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ABSTRACT 

Forest fragmentation has been overwhelmingly cited as a major threat to the 

biodiversity and conservation of forested plant communities worldwide.  Here I take a 

community- and species-specific approach to examine how species richness and 

composition respond to forest fragmentation.  I conducted this research on a series of 35 

small forested islands that were fragments of continuous forest created by impoundment 

of the Savannah River in the Southeastern Piedmont of the United States. I paired the 

islands with 10 mainland forest sites representing large remnant forest with only a single 

edge exposed along two reservoirs.  Species richness was positively related to island area, 

as predicted by the species-area relationship, and islands in general had greater species 

richness than mainland sites because of an addition of liana and shrub species uncommon 

to oak-hickory forests.  Due to the increase of lianas, shrubs and pioneer trees in small 

forested fragments I detected large differences in the plant communities that have 

developed on these sites over the last 40 to 70 years.  In addition, it appears that islands 

will continue to diverge from mainland forest over time, likely degrading to the point that 

the species of oak-hickory forest may disappear and convert entirely to disturbance-

tolerant early seral communities.  Moreover, these fragments had invasive plants species 

that were less common in the more intact forest. I used a seedling outplanting experiment 

to determine if two of the more common, non-native woody invaders are likely to invade 

intact forest interior sites.  Indeed, the non-native woody liana, Lonicera japonica 

appears to have the ability to not only survive, but also thrive under interior forest.  In 

contrast, Albizia julibrissin does not appear to be a major threat to forest interiors unless 
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there is a large canopy disturbance that increases light to seedlings.  Finally, I used this 

study system to test whether species richness estimators provide accurate estimates and 

should continue to be used to examine important ecological patterns.  I found that all 10 

of the ones examined were so imprecise that none of them detected the true species-area 

relationship found across the forest fragments. Use of species richness estimators, in 

place of true richness, should therefore be used with extreme caution if the goal is to 

describe patterns in species richness across a set of sites.  Overall, my dissertation 

highlights how much we still have yet to learn about generalities associated with forest 

fragmentation and species richness estimation techniques 
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CHAPTER 1 

INTRODUCTION 

Forest fragmentation due to human development of the landscape is considered to 

be the leading threat to the conservation of forested communities and cause of 

biodiversity loss (Yates et al. 2004, Rodriguez-Loinaz et al. 2012).  Fragmentation 

converts formerly contiguous areas of forest into smaller and more isolated patches of 

vegetation that experience a host of changes due to several interacting abiotic and biotic 

factors (Harper et al. 2005, Laurance et al. 2011).  Forest fragmentation reduces the 

population size of forest species, interrupts dispersal patterns, and exposes previously 

protected forest interior (Harper et al. 2005, Laurance et al. 2011).  All of these changes 

may impact the species composition and structure of woody plant forest communities 

(Tabarelli and Lopes 2008).  In this dissertation, I examine how and why woody plant 

communities change in response to fragmentation. I use a natural experiment where 

former hilltops in southeastern Piedmont forests of the United States became forested 

island fragments with surrounding remnant mainland forest when the Savannah River 

was impounded for hydroelectric power.  

Quantifying the effects of fragmentation 

The study of forest fragmentation has historically taken one of three different 

approaches: those that quantify the impact of habitat reduction and isolation on 

organisms, those that study abiotic or biotic edge effects in fragments, and those that 

consider the impact of the surrounding matrix on organisms within fragments.  Here, I 
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examine the three approaches and describe why I chose to focus on fragment size and the 

importance of edge effects, while controlling for the impact of the surrounding matrix. 

 Initially, the equilibrium theory of island biogeography (ETIB) was a guiding 

model in the study of forest fragmentation.  ETIB posits that small and more isolated 

islands will house a reduced number of species compared to larger, less isolated islands 

(MacArthur and Wilson 1967).  Although ETIB exclusively considered oceanic islands 

that have been isolated from mainland habitats for millennia, ecologists rapidly adapted 

this theory to investigate species richness and diversity patterns of the vegetation, 

invertebrates, and mammals of recently created forest fragments (Laurance 2008).  Using 

ETIB as a theoretical framework, small islands or fragments are thought to be relatively 

smaller “targets” for randomly dispersing propagules, which would lead to decreased 

species richness because the probability of a propagule landing in a habitat patch that is 

suitable for establishment and colonization is lower (Gilpin and Diamond 1976, 

Simberloff 1976, Lomolino 1990).  Decreased species richness in small fragments may 

also be attributed to the vulnerability of species to stochastic extinction events wherein 

the smaller populations likely captured in a small fragment would have a greater  

probability of extinction compared to large populations that are assumed to exist in large 

fragments or continuous forests (Rosenzweig 1995).  Increasing isolation is hypothesized 

to decrease species richness because fewer species have the ability to disperse long 

distances (MacArthur and Wilson 1967, Long et al. 2009).  The interaction between size 

and isolation can give rise to various levels of species richness, but the largest and closest 

islands are predicted to house the largest number of species, while the smallest and 
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furthest islands are expected to contain fewer species.  For many mobile and relatively 

short-lived organisms, ETIB may be an appropriate theoretical framework to study and 

model species responses to habitat fragmentation, but it has become apparent that ETIB 

falls short when considering fragmentation impacts on immobile, long-lived woody 

vegetation associated with forests around the world (Kadmon and Allouche 2007, 

Laurance 2008, Villard and Metzger 2014).   

One reason that ETIB has limited application to forest fragmentation theory is 

because the ETIB does not consider the influence of edge effects (Laurance 2008).  Edge 

effects, or differences between the abiotic and biotic properties of forest edges and 

“intact” forest interior, may produce forest fragments that do not conform to the 

predictions of ETIB (Laurance 2008).  Edge habitats often exhibit increased light levels, 

temperature, and wind speeds when compared to interior forest habitat, which may in 

turn be coupled with decreases in litter accumulation, soil moisture, and relative 

humidity, all of which can be variable even in fragments of similar size (Kapos et al. 

1997, Gehlhausen et al. 2000, Feeley 2004, Laurance et al. 2007, Broadbent et al. 2008).  

Forest fragment edges are assumed to be inhospitable to remnant interior vegetation due 

to abiotic changes within fragment edges and therefore more likely to favor species 

adapted to the conditions associated with these habitats (McDonald and Urban 2006).  

Vegetation responses to fragmentation vary depending on the ability of remnant species 

to tolerate, survive, and reproduce in forest fragments, and these responses may be 

magnified or reduced in fragments with multiple edges in close proximity (Kuussaari et 

al. 2009, Porensky and Young 2013, Ibáñez et al. 2014).   
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Because different edge effects can vary widely on how deeply they penetrate into 

a forest fragment, studies have found that edge effects can be strengthened, weakened, or 

produce a completely different pattern when more than a single edge is impacting the 

population or community of interest (Porensky and Young 2013).  Porensky and Young 

(2013) point out, correctly, that more studies in fragmented landscapes where the impact 

of multiple edges can be elucidated will be valuable as they were only able to identify 11 

empirical studies that tried to tackle this problem and only five of these investigated 

forest vegetation responses.  For instance, Harper et al. (2007) found that the edge effect 

for downed logs was intensified as edges in linear forest fragments between two clear 

cuts became closer, but that this effect was mitigated when the linear fragment was 

bounded on one side by a lake as opposed to another clear cut area.  Similarly, corners of 

forest fragments in the in the Biological Dynamics of Forest Fragments Project (BDFFP) 

in the central Amazon of Brazil have higher mortality of canopy trees, lower basal area, 

greater density of understory vegetation, greater richness and altered species composition 

of pioneer tree species, and less richness and altered species composition of seedlings 

compared to plots at least 100 m from another edge, in large fragments, or continuous 

forest (Malcolm 1994, Benítez-Malvido and Martínez-Ramos 2003, Laurance et al. 2006, 

Porensky and Young 2013).   

If remnant vegetation continues to survive and reproduce while new species 

colonize and proliferate due to edge effects, species richness in fragments may be greater 

compared to similar areas of continuous forest.  At some point, remnant species may 

begin to go locally extinct, and species richness could "relax” to a new equilibrium over 
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time. At such time, the fragment will have paid the “extinction debt”, which are the 

species currently in the community that are expected to go extinct following a 

disturbance such as habitat destruction or fragmentation, climate change, or invasion of 

exotic species (Kuussaari et al. 2009).  Once this occurs, extinction and colonization rates 

are assumed to be stable and no further reductions in species richness are predicted 

(Tilman et al. 1994, Harper et al. 2005, Kuussaari et al. 2009). A portion of the extinction 

debt is often paid immediately, when a small habitat patch no longer contains all the 

species found in the large undisturbed habitat.  The remaining extinction debt will then be 

paid over time based on the susceptibility of species in the community to the disturbance 

– this is called “relaxation time” (Kuussaari et al. 2009).  Quantifying the extinction debt 

and relaxation times for fragmented communities continues to be a challenge for 

conservation biologists because biotic and abiotic edge effects can cause a gradual 

deterioration of habitat over time that is then coupled with varying ability of particular 

species to tolerate and survive conditions in the disturbed habitat (Kuussaari et al. 2009).   

Demonstrated influence of the surrounding matrix on species and community 

response to fragmentation is also not incorporated into the predictions of ETIB because it 

is based on islands surrounded by an invariable matrix of water (Ibáñez et al. 2014, 

Villard and Metzger 2014).  It has been found in several studies that differences in the 

surrounding matrix may have a large impact on how organisms respond to forest 

fragmentation (Prevedello and Vieira 2010).  In addition, response to the composition of 

the surrounding matrix is often found to be species or life-form specific.  For example, 

Öckinger et al. (2012) found that the richness of plants and butterflies was most 
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negatively impacted in small patches of semi-natural grassland when surrounded by 

arable land, whereas richness of hoverflies and bees was most negatively impacted when 

the small patches were surrounded by forest.  Nascimento et al. (2006) also found that 

significant differences in the composition of pioneer tree species depended on the 

dominant species present in the regrowth surrounding tropical forest fragments of 

BDFFP.  As surrounding matrix can have a measurable impact on community 

composition and structure, studies that control for this factor may provide a unique 

perspective on the mechanisms at work in forest fragments since every fragment of 

interest would be surrounded by the same matrix.   

A recent meta-analysis of over 200 journal articles aimed to discover universal 

patterns for vegetation response to habitat fragmentation, but instead found that they 

could be positive, negative, or both depending on the parameter measured and the species 

or community evaluated (Ibáñez et al. 2014).  These results demonstrate how challenging 

it may be to draw widespread conclusions about how habitat fragmentation will impact 

species richness and community composition in plant communities.  Ibáñez et al. (2014) 

go on to suggest that a more holistic approach that recognizes the vast interplay between 

abiotic factors, individual species responses, and community-level responses to human-

induced fragmentation of the landscape is needed. 

In my dissertation, I have employed a holistic approach to studying forest 

fragmentation. I controlled for the effect of the surrounding matrix and quantify the 

impact of forest fragmentation on oak-hickory forests of the Southeastern Piedmont 

physiographic region at level of the community and for particular species.  I show how 
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forest community composition and forest structure responds to fragmentation into small 

isolated patches by comparing small forested islands to nearby remnant mainland forest 

with only a single edge exposed. 

 

Invasive species in forest fragments 

Invasive species are often more common on edges than interior areas of fragments 

(Yates et al. 2004, Harper et al. 2005, Vilà and Ibáñez 2011, Dawson et al. 2015).  For 

example, Yates et al. (2004) found that two of three plant species examined in 

fragmented forests of Illinois had lower abundance in forest interior, and the third species 

was present at similar abundances in both edge and interior plots.  Similarly, Flory and 

Clay (2006) found that abundance for four of the seven exotic shrubs examined decreased 

in forest fragments dissected by roads as the distance from a road increased. Neither 

Yates et al. (2004) nor Flory and Clay (2006) were able to determine why those species 

were found primarily on fragment edges because their approach was purely 

observational.  

Exotic, invasive plant species may be limited to edges because they are dispersal 

limited, are intolerant of the environmental conditions present under interior forest 

conditions, or are readily outcompeted in interior forest.  Propagule pressure (seed 

deposition) may increase on edges if the surrounding landscape has a large proportion of 

invasive species, or if dispersal vectors preferentially choose edge habitat (Buckley et al. 

2006, Cramer et al. 2007, Thomas and Moloney 2015).  Alternatively, soil nutrients or 

light levels may be greater and herbivory or pathogen attack decreased on edges (Ries et 
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al. 2004).  Flory and Clay (2009) tried to distinguish these possibilities by examining 

germination, growth, and survival of out-planted seedlings of exotic and native woody 

species along edges and in interior sites of both young and mature temperate forest 

fragments in Indiana dissected by roads. They found that germination and survival of 

exotic species was not impacted by interior forest conditions, but that growth was 

enhanced near edges adjacent to roads.  Thus, the exotic shrub species they examined 

may have been restricted to edges due to dispersal limitation, although subsequent growth 

may be reduced in forest interior (Flory and Clay 2009).  As such, propagule pressure 

from the surrounding matrix or from edges to interior may have important consequences 

for the occurrence of exotic invasive species in the landscape (Thomas and Moloney 

2015).     

In my dissertation, I addressed whether non-native woody plant species have the 

ability to invade relatively undisturbed forest interior.  In particular, I examined survival, 

growth, and herbivory on the edges and interiors of forested islands and remnant 

mainland forest for seedlings of two exotic woody plant species that appear to be habitat 

specialists in disturbed areas and along forest fragment edges. 

 

Measuring species richness 

Understanding the causes and consequences of species richness has long been a 

central theme in ecology and conservation biology (Colwell and Coddington 1994, 

Gotelli and Colwell 2001, Gotelli and Colwell 2011, Mori et al. 2013).  Species richness 

is simply the number of species present within an area of interest.  Despite a long history 
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of ecological research, current researchers are still trying to understand the mechanisms 

that lead to differences in species richness.  For instance, it has been recognized that 

species richness tends increase from the poles to the tropics for many taxonomic groups 

(Hillebrand 2004).  Of course there have been several hypotheses put forth that attempt to 

explain this phenomenon, but little consensus has developed due to the wide variety of 

methods used and a paucity of global-scale data (Hillebrand 2004, Kerkhoff et al. 2014).   

The species-area relationship (SAR) – the linear, positive relationship between the 

number of species and the size of the area in which they are found – has been found at so 

many spatial scales and across so many different study systems that it is considered one 

of the few laws of ecology (Lawton 1999).  In particular, conservation biologists often 

use the SAR to identify potential biodiversity hotspots, predict species extinctions 

following habitat fragmentation, prioritize conservation sites, and guide management 

activities (Smith 2010).  This is another area of active ecological research where there is 

still a considerable amount of debate over the mechanisms that produce the SAR.  For 

example, ETIB proposed that the SAR results from an area-determined equilibrium 

between immigration and extinction on islands and island-like habitats (MacArthur and 

Wilson 1967, Harris 1984, Lomolino et al. 1989, Kadmon and Pulliam 1995, Brose 

2003).  In contrast, others have argued that the SAR is really linked to greater resource or 

habitat heterogeneity that are found in larger areas (Tilman and Pacala 1993, Rosenzweig 

1995, Kadmon and Allouche 2007, Hortal et al. 2009).  Regardless of the hypothesis 

being tested, species richness must be quantified accurately before one can effectively 

investigate how it may be responding to latitudinal, spatial, or environmental gradients.    
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What then is the best way to measure species richness?  Thorough inventories of 

all species in an area of interest provide the most accurate measures of species richness, 

but they are often prohibitively time consuming and costly.  Thus, species richness is 

often estimated for a larger area of interest using sample- or individual-based methods 

(Wei et al. 2010, Gotelli and Colwell 2011).  Many species-richness estimators are non-

parametric and use observed species richness and the number of species that occur rarely 

in a set of sampled individuals or samples (e.g., plots, traps; Colwell and Coddington 

1994, Walther and Morand 1998, Walther and Moore 2005).  Four of the more 

commonly used non-parametric methods for replicated, sample-based surveys are the 

coverage-based, Chao, jackknife, and bootstrap estimators (Heltshe and Forrester 1983, 

Chao 1984, Smith and van Belle 1984, Chao 1987, Colwell and Coddington 1994, Wei et 

al. 2010).  These non-parametric estimators make no assumption regarding the shape of 

the species-abundance distribution, and all are thought to be relatively insensitive to 

unequal detection probabilities (i.e., differences in relative abundance; Gotelli and 

Colwell 2001, Magurran 2004).  Increasingly, estimated species richness has replaced 

true richness when testing different hypotheses that explain patterns of species richness 

(e.g., Benítez-Malvido and Martínez-Ramos 2003, Paciencia and Prado 2005, Poulos et 

al. 2007, Page et al. 2010, Sánchez-González et al. 2010, Norfolk et al. 2015).   

In my dissertation, I tested whether 10 species richness estimators provided 

estimates of species richness that were comparable to true richness in a set of small forest 

fragments.  The small size of the fragments allowed for reliable measurement of true 

richness.  
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My study system 

Forested reservoir islands, created by impounding rivers and isolating hilltops of 

continuous forest, provide a natural experimental system to explore how forest 

fragmentation may alter woody plant species structure and composition, examine exotic 

species performance in forest edges and interior, and test the ability of species richness 

estimators to provide accurate values for species richness.  The spatial arrangement of 

reservoir islands and surrounding mainland forest is similar to that of fragments caused 

by residential and urban development and remaining, large remnant forest with only a 

single edge exposed (Fischer and Lindenmayer 2007).  An advantage to studying forested 

communities in and along reservoirs is that forested reservoir islands and remnant 

mainland forest sites have well-defined edges and are nested in a consistent matrix of 

water (Watson 2002, Benchimol and Peres 2015).  Having the same habitat at the edges 

of both small forested island fragments and large remnant mainland forest controls for 

confounding effects that variability in the immediate surrounding landscape may have on 

species composition (Lovei et al. 2006, Nascimento et al. 2006). 

 My dissertation research used recently created forested reservoir islands (i.e. < 70 

years old) and remnant, mainland oak-hickory forest in the Southeastern US Piedmont 

ecoregion to answer several questions pertinent to forest fragmentation, exotic species 

invasion, and the use of species richness estimates in place of true richness values.  I 

conducted this work on two reservoirs along the border of South Carolina and Georgia - 

Lake J. Strom Thurmond (288 km2) and Lake Richard B. Russell (107.8 km2), which 
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were created for flood control and hydroelectric power along the Savannah River in 1954 

and 1984, respectively.  Impoundment created islands by isolating forested hilltops from 

what was once contiguous forest.  Large areas of protected mainland forest occur in the 

landscape surrounding Lake Thurmond and Lake Russell (USACE 2013) and were used 

as representative areas of continuous forest with a single edge. I examined aerial 

photographs, topographic maps, field observations to identify forested islands that were 

not clear-cut prior to impoundment and were continuously isolated from mainland forest 

and other island fragments since the date of reservoir creation (see Chapter 2 for more 

details).  I selected 13 islands in Lake Thurmond and 22 in Lake Russell for sampling 

(Fig. 2.1).  Islands ranged in size from 0.08 ha – 2.47 ha and were 34.77 – 917.83 m from 

the closest mainland shore.   

 

Testing predictions of ETIB 

Before examining how fragmentation affects species composition, I wanted to test 

the predictions of MacArthur and Wilson’s (1967) equilibrium theory of island 

biogeography (ETIB).  Based on the ETIB and subsequent modifications for studying 

forest fragments (Laurance 2008b), smaller and more isolated fragments are predicted to 

have fewer plant species. Small fragments are thought to be relatively smaller “targets” 

for randomly dispersing propagules, which leads to lower colonization rates in smaller 

areas (Gilpin and Diamond 1976, Simberloff 1976, Lomolino 1990).  Small fragments 

also tend to support smaller populations that are more likely to be lost due to stochastic 

extinction events (Rosenzweig 1995).  Increased isolation of fragments is hypothesized to 
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lead to lower species richness because fewer species disperse long distances and 

colonization rates therefore are lower than extinction rates (MacArthur and Wilson 1967, 

Kadmon and Pulliam 1995).  I tested these more specific predictions by examining 

whether larger islands had a higher proportion of tree species that appear to be 

regenerating and a lower proportion that are at risk of local extinction. In addition, I 

tested whether islands closer to the mainland have a greater number of species that likely 

immigrated since fragmentation and have a greater proportion of species from the 

regional species pool (see Chapter 2 for details of these analyses).   

I found a significant positive species-area relationship for the 35 forested islands 

surveyed, which was consistent across both lakes (Fig. 1.1).  This relationship was 

mainly driven by tree species richness, as liana and shrub species richness was invariant 

to island size. I also detected a significant species-isolation relationship among our 

forested islands, but it was in the opposite direction of the relationship predicted by 

ETIB, with forested islands closer to the mainland having lower species richness than 

more isolated islands (Fig. 1.2).  This relationship was only apparent when all species 

were considered together, as no relationship was detected between tree, shrub, or liana 

species and degree of isolation (Fig. 1.2).  

Neither the proportion of regenerating (R) species nor those at risk of extinction 

(De) was related to island size as hypothesized (Fig. 1.4).  Thus, the SAR does not appear 

to be driven by changes that have occurred after isolation – instead it is likely that larger 

fragments just passively encompass more individuals and therefore more species.  In 

addition, the proportion of species that have likely immigrated since fragmentation was 
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not related to degree of island isolation, and the most isolated islands housed the highest 

proportion of species from the regional tree species pool (Fig. 1.5).  Again, active 

processes stemming from fragmentation and isolation do not appear to be affecting 

species richness per se. 

Greater species richness and mean stem density on the most isolated islands may 

be due in part to deer utilizing islands that are closer to mainland forest.  I observed deer 

scat on many of the less isolated islands, and on three occasions we discovered very 

young fawns bedded down under shrub cover.  Deer browsing can have profound and 

lasting impacts on the composition and structure of forests (Horsley et al. 2003, Long et 

al. 2007, Bressette et al. 2012), and if deer are using the islands as nursery sites or 

regularly this may explain why the closest islands house fewer individuals at the plot-

level and fewer species at both the island- and plot-level.  For example, Rossell et al. 

(2005) found that seedlings of Carya species had been completely eliminated and 

Quercus alba seedlings had been significantly reduced in study plots without deer 

exclosures after just four years in Virginia oak-hickory forest.  In another Virginia oak-

hickory forest, Bressette et al. (2012) found that excluding deer over a period of 19 years 

led to significant increases in small tree and shrub stem densities.  Future studies that 

quantify deer utilization of these forested islands may provide further insight on why this 

pattern emerged in both lakes. 
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Structure of the dissertation  

The balance of my research examined community and species-specific changes 

resulting from forest fragmentation.  In Chapter 2, I examine how species composition in 

these small forest fragments have changed over time and predict future changes.  I 

explicitly test whether the difference in species composition is due to the extinction of 

canopy species in small fragments or colonization and proliferation of disturbance-

tolerant species.  In addition, I examine whether changes to forest structure and 

environmental conditions due to multiple, interacting edges may be contributing to 

changes in species composition. 

In Chapter 3, I experimentally test whether a non-native pioneer tree and a non-

native liana are primarily dispersal or environmentally limited in fragmented landscapes. 

Specifically, I test whether Albizia julibrissin (Fabaceae, mimosa tree) and Lonicera 

japonica (Caprifoliaceae, Japanese honeysuckle) are likely to invade interior forest if 

dispersal and germination barriers are overcome.  This study grew out of the observations 

that L. japonica abundance was markedly lower away from edges in large tracts of forest 

and A. julibrissin was only found on edges of forest fragments.  

In Chapter 4, I ask whether estimated species richness can be used reliably as a 

proxy for true richness.  Here I use thorough survey data and plot-based sample data from 

the entire dataset of 35 small forested reservoir islands, and then a smaller subset of 

islands based on a more conservative sample completeness criterion, to explore whether 

species richness estimators produce values that can be used to inform management goals, 

prioritize conservation sites, or test ecological hypotheses.  I determined the need for this 
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study when I realized that estimated species richness was markedly different than the 

species richness values I obtained when thoroughly inventorying each island.   

In Chapter 5, I summarize the overall conclusions and importance of this research 

and identify future research directions.  In particular, I highlight the need for further 

studies that take a more integrated approach to how fragmentation impacts plant 

communities, compare the performance of non-native and native species in fragments and 

intact forests, and expand our understanding of how estimated species richness relates to 

true species richness.  
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Fig. 1.1.  Relationship between log10 island area (ha) and (A) total species richness (R2 = 

0.27, p = 0.002), (B) tree species richness (R2 = 0.38, p < 0.001), (C) shrub species 

richness, and (D) liana species richness for all 35 islands. Islands in Lakes Russell and 

Lake Thurmond are indicated by dark grey and light grey circles, respectively. When a 

significant effect of lake was found, regression lines for Lake Russell and Lake 

Thurmond are solid and dashed, respectively.   
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Fig. 1.2.  Relationship between log10 distance from the mainland (m) and (A) total 

species richness (R2 = 0.18, p = 0.01), (B) tree species richness, (C) shrub species 

richness (R2 = 0.30, p = 0.001), and (D) liana species richness (R2 = 0.18, p = 0.02) for all 

35 islands.  Islands in Lakes Russell and Lake Thurmond are indicated by dark grey and 

light grey circles, respectively.  
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Fig. 1.3.  Relationship between log10 island area (ha) and the proportion of regional (43 

species) and within island tree species that are (A) regenerating (R), (B) at risk of 

extinction (De), and (C) have likely immigrated since the date of reservior construction 

(I) in Lake Russell.  I also present (D) the proportion of tree species that could potentially 

colonize each site from the regional species pool (Cc). 
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Fig. 1.4.  Relationship between log10 distance from mainland and the proportion of 

regional (43 species) and within island tree species that are (A) regenerating (R), (B) at 

risk of extinction (De), and (C) have likely immigrated since the date of reservior 

construction (I) in Lake Russell.  I also present (D) the proportion of tree species that 

could potentially colonize each site from the regional species pool (Cc; R2 = 0.46, p = 

0.02). 
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CHAPTER 2 

DIVERGENCE IN FOREST FRAGMENTS RESULTS FROM ADDITION 

RATHER THAN DELETION OF WOODY PLANTS IN SOUTHEASTERN USA 

PIEDMONT FORESTS 

INTRODUCTION 

Forest fragmentation due to human development is considered to be a major threat 

to biodiversity and the conservation of forest communities worldwide (Wilcox and 

Murphy 1985, Yates et al. 2004, Haddad et al. 2015).  Formerly contiguous areas of 

forest are rapidly being converted to a mosaic of forest fragments surrounded by a 

human-impacted non-forest matrix (Li et al. 2009, Wulder et al. 2009, Napton et al. 2010, 

Haddad et al. 2015).  Within newly created fragments, forest vegetation experiences a 

host of changes including reduced available area, increased isolation, and shifts in 

environmental conditions (Ibáñez et al. 2014).  The reduction in area can lead to smaller 

populations with greater risks of extinction, increased isolation may result in lower 

genetic exchange and barriers to dispersal, and edge effects may affect alter species 

interactions  (Harper et al. 2005, Laurance et al. 2011, Vranckx et al. 2012, Ibáñez et al. 

2014, Laurance et al. 2014).  All of these changes associated with fragmentation may 

lead to a loss of species richness and changes in species composition; however, the effect 

of fragmentation on plant communities is unclear, with positive as well as negative 

effects being found in different systems (Ibáñez et al. 2014, Haddad et al. 2015). In 

particular, there is growing consensus that edge effects must be considered to fully 

appreciate the ecological impacts of fragmentation on species composition and, in turn, 
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species richness (Debinski and Holt 2000, Laurance 2008, Koh et al. 2010, Ibáñez et al. 

2014).  With the number of forest fragments increasing and average fragment size 

simultaneously decreasing across the landscape (Griffith et al. 2003, Haddad et al. 2015), 

it is imperative to the conservation and management of forests to understand how woody 

plant communities respond to being fragmented into smaller and more isolated forest 

patches.   

Species composition of small forest fragments often differs markedly from large 

forest fragments and intact forest interior (Harper et al. 2005, Laurance et al. 2011).  

These differences may result from the loss of canopy species unable to tolerate edge 

habitat, as well as the colonization and proliferation of disturbance-tolerant species that 

can thrive in edge environments because limiting resources have increased and 

competition was eliminated, or both (Laurance 2002, Harper et al. 2005, Hierro et al. 

2006, Londré and Schnitzer 2006, McDonald and Urban 2006, Harper et al. 2007, 

Laurance 2008, Flory and Clay 2009, Fridley et al. 2009, LaPaix et al. 2012).  Non-

native, invasive woody plant species are also commonly found to be a substantial 

component of vegetation composition, particularly along forest fragment edges (Harper et 

al. 2005, McDonald and Urban 2006, Fridley et al. 2009). Even if fragments initially 

contain a representative sample of intact forest, species composition is likely to diverge 

from continuous forest as canopy species die and are replaced by species tolerant of the 

altered abiotic and biotic conditions in small fragments (Laurance 1991, Laurance et al. 

2001, Laurance et al. 2006a, McDonald and Urban 2006, Flory and Clay 2009).   
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As the life-span of woody vegetation is relatively long compared to many other 

organisms, one might expect that young small forest fragments may not quickly pay their 

“extinction debt”, as canopy species continue to survive and new species colonize and 

proliferate due to edge effects (Tilman et al. 1994, Ewers and Didham 2006).  Therefore, 

woody plant species richness may appear to be elevated in small fragments for a time 

before significant mortality and extinction occurs and species richness relaxes to a new 

equilibrium (MacArthur and Wilson 1967, Diamond 1972, Kuussaari et al. 2009).  

Integrating observation of the overstory, understory, and seedling layers in a forest 

system may provide unique insight on whether forest composition will likely degrade 

over time with the loss of overstory tree species and addition of tree species not typical of 

forest interior.  

Many of the changes in species composition of fragments may be related to the 

addition of edge habitat and resulting structural and biological differences from forest 

interior.  Compared to forest interior, forest edges generally have altered environmental 

conditions that impact species composition.  In particular, forest edges frequently have 

higher light levels because of the removal of trees as well as subsequent mortality of 

canopy trees along the edge, which leads to further reduction of basal area and canopy 

height (Harper et al. 2005, Laurance et al. 2011).  Higher light levels often lead to 

substantially lower soil moisture on edges (Harper et al. 2005, Laurance 2008), and as a 

result, species intolerant of dry conditions may be lost from edges.  Changes in forest 

litter and soil quality may select for different suites of species than normally found in 

forested areas. Furthermore, multiple interacting edge effects in small fragments may 
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produce habitat that is essentially functioning entirely as edge depending on how species 

respond to the abiotic and biotic changes that occur due to fragmentation (Fletcher 2005, 

Harper et al. 2007, Li et al. 2007, Laurance et al. 2011, Porensky 2011). The long-

running Biological Dynamics of Forest Fragments Project (BDFFP) near Manaus, Brazil 

demonstrated that invasion of edges by species not typical of forest interior can be 

magnified in small fragments that have multiple edges in close proximity (Laurance et al. 

2011).  Harper et al. (2007) also found evidence for interaction between edges in close 

proximity in both deciduous and coniferous boreal forests, although this interaction 

appeared to be mediated when edges were near riparian areas.   

Globally forests are in peril due to fragmentation, with the majority of forest 

fragments being less than 10 ha and nearly half of all forests in the world are within 500 

m of an edge (Haddad et al. 2015).  In the United States (US), the problem is even more 

severe, with half of all US forests located within 90 m of a forest edge, and the majority 

of intact forest relegated to public lands not available for agriculture or urban 

development (Riitters et al. 2012).  Although the southeastern US Piedmont experienced 

a period of reforestation when large tracts of agricultural land were abandoned in the 

early 1900s, this region is currently experiencing an unprecedented conversion of these 

secondary forests to residential and urban development (Napton et al. 2010).  London and 

Hill (2002) found a 30% increase in developed land from 1992 to 1997 and predicted that 

an additional 31 million acres will be converted to other uses by 2040.  Forest conversion 

in the southeastern US Piedmont also ranked fourth out of 20 southeastern US regions 

examined (Napton et al. 2010).  As the number of forest fragments has increased on the 
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landscape, mean fragment size has declined by 12% since 1950 (Griffith et al. 2003).  

Despite demonstrated increases in forest fragmentation and decreased forest fragment 

size, we know relatively little about how fragmenting forests into small patches, which  

are likely experiencing multiple and interacting edge effects, impacts woody plant 

community structure and composition in southeastern US Piedmont secondary oak-

hickory (Quercus-Carya) forests (but see Kadmon and Pulliam 1993, Fraver 1994, 

Kadmon 1995, Kadmon and Pulliam 1995, McDonald and Urban 2006, Fridley et al. 

2009).   

Forested reservoir islands, created by impounding rivers and isolating hilltops of 

continuous forest, provide an excellent natural experimental system to explore how forest 

fragmentation may alter woody plant species richness, structure, and composition 

(Benchimol and Peres 2015). The spatial arrangement of forested reservoir islands and 

surrounding mainland forest is similar to that of fragments caused by residential and 

urban development and remaining, large remnant forest with only a single edge exposed 

(Fischer and Lindenmayer 2007).  This spatial configuration also allows for direct 

comparison of a large forest that is impacted by creation of only a single edge (mainland 

forest) with small forest fragments (islands) that likely are experiencing impacts from 

multiple, potentially interacting edge effects (Porensky and Young 2013).  Other 

advantages to studying the response of forest communities to fragmentation in and along 

reservoirs is that fragmentation occurred at a specific and known time for all fragments 

under consideration, and forested islands and mainland forest sites have well-defined 

edges situated in a consistent matrix of water (Watson 2002, Benchimol and Peres 2015).  
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Having a single habitat (i.e., open water) along the edges of islands and mainland forest 

areas controls for confounding effects that variability in the surrounding matrix may have 

on plant species richness, composition, and structure (Lovei et al. 2006, Nascimento et al. 

2006, Benchimol and Peres 2015).   

We used a series of small forested islands and paired mainland forest sites to 

investigate how fragmentation impacts woody plant species richness, composition, forest 

structure, and environmental conditions in secondary oak-hickory forests in the 

southeastern US Piedmont.  The reservoirs were created relatively recently (nearly 40-70 

years ago), and therefore we predicted that differences between forested islands and 

mainland forest for forest structure and species composition would be related to a higher 

abundance of disturbance-tolerant native and non-native woody plant species rather than 

to a decline of typical overstory species associated with oak–hickory forest.  We also 

predicted that species composition of the overstory, understory, and seedling layers 

would indicate that forested islands will likely continue to diverge from mainland forest 

as typical overstory species associated with Quercus – Carya forests fail to reproduce and 

disturbance-tolerant woody species become more dominant over time.  We anticipated 

that these changes in species composition would be accompanied by structural and 

environmental differences between forested islands and mainland forest along transects 

from edge to interior.   
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METHODS 

Study area 

All study sites were located in Piedmont oak-hickory forests in and around Lake 

J. Strom Thurmond (Lake Thurmond) and Lake Richard B. Russell (Lake Russell) along 

the Savannah River between South Carolina and Georgia, US (Fig. 2.1).  These sites are 

within the southeastern US Piedmont physiographic region, which is defined as the area 

from the Brevard Fall Line at the base of the Blue Ridge Mountains to the Sandhills Fall 

Line, which demarks the Coastal Plain to the east (Fairchilds and Trettin 2006).  

Currently, secondary forests of oak-hickory dominate undeveloped upland sites in the 

southeastern US Piedmont (Box 2015).  This region is characterized by poor soils that 

range from deep clays to exposed bedrock (Richter et al. 2000, Fairchilds and Trettin 

2006).  Lake Thurmond (288 km2) and Lake Russell (107.8 km2) were created for flood 

control and hydroelectric power along the Savannah River in 1954 and 1984, 

respectively.  Impoundment created islands of forest fragments by isolating forested 

hilltops from what was once contiguous forest.  Large areas of protected mainland forest 

occur in the landscape surrounding Lake Thurmond (2775 ha of mainland forest) and 

Lake Russell (8332 ha of mainland forest) (USACE 2013).  Mean annual rainfall along 

these reservoirs is 116.8 cm yr-1, and average monthly temperature ranges from 9.4° to 

23.9°C (SCSCO 2007). 
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Site selection 

We examined aerial photographs and topographic maps, and used field 

observations to identify forested islands that were not clear-cut prior to impoundment, 

and were continuously isolated from mainland forest and other island fragments since the 

date of reservoir creation.  Our sampling was limited to islands less than 3 ha in size as 

there were no larger islands that had been completely isolated since the date of reservoir 

construction, or were not greatly impacted by historic roads or settlement.  Thirteen (13) 

islands fit these criteria in Lake Thurmond (Fig. 2.1).  From the 62 islands that fit these 

criteria in Lake Russell, 22 were randomly selected for sampling (Fig. 2.1).  Islands 

ranged in size from 0.08 ha – 2.47 ha and were 34.77 – 917.83 m from the closest 

mainland shore.  We compared these 35 islands to 10 mainland forest sites located in 

protected areas along the shoreline of Lake Russell (5 sites) or Lake Thurmond (5 sites).  

Mainland sites were selected using a stratified random approach by placing random 

points in protected areas along the shoreline in GIS, then we examined aerial photographs 

and used field visits to ensure that selected mainland sites had not been highly disturbed 

during reservoir creation and were representative of oak-hickory forest in the region.  As 

we were interested in how woody vegetation has responded to the influence of multiple 

edges on small forested islands as opposed to a single edge in large remnant forest, 

mainland forest sites were intentionally located in coves to eliminate influence from more 

than one edge in close proximity (< 100 m; Laurance et al. 2011).   
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Forested island species richness 

 To quantify total species richness on the forested islands, we conducted 

comprehensive inventories of all woody species on all 35 islands.  We walked the entire 

area of each island from the edge to interior in concentric circles approximately 5 m wide 

and recorded the presence of all woody plant species that were ≥ 50 cm in height or 

length, in the case of lianas (Kadmon and Pulliam 1993).  Three people were always used 

to complete these comprehensive surveys, with two people walking roughly 2.5 m from 

one another, and the third recording species occurrences and verifying that no species 

were missed.  Plant species nomenclature follows Weakley (2006).  

 

Island and mainland plot sampling 

We sampled vegetation, forest structure, and environmental variables in plots 

running from the vegetated edge toward the approximate center of each island or forest 

interior of each mainland site between May and October in 2007, 2008, and 2009.  Using 

ArcGIS (ESRI 2006), we randomly placed two transects per site, except at Lake 

Thurmond where only one transect per mainland site was sampled.  Transects were 

oriented toward the center of each island or perpendicular to the shoreline for mainland 

sites.  Centered along each transect, we censused vegetation within 4 m x 5 m (20-m2) 

plots starting 2 m from the edge of vegetation.  On the smallest islands, plots were also 

placed 8 m from the edge as well as in the center for a total of 5 plots per island.  

Additional plots were placed at 18 m on medium sized islands (7 plots per island); 18 and 

30 m on the largest islands (9 plots per island); and 18, 30 and 50 m at mainland sites (5 
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plots per mainland transect).  There were four islands that did not have a center plot 

because installing a center plot would have overlapped with plots at the ends of the two 

transects.  We used ArcGIS (ESRI 2006) to quantify island area (ha), determine the 

distance of each island from the closest mainland forest (m), and describe how far each 

center plot was located from the closest island edge (m).  A total of 314, 20-m2 plots were 

measured with 239 plots on forested island fragments and 75 plots in mainland forest 

sites. 

In each 20-m2 plot, individual woody and semi-woody stems (i.e., trees, shrubs 

and lianas) ≥ 50 cm in length were tallied and identified to species.  Lianas and shrubs 

were considered a single individual or stem if the base was rooted firmly in the ground 

and connection to other stems could not be confirmed.  We used Weakley (2006) and the 

United States Forest Service Fire Effects Information System  (USFS 2016) to assign 

species to the following categories: liana, shrub, pioneer tree, and non-pioneer tree.  We 

also recorded the diameter at breast height (DBH) for all stems ≥ 1 cm DBH to calculate 

basal area per plot.  Plots were pooled within each site for analysis of species 

composition.  

 

Canopy height, basal area, litter mass, soil pH, and canopy openness 

We quantified canopy height, basal area, litter mass, and soil pH for each 

sampling plot to determine how forest structure and soil properties differed along 

transects in each site type (island or mainland).  Canopy height was quantified by 

measuring the height of the tallest woody stem in each plot, using either a meter tape for 
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vegetation < 2 m tall or a laser range finder for vegetation ≥ 2 m tall (Impulse, Laser 

Tech, Inc., Englewood, CO).  Total basal area for each plot was calculated by summing 

the individual basal area of all woody stems ≥ 1 cm DBH.  For litter mass, we placed a 

0.25 m2 quadrat on two opposing corners of each plot and removed all litter above the 

mineral soil surface.  Litter samples were bagged and dried at 60ºC until constant weight, 

and the final dry weight was averaged for each plot.  Eight 2.54 cm x 10 cm soil cores 

were collected from each 0.25 m2 quadrat, homogenized, passed through a 2mm sieve, 

and refrigerated until analysis of pH.  Soil pH was quantified using 10 g of soil mixed 

with 10 ml of deionized water following the slurry method as described by McClean 

(1982), and measurement was made using a glass electrode pH meter standardized with 

pH 4 and pH 7. The two soil pH measurements were also averaged for each plot.   

Between May and October 2010, we quantified canopy openness for a random 

subset of half the islands (n = 11) and for the 5 mainland sites in Lake Russell to 

determine if there were differences in light levels between the site types, or along 

transects from forest edge to interior.  We measured the canopy openness using digital 

hemispherical photography and the Nikon CoolPix 4500 camera with Nikon FC-E8 

fisheye lens mounted and leveled 60 cm above the center of each 20-m2 plot.  All 

photographs were taken before sunrise, after sunset, or on uniformly cloudy days to 

negate the impact of the solar disk on the calculation of canopy openness (Frazer et al. 

2001).  Images were imported into SideLook (Nobis and Hunziker 2005) and converted 

to pure black and white images before being analyzed for percentage of canopy openness 

using Gap Light Analyzer 2.0 (Frazer et al. 1999). 
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Expanded overstory and seedling sampling 

 Between May and October 2011, we expanded our vegetation sampling on the 

same subset of 11 islands and 5 mainland sites in Lake Russell (hereafter called Lake 

Russell subset) used to quantify canopy openness in order to examine patterns in 

overstory (> 5 cm DBH), understory (≥ 50 cm height to < 5 cm DBH), and seedling (10-

50 cm height) composition.  The 11 islands ranged in size from 0.12 ha – 2.47 ha, and 

were anywhere from 38.5 – 409.5 m from the closest mainland shore.  On islands < 0.5 

ha in size (n = 4), we recorded the species identity of every woody individual ≥ 5 cm 

DBH.  On islands ≥ 0.5 ha (n = 7) and in the mainland sites, we constructed 10-m-wide 

belt transects centered on the previously established edge to interior transects, plus 

constructed a 10 m x 10 m2 plot in the center of the island, and recorded the species 

identity of every woody individual ≥ 5 cm DBH.  Woody individuals in the understory (≥ 

50 cm height to < 5 cm DBH) were measured in the 20-m2 plots as described above in 

Island and mainland plot sampling.  Seedlings were counted and identified in a 1 m x 4-

m2 quadrat in the center of each 20-m2 plot.  

 

Analysis to determine differences between site types and to identify edge effects 

We used general and linear mixed effects models to test whether there were 

effects of site type or distance from the edge on the following plot-level variables: species 

richness, total stem density, liana stem density, shrub stem density, pioneer tree stem 

density, basal area, canopy height, litter mass, soil pH, and percentage of canopy 
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openness.  As multiple plots were surveyed within a single site, we included site as a 

random effect in the analyses.  For all count data, we modeled the Poisson distribution.  

All mixed effects analyses were conducted using R version 3.2.3 with the packages 

“lme4” v. 1.1-11 and “lmerTest” v. 2.0-30 and the functions ‘glmer’ for count data, 

‘lmer’ for continuous data (R Development Core Team 2015).  The t-tests for function 

‘lmer’ use Satterthwaite approximations to calculate degrees of freedom. Generalized 

linear mixed models invoked by ‘glmer’ are fit by maximum likelihood (Laplace 

Approximation).  We used the package “effects” v. 3.1-0 and the function ‘effects’ to 

visualize significant model effects (p < 0.05) in R (R Development Core Team 2015). 

 

Analysis of species composition 

We illustrated differences in species composition among sites on each lake and 

for the three forest layers in the Lake Russell subset, using three multivariate methods: 

non-metric multidimensional scaling (NMS) ordination, multiple response permutation 

procedure (MRPP), and indicator species analysis (ISA).  All multivariate analyses were 

performed in PC ORD V. 6 (McCune and Mefford 2011).  To reduce the influence of rare 

species on these analyses, we removed species that were present in less than 5% of the 

sites examined in the full data set (McCune and Grace 2002).  All species captured in 

plots within sites in the Lake Russell subset occurred in more than 5% of the sites 

examined.  We used the relative Sørensen (Bray-Curtis) distance for the NMS and MRPP 

analyses.  For the NMS analyses, we used the automated “slow and thorough” setting in 

PC-ORD, which provides a random start and uses a Monte Carlo procedure with 250 runs 
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of the real and randomized data to select the appropriate number of axes and minimize 

stress (McCune and Mefford 2011).   

Multiple response permutation procedure (MRPP) was used to test for significant 

differences in species composition between site types (island and mainland) within and 

between the lakes (McCune and Grace 2002).  Because MRPP analysis in PC-ORD 

(McCune and Mefford 2011) does not correct for multiple comparisons, we used the 

Bonferroni correction and set α = 0.008 or α = 0.005 for the MRPP analysis between the 

site types and lakes or between the site types and forest layers for the Lake Russell 

subset, respectively. 

Indicator species analysis was used to identify species that had significantly 

higher frequency and abundance than expected by chance within a site type (p < 0.10) 

(Dufrêne and Legendre 1997, McCune and Grace 2002).  Examination of correlations 

between species and NMS axes were used to determine whether significant indicator 

species for islands and mainland sites were also species that were strongly influencing the 

position of sites within the NMS ordinations.  We highlighted positive and negative 

Pearson correlations (r) greater than 0.4 for species with NMS axes in the full dataset (df 

= 43, p = 0.005) or greater than 0.5 for the Lake Russell subset (df = 14, p = 0.05). 

To explore how percentage canopy openness and soil pH are impacting site-level 

species composition in the Lake Russell subset, we reported Pearson correlations (r) of 

the mean percentage canopy openness and the mean soil pH for each site.  Correlations of 

percentage canopy openness and soil pH with NMS axes greater than 0.5 for the Lake 

Russell subset (df = 14, p = 0.05) are highlighted. 
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Effects of area and isolation on tree species regeneration, risk of extinction, immigration, 

and colonization  

 We explored future effects of fragmentation on the tree community by 

determining, for each island and mainland site, which tree species appear to be 

regenerating, which are at risk of local extinction, which have likely immigrated since 

fragmentation, and which could colonize from the regional species pool in the future.  We 

applied criteria used by Thijis et al. (2014) to the Lake Russell subset to classify tree 

species into these four categories.  Regenerating tree species (R) were defined as tree 

species that were present in the overstory and the understory or seedling layer (or both) 

on the island or mainland site being analyzed (Thijs et al. 2014).  Tree species at risk of 

local extinction (De) on an island or mainland site were defined as tree species that were 

present in the overstory but were not detected in either the understory or seedling layer 

(Thijs et al. 2014).  Immigrant species (I) were those tree species that occurred in the 

understory or as seedlings on the island or mainland site, but did not have any overstory 

individuals present.  These immigrant species likely colonized the island or mainland site 

since reservoir creation. Thijis et al. (2014) used the term recruitment credit (Cr) for these 

species.  Potential colonizers (Cc) were those species that were not detected in any forest 

layer on any particular island or mainland site, but were present in the regional species 

pool. 

For each island and mainland site, we calculated the proportion of the regional 

tree species pool that were classified as R, De, I, and Cc categories; and also the 
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proportion of the local species pool (within site) that were classified as species in the R, 

De, and I categories.  We defined the regional species pool as the 43 tree species that 

were encountered in our expanded overstory and seedling sampling on at least one of the 

11 islands or 5 mainland forest sites.  We defined the local species pool as the total 

number of tree species that were encountered on each island or mainland site, which 

ranged from 9 to 24 species on islands and 18 to 25 on mainland sites.  We compared the 

proportion of species in each category on islands and mainland sites at both the local-

level (within site R, De, and I,) and regional-level (R, De, I, and Cc ) using t-tests.  

 

RESULTS 

During our comprehensive inventories of islands, we identified a total of 125 

woody or semi-woody plant species that occurred across the 35 islands.  Within the 314 

plots sampled across 45 sites (35 islands and 10 mainland forest sites), we found 11,119 

individuals and 98 species.  Of the 98 species, 6 species were captured exclusively in 

plots in mainland forest, while 34 species occurred only in plots on forested islands.  

Based on our comprehensive island inventories, total woody plant species richness on 

islands ranged from 30 to 62 species. Islands in Lake Thurmond had an average of 5 

more species per island than islands in Lake Russell (Chapter 1, Fig. 1.1).  Mean total 

species richness of shrubs (t = 3.63, p < 0.001) and lianas (t = 2.32, p = 0.006), but not 

trees (t = 1.22, p = 0.23) was greater in Lake Thurmond than Lake Russell. 

Large, scattered individuals of Carya glabra, C. alba, Quercus rubra, Q. alba, 

and Pinus taeda dominated the overstory on most forested islands and mainland forest 
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(Table 2.1).  In mainland forest, small individuals of these same species were also 

prominent in the understory, along with Cornus florida and Acer rubrum (Table 2.1).  On 

forested islands, we found that Q. nigra, Juniperus virginiana, Ulmus alata, Diospyros 

virginiana, and Prunus serotina were also common in the overstory, with smaller 

individuals of these same species in the understory, along with the native shrubs 

Vaccinium arboreum and V. elliottii (Table 2.1).  Vitis rotundifolia and Campsis radicans 

were the most common lianas in mainland forest.  In contrast, the most abundant liana 

species on forested islands were Gelsemium sempervirens, the non-native Lonicera 

japonica, Smilax glauca, and S. bona-nox.  Gelsemium sempervirens, U. alata, and the 

non-native L. japonica were the most abundant woody species overall in this system, 

composing approximately 24% and 7% of all individuals sampled, respectively.   

 

Stem density and species richness on islands and mainland sites in both lakes 

Overall, the number of individuals captured in plots for all species was nearly two 

times greater on forested islands compared to mainland forest, and decreased from the 

edge to the interior in both site types (Fig. 2.2; Table 2.2).  Lianas showed a trend for 

greater density on islands than mainland forest, but liana density was much more variable 

in mainland sites, and decreased in both site types as distance from the edge increased 

(Fig. 2.2; Table 2.2).  Shrub density was nearly three times greater on forested islands, 

and density increased toward the center of islands but was similar from edge to interior 

forest in mainland forest.  Density of individuals classified as pioneer tree species on 

forested islands was also nearly twice that found in mainland forest but there was no 
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significant relationship with distance from the edge in either site type.  The density of L. 

japonica individuals was greater on forested islands compared to mainland forest, but 

varied widely in abundance from edge to interior in both site types.  Species richness per 

plot of all woody species on forested islands was also nearly double that found in 

mainland forest, and only exhibited a decrease from edge to interior in mainland forest 

(Fig. 2.4; Table 2.2). 

 

Litter, forest structure, soil pH, and percent canopy openness 

Litter mass, basal area, canopy height, soil pH, and percentage of canopy 

openness exhibited variable responses from edge to interior on forested islands and 

mainland forest (Fig. 2.3; Table 2.3).  Litter mass increased from the edge to interior, and 

this pattern appeared to be driven primarily by forested islands, which had greater litter 

mass overall (Fig. 2.3; Table 2.3).  Basal area was not significantly different between 

forested islands and mainland forest, and no difference was detected with increasing 

distance from the edge.  In contrast, canopy height and soil pH increased and percentage 

of canopy openness decreased from the edge to interior but was not significantly affected 

by site type.  Soil pH was quite variable and ranged widely from acidic soils typical for 

this region (pH = 4.0) to nearly neutral (pH = 6.9) on both islands and mainland sites 

(Fig. 2.3; Table 2.3).   

 

Overall forest species composition on islands and mainland sites in both lakes 
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Of the 75 species retained for community analysis, only 1 species was exclusively 

found on mainland sites, while 17 species were only found on islands (Table 2.1).  

Forested islands and mainland forest differed in woody plant species composition as 

indicated by the separation of islands from mainland sites in the NMS ordination, 

primarily along Axis 1 (Fig. 2.4; 3-dimensional solution, stress = 13.9, variation 

explained = 80.7%). MRPP analysis of community composition indicated an overall 

difference between forested islands and mainland forest (T = -8.26, A = 0.07, p < 0.001).  

Pairwise comparisons between islands and mainland sites in the two lakes indicated that 

species composition between mainland forest in the two lakes did not differ, but forested 

island composition between the two lakes did differ (Table 2.4).  Forested islands 

differed from mainland forest both within and between the two lakes (Table 2.4).   

Indicator species analysis identified several species that contributed to 

compositional differences between forested islands and mainland forest, with the bulk of 

significant indicator species assigned to forested islands (Table 2.5).  Acer floridanum 

and Vitis rotundifolia were noteworthy significant indicators of mainland forest.  Acer 

floridanum was found only in Lake Russell, with mean stem density in mainland forest 

nearly double that found on islands (Table 2.1).  While V. rotundifolia, a liana, occurred 

in both site types at relatively high densities, plots in mainland forest contained nearly 

three times the number of stems compared to island plots (Table 2.1).  In addition, several 

species considered to be shade-intolerant and typically associated with disturbed areas 

were identified as significant indicator species for forested islands, namely: G. 

sempervirens, J. virginiana, the non-native liana L. japonica, Pinus echinata, Prunus 

48 
 



serotina, Rhus copallina, S. glauca, and U. alata.  Although many of the indicator species 

for islands were also found in mainland forest, they occurred at a much higher frequency 

and density on forested islands (Table 2.1).  For example, the non-native liana L. 

japonica, and the native lianas G. sempervirens, and S. glauca were nearly 6 to 12 times 

more abundant per plot on islands when compared to mainland sites (Table 2.1).  The 

abundance of disturbance-tolerant tree species D. virginiana, J. virginiana, and U. alata 

was also much higher in plots on forested islands (Table 2.1).  The non-native shrub 

species Elaeagnus pungens was found in both site types, but had higher frequency of 

occurrence and much greater stem densities on islands compared to mainland sites (Table 

2.1).  The non-native tree species Albizia julibrissin was found in plots only on Lake 

Russell islands less than 0.6 ha in size (Table 2.1).  

 

Overstory, understory, and seedling composition in Lake Russell 

  Forested islands and mainland forest in Lake Russell differed in woody plant 

species composition only for understory woody vegetation and seedlings as indicated by 

the separation of islands and mainland forest sites in the NMS ordinations and MRPP 

analysis (Fig. 2.5; Table 2.6).  Additionally, pairwise comparisons between forest layers 

showed that the species composition of the three forest layers significantly differed for 

forested islands (Table 2.6).  In mainland sites, the composition of the overstory differed 

from the understory and seedlings, but the latter two did not differ from each other. 

Indicator species analysis identified several species that contributed to 

compositional differences between forested islands and mainland forest in Lake Russell, 
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with the majority of significant indicator species assigned to mainland forest (Table 2.7).  

Acer floridanum, Ostrya virginiana, and Q. alba were significant indicators of mainland 

forest for all three forest layers, whereas A. rubrum, C. alba, and Fagus grandifolia were 

significant indicators for mainland forest overstory and seedlings (Table 2.7).  On 

forested islands, we found that there were no significant indicator species for seedlings, 

though Pearson correlations with NMS axes indicated that P. echinata, P. taeda, Prunus 

serotina, and the non-native liana L. japonica were influencing island site positions along 

the NMS axes (Fig. 2.5).  Several species were identified as significant indicators of the 

overstory and understory forest layers on islands, namely: G. sempervirens, J. virginiana, 

P. echinata, and Q. nigra (Table 2.7).  Indicator species for islands and those that are 

differentiating islands from mainland forest along the NMS axes are known to be 

common in disturbed areas. 

Mean percentage canopy openness and soil pH in Lake Russell sites were 

significantly correlated with NMS axes for each forest layer (Table 2.8).  Soil pH was 

significantly and positively correlated with both Axis 1 for overstory vegetation and with 

Axis 2 for understory vegetation.  Percentage canopy openness was significantly and 

positively correlated with Axis 3 for understory vegetation and with Axis 3 for seedling 

composition. 

 

Predicted changes in forest composition 

Our expanded overstory and seedling sampling on the mainland forest sites and 

subset of islands in Lake Russell captured a total of 43 tree species (i.e., regional species 
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pool).  Tree species richness ranged from 9 to 24 for the 11 forested islands, and all 

islands together captured 88% of the regional species pool.  In the Lake Russell mainland 

forest sites, tree species richness ranged from 18 to 25, and the five sites captured 79% of 

the regional species pool.  We identified only one island that had no local tree species at 

risk of extinction.  On all other forested islands, we found that the proportion of local tree 

species regenerating ranged from 35% to 58%, the proportion of species at risk of 

extinction ranged from 5% to 50%, and the proportion of species that were thought to 

have immigrated to the island ranged from 10% to 55%.  On the mainland sites we found 

that, locally, the proportion of tree species regenerating, at risk of extinction, or thought 

to have immigrated to the site was similar to that found on islands.  Regionally, mainland 

sites captured a significantly greater proportion of the regional species pool (Cc; t = -

2.93, p < 0.03), and a larger proportion of these were regenerating compared to islands 

(R; t = 10.1, p = 0.006).  There were no differences between the site types for the 

proportion of immigrant or species at risk of extinction at the regional level. 

 

DISCUSSION 

Isolated forest fragments in this system are diverging from continuous forest 

through colonization and proliferation in shrub, liana, and pioneer tree species not 

common in oak-hickory forest.  Tree species typical of this forest type appear to be 

surviving on the islands, at least for the time being.  This persistence could be due either 

to the relatively recent creation of the fragments (40 to 70 years ago) or to the 

disturbance-tolerant nature of the canopy species associated with oak-hickory forests of 
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the southeastern US (Cowden et al. 2014).  Many of the tree species typically associated 

with this forest type occurred at similar frequencies and densities in both forested islands 

and mainland forest (C. alba, C. glabra, Q. alba, Q. rubra, Q. velutina, and P. taeda).  

However, changes in species composition are occurring, as more species are being added 

and pioneer trees, such as J. virginiana, U. alata, and P. echinata, are becoming more 

prominent in the overstory and understory on forested islands. In fact, forested islands 

supported, on average, at least four more species per plot than mainland forest and 

remained elevated across the entire island whereas there was significant decline in 

species richness per plot from edge to interior in mainland forest. Laurance et al. (2006a) 

found little difference in tree species richness between intact forest and edge plots or 

plots in fragments even though there were substantial changes in species composition.  

Greater species richness on forested islands than mainland forest likely resulted from the 

doubled stem density we found on islands compared to mainland forest.  We attribute 

higher stem densities and species richness on islands to the creation of edge habitat 

through forest fragmentation, which has promoted the proliferation of liana, shrub, and 

pioneer tree species that are uncommon in relatively undisturbed, oak-hickory forests. 

With the exception of lianas, we found that the number of individuals for all of 

these life-forms, as well as for the non-native liana L. japonica, were elevated well above 

the values we found in mainland forest and remained elevated across entire islands 

indicating that these biological edge effects are pervasive across small islands, in contrast 

to the distinct edge to interior pattern we found in mainland forests.  Similarly, Londre 

and Schnitzer (2006) found that overall liana abundance in the deciduous temperate 
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forests of Wisconsin substantially declined from forest fragment edge to interior. That L. 

japonica abundance was elevated across entire forested islands is not surprising, as 

Fridley et al. (2009) found that L. japonica abundance was higher on edges of a North 

Carolina Piedmont forest up to 70 m from the edge of an agricultural field.  Edge effects 

for lianas and pioneer tree species were also demonstrated in the tropical forest of the 

BDFFP, where both richness and abundance of tropical liana and pioneer tree species 

were greater within 25 m of agricultural lands (Laurance et al. 2001, Laurance et al. 

2006b), though we did not detect a decline in the density of pioneer trees on our small 

forested islands.  We attribute the lack of steep declines with distance to the edge in 

shrub, pioneer tree, and L. japonica density on forested islands to compounded edge 

effects related to the small size of the islands and multiple edges in close proximity.  Our 

largest island was less than 3 ha, and interior island plots were typically not more than 

40-60 m from any edge. Laurance et al. (2011) also found that liana stem density and 

pioneer tree species in BDFFP were also shown to magnify as fragment size decreased 

and the number of fragment edges within 100 m increased.  Thus, our fragments likely 

suffer from the influence of multiple edges (Harper et al. 2007, Laurance et al. 2011) and 

can be largely be considered entirely edge habitat. 

Greater species richness in our forested islands may persist for several more 

decades, as the islands we sampled still have an “extinction debt” (Tilman et al. 1994) to 

pay due to the long-lived, disturbance-tolerant nature of the woody vegetation present.  If 

canopy species fail to recruit and begin to go locally extinct, species richness may only 

then relax to an equilibrium point (Gonzalez et al. 2009), such that species richness on 
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the islands becomes similar to the forested mainland sites or declines.  Our analysis of the 

overstory, understory, and seedling composition of forested islands and mainland forest 

in Lake Russell predicts that the species composition of forested islands will indeed 

continue to diverge from mainland forest, and species richness may become more similar 

to mainland forest or decline over time as anywhere from 5% to 50% of the overstory tree 

species currently present on islands in Lake Russell are not represented in either the 

understory or seedling layers on islands.   

Islands in Lake Thurmond, 30 years older than those in Lake Russell, appear to 

have diverged more from continuous forest in their species composition than the younger 

islands on Lake Russell. Islands on Lake Thurmond had a greater number of shrub and 

liana species than Lake Russell, and the species composition of islands in the two lakes 

differed significantly.  In contrast, the mainland forests of the two lakes had similar 

numbers of species and species composition, suggesting that time since isolation is 

driving the changes in composition.  Therefore, in the next 30 years we expect to see that 

forested islands in Lake Russell will continue to accumulate more shrub and liana 

species.  If tree species continue to persist on islands in the two lakes, the differences in 

species composition and richness may disappear. 

 

Edge effects in oak-hickory forest fragments 

Despite a divergence in species composition between fragments and continuous 

forest in our system, the only environmental variable that differed between these site 

types, when accounting for distance from the forest edge, was litter mass.  Litter mass 
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markedly increased from edge to interior and was consistently greater on islands than on 

their mainland forest counterparts.  It is unclear if the greater litter mass on islands was 

due to decreases in litter decomposition rates, or if greater stem density on islands means 

that more leaves and hence litter are produced (Ramalho et al. 2014).  It is likely that 

increased stem density is providing a greater supply of litter on island fragments and may 

be considered largely a structural edge effect.  However, lower soil moisture and relative 

humidity levels commonly associated with forest fragment edges (Matlack 1993, 

Broadbent et al. 2008) have also been shown to slow litter decomposition rates (Riutta et 

al. 2012).  As litter depth has been shown to impact seedling composition in other 

systems (Benítez-Malvido 1998), long-term impacts of increased litter in these small 

fragments may impact seedling recruitment for overstory species associated with oak-

hickory forests.  For example, greater litter depth has been shown to inhibit germination 

for small-seeded species like Liquidambar styraciflua and reduce seedling growth for 

large-seeded species like Quercus velutina (Kostel-Hughes et al. 2005). Therefore, 

germination or growth of typical overstory tree species may be negatively affected in 

small forest fragments.  

Soil pH significantly increased from edge to interior in both habitats, which was 

somewhat unexpected as the two other studies that measured this variable found the 

opposite pattern (Honnay et al. 2002, Alignier and Deconchat 2013).  Both of those 

studies were conducted in landscapes where there was a large proportion of arable land as 

well as urban and residential development surrounding their fragments, and they 

concluded their results may have been due to nutrient influx from the surrounding 
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landscape (Honnay et al. 2002, Alignier and Deconchat 2013).  Our mainland forest and 

forested islands edges were located along water and nutrients are therefore not likely 

being deposited from agricultural areas in the surrounding matrix.  The few nutrients 

being added to forested islands in the system are strictly from atmospheric deposition and 

the extant vegetation, which may be more nutrient rich in the interior of the fragments.  

Soils in this study system may weather and become more acidic over time (Schoenholtz 

et al. 2000, Farr et al. 2009).  In addition, we found that mean soil pH for each site in the 

Lake Russell subset was significantly and positively correlated with NMS axes that 

consistently identified J. virginiana as a species that was contributing to the differences 

we see in species composition between forested island and mainland sites in Lake 

Russell.  This result is likely due to the impact the J. virginiana has had on the soils, 

rather than how soil pH is affecting community composition.  Juniperus virginiana is 

known to produce leaf litter that is extremely high in Ca which in turn can dramatically 

increase soil pH (Arend 1950) and which then impacts seedling and sapling communities 

in low nutrient habitats(Joy and Young 2002).   

Canopy openness, our proxy for light availability, decreased from edge to interior 

in both site types.  This result is similar to many other studies that have measured light 

availability along transects from forest edge to interior (e.g., Matlack 1993, Benitez-

Malvido and Martinez-Ramos 2003, Londré and Schnitzer 2006, Flory and Clay 2009).  

That light availability on forested islands was not greater than that found in mainland 

forest was somewhat surprising, however, as we expected canopy openness to be higher 

on forested islands compared to mainland sites because island interiors were typically 
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never further than 40 – 60 m from an island edge.  Canopy openness has likely been 

influenced by the time since isolation, and it may be that light availability between the 

two habitats has become more similar over time as the vegetation has had nearly 40 years 

to respond and “edge closure” (Laurance et al. 2002) may have already occurred in these 

sites.  A similar pattern was found in the BDFFP where woody vegetation exhibited edge 

closure as quickly as 1-5 years following fragmentation, and microenvironmental edge 

effects became more complex though did not disappear entirely (Kapos et al. 1997, 

Laurance et al. 2002).  We also found that mean light levels on islands were significantly 

correlated with NMS axes that demonstrated compositional differences between forested 

islands and mainland forest in Lake Russell for the understory and seedling layers.  This 

indicates that even though edge effects for light appear similar on islands and mainland 

sites, slight differences between the site types may be leading to large differences in 

composition.  Furthermore, it may be that light levels from the edge to interior on 

forested islands and mainland forest have only recently become similar, and the 

difference in species composition reflects historic effects of overall greater canopy 

openness on islands compared to mainland forest. 

 Basal area and canopy height were similar between the two site types, and only 

canopy height increased with increasing distance from the edge.  Our findings for canopy 

height are similar to several studies that have documented reductions in canopy height 

along forest edges (Harper et al. 2005).  Basal area in our study system may have rapidly 

recovered to levels found in mainland forest because some woody species have likely 

benefitted from reduced competition and increased light when the forested islands were 
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created nearly 40 and 70 years ago (Broadbent et al. 2008).  Coupling our data for 

individual density and basal area, it appears that the increase in basal area on the edge 

results mostly from an increase in the number of smaller stems, rather than increases in 

basal area of persisting vegetation. This is also supported by the compositional data 

where L. japonica, shrub species, and pioneer tree species had greater abundance on 

forested islands and contributed to the separation of islands from mainland sites in the 

NMS. 

 

Conclusion 

Oak-hickory forest fragments in the Piedmont region of the southeastern US, even 

those as small as an American football field, have largely retained the canopy species 

found in mainland forests, at least for the time being.  This persistence is due to an 

“extinction debt” (Tilman et al. 1994) that has not yet been paid by the long-lived, 

relatively disturbance-tolerant, woody species that were the focus of this study.  

However, the effects of fragmentation cannot be fully appreciated without explicit 

consideration of how edge effects contribute to forest community composition and 

structure (Harper et al. 2005, Koh et al. 2010).  By sampling from the edge to interior of 

small forested islands and large mainland forest, we were able to demonstrate how forests 

in small fragments are affected by compounded edge effects and essentially function 

entirely as edge habitat for the non-native liana L. japonica, shrub and pioneer tree 

species and species richness on a per area basis, with concomitant changes in species 

composition primarily attributed to compositional differences in the understory.  It is 
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likely that the forested islands in our study will continue to diverge from mainland forest 

over time, and may ultimately degrade to the point that the forest community is made up 

entirely of disturbance-tolerant early seral species. 
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TABLES 

Table 2.1. Frequency and mean stem density per 20-m2 for the 75 species retained for 

community analysis in Lake Thurmond and Lake Russell on islands (239 plots) and 

mainland (75 plots) sites. Pioneer trees are indicated with the superscript “P” under 

growth form.  Species found only in Lake Russell or Lake Thurmond are indicated with 

the superscripts “R” and “T” respectively. 

Species Frequency 
Mean stem 

density per plot Growth 
I ML I ML Form 

Acer floridanumR 0.004 0.05 0.003 0.12 Tree 
Acer leucodermeR 0.03 0.10 0.06 0.15 Tree 
Acer rubrum 0.18 0.24 0.47 1.15 TreeP 

Albizia julibrissinR 0.04 0 0.06 0 
Non-native 

treeP 
Amelanchier arborea 0.06 0.01 0.08 0.01 Shrub 
Aralia spinosaT 0.04 0 0.12 0 TreeP 
Asimina triloba 0.02 0.03 0.03 0.03 Shrub 
Baccharis halimifoliaT 0.04 0 0.08 0 Shrub 
Berchemia scandensT 0.02 0 0.03 0 Liana 
Betula nigra 0.008 0 0.007 0 Tree 
Bignonia capreolata 0.03 0 0.26 0 Liana 
Callicarpa americana 0.03 0.01 0.03 0.03 Shrub 
Campsis radicans 0.05 0.06 0.13 3.12 Liana 
Carya alba 0.19 0.09 0.34 0.12 Tree 
Carya glabra 0.24 0.33 0.34 0.67 Tree 
Ceanothus americanusT 0.02 0 0.03 0 Shrub 
Celtis tenuifolia 0.06 0.01 0.15 0.01 Shrub 
Cephalanthus occidentalisT   0.004 0.04 0.02 0.11 Shrub 
Cercis canadensis 0.08 0 0.15 0 TreeP 
Clinopodium georgianum 0.008 0.01 0.007 0.01 Sub-shrub 
Cocculus caroliniana 0.04 0 0.13 0 Liana 
Cornus florida 0.07 0.11 0.17 0.21 Tree 
Crataegus sp. 1 0.04 0.03 0.05 0.03 Shrub 
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Crataegus sp. 2 0.14 0 0.23 0 Shrub 
Diospyros virginiana 0.21 0.04 0.41 0.07 Tree 

Elaeagnus pungensR  0.03 0.01 0.24 0.01 
Non-native 

shrub 
Euonymus americanus 0.07 0.03 0.42 0.04 Shrub 
Fraxinus americana 0.03 0.08 0.03 0.09 Tree 
Gelsemium sempervirens 0.56 0.16 10.84 1.84 Liana 
Hypericum hypericoides 0.08 0.05 0.13 0.25 Sub-shrub 
Ilex decidua 0.03 0.01 0.22 0.01 Shrub 
Ilex opaca 0.03 0.01 0.03 0.01 Tree 
Juniperus virginiana 0.53 0.21 2.07 0.44 TreeP 
Liquidambar styraciflua 0.31 0.31 1.24 1.51 Tree 

Lonicera japonica 0.33 0.13 3.03 0.52 
Non-native 

liana 
Lonicera sempervirens 0.08 0 0.18 0 Liana 
Matelea carolinensis 0 0.03 0 0.45 Liana 
Morus rubraR 0.03 0.01 0.04 0.01 TreeP 
Myrica ceriferaT 0.09 0.01 0.60 0.01 Shrub 
Nyssa sylvatica 0.09 0.05 0.31 0.07 Tree 
Ostrya virginiana 0.12 0.19 0.52 0.52 Tree 
Oxydendrum arboreumR 0.02 0.03 0.10 0.03 Tree 
Parthenocissus quinquefolia 0.04 0.03 0.10 0.04 Liana 
Passiflora incarnataR 0.01 0 0.02 0 Liana 
Pinus echinata 0.19 0.01 0.36 0.01 TreeP 
Pinus taeda 0.36 0.29 1.37 0.53 TreeP 
Pinus virginiana 0.05 0 0.08 0 TreeP 
Prunus serotina 0.21 0.03 0.42 0.04 TreeP 
Prunus umbellata 0.04 0 0.14 0 Tree 
Quercus alba 0.13 0.19 0.18 0.35 Tree 
Quercus falcata 0.09 0.01 0.10 0.01 Tree 
Quercus marilandicaR 0.01 0.01 0.02 0.01 Tree 
Quercus nigra 0.27 0.09 0.54 0.27 Tree 
Quercus phellos 0.07 0.08 0.11 0.09 Tree 
Quercua rubra 0.02 0.07 0.03 0.12 Tree 
Quercus stellata 0.24 0.17 0.54 0.27 Tree 
Quercus velutina 0.15 0.11 0.23 0.20 Tree 
Rhus copallina 0.13 0.01 0.33 0.01 TreeP 
Rhus glabra 0.03 0 0.04 0 TreeP 
Rubus argutus 0.06 0.01 0.39 0.07 Liana 
Sassafras albidum 0.02 0 0.03 0 TreeP 
Smilax bona-nox 0.38 0.17 1.72 0.69 Liana 
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Smilax glauca 0.40 0.09 1.65 0.12 Liana 
Smilax rotundifolia 0.04 0.03 0.15 0.03 Liana 
Smilax smalliiT 0.03 0.01 0.10 0.08 Liana 
Toxicodendron radicans 0.10 0.05 0.28 0.07 Liana 
Ulmus alata 0.56 0.32 3.08 0.70 TreeP 
Ulmus rubraR 0.008 0.01 0.007 0.01 Tree 
Vaccinium arboreum 0.18 0.09 0.99 0.25 Shrub 
Vaccinium elliottii 0.19 0.10 0.79 0.24 Shrub 
Vaccinium pallidum 0.13 0.02 0.40 0.03 Sub-shrub 
Vaccinium stamineumT 0.02 0 0.08 0 Shrub 
Viburnum prunifolium 0.05 0.01 0.29 0.01 Shrub 
Viburnum rufidulumT 0.02 0 0.10 0 Shrub 
Vitis rotundifolia 0.41 0.61 1.72 5.04 Liana 
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Table 2.2.  General linear mixed effects model results for fixed effects of site type (island or mainland) and distance from edge 

on individual density for all species, lianas, shrubs, pioneer trees, and the non-native liana Lonicera japonica, as well as for 

total species richness. Significant effects (p < 0.05) are in bold font. 

Source All species Lianas Shrubs Pioneer trees 
Lonicera 
japonica Species richness 

z p z p z p z p z p z p 

Type -3.11 <0.001 -1.87 0.06 -3.64 <0.001 -3.98 <0.001 -2.33 0.02 -2.96 0.003
Distance -6.19 <0.001 -9.36 <0.001 2.82 0.004 -0.70 0.48 -0.70 0.48 0.91 0.36 
T*D -2.64 <0.001 2.09 0.03 -1.70 0.09 -1.28 0.20 -1.28 0.20 -2.44 0.01 
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Table 2.3.  Results of linear mixed effects models for effects of site type (island or mainland) and distance from edge on litter 

mass, basal area, canopy height, soil pH, and percentage of canopy openness. Significant effects (p < 0.05) are in bold. 

Source Litter mass (g) 
Basal area       
(m2 plot-1) 

Canopy height 
(m) Soil pH

% canopy 
openness 

t p t p t p t p t p 

Type (T) -1.06 0.29 -0.39 0.69 0.26 0.79 -0.30 0.76 -1.13 0.27 
Distance (D) 4.41 <0.001 0.85 0.39 2.67 0.003 2.31 0.02 -2.50 0.01 
T*D -2.33 0.02 1.29 0.20 0.90 0.37 0.97 0.97 0.43 0.66 
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Table 2.4.  Multiple response permutation procedure (MRPP) results for differences 

between woody and semi-woody plant species composition on Lake Russell and Lake 

Thurmond islands and mainland sites.  Relative Sørensen (Bray-Curtis) distance was used 

on a matrix of species abundance data for each site. The test statistic (T) and the chance-

corrected within group agreement (A) are presented for each analysis. We applied the 

Bonferroni correction for multiple comparisons and set α = 0.008 for this analysis. 

Lake Site type 

Average 
within group 

distance T A p 

Lake Russell Mainland 0.56 -0.96 0.02 0.16 
Lake Thurmond Mainland 0.77 

Lake Russell Island 0.67 -4.22 0.03 0.002
Lake Thurmond Island 0.64 

Lake Russell Island -4.74 0.04 <0.001
Lake Thurmond Mainland 

Lake Thurmond Island -6.96 0.11 <0.001
Lake Russell Mainland 

Lake Russell Island -6.69 0.05 <0.001
Lake Russell Mainland 

Lake Thurmond Island -3.22 0.04 0.007
Lake Thurmond Mainland 
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Table 2.5.  Species identified as significant indicator species (p < 0.10) for each site type 

(island or mainland) and their Pearson correlations (r) with NMS axes in Figure 1. 

Correlations greater than ± 0.400 are indicated in bold font. 

Site Type Species Axis 1 Axis 2 Axis 3 

Island Cratageous sp. 2* -0.262 -0.383 0.076
Diospyros virginiana -0.414 -0.244 -0.221
Gelsemium sempervirens -0.384 -0.423 -0.629
Juniperus virginiana -0.469 -0.240 -0.235
Lonicera japonica -0.500 -0.279 0.115
Pinus echinata -0.228 -0.210 -0.042
Prunus serotina -0.378 -0.171 -0.287
Quercus nigra 0.098 -0.297 0.087
Rhus copallina -0.173 -0.143 0.129
Smilax bona-nox -0.500 -0.202 -0.387
Smilax glauca -0.447 -0.259 -0.169
Ulmus alata -0.042 -0.455 0.018

Mainland Acer floridanum 0.131 0.273 -0.048
Acer rubrum 0.007 0.231 -0.262
Matelea carolinensis* -0.045 0.060 0.020 
Quercus rubra 0.103 0.296 -0.254
Vitis rotundifolia -0.107 0.648 -0.199

*Species that occurred only in a single site type.
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Table 2.6. Multiple response permutation procedure (MRPP) results for differences 

between overstory (≥ 5 cm DBH), understory (≥ 50 cm HT and < 5 cm DBH), and 

seedling (≥ 10 cm and < 50 cm HT) woody and semi-woody plant species composition 

on Lake Russell islands and mainland sites.  Relative Sørensen (Bray-Curtis) distance 

was used on a matrix of species abundance data for each forest layer. The overall test was 

significant (T = -13.16, A = 0.15, p < 0.001).  The test statistic (T) and the chance-

corrected within group agreement (A) are presented for each analysis. We applied the 

Bonferroni correction for multiple comparisons and set α = 0.005 for this analysis. DBH 

= diameter at breast height.  HT = height (or length in the case of lianas). 

Within forest layer Site type 

Average 
within group 

distance T A p 

Overstory Island 0.66 -2.93 0.07 0.015
Mainland 0.66 

Understory Island 0.64 -5.22 0.08 <0.001
Mainland 0.57 

Seedlings Island 0.77 -4.57 0.07 <0.001
Mainland 0.54 

Within site type T A p 

Overstory Island -5.34 0.07 <0.001
Understory 

Overstory Island -8.63 0.11 <0.001
Seedlings 

Understory Island -3.89 0.04 0.002
Seedlings 
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Overstory Mainland -3.19 0.08 0.003
Understory 

Overstory Mainland -4.25 0.14 0.002
Seedlings 

Understory Mainland -3.17 0.09 0.007
Seedlings 
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Table 2.7.  Species identified as significant indicator species (p < 0.10) for each site type 

(island or mainland) within each forest layer (overstory, understory, seedlings) using 

indicator species analysis (McCune and Grace 2002), and their Pearson correlations (r) 

with NMS axes in Fig. 2.7. Correlations greater than 0.5 are indicated in bold. DBH = 

diameter at breast height.  HT = height (or length in the case of lianas). 

Forest Layer and 
Site Type Species Axis 1 Axis 2 Axis 3 

Overstory (> 5 cm DBH) 

Island Juniperus virginiana 0.626 0.157 0.292 
Pinus echinata 0.076 0.583 -0.004
Quercus nigra 0.158 0.439 0.346 

Mainland Acer floridanum -0.395 -0.384 -0.040
Acer leucoderme -0.569 -0.376 0.339
Acer rubrum -0.506 -0.542 0.208
Carya alba -0.554 -0.509 0.117
Carya ovata* -0.449 -0.129 -0.102
Fagus grandifolia -0.441 -0.580 0.175
Fraxinus americana 0.004 -0.291 -0.182
Liriodendron tulipifera -0.725 -0.446 0.337
Ostrya virginiana -0.435 -0.135 0.318
Quercus alba -0.592 -0.486 0.055

Understory (> 50 cm HT to 5 cm DBH) 

Island Cratageous sp. 2 0.224 -0.698 0.272
Gelsemium sempervirons 0.105 -0.050 0.477
Juniperus virginiana -0.009 0.391 0.354

Mainland Acer floridanum* 0.087 0.191 -0.217
Cornus florida -0.342 -0.128 -0.692
Liquidambar styraciflua 0.127 -0.142 -0.692
Matelea carolinensis 0.082 0.052 -0.223
Ostrya virginiana -0.013 0.006 -0.581
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Quercus alba -0.392 0.238 -0.363
Toxicodenron radicans -0.142 0.181 -0.339
Viburnum prunifolium 0.070 0.206 -0.097

Seedlings (10-50 cm HT) 

Island None 

Mainland Acer floridanum 
Acer rubrum -0.165 0.067 -0.580
Bignonia capreolata* 0.146 0.132 -0.392
Carya alba -0.195 -0.003 -0.547
Carya glabra* 0.042 0.110 -0.485
Dioscorea villosa 0.230 0.126 -0.286
Fraxinus americana 0.213 0.121 -0.226
Nyssa sylvatica -0.229 -0.029 -0.604
Ostrya virginiana* -0.038 0.122 -0.416
Parthenocissus quinquefolia* 0.273 0.135 -0.252
Quercus alba* -0.244 0.107 -0.562
Quercus rubra 0.089 0.074 -0.557
Quercus velutina 0.003 0.023 -0.370
Smilax glauca -0.310 -0.105 -0.802
Toxicodenron radicans 0.043 0.090 -0.301
Vitis rotundifolia -0.053 -0.056 -0.752

*Species that occurred only in a single site type.
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Table 2.8. Pearson correlations (r) between mean values for percentage of canopy 

openness and soil pH for each forested island and mainland forest site with NMS axes for 

each forest layer. Numbers in “( )” are the percent variation explained by the axis. 

Correlations greater than 0.5 are indicated in bold. 

Forest layer and 
NMS axis 

% canopy 
openness Soil pH 

Overstory (> 5 cm DBH) 
Axis 1 (37.9) 0.472 0.512 
Axis 2 (33.9) 0.435 -0.492
Axis 3 (15.0) -0.390 0.109

Understory (> 50 cm HT to 5 cm DBH) 
Axis 1 (5.5) 0.333 -0.156
Axis 2 (24.8) -0.005 0.747
Axis 3 (59.5) 0.625 0.094

Seedlings (10-50 cm HT) 
Axis 1 (14.1) -0.240 0.575 
Axis 2 (34.6) 0.270 0.278 
Axis 3 (37.4) 0.540 0.288 
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FIGURES 

Fig. 2.1. Aerial photographs with the location of islands and mainland sites in Lake 

Russell (left) and Lake Thurmond (right) along the border of South Carolina and Georgia.  

Island sizes and mainland sites are indicated by the following symbols: islands 0.08 - 

0.43 ha = Δ, islands 0.56 - 0.88 ha = Ο, islands 1.03 - 2.47 ha = ×, and mainland  

sites =          .  Please note that symbols are much larger than actual sites in order to 

illustrate site position at this scale. 
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Fig. 2.2.  Predicted number of individuals per 20-m2 plot for (A) all species together, (B) lianas, (C) shrubs, (D) pioneer trees, 

(E) the non-native liana Lonicera japonica, and (F) species richness on island and mainland sites in Lake Russell and Lake

Thurmond.  Grey shading indicates the 95% confidence interval around each predicted line.  Significant model effects for site 

type (T) and distance from edge (D), or their interaction (T*D) are indicated in bold font for each panel where appropriate 

(Table 2.4).   

83 



Fig. 2.3. Predicted (A) litter mass, (B) basal area, (C) canopy height, (D) soil pH, and (E) percent canopy openness on island 

and mainland sites in Lake Russell and Lake Thurmond.  Grey shading indicates the 95% confidence interval around each 

predicted line. Significant model effects for site type (T) and distance from edge (D), or their interaction (T*D) are indicated in 

bold for each panel where appropriate (Table 2.5).   
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Fig. 2.4.  NMS using relative Sørensen (Bray-Curtis) distance measure on a matrix of the 

75 species that occurred in more than 15 of the 20-m2 plots in Lake Russell and Lake 

Thurmond (stress =13.9, total variation explained = 80.7%).  Species with significant 

Pearson correlations (r > ± 0.4) with NMS axes are indicated on the appropriate positive 

or negative axes, respectively.  Islands and mainland sites are represented by grey circles 

and black squares, respectively.   
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Fig. 2.5.  NMS using the relative Sørensen (Bray-Curtis) distance measure for all species 

that were sampled in the (A) overstory (> 5 cm DBH; stress =6.94, total variation 

explained = 86.8%), (B) understory (>50 cm HT and <5 cm DBH; stress =8.97, total 

variation explained = 89.8%), and (C) seedlings (10 – 50 cm HT; stress =9.52, total 

variation explained = 86.4%) in the subset of 11 islands and the 5 mainlands sites in Lake 

Russell. Species with significant Pearson correlations (r > ± 0.5) with NMS axes are 

indicated on the appropriate positive or negative axes, respectively. Islands and mainland 

sites are represented by grey circles and black squares, respectively.  DBH = diameter at 

breast height.  HT = height (or length in the case of lianas). 
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CHAPTER 3 

INVASIVENESS OF TWO NON-NATIVE WOODY SPECIES IN 

SOUTHEASTERN US FOREST FRAGMENTS 

INTRODUCTION 

Habitat fragmentation and species invasions have been cited as two of the most 

important drivers of biodiversity loss and ecosystem degradation (Mack et al. 2000, 

Pimentel et al. 2000, Flory and Clay 2009).  These two factors may act not only 

independently but also synergistically, as species invasions often are associated with 

habitat fragmentation.  In particular, many non-native, invasive plant species tend to 

proliferate on edges of forest fragments (Harper et al. 2005, Flory and Clay 2006, Vilà 

and Ibáñez 2011).  However,  we do not yet fully understand whether they occur 

primarily on forest edges simply because their propagules have not dispersed to interior 

forest (i.e., dispersal limitation) or because they cannot establish, survive, and grow under 

the environmental conditions typically associated with undisturbed interior forest (i.e., 

environmental limitation).   

The question of whether non-native plant species are primarily dispersal or 

environmentally limited is a basic one in community ecology and has important 

implications for invasive species management and conservation.  If dispersal limitation 

(Tilman 1997) is the only reason non-native species are found on fragment edges, only 

sufficient propagule pressure would be needed for invasion of undisturbed interior forest 

and invasive species should eventually take hold within interior forest.  Non-native plant 

species that are commonly dispersed by wind, or by organisms known to make use of 
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edge and interior forest habitat, will likely be dispersed from edges to interior forest sites 

on a relatively short timescale.  In contrast, non-native species that are gravity dispersed 

will travel only centimeters to meters from the reproductive plant (Vittoz and Engler 

2008) and might take decades or centuries to invade forest interior even if they are well 

suited to the environmental conditions present.  If non-native plant species can grow and 

reproduce in environmental conditions typical of intact forest interior, then management 

of plant invasions would need to focus on removing propagule sources.  Environmental 

limitation could also restrict non-native species to forest edges because they may not 

have the ability to germinate and proliferate under the environmental conditions typically 

associated with interior forest. If environmental limitation controls non-native species 

occurrence in forest interiors, then management could simply concentrate on preservation 

of interior forest conditions, which is potentially a less expensive option than eradication 

of propagule sources.   

Two species that are common non-native, woody invaders of forest fragments in 

the southeastern United States (US) are Albizia julibrissin Durazz. (Fabaceae, 

mimosa/silk tree) and Lonicera japonica Thunb. (Caprifoliaceae, Japanese honeysuckle) 

(Schierenbeck 2004, Chang et al. 2011).  Both species are listed as “severe threats to the 

structure and functioning of native habitats” in South Carolina (Clemson Universty 

Cooperative Extension 2009), and as “invasive species of concern” in Georgia (Evans et 

al. 2006).   

Albizia julibrissin is a small to medium-sized tree native to Asia and it is thought 

to have been initially introduced to the southeastern US for horticultural purposes by way 
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of Andre Michaux’s Charleston, South Carolina nursery in 1785 (Cothran 2004).  This 

species appears to have been offered for sale in catalogues as early as 1808 and was 

found to be naturalized in South Carolina forests in 1976 (Gettman 1976). We do not 

know of any studies that document the ecological impacts of A. julibrissin invasion, but 

anecdotal accounts of negative impacts on native plant communities are common in 

regional guides to invasive flora (USFS 2016). Despite its listing as an invasive species in 

Kentucky, Tennessee, South Carolina, Georgia, Alabama, and Florida (Bargeron et al. 

2008), A. julibrissin is still sold online and at nurseries across the US.  This species is 

also being actively investigated as a potential agroforestry species to be used as animal 

fodder in the Coastal Plain of the southeastern US (Pitman 2008, Yiakoulaki et al. 2014), 

with Yiakoulaki et al. (2014) stating “mimosa trees in pastures can enhance the nutritive 

value of diet of suckling goat kids consuming forage of low to moderate nutritive value.”  

In an observational study, we found that A. julibrissin only occurred in plots located on 

small (< 0.6 ha) forested reservoir islands located along the South Carolina-Georgia 

border of the southeastern US (Chapter 2; Table 2.1) and was sometimes observed along 

the shoreline of mainland forest (D. Zoellner, personal observation). Overall, it was not 

an abundant component of vegetation on forested reservoir islands and was completely 

lacking in sampled mainland forest sites. In Illinois, it also appears to primarily occur in 

open sites and forest edges (McClain et al. 2012).  

Lonicera japonica, a semi-evergreen liana, was introduced to the southeastern US 

in the 1800s for ornamental gardening and was historically planted in natural areas for 

deer browse (Blair 1982, Schierenbeck 2004).  This liana is known to be particularly 
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abundant in small forest fragments, along the edges of large fragments, and in disturbed 

areas (Merriam 2003, Yates et al. 2004, Honu and Gibson 2006).  Lonicera japonica can 

reduce species diversity in oak-hickory forest (Davison and Richard 1982); negatively 

impact the occurrence of particular herbaceous plant species as succession proceeds in 

old fields (Myster and Pickett 1992); and have significant negative effects on 

photosynthetic rates, nitrogen use, and biomass allocation on a common native host tree, 

Liquidambar styraciflua L. (Hamamelidaceae, sweet gum) (Dillenburg et al. 1993a, b).  

We found L. japonica to be the third most abundant species on forested reservoir islands, 

and it was most abundant within 30 m of island edges (Chapter 2).  Although L. japonica 

appears to be somewhat shade-tolerant (Blair 1982, Baars and Kelly 1996, Schierenbeck 

2004), it is unclear whether this species can survive and reproduce over the long-term in 

the environmental conditions associated with undisturbed forest interior.   

The level of leaf herbivory on both of these species may be quite low if natural 

enemies are less abundant or have less effect on A. julibrissin and L. japonica compared 

to native species, as is hypothesized by the Enemy Release Hypothesis (Keane and 

Crawley 2002).  Although A. julibrissin has been in North America since the late 1700s, 

we could not find any published studies quantifying the level of leaf herbivory on this 

species.  In contrast, L. japonica has been demonstrated to have significantly lower rates 

of leaf herbivory, and a larger compensatory growth response to leaf herbivory, when 

compared to its native congener L. sempervirens L. (Caprifoliaceae, coral honeysuckle; 

Schierenbeck et al. 1994).  Herbivore damage may also be influenced by fragment size 

and proximity to forest fragment edges as generalist herbivores are thought to thrive in 
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forest edges due to favorable microenvironmental conditions and edge-induced increases 

in food quality and quantity (Wirth et al. 2008).  However, like many other abiotic and 

biotic properties measured in forest fragments, levels of leaf herbivory do not appear to 

be consistently higher or lower in edges or interiors of fragments, or when fragments are 

compared to non-fragmented forest (Rao et al. 2001, Benítez-Malvido et al. 2005, Ibáñez 

et al. 2014).  

Several studies have found that species restricted to edges are correlated with 

environmental factors that differ between forest edges and interior (Flory and Clay 2006, 

Honu and Gibson 2006, Fridley et al. 2009), but these studies are observational and do 

not adequately address whether the observed pattern is due to dispersal or environmental 

limitation.  To address this pattern, experiments that transplant species in the edges and 

interiors of small forest fragments and edges and interiors of large remnant forest, and 

also couple plant performance measures with habitat and environmental measures will 

help give insight to whether non-native species can be expected to invade interior forest. 

Here we use this type of outplant experiment to address the question of whether 

A. julibrissin and L. japonica will proliferate under interior forest conditions if dispersal 

and establishment barriers are overcome.  Specifically, we tested whether seedlings of 

these species are environmentally limited, and as such, restricted to particular habitats in 

a forest-fragment landscape.  We investigated survival, growth, and herbivore damage of 

outplanted seedlings on both forested islands and mainland forest sites because we 

wanted to determine whether the species performed similarly in small forest fragments 

with multiple edges (islands) versus large forests with only a single edge (mainland 
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forest).  Based on our previous observations and other studies (Schierenbeck and 

Marshall 1993), we predicted that L. japonica would have higher survival and growth on 

edges than interior forest sites, but would still survive in the shaded forest interior over 

the study period.  We also predicted that A. julibrissin survival and growth would be 

highest on edges, but we expected that it would not grow and survive in forest interior 

because this species appears shade-intolerant (Koepke-Hill et al. 2012; Chapter 2).  

Determining whether A. julibrissin and L. japonica are primarily dispersal or 

environmentally limited will provide important insight on the management of these two 

non-native species by providing guidance on whether aggressive management of 

propagule sources is a worthwhile effort in order to control invasion of forest interior by 

these two species.   

 

METHODS 

Site description and selection 

We located sites in and along Lake Richard B. Russell (Lake Russell), a reservoir 

that was created for hydroelectric power along the Savannah River between South 

Carolina and Georgia in 1984 (Chapter 2).  Lake Russell is located in the Southeastern 

Piedmont physiographic region of the southeastern US and is characterized by rolling 

hills and poor soils that range from deep clays to exposed bedrock (Chapter 2; Richter et 

al. 2000, Fairchilds and Trettin 2006).  Reservoir impoundment created forested islands 

by isolating forested hilltops from what was once contiguous forest.  We confirmed that 

all sites selected for study were not logged immediately prior to impoundment and had 
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never been inundated.  Mean annual rainfall is 116.8 cm yr-1, and average monthly 

temperature ranges from 9.4° to 23.9°C (SCSCO 2007).  

We randomly selected a subset of nine forested islands that ranged in size from 

0.12–2.47 ha, and used all five mainland forest sites that were previously sampled for 

woody plant species composition and forest structural variables between May and 

September of 2007 and 2008 (Fig. 3.1; Chapter 2). We planted seedlings in blocks 

located on the edge and interior of each forested island and mainland forest site selected 

for study. 

 

Experimental outplanting 

We collected seeds for both species from sites surrounding Lake Russell between 

October and December 2007.  Seed pods were collected from eight individuals of A. 

julibrissin, and intact seeds were removed from dried pods and stored in brown paper 

envelopes at room temperature. Seeds were fully randomized and covered with 98°C 

water and allowed to sit in the water for a period of approximately 24 hours prior to 

planting (Fordham 1965, 1968).  On 10 July 2008, we filled Cone-tainersTM (RLC7 – 

Stuewe and Sons, Corvallis, Oregon) to the top rim with a germination potting soil mix 

(Fafard Superfine Germinating Mix), and one A. julibrissin seed was placed 

approximately 1 cm below the soil surface of each container and then covered lightly 

with the germination potting soil mix.  

Berries from 11 individuals of L. japonica were collected and seeds were 

extracted, cleaned, dried, and stored in brown paper envelopes at room temperature.  
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Lonicera japonica seeds were cold stratified at 5°C for 37 days and fully randomized 

prior to planting (Hidayati et al. 2000).  On 7 July 2008, we filled Cone-tainers© (RLC7– 

Stuewe and Sons, Corvallis, Oregon) to the top rim with a germination potting soil mix 

(Fafard Superfine Germinating Mix), and three L. japonica seeds were sown on the 

surface of the soil of each container and then covered lightly with the germination potting 

soil mix.  If more than one L. japonica seed germinated in a container, we haphazardly 

removed individuals so that there was only one individual per container.   

All flats were placed in a growth chamber at 25°C under 24-hour full-spectrum 

florescent lighting for germination.  Once > 90% of seeds had germinated, the light cycle 

was reduced to 16 hours of light and 8 hours of darkness.  Plants were moved to an 

outdoor location at the Clemson University Greenhouse Complex in October 2008 to 

allow for acclimation to the local climate prior to outplanting in the field.  All seedlings 

were planted in the field in mid-January 2009.  

Outplanting blocks consisted of five replicate seedlings of each species planted 30 

cm apart.  One outplanting block mistakenly contained 6 individuals of A. julibrissin and 

4 individuals of L. japonica.  At all five mainland forest sites, we placed an outplanting 

block at 2 m ("edge" blocks) and another 50 m from the forest edge ("interior" blocks), 

each offset by 5 m to the left of the transect previously surveyed for vegetation 

composition (Chapter 2).  On the nine forested islands, we placed an outplanting block at 

2 m from the island edge (edge block), offset by 5 m to the left for each of two transects 

established in our previous study of vegetation composition (Fig. 3.2; Chapter 2).  We 

also placed two outplanting blocks in the center of each forested island fragment spaced 
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10 m apart (interior blocks; Fig. 3.2).  Each L. japonica was provided with a 1 m wooden 

dowel for climbing.  In total, 231 A. julibrissin and 229 L. japonica individuals were 

outplanted in 46 outplanting blocks (5 mainland edge, 5 mainland interior, 18 island 

edge, 18 island interior).  Outplants were surveyed approximately two weeks later for 

mortality, and two individuals were replaced.  Initial height was measured immediately 

after planting, and it was not significantly different among outplanting blocks, treatments 

for site type (island or mainland), or position (edge or interior). 

 Following initial planting, outplants were surveyed at the beginning (May/June) 

and end (Oct/Nov) of each growing season in 2009, 2010, and 2011 for survival, plant 

height to the nearest cm, and leaf herbivory.  For L. japonica individuals, we measured 

the length of all stems and then summed them for a single measure of that we call height 

here for simplicity.  We quantified leaf herbivory by recording the total number of leaves, 

the number of leaves with signs of herbivory, and also a visual estimate of the percentage 

of herbivory on each leaf in 5% increments.  We then used these measures to calculate 

two variables: the percentage of leaves with signs of herbivory and the average 

percentage of herbivore damage per leaf for each plant.  Quantification of leaf herbivory 

was conducted by a single person (DCZ) to ensure consistency.   

In November 2011, approximately three years after outplanting, we completed 

final measurements and harvested above-ground biomass by clipping stems at the soil 

surface for all living individuals.  Harvested plants were dried at 60ºC until constant 

weight.  Relative growth rates (RGR; mm mm-1 day-1) were calculated using the 

difference between the natural log of the final height and the natural log of the initial 
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height divided by the number of days between the first and last measurement on living 

plants.  Following harvest for above-ground biomass, we ensured that all remaining 

below-ground plant parts were excavated and completely removed. 

 

Habitat conditions and environmental variables 

We characterized environmental conditions for edge and interior outplanting 

blocks by measuring  canopy height, basal area, litter mass, light, soil moisture, various 

soil nutrient concentrations, air temperature, and vapor pressure deficit.  Canopy height, 

basal area, and litter mass were measured in vegetation plots located adjacent to each 

outplanting block. Methods for measuring these variables can be found in Chapter 2. All 

other measurements were made in or adjacent to the outplanting blocks, and the methods 

are described below. 

The percentage of canopy openness was quantified using digital hemispherical 

photography and the Nikon CoolPix 4500 camera with Nikon FC-E8 fisheye lens 

mounted and leveled 60 cm above the outplanting block for edge and mainland interior 

positions and between the blocks located at the center of each island for island interior 

positions.  All photographs were taken before sunrise, after sunset, or on uniformly 

cloudy days to negate the impact of the solar disk on the calculation of percentage of 

canopy openness (Frazer et al. 2001).  Images were imported into SideLook (Nobis and 

Hunziker 2005) and converted to pure black and white images before being analyzed for 

canopy openness using Gap Light Analyzer 2.0 (Frazer et al. 1999).   
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To determine soil moisture content, pH, and nutrient concentrations, we collected 

eight 2.54-cm diameter soil cores taken to a depth of 10 cm from 0.25-m2 quadrats that 

were located within 1 m of each edge outplanting block or between the two interior 

blocks located at the center of each island.  All soil samples were collected on 17 June 

2010, approximately 24 hours following a rain event of approximately 2.5 cm of 

precipitation.  These samples were homogenized prior to analysis.  We determined soil 

moisture content gravimetrically using 10 g of wet soil that was dried at 60ºC until 

constant weight, and present soil moisture content as the percentage of wet soil mass that 

was attributed to water (Klute 1986).  A higher soil moisture content generally indicates 

greater soil moisture retention and water holding capacity (Klute 1986).  Remaining soil 

was placed in soil sample bags and submitted to Clemson Agricultural Extension Service 

for analysis of soil pH and extractable nutrients (P, K, Ca, Mg, Zn) using the Mehlich-1 

extraction method and ICP analysis (see the Clemson Agricultural Services website for 

detailed soil analysis methods).  All soil nutrient concentrations are expressed as kg ha-1. 

We measured air temperature and relative humidity on the five mainland forest 

sites and a random sub-set of five forested islands using LogTag© temperature and 

relative humidity loggers.  Loggers were deployed within 50 cm of the outplanting blocks 

for edge blocks and the interior blocks of mainland sites, but we placed loggers between 

the two center outplanting blocks on island interiors.  Loggers recorded temperature and 

relative humidity every 5 min from 30 August 2010 until 15 September 2010.  We then 

calculated the five-day average maximum temperature and relative humidity for the 

period of 9-13 September 2010 as these were five consecutively cloud-free days at all 
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sites.  We used these temperature and relative humidity measurements to calculate the 

vapor pressure deficit (VPD) in kilopascals (kPa) for each outplanting block. 

 

Data Analysis 

We examined how survival for A. julibrissin and L. japonica differed between site 

types (T; mainland or island) and outplanting block positions (P; edge or interior) using a 

generalized linear mixed effects model with a binomial error distribution.  We used a 

linear mixed effect model and a Gaussian error distribution to examine how the 

continuous variables of RGR, plant height, above-ground biomass, percentage of leaves 

with herbivory, and percentage of herbivore damage per leaf differed between site types 

and positions.  For all plant performance measures, the fixed effects were site type and 

position, whereas site identity and outplanting block were designated as random effects to 

account for multiple outplanting blocks in a single site and multiple individuals within an 

outplanting block.    

 We analyzed the outplanting block-level measurements of canopy height, basal 

area, litter mass, percentage of canopy openness, percent soil moisture content, VPD, soil 

pH, and soil nutrients (P, K, Ca, Mg, and Zn) using linear mixed effects models with a 

Gaussian error distribution, fixed effects of site type and position, and the random effect 

of site identity.  We then used Tukey’s HSD post-hoc test for multiple comparisons when 

the T*P interaction was significant in order to examine differences among all site type 

and position combinations. 
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To explore how abiotic variables that were found to be significantly different 

between site types or positions were related to survival of individual plants (i.e., 

percentage of canopy openness, Mg concentration, and Zn concentration), we used 

hierarchical generalized linear mixed effects modeling with the binomial distribution and 

included site identity and outplanting block as random effects.  We selected the best-fit 

model by comparing each model’s Akaike information criterion corrected for finite 

sample sizes (AICc). The models with the lowest AICc values and a ∆AICc < 2.0 were 

considered to have the most support. 

 All analyses were conducted using R version 3.2.3 with the packages lme4 v. 1.1-

11 and lmerTest v. 2.0-30 and the functions ‘glmer’ for survival, ‘lmer’ for 

environmental data and leaf herbivory, and ‘lsmeans’ for testing for differences among 

the four site and outplanting block locations when either the T, P, or T*P fixed effects 

were significant (R Development Core Team 2015).  We used AICcmodavg v. 2.0-1 and 

the function ‘aictab’ to select the best fit model in our set of hierarchical models for 

survival (R Development Core Team 2015).  The t-tests for function ‘lmer’ use 

Satterthwaite approximations to calculate degrees of freedom. Generalized linear mixed 

models invoked by ‘glmer’ are fit by maximum likelihood (Laplace approximation).  
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RESULTS 

 

Environmental conditions 

Overall, forested island and mainland forest sites were environmentally very 

similar (Tables 3.1 and 3.2).  Only Mg concentrations were significantly higher on 

forested islands than mainland forest sites (Table 3.1).  However, edges and interior 

positions differed significantly; edge positions had lower canopy height, less litter mass, 

greater canopy openness, and lower Zn concentration than interior positions (Tables 3.1 

and 3.2; Fig. 3.2).  The effect of position only differed by site type for canopy height, 

with the difference in canopy height between interior and edge positions being much 

more pronounced on mainland forest sites (Table 3.1; Fig. 3.2). 

 

Outplant survival, growth and leaf herbivory 

Overall, seedlings of A. julibrissin exhibited 79% mortality over the three-year 

study period, whereas L. japonica seedlings had only 65% mortality.  Mortality occurred 

throughout the three years but was concentrated during the first sampling period 

specifically for A. julibrissin (Fig. 3.3).  Survival and final biomass of A. julibrissin was 

greater on edges compared to interiors of both forested islands and mainland forest sites, 

but RGR and plant height of A. julibrissin did not differ by site type or position (Table 

3.3; Fig. 3.4).  Lonicera japonica survival and biomass did not differ among site types or 

outplanting block positions, but this species had lower RGR and plant height on edges of 

both mainland forest sites and forested islands (Table 3.3; Fig. 3.4).  Lower RGR and 
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plant height on edges was due to stem die-back, and outplants of L. japonica on edges 

were actually shorter at the end of the experiment than at the beginning (i.e., negative 

RGR).   

Leaf herbivory on L. japonica was relatively low with an average of nearly 20% 

of leaves showing signs of herbivory, in contrast to A. julibrissin which had an overall 

average of 74% of leaves showing signs of herbivory.  The percentage of leaves showing 

evidence of herbivory and the average percentage of herbivory per leaf on A. julibrissin 

were lower on mainland sites, but there were no differences between positions for these 

indicators of leaf herbivory (Table 3.3; Fig. 3.5).  Leaf herbivory was extremely variable 

across the outplanting blocks.  In addition, only four individuals of A. julibrissin survived 

to the end of the study period on mainland edges, and there was no evidence of leaf 

herbivory on them. Herbivore damage on L. japonica was similar between edges and 

interiors on mainland forest sites and forested islands (Table 3.3; Fig. 3.5).    

 

Environmental variables impact on survival 

The top two models explaining survivorship included species and canopy 

openness (Table 3.4).  Of the abiotic environmental variables that differed between site 

types and positions (i.e., canopy openness, Mg, and Zn), only canopy openness had a 

significant effect on survival (Table 3.4).  Predicted survival increased with increasing 

canopy openness for both species, but L. japonica had consistently higher predicted 

survival than A. julibrissin along the entire gradient of canopy openness (Fig. 3.6). 

 

101 
 



DISCUSSION 

Environmental differences between edges and interiors of forests were apparent in 

our study system, but islands and mainland sites overall were similar.  Edge sites 

generally had lower canopy height, less litter, and greater canopy openness.  In addition, 

survival and growth of the two invasive species were only related to their position 

relative to the edge. Even though our fragments (small forested islands and remnant 

mainland forest) differed dramatically in size, each species responded similarly in both 

habitats.     

In this three-year experimental outplanting study, we found that both A. julibrissin 

and L. japonica appear to be environmentally limited by low light levels associated with 

forest interior.  Canopy openness in forest interior never exceeded 10%, and while the 

majority of outplants for both species did not survive under these light conditions, some 

interior outplanting blocks had one to three individuals that survived the entire duration 

of this study, indicating that they may also be partly dispersal limited in this system. This 

result is troublesome as new populations for some species may need only a single, or a 

few, individuals to begin invasion of a new habitat.  Pardini and Hamrick (2008) 

observed that some of their study populations of A. julibrissin in Georgia, USA were 

founded by single individuals, which indicates that this is a possibility.  Whether 

populations of L. japonica can be founded by just a single individual is unclear.  Survival 

of both of these species in forest interiors over a period of nearly three years indicates 

that they may have the ability to invade relatively undisturbed forest interior if dispersal 
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and establishment barriers are overcome.  However, proliferation in the understory is 

unlikely to occur unless a canopy gap is created.   

 

Albizia julibrissin 

More than three-quarters of outplanted A. julibrissin seedlings died by the end of 

our study period and the bulk of mortality was concentrated in forested island interiors.  

In addition, survival of outplanted seedlings of A. julibrissin and canopy openness were 

positively related, indicating that forest fragments with higher light levels are likely to be 

more invasible by this species. Loewenstein and Loewenstein (2005) reported that A. 

julibrissin was found in riparian forests in 6 of the 15 watersheds they sampled.  This 

non-native tree is considered a pioneer species both in its native (Okubo et al. 2005) and 

invasive range indicating that this species is likely rather shade-intolerant, but no studies 

to date have rigorously quantified this characteristic for A. julibrissin.  Although we 

measured individuals over a longer period of time than any other study of this species to 

date, we cannot determine if the last of the surviving individuals in the lowest light 

conditions would ultimately have survived and become reproductive individuals in the 

future.  As A. julibrissin is still continually introduced to the US landscape as a 

horticultural species, this species may then have the potential to invade shaded forest 

interior in the future, particularly if increased shade tolerance is selected for in 

horticultural varieties. 

Despite relatively harsh conditions associated with drought during the study 

period (see below), biomass for A. julibrissin was greatest on edges.  Plant height did not 
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differ between outplanting block positions, and thus the greater biomass likely results 

from larger diameter stems or greater leaf mass on fragment edges.  We conjecture that 

seedlings may have had greater height and RGR on forest fragment edges as well if there 

had not been a drought.  Even in drought, it appears that A. julibrissin is able to cope with 

the hot and dry conditions frequently reported on forest fragment edges (Harper et al. 

2005).  Ares et al. (2009) investigated A. julibrissin for agroforestry applications and also 

found that this species appears to tolerate limited access to water and nutrients.  

Nevertheless, A. julibrissin is most likely to proliferate in forest fragments that have high 

soil moisture and light levels. 

 The mean percentage of leaves exhibiting signs of herbivory and the percent 

herbivory per leaf for A. julibrissin was significantly lower in mainland forest sites 

compared to forested island fragments.  Potential herbivores may be concentrated in 

small, forest fragments, and therefore plants on islands may have been more easily 

detected by herbivores than in mainland forest sites where relatively few surviving 

individuals were spread among four of the five sites (Rossetti et al. 2014).  Results from 

studies of leaf herbivory on plants in forest fragments are mixed with regard to how 

fragmentation impacts herbivory, with herbivory increasing or decreasing in forest 

fragments, or from edge to interior, compared to intact forest depending on the focal 

species examined (Ibáñez et al. 2014). 

To our knowledge, our study is the first to quantify herbivore damage to leaves in 

A. julibrissin, which appears relatively high for a non-native species, signifying that this 

species has either acquired generalist leaf herbivores in its introduced range or leaf 
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herbivores from its native range have migrated to the US.  Indeed, three non-native 

insects that are specialists on A. julibrissin in its native range have been detected in this 

region within the last 10 years: the wood boring beetle Agrilus subrobustus Saunders; the 

seed predator beetle, Bruchidius terrenus (Sharp); and the psyllid Acizza jamatonica 

(Kuwayama) (Ulyshen and Miller 2007, Hoebeke et al. 2009). Therefore, herbivory may 

help mitigate establishment and proliferation of this species in forest fragments.   

 

Lonicera japonica 

Approximately a third of the outplanted Lonicera japonica seedlings survived 

until the end of the three-year experiment. Seedlings had a similar chance of survival no 

matter whether plots were located on islands or mainland sites, edges, or interiors. 

Although predicted survival increased as canopy openness increased, L. japonica 

mortality in outplanting blocks with less than 10% canopy openness was not complete 

(Fig. 3.6).  If dispersal and germination barriers are overcome, L. japonica appears to 

tolerate canopy closure similar to that found in undisturbed forest interior, as has been 

found previously in a study of forest fragments in Illinois (Gehlhausen et al. 2000).  

Indeed, L. japonica can be found in forested understory, although typically at relatively 

low abundance (Chapter 2; Yates et al. 2004).  Schierenbeck and Marshall (1993) found 

that L. japonica out-performed the native L. sempervirens with regard to photosynthetic 

rates and net carbon gain in secondary forest understory, and partially attributed this to 

the observation that L. japonica retains its old leaves as new leaves are forming.  While 

photosynthetic rates are reduced during leaf turnover in this species, L. japonica does 
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have the ability to take advantage of increased canopy openness during the winter months 

in deciduous forests (Schierenbeck and Marshall 1993). All of these attributes may 

combine to make this species effectively more shade tolerant than A. julibrissin and 

would explain why L. japonica showed no difference among site types or outplanting 

block position for survival or final aboveground biomass. 

 Relative growth rates for L. japonica were significantly affected by plot position 

but not in the way that we expected. Plants on edges of islands and mainland sites had 

lower (and even negative) RGR and achieved shorter heights than in forest interior 

locations. Many individuals in edge habitats suffered stem die-back and regrowth during 

the study period, and negative relative growth rates for L. japonica likely reflect harsh 

conditions associated with forest fragment edges during these drought years.  Our study 

occurred during a period of time that was uncharacteristically dry in the region, with 

“abnormally dry” to “extreme” drought conditions for much of the growing season over 

the entire study period (NDMC 2013).  It appears that forest interiors acted as a buffer 

against drought conditions and desiccation for L. japonica, which is in agreement with 

observational studies that have found L. japonica to be limited by insufficient soil 

moisture (Schierenbeck 2004). Had this study occurred during a period of time when 

precipitation was near normal levels, we may have observed a different trend, with RGR, 

height, and biomass elevated on edges compared to forest interior.   

 Leaf herbivory on L. japonica was relatively low compared to that of A. 

julibrissin.  Schierenbeck at al. (1994) found that L. japonica had significantly lower 

rates of both insect and mammal herbivory than its native congener L. sempervirens.  
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Although L. japonica is more closely related to the native L. sempervirens than other 

native lianas, this native species of honeysuckle was not common in our study system 

(Chapter 2).  It would be more informative to know how L. japonica fairs relative to other 

more common native liana species in the region, such as Gelsemium sempervirens (L.) 

W.T. Aiton (Loganiaceae, yellow jessamine). If herbivory is lower on L. japonica than 

native lianas, enemy release may partly explain why this species has become such a 

frequent and abundant member of edge and disturbed communities, and also appears in 

low densities in forest interior (Chapter 2; Merriam 2003, Beans et al. 2012).    

 

Conclusion 

Both of these species can still be acquired for horticultural purposes, and A. 

julibrissin is being actively investigated for agroforestry applications in the US. Though 

our study demonstrates that L. japonica has a higher potential to proliferate in forest 

interior compared to A. julibrissin, both species may invade interior forest particularly 

following disturbance events such as treefalls in forest interior. It will be imperative to 

fully evaluate their potential invasiveness at every life stage, including interior forest 

habitats.   

Future studies investigating whether A. julibrissin and L. japonica have the ability 

to germinate and, in the long-term, reproduce under interior forest conditions would be 

valuable to fully address the threat of invasion by these two species for undisturbed intact 

forest interior.  Since L. japonica survival was relatively high even in shaded forest 

interior, managers should certainly consider methods that will control propagule flow to 
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forest interior (e.g., removal of nearby seed sources), while control of A. julibrissin can 

likely concentrate on limiting anthropogenic disturbance in forest interior. Large canopy 

disturbances are expected to stimulate the invasion for both of these species given 

adequate propagule pressure, and therefore the only way to ensure that these species do 

not invade forest fragments or intact forests is to remove seed sources.    
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TABLES 

Table 3.1. Linear mixed model results for the effects of site type (T; island or mainland) and outplanting block position (P; edge or 

interior) on canopy height, basal area, litter, percentage of canopy openness, soil moisture content expressed as a percentage of dry 

soil mass, and vapor pressure deficit (VPD).  

Source 
Canopy height 

(m) 
Basal area 
(m2 plot-1) 

Litter 
(g) 

% canopy 
openness 

% soil 
moisture 

VPD 
(pKa) 

t p t p t p t p t p t p 

Type -0.73 0.47 -0.24 0.81 -0.42 0.68 -1.22 0.23 1.62 0.10 -1.52 0.14
Position 2.46 0.02 1.56 0.13 2.43 0.02 -3.70 <0.01 1.57 0.13 -1.29 0.21
T*P 2.61 0.02 -0.91 0.37 -1.23 0.23 0.90 0.38 -1.12 0.28 0.48 0.63
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Table 3.2. Linear mixed effect model results for the fixed effects of site type (T; island or mainland) and outplanting block position (P; 

edge or interior) on soil pH and concentrations of P, K, Ca, Mg, and Zn.  Means (± SE) for each treatment combination are also 

presented (ME = mainland edge, MI = mainland interior, IE = island edge, II = island interior). 

Source Soil pH P (kg ha-1) K (kg ha-1) Ca (kg ha-1) Mg (kg ha-1) Zn (kg ha-1) 
t p t p t p t p t p t p 

Type -0.95 0.35 -1.49 0.15 0.08 0.93 -1.76 0.09 -2.17 0.04 -0.79 0.43 
Position 1.40 0.17 -0.82 0.42 -0.55 0.58 0.63 0.53 -0.65 0.52 3.16 <0.01
T*P 0.47 0.64 0.70 0.49 0.59 0.56 1.14 0.26 1.59 0.12 -0.34 0.74 

ME 4.86 
(0.15) 

7.39 
(0.57) 

97.44 
(27.25) 

597.63 
(143.16) 

169.79 
(33.97) 

3.05 
(0.42) 

MI 5.28 
(0.20) 

9.41 
(1.15) 

115.14 
(16.20) 

1536.42 
(354.44) 

337.57 
(48.35) 

4.64 
(0.75) 

IE 5.15 
(0.11) 

16.49 
(3.68) 

110.57 
(8.54) 

1905.49 
(312.12) 

440.35 
(64.35) 

3.66 
(0.33) 

II 5.41 
 (0.30) 

12.94 
(2.50) 

111.75 
(19.32) 

2123.27 
(669.50) 

392.37 
(85.87) 

5.65 
(0.65) 
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Table 3.3. Generalized linear and linear mixed effects model (glmer and lmer) results for the fixed effects of site type (T; island or 

mainland) and plot position (P; edge or interior) on survival, relative growth rate (RGR), height, aboveground biomass, proportion of 

leaves with herbivory and percent herbivory per leaf for Albizia julibrissin and Lonicera japonica.  

Source Survival 
RGR 

(mm day-1) 
Height 
(cm) 

Biomass 
(g) 

Proportion of 
leaves with 
herbivory 

% herbivory 
per leaf 

z p t p t p t p T p t p 

Albizia julibrissin 

Type -0.98 0.32 0.33 0.75 -0.06 0.95 -1.12 0.27 -2.90 <0.01 -2.00 0.05
Position -2.53 0.01 0.81 0.42 0.72 0.48 -2.37 0.02 1.40 0.18 0.14 0.88 
T*P 1.74 0.08 -0.06 0.95 -0.33 0.75 0.98 0.33 1.74 0.10 0.53 0.60 

Lonicera japonica 

Type -1.05 0.30 -0.05 0.96 0.11 0.91 -0.96 0.35 -0.48 0.63 -0.53 0.59
Position -0.93 0.35 2.43 0.02 2.33 0.03 0.69 0.49 -1.00 0.33 0.11 0.91
T*P 0.14 0.88 0.71 0.49 0.33 0.74 0.03 0.97 0.85 0.40 0.31 0.75 
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Table 3.4  AICc, ∆AICc, and AICc weight for hierarchical models used to evaluate the impact of measured abiotic variables that 

differed by site type or outplanting block position on survival of A. julibrissin and L. japonica (i.e., percentage of canopy openness, 

Mg, and Zn). All models include random effects for site identity and outplanting block to account for multiple outplanting blocks 

within a site and multiple individuals within an outplanting block. PCO = percentage of canopy openness; Spp = species; Mg = 

concentration of Mg in soil; Zn = concentration of Zn in soil. 

Model AICc ∆AICc AICc 
weight 

Spp+PCO 505.09 0.00 0.52 
Spp+PCO+Spp*PCO 505.96 0.87 0.34 
Spp+PCO+Mg+Zn+Spp*PCO+Spp*Mg+Spp*Zn+PCO*Zn+PCO*Mg+Mg*Zn 508.46 3.37 0.10 
Spp+PCO+Zn+Spp*PCO+Spp*Zn+PCO*Zn 510.42 5.33 0.04 
PCO 516.44 11.35 0.00 
Spp 518.21 13.12 0.00 
PCO+Mg+Zn+PCO*Zn+PCO*Mg+Mg*Zn 518.39 13.30 0.00 
PCO+Zn+PCO*Zn 519.41 14.32 0.00 
Mg 531.10 26.01 0.00 
Zn 531.68 26.59 0.00 
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FIGURES 

Fig. 3.1:  Aerial photograph of Lake Russell (left) with island and mainland experimental 

sites highlighted and the physiographic regions of South Carolina with the study location 

(right). Symbols denote the location of outplanting sites but are much larger than the 

actual size so that they are visible at this scale. 
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Fig. 3.2.  Mean (± SE) habitat conditions including (A) canopy height, (B) basal area, (C) 

litter mass, (D) percentage of canopy openness, (E) soil moisture content expressed as a 

percentage of dry soil mass, and (F) vapor pressure deficit (VPD) at the outplanting sites 

on edges and interiors of forested island fragments and mainland forest sites in Lake 

Russell, SC/GA.  Significant effects (p < 0.05) of site type (T), position (P), or their 

interaction (T*P) are indicated in bold for each panel where appropriate. Means with 

different letters are significantly different using Tukey’s HSD (p < 0.05). 
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Fig. 3.3. Survival curves over the entire study period from January 2009 through 

November 2011 for A. julibrissin and L. japonica out-planted on edges and interiors of 

forested island fragments and mainland forest sites in Lake Russell, SC/GA. 
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Fig. 3.4. Mean (± SE) for individual (A) survival, (B) relative growth rate (RGR), (C) 

height, and (D) above-ground biomass for A. julibrissin and L. japonica outplanted on 

edges and interiors of forested island fragments and mainland forest sites in Lake Russell, 

SC/GA.  Significant effects (p < 0.05) of site type (T), position (P), or their interaction 

(T*P) are indicated in bold for each panel where appropriate.  
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Fig. 3.5.  Mean (± SE) (A) percentage of leaves with herbivory and (B) percentage of 

herbivore damage per leaf for A. julibrissin and L. japonica outplanted on edges and 

interiors of forested island fragments and mainland forest sites in Lake Russell, SC/GA. 

Significant effects (p < 0.05) of site type (T), position (P), or their interaction (T*P) are 

indicated in bold for each panel when appropriate. 
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Fig. 3.6.  Predicted probability survival for outplanted A. julibrissin (ALBIJU) and L. 

japonica (LONIJA) over 3 years in relation to percentage of canopy openness on islands 

and mainland sites at Lake Russell, SC/GA. The predicted probabilities are from 

parameter estimates from the best-fitting model. The histogram represents the actual 

number of seedlings that died (y=0) or survived (y=1) in the range of canopy openness 

values plotted on the x-axis. Longer bars represent a greater number of outplants that 

were found in that range of canopy openness.  
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CHAPTER 4 

USE OF SPECIES RICHNESS ESTIMATORS OBSCURES PATTERNS IN 

SPECIES RICHNESS: AN EXAMPLE USING ISOLATED FOREST 

FRAGMENTS 

INTRODUCTION 
Understanding the causes and consequences of species richness has long been a 

central theme in ecology and conservation biology (Colwell and Coddington 1994, 

Gotelli and Colwell 2001, Gotelli and Colwell 2011, Mori et al. 2013), but species 

richness must be measured accurately to describe patterns and identify processes that are 

thought to maintain diversity. Comprehensive inventories of all species in an area of 

interest provide the most accurate measures of species richness, but they are often 

prohibitively time consuming and costly. Thus, species richness is often estimated,  using 

one or more of several sample- or individual-based methods (Wei et al. 2010, Gotelli and 

Colwell 2011). In fact, estimated species richness, rather than measured richness, is 

commonly used to explore mechanisms that generate and maintain species diversity (e.g., 

Benítez-Malvido and Martínez-Ramos 2003, Paciencia and Prado 2005, Poulos et al. 

2007, Page et al. 2010, Sánchez-González et al. 2010, Russo et al. 2015) and to conduct 

conservation planning (Fleishman et al. 2006). Therefore, it is important to validate 

widely used methods of species richness estimation.  

The most widely used estimation techniques include sample- or individual-based 

methods based on parametric rarefaction or non-parametric techniques (Magurran and 

McGill 2011).  Species estimation based on rarefaction is essentially a statistical 

interpolation method based on an assumed species abundance distribution that allows the 
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user to “thin” a reference sample down to a common number of individuals or samples by 

randomly drawing random subsets of individuals (or samples) in order to standardize the 

comparison of diversity between two reference samples or regions where sampling 

intensity may have differed (Gotelli and Chao 2013).  Gotelli and Colwell (Gotelli and 

Colwell 2011) point out that, in their experience, classic rarefaction species richness 

estimation methods typically perform poorly when fewer than 20 individuals or samples 

are measured, and studies have found that non-parametric richness estimators 

consistently outperform parametric rarefaction methods (Walther and Morand 1998, 

Walther and Moore 2005).  Non-parametric methods are thought to perform better than 

rarefaction techniques because they make no assumption regarding the shape of the 

species-abundance distribution and are relatively insensitive to unequal detection 

probabilities across species (Gotelli and Colwell 2001, Magurran 2004, Magurran and 

McGill 2011).  

Non-parametric techniques estimate how many species should occur in the site of 

interest by adding a correction factor based on the number of species that occur rarely in 

a set of sampled individuals or samples to the observed species richness (Colwell and 

Coddington 1994, Walther and Morand 1998, Walther and Moore 2005, Gotelli and 

Colwell 2011, Magurran and McGill 2011, Gotelli and Chao 2013).  Estimators based on 

species incidence rather than abundance are preferred when it is difficult to determine 

whether plants represent distinct genetic individuals (Chiarucci et al. 2003, Gotelli and 

Colwell 2011, Gotelli and Chao 2013).  Non-parametric estimators for replicated, 

sample-based surveys using incidence data include the Incidence-based Coverage (ICE), 
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Chao 2 (Chao2), Jackknife 1 (Jack1), Jackknife 2 (Jack2), and Bootstrap estimators; and 

their analogues for use with abundance data are the Abundance-based Coverage (ACE), 

and Chao 1 (Chao1) estimators (Heltshe and Forrester 1983, Chao 1984, Smith and van 

Belle 1984, Chao 1987, Colwell and Coddington 1994, Chao et al. 2000, Walther and 

Moore 2005, Wei et al. 2010).  Newer methods in richness estimation include an 

estimator that extrapolates the rarefaction curve and users can extrapolate up to three 

times beyond the smallest number of observed individuals or number of samples (Sest; 

Colwell et al. 2012).  In addition, Chiu et al. (2014) have recently improved on the Chao1 

and Chao2 estimators by exanding the information the estimators take into account up to 

the number of species that occur as tripletons and quadrupletons, or in the case of 

incidence-based methods, species that occur in three and four plots (iChao1 and iChao2).   

Species richness estimators are typically evaluated using measures of bias, 

precision, and accuracy based on a set of quantitative definitions put forth in Walther and 

Moore (2005).  Bias is generally defined as the average over- or underestimate of species 

richness in relation to the true value (Walther and Moore 2005).  Precision is then defined 

as the variance of the over- or underestimate of species richness across all samples or 

sites for each estimator (Walther and Moore 2005).  Accuracy is influenced by both bias 

and precision.  Mathematically, it is defined as the non-directional distance of the 

estimated value from the true value and is expressed as either the absolute value of 

estimator bias or the square of estimator bias (Walther and Moore 2005).  Species 

richness estimators are often found to be negatively biased (Gotelli and Colwell 2001), 

but they may still be useful for ecological inference and conservation purposes if they are 
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precise.  For example, the ranking of sites for species richness would be the same using 

true or estimated richness if the estimated values are always 20% below the true species 

richness of the site (i.e. negatively biased but highly precise).  In contrast, site rankings 

may not be preserved and gradients in species richness may not be detected when 

estimator bias fluctuates greatly across a set of sites, such as the value being negatively 

biased by 5% at one site, 20% at another site, and 35% at another site (i.e., there is low 

precision).   

The bias, precision, and accuracy of species richness estimators have been 

assessed primarily using computer-simulated datasets or empirical data from a single site 

where true species richness is known for a defined area and then sampled at different 

levels of intensity.  The use of simulated and empirical datasets has highlighted that 

estimator performance can vary with the true richness of the community, sampling 

intensity, and degree of spatial heterogeneity in species composition (Brose et al. 2003, 

Walther and Moore 2005, Chiarucci 2012, Xu et al. 2012, Chiu et al. 2014).  To our 

knowledge, only one previous study (Palmer 1990) has assessed the performance of 

species estimators in relation to known true richness.  Palmer (1990) compared species 

richness as estimated by species observed in plots, four rarefaction estimators, Jack1, 

Jack2, and Boot to true species richness across 30, 0.1 ha, hardwood forest plots that each 

contained 40 nested 2-m2 plots for use in richness estimation.  He found that all the 

estimators were biased, and that Jack1 appeared to be the most precise and least biased of 

all eight estimators he examined (Palmer 1990).  Although Palmer (1990)provided insight 

on how the estimators performed on average across the 30 plots in a single forest, he did 
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not present results that increased understanding on how using estimated richness in place 

of true richness could impact evaluation of hypotheses regarding species richness or 

conservation and management strategies based on species richness.  In addition, Palmer’s 

(1990) study was completed more than twenty years prior to ours and several new 

methods have been developed since that time.  We therefore do not understand how 

estimator performance may impact conservation strategies, management policies, or 

studies that test ecological hypotheses when more than a single site is of interest.  For this 

reason, there is a need to evaluate estimator performance using field-based studies where 

true species richness can be measured (Walther and Moore 2005, Gotelli and Colwell 

2011).  

Here we ask how well 10 species-richness estimators predict the true species 

richness of woody plants over a large set of forested reservior islands where true species 

richness is known.  We conducted complete inventories of all woody plant species on 

small forested reservoir islands along the Savannah River between South Carolina and 

Georgia, USA, and compared the true richness of each island with estimates derived from 

a series of plots that were measured on each island to study species composition (Chapter 

2).  We used methods based on those presented in Walther and Moore (2005) to evaluate 

the bias, precision, and accuracy relative to the true species richness of each island for 9 

non-parametric species richness estimators and a sample-based interpolation and 

extrapolation method that uses the Bernoulli product model (Colwell et al. 2012, Colwell 

2013).  Additionally, we present how restricting the dataset using a conservative criterion 

for sample completeness on each island affects the performance of each estimator.  
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Lastly, we illustrate how use of estimated species richness in place of true species 

richness may obscure the species-area relationship among our set of islands. 

 

METHODS 

Study area 

We quantified species richness on forested reservoir islands in Lake J. Strom 

Thurmond (Lake Thurmond) and Lake Richard B. Russell (Lake Russell) located in the 

southeastern piedmont physiographic region, along the border between South Carolina 

and Georgia, USA.  Lake Thurmond and Lake Russell were created for flood control and 

hydroelectric power by impounding large areas along the Savannah River in 1954 and 

1984, respectively (Chapter 2).  Impoundment created these islands by isolating forested 

hilltops from what was once contiguous forest.  The islands were not logged prior to, or 

following, impoundment and have never been inundated.  

The southeastern piedmont physiographic region is defined as the area from the 

Brevard Fall Line at the base of the Blue Ridge Mountains to the Sandhills Fall Line, 

which demarks the Coastal Plain to the east (Fairchilds and Trettin 2006).  This region is 

characterized by poor soils that range from deep clays to exposed bedrock (Chapter 2; 

Fairchilds and Trettin 2006).  Currently, much of the region is dominated by secondary 

forests of Quercus spp. - Carya spp. (oak – hickory; Chapter 2).  Mean annual rainfall 

along these reservoirs is 116.8 cm yr-1, and average monthly temperature ranges from 

9.4°C to 23.9°C (Chapter 2; SCSCO 2007). 
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Site selection 

We examined aerial photographs and topographic maps and used field 

observations to identify islands that were continuously isolated from the mainland and 

other islands since the date of reservoir creation (Chapter 2).  Our sampling was limited 

to islands < 3 ha in size as there were no islands ≥ 3 ha that had been completely isolated 

since the date of reservoir construction and were not greatly impacted by historic roads or 

settlement (Chapter 2).  Thirteen islands fit these criteria in Lake Thurmond.  From the 

62 islands that fit these criteria in Lake Russell, 22 were randomly selected for study.  

The 35 selected islands across both lakes ranged in size from 0.08 to 2.47 ha (Chapter 2).  

 

Quantifying true richness on each island 

To quantify true species richness for each island, we performed an exhaustive 

survey of each island by walking the entire island in concentric circles approximately 5 m 

wide and recording the presence of all woody plant species that were ≥ 50 cm in height or 

length, in the case of lianas (Chapter 2; Kadmon and Pulliam 1993).  Three people were 

always used to complete these exhaustive surveys, with two people walking about 2 m 

from one another and the third recording species occurrences and also verifying that no 

species were missed (Chapter 2).  We are therefore confident that this method produced 

an accurate measure of true richness for woody plant species on each island (Chapter 2).  

All vegetation sampling occurred between May and September in 2007, 2008, and 2009.  

Plant species nomenclature follows Weakley (2006). 
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Plot-based sampling on each island 

We sampled vegetation in plots running from the vegetated edge toward the 

approximate center of each island (Chapter 2).  Using ArcGIS 9.2 (ESRI 2006), we 

randomly placed the start of two transects per island on the vegetated edge and oriented 

them toward the center of each island.  We censused vegetation within 4 m x 5 m (20-m2) 

plots centered along each transect starting 2 m from the edge of where vegetation was 

present on each island.  On the smallest islands, plots were also placed 8 m from the edge 

as well as in the center for a total of up to 5 plots (100 m2) per island.  Additional plots 

were placed at 18 m on larger islands so that medium-sized islands had up to 7 plots (140 

m2) per island, and at 18 and 30 m on the largest islands for up to 9 plots (180 m2) per 

island.  There were four islands that were narrow, and a center plot would not fit without 

overlapping other plots.  In addition, on one small island we were able to sample two 

plots located at 18 m from the edge, rather than a single center plot, for a total of 6 

sample plots.  In total, 239 plots were sampled across all 35 islands.  In each 20-m2 plot, 

individual woody and semi-woody plants (i.e., trees, shrubs, and lianas) ≥ 50 cm in 

height or length were tallied and identified to species.  Detailed explanation of formulas 

used to compute each estimator can be found in the supporting information for EstimateS 

v. 9.1.0 and SpadeR v. 0.1.0 (Colwell 2013, Chao et al. 2015). 

 

Assessment of sample-completeness for each island 

We recognized that all 35 islands may not have been sampled with enough plots 

to produce a reliable estimate of species richness, so we used two increasingly 
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conservative criteria of sample completeness to select two sets of islands suitable for our 

assessment of estimator performance.  First, Chao suggests that sample size should be 

adequate for a reasonable estimate using the Chao1 and ACE non-parametric species 

richness estimators if the number of singletons (F1) is less than half of the total number 

of individuals (n) detected within plots (i.e., F1/n; Colwell 2013).  For the Chao2 and ICE 

non-parametric species richness estimators, Chao suggests that the number of uniques 

(Q1) should be less than half of the total number of species found at least once (M) within 

the plots (i.e., Q1/M; Anne Chao, personal communication, Colwell 2013).  We call these 

criteria the “Chao sample completeness index”, and we make the assumption that this 

sample completeness criterion is appropriate for the other non-parametric estimators 

examined here.  For each island, the Chao sample completeness index ranged from 2% to 

14% for abundance-based measures, and from 10% to 30% for incidence-based 

measures.  As all 35 islands fell well below the threshold value of 50%, all islands were 

retained for initial evaluation of estimator performance.  The percentage of area sampled 

per island ranged from 0.7% to 15%.   

Second, we used the criterion that ≤ 1 additional species should be expected to be 

captured if sampling was continued to create a subset of data, hereafter referred to as our 

reduced dataset.  This more conservative measure of sample completeness was conducted 

by constructing classic sampling curves to determine the number of species expected to 

be observed had sampling continued on each island.  This value ranged from 0.65 to 3.40 

species on the complete series of 35 islands, with the majority of islands having values 

ranging from 1.2 to 2.8 additional species expected.  Our reduced dataset contained just 
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six islands out of the possible 35, and the percentage of area sampled on the reduced 

dataset of six islands ranged from 0.7% to 2.6%. 

 

Estimation of species richness 

We calculated 10 species estimators appropriate for replicated abundance or 

incidence data.  Specifically, we used these four for replicated abundance data: sample-

based rarefaction and extrapolation based on the Bernoulli product model (Sest; Colwell 

et al. 2012), ACE (Chao and Lee 1992, Chazdon et al. 1998), Chao1 (Chao 1984), and 

iChao1 (Chiu et al. 2014).  We used these six for incidence data: ICE (Chao and Lee 

1992, Chazdon et al. 1998), Chao2 (Chao 1984), iChao2 (Chiu et al. 2014); Jackknife1 

(Jack1; Burnham and Overton 1978, 1979, Heltshe and Forrester 1983, Smith and van 

Belle 1984); Jackknife2 (Jack2; Burnham and Overton 1978, 1979, Heltshe and Forrester 

1983, Smith and van Belle 1984), and Bootstrap (Smith and van Belle 1984).  Estimators 

based on species incidence rather than abundance are preferred when it is difficult to 

determine whether plants represent distinct genetic individuals (Chiarucci et al. 2003, 

Gotelli and Colwell 2011, Gotelli and Chao 2013). On the forested islands, some shrubs 

and lianas are clonal, and therefore we had reason to compare the incidence- and 

abundance-based estimators.  

We calculated all but iChao1 and iChao2 using the freely available software 

EstimateS (Colwell 2013). For Sest, we followed recommendations by Colwell et al. 

(2012) and extrapolated species richness out to 15 samples, which is three times the 

smallest number of plots sampled on any island. We were interested in comparing the 
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point estimates with true richness on each island, as opposed to investigating how the 

estimators performed with respect to one another in a single site, and therefore we 

randomized plots one time without replacement (Walther and Moore 2005, Chao et al. 

2009, Colwell 2013). We used the program SpadeR by Chao et al. (2015) to calculate the 

iChao1 and iChao2 estimators for each island, which extends the Chao1 and Chao2 

estimators by incorporating not only singletons and doubletons, but also tripletons and 

quadrupletons (Chiu et al. 2014, R Development Core Team 2015).  The iChao2 

estimator was undefined for 6 of the 35 sites, so for iChao2 we only consider 29 of the 35 

islands.  

 

Assessment of estimator bias, precision, and accuracy 

To describe how each estimator performed in relation to true richness on each 

island, we calculated scaled error (SE) and squared scaled error (SSE) for each estimator 

on each island (Table 4.1). We use SE and SSE because true richness varied widely 

among the islands, and scaling is required when comparing performance of estimators 

among sites with different levels of species richness (Walther and Moore 2005).  As used 

here, SE produces a measure of bias indicating the proportion that the estimator either 

over- or under-estimated true richness on each island (Table 1).  By squaring the SE, SSE 

becomes a directionless measure of accuracy for each estimator on each island (Table 

4.1).  Precision for each estimator was defined as the coefficient of variation (CV) of 

mean scaled error for each island dataset (35 islands or 6 islands) for each estimator 

(Table 4.1). We used t-tests to determine if SE was significantly different from zero (i.e., 
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true richness) for each dataset and estimator. To explore whether sampling intensity was 

correlated significant predictor of error, we regressed SSE on the percentage of area 

sampled for each island for each estimator. 

Lastly, we determined whether a species-area relationship among the 35 islands 

was detected with the 10 estimators of species richness to illustrate how estimator 

performance may affect ecological inference. We used linear regression of log10 area with 

true richness and each of the 10 species richness estimators. Calculation of CV, t-tests, 

and regression analyses were performed in the R 3.2.3 base package (R Development 

Core Team 2015).  

 

RESULTS 

Across all 35 islands, we found 125 woody plant species during our exhaustive 

island surveys. The 239 plots captured 92 (74%) of these species. True species richness 

ranged from 30 to 62 species on individual islands. Mean true species richness (± 1 SD) 

across our datasets of 35 and 6 islands was 46.7 (±8.1) and 42.8 (±9.3) species, 

respectively.  Only a single species, Ulmus alata Michx. (winged elm), occurred on all 35 

islands, although it was missed during plot surveys on two islands (Table 4.S1).  This 

species was also one of the most abundant species in plot surveys, accounting for nearly 

11% of the 4448 individuals sampled.  Of the 92 species detected within plots, 16 species 

(17%) were detected only in a single plot, while another 50 species (72%) occurred in 

fewer than 30 plots.  Detectability (i.e., relative abundance pooled across all 35 islands) 

and presence within plots on an island for each species varied widely, with several 
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species detected in thorough island-wide surveys but then missed within plots on that 

island (Table 4.S1).  

 

Performance of richness estimators 

Nine of the 10 estimators examined here significantly underestimated true species 

richness (i.e., were negatively biased; Fig. 4.1) and were highly variable in the degree to 

which they predicted true richness across all 35 islands (were irregularly imprecise and 

inaccurate; Table 4.2).  Scaled error (i.e., bias) was not significantly related to the 

percentage of area that was sampled on an island (Figs. 4.2 and  4.3).  The iChao2 

method was the only estimator that did not differ significantly from true richness (Fig. 

4.1), but the estimator was very imprecise and therefore was the least accurate of the 

estimators (Table 4.2). The Bootstrap method was the most negatively biased estimator, 

but it was the most precise across the 35 sites (Fig. 4.1 and Fig. 4.3; Table 4.2).  Using 

our reduced dataset, average negative bias greatly increased for all estimators examined, 

but precision of the estimators was improved (Table 4.2).  Because of the large increase 

in bias, there was no improvement in accuracy for any of the estimators (Table 4.2). In 

addition, the more recently developed estimators did not perform any better than their 

older counterparts. 

 

Species-area relationship 

True richness showed a significant and positive species-area relationship (R2 = 

0.32, p = 0.002; Fig. 4.4; Chapter 1). However, none of the estimators detected this 
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species-area relationship (Figs. 4.4 and 4.5). Even when assessing our reduced dataset, 

site rankings based on estimated species richness were not consistent with rankings based 

on true richness (Table 4.3). 

 

DISCUSSION 

All 10 species richness estimators provided highly inaccurate estimates of species 

richness for woody plants in temperate forest fragments (i.e., reservoir islands) where 

true species richness could be determined.  All 10 of the estimators were negatively 

biased, as has been found in other studies (Table 4.2; Brose et al. 2003, Chiarucci et al. 

2003, Xu et al. 2012).  This result is not surprising as negative bias has been recognized 

repeatedly for several estimators when a small number of plots are surveyed within a site 

(Gotelli and Colwell 2011, Chao et al. 2015).  What was unexpected, however, was the 

lack of precision (i.e., how widely bias varied across the 35 islands) even for estimators 

where sample completeness was thought to be sufficient to produce a reliable lower-

bound of species richness (Colwell 2013). 

Due to the this lack of precision, all the estimators we assessed here obscured the 

species-area relationship that was detected using true species richness for both the 35-

island dataset (Chapter 1). Even when sampling of the islands was thorough enough so 

that less than a single species would have been expected with an additional sample, site 

rankings based on estimated richness did not match the ranking based on true species 

richness.  Thus, the species richness estimators examined here appear to be unsatisfactory 

tools for testing for the presence of the species-area relationship in our system of 
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reservior islands.  They may also be inadequate for detecting differences among sites in 

studies testing other ecological hypotheses.  

Of paramount concern is that that use of species richness estimators may lead to 

spurious conclusions regarding biological and ecological processes.  Several studies of 

species richness in fragmented habitats have demonstrated departures from the expected 

species-area relationship and have suggested that these departures result from the 

influence of edge effects or other disturbances (Debinski and Holt 2000, Harper et al. 

2005, Laurance 2008, Koh et al. 2010).  For instance, it is thought that multiple, and at 

times interacting, edge effects may cause disproportionate loss of forest interior species, 

while at the same time creating favorable habitat for the establishment of species not 

typically common in continuous forest (Laurance et al. 2006).  However, problems 

detecting a species-area relationship in some studies may be due, in part, to the variable 

performance of the species richness estimator used rather than an underlying biological 

phenomenon.  In our study system, we found a species-area relationship using true 

species richness, despite the presence of marked edge effects for light levels and stem 

density on these islands (Chapters 1 and 2). In contrast, had we used any of the species 

richness estimators examined here we would have concluded, wrongly, that there was not 

a positive species-area relationship among the 35 reservoir islands.  

Exceeding some threshold of percent area sampled may not be a useful guideline 

for ensuring satisfactory estimator performance over a series of sites (Fig. 4.2 and Fig. 

4.3).  While increasing sampling intensity has generally been found to decrease error in 

species richness estimators (Brose et al. 2003, Chiarucci et al. 2003, Hwang and Shen 
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2010, Xu et al. 2012), we found that increasing the percentage of area sampled had no 

effect on the performance of the estimators across sites.  Similar to our study, Wei et al. 

(2010) also found that the accuracy of non-parametric methods varied greatly along a 

sampling intensity gradient of a fully surveyed 20-ha plot in subtropical forest of 

southern China.  In contrast, two studies conducted on computer-simulated sampling of 

plots in a high-diversity shrubland of southwestern Australia and tropical forests of 

Panama and Malaysia, found that a minimum of 10% to 15% of the study area needed to 

be sampled in order to provide reliable estimates of species richness (Chiarucci et al. 

2003, Hwang and Shen 2010).  However, species richness of those sites is 3.5 to 13 times 

higher than the isolated temperate forests studied here, and lower species richness of the 

forested islands in our system should mean that less area needs to be sampled.  Our study 

is similar to many other plant community studies where species richness estimators are 

employed and less than 1% of the area is sampled (Chiarucci et al. 2003).  As such, our 

results are highly relevant and reflective of the outcome that can be expected when field 

sampling can only capture a small proportion of the study area.  

Most interesting is why the estimators appeared to work well on some, and poorly 

on other, islands with similar sampling intensites.  Although we only had five islands that 

were sampled in excess of 5% of total island area, these five islands were not part of our 

reduced dataset for which sampling curves indicated ≤ 1 additional species were 

predicted to be found had sampling continued.  Moreover, estimator bias for these islands 

still varied quite widely with predicted richness values ranging anywhere from 27% 

above to 65% below the true species richness for the island.  In fact, the percentage of 
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area sampled ranged from 0.65% to 2.63% for the six islands conforming to the most 

conservative sample completeness criterion where  ≤ 1 additional species was expected if 

sampling had continued, well below the 10% to 15% threshold suggested by Chiarucci et 

al. (2003) and Hwang and Shen (2010). Unfortunately, there does not appear to be a 

single sampling completeness reccomendation that would produce precise estimates 

across a set of sites.  

 

CONCLUSION 

 Our results highlight that estimators of species richness can be highly inaccurate 

and we caution their use in theoretical inference, conservation planning, and 

management.  We recommend that the richness estimators examined here only be 

employed when a single site is of interest, with the caveat that depending on the estimator 

that is used true richness could be anywhere from 60% lower to 90% higher than the 

estimated richness value.  We recognize that an exhaustive inventory of  many study sites 

may not be possible, but determination of how an estimator performs in relation to true 

richness should be investigated for at least a subset of sites along the gradient of interest 

before use.  Additional studies comparing true species richness to estimated richness 

from multiple, thoroughly inventoried areas will be critical for testing and improving 

species richness estimators.   
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TABLES 

Table 4.1. Equations and variable definitions for calculations of scaled error (SE; bias), 

coefficient of variation (CV; precision), and squared scaled error (SSE; accuracy) adapted for use 

with point estimates of true richness data across a set of 35 and 6 islands per Walther and Moore 

(2005).  

Measure Equation 
Scaled error (bias) 

Coefficient of variation of scaled error (precision)  

Squared scaled error (accuracy) 

Variable Definition 
E Estimated richness for the island 

T True richness for the island 

CV Coefficient of variation over all 35 
or 6 islands 

SD Standard deviation of mean scaled 
error (μ) over all 35 or 6 islands 

T
TESE )( −

=

|| µ
SDCV =

2)(






 −
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Table 4.2. Mean bias (mean of scaled error), precision (coefficient of variation for mean scaled error), and accuracy (mean of squared 

scaled error) for abundance-based (Sest(15), ACE, Chao1, iChao1) and incidence-based (ICE, Chao2, iChao2, Jack1, Jack2, 

Bootstrap) species richness estimators over the entire 35 island dataset. The six island dataset resulted from using a conservative 

measure of sampling completeness that excluded 29 islands where under-sampling could potentially be connected to estimator error. 

Abundance-based estimators Incidence-based estimators 
Performance 
indicator Sest(15) ACE Chao1 iChao1 ICE Chao2 iChao2 Jack1 Jack2 Bootstrap 
All 35 islands 
Bias -0.29 -0.30 -0.30 -0.15 -0.20 -0.18 -0.04 -0.28 -0.17 -0.39
Precision 0.58 0.52 0.65 1.99 0.92 1.83 8.59 0.53 1.01 0.33
Accuracy 0.12 0.12 0.13 0.11 0.07 0.13 0.14 0.09 0.06 0.16

6 islands 
Bias -0.60 -0.49 -0.55 -0.48 -0.49 -0.53 -0.43 -0.49 -0.44 -0.56
Precision 0.19 0.16 0.16 0.19 0.15 0.19 0.34 0.21 0.25 0.18
Accuracy 0.30 0.25 0.31 0.24 0.24 0.29 0.20 0.25 0.21 0.32
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Table 4.3.  Abundance-based (Sest(15), ACE, Chao1, iChao1) and incidence-based (ICE, Chao2, iChao2, Jack1, Jack2, Bootstrap) 

species richness values for the six islands with 1 or fewer species expected to be observed if sampling continued (No. of species). We 

also present the number of species observed in plots for each site (Sobs). Sites are presented in order of greatest to lowest true 

richness. The estimator iChao2 was undefined for two of the six islands presented here. 

No. of 
species 

Abundance-based estimators Incidence-based estimators 
True 

richness Sobs Sest (15) 
ACE Chao1 iChao1 ICE Chao2 iChao2 Jack1 Jack2 Bootstrap 

1.00 59 19 23 26 24 28 29 24 27 27 30 23 
1.00 47 21 26 23 22 23 26 27 33 27 31 24 
0.67 41 14 17 18 17 23 18 16 NA 18 20 16 
0.71 40 22 24 25 24 27 25 24 27 27 29 25 
0.62 38 13 15 22 15 17 18 16 16 17 18 15 
0.80 32 10 12 15 12 15 14 12 NA 13 14 12 
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FIGURES 

Fig. 4.1. Mean (+1 SD) scaled error for observed species richness (Sobs), four abundance-based 

estimators, and six incidence-based species estimators over the entire 35 island dataset. The zero 

reference line represents true richness. 
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Fig. 4.2. Scaled error for Sobs and the abundance-based estimators: Sest (15), ACE, Chao1, and 

iChao1 plotted against the percentage of area sampled for all 35 islands. Islands in Lakes Russell 

and Thurmond are indicated by black and white circles, respectively. True richness for each site 

is indicated by the dotted reference line at zero. 
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Fig. 4.3. Scaled error for the incidence-based estimators: ICE, Chao2, iChao2, Jack1, Jack2, and 

Bootstrap plotted against the percentage of area sampled for all 35 islands. Islands in Lakes 

Russell and Thurmond are indicated by black and white circles, respectively. True richness for 

each site is indicated by the dotted reference line at zero. 
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Fig. 4.4. Relationship between island area and true species richness for all 35 islands. We 

also illustrate the relationship between island area and abundance-based species richness 

estimators: Sest (15), ACE, Chao1, and iChao1.  Islands in Lakes Russell and Thurmond 

are indicated by black and white circles, respectively. Only true species richness 

increased significantly across island size in both lakes (upper left; R2 = 0.27, p = 0.002), 

exhibiting a positive species-area relationship. The regression lines for true species 

richness in Lakes Russell and Thurmond are solid and dashed, respectively. 
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Fig. 4.5. Relationship between island area and and incidence-based species richness 

estimators: ICE, Chao2, iChao2, Jack1, Jack2, and Bootstrap.  Islands in Lakes Russell 

and Thurmond are indicated by black and white circles, respectively.  
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SUPPLEMENTAL MATERIAL 

Table 4.S1. Species detected during island inventories, the number of individuals 

sampled across all islands, the number of plots (out of 239) each species was detected, 

the number of islands (out of 35) on which each species appeared in plot samples or 

thorough island inventories, and the species detectability. Species are listed in order of 

increasing abundance. 

Species Individuals 
sampled # of plots 

# of islands  
found in plots # of islands 

Species 
detectability† 

Acer negundo 0 0 0 1 0 
Asimina parviflora 0 0 0 1 0 
Betula lenta 0 0 0 1 0 
Celastrus orbiculatus 0 0 0 1 0 
Elaeagnus umbellata 0 0 0 1 0 
Fraxinus pennsylvanica 0 0 0 1 0 
Gonolobus suberosus 0 0 0 1 0 
Gordonia lasianthus 0 0 0 1 0 
Hedera helix 0 0 0 1 0 
Juglans nigra 0 0 0 1 0 
Melia azedarach 0 0 0 1 0 
Nandina domestica 0 0 0 1 0 
Prunus angustifolia 0 0 0 1 0 
Pyrus calleryana 0 0 0 1 0 
Quercus muhlenbergii 0 0 0 1 0 
Rhodedendron canescens 0 0 0 1 0 
Triadica sebifera 0 0 0 1 0 
Ulmus americana 0 0 0 1 0 
Vitis cinerea 0 0 0 1 0 
Alnus serrulata 0 0 0 2 0 
Amelanchier laevis 0 0 0 2 0 
Ilex vomitoria 0 0 0 2 0 
Fagus grandifolia 0 0 0 3 0 
Sambucus canadensis 0 0 0 3 0 
Amorpha fruticosa 0 0 0 4 0 
Crataegus sp3 0 0 0 4 0 
Matelea carolinensis 0 0 0 4 0 
Gleditsia triacanthos 0 0 0 5 0 
Ligustrum sinense 0 0 0 5 0 
Quercus coccinea 0 0 0 7 0 
Platanus occidentalis 0 0 0 8 0 
Populus deltoides 0 0 0 8 0 
Salix nigra 0 0 0 9 0 

157 



Cyrilla racemiflora 1 1 1 1 0.0002 
Quercus laurifolia 1 1 1 1 0.0002 
Tilia americana 1 1 1 1 0.0002 
Celtis laevigata 1 1 1 2 0.0002 
Acer floridanum 1 1 1 3 0.0002 
Frangula caroliniana 1 1 1 3 0.0002 
Quercus sinuata 1 1 1 3 0.0002 
Chionanthus virginicus 1 1 1 4 0.0002 
Passiflora lutea 1 1 1 4 0.0002 
Vitis aestivalis 1 1 1 4 0.0002 
Magnolia grandiflora 1 1 1 6 0.0002 
Liriodendron tulipifera 1 1 1 10 0.0002 
Cephalanthus occidentalis 1 1 1 20 0.0002 
Elaeagnus angustifolia 2 1 1 1 0.0004 
Ilex cuthbertii 2 1 1 4 0.0004 
Clinopodium georgianum 2 1 1 5 0.0004 
Betula nigra 2 2 1 5 0.0004 
Ulmus rubra 2 2 2 2 0.0004 
Mimosa microphylla 2 2 2 9 0.0004 
Quercus marilandica 3 1 1 1 0.0007 
Smilax walteri 3 3 2 5 0.0007 
Robinia pseudo-acacia 4 2 1 2 0.0008 
Aesculus sylvatica 5 3 1 3 0.001 
Asimina triloba 5 3 1 3 0.001 
Passiflora incarnata 5 3 3 8 0.001 
Ceanothus americanus 5 5 3 7 0.001 
Quercus rubra 5 5 4 6 0.001 
Styrax grandifolius 5 5 5 17 0.001 
Fraxinus americana 6 6 5 17 0.001 
Callicarpa americana 7 7 6 15 0.002 
Berchemia scandens 8 4 2 5 0.002 
Ilex opaca 8 4 4 11 0.002 
Sassafras albidum 8 6 5 20 0.002 
Morus rubra 9 5 3 10 0.002 
Acer leucoderme 9 7 3 18 0.002 
Viburnum rufidulum 9 5 4 5 0.002 
Vaccinium stamineum 9 7 4 14 0.002 
Rhus glabra 10 8 6 12 0.002 
Crataegus sp1 11 9 9 16 0.002 
Albizia julibrissin 12 9 3 14 0.003 
Bignonia capreolata 12 7 5 11 0.003 
Smilax rotundifolia 12 9 6 9 0.003 
Cocculus carolinus 12 10 6 16 0.003 
Oxydendrum arboreum 13 5 1 8 0.003 
Smilax smallii 17 8 5 12 0.004 
Amelanchier arborea 18 12 7 20 0.004 
Campsis radicans 18 14 8 14 0.004 
Parthenocissus quinquefolia 18 11 9 27 0.004 
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Pinus virginiana 18 12 9 20 0.004 
Ilex decidua 19 8 4 9 0.004 
Lonicera sempervirens 19 19 10 18 0.004 
Baccharis halimifolia 20 10 5 14 0.004 
Viburnum prunifolium 20 11 8 19 0.004 
Quercus falcata 21 15 8 20 0.005 
Rubus argutus 21 21 11 31 0.005 
Elaeagnus pungens 22 8 3 4 0.005 
Hypericum hypericoides 22 18 12 26 0.005 
Quercus phellos 22 19 14 32 0.005 
Celtis tenuifolia 25 15 10 20 0.006 
Cornus florida 25 16 10 26 0.006 
Aralia spinosa 29 10 5 7 0.007 
Cercis canadensis 29 10 6 14 0.007 
Prunus umbellata 29 18 10 24 0.007 
Euonymus americanus 31 16 11 17 0.007 
Toxicodendron radicans 33 23 12 28 0.007 
Crataegus sp2 38 30 14 23 0.009 
Vaccinium pallidum 38 33 17 30 0.009 
Quercus alba 41 31 15 27 0.009 
Quercus velutina 46 35 16 27 0.01 
Rhus copallina 50 31 18 32 0.01 
Ostrya virginiana 55 29 15 24 0.01 
Pinus echinata 63 46 19 31 0.01 
Nyssa sylvatica 65 22 16 28 0.01 
Carya glabra 74 45 16 30 0.02 
Prunus serotina 78 51 21 28 0.02 
Diospyros virginiana 89 51 24 35 0.02 
Quercus stellata 90 57 21 30 0.02 
Acer rubrum 92 44 18 29 0.02 
Myrica cerifera 103 21 6 8 0.02 
Vaccinium elliottii 116 46 19 32 0.03 
Quercus nigra 122 65 27 34 0.03 
Vaccinium arboreum 123 42 16 31 0.03 
Carya alba 137 57 20 28 0.03 
Smilax bona-nox 138 91 28 34 0.03 
Smilax glauca 139 95 27 34 0.03 
Lonicera japonica 149 79 25 31 0.03 
Vitis rotundifolia 175 97 31 35 0.04 
Pinus taeda 224 85 24 33 0.05 
Liquidambar styraciflua 226 74 24 33 0.05 
Juniperus virginiana 394 126 30 32 0.09 
Gelsemium sempervirens 418 135 31 32 0.09 
Ulmus alata 468 133 33 35 0.11 

†Species detectability is calculated as the relative abundance of each species across the 
entire set of 35 islands. 
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CHAPTER 5 

CONCLUSIONS 

The goals of this research were to understand how forest fragmentation impacts 

woody plant species richness and composition in southeastern US Piedmont oak-hickory 

forests; elucidate whether or not woody species commonly observed on forest fragment 

edges have the ability to invade relatively undisturbed forest interior; and determine 

whether species richness estimation techniques can be reliably used in place of true 

richness to examine gradients in species richness.  With few exceptions, studies of forest 

fragmentation have typically focused on single species responses or only aim to quantify 

vegetation responses to a single fragmentation process (i.e., reduced area, increased 

isolation, edge effects, or time since fragmentation; Ibáñez et al. 2014).  Rarely, have 

studies attempted to integrate examination of these processes for a more general view of 

how fragmentation is acting to degrade woody plant communities of forest ecosystems.  

One notable exception is the Biological Dynamics of Forest Fragments Project (BDFFP), 

in Amazonian rainforest, where tracts of rainforest were fragmented into various sized 

fragments (Laurance et al. 2011) over 30 years ago.  While I certainly did not have 30 

years to examine these processes in southeastern oak-hickory Piedmont forests, I 

purposefully chose to study the entire woody plant community, incorporated edges and 

interior forest, and examined two distinct forest fragment habitats (small forested islands 

and nearby remnant mainland forest with only a single exposed edge).  I used 35 forested 

islands and 10 remnant mainland forest sites in two reservoirs along the South 
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Carolina/Geogia border that were created 30 years apart, and have been isolated for 

nearly 40 and 70 years.  I took both a community-level and species-specific approach to 

how oak-hickory forest communities may respond to fragmentation into small, isolated 

forest fragments.  It was through this work that I identified that species richness 

estimators may not be useful tools for assessing species richness responses, and 

investigated whether or not any of the species richness estimation tools performed well in 

my study system. 

In order to take a more integrated approach to how fragmentation is impacting 

forested communities, I addressed several questions related to the various processes 

proposed to be at work in forest fragments.  First, I hypothesized that small forest 

fragments would have species-area and species-isolation relationships as predicted by the 

Equilibrium Theory of Island Biogeography (MacArthur and Wilson 1967).  I found that 

forested islands in my study system did conform to the species-area relationship (SAR), 

although when I considered woody habits separately I found that it was tree species – and 

not shrubs and lianas – primarily driving this relationship.  However, the number of liana 

and shrub species were markedly greater in Lake Thurmond, which is 30 years older than 

Lake Russell, and time since isolation may explain why liana and shrub species richness 

was higher in the older set of fragments.   

Forest species composition was significantly impacted by fragmentation such that 

while typical overstory species associated with oak-hickory forest appear to be surviving, 

a host of disturbance-tolerant and non-native woody species have become a significant 

part of woody plant species community on forest reservoir islands.  These changes in 
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composition are similar to findings in the BDFFP, where the smallest fragments have 

significantly diverged in species composition from the largest fragments and intact forest 

primarily due to proliferation of pioneer tree and liana species (Laurance et al. 2002, 

Laurance et al. 2011).  By integrating examination of the overstory, understory, and 

seedling layer for sites in one lake, I conclude that species composition will likely 

continue to degrade, and that nearly 50% of the tree species on some islands are at risk of 

extinction.   

An experimental outplanting of two non-native woody species, Albizia julibrissin 

Durazz. (Fabaceae, mimosa/silk tree) and Lonicera japonica Thunb. (Caprifoliaceae, 

Japanese honeysuckle), to the edges and interiors of forest islands and mainland sites 

provided unique insight on how species-specific responses can vary in response to 

fragmentation.  While both species appear to have the capability of surviving in 

conditions typical of forest interior, L. japonica showed a much greater tolerance to low 

light levels. In contrast, A. julibrissin had significantly lower survival and growth under 

interior forest conditions, although a small number of individuals did survive in this 

habitat over the three-year duration of the study.  In addition, herbivory on A. julibrissin 

was markedly higher in forested fragment interiors, and this was the first study to 

quantify leaf herbivory for this species.  It appears that control of propagule flow for L. 

japonica is the only way to curb eventual invasion to forest interior, while maintenance 

of undisturbed forest interior will limit invasion for A. julibrissin.   

Examination of 10 species richness estimators for use with abundance or 

incidence (presence-absence) data for all woody species that occurred on the 35 islands 
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sampled found that estimator performance varied widely, and that use of estimated 

species richness obscured the species-area relationship I identified using true species 

richness of the islands.  Nine of 10 species richness estimators were significantly 

negatively biased.  All of the estimators were not precise, meaning that estimated 

richness values in relation to the true richness fluctuated greatly across all 35 islands.  

This result highlights how estimated species richness is not appropriate to use when 

comparisons of species richness among sites is the goal, and I recommend that these 

techniques not be used when more than a single site is of interest. 

Future research directions 

Forest fragmentation is not a problem limited to the past, but is a process that is 

continuing across the globe as forests are being fragmented into smaller and more 

isolated patches (Haddad et al. 2015).  Recent meta-analysis of how fragmentation 

impacts plants and plant communities highlights the importance of taking a broader view 

of fragmentation processes in order to identify consistent patterns (Ibáñez et al. 2014).  

My research highlights how an integrated community-level and species-specific approach 

was able to provide novel insights to forest degradation due to fragmentation in 

southeastern oak-hickory forests.  I found patterns in oak-hickory forest that are similar to 

those found in the long-term BDFFP project, where overall species richness declined 

with fragment size but that richness on a per area basis was higher on islands compared to 

mainland forest and changes in species composition are largely due to the proliferation of 

disturbance-tolerant tree and liana species (Laurance et al. 2011).  Long-term study of 
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forested islands and mainland forests in and around reservoirs would provide additional 

insight into how immigration and extinction of long-lived woody plant species behaves in 

this system and may indicate if forest fragments ever truly reach an equilibrium.  

Experiments that not only test the germination and seedling performance of non-native 

woody plant species on edges and interior of forest fragments, but also include typical 

overstory species associated with southeastern oak-hickory forests would prove fruitful to 

determine whether small forest fragments have any capacity to continue to house these 

species.  A valuable addition to the meta-analysis performed by Ibáñez et al.(2014) would 

be to expand upon their findings to identify if there is a particular fragment size for which 

all the community response variables they identified are consistently negatively 

impacted. 

In addition, species richness estimation techniques can only improve if there are 

robust datasets where true richness of the areas of interest are known (Palmer 1990, 

Walther and Moore 2005).  Future research to correct the issue of estimator inaccuracy 

are desperately needed. Species richness estimation tools are attractive because they 

allow the user to truncate the sampling effort needed to gain the true value for species 

richness and they are widely available in free statistical software packages.  However, 

there is little doubt that patterns in species richness based on estimated richness are 

flawed, and caution should be used when employing these techniques.  It will be 

imperative in future research efforts regarding richness estimators to determine if there 

are truly any sample completeness criteria that can be used to ensure that an estimator 

will perform accurately across a set of sites.  It may be that particular estimators work 
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best with particular species abundance patterns, but this has yet to be investigated 

thoroughly.  Most modern estimators have used data from tropical communities to 

validate their usefulness which may have limited their applicability in other regions of the 

world.  It may be that even slight variations within species abundance patterns for the 

same community may produce wildly disparate estimates and perhaps general estimators 

are not appropriate, but must be specialized for the community type of interest.  
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