smooth muscle cell microtissues under different 
media conditions over 10 days in hanging drop culture. Data presented as mean ± SD. 
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Figure 0.10: Pictures of vascular smooth muscle cell microtissues cultured in different 
media conditions using hanging drop technique over a period of 10 days.  

Scale bar ‘               ‘ = 100µm. 
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The mean apparent elastic moduli of day 5 cardiomyocyte microtissues with 

different media conditions are shown in figure 9. The cells with no antibodies control and 

IgG control had average elastic moduli of 3.68 kPa and 3.38 kPa respectively. The cells 

under experimental (with antibodies) conditions had elastic moduli ranging from 2.86 

kPa to 4.12 kPa. No significant drop in modulus was observed in experimental conditions 

compared to control conditions, except for N-cadherin sample which were significantly 

(p<0.05) stiffer compared to IgG control. All the antibody groups were significantly 

different from each other. The samples with both antibodies were least stiff. There was no 

significant difference was observed on replicate indentations at same cellular location on 

each microtissue. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 0.11: The apparent elastic moduli of vascular smooth muscle cell microtissues 
under different media conditions at day 5 in culture (*p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001). 
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1.17 Discussion and conclusion 

Tissue elasticity is a highly regulated determinant of normal tissue development 

and function (35). Several studies have shown progressive stiffening on the extracellular 

matrix (ECM) in diseases including but not limited to cancer, cirrhosis, pulmonary 

fibrosis, and vascular diseases (36-39). Cell-cell and cell-ECM interactions are dynamic 

sites of chemical and mechanical stimuli that govern multiple phenomena, including cell 

sorting, wound healing, and tissue reorganization (40, 41).  

Here, we studied the effects of blocking specific cellular interaction individually 

and in combination on the mechanics of cardiomyocyte and vascular smooth muscle cell 

microtissues. Previous studies involving inhibition of cell-cell and cell-matrix 

interactions have focused on studying the effects of blocking on cell proliferation, 

migration, differentiation, adhesion, disease progression, and apoptosis (42-48). 

However, this is the first study that investigates the role of integrin β1, connexins 43, and 

N-cadherin mediated cellular interactions on mechanical properties of cardiovascular 

cells in scaffold free 3D culture system.  

Our results from cell-cell and cell-matrix interactions individually and in 

combination indicate significant drop in cellular stiffness in cardiac microtissues. 

However, the results from VSMC microtissues do not follow the same trend. VSMC 

studies show and increase in cellular stiffness by blocking cell-cell interactions. 

Interestingly, our results from blocking studies in microtissue follow similar trends to the 

blocking studies on 2D, adherent culture previously done in our lab. Blocking studies in 

2D have resulted in elastic moduli ranging from 2.3 kPa to 5.3 kPa under experimental 
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conditions, a significant drop compared to no antibody (8.6 kPa) and IgG (10.6 kPa) 

control conditions. Increase in stiffness of VSMCs spheroids on blocking N-cadherin 

interactions have been consistent with previous studies done in our lab in on VSMCs 

cultured on polyacrylamide gels, Charras et.al. (33) observed similar results by blocking 

E-cadherin interactions on epithelial cells on collagen gels.  

Through this study, we were for the first time able to make cellular microtissues 

of CMs and SMCs with the use of antibodies that block specific cellular interactions. 

This allowed us to replicate in vivo like cellular microenvironment as microtissues are 

shown to be better representative models of tissue like environment compared to adherent 

culture system. Our results indicate that cell stiffness changes under antibody blocking 

conditions in both cardiomyocyte as well as smooth muscle cells. Blocking cell-matrix 

interactions of integrin β1 results in decrease in stiffness of cells. However, blocking cell-

cell interactions of connexin 43 in CMs results in less stiff less, whereas N-cadherin 

blocking in VSMCs results in significantly stiffer cells.  Elastic modulus values suggest 

that integrin β1, connexins 43, and N-cadherin play an important role in determining 

cellular mechanical properties. 

The influence of connexin 43 and N-cadherin mediated cell-cell interactions and 

integrin β1 mediated cell-matrix interactions on elastic modulus of cellular microtissues 

were assessed for the first time in this study. Blocking these interactions individually and 

in combination resulted in reduced cellular elastic modulus in both CMs and SMCs 

(except anti N-cadherin media condition).  
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These results provide researchers with better understanding of the role of cellular 

adhesions in regulating mechanical properties at tissue scale. 
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CHAPTER FIVE 

CHARACTERIZING RADIAL AND AXIAL FORCES ON ISOLATED ADULT 
CARDIOMYOCYTES SIMULTANEOUSLY 

 

1.19 Introduction 
 

Cells are exposed to and must respond to variety of mechanical loads in vivo (1-

4). The response to mechanical stimuli is complex and depends on the magnitude (5) of 

the force applied as well as its rate (6). Mechanical properties of cells are responsible for 

many physiological processes and their alteration can lead to impaired biological 

functions and diseases (7, 8). Cardiac cells, in particular, are highly mechano-sensitive. 

Cardiomyocytes and fibroblasts change their phenotype in response to mechanical strain 

[REF] and these responses, in turn, modulate cardiac tissue The heart’s mechanical 

properties and behaviour, which depends on its constituent cells and extracellular matrix, 

are quite complex and directly affect the organ’s function. Both the active and passive 

mechanical properties of cardiomyocytes contribute to cardiac tissue mechanical 

properties. Active and passive mechanical behaviours of cells are thought to be related 

(7). However, experimental techniques are usually adapted to characterize only one of 

these properties in one dimension at a time. Cardiomyocytes, as they contract generate 

forces in both axial and radial directions simultaneously. While axial forces generated by 

beating isolated cardiomyocytes have been described in detail, corresponding radial 

mechanics remains poorly characterised. It is difficult to interrelate axial and radial 

mechanics experimentally, and to decouple active and passive force components with any 

single technique known to us. For example, micropipette aspiration (9), magnetic twisting 
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cytometry (10), optical stretchers (11) are used to determine the rheological behaviour, 

whereas actively generated traction forces are measured through the deformation of 

compliant gels (12) or 2D arrays of micropillars (13). Optical tweezers (14, 15) using 

micromemetic beads as probes are used to measure local subcellular mechanics. 

Depending on the size of the probe used, atomic force microscopy (AFM) (16, 17) can be 

used to investigate mechanics of cells from sub cellular to whole cell level. Carbon fibre 

(CF) technique has also been used extensively to study myocardial mechanics and 

mechano-electric coupling (18, 19). Parallel plate technique (20, 21) also allows for the 

measurement of cell mechanics on single cell as well as cellular aggregates, depending on 

the shape and dimension of the flexible plate used as force probe. But, there is no single 

technique that can measure mechanics on a single cell simultaneously in axial as well as 

radial directions in both active as well as passive conditions.  

To this end, our aim is to monitor simultaneously passive and active forces, both 

axially and radially, in ventricular cardiomyocytes freshly isolated from adult mouse. We 

propose a novel design that combines AFM and CF techniques under one set up. AFM is 

a popular technique used to probe mechanical response of cells (5, 22, 23). It has been 

used to measure both elastic (8) and viscous (3, 6, 24-27) cellular responses. AFM was 

used to apply and measure radial mechanics on a single cell. CF is a technique 

complimentary to AFM. It allows attachment of single isolated cardiomyocytes to carbon 

fibers for mechanical manipulation and measurement. CF’s are adhesive to cells and can 

be attached to its membrane keeping the cells intact as they are known not to damage 

cells (19). The CF technique allows for measurement of both active and passive 
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mechanical properties of cardiomyocytes in axial direction. This manuscript describes the 

novel combination of AFM and CF techniques to characterize active and passive 

mechanics (force and stiffness) of a single isolated cardiomyocyte both radially and 

axially simultaneously. 

 

1.20 Materials and methods 

 
To be able to apply stretch and characterize axial and radial forces, we combine a 

carbon fiber (CF) setup with a custom-designed atomic force microscope (AFM) system. 

 

Mouse Ventricular cardiomyocyte isolation 

All experiments were carried out in accordance with the UK Home Office 

guidance on the Operations of Animals Act of 1986.  

 

Perfusion chamber 

A custom designed 3D printed was used to optimize cell perfusion, temperature 

control and pacing. The perfusion chamber consisted of a glass coverslip coated with 

poly-HEMA (2-hydroxyethyl methacrylate; Sigma, UK) to prevent cell adhesion and 

minimize friction while stretching. Cells were paced at the frequency of 2 Hz with. The 

solution flow was maintained in the chamber using the solenoid pinch–valve system. 
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Carbon Fiber (CF) technique 

CF is a technique used to apply axial stretch on cells and measure active and 

passive forces. A pair of compliant, computer controlled and piezo positioned CFs 

attached to opposite ends of cell (glue free) are used to dynamically control the 

mechanical environment of isolated intact cardiomyocytes. To prepare the fibers, thin 

glass capillaries were pulled using pipette puller (PP-830, Narishige, Tokyo, Japan) from 

glass tubes (inner diameter: 1.16mm; outer diameter: 2.0mm) and a pair of CF was 

mounted on the fine tip of the pulled capillary. The narrow end of the capillary (holding 

CF) was thermally bent by 20° to allow parallel alignment of the fibers with the bottom 

of the chamber Figure 0.3. The length of the CF protruding out of the capillary was 

maintained at 1.20mm and fixed with a cyanoacrylate-adhesive. A force transducer 

system was used to calibrate the stiffness of the CFs. The wider end of the glass tube was 

fitted in the holder of a hydraulic manipulator (MW-300; Narishige, Tokyo, Japan) for 

controlled lowering of CF tips onto the cells. The hydraulic manipulator was mounted on 

top of a piezotranslator (P-623.1CL; Precision Instruments GmbH, Karlsruhe, Germany), 

fixed on sleighs of a railing system (IonOptix, Milton, MA, USA), which was driven by 

custom written LabViewTM script to allow accurate application of mechanical preloads  

(18). 

 

Atomic Force Microscopy (AFM) 

A custom designed AFM based on the LS-AFM design from AFM WorkshopTM, 

Signal Hill, CA, USA was used to characterize radial cell mechanics. The setup was 
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modified to give a large area for frontal access to fit CF set up underneath. To achieve an 

open-access AFM design, the laser path, tip holder, and sample stage had to be 

redesigned (Figure 0.1); the new system also does not interfere with the optical capture of 

the CF technique. For mechanical testing, cytoindentation experiments were performed 

using a 5 µm diameter borosilicate spherical tipped probe on a silicon nitride cantilever 

(450 µm length and 50 µm width) with a spring constant of ~0.25 N/m (CP-PNP-BSG, 

NanoandMore, UK). 

 

AFM-CF Alignment on cardiomyocyte 

Selected cells were positioned in the center of the field of view, and aligned 

parallel to the front edge of the microscope stage. CF’s were then lowered onto the 

opposite ends of a cardiomyocyte and the tips were attached to the cell.  Once CF’s were 

attached, perfusion in the system was started to maintain the temperature of the solution 

in the chamber. Following which, AFM tip was lowered making sure that the tip was 

aligned to the center of the cell. 

 

Criteria for selecting cells for measurements 

Only the cells that fulfilled the following criteria were used for measurements: i) 

rod-shaped cardiomyocytes with clear striations and well defined membrane free of 

granulations, ii) resting sarcomere length (SL) of at least 1.7 µm, and iii) lack of 

contraction in absence of electrical field simulation. 
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Data recording and analysis 

Before performing any force measurements on cells, the deflection sensitivity of 

AFM tip was calbriated by indenting on a clean glass slide in water. In addition, the 

spring constant of the tip was calibrated using a spectrum analyzer (oscilloscope) (Vertins 

Technology, VT DSO-2810R). Peak frequency and minimum and maximum frequencies 

(peak width) were recorded and spring constant was calculated using Sader method  (28). 

Isolated cardiomyocytes were placed in the chamber and all three probes (a pair 

of CFs and AFM tip) were aligned on a single cell. For each cell was indented twice 

before applying mechanical load (stretch) to get baseline (control) data. Following which, 

stretch of up to 50 µm (quantified by change in SL) was applied and passive forces in 

radial and axial directions were measured. Stretch on cell applied by piezotranslator 

movement, was compared to CF tip movement and the bending was used to identify 

passive force. Cells were paced and CF bending during contraction was recorded to 

identify active force generated axially. AFM indentation was performed simultaneously 

to quantify radial forces. 

CF positions and SL were monitored by a contrast-based detection system from 

IonOptix to quantitatively access cell deformation. Distance between CF tips gives 

accurate representation of effective cell lengthening as the cells are subjected to defined 

axial stretch. Sarcomere shortening was measured in real time, using fast Fourier 

transformation.  
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The force distance curve were exported from AFM software and analyzed with a 

custom written MATLAB script. Raw data from AFM, deflection of photodetector 

(Volts) vs. Z-piezo distance (nm) was converted to force (nN) vs. tip-sample separation 

distance (nm). The deflection was converted from Volts to nm using the deflection 

sensitivity parameter calibrated for each experiment. The indentation force was (F) was 

calculated using Hooke’s law (F = kδ) where k and δ denote the cantilevers spring 

constant and measured deflection of the cantilever respectively.  (29, 30) The indentation 

depth was calculated from the difference in the z-piezo movement and the deflection of 

the cantilever.  (29-32) Force data was further analyzed and active and passive radial 

forces under mechanical load were well as no load was recorded. Hertz’s linear elastic 

model for spherical indenter was used to analyze cell indentation data. 

𝐹 =   
4𝐸

3 1− 𝜈! 𝑅!𝛿
!
! 

where E is the elastic modulus (Young’s modulus), ν is the Poisson’s ratio (0.45), 

R is the radius of the indenter, F is the force measured, and δ is the indentation depth. 

 

1.21 Results 

 
Atomic Force Microscopy (AFM) and Carbon Fiber (CF): A novel combination 

This is a first report of quantifying radial and axial mechanics (forces) 

simultaneously on a single isolated cardiomyocyte. We successfully developed a set up 

that can combine AFM and CF techniques. AFM was custom designed and modified to 

enable frontal access to fit CF set up (Figure 0.1, Figure 0.2, Figure 0.3). This set up, for 
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the first time allows for multidimensional measurement of cell mechanics. It can also be 

combined with patch clamp set up, to measure cell mechanics with AFM while also 

performing patch clamp simultaneously to measure ion channel activity. 

 

 

Figure 0.1: Schematic of general view of the set up combining CF and AFM techniques. 
AFM laser source (1), mirror (2) and detector (3) sit on the top of the tip holder (4), the 
latter standing above the perfusion chamber (blue). CF holders (red) are mounted on 
manual (white arrows) and mechanical (grey arrows) micromanipulators allowing fast 
and fine positioning of the fibres. This assembly is standing on a piezo micromanipulator 
(red arrows) achieving displacements with micrometres accuracy to control cell stretch. 
The entire CF set up is mounted on a railing system (5) ensuring CF movement parallel to 
a single plane and allowing fast macroscopic alignmen to fthe fibres with the perfusion 
chamber. Experiments are performed using an inverted microscope and the MyoCam-S™ 
camera from IonOptix optimised to record sarcomere length. 
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Figure 0.2: Exploded view of the AFM main components, perfusion chamber and CF. 
The laser source (1), the mirror (2) and the detector (3) sit above the light lever assembly 
composed of the holder (4), the z-piezo (5) and the tip (6) holder (7). Underneath, a 3D-
printed perfusion chamber (8) was designed to optimise AFM and CF access. It 
welcomes two electrodes (9) for pacing, a temperature sensor (10) and tubing for in flow 
(11) and out flow (11’) to perfuse cells and keep the temperature constant. The chamber 
and the glass coverslip (12) constituting the bottom are screwed to chamber’s platform 
(13) by two holders (14). To help maintain the temperature the platform is heated (15) 
from both sides. CF holders (16) bring the bended glass capillaries (17) holding CF(18) 
in the field of view (19). 
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Figure 0.3: Side view of the AFM and CF setup. I) Detail of the laser path with a CF in 
working position. The laser is emitted at the back of the setup, is guided by a mirror to 
the tip of the cantilever, which reflects it to a detector (3). II) and III) show the AFM light 
lever and the two CF aligned with a single isolated cardiomyocyte. 

 
CF movement and sarcomere length detection 

Distance between CF tips represented effective cell-length involved in 

contraction/relaxation and being subjected to defined axial stretch. Cells were stretched 

up to a distance of 50 µm (motor displacement distance) in increments of 5, 10, 15, 20, 

30, 40, and 50 µm with CFs. The amount of stretch applied was quantified (actual cell 

strain) by calculating the change in sarcomere length upon CF displacement. CF length 

was calculated to have increased by up to 10% as the piezotranslators were moved up to 

distance of 50 µm. 

An increase in strain applied to the cell with CFs also resulted in an increase in 

the axial force measured. As the amount of stretch applied to cell increased from 0 to 50 

µm, the axial force increased linearly from 0 to 0.4 µN. 
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Figure 0.4: Sarcomere elongation in response to stretch (CF displacement). The % change 
in sarcomere length increased linearly with motor displacement. N = 4 mice, n = 19 cells 
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Figure 0.5: Passive axial force versus motor displacement. As anticipated, measured axial 
force increased with increasing motor displacement. N = 4 mice, n = 19 cells. 

Change in cell stiffness in response to stretch 

Figure 0.7 (A) shows all the three probes aligned on a single isolated adult rat 

cardiomyocyte. Figure 0.7 (B,C,D) represent trends observed on a single cell. It was also 

confirmed that the change in CF position with motor did result in stretching cell as seen 

by increase in sarcomere length. At each stretch applied to the cell, AFM cytoindentation 

was performed to measure elastic modulus of the cell. Our results indicate that radial 

stretch increases the apparent axial elastic modulus of ventricular cardiomyocytes 

significantly. Modulus along an individual cell was fairly uniform; no statistical 

significant difference in AFM data was observed on replicate indentations at same 

cellular location on each cardiomyocyte. The elastic modulus of cells increased linearly 

with increase in their sarcomere length. The results show that applying mechanical load 

on single cells axially results in increase in stiffness of the cell radially.  
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Figure 0.6: Change in apparent elastic modulus of cells in response to stretch. An 
increase in stiffness (E) of cardiomyocytes is observed as they are stretched axially. N = 4 
mice, n = 13 cells. 
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Figure 0.7: Data analysis on a single cardiomyocyte. Apparent elastic modulus is 
increased by stretch (n=1, external [Ca2+]=1.0 mM). (A) A single ventricular 
cardiomyocyte held by CF under the AFM cantilever. Insets show the contrast based 
sarcomere and CF detection using the Ion Wizard software developed by IonOptix. (B) 
CF displacement (black) increasing sarcomere length (blue) overtime. (C) Apparent 
elastic modulus as measured by AFM vs. stretch applied by carbon fibers. (D) Apparent 
elastic modulus versus sarcomere length expressed as a percentage of the sarcomere 
length at rest. 
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Figure 0.8: Change in axial stiffness of cells in response to applied axial force. N = 4 
mice, n = 19 cells. 

 
Figure 0.9: Change in radial force in response to stretch. Radial force as measured by 
AFM versus stretch applied by CF as observed by motor displacement.  

0"

5"

10"

15"

20"

25"

30"

35"

40"

45"

50"

Relax" Stretch" Stretch" Relax"

Ra
di
al
"fo

rc
e"
(n
N
)"

Radial"force"vs."motor"displacement"



71 

Discussion and conclusion 

In this study, we have successful at establishing a novel, multidimensional and 

multimodal technique to study single cell mechanics. We combined two different 

techniques of single cell mechanics measurements, AFM and CF, in same set up to allow 

measurement of multidimensional cell mechanics simultaneously.  

Indentation testing is an established method to determine samples material 

properties (33). AFM allows measuring mechanical properties of living cardiomyocytes 

with nanoscale resolution in transverse direction (30). So, we used this technique to 

examine potential changes in stiffness and forces on individual isolated cardiomyocytes 

in radial direction as mechanical load was applied simultaneously in axial direction. 

Carbon fibers can attach to the cells without disrupting the cell membrane, due to 

electrostatic forces between the CF surface and the myocyte surfaces (34, 35). We 

confirmed that as cells are stretched axially with CF’s, cellular force increases both 

axially and radially as measured by CF’s and AFM respectively. An increase in apparent 

elastic modulus of cells (stiffness) is also seen to have increased as they are being 

stretched. 

This new approach of characterizing cell mechanics gives a detailed picture of the 

balance between axial and radial forces in intact heart muscle cells at rest, during stretch, 

and in contraction. This will provide new insight to better understand force generation at 

cell and tissue levels. In addition to being able to combine AFM with CF, the new 

modified AFM can be coupled with other techniques as well due to wide frontal access. It 

can be combined with fluorescence microscopy, which will allow studying optogenetics 
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along with cell mechanics. It will also allow for study of ion channel activity along with 

mechanics by fitting patch clamp set up along with AFM.  
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 
 

1.23 Conclusions and discussion 
 

First part of this project involved studying cell mechanics in multidimensional 

system involving multiple modes of cellular interactions. We were successful at forming 

microtissues with two different cell types, cardiomyocytes and vascular smooth muscle 

cells. These provided us with a better model to mimic cellular microenvironment 

compared to traditional adherent cell culture. Our preliminary studies on cardiomyocyte 

microtissue culture model also involved use of fibroblast inhibitor cytosine arabinoside 

(AraC). AFM indentation and SEM analysis of microtissues with and without AraC 

revealed that AraC does interfere with the mechanics of CM. A significant drop in the 

apparent elastic modulus was observed on the cells with the inhibitor. SEM imaging also 

showed distinct difference in the roughness of the microtissues with AraC.  

Also, effects of cell-cell and cell-matrix interactions on mechanics (stiffness) of 

cells were studied. Specific cellular interactions were blocked individually and in 

combination using antibodies and AFM mechanical studies were performed. This was the 

first study to investigate role of integrin β1, connexins 43, and N-cadherin mediated 

cellular interactions on mechanical properties of cardiovascular cells in scaffold free 3D 

culture system. 

Our results from cell-cell and cell-matrix interactions individually and in 

combination indicate significant drop in cellular stiffness in cardiac microtissues. 
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However, the results from VSMC microtissues do not follow the same trend. VSMC 

studies show and increase in cellular stiffness by blocking cell-cell interactions. 

Interestingly, our results from blocking studies in microtissue follow similar trends to the 

blocking studies on 2D, adherent culture previously done in our lab. Blocking studies in 

2D have resulted in elastic moduli ranging from 2.3 kPa to 5.3 kPa under experimental 

conditions, a significant drop compared to no antibody (8.6 kPa) and IgG (10.6 kPa) 

control conditions. Increase in stiffness of VSMCs spheroids on blocking N-cadherin 

interactions have been consistent with previous studies done in our lab in on VSMCs 

cultured on polyacrylamide gels, Charras et.al. (1) observed similar results by blocking 

E-cadherin interactions on epithelial cells on collagen gels.  

Tissue elasticity is a highly regulated determinant of normal tissue development 

and function. Several studies have shown progressive stiffening on the extracellular 

matrix (ECM) in diseases including but not limited to cancer, cirrhosis, pulmonary 

fibrosis, and vascular diseases. Cell-cell and cell-ECM interactions are dynamic sites of 

chemical and mechanical stimuli that govern multiple phenomena, including cell sorting, 

wound healing, and tissue reorganization. Previous studies involving inhibition of cell-

cell and cell-matrix interactions have focused on studying the effects of blocking on cell 

proliferation, migration, differentiation, adhesion, disease progression, and apoptosis (2-

8). However, through this study, we were for the first time able to study effects of cell-

cell and cell-matrix interactions on the scaffold free 3D culture system, enabling more in 

vivo like environment.  



77 

Our results indicate that cell stiffness changes under antibody blocking conditions 

in both cardiomyocyte as well as smooth muscle cells. Blocking cell-matrix interactions 

of integrin β1 results in decrease in stiffness of cells. However, blocking cell-cell 

interactions of connexin 43 in CMs results in less stiff less, whereas N-cadherin blocking 

in VSMCs results in significantly stiffer cells.  Elastic modulus values suggest that 

integrin β1, connexins 43, and N-cadherin play an important role in determining cellular 

mechanical properties. The influence of connexin 43 and N-cadherin mediated cell-cell 

interactions and integrin β1 mediated cell-matrix interactions on elastic modulus of 

cellular microtissues were assessed for the first time in this study. Blocking these 

interactions individually and in combination resulted in reduced cellular elastic modulus 

in both CMs and SMCs (except anti N-cadherin media condition).  

These results provide researchers with better understanding of the role of cellular 

adhesions in regulating mechanical properties at tissue scale. 

Second part of the project involved studying mechanics of a single cell in 

multiple dimensions via. multiple modes of measurement. We were successful at 

establishing a novel, multidimensional and multimodal technique to study single cell 

mechanics. Two different techniques of single cell mechanics measurements, AFM and 

CF, were combined under a single set up to allow measurement of both radial and axial 

cell mechanics simultaneously.  

Indentation testing is an established method to determine samples material 

properties. AFM allows measuring mechanical properties of living cardiomyocytes with 

nanoscale resolution in transverse direction. So, we used this technique to examine 
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potential changes in stiffness and forces on individual isolated cardiomyocytes in radial 

direction as mechanical load was applied simultaneously in axial direction. Carbon fibers 

can attach to the cells without disrupting the cell membrane, due to electrostatic forces 

between the CF surface and the myocyte surfaces. We confirmed that as cells are 

stretched axially with CF’s, cellular force increases both axially and radially as measured 

by CF’s and AFM respectively. An increase in apparent elastic modulus of cells 

(stiffness) is also seen to have increased as they are being stretched. 

In addition, active and passive forces during rest and contracture on single 

cardiomyocytes were also measured. One of the important results from this study shows 

that every time axial stretch is applied with CF a corresponding increase in stiffness and 

force was measured in radial direction as measured by AFM. The forces and stiffness 

measured before and after the application of stretch were similar showing the elastic 

behavior of these important cells of heart.  

This new approach of characterizing cell mechanics gives a detailed picture of the 

balance between axial and radial forces in intact heart muscle cells at rest, during stretch, 

and in contraction. This will provide new insight to better understand force generation at 

cell and tissue levels.  

 

1.24 Recommendations for future work 
 
 

Quantitative analysis of microtissues 

 In cellular blocking studies (chapter 4) we performed ImageJ analysis of different 

microtissue to study phenotypic changes and mechanically probed them to measure their 
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stiffness. In order to quantitatively prove cellular blocking, immunofluorescence imaging 

needs to be performed. We already have a protocol optimized for staining spheroids, 

which will be used to perform these experiments. Further histology on spheroids needs to 

be performed to examine the variations in matrix production under different antibody 

conditions. 

 

Co-culture of cells in microtissue 

 The overall goal is to develop a tissue to organ level computational model that can 

predict response to mechanical stimuli in vivo. The model will be based on experimental 

studies performed at single cell and microtissue scale. In this study (chapter 4), we 

studied effects of blocking cellular interactions on its mechanics in cardiomyocyte and 

vascular smooth muscle cell microtissue models. However, cardiovascular system 

involves a wide array of additional cell types including but not limited to endothelial 

cells, fibroblasts, immune cells, mast cells, etc. In order to gain a better understanding of 

the affects of interactions of different cell types at tissue level, a co-culture of spheroids 

will be an ideal system. 

 

AFM-CF studies on diseased cells 

 In order to develop a tissue level model that incorporates mechanics observed at 

single cell level would require understanding of both healthy and diseased states. In 

chapter 5, we studied both radial and axial mechanics of a single adult cardiomyocyte 

from a healthy mice hearts. Replicating these studies on cells from diseased heart would 
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help better compare and understand the differences in the stiffness and forces in healthy 

versus diseased. 

 

Different set ups with modified AFM 

In addition to being able to combine AFM with CF, the new modified AFM can 

be coupled with other techniques also due to wide frontal access. It can be combined with 

fluorescence microscopy, which will allow studying optogenetics along with cell 

mechanics. Optogenetics is a method that uses light to modulate molecular events in a 

targeted manner in living cells or organisms. It relies on the use of genetically encoded 

proteins that change conformation in the presence of light to alter cell behavior (9). The 

new modified AFM will also allow for the study of ion channel activity along with 

mechanics by fitting patch clamp set up with AFM. This will allow for the measurement 

of both mechanical and electrical response of cells to loading. 

 

Create tissue level mechanical models 

 This work provided insights into the cellular mechanics in multiple dimensions at 

both single cells as well microtissue level. The ultimate fulfillment of this work would be 

its incorporation into a multiscale model, leading to the ability to tie macro- scale 

behaviors to nano- scale phenomenon. A finite element model of at tissue level that is 

based of from experimental data would be ideal. Such a model could potentially be used 

in drug development, tissue engineering, and regenerative medicine therapies, thereby 

possibly increasing the quality and longevity of lives in future. 
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Appendix A 

Vascular Smooth Muscle Cell Isolation Protocol 

 
Aortic VSMCs were isolated from week 12 Sprague-Dawley rats via the 

following protocol [1].  The rats were first euthanized by carbon dioxide asphyxiation.  

The abdomen was split longitudinally from the pelvis to the clavicle.  The internal organs 

were dissected away to expose the aorta along the posterior abdominal wall.  The aorta 

was then clipped at the pelvic bifurcation and dissected away from the dorsal abdominal 

wall to the aortic arch.  Approximately 3 ml of cold transport medium (Dulbecco’s 

Modified Eagle’s Medium (DMEM, Fisher Scientific, Pittsburgh, PA, USA) + 100 µg/ml 

penicillin/streptomycin (Sigma-Aldrich, St. Louis, MO, USA) + 2 µg/ml fungizone 

(Sigma-Aldrich)) was used to flush the aorta via hypodermic injection through the wall of 

the left ventricle.  The aorta was then clipped at the aortic arch and placed in cold 

transport medium for transport from the animal facility to the lab.  Next, excess fat and 

the adventitial layer of the artery were peeled away, in the presence of PBS to prevent 

drying and to maintain cell viability.  Arterioles were then trimmed away and the aortic 

segments split lengthwise and laid open with the intima facing up.  A sterile scalpel was 

used to scrape away the endothelial layer of the vessel.  The aortic segments were then 

rinsed in PBS to remove any loose cells on the surface.  Sterile scissors were used, under 

magnification, to finely mince the segments into approximately 0.5 mm pieces.  The 

minced artery segments were placed in 15 ml tubes, each containing 10 ml of a 

DMEM/protease digestion solution (10 ml DMEM + 10 mg collagenase type II 

(Worthington Biochemical, Lakewood, NJ, USA) + 2.5 mg elastase (Worthington 
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Biochemical) + 1.5 mg soybean trypsin inhibitor (Worthington Biochemical)).  The 15 

ml tubes were placed in an incubator for 20-25 minutes at 37ºC and 5% carbon dioxide 

with mixing (gently inverting tubes 2-3 times) every 5 minutes.  The aortic segments 

settled at the bottom of the tubes and the digestion solution was then aspirated.  Next, the 

segments were resuspended in 10 ml of vascular smooth muscle cell (VSMC) media 

(DMEM + 10% FBS (Sigma-Aldrich) + 1% antibiotic/antimycotic solution (Sigma-

Aldrich)) to dilute and deactivate the digestion solution.  A sterile scalpel blade was then 

used to lightly scratch a small asterisk shaped pattern on the bottom of each well in a six 

well plate to aid in the adhesion of the tissue segments.  Four arterial segments were 

placed in each well directly atop the scratched pattern, with a single drop of VSMC 

media to keep them moist and viable without allowing them to move from the scratched 

surface.  The plates were incubated for 24 hours to allow for adhesion and then 

supplemented with 1.5 ml additional media, being careful not to dislodge the attached 

tissue.  The plates were incubated for the next 7 to 10 days (until cells could be seen 

growing away from the tissue segments in several patches), with media changes every 48 

hours.  When the patches of adherent cells reached confluence, the tissue segments were 

carefully removed and the cells passaged and cultured with 12 ml media in T75 flasks. 
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Appendix B 

MATLAB Scripts (Chapter 4 data analysis) 
 

 
Example of what to call in command window: 

 
e = massexcompile('Day 5 VSMC')       (folder containing exported data) 
 
Scripts: 

massexcompile.m 

• Loads raw AFM force-indentation data 

function [elasticity Curves] = massexcompile(folderin) 

% folderin should be the folder your data is in. something like "C:\Documents and 

Setting\My Documents\MyData" 

mainfolder = cd 

format long 

fnames = dir(folderin); 

numfids = length(fnames); 

cd(folderin); 

%filtering out irrelevent "files" such as '.' and '..' 

cellnames = {}; 

for s = 1:numfids; 

    if 'c' == fnames(s).name(1) % 'c' represents the letter that the relevent file names begin 

with 

        cellnames{end+1} = fnames(s).name; 
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    end 

end 

%combine every 3 files and write 

counter = 1; 

numcell = length(cellnames); 

numfile = 1; 

elasticity = [];  

% OMIT THIS WHILE LOOP IF YOU WANT TO LOAD CELLS INDIVIDUALLY 

Curves(numcell, 1) = struct('extension', [], 'retraction', []); 

CurrentCell =1; 

while counter <= numcell 

    a = load(cellnames{counter}); 

    c = load(cellnames{counter+2});     

    cd(mainfolder); 

    [elasticity(end+1,1) xe ye xr yr] = elast_analysis(c,a,mainfolder,counter); 

    Curves(CurrentCell).extension = [xe ye]; 

    Curves(CurrentCell).retraction = [xr yr]; 

    %figure('Name',sprintf('Cell %d', ((counter-1)/3)+1),'NumberTitle','off')  %comment 

out in order to turn plotting off 

    %plot(c,a)                  %comment out in order to turn plotting off  

    counter = counter+3; 

    CurrentCell = CurrentCell+1; 
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    cd(folderin); 

    %numfile = numfile+1 

end 

cd(mainfolder) 

elast_analysis.m 

• Fits Hertz model to force-indentation data and outputs apparent elastic modulus 

measures in Pascals for each indentation file in input folder 

• Calls AFM_butter.m and xycorrect.m scripts 

function [e xe ye xr yr] = elast_analysis(c,a,mainfolder,counter) 

cd(mainfolder) 

format long 

k = 0.12; %spring constant value N/m 

v = 0.5; %poisson's ratio 

R = 2.5*10^-6;  % tip radius in meters 

L = 30*10^-9 ;     %lower bound for elasticity (in m from contact point) 

U = 300*10^-9 ;   %upper bound for elasticity (in m from contact point)  

%adjust deflection 

ak = a; 

%filter deflection values 

d = AFM_butter(ak); 

%Separation of extension and retraction 

l = floor(length(c)/2); 
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xe = c(200:l);% add 200 in order to omit first several data points (irratic behavior due to 

filtering 

ye = d(200:l); 

if rem(length(c),2)==0; 

    xr = c(end-200:-1:l+1); % subtract 200 in order to omit first several data points 

    yr = d(end-200:-1:l+1); 

    else 

    xr = c(end-200:-1:l+2); 

    yr = d(end-200:-1:l+2); 

end 

%correct x,y offsets 

[xe,ye] = xycorrect(xe,ye); 

[xr,yr] = xycorrect(xr,yr);  

ye = k * ye; 

yr = k * yr; 

format long; 

erange = []; 

for i = [1:1:length(xe)]; 

    if xe(i)>=L && xe(i)<=U; 

        erange(end+1) = i; 

    end; 

end; 
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rrange = []; 

for i = [1:1:length(xr)]; 

    if xr(i)>=L && xr(i)<=U; 

        rrange(end+1) = i; 

    end; 

end;  

emodulus = mean((3.*ye(erange).*(1-v^2))./(4.*xe(erange).^(3/2).*R.^(1/2))); 

%rmodulus = mean((3.*yr(rrange).*(1-v^2))./(4.*xr(rrange).^(3/2).*R.^(1/2))); 

figure('Name',sprintf('Sample %d', ((counter-1)/3)+1),'NumberTitle','off') 

plot(xe,ye) 

hold on 

plot(xe(erange),ye(erange),'r') 

e = [emodulus]; 

 

AFM_butter.m 

Applies Butterworth filter to data 

function [i] = AFM_butter(x) %applies butterworth filter to data 

format long 

[b,a]=butter(3,.025); 

i=filter(b,a,x); 

xycorrect.m 

Corrects x and y offsets in data to set contact point to (0,0) 



90 

function [xc,yc] = xycorrect(x,y) 

s = 0.008; %slope sensitivity 

%correction for y 

format long 

region = [1:length(x)/4]; 

slope = polyfit(x(region),y(region),1); 

yci = y-(polyval(slope, x)); 

%correction for x 

numslope = diff(yci)./diff(x); 

index = 1; 

condition = 0; 

contactx = 0 

while condition == 0 && index ~= length(numslope) 

    if numslope(index) > s && mean(numslope(index:5:index+200)) > s; 

        condition = 1; 

        contactx = index; 

    end 

    index = index+1; 

end  

xc = x-x(contactx)-yci; 

% correct again for y 

yc = yci-yci(contactx);  
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Appendix C 

MATLAB Scripts (Chapter 5 data analysis) 

 

ImportAFMWorkshopForces.m 

function [RawData] = ImportAFMWorkshopForces(DirectoryName) 

% function [RawData] = ImportAFMWorkshopForces(DirectoryName) 

% For converting and analyzing AFM data from the AFMWorkshop machine, start with 

this function! Then you can use, ConvertAFMWorkshop to do the rest of the data 

conversion and analysis. This function reads in the data from the AFM .csv raw data files.  

% DirectoryName is the string representing the directory where the data files are located.  

% The data will be imported into RawData. This will be a structure with fields for the 

File name, directory name, raw data, etc.  

% Please see the function ConvertAFMWorkshopForce.m for more information on what 

to do next. 

FileNames = dir(DirectoryName); 

NumFiles = length(FileNames); 

RawData = struct('FileName', {}, 'DirectoryName', {}, 'RawData', {}, 'k', {}, 'DefSens', 

{}, 'Rtip', {}, 'ConvertedData', {}, 'Modulus', {}, 'ModulusStd', {}, 'Hysteresis', {}, 

'PointByPointE', {}); 

% Mac = input('is this a Mac? yes or no ', 's'); 

Mac = strfind(DirectoryName, '/'); 

Mac = sum(Mac) >0; 
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NonDataFileCounter = 0; 

for i = 1:NumFiles, 

    LengthName = length(FileNames(i).name); 

    if LengthName>3  

        if (FileNames(i).isdir == 0) && strcmp(FileNames(i).name(LengthName-

3:LengthName), '.csv') 

            if strcmp(Mac, 'yes') 

                CurFile = strcat(DirectoryName, '/', FileNames(i).name); 

            else 

                CurFile = strcat(DirectoryName, '\', FileNames(i).name); 

            end 

            CurData = importdata(CurFile, ',', 4); % assumes 4 lines of header and 

delimination with ',' 

            RawData(i-NonDataFileCounter).FileName = FileNames(i); 

            RawData(i-NonDataFileCounter).DirectoryName = DirectoryName; 

            RawData(i-NonDataFileCounter).RawData = CurData.data; 

        else 

            NonDataFileCounter = NonDataFileCounter+1; 

        end 

    else 

        NonDataFileCounter = NonDataFileCounter+1; 

    end 
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end 

ConvertAFMWorkshopForce.m 

function [DataStructure] = ConvertAFMWorkshopForce(InDataStructure, varargin) 

DataStructure = InDataStructure; 

NumberOfExtraInputs = length(varargin); 

NumDataSets = length(DataStructure); 

prompt = 1; 

Ramp = 0; 

CurDefSens = DataStructure(1).DefSens; 

CurK = DataStructure(1).k; 

if isempty(CurK), 

    CurK = input('Enter the spring constant in N/m: '); 

end 

if isempty(DataStructure(1).Rtip) 

    Rtip = input('Enter the tip radius in nm: '); 

end 

DataConvPrompt = input('Do you want to convert your raw data to force-distance 

curves? (yes or no) ', 's'); 

if strcmp(DataConvPrompt, 'yes') 

    for i =1:NumDataSets, 

        disp('Processing file: ') 

        DataStructure(i).FileName.name 
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        [m n] = size(DataStructure(i).RawData); 

        if isempty(CurDefSens)&&isempty(DataStructure(i).DefSens), 

            disp('What is the deflection sensitivity (in nm/V)? if unknown, please') 

            disp('enter 0 and I will assume that this is a calibration data on a ') 

            CurDefSens = input('hard substrate and use the first data set to calculate it  '); 

        elseif isempty(DataStructure(i).DefSens) 

            DataStructure(i).DefSens = CurDefSens; 

        else 

            CurDefSens = DataStructure(i).DefSens; 

        end 

        if isempty(DataStructure(i).k) 

            DataStructure(i).k = CurK; 

        end 

        if isempty(DataStructure(i).Rtip) 

            DataStructure(i).Rtip = Rtip; 

        end 

        if n ==2 && prompt, 

            Ramp = input('What is the size of the ramp used for this data? (in nm) '); 

            PAns = input('Is the ramp size for every file the same? (yes or no) ', 's'); 

            prompt = strcmp(PAns, 'no'); 

        end 

        if n ==2, 



95 

            [DataStructure(i).ConvertedData,  DataStructure(i).DefSens] = 

ConvertAFMWorkshopOldForce(DataStructure(i).RawData, Ramp, CurDefSens, 

DataStructure(i).k); 

        else 

            [DataStructure(i).ConvertedData,  DataStructure(i).DefSens] = 

ConvertAFMWorkshopNewForce(DataStructure(i).RawData, CurDefSens, 

DataStructure(i).k); 

        end 

    end 

end 

DataAnalysisPrompt = input('Do you want to analyze your curves to get modulus values? 

(yes or no) ', 's'); 

if strcmp(DataAnalysisPrompt, 'yes') 

    for i = 1:NumDataSets, 

        [DataStructure(i).Modulus, DataStructure(i).ModulusStd, 

DataStructure(i).Hysteresis, DataStructure(i).PointByPointE] = 

AnalyzeForceCurveAFMWorkshop(DataStructure(i).ConvertedData, 

DataStructure(i).Rtip); 

    end 

end 

ConvertAFMWorkshopNewForce.m 
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function [ConvertedData, DefSens] = ConvertAFMWorkshopNewForce(RawData, 

DefSens, SpringConstant) 

disp('Length of data is: ') 

NumDataPoints = ( length(RawData(:, 1)))  

RawData = RawData(1:NumDataPoints, :);  

% Assume a linear approach on Z and use the RampSize as the range 

ZApproach = RawData(:, 1)- RawData(1,1); 

ZRetract = RawData(:, 3)- RawData(1, 3); 

figure 

plot(ZApproach, RawData(:, 2)) 

IsIndent = input('Is this indentation data? (default is yes) ', 's'); 

if isempty(IsIndent) 

    IsIndent = 'yes'; 

end 

disp('I will remove the baseline ofset. If you do not enter values, I will use the program 

defaults.\n') 

MinX = input('what is the minimum x value on the graph that you consider baseline? '); 

MaxX = input('what is the maximum x value on the graph that you consider basline? '); 

CurrentPosition = NumDataPoints; 

BeginFlag = 1; %BeginFlag is 0 when you have found the beginning position of the 

baseline in the data 
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EndFlag = 1;  %EndFlag is 0 when you have found the ending position of the baseline in 

the data 

if isempty(MinX) 

    % Remove baseline shift from data. Here we assume that at least the first 

    % half of the data is baseline (i.e. the tip is approaching the sample 

    % but hasn't touched it yet).  

    FractionBaseLine = 1/2; % fraction of data that is baseline 

    BeginBaseLine = round(NumDataPoints * FractionBaseLine); 

    BeginFlag = 0; 

end 

if isempty(MaxX) 

    EndBaseLine = NumDataPoints; 

    EndFlag = 0; 

end 

while CurrentPosition > 1 && (BeginFlag || EndFlag) 

    if ZApproach(CurrentPosition, 1)< MaxX && EndFlag 

        EndBaseLine = CurrentPosition; 

        EndFlag = 0; 

    end 

    if ZApproach(CurrentPosition, 1) < MinX && BeginFlag 

        BeginBaseLine = CurrentPosition; 

        BeginFlag = 0; 



98 

    end 

    CurrentPosition = CurrentPosition -1; 

end         

ZAppFit = ZApproach(BeginBaseLine:EndBaseLine, 1); 

RawDataFit = RawData(BeginBaseLine:EndBaseLine, 2); 

BaseLineFit = polyfit(ZAppFit, RawDataFit, 1); 

% hold on 

% plot(ZApproach, RawData(:,1), 'b'); 

% plot(ZApproach, LinearBaselineFit, 'g'); 

ConvertedDataForceApproach = RawData(:, 2) - polyval(BaseLineFit, ZApproach); 

ConvertedDataForceRetract = RawData(:, 4) - polyval(BaseLineFit, ZRetract); 

ConvertedDataForceRetract = ConvertedDataForceRetract - 

mean(ConvertedDataForceRetract(NumDataPoints-5:NumDataPoints, 1)); 

  

ConvertedData = [ZApproach ConvertedDataForceApproach ZRetract 

ConvertedDataForceRetract]; 

  

% hold on 

% plot(ConvertedData(:, 1), ConvertedData(:, 2), 'b') 

% plot(ConvertedData(:, 3), ConvertedData(:, 4), 'r') 

  

if DefSens ==0 
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    % calculate the deflection sensitivity if it was not passed in 

    % This assumes that the deflection sensistivity is calculated on the 

    % part of the data that goes above ThreshVolt of value.  

    DefSensPoints = BeginBaseLine; 

    Base = mean(ConvertedData(DefSensPoints:EndBaseLine,2)); 

    CurrentLevelDeflection=Base; 

    figure 

    plot(ConvertedData(:, 1), ConvertedData(:, 2)) 

    ThreshVolt = input('Around what y-value on the graph would you like to calculate the 

deflection sensitivity? '); %Threshold value (in V) over which you have hit the surface 

    if isempty(ThreshVolt) 

        disp('I will use the default 0.2 since you did not enter a value') 

        ThreshVolt = 0.2; 

    end 

    while (DefSensPoints>5)&& (CurrentLevelDeflection-Base)<ThreshVolt 

        CurrentLevelDeflection = mean(ConvertedData(DefSensPoints-5:DefSensPoints+5, 

2)); 

        DefSensPoints = DefSensPoints-1;         

    end 

    DefSensPoints 

    %hold on 
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    %plot(ConvertedData(DefSensPoints-10:DefSensPoints+10, 1), 

ConvertedData(DefSensPoints-10:DefSensPoints+10, 2), '.g') 

    DefSensFit = polyfit(ConvertedData(DefSensPoints-5:DefSensPoints+5, 1), 

ConvertedData(DefSensPoints-5:DefSensPoints+5, 2), 1); 

    DefSens = -1/DefSensFit(1) 

    %figure 

end 

% convert the deflection data from V to nm 

ConvertedData(:, 2) = ConvertedData(:, 2)*DefSens; 

ConvertedData(:, 4) = ConvertedData(:, 4)*DefSens; 

  

% convert Z piezo distance to tip-sample separation 

ConvertedData(:, 1) = ConvertedData(:, 1) + ConvertedData(:, 2); 

ConvertedData(:, 3) = ConvertedData(:, 3) + ConvertedData(:, 4); 

  

% convert the deflection data from nm to nN 

ConvertedData(:, 2) = ConvertedData(:, 2)*SpringConstant; 

ConvertedData(:, 4) = ConvertedData(:, 4)*SpringConstant; 

BaseLineNoiseLevel = std(ConvertedData(BeginBaseLine:EndBaseLine, 2)); %Level of 

noise on the baseline in nN 

  

% find contact point 
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ContactPoint = NumDataPoints-5; 

  

while ContactPoint >6 && mean(ConvertedData(ContactPoint-5:ContactPoint+5, 

2))<BaseLineNoiseLevel*5     

    ContactPoint = ContactPoint-1; 

end     

ContactDist = ConvertedData(ContactPoint, 1) 

ConvertedData(:, 1) = ConvertedData(:, 1)- ContactDist; 

ConvertedData(:, 3) = ConvertedData(:, 3) - ContactDist; 

  

if strcmp(IsIndent, 'yes') 

    ConvertedData(:, 1) = -ConvertedData(:, 1); 

    ConvertedData(:, 3) = -ConvertedData(:, 3); 

end  

%figure 

plot(ConvertedData(:, 1), ConvertedData(:, 2), 'b') 

hold on 

plot(ConvertedData(:, 3), ConvertedData(:, 4), 'r') 

ConvertAFMWorkshopOldForce.m 

function [ConvertedData, DefSens] = ConvertAFMWorkshopOldForce(RawData, 

RampSize, DefSens, SpringConstant) 

disp('Length of data is: ') 



102 

NumDataPoints = ( length(RawData(:, 1)) - 1) %The last point in the input file is always 

a NaN so remove it. 

RawData = RawData(1:NumDataPoints, :); 

  

% Assume a linear approach on Z and use the RampSize as the range 

ZApproach = linspace(0, RampSize, NumDataPoints)'; 

ZRetract = ZApproach; 

  

figure 

plot(ZApproach, RawData(:, 1))  

IsIndent = input('Is this indentation data? (default is yes) ', 's'); 

if isempty(IsIndent) 

    IsIndent = 'yes'; 

end 

disp('I will remove the baseline ofset. If you do not enter values, I will use the program 

defaults.\n') 

MinX = input('what is the minimum x value on the graph that you consider baseline? '); 

MaxX = input('what is the maximum x value on the graph that you consider basline? '); 

CurrentPosition = NumDataPoints; 

BeginFlag = 1; %BeginFlag is 0 when you have found the beginning position of the 

baseline in the data 
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EndFlag = 1;  %EndFlag is 0 when you have found the ending position of the baseline in 

the data 

if isempty(MinX) 

    % Remove baseline shift from data. Here we assume that at least the first 

    % half of the data is baseline (i.e. the tip is approaching the sample 

    % but hasn't touched it yet).  

    FractionBaseLine = 1/2; % fraction of data that is baseline 

    BeginBaseLine = round(NumDataPoints * FractionBaseLine); 

    BeginFlag = 0; 

end 

  

if isempty(MaxX) 

    EndBaseLine = NumDataPoints; 

    EndFlag = 0; 

end    

while CurrentPosition > 1 && (BeginFlag || EndFlag) 

    if ZApproach(CurrentPosition, 1)< MaxX && EndFlag 

        EndBaseLine = CurrentPosition; 

        EndFlag = 0; 

    end 

    if ZApproach(CurrentPosition, 1) < MinX && BeginFlag 

        BeginBaseLine = CurrentPosition; 
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        BeginFlag = 0; 

    end 

    CurrentPosition = CurrentPosition -1; 

end 

         

ZAppFit = ZApproach(BeginBaseLine:EndBaseLine, 1); 

RawDataFit = RawData(BeginBaseLine:EndBaseLine, 1); 

BaseLineFit = polyfit(ZAppFit, RawDataFit, 1); 

% hold on 

% plot(ZApproach, RawData(:,1), 'b'); 

% plot(ZApproach, LinearBaselineFit, 'g'); 

ConvertedDataForceApproach = RawData(:, 1) - polyval(BaseLineFit, ZApproach); 

ConvertedDataForceRetract = RawData(:, 2) - polyval(BaseLineFit, ZRetract); 

ConvertedDataForceRetract = ConvertedDataForceRetract - 

mean(ConvertedDataForceRetract(NumDataPoints-5:NumDataPoints, 1)); 

  

ConvertedData = [ZApproach ConvertedDataForceApproach ZRetract 

ConvertedDataForceRetract]; 

  

% hold on 

% plot(ConvertedData(:, 1), ConvertedData(:, 2), 'b') 

% plot(ConvertedData(:, 3), ConvertedData(:, 4), 'r') 
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if DefSens ==0 

    % calculate the deflection sensitivity if it was not passed in 

    % This assumes that the deflection sensistivity is calculated on the 

    % part of the data that goes above ThreshVolt of value.  

    DefSensPoints = NumDataPoints-10; 

    Base = mean(ConvertedData(DefSensPoints:DefSensPoints+10,2)); 

    CurrentLevelDeflection=Base; 

    figure 

    plot(ConvertedData(:, 1), ConvertedData(:, 2)) 

    ThreshVolt = input('Around what y-value on the graph would you like to calculate the 

deflection sensitivity? '); %Threshold value (in V) over which you have hit the surface 

    if isempty(ThreshVolt) 

        disp('I will use the default 0.2 since you did not enter a value') 

        ThreshVolt = 0.2; 

    end 

    while (DefSensPoints>1)&& (CurrentLevelDeflection-Base)<ThreshVolt 

        CurrentLevelDeflection = mean(ConvertedData(DefSensPoints:DefSensPoints+10, 

2)); 

        DefSensPoints = DefSensPoints-1;         

    end 



106 

    %plot(ConvertedData(DefSensPoints-10:DefSensPoints+10, 1), 

ConvertedData(DefSensPoints-10:DefSensPoints+10, 2), '.g') 

    DefSensFit = polyfit(ConvertedData(DefSensPoints-10:DefSensPoints+10, 1), 

ConvertedData(DefSensPoints-10:DefSensPoints+10, 2), 1); 

    DefSens = -1/DefSensFit(1) 

end 

 

% convert the deflection data from V to nm 

ConvertedData(:, 2) = ConvertedData(:, 2)*DefSens; 

ConvertedData(:, 4) = ConvertedData(:, 4)*DefSens; 

% convert Z piezo distance to tip-sample separation 

ConvertedData(:, 1) = ConvertedData(:, 1) + ConvertedData(:, 2); 

ConvertedData(:, 3) = ConvertedData(:, 3) + ConvertedData(:, 4); 

% convert the deflection data from nm to nN 

ConvertedData(:, 2) = ConvertedData(:, 2)*SpringConstant; 

ConvertedData(:, 4) = ConvertedData(:, 4)*SpringConstant; 

BaseLineNoiseLevel = std(ConvertedData(BeginBaseLine:EndBaseLine, 2)); %Level of 

noise on the baseline in nN  

% find contact point 

ContactPoint = EndBaseLine;  

while ContactPoint >6 && mean(ConvertedData(ContactPoint-5:ContactPoint+5, 

2))<BaseLineNoiseLevel*5     
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    ContactPoint = ContactPoint-1; 

end 

     

ContactDist = ConvertedData(ContactPoint, 1) 

ConvertedData(:, 1) = ConvertedData(:, 1)- ContactDist; 

ConvertedData(:, 3) = ConvertedData(:, 3) - ContactDist;  

if strcmp(IsIndent, 'yes') 

    ConvertedData(:, 1) = -ConvertedData(:, 1); 

    ConvertedData(:, 3) = -ConvertedData(:, 3); 

end 

  

%figure 

plot(ConvertedData(:, 1), ConvertedData(:, 2), 'b') 

hold on 

plot(ConvertedData(:, 3), ConvertedData(:, 4), 'r') 

 

AnalyzeForceCurveAFMWorkshop.m 

function [AvgE, StdE, Hyster, Eptbypt] = 

AnalyzeForceCurveAFMWorkshop(ConvertedData, Rtip) 

IndentDepth = ConvertedData(:, 1)*10^-9; % indentation depth in m 

IndentForce = ConvertedData(:, 2)*10^-9; % indentation force in N 

Rtip = Rtip*10^-9; % tip radius in m 
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mu = 0.45; % Poisson's ratio 

NumPts = length(IndentDepth);  

% Indentation depth over which you will calculate the average modulus 

MaxDepth = 1000*10^-9;  

MinDepth = 50*10^-9;  

 

% Hertz model: F = 4*E/3/(1-mu^2)sqrt(R)*Depth^1.5 

  

Eptbypt = 3/4*IndentForce.*(1-mu^2)/sqrt(Rtip)./IndentDepth.^1.5*10^-3; % Point by 

point modulus in kPa 

  

MinIndex = NumPts; 

MaxIndex = 1; 

AreaIndent = 0; 

AreaRetract = 0; 

for i = 2:NumPts, 

    %Sum up the areas for the hysteresis calculation 

    %Area under approach curve 

    if IndentDepth(i)> 0, 

        AreaIndent = AreaIndent+ ConvertedData(i, 2)*(ConvertedData(i, 1)-

ConvertedData(i-1, 1)); 

    end 
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    % Area under retraction curve 

    if ConvertedData(i, 3)>0, 

        AreaRetract= AreaRetract+ ConvertedData(i, 4)*(ConvertedData(i, 3)-

ConvertedData(i-1, 3)); 

    end 

    % Find the min an max indices that correspond to the region of the 

    % indentation curve over which you will average the modulus 

    if IndentDepth(i)>MaxDepth 

        MaxIndex = i; 

    elseif (IndentDepth(i) > MinDepth) 

        MinIndex = i; 

    end 

end 

MinIndex 

MaxIndex 

AvgE = mean(Eptbypt(MaxIndex:MinIndex)); 

StdE = std(Eptbypt(MaxIndex:MinIndex));  

Hyster = (AreaIndent-AreaRetract)/AreaRetract; %normalized hysteresis 

 

AverageModuli.m 

function [AvgE, StdE, Moduli, AvgH, StdH, HysteresisAll] = 

AverageModuli(DataStructure) 
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[NumFields, NumDataFiles] = size(DataStructure); 

Moduli = []; 

HysteresisAll = []; 

for i = 1:NumDataFiles 

    Moduli = [Moduli; DataStructure(i).Modulus]; 

    HysteresisAll = [HysteresisAll; DataStructure(i).Hysterisis]; 

end 

AvgE = mean(Moduli); 

StdE = std(Moduli); 

AvgH = mean(HysteresisAll); 

StdH = std(HysteresisAll); 

 

SaderMethod.m 

function SpringConstant = SaderMethod(LengthCantilever, WidthCantilever,PeakF, 

varargin) 

NumArg = length(varargin); 

if NumArg>0 && NumArg<4, 

    if NumArg == 1, 

        Q = cell2mat(varargin(1)); 

        disp('assuming the measurements were made in air') 

        air = 1; 

    elseif NumArg ==2, 
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        if cell2mat(varargin(2)) ~=1 && cell2mat(varargin(2))~=2, 

            disp('assuming the measurements were made in air') 

            minF = cell2mat(varargin(1)); 

            maxF = cell2mat(varargin(2)); 

            Q = abs(PeakF/ (maxF - minF)) %calculate the quality factor (absolute value there 

just in case user confuses min and max frequencies) 

            air =1; 

        else 

            air = cell2mat(varargin(2)); 

            Q = cell2mat(varargin(1)); 

        end 

    elseif NumArg == 3, 

        minF = cell2mat(varargin(1)); 

        maxF = cell2mat(varargin(2)); 

        Q = abs(PeakF/ (maxF - minF)) %calculate the quality factor (absolute value there 

just in case user confuses min and max frequencies) 

        air = cell2mat(varargin(3)); 

    end 

     

    PeakW = PeakF*2*pi*1000; % convert frequency from Hertz to radians 

    Width = WidthCantilever *10^-6; % convert to m 

    Length = LengthCantilever *10^-6; %convert to m 
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    % assign fluid density (if air or water) 

    if air 

        rho = 1.225; %kg/m3 density of air 

        eta = 1.86*10^-5; %viscosity of air 

    else 

        rho = 999.97; %kg/m3 density of water 

        eta = 8.94*10^-4; %viscosity of water 

    end 

     

    Ren = rho*PeakW*Width^2/4/eta; 

     

    tau = log10(Ren); 

     

    OmegaR = (0.91324-0.48274*tau+0.46842*tau^2-0.12886*tau^3+0.044055*tau^4-

0.0035117*tau^5+0.00069085*tau^6)/(1-0.56964*tau+0.48690*tau^2-

0.1344*tau^3+0.045155*tau^4-0.0035862*tau^5+0.00069085*tau^6); 

    OmegaI = (-0.024134-0.029256*tau+0.016294*tau^2-

0.00010961*tau^3+0.000064577*tau^4-0.000044510*tau^5)/(1-

0.059702*tau+0.55182*tau^2-0.18357*tau^3+0.079156*tau^4-

0.014369*tau^5+0.0028361*tau^6); 
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    i = sqrt(-1); 

    LambdaCirc = 1+ 4*i*besselk(1, -i*sqrt(i*Ren))/(sqrt(i*Ren)*besselk(0, -

i*sqrt(i*Ren))); 

    Lambdarect = (OmegaR + OmegaI*i)*LambdaCirc; 

    ImaginaryLambda = imag(Lambdarect); 

     

    SpringConstant = 0.1906*rho*Width^2*Length*Q*PeakW^2*ImaginaryLambda; 

  

else 

    disp('incorrect number of arguments.') 

end 
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