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ABSTRACT 
 

World energy consumption has continued increasing in recent years. As a major 

consumer, industrial activities uses about one third of the energy over the last few decades. 

In the US, automotive manufacturing plants spends millions of dollars on energy. 

Meanwhile, due to the high energy price and the high correlation between the energy and 

environment, manufacturers are facing competing pressure from profit, long term brand 

image, and environmental policies. Thus, it is critical to understand the energy usage and 

optimize the operation to achieve the best overall objective. This research will establish 

systematic energy models, forecast energy demands, and optimize the supply systems in 

manufacturing plants.  

A combined temporal and organizational framework for manufacturing is studied 

to drive energy model establishment. Guided by the framework, an automotive 

manufacturing plant in the post-process phase is used to implement the systematic 

modeling approach. By comparing with current studies, the systematic approach is shown 

to be advantageous in terms of amount of information included, feasibility to be applied, 

ability to identify the potential conservations, and accuracy. This systematic approach also 

identifies key influential variables for time series analysis. Comparing with traditional time 

series models, the models informed by manufacturing features are proved to be more 

accurate in forecasting and more robust to sudden changes. The 16 step-ahead forecast 

MSE (mean square error) is improved from 16% to 1.54%. In addition, the time series 

analysis also detects the increasing trend, weekly, and annual seasonality in the energy 

consumption. Energy demand forecasting is essential to production management and 
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supply stability. Manufacturing plant on-site energy conversion and transmission systems 

can schedule the optimal strategy according the demand forecasting and optimization 

criteria. This research shows that the criteria of energy, monetary cost, and environmental 

emission are three main optimization criteria that are inconsistent in optimal operations. In 

the studied case, comparing to cost-oriented optimization, energy optimal operation costs 

35% more to run the on-site supply system. While the monetary cost optimal operation 

uses 17% more energy than the energy-oriented operation. Therefore, the research shows 

that the optimal operation strategy does not only depends on the high/low level energy 

price and demand, but also relies on decision makers’ preferences. It provides not a point 

solution to energy use in manufacturing, but instead valuable information for decision 

making. 

This research complements the current knowledge gaps in systematic modeling of 

manufacturing energy use, consumption forecasting, and supply optimization. It increases 

the understanding of energy usage in the manufacturing system and improves the 

awareness of the importance of energy conservation and environmental protection. 
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 CHAPTER ONE 
BACKGROUND INTRODUCTION 

 

1.1 Objective 

The objectives of this research are to  

1) test the hypothesis that systematic energy modeling approach based on 

manufacturing layer concept can improve the model accuracy, provide more 

information, identify the significant inputs, and target improvement 

implementations; 

2) apply and augment forecasting methods from the mathematical domain to 

understand the energy use in the manufacturing domain; 

3) investigate the optimal energy operation strategies in manufacturing plant. 

 

1.2 Background Introduction 

All aspects of human activity – transportation, industrial, residential and 

commercial activities — require support from energy. World energy consumption kept 

increasing in the past decades (as Figure 1.1), and the energy amount of per capita increased 

about 60% in the past fifty years (as Figure 1.2). 
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Figure 1.1: World Primary Energy Consumption Trend [1.1] 
 

 

Figure 1.2: World Primary Energy Consumption Per Million Cap [1.1, 1.2] 
 

Although energy is fundamental to human development, energy could also be 

harmful and restraining to our sustainability. High expenses, unbalanced distribution, and 

environmental pollution leave energy a potentially notorious source of environmental 

depletion.  
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Among the four end sectors (industry, commercial, residential and transportation 

sectors), industry is the biggest energy consumer in USA over the past sixty years. More 

than 30% of total energy is used in the industrial activities (as Figure 1.3) [1.3]. 

 

 
Figure 1.3: 2011 End-Use Sector Share of Total Energy Consumption [1.3] 
 

As an important part of industrial activities, manufacturers consume a significant 

amount of energy every year. According to the data from US Census Bureau, the 

automobile assembly plants – automobile manufacturing (NAICS code 336111), light 

truck and utility vehicle manufacturing (NAICS code 336112), and heavy duty truck 

manufacturing (NAICS code 33612) plants, spent $782 million US Dollars on electricity 

and fuels in 2011, which is $45 million more compared to year 2010 [1.4]. 

Manufacturers are facing pressures from three main sources – instant cooperation 

profit, long-term brand image, and policies.  

First, electricity and fossil fuels are the two major traditional energy forms used by 

automotive manufacturers. Data from the U.S. Energy Information Administration shows 

the price of electricity has continued increasing over the past 15 years (as Figure 1.4), while 

the price of fossil fuels (mostly natural gas) are fluctuating (as Figure 1.5). Considering the 

energy prices, types of vehicles produced, and various technologies used in the production 



4 
 

processes, the energy cost can range from $38/vehicle to $93/vehicle [1.5 – 1.7]. Shrinking 

market profit requires the cooperation to cut spends on every aspects including the utility 

bills.  

 

 

Figure 1.4: United States Industrial Electricity Average Retail Price [1.6] 
 

 

Figure 1.5: United States Industrial Natural Gas Average Retail Price [1.7] 
 

On the other hand, the correlation between the energy consumption and 

environmental degradation is well known. Acid rain, deforestation, greenhouse effect, 
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particle matter pollution, and many other environmental pollution sources are all related to 

energy consumption. In order to maintain a positive brand image, the plants not only need 

to use less, but also use wisely. Choosing more renewable energy than the electricity and 

fossil fuels seems to be jeopardizing the instant profit due to the high initial investment, 

but it could build a positive, environmental friendly brand image among the customers, 

which in long term profits the company.  

Finally, the standards, regulations, and laws force the manufacturers to improve 

their energy efficiencies. Early in 1970s, energy efficiency and conservation have become 

critical subjects to address the energy problem. Recently, more countries and areas 

participated the in discussion on policy initiation and implementation [1.8]. Policies are 

mainly from three aspects: 1) perspective policies for equipment efficiencies, process 

regulations, management, and negotiated agreements; 2) economic policies, including 

taxes, financial incentives, cap and trade schemes, and energy pricing; 3) supportive 

policies to identify the energy efficiency opportunities, cooperate measures, and train and 

educate.  

 

1.3 Motivation 

The previous section introduced the background of energy dilemmas and their 

influences on the manufacturers, especially on the automotive manufacturing plants. In this 

section, the incentives that initiated this research will be discussed. 

It is inappropriate to discuss any energy conservations techniques without acquiring 

the knowledge of where and how the energy is used in the manufacturing system. Energy 
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models are the knowledge summary of the manufacturing energy system. Establishing 

systematic energy models is not only the process of quantifying the energy usage on 

production lines and departments, it is also a procedure to seek the answers to compensate 

the limitations of the current plant. From systematic models, decision makers are more 

informed and conservation implementations are more efficient. However, how to construct 

holistic models within the plants where thousands of production processes where interacted 

is a challenging question. To solve this problem, a systematic modeling hierarchy with 

levels of models serving layers of organizational managers and technicians is the key. 

Starting from the general manufacturing plants, the proposed approach should be 

repeatable across various systems. As a typical representation of many manufacturing 

systems, the automotive assembly plant with complex production procedures can be a used 

as a special case to test the approach feasibility and demonstrate the approach 

implementation procedures.  

After gaining knowledge in the current energy usage of the manufacturing plants, 

studying the trends and patterns of the energy consumption and making predictions based 

on historical data is another topic for investigation. This is because energy forecasting is 

essential to 1) intelligently schedule the production and manage the working conditions, 2) 

further realize the situational intelligence (integrated historical and real-time data to 

implement near-future situational awareness), 3) guarantee energy supply stability, and 4) 

create deeper knowledge on how the manufacturing plants affect the local energy 

distribution. 
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Thanks to the prevailing trend of renewable energy and decentralization of the 

energy generation and manufacturers’ demand on multiple energy carriers, on-site energy 

conversion and transmission systems are more popular. “How to manage the on-site energy 

system? How to optimize the operation? What to optimize?” are key questions. The 

answers to these questions lies in the discussions of the tradeoffs of optimal energy supply 

strategies based on various objectives – minimum energy, minimum monetary cost, and 

minimum emissions to the environment.  

 

1.4 Research Questions 

Research Question One: How to use the manufacturing temporal and 

organizational framework (layer concept) to drive energy model building at functional and 

detail levels? 

Research Question Two: What is the most effective approach to augment 

mathematical forecasting tools for the best applicability in the manufacturing domain?  

Research Question Three: What are the tradeoffs of optimal energy operation 

strategies in a manufacturing plant? 

 

1.5 Research Scope 

In this research work, we focus on the post-process phase plant, on its factory and 

lower levels (a detailed manufacturing temporal phase and organization level definition 

can be found in Section 2.2.1). The limitations of the three research questions are as below. 
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1. The research proposes a general manufacturing modeling approach and 

demonstrates the approach through a studied case of an automotive assembly 

plant. The studied case does not exhaust the production processes or devices in 

plant. Instead, it exemplifies the methodology through model establishments on 

the typical energy consumers.  

2. The research conducts the forecasting model based on historical data of a post-

processing plant and assumes the future energy consumption will repeat the 

historical trend(s) and pattern(s). Therefore, the model cannot be used to predict 

the energy consumption when there are major changes in the plant, such as a 

new production line engagement.  

3. The research optimizes the on-site energy supply system based on the current 

existing facility. Operation strategy suggestions are made without introduction 

of new equipment or devices, such as new energy storage systems. 

 

1.6 Chapter One References 

[1.1] S. Dale, "BP Statistical Review Of World Energy," BP Global, 2015. 

[1.2] United Nations, “Total Population (Both Sexes Combined) By Major Area, Region 
And Country, Annually For 1950-2100 (Thousands),” Population Division, 
http://esa.un.org/unpd/wpp/DVD/, Accessed: Sep. 2015. 

[1.3] USA EIA "U.S. Energy Information Administration Monthly Energy Review -- 
Energy Consumption By Sector," Energy Information Administration, 2015.  

[1.4] USA Census Bureau, “General Statistics: Statistics for Industry Groups and 
Industries: 2011 and 2012,” Annual Survey of Manufactures, 
https://www.census.gov/manufacturing/asm/historical_data/, Accessed: Sep. 2015. 
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[1.5] G. A. Boyd. “Estimating The Changes In The Distribution Of Energy Efficiency In 
The U.S. Automobile Assembly Industry,” Energy Economy, 42, pp. 81-87. 2014. 

[1.6] USA EIA, "Average Retail Price Of Electricity," Energy Information 
Administration, 2015. 

[1.7] USA EIA, "United States Natural Gas Industrial Price (Dollars Per Thousand Cubic 
Feet)," Energy Information Administration, 2015. 

[1.8] K. Tanaka. “Review Of Policies And Measures For Energy Efficiency In Industry 
Sector,” Energy Policy, 39 (10), pp. 6532-6550. 2011. 
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 CHAPTER TWO 
SYSTEMATIC MODELING 

 

2.1 Research Question Restatement 

Research Question One: How to use the manufacturing temporal and 

organizational framework (layer concept) to drive energy model building at functional and 

detail levels? 

 

2.2 Background and Knowledge Gap Introduction 

This section will begin with the introduction to the framework concept of the 

manufacturing system, followed with a critical review on previous efforts made by 

researchers on model construction for manufacturing energy usage, including models at 

different levels and systematic models in the post-process phase. Then at the end of this 

section, the knowledge gaps of energy modeling are identified and the hypothesis that a 

manufacturing layer concept can be efficiently used (in terms of information amount, 

flexibility to apply in similar systems, feasibility to current plants, sensitive analysis 

capability, improvement identification, and accuracy) to guide the systematic modeling 

approach is posited.  

 

2.2.1 Framework of a Manufacturing System 

The manufacturing system is a complex system containing a potentially large 

number of sub-systems. It is important therefore to clarify the scale of discussion pertinent 

to the efforts of this work. Fortunately, a rich systematic classification has been recently 
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described. In 2010, C. Reich-Weiser, A. Vijayaraghavan, and D. A. Dornfeld [2.1] started 

from the methodologies for product life-cycle assessment, and proposed four levels in 

spanning the organizational domain and four levels in the temporal domain (as shown in 

Figure 2.1). The four organizational levels include:  

1. the product feature level, which defines specific process execution steps;  

2. the machine/device level, which performs unit processes;  

3. the facility/line/cell level, which acts in series or parallel to execute specific 

activities; and 

4. the supply chain level which consists of all facilities in the network.  

 

The four temporal phases include:  

1. the product design phase when the product is designed;  

2. the process design phase when the manufacturing processes are designed to 

cope with the product;  

3. the process adjustment phase when basic manufacturing process is fixed but 

small changes on process parameter selection and optimization; and  

4. the post-process phase when the product is in production.  
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Figure 2.1: Energy System in Temporal Framework (after [2.1]) 
 

This framework started from a product standpoint and divided the manufacturing system 

into the described four by four orthogonal matrix.  

 

In 2012, J. R. Duflou et al. [2.2] further developed the system into five levels in the 

organizational domain (Figure 2.2). They proposed  

1. the device/unit process level, which performs unit processes;  

2. the line/cell/multi-machine system level, which acts in series or parallel to 

execute specific activities;  

3. the facility level, which organizes as distinct physical entities;  

4. the multi-factory system level, which gathers with different facilities 

proximity to each other; and  

5. the enterprise/global supply chain level, which consists of all facilities.  

 



13 
 

 

Figure 2.2: Energy System in Special/Spanning Organizational Framework (after [2.2]) 
 

Unlike C. Reich-Weiser’s team starting from the product life cycle standpoint, 

Duflou’s team investigated from the viewpoint of the production process system. Duflou 

eliminated the product level, and expanded the facility/line/cell into three sub-systems 

(level 2, 3, and 4).  

With the temporal phases from C. Reich-Weiser and organizational layers from J. 

R. Duflou, the whole manufacturing system can be separated into a four-by-five orthogonal 

framework.  

 

This research focuses on the energy use within the manufacturing plant. In terms of 

temporal framework, this research is at the post-process phase. It means the modeling is 

based on the current plant situation, where the production line built, tested and in use. 
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Therefore, the models have to consider the current situation of the plant, including 

facilitated metering and data system, production schedule, and possible equipment 

degradation. In terms of organizational framework, this research concentrates on the plant 

and below layers. It means any energy consumption within the plant.  

From this section forward, high level and low level terms are used to refer to the 

energy used at the factory level and any beneath levels respectively, i.e., the high level 

refers to the facility/factory/plant layer, and low level is the combination of line/cell/multi-

machine layer and device/unit process layer as Duflou’s definition. The reason that the 

line/cell/multi-machine layer and device/unit process layer are combined is that the energy 

consumption in the manufacturing plant generally requires multiple individual devices to 

cooperate together to perform a task and the energy consumption of these individual 

devices are usually highly related. High/low level terms are used in the rest of this 

dissertation.  

 

2.2.2 Manufacturing Energy Models Review 

Efforts made by researchers on model establishment for manufacturing energy 

usage will be critically reviewed here.  

Guided by the framework, publications from different levels in the post-process 

phase within the scope of this research is organized as Figure 2.3. 
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Figure 2.3: Section Hierarchy 
 

Levels of Models 

Models from different levels is reviewed here. 

 

High Level 

The manufacturing plant is a relatively independent entity which performs certain 

tasks to fabricate a product. Plant level energy modeling studies the plant as a system. 
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There are two branches in the high level – energy performance models and benchmark 

models (as Figure 2.4). 

 

 

Figure 2.4: Section Hierarchy – High Level Models 
 

Energy Performance Model 

Energy performance models study the plant energy consumption per vehicle. One 

typical model for energy modeling of automotive assembly plant is from Gale A. Boyd’s 

work in 2005 [2.3]. Boyd developed a performance-based indicator known as the Energy 
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Performance Indicator (EPI) to score energy performance in megawatt hour energy used 

per vehicle produced.  

The EPI score can be seen as the goodness of energy consumption compared with 

similar plants in the automotive industry based on the source data from 35 plants within 

the 3 years (1998 - 2000). Corrected ordinary least squares (COLS) regression models were 

established to relate the energy consumption (  and E F  ) with the productivity (number of 

vehicles produced annually, Y ), product information (measured through the vehicle 

wheelbase, WBASE ), plant utilization information (plant utilization rate Util , i.e., the 

production line operation speed over its designed speed), and weather information (cooling 

degree days – CDD , heating degree days – HDD ). Gale Boyd divided the energy within 

the plant to be two major energy carriers – electricity and fossil fuels out of the 

consideration of divergent usage. Electricity is believed to be used for both heating and 

cooling the working environment and manufacturing processes besides powering the 

robots and other equipment. On the other hand, fossil fuels are treated without the ability 

of cooling. These reflect in his work results shown in Equation (2.1) and (2.2). However, 

it neglects the fact that absorption chiller can use thermal energy (hot water, steam, exhaust 

gas) from fossil fuel as the energy source to reduce the temperature of cold water. In this 

way, the usage of fossil fuel and electricity can no longer be distinguished as indicated in 

Boyd’s work.  
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 2 2
1 2 3 4 5/ WBASE Util Util + HDD HDDi i iF Y A u v            (2.2) 

 

In these two equations, the E and F stands for total site electricity uses in kilowatt 

hours (kWh) and fossil fuels use in British thermal unit (Btu) respectively, WBASE is the 

production information (wheelbase), and Util represents the plant utilization rate (vehicle 

output/production capacity). And in these two equations, v  is the normal distributed 

random error and u  reflects the energy inefficiency. s  are the coefficients.  

Plant level modeling is clear in correlations of the energy consumption with major 

impact factors. It is inexpensive and convenient in comparison of one plant with other 

similar automotive manufacturing factories – the EPI score represents energy performance 

of the plant through the percentages. For example, EPI score 90 stands for the achievements 

of 90% better than the other plants in the survey. Also, the energy consumption in megawatt 

hour per vehicle is valuable information in product Life Cycle Assessment (LCA). 

However, it also suffers several problems. First of all, this indicator/model does not include 

the impact from technologies. As mentioned earlier, the use of absorption chiller for chilled 

water production, which used in plant environment control and process cooling is no more 

different from the electricity. Second, this tool/model is intended to motivate the change of 

the automotive plants, but the ambiguous system boundary of factory plant fail to 

acknowledge the plants that make effort on the on-site energy supply system. For example, 

cogeneration system uses one energy input to create two energy outputs (usually power 

and heat, also called CHP – combined heat and power system), and is believed to be 
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promising in improving energy efficiency and is encouraged to be applied in industry. But 

this model fails to discuss how to give credit to the plants that are using the energy efficient 

on-site energy supply system. Third, clean energy, such as landfill gas is also neglected. 

The application of clean energy general meaning more capital investment and sometimes 

expensive operation maintenance cost. These procedures and cost expenses are not 

appreciated in the EPI tool. Last but not the least, the selection of the regression variables 

is obscure. Author use these variables through subjective discussions with the plant 

managers instead of scientific analysis. Are these variables reasonable? Are there any other 

ones can better describe the target factors? Below Table 2.1 and Table 2.2 are the 

correlation analysis of the fuel and electricity used in our studied case. The results show 

some of the variables included in the EPI model have no correlation with fuel and 

electricity consumption. Therefore, the EPI model is proved to be not accurate in describing 

the plant level energy. 

Table 2.1: Correlation Analysis of Fuel 

 /F Y  

/F Y  1.00 

WBASE  0.00 

HDD  0.83 

2HDD  0.84 

Util  -0.09 

2Util  -0.12 

 

Table 2.2: Correlation Analysis of Electricity 
 /E Y  
/E Y  1.00 



20 
 

WBASE  0.00 

HDD  -0.63 
2HDD  -0.56 

Util  -0.77 
CDD  0.87 

2CDD  0.93 

 

Benchmark Models 

Benchmark models are intended to establish references across a group of similar 

organizations. Yogesh Patil et al. developed a Lean Energy Analysis (LEA) method, which 

models electricity and natural gas usage in the automotive manufacturing plants [2.4]. The 

main contribution of this paper is the generation of energy signatures, defined as the basic 

shape of statistical regression. It is used to represent the baseline of energy use in each 

plant. This paper reported that the energy signature is represented by the manufacturers’ 

unique energy equations derived from their own independent variables. The most 

straightforward example is the two-parameter (2P) energy signature equation (as Equation 

(2.3) ). 

 

 / Yint( / ) ( / ) ( / )Eng day eng day RS eng unit P unit day     (2.3) 

 

In Equation(2.3), eng  stands for energy, Yint  stands for the y-intercept during the 

regression analysis, RS  is the regression slope, and P  is the production of the day. Thus, 

the two parameters are the intercept and coefficient slope. According to the authors, these 

two parameters are unique to every plant. There are other energy signature equations in 
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this paper, but they all share the common questions – are these energy signature unique, 

are they necessary different from other plant?  

It is interesting that the authors pointed out the concept of the energy signature, 

which is unique to every plant, according to the paper. However, the claim that the model 

can be used for comparison is questionable due to its oversimplified multivariable 

regression with only inputs from energy consumption of the day and production data. Will 

the slope and intercept vary according to the amount and types of products produced in one 

day? Do they change seasonally? How about non-production days? If the signature changes 

accordingly, do they still stands unique? Authors did not answer these questions well. In 

addition, the accuracy of the model is also in question. Figure 2.5 and Figure 2.6 are the 

two plots based on the 2P signature energy model. These figures show a poor fitting in the 

energy. 

 

Figure 2.5: Natural Gas Signature Fitting 
 

Figure 2.6: Electricity Signature Fitting 
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In the reviewed benchmark models, the relatively straightforward statistical 

regression approach was used. This makes them flexible to be applied to similar 

manufacturing plants. Also, due to the limited amount of input data required, these models 

are inexpensive and feasible to use. Nonetheless, also due to their insufficient consideration 

in the various technologies used in the plants, the consumption among the similar plants is 

hardly deemed comparable. Finally, the fundamental purposes of building an energy model 

is to seek conservation opportunities by identifying potential improvements and to be 

conscious of the amount of energy used. The reviewed works did not serve these two 

purposes well.  

 

Low Level 

In contrast, low level models are great in identifying potential improvements and 

quantify the energy consumption.  

As show in Figure 2.7, low level models can be classified into three main categories: 

1) production process related; 2) building serves related; and 3) data driven statistical 

models. The production process models including physical models for vehicle body and 

final assembly processes and painting processes. Building serves including lighting and 

building heating, ventilation and air conditioning (HVAC). Finally, despite the energy end 

users, the statistical models are data driven models simulate the machine/device power load 

during various working condition. In this section, low level models in the three categories 

will be reviewed and typical energy models will be exemplified. 
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Figure 2.7: Section Hierarchy – Low Level Models 
 

 

Production Processes 

The three main departments in the automotive assembly plant include: 

1) body shop where the stamped panels are welded together to form a vehicle 

body-in-white; 

2) paint shop where the electrocoat, paint and sealant are added to the vehicle body 

for an attractive and corrosion-resistant appearance; and 
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3) final assembly shop where all the components of the vehicles are assembled 

together to make the vehicle functional. 

 

Body and Final Assembly Departments 

Body shop, which has evolved to have a high level of automation, is responsible 

for the forming and joining of stamped panels to vehicle body structure. Final assembly 

departments marry the vehicle body to power chain, interiors and other components to 

make the car functional. Both body and final assembly departments contain many assembly 

processes and share many common aspects, such as material handling and joining.  

 

Material Handling – Robot 

Material handling in the plant can involve both human operators and robots, 

especially in handling dashboards, cockpit modules, engine blocks and other heavy 

components. Such components require both precise and rapid handling. Robots are used to 

carry the weight of heavy parts, while human operators could assist the secondary assembly 

operation, like inserting fasteners and manually connecting harnesses. Various types of 

material handling robots are used related to the size of handled parts, position of installed, 

and human ergonomics. Despite the difference in the shape and specific tasks, general 

material handing energy consumption is related to the weight of parts, robots design, 

distance of moving, time of moving and efficiency of the robot.  

 

    /handling part grip robot motor handlingE L m m m v t            (2.4) 
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Equation (2.4) indicates the energy consumption of the robot handling material, and 

the variables involved in this equation are the length of the moving material (�), speed of 

moving ( �) , weight of the part ( ����� ), weight of the gripper ( �������� ), robot 

specifications such as the weight of the robot arm (������) and the angle of the robot arm 

(�), as well as the motor efficiency (������) and handling time (���������).  

The Equation(2.4) of energy in material handing gives a clear picture of the 

influential factors. It provides information to identify the improvements for energy 

conservation. For example, the equation has a positive correlation between the energy 

consumption and distance of material moved. To minimize the energy, an optimized route 

with minimum distance moved could be one of the potential measurements for 

conservation. However, Equation(2.4) is just a theoretical calculation without considering 

the possible auxiliary energy needed for the material handling process. Most of the time 

the handling robots are in their idle stage, which requires small amount of energy to 

maintain its position or keep the auxiliary system (e.g., lubrication system) running. But 

the idle stage could last a long time in a low productivity time. In a situation when the 

productivity runs low for a long time, the idle energy could be a large share. In summary, 

the robot busy model is good in identifying the potential improvements through sensitivity 

analyses of each variable involved, but it is not sufficient to calculate the overall energy 

used in this process. It is also not feasible to measure all parameters in the idle stage for a 

holistic physical model. Specific models for each type of material handling robot would 

likely be expensive.  



26 
 

 

Material Handling – Conveyor  

The conveyor is another tool used for parts and bulk materials handling. It 

transforms electricity into mechanical energy to move the materials and parts. 

 

 ( )ConveyorE Pdt F v dt      (2.5) 

 

The energy consumption of a conveyor is highly related to its power and time of 

use. As an example, the energy of the belt conveyor can be calculated as in Equation(2.5). 

In this equation, the power of the conveyor ( P ) is calculated as the function of conveyor 

speed v  and the driving force F , which is related to the conveyor slope angle, resistance 

force, and weight of the parts transported. Conveyor efficiency can be improved through 

the use of a higher efficiency idler, drive system, and belt/chain. 

 

Joining 

Steel and aluminum are the two main production materials used in automotive 

manufacturing plants [2.5]. As the standard of fuel economy is increasing, more 

lightweight materials are used on the vehicle, which makes the joining techniques more 

varied. In addition to traditional spot welding, automotive manufacturing plants are 

deploying joining technologies such as laser beam welding, metal inert gas/metal active 

gas (MIG/MAG) welding, riveting and screwing.  
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Spot welding is one of the traditional joining technologies used in the automotive 

manufacturing plant. J. D. Cullen et al. studied the energy use in the spot welding 

specifically in the automotive industry [2.6]. They used the artificial intelligence approach 

to correlate the energy consumption of the automotive spot welding with welded material 

type, material thickness, number of weld, weld nugget size, and tip width. The artificial 

intelligence method used in the paper is beneficial to understand the relations between the 

energy use and other variables during the welding process, but it did not give out physical 

explanations of why they are correlated and how the adjustment can be made to save energy. 

The paper does not include information from the welding idle stage, which as discussed 

could be a large share during the low productivity time. Hai Liu and Qianchuan Zhao 

modeled the energy consumption of the welding process as two parts – energy consumed 

in generating welding spot and welder idle (shown as Equation (2.6)) [2.7]. 

 

  1weld ps spot idleE E N x P T     (2.6) 

 

Considering the energy consumed in generating one spot could be different 

according to the operation procedures, the statistical data average energy of one welding 

spot (���) is used. ����� is the number of welding spots per product, � is the number of 

products to be produced, � is the ratio of welding engaged time to the total uptime, ����� is 

the no-load power when the welder is in idle stage, and � is the total uptime.  

Laser beam welding is another popular technology used in automotive 

manufacturers. For laser welding CO2, excimer, and the Nd: YAG (neodymium in yttrium 
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aluminum garnet) lasers are used. A further development of laser welding leads to the 

introduction of remote laser welding (RLW), which uses large focal length optics, high-

power laser sources and mirrors to translate the laser beam into a large 3D working volume 

at high speeds [2.8]. Laser welding is beneficial for its short processing time, high quality 

and ability to process multiple materials. Unlike laser beam welding which use the laser as 

heat source, gas metal arc welding forms an electric arc between the wire electrode and 

work piece, by using the inert or active gas as the heat source. Both welding techniques 

join the materials through metal melting. The theoretical energy of metal melting can be 

calculated as Equation (2.7). 

 

  
0

mT

m

T

E vS cdT H
 

  
 
 
   (2.7) 

 

In this equation, � is the area of weld cross section, � is the welding speed, � is the 

material density, �  is the temperature, ��  is the melting point temperature, ��  is the 

ambient temperature, � is the latent heat of melting and � is the specific heat. The energy 

of welding also depends on the efficiency of energy conversion from primary energy (e.g., 

electricity, gas chemical energy) to thermal energy. M. Gao and his colleagues introduced 

a series of CO2 laser-gas metal arc (GMA) hybrid welding experiments on the mild steel 

[2.9]. They discussed how the laser power, arc current and the distance between laser and 

arc can affect the melting energy. All these models are great in calculate the theoretical 

energy demand, but they are also cumbersome to apply considering the different joining 
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techniques, equipment used, and the time and monetary cost in measuring all the variables 

need for inputs.  

 

Paint Shop 

Paint provides the appearance as well as corrosion resistance to a vehicle. This area 

is responsible for vehicle painting and sealing, consumes as much as 60% [2.10] of total 

plant energy utilization.  

Typically, there are several major procedures in paint shop. The first procedure is 

pretreatment, where a galvanized steel substrate with a thin (internal sections only) 

crystalline tri-cation phosphate layer. Then an electrocoat is given to provide corrosion 

resistance. After the electrocoat is cured, the lower panels of the vehicle body are protected 

with a thick antichip layer in sealer booth to protect it from gravel. At last, the final steps 

apply actual paint to the vehicle body through several booths and ovens – primer with anti-

corrosive pigments, followed by the basecoat which gives the vehicle color, and clearcoat 

protects the paint from UV and gives a glare looking [2.11]. 

In this section, energy consumption of each main painting process will be discussed, 

major energy usage models will be provided to illustrate the modeling approaches.  

 

Pretreatment  

Pretreatment is a procedure for vehicle body to remove the oil and grease from 

stamping and body shop. And the phosphate coat during the procedure will make the body 

adhesion for the e-coating (electrocoat) and corrosion resistance. Pretreatment procedure 
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includes several repeated steps of pre-clean, rinse, activate, phosphate, passivate, rinse, and 

drain. The chemical reactions in the phosphate coating procedure require the maintenance 

of solution in the tanks at certain temperature (135℉ for phosphate step). Energy is used 

for pumping and heating water.  

 

 water
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pump motor
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
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Power of pumping water to the tank is represent in Equation (2.8). It is directly 

related to the water flow rate (������� ) and pumping water head ( � ), and inverse 

proportion to the pump (�����) and motor (������) efficiencies. There may be several 

pumps in the pretreatment procedure; the total electricity consumption is the additive of all 

the pump powers multiply by the total hours of working. Natural gas is usually used for 

water heating (Equation (2.9)). The natural gas used is the energy absorbed by the water 

divided by the efficiency of heat exchange from gas to water/solution (����������). 

 

E-Coat 

E-coat, short for electrocoat, is a procedure provides corrosion protection for the 

vehicle body. Direct current is applied to the solution. 
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 ECoat rateP P     (2.10) 

 

Steps in E-coat include repeated electrocoat dip and rinse. The energy used in 

electrocoat step can be calculated as Equation (2.10), which related to the electrical duty 

(�) and production rate (�����). Also, in order to keep the solution concentration constant 

and even, pumps (Equation (2.8)) and a recirculation system are needed in all of the tanks 

in both pretreatment and E-coat procedures.  

At the end of E-coat, the vehicle body needs to be cured/dried before transportation 

to the next procedure. Ovens are used to cure the paint, and can be modeled as 

 

 ,
air

oven booth

motor blower

P FR
P
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 



  (2.11) 
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air
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E

 

  
   (2.12) 

 

In Equation (2.11),�����,�����  represents the power of oven or booth, Δ� is the 

input electricity power, ����� is air flow rate inlet to the oven or booth, and ������ and 

�������  are efficiencies of motor and blower respectively. In Equation (2.12), 

����represents the space loading air energy, ��,���is the heating capacity of air, ������� and 

�������� are the temperatures of hot and cold air, �������� is the heat exchanger efficiency. 

Air is heated before introduction to the oven. Natural gas is used to heat the air and 

electricity used to blow the air.  
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Seal and Paint Spray 

In the sealing and painting spraying processes, robots that spay the sealant or paint 

can be simulated as the part handling/moving energy. Depending on the technology, some 

painting and sealing procedures need to be separated into smaller booths with controlled 

the temperature and humidity. This part of energy consumption is detailed in the Case 

Study section. 

 

Paint Shop Summary 

Regarding paint shop energy modeling, Roelant et al. studied the cost and 

environmental impact from automotive painting shop by creating a mathematical model to 

simulate the processes [2.12]. 

In their study, Ford Motor Company Michigan Truck Plant was used as a case study 

and data source. Thermodynamic theories, empirical assumptions, and equipment specifics 

from Ford are used to validate the models process by process. 

Roelant claimed that their model is capable to 1) identify the major energy-

consuming units; 2) calculate the economic metrics and environmental performance 

indices; 3) determine the sensitivity of the energy model; and 4) identify the potential heat 

recovery opportunities [2.12].  

According to sensitivity analyses of Roelant’s model, the major energy consumer 

in the paint shop is the booth air conditioning, followed by the coating ovens. Energy can 

be saved through the extra investment for heat exchanger hardware. However, Roelant’s 



33 
 

model requires specific painting processes with tremendous amount of variable and 

parameter inputs; it is inflexible to apply to other plants.  

 

Technical Building Services 

In addition to the energy consumption related to the production processes, building 

services of the manufacturing plant also account for a big portion of the overall utilization. 

Some of these are detailed below. 

 

Lighting 

In an automotive manufacturing plant, lighting is believed to constitute 

approximately 15% of the total electricity consumption [18]. 

There are two lighting systems in the plants: high bay lighting and low bay lighting. 

High bay lighting is generally a portion of building energy to provide a bright environment 

for the building, whereas low bay lighting is concentrated alongside the workstations. 

Usually, high and low bay lighting have the same lighting fixture within the same system. 

Thus, the energy consumption of the lighting system can be calculated as in Equation 

(2.13). 

 

 Lighting High Low High High High Low Low LowE E E N P t N P t          (2.13) 
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In Equation (2.13), ���������  is the energy used for lighting fixtures, �����  and 

���� represent the high bay and low bay lighting energy, calculated through the number of 

lighting fixtures (�), power of lighting (�), and time of usage (�). 

The number and power of the lighting fixtures are highly related to the building 

structure, availability of daylight, and working environment lumen requirements. Energy 

efficient buildings have sufficient daylight available to allow shorter artificial lighting time, 

while fine components assemblies have high lumen requirement that necessitates a higher 

lighting requirement. Besides the daylight availability, the lighting time also depends on 

the control system design. Automatic control systems with light or motion sensors are 

proven to be more efficient than manual controls [18]. 

 

Heating, Ventilation and Air Conditioning (HVAC) 

The HVAC function is another big energy consumer in an automotive 

manufacturing plant. In order to maintain a good working environment, conditioned air is 

constantly exchanged with outdoor air. Some manufacturing plants also control the air 

temperature and humidity of the department 1) to make sure proper ambient working 

conditions exist for the workers, 2) to protect the weather-sensitive equipment, and 3) to 

guarantee a high quality product. The energy used for HVAC can originate from electricity, 

natural gas, hot water/steam, or chilled water. Electricity is mostly used to power the 

ventilation fans and motors. If hot water/steam and chilled water are available for direct 

use, they are used to heat and chill the inlet air through heat exchangers. Otherwise, natural 

gas and electricity are used to run the burner and chiller to generate hot/steam and chilled 
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water on-site. Ivan Korolija et al. developed regression models to predict the building 

annual heating and cooling demand [2.13]. According to their research, the building 

heating/cooling energy is related to the amount of heat gains and losses such as the 

transmission heat gains/losses through building envelope, solar gains, internal heat gains 

(such as manufacturing processing heat), and heat gains/losses in through the heat 

exchanger and air ventilation (as Figure 2.8). 

 

 

Figure 2.8: Plant Building HVAC Sketch 
 

A detail HAVC model for plant building is studied in Section 3.4.1. 

 

We have now covered the high level and deterministic models in low level 

approaches, so now turn our attention to statistical models in low level approaches. 
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Statistical Models 

Statistical models in the studied hierarchy is shown in Figure 2.9. 

 

 

Figure 2.9: Section Hierarchy – Statistical Models 
 

Unlike the physical models which need to be specified according to the equipment 

specifications, statistical modeling is a more direct and easier method to apply. Statistical 

model of electricity power is used as example to illustrate the modeling approach.  
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Many devices us electricity as the power input. The load characteristics of the 

device can be measured during different tasks of the device to determine the power load at 

each stage of the machine. 

An example machine power load working model (shown as Figure 2.10) without 

break and pauses is a series of similar cycles according to the certain operations carried out. 

 

 

Figure 2.10: Machine Power Load at Working Mode [2.14] 
 

However, the same machine could have slightly different loads depends on the 

current operating conditions of human operator and variations in the operating of machines. 

The model of the machine with this function should include information of peak load value 

and average power consumption. Statistical models can be used for load description.  

A production line with multiple machines/devices could have the line power load 

character which combines all the components contains in that line (as Figure 2.11).  
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Figure 2.11: Assembly Line Power Load [22] 
 

Once the machine power load character has been determined, the total energy used 

to perform the tasks can be calculated as the integration of the power over time which 

determined by the production line speed.  

 

Multi-machine and single machine level modeling is great in providing detail 

information of the low levels. The models describe the detail machines, production cells or 

lines energy consumption principles, which can be easily used for sensitivity analysis to 

extract influential factors, and for improvement identification. However, the detail 

modeling of each machine in a complex plant is time intensive, and requires expensive 

support from meters and sensors, which do not consider the current status of most 

manufacturing plants. Besides, the detailed modeling on the production main lines could 

cause the problem of auxiliary energy consumption neglecting which could be a significant 

in overall consumption, especially during the low productivity period. The simple 

summation of the device/machine level model to picture a holistic plant energy usage is 

not only infeasible but also insufficient.  
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Systematic models 

Models in different levels provide detail modeling approaches for energy usage 

within the manufacturing plant, but when it comes to the holistic perspective on energy 

utility of the plant, they are incompetent in information interaction among levels. An 

ignorant combination of the current levels of models either loses the comprehensive picture 

of the plant, or lacks accuracy and detail. Therefore, the simple compilation of levels of 

models, could cause problems in decision making and information dissemination. 

Systematic modeling in compensating for disadvantages caused by levels of modeling is 

summarized here. Systematic models in the section hierarchy is highlighted in Figure 2.12. 
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Figure 2.12: Section Hierarchy – Systematic Models 
 

Embodied Product Energy Model 

S. Kara and S. Ibbotson [2.15] started from the life cycle analysis point of view, 

proposing the methodology in assessing the embodied product energy (EPE). They used 

two roofing systems (fiber composite and galvanized steel roof systems) as demonstration 

examples, and developed 10 different manufacturing supply chain scenarios, and 

considered the embodied energy of raw materials supplied. The supply chain scenarios 

considered the transportation types (e.g., road, rail and ship) and distances, and the raw 
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material embodied energy includes the amount of energy used in previous manufacturing 

processes. This work including the multi-factory and facility levels (as Figure 2.13). It is 

good in understanding the embodied energy in the whole product life and the energy 

consumption in the product’s different life stage.  

 

 

Figure 2.13: Embodied Product Energy Supply Chain Scheme 
 

However, like many other life cycle assessment methodologies, it is criticized by 

its inaccuracy, large variety range in the same product and lack of detailed description of 

the production procedures. 

 

Discrete Event Models 

Discrete models have the energy consumption in “numbers of product”, and usually 

assume the energy consumption of one product has no significant difference from another 

product. Evolved from the traditional EPE models, discrete event simulation models [2.16, 

2.17] took this concept one step further by describing the production procedures. They 

modeled the energy from two aspects – direct energy (DE) and indirect energy (IE). DE is 
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defined as the energy used directly in the manufacturing process (e.g., welding, machining); 

ID is defined as the energy consumed to maintain the working environment (e.g., lighting, 

heating and ventilation). DEs were modeled by using physical models of multi-machine 

and single machine levels, while IEs were calculated as the average energy consumption 

over the time and number of products stayed in different production zones.  

Their model provides better understanding on the production lines and involved the 

factory, multi-machine and single machine levels, but it simply sums all the energy in 

levels without giving it a deep analysis on the influential factors, nor showing the 

interaction among levels of models to compensate the disadvantages of each other. This 

approach is no more than the compilation of the multi-machine and single machine level 

models. Besides all the advantages in levels of modeling strategy, this method makes the 

models cumbersome in application. Furthermore, even though the automotive assembly 

plants process a discrete manufacturing procedures, the energy utility in the plants is both 

discrete and continuous. The discrete event modeling approach proposed in reviewed paper 

neglects the continuous nature of the DE and IE, and the interaction between these two.  

 

Hybrid Models 

The importance of the building shell itself, and the interaction between the 

production process and its environment was addressed in [2.18] and [2.19]. In these papers, 

the energy consumption of technical building services are taken into consideration. They 

illustrate how it is used to ensure the production conditions in terms of temperature, 

moisture and air purity through heating, cooling and conditioning of the air; and how it is 
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affected by the local climate of the production site and machine waste heat. Unlike the 

previous EPE and discrete event simulation models, these models also suggested a hybrid 

approach (combined discrete event and continuous simulation) considering the 

involvement of continuous building energy and discrete product production. Unfortunately, 

the involvement of the building energy consumption into the production process was only 

discussed theoretically. Both papers did not provide the modeling approaches, nor 

quantification of energy consumption from the building heating, ventilation and air 

conditioning (HVAC). Also, because both papers still concentrated on the specific 

simulation models for certain processes instead of system modelling approaches, they also 

suffered the problem of inflexibility and infeasibility in industrial applications. 

 

2.2.3 Knowledge Gap Summary 

As previous reviewed work and framework have illustrated, the manufacturing 

plant is a complex system containing many main procedures and auxiliary processes. How 

to include the maximum amount of information without jeopardizing the flexibility to 

apply in similar systems is a challenge worthy of study.  

The current status of the plants makes this research even more challenging. Energy 

models without the valid data inputs do not make a difference to other general models, nor 

help in quantifying or understanding the usage within the system. It is critical to have valid 

data inputs for model establishment and validation. However, it is common for 

manufacturing plants to have an incomplete data system which can only satisfy part of the 

modeling requirements. Actually, the plants install meters based on measurement 
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requirement, the compatibility with current system, database storage space and cost 

limitations [2.20]. To guarantee an efficient model construction process, and the 

reproducibility and repeatability of proposed modeling approach, the current obsolete 

status of the energy monitoring system needs to be taken into consideration at the very 

beginning of the modeling work – be feasible to current plant.  

Many facilities have only plant level energy meters installed by the utility 

companies to monitor the energy purchased from the suppliers. Until recent years, more 

facilities show a trend of installing fewer metering systems [2.21]. Comprehensive meters 

for every device and machine in the production line is infeasible and unlikely in the near 

future. The combination of statistical and physical models are a foreseeable choice – 

physical detail models where the low level meters are equipped, and statistical description 

models where there are only high level meters installed. In the meantime, it is important to 

have interaction between the levels of models. How to use the information from low level 

models, and to have a relatively simple but robust and informed high level model is another 

topic worth to be studied.  

Finally, as an energy model, it would be preferred that the models are accurate and 

can point out further improvement potentials.  

 

Based on these requirements, the reviewed models are summarized and evaluated 

here from their 1) amount of information provided, 2) flexibility to apply, 3) feasible to the 

current plants, 4) potential to identify the improvement, and 5) accuracy. According to their 
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fulfillment on each of the criteria, they were given zero to one scores, where zero for not 

fulfilled at all, and one for completely fulfilled.  

 

Table 2.3: Model Evaluation Table 

 

 

Table 2.3 shows the score of fulfillment of each type of models. These high and 

low levels’ models are highly unbalanced. They are great models in serving the modeling 

purpose of their high score criteria, but insufficient in others. The combination of these 

models is not an option, because when they were build they do not consider the information 

sharing in different levels. The systematic models are either at the concept stage, or require 

the support of expensive data systems. 

 

2.3 Modeling Approach  

This research is to compensate the knowledge gaps by using a well-known 

manufacturing framework to guide systematic modeling approach. The scope of the models 
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is to explore the energy consumption at plant, multi-machine, and machine levels during 

the post-process phase of manufacturing plants. 

During the post-process phase of the manufacturing plants, products are 

continuously produced to cater the market demand. The product and corresponding 

production procedures are designed, built, tested and in use. Modeling at this phase should 

be based upon the current production state of the plants, and installed metering and data 

systems. 

At the organizational scale, models in different levels can be built separately while 

considering the interactions. The facility level contains all the energy usage within a 

manufacturing plant. At this level, energy directly or indirectly used by the production 

procedures needs to be included. From the angle of energy supply to stratify all the 

consumption demand, energy purchased from the utility companies, and generated onsite 

through renewable generation technologies such as solar panel, wind turbine and 

cogeneration system. Energy models at this level are usually built as data driven statistical 

models as reviewed in the previous section 0. Though well known for their flexibility in 

applying to similar plants, the current plant level models suffer the problems of inaccuracy, 

limited information, and vulnerability to external changes.  

Multi-machine level models consist of more than one machine working in series or 

parallel to execute specific activities. The scale of the multi-machine level can range from 

a small production cell (e.g., basecoat painting spay booth) to a complex department (e.g., 

paint shop in automotive assembly plant). Based on the available data of the studied system, 

energy models at this level can be built as either data driven statistical model, or detailed 
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physical models. This level models are intended to include more technical details of the 

production processes and machines, and provide more information comparing with the 

facility level models.  

Single machine level, also known as the device/unit process level models, involves 

only one machine or device. Various machines could have thousands of different tasks in 

a manufacturing plant. Examples of typical single machine models, such as material 

handling robot and water pumps, can be found in the previous section. Many ultimate 

theoretical energies in these typical tasks share the same models, but specifying the 

ultimate energy into secondary energy for each machine asks for inputs from designs of 

machines and procedures in completing the tasks. Without doubt, the single machine level 

models embroil many inputs as well as outputs information. Exhaustive models for every 

single machine in a complex plant is cumbersome and infeasible. A top-down method in 

screening critical machines is necessary in a systematic approach. 

A systematic approach is key to efficient modeling (“efficiency” is defined in the 

model evaluation criteria, i.e., information amount, flexibility to apply in similar systems, 

feasibility to current plants, ability of sensitivity analysis, improvement identification and 

accuracy), and to constructing the models at different levels. Unfortunately, the current 

systematic models reviewed are not sufficient to satisfy these requirements (see section 0). 

Meanwhile it is noticeable that the disadvantages of high level models (energy 

performance models and benchmark models) are the advantages of low level models 

(Multi-machine and machine models). How to use the manufacturing system framework 
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to build models in different levels while considering the ability to interact to each other, as 

well as the flexibility and feasibility, is the key contribution of this proposed approach. 

There are two main approaches to interface the models at different levels – top-

down and bottom-up. Top-down defines building models at a high level first, and then 

drive the detail down to sub-systems like multi-machine and single device levels. 

Especially in a complex manufacturing plant, such as for automotive assembly, where the 

exhaustive low level models of the comprehensive plant is infeasible, the top-down method 

can be used to wisely select the critical energy components in the low level consumption. 

Therefore, the top-down method is useful in helping selectively spend money and time in 

establishing models. Bottom-up defines using the information from low level to feedback 

the high level models, and make high level models more intelligent and robust, while keep 

the advantages of feasibility and flexibility. In this chapter, detail top-down approach will 

be discussed and case study of top-down will be provided. The bottom-up method will be 

discussed in the next chapter.  
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Figure 2.14: Flowchart of Energy Modeling 
 

A general energy modeling and analyzing approach is described in Figure 2.14. 

Usually, a manufacturing plant has a high level energy supply data system to help 

understand how much energy is used in total. The first step is to understand the data system. 

“Are all of the energy sources purchased? Where are the meters that recording the data 

located? Are there any branches?” Questions of the metering and data system need to be 

made clear before modeling. For plants that lack data systems, either install feasible meters 
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for data collecting, or use utility bill information instead. Data from the main meters or 

utility bills need to be collected and pretreated to get rid of outliers caused by aberrant 

sources such as meter malfunction. In this stage, plant level statistical models can be built. 

Regression models correlating the energy consumption with the weather information and 

productivity, or simple time series models with historical data are both good choices in 

presenting the correlations and studying time patterns. Energy distribution analysis to the 

departments is a critical part in determining the next level modeling focus. Energy 

modeling can be processed in parallel. However, in most situations, considering the time 

and resources required. One area needs to be focused to proceed to the next level model. 

In this step, meetings, interviews, surveys, and if available meter readings in the multi-

machine, production lines can be used to determine the concentration of next step work. 

After the focusing area is narrowed down, detailed physical models or statistical models 

can be built based on the data availability. Sometimes, in a case of no meters in supporting 

the models, extra feasible meters may have selected to help further validate the model 

results before any other improvement implementation. Key sensitive variables can be 

determined through the model analysis. These sensible parameters can be feedback to the 

high level statistical model, or optionally build statistical model with extra exogenous 

inputs to make it more robust. The same procedures can be reproduced in different lines.  

 



51 
 

2.4 Case Study 

In this section, a case study from BMW Spartanburg Automotive Assembly Plant 

will be used to illustrate how the proposed modeling approach can be implemented, and 

how it fulfills the knowledge gaps. 

 

2.4.1 Studied Case Introduction 

The studied case is the BMW Automotive Assembly plant in Spartanburg, South 

Carolina, which assembles BMW X-series vehicles from stamped panels and many other 

sub-assembled components. The plant is obviously interested in energy conservation and 

sustainable manufacturing processes, but needs to carry these plans out in a cost effective 

way.  

Spartanburg plant purchases electricity, natural gas from the utility companies, as 

well as landfill gas from local supplier. Electricity is used to power the equipment. Natural 

gas is mostly used for space heating and paint curing. Landfill gas is used on two on-site 

hot water and electricity generators (CHP, combined heat and power). Main energy 

conversion and transmission happens at the Energy Center. In the Energy Center, 

purchased energy from the utility companies will be converted to the energy forms (hot 

water, chilled water, compressed air, and so on) and amounts the main production area 

needs. (as Figure 2.15).  

 



52 
 

 

Figure 2.15: Energy Flow Sketch in Studied Automotive Manufacturing Plant 
 

The studied plant can be split into two major parts – the energy supply system and 

the energy consumption system. Energy supply system is located in the Energy Center, 

where all the on-site energy conversion and transmission is processed. The efficiency of 

energy supply system and how to optimize the operations inside Energy Center is discussed 

in Chapter Four. The energy consumption system contains all the energy used in the major 

production departments, which is also the focus of energy modeling approach discussed in 

this chapter.  

 

2.4.2 Data and Energy Management System 

Machines and devices on the production lines are generally connected with many 

different meters/sensors/transducers to make sure they are functioning well. These meters 

measure the parameters like temperature, power load, flow rate and all various ones that 

can be used for energy modeling. The data measured through these meters are then loaded 
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to the data acquisition system, and saved in the data server. They can be accessed through 

an intranet connected desktop or laptop. A simplified framework is shown in Figure 2.16. 

 

 

Figure 2.16: Manufacturing Plant Meter/Data System Framework 
 

The data saved are assigned an ID to distinguish each signal, with a brief description 

of the data and sometimes the unit of the data. A typical database format is given as Figure 

2.17. Based on the meters used, the data are stored in different frequencies. One needs 

exact IDs to access the certain meters.  
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Figure 2.17: Database Format Example 
 

The equipment metered and data stored in the database usually serve the purpose 

of process monitoring, instead of energy monitoring. In other words, they were installed 

for the proper operation of the plant, not for energy modeling. So it is common there are 

no sufficient data or meters for the detail energy modeling. Thus, understanding the 

available meters and data before modeling, and selecting modeling method accordingly are 

critical to successful modeling.  

Except for the dynamic data recorded through the monitoring system, there are 

many static data, such as the design data from engineering drawings, and test data during 

the process adjustment phase. This information is also critical in helping determine the 

energy consumption.  

Meanwhile, the information from workers and specialists are another kind of 

valuable knowledge data. Formal and informal meetings, conversation, and discussions are 

good methods to find out the possible hidden knowledge not covered in the database or 

documents. 
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2.4.3 Framework Guided Systematic Approach 

The framework guided systematic approach is applied to this case study. An 

updated scheme specific to the plant is shown in Figure 2.18. 

 

 

Figure 2.18: Framework Guided Systematic Approach Scheme of Studied Case 
 

First, the plant level models were built to help understand the trends and patterns in 

energy purchased from the supplier. Linear regression and time series approaches were 
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used at the outset to give a general knowledge on the energy consumption of the whole 

plant. To efficiently (in terms of cost and time) establish low level models, plant energy 

data were further analyzed to determine the energy distribution. Specifically speaking, 

energy distribution to each production department and low level multi-machine processes 

were investigated to help decide which parts of the plant is the most critical ones (top-

down). Together with the information from production specialist and lower level modeling 

requirement, low level models were established. With the information from low level 

models, information can be feedback to high level models to make informed time series 

models (detailed in Chapter Three). 

All the data used in this research are normalized to protect the confidentiality of 

plant.  

 

Plant Level 

Monthly energy costs from the utility supplier is the most available data at the plant 

level. One year of monthly energy bill data were collected. Figure 2.19 is the monthly plot 

of the three energy forms purchased from utility companies. Each of them were normalized 

to monthly average values.  
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a) b) 

c)  

Figure 2.19: Purchased (a) Natural Gas, (b) Landfill Gas, and (c) Electricity (Normalized) 
 

From Figure 2.19, it’s obvious to observe the natural gas relationship is concave 

second-order; while the electricity relationship is convex second-order; and the landfill gas 

trend is relatively stable over a one-year timeframe. According to the observed shape, 

quadratic and linear models were fitted as Figure 2.20. 
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a) b) 

c)  

Figure 2.20: Fitted (a) Natural Gas, (b) Landfill Gas, and (c) Electricity (Normalized) 
 

Though Figure 2.20 shows a good fitting in the modeled twelve months, the model 

shows a poor accuracy in the next year data (as Figure 2.21). Also, the fitted models do not 

provide any information explaining the reasons of energy curves, nor any constructive 

suggestions on energy savings.  
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Figure 2.21: New Year Data with Fitted Model – Natural Gas Example 
 

The manufacturing plant environment is controlled through an HVAC system. For 

the most part, heating energy is provided through hot water from natural gas and 

cogeneration system, and cooling energy is provided through chilled water, mainly from 

electricity. One of the main causes of fluctuation in the monthly purchased energy is local 

weather changes seasonally. In the summer months when the weather is hot, the heating 

energy (hot water) for the plant building is at bottom, but chilling energy (chilled water) 

for spacing cooling is at peak. In contrast, during the winter months, electricity used for 

generating chilled water is at bottom, but the natural gas for hot water is at peak. This is 

one of the reasons natural gas and electricity shows a seasonal trend as in Figure 2.19. It is 

also known that the landfill gas only feed to the gas turbine, which runs the onsite 

cogeneration system at its full capacity year round. This is the reason why the landfill gas 

show a stable linear trend in the studied twelve months.  
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To include the weather information in the regression model is a good idea to make 

the model more informed and robust. However, direct including of monthly average 

temperature is not adaptable, since it averages out the weather changes that represent the 

demand for heating and chilling. Heating degree days (HDD) and cooling degree days 

(CDD) can be used. Heating degree days represent the summation of degrees above the 

65°F in a month, while cooling degree days represent the summation of degrees below the 

65°F in a month. These two variables are widely used in building energy calculation. Figure 

2.22 illustrates the modeling results.  

 

a) b) 

Figure 2.22: Regression Model of a) Natural Gas and b) Electricity 
 

 

The regression model of the natural gas and electricity correlated purchased energy 

with weather information (HDD and CDD).  

 

 1 2E c a CDD a HDD       (2.14) 



61 
 

 

As Equation (2.14), the � represents the natural gas or electricity, c  is the constant 

value, 1a  and 2a  are the parameters. However, unlike expected previously, the electricity 

has negative parameters with both HDD and CDD, i.e., �� < 0 , �� <0 while �  is the 

purchased electricity.  

Though regression models can be used to describe the energy at plant level, it 

cannot provide any information on the reasons of why inputs affected the energy. 

Another statistical models can be used to simulate the energy trend and pattern in 

plant level is time series models. Detail description of time series models were given in 

Chapter Three. 

Energy distribution at the trunk level is a good method to help select critical parts 

in the plant, and make the low level modeling and analysis more efficient.  

Through the energy supply data system, total energy for each department was 

analyzed in different forms of energy carriers. The energy forms include: hot and chilled 

water for building and process environment control; natural gas for building and process 

heating and paint curing; compressed air, and electricity for power equipment and tools. 

To protect the confidentiality of the studied case, the approximate percentages of each 

energy form is shown in Figure 2.23. 
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Figure 2.23: Energy Demand Distribution 
 

All these five forms of energy were distributed to three departments. To determine 

the amount of energy to each department, meters of each energy forms are required. The 

following table can be used to record the meter IDs and energy distribution results. 

 

Table 2.4: Meter ID Logging Table for Energy Distribution 

 
Natural 

Gas 
Electricity 

Hot 
Water 

Chilled 
Water 

Compressed 
Air 

Body Shop      
Paint Shop      

Final Assembly      
Auxiliaries      
 

In the cases of direct energy meters not being available, several meters together can 

be used to help determine the energy amount. For example, the hot water energy can be 

calculated through the temperature difference and water flow rate. Therefore, three meters 
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need to be logged – hot water supply temperature, hot water return temperature, and hot 

water flow rate in the closed loop. 

Again, to protect the confidentiality of the plant, the four-by-five energy 

distribution matrix cannot be shown here. Instead, the approximate percentages of total 

energy to each department is given in Figure 2.24. 

 

 

Figure 2.24: Energy Distribution to Departments 
 

The distribution results indicate the most energy intensive department is paint shop. 

Further discussions and investigations were developed inside of the paint shop. Potential 

energy saving suggestions were made for implementation (detail improvement suggestions 

can be found in Appendix A). Later on, the improvement areas were decided based on 

holistic consideration of time, monetary cost, and influential on the production and workers. 

The painting booth responsible for the basecoat painting spray was selected for further 

study.  
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Low Level 

Painting spray booths are the small separate rooms isolated from the painting 

building to prevent particle matters and gases like VOCs (Volatile organic compounds) 

from paint to release into the working environment. Meanwhile, the painting spay 

processes require controlled temperature and humidity to provide a high quality finish. It 

needs certain amount of air blowing from the roof of the booth to collect the sprayed paint 

and prevent residuals from affecting the next coming vehicles. It is known that the energy 

used in air conditioning to maintain the booth environment is huge.  

In the air supply units to paint spray booth, recycled air from the scrubber is reused 

and fed back to the booth. The scrubber is implemented to remove the toxic gas and paint 

particles from the pass-through air by using chemical solutions of reagents or using dry 

absorbent. The scrubbers using chemical solutions are termed wet, and those with dry 

absorbent are termed dry [2.22]. Air through the dry scrubber is relatively stable in 

humidity, recycled air from wet scrubbers absorbs moisture from the chemical solutions, 

and increases the amount of vapor in the air, thereby raising the humidity. The dry 

scrubber-equipped booth is the study subject of this research. 

A typical air flow route for the paint shop booth is given in Figure 2.25. 
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Figure 2.25: Painting Booth (Basecoat) Air Supply Flow Sketch 
 

Fresh inlet air will be first treated in the paint shop building supply unit (as Air 

Supply Unit I in Figure 2.25) to the building set point temperature. This will maintain a 

comfortable working environment for the worker and to protect the weather sensitive 

equipment. Then the building air will be reused in the booth air supply unit (as Air Supply 

Unit II in Figure 2.25). Finally, the booth air will be recycled in Air Supply Unit III as 

Figure 2.25. Both temperature and humidity need to be controlled in the painting booth to 

guarantee the quality of paint. The studied case uses a feedforward system. Booth 

temperature and humidity are controlled through the air released from the top of the booth 

roof. Regardless of the production rate – speed of vehicles inlet into the booth, the flow 

rate of the blow air, and its humidity and temperature are controlled to be constant. At 

steady state, the booth condition is equivalent to the inlet air. Thus, by control the air inlet 

into the booth, the booth condition is controlled.  



66 
 

Several devices and energy forms were involved in this process. The main devices 

include air fans, heat exchanger, chiller, and dehumidifier. The fans use electricity which 

is assumed to be constant due to constant rate of air flow. Heat exchanger, chiller, and 

dehumidifier are the three main devices need to be modeled. The main energy forms are 

the thermal energy of air, hot water and chilled water. Thus, the thermodynamic models of 

heating and cooling energy of these equipment are typical single-machine and multi-

machine level models as described in the organizational framework.  

 

 

Figure 2.26: Energy Supply and Demand Models Sketch 
 

Further analysis paint spray booth environment control system, energy models can 

be established in two aspects – energy supply from hot water and chilled water, and energy 

demand from the air status change (as Figure 2.26). Energy demand in the air temperature 

and humidity change between the inlet and outlet is generally known as the Space Load; 
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energy supply in the hot water and chilled water is known as Secondary Equipment Load 

[2.23].  

In this case, the multi-machine and machine level models were established, 

validated and put into practice. The procedure is summarized in Figure 2.27. 

 

 

Figure 2.27: Action and Knowledge Input Flow Chart 
 

In Figure 2.27, the square boxes indicate the actions in model establishment, 

validation, and implementation; the circular columns show where extra knowledge and 
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information inputs are needed. First, establish general models of space loading, and 

secondary equipment loading. Then, to make the model specified to the studied case, extra 

information, such as the engineering drawings of air supply house and paint spray booth, 

and their design parameters, is required to specify the model. Third, according to the 

specified model, meters and sensors to validate the model are listed. Compared with the 

current metering system on-site, extra meters may or may not be needed. The booth and its 

air supply house will run under the current the production status to give data on the baseline 

of specified model. First model validation is based on the baseline data. Once the model is 

validated, sensitivities on the model inputs can be analyzed, and improvement suggestions 

can be provided. At this stage, the design tolerance of the system, monetary cost, time, the 

possible involvement on the production procedures need to be taken into consideration to 

give further directions on which improvement can be proceeded. Final two steps are to 

implement the selected improvement and further validate the model. 

The below sections detail how the models were established, validated and 

implemented. 

 

Model Establishment 

The energy model was built for both space load energy demand and secondary 

equipment load supply.  

Space Load Energy Demand 

In the studied case, building air is the inlet air to the air supply unit (as Figure 2.26). 

The building air of plant is controlled on this temperature, but not humidity. The Air supply 



69 
 

unit need to adjust the inlet air to its designed temperature and humidity through heat 

exchange with hot water and chilled water.  

The flow chart of the model can be found in Figure 2.28.  

 

 

Figure 2.28: Air Supply Energy Consumption Flow Chart 
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The air from the building will be used as the inlet air of Air Supply Unit II, the 

sensors in the unit will measure the temperature and relative humidity of the inlet air. Inlet 

air temperature and humidity is not always exactly the same as the plant. For example, 

when the air inlet location is on the penthouse of the plant building, the outdoor 

environment temperature could cause the air temperature to drop or increase depends on 

the thermal conductivity of the building shell and temperature difference between the 

building air and outdoor environment. Another more common example is the heat from the 

fans. Fans use the electricity to blow the air from building to air supply unit. During this 

process, the air will go through the high speed fans and gain heat from the fans. Generally, 

the air temperature will increase two degrees Fahrenheit per fan. The measured temperature 

and humidity will be used to compare with target parameter. Controllers will tell the system, 

if the air need to be dehumidified, heated or cooled. Directly heating and cooling process 

is straightforward. The air goes through the heat exchanger (hot water heat exchanger for 

heating, or chilled water heat exchanger for cooling) to reach the target temperature. 

Humidity is controlled through a wet wall or nozzles to increase water content. The 

dehumidification process is more complex. Desiccant is widely available in the market, but 

it is expensive and it is not feasible to use it in a system with restricted humidity control 

which requires constant replacement. The studied case uses a cooling process for 

dehumidification. Before discussing the detail dehumidification process, there are several 

concepts that need to be clarified. 

Generally, the air has two parts – dry air and vapor in the air. Dehumidification 

process decrease the amount of vapor in certain amount of dry air, i.e., decrease the 
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absolute humidity through condensation. Absolute humidity can be represented in kilogram 

of water in kilogram of dry air. At certain temperature and pressure, the maximum amount 

of water can be absorbed in the air is called saturate, which is defined as 100% relative 

humidity. From here, the relative humidity (��) can be calculated through the ratio of water 

amount in air (�) to water amount in saturate air (��) (as Equation (2.15)).  

  
s

W
rH

W
  (2.15) 

��: relative humidity [%] 
�: humidity ratio [kg/kg dry air] 
��: saturate humidity ratio [kg/kg dry air] 

 

Constant pressure is assumed throughout the research work. At constant pressure, 

air with higher temperature can absorb more water. In other words, lower temperature air 

has lower saturate humidity ratio. The dehumidification process decreases the humidity 

ratio through a cooling process. When the saturated water ratio at temperature �� is smaller 

than the water ratio at temperature �� (
2 1,S T TW W ), water will be condensed and removed, 

and air humidity ratio decreases. This process requires a large amount of cooling energy. 

On the other hand, temperature �� to condense the water from air is usually a very low 

temperature, much lower than the booth target temperature. Thus, heating energy is 

required after the dehumidification process.  

The energy demand at every process can be calculated through enthalpy (as 

Equation (2.16)) change in two statuses of air – before and after the heat exchanger.  
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 , , ,( )p a p w w eh C T W C T h     (2.16) 

 

ℎ: enthalpy of moist air [��/��]; 
��,�: air specific heat capacity [��/�� ∙ ℃]; 

��,�: water specific heat capacity [��/�� ∙ ℃]; 

�: temperature [℃]; 
ℎ�,�: evaporation heat of water [��/��]. 

 

The space loading energy is the summation of energy at every process. In the 

scenario when the air need to be dehumidified, space loading energy demand is the 

summation of enthalpy change in cooling process and enthalpy change in heating process 

(as Equation (2.17)). In a scenario when air only need heating, space loading energy 

demand is the enthalpy change before and after the hot water heat exchanger (as Equation 

(2.18)). While in a scenario when air only need cooling, space loading energy demand is 

the enthalpy difference before and after the chilled water heat exchanger (as Equation 

(2.19)).  

 

 dehum overchill reheatE h h     (2.17) 

 heat heatE h    (2.18) 

 cool coolE h    (2.19) 

������: space loading energy demand at dehumidification scenario [kJ/kg] 
Δℎ��������: enthalpy change of moist air in dehumidification process [��/��] 
Δℎ������ : enthalpy change of moist air after dehumidification heating process 
[��/��] 
�����: space loading energy demand at heating scenario [[��/��] 
Δℎ����: enthalpy change of moist air in heating process [��/��] 
�����: space loading energy demand at cooling scenario [[��/��] 
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Δℎ����: enthalpy change of moist air in cooling process [��/��] 
 

The overall energy during a certain period of time can be calculated through the 

flow rate and integration over time (as Equation (2.20)). 

 

 ( ) ( )spaceE E t Q t dt    (2.20) 

 

������: space loading energy demand at certain period of time [��] 

�(�): space loading energy demand at certain point of time [��/��] 
�(�): air flow rate at certain point of time [��/�] 
�: time 

 

Secondary Equipment Load Supply 

The energy of space loading is provided through the secondary equipment – heat 

exchangers in this case.  

 

 

Figure 2.29: Heat Exchanger Sketch 
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In a closed recirculating system, hot water goes through the heat exchanger, and 

uses the temperature between the water and air to heat the cold inlet air. By control the 

flow rate of the hot water, air can be heated to different temperature. The energy of 

secondary equipment load energy supply can be calculated as Equation (2.21). So is the 

chilled water for cooling process. 

 

 w wE m C T     (2.21) 

 

��: space loading energy [��/�] 
�̇: hot water or chilled water flow rate [��/�] 
��: water heat capacity [��/(�� ∙ °�)] 
Δ�: water temperature difference between inlet and outlet [°�] 
 

Generally, the water heat capacity is constant at standard condition (� = 25℃, � =

101���), but when the water temperature variation is large, the variation of �� cannot be 

ignored. A look up table of �� at different temperature can be found in Appendix B. �� 

can also be calculated through fitted model (as Figure 2.30) in certain temperature range 

(�� = �(�)). 
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Figure 2.30: Water Heat Capacity and Fitted Polynomial Plot 
 

Thus, in a certain period of time, the energy can be calculated as Equation (2.22). 

 

 ( ) ( )w wE m t C T dTdt    (2.22) 

 

In this equation, the water flow rate is written as a function of time (�(�)), and 

water heat capacity is written as a function of temperature (��(�)). Both heating and 

cooling process can be calculated as Equation (2.22), but the polynomial fitting at different 

temperature could result to different functions. Thus, the function of water heat capacity 

should be modelled differently according to temperature range variation.  

 

Model Validation 

General models were established as section 0. According to the general models, 

inputs and outputs of the models are summarized as Figure 2.31. 
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Figure 2.31: Model Inputs and Outputs Sketch 
 

Every input of the twelve ones listed in Figure 2.31 needs to be specified for the 

studied case.  

Inputs 1, 2, 4, 5, 7, 8, 9, and 10 are monitored through the meter and data system. 

Input 3 is determined through the designed parameter on engineering drawings. Inputs 6, 

11, and 12 are not monitored. Flow rate meters for water is installed for model validation 

purpose. Avoiding the interference with the production activities, clamp-on meters were 

selected. However, the quantification of dehumidification chilling temperature is complex.  

 

 

Figure 2.32: Structure of a Water Cooling Coil 
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Figure 2.29 is a simplified sketch of heat exchanger. In this case of 

dehumidification, water cooling coil is used (as Figure 2.32). In a typical water cooling 

coil, chilled water went inside of the header, cool the air go through the coil. When the 

warm humid air reaches the chilled coil and the fins around it, heat is exchanged between 

them. The air was chilled and humid will condensed out and form water drops on the 

surface of fins. When the weight of the drop is heavy enough, it falls into the drain pain at 

the bottom of coil. Figure 2.33 is the illustration of a chilled water coil process.  

 

 

Figure 2.33: Chilled Water Coil Process 
 

In a cooling coil, there are many rows of coils. According to the different locations 

of the coils, the surface temperatures of the coil are different. Therefore, the amount of 

water condensed from each row of coils are different. The paper [2.24] discuss how the 

design of cooling coils can affect the dehumidification process, and how the temperature 

of the dehumidification can be simulated based on the different design of the coils. 

Unfortunately, the design parameters of the dehumidification cooling coils in our studied 
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case is not available for further simulation of this process. Single dehumidification was 

assumed and estimated through both the space loading and secondary equipment models.  

 

Table 2.5: Meter Log Table 

Meter Description 
Meter 

ID 
Unit Status 

Inlet Air Temperature  Fahrenheit Degree [℉] Equipped 

Inlet Air Relative Humidity  Percentage [%] Equipped 

Inlet Air Flow Rate  
Cubic Feet per Minute 

[CFM] 
Looked up through 

Design 

Outlet Air Temperature  Fahrenheit Degree [℉] Equipped 

Outlet Air Relative Humidity  Percentage [%] Equipped 

Dehumidification Temperature  Fahrenheit Degree [℉] Estimated 

Inlet Hot Water Temperature  Fahrenheit Degree [℉] Equipped 

Inlet Chilled Water Temperature  Fahrenheit Degree [℉] Equipped 

Outlet Hot Water Temperature  Fahrenheit Degree [℉] Equipped 

Outlet Chilled Water Temperature  Fahrenheit Degree [℉] Equipped 

Hot Water Flow Rate  Gallon per Minute [GPM] Installed Temporally 
Chilled Water Flow Rate  Gallon per Minute [GPM] Installed Temporally 

 

With all the inputs data metered or got from model and design drawings (Table 2.5 

can be used to log the meter information), certain period of the production day were 

selected as the test time for baseline to validate the model accuracy. 
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Figure 2.34: Baseline Heating Validation 
 

 

Figure 2.35: Baseline Cooling Validation 
 

Figure 2.34and Figure 2.35 show the model outputs from space loading demand 

and secondary equipment supply of heating and cooling energy. The data given in the two 
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figures are normalized to protect confidentiality of the plant. Before normalized, the supply 

energy is a little higher than the demand energy. The blue lines are the supply energy, and 

the red 50% transparent lines are the demand energy. The trend of the two lines in each 

figure follow each other well (relative standard deviation 100%
S

RSD
X

   for heating is 

1.1% and cooling is 0.6%). This indicates a good accuracy in the models. Further look into 

the inputs of the models, the temperatures of the inlet air are relatively constant comparing 

with the humidity change, since the indoor only control the temperature. This explains the 

big variations in cooling energy, because most of the cooling energy was used on 

dehumidification process; while the heating energy is used for air heating up after the 

dehumidification process.  

 

Model Implementation 

Based on the model and available techniques, suggestions were made to the studied 

plant for energy conservation.  

Also, during the information exchange with energy and production specialists, it is 

found that the painting spray booth allows the fluctuation of temperature between 68 and 

86 °F. Based on the temperature tolerance range, suggestions on temperature set point 

change were also given. Further validation on the model and the suggestion were made 

during the nonproduction days to avoid product quality issues.  

The same inputs data are required. During the non-production period, the painting 

spray booth temperature set point was adjusted according to the suggestions.  
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Table 2.6: Test Plant of Pilot Study 

Normalized Time 
Temperature Setpoint 

[°F] 
0-88 70 

89-170 78 

170-330 76.5 

330+ 72 
 

 

Figure 2.36: Temperature Set point Adjustment Study (Heating) 
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Figure 2.37: Temperature Set point Adjustment Study (Cooling) 
 

Figure 2.36 and Figure 2.37 show the model outputs of the pilot study on the 

temperature set point adjustment. During the pilot study (test plan of pilot study is shown 

in Table 2.6), the set point of paint booth was changed. For example, during the normalized 

time range of 0 to 88, the booth temperature was change from 72°F (baseline) to be 70°F; 

during the time range from 89 to 170, the set point was controlled to 78°F; when normalized 

time is from 170 to 330, the set point was 76.5°F; after that the temperature was adjusted 

back to the original baseline 72°F. It is noticeable during the pilot study: the supply energy 

has a delay, and it takes some time to be stable. Also, there are several overshoot and data 

fluctuation. Otherwise, the two models align with each other, and can be used for 

suggestions on energy conservation. It worth to pay attention that the minimum energy 

consumption time is from 650 to 1010. During this period of time, the weather is very dry, 

which lead to low humidity in the building, also the inlet air to the air supply unit of 
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painting booth. Due to the low humidity of inlet air, there is no need for dehumidification 

process and re-heating up, the only energy is used to control the temperature of the air.  

It is proved that the local weather and booth set point booth will affect the energy 

consumption tremendously. Final suggestions were giving to the plant. According to the 

ability of the control system, single optimal set point and real time set point based on the 

historical weather information, can be chosen.  

After the pilot study, the models can be used off-line to predict the least energy 

consumption set points for the painting booth. Based on the booth current running 

condition and the historical weather information, models come up with two set point 

adjustment suggestions – single set point and variable set points. Single set point will adjust 

the booth temperature to the optimal one value all year which minimize the energy 

consumption. Variable set points adjust the temperature according the inlet air. This require 

the air supply house to set logic based on the inlet air temperature and humidity sensor, and 

adjust the temperature set point accordingly. Booth strategies require less energy than the 

current setting. Annual energy conservation is estimated to be range from the 

approximately 30% to 80%, for single and variable set points respectively. According to 

the model suggestions, the adjustment can be made during the production time slowly to 

achieve the final goal of energy saving.  

Though the model was built on the post-process phase in the temporal framework, 

the whole energy model establishment, validation and implementation reviewed the 

process design and went through the process adjustment phase. 
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2.4.4 Case Study Summary 

BMW Spartanburg Automotive Assembly Plant is a typical automotive 

manufacturing plant. In section 2.4, energy modeling examples were provided to illustrate 

how the proposed systematic modeling approach can be used for energy modeling. An 

evaluation on the degree of model criteria fulfillment of this approach is provided in Table 

2.7. 

 

Table 2.7: Proposed Modeling Approach Evaluation Results 

 

 

 In section 2.4, a typical automotive manufacturing plant with three department – 

body shop, paint shop, and final assembly shop was used as an example to show how the 

top-down method could be used to extract information on 1) what are the most energy 

intensive department and production processes; 2) how is the energy used in these major 

energy consumers; and 3) what could be done for energy conservation based on the model 

built. In the implementation of this approach, the model at high and low levels are built 

based on the available data and minimum inputs. Through the validation test, the model of 

low level is also proved to be accurate enough in predicting the real energy consumption. 

Also, improvement suggestions were made and tested to be effective in the studied case.  

In
fo

rm
a

ti
o

n
 

A
m

o
u

n
t

Fl
ex

ib
ili

ty
 t

o
 

A
p

pl
y 

in
 S

im
ila

r 

Sy
st

em
s

Fe
a

si
b

ili
ty

 t
o

 

C
u

rr
en

t 
P

la
n

ts

Im
pr

o
ve

m
en

t 

Id
en

ti
fi

ca
ti

o
n

A
cc

ur
a

cy

1 2 3 4 5

Proposed Approach 0.9 0.9 0.9 0.9 0.9

Model Criteria

Evaluated Models



85 
 

Comparing with the models in the literature review, this top-down method uses the 

high level models to guide the direction of low level models. The energy models were more 

efficiently applied to capture the main energy consumers. Thus, monetary cost and time 

are more efficiently spent. Besides, this approach takes consideration of the metering and 

data system on-site. Therefore, the models are built based on this foundation, and it benefits 

the later model validation, and improvement implementation.  

 

2.5 Chapter Summary 

In this chapter, the manufacturing system temporal and organizational framework 

were introduced to guide the understanding on various levels and systematic energy models 

(section 2.2.1). Through the literature review of the works done in this area, the automotive 

manufacturing processes were introduced (section 2.2.2). Knowledge gaps were defined 

through the comparison of current available models (section 2.2.3). Based on the 

knowledge gap, we proposed a systematic modeling approach (section 2.3), and use a case 

study from BMW automotive assembly plant to illustrate how the approach can be applied 

to fulfill the knowledge gaps (section 2.4). 

 

2.5.1 Chapter Broader Impact 

The modeling approach can be further used in many other areas. For example, the 

HVAC model built for painting basecoat booth can also be applied to clear coat booth, 

ovens, and buildings in the plant. For another example, the approach of establishing lower 

level models based on higher level analyses and copes with the plant current condition can 
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also be implemented to other departments, such as body shop and assembly shop. Last but 

not the least, the top-down approach guided the modeling to be more efficient and 

conversely will enhance the bottom-up models to be more accurate and robust by providing 

key influential variables to through sensitivity analysis. 

More detail of the broader impacts of is shown in Chapter Five Section 5.1.1. 

 

2.5.2 Chapter Contribution 

This chapter addressed Research Question 1: How best to use the temporal and 

organizational framework (layer concept) of a manufacturing system to drive energy use 

model building at different functional and detail levels. Compared with other available 

models, the proposed approach is improved over competing approaches in terms of the 

amount of information provided, feasibility to implement in current plants, flexibility to be 

applied, ability to identify the improvements, and accuracy (as Table 2.8). 

 

Table 2.8: Model Criteria Comparison 
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In addition, the contributions of this chapter work are also from following aspects. 

1) The work quantified the energy distribution to three main 

departments of automotive assembly plants. It provides essential 

information for decision making. 

2) The work quantified the energy carries’ demand in automotive 

production processes. It provides critical information of energy 

supply. 

3) The work identified the energy intensive consumers in department 

level, and within the paint shop, through the top-down approach. It 

suggested detail improvement implementations, and proved to be 

effective. 

4) This chapter and the later broader impact work in Chapter Five 

proved the energy consumption is sensitive to local weather, 

productivity, and production schedule. 

5) Although this work did not compare the energy consumption among 

the similar plants, the approach of quantifying the distribution and 

identifying the intensive components makes the energy usage more 

comparable. Because the work established models on different 

layers and considered the technology difference, the energy 

consumption comparison is more attractive and fair. 
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 CHAPTER THREE 
FORECASTING 

 

3.1 Research Question Restatement 

Research Question Two: What is the most effective approach to augment 

mathematical forecasting tools for the best applicability in the manufacturing domain? 

 

3.2 Background and Knowledge Gap Introduction 

Given the specific parameters from the equipment and machines, physical models 

can be established to calculate the energy usage within certain period of time. It is also 

possible to forecast the energy demand over the time horizon with appropriate inputs and 

models. However, when a system is as complex as a manufacturing plant, it is impossible 

to build specific models for each and every machine in the system. In other words, it is 

infeasible to use physical models for energy forecasting at the plant level. On the other 

hand, the energy at high level (plant layer) is monitored through meters and recorded in 

time series; therefore, time series analysis is a good approach to deal with plant level energy 

data for the future prediction. 

This section will begin with the research review on time series models including 

the time series analysis mathematical background, and research undertaken to augment the 

mathematical forecasting tool into the energy forecasting area. At the end of this section, 

knowledge gaps of augmenting the mathematical forecasting tool to the manufacturing 

domain will be determined.  
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3.2.1 Mathematical Background 

Basic Statistical Concepts 

Here some basic statistical concepts are listed for the reference of later discussion. 

Take a probability density function f  of a random variable x . The statistical mean 

and variance can be calculated as Equation (3.1) and (3.2) 

Mean 

 

 [ ] ( )E x xf x dx




     (3.1) 

 

Variance 

 

 2 2 2 2 2var( ) [( ) ] ( ) ( ) [ ] [ ]x E x x f x dx E x E x  




         (3.2) 

 

Covariance and correlation are two other important statistical concepts, given as 

Equation (3.3) and (3.4) respectively. They can be calculated through the mean and 

variance values. 

Covariance of x  and y  

 

 cov( , ) ( , ) [( ( ))( ( ))]x y x y E x E x y E y      (3.3) 
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where x  and y  are random variables. 

 

Correlation of x  and y  

 

 ,

cov( , )
( , ) [ 1,1]

var( ) var( )
x y

x y
corr x y

x y
       (3.4) 

 

where x  and y  are random variables. 

The process { }tZ  is said to be white noise, written 

 

 2{ } (0, )tZ WN �   (3.5) 

 

if and only if { }tZ has zero mean, and a covariance function as  

 

 
2 , if 0,

( ) cov( , )
, if 0.0

s t

h
h x x

h





  


  (3.6) 

 

where lag h t s  , t  and s  are time indexes. 
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Time Series Model 

A time series is a set of observations tx , recorded at a specified time t . Each 

observation tx  is a realized value of a certain random variable tX . The time series 

0{ , }tx t T  is a realization of the family of random variables 0{ , }tX t T  [3.1]. Here, typical 

time series models are introduced.  

{ }tX  is a moving-average process of order q (  MA q ), if 

 

 1 1  ,t t t q t qX Z Z Z        (3.7) 

 

where 2{ } ~ (0, )tZ WN   and 1 , …, q  are constants. 

 

{ }tX  is an auto-regressive process of order p ( ( )AR p ), if 

 

 1 1 2 2t t t p t p tX X X X Z           (3.8) 

 

where 2{ } ~ (0, )tZ WN   and 1 , …, p  are constants. 

 

The process { }tX  is said to be an auto-regressive moving average  ,ARMA p q  

process if  tX  is stationary and if for every t , 
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 1 1 1 1t t p t p t t q t qX X X Z Z Z               . (3.9) 

 

It is noticed that ( ), ( ), and ( , )MA q AR p ARMA p q  have no inputs. 

The autoregressive moving average model including exogenous variances, 

ARMAX (�, �, �) is described by: 

 

 
1 1 1

p qr

t i t i k t k t j t j
i k j

X X U Z Z    
  

       . (3.10) 

 

where 2{ } ~ (0, )tZ WN   and s , s  and s  are constants, and tU  are exogenous 

variables. 

For time series, the variance and correlation are calculated within the same data series in 

time lag h , called the auto-covariance ( ( )h  ), and auto-correlation respectively ( ( )h ).  

 

 ( ) cov( , )t h th X X    (3.11) 

 
( )

( )
(0)

h
h





   (3.12) 

 

Stationary and Model Decomposition  

The time series { , }tX t�  is said to be strictly stationary if the joint distribution 

of 
1

( ,... ) '
kt tX X  and 

1
( ,..., ) '

kt h t hX X   are all the same for all positive integers k  and for all
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1,... ,kt t h� . This is very difficult to prove. Instead, time series analysis requires only 

weak stationarity.  

{ }tX  is called weakly stationary, if 1) [ ]tE X   does not depends on time t ; and 

2) cov( , ) ( )t h tX X h   does not depend on t . The stationarity of classes of time series 

models can also be tested through the fitted parameters, such as Equation (3.13) for the 

ARMAX model. The series is stable if the roots of the characteristic equation lie outside 

of the unit circle, where the characteristic equation of ARMAX model can be written as 

 

 1 2
1 2( ) ...p p p

pL L L L L         . (3.13) 

 

Thus, the stationarity of a time series can be checked through the simple data plot 

and later fitted model unit circle test, i.e., the data plot does not show a trend nor obvious 

change in variance, and the roots of the fitted model characteristic equation are larger than 

one.  

Correct selection of suitable mathematical models (or a class of models) for the 

data series is an important step in analyzing a time series. However, many mathematical 

models for time series require the data series to be stationary. When the data series is not 

stationary, there are many methods to make the data be stationary. Data decomposition is 

a method most commonly used. 

Typically, a time series can be written as (3.14). 
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 t t t tX m s Y     (3.14) 

 

where tm  represents the trend, ts  represents the seasonality, and the tY  is new stationary 

series. There are many methods in getting rid of trending and seasonality. Polynomial 

fitting, pattern recognition, and many other techniques can be applied here to quantify the 

trend and seasonality directly. Simply by subtracting them, a new stationary data series can 

be calculated: 

 

 t t t tY X m s    . (3.15) 

 

However, there is more direct way to get a stationary data series. Differencing is one 

method that can be easily applied. In this method, the difference operator   is defined as  

 

 1 (1 )t t t tX X X B X       (3.16) 

 

where B  is the backward shift operator, 

 

 1t tBX X    (3.17) 

 

While the power of   and B  is defined as 
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 ( )j
t t jB X X    (3.18) 

 1( ( ))j j
tX    .  (3.19) 

 

The polynomial of   and B  are manipulated as the polynomial functions of real 

variables. For example 

 

 

2

2

1 2

( )

(1 )(1 )

(1 2 )

2

t

t

t

t

t t t

X

X

B B X

B B X

X X X 



  

  

  

  

  (3.20) 

 

Starting the series with trend,  

 

 t t tX m Y    (3.21) 

 

where trend tm  is any k -degree polynomial 

 

 
0

k
j

t j
j

m a t


   (3.22) 

 

and tY  is stationary with zero mean. 
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The 
thk  degree difference can reduce the original series to a constant and 

stationary series, 

 

 !k k
t k tX k a Y      (3.23) 

 

where ! kk a is the mean value of stationary series k
tX . 

To deal with series with trend and seasonality as Equation (3.14), the difference 

operator d  at lag d  is introduced here. 

 

 (1 )d
d t t t d tX X X B X       (3.24) 

 

For seasonality ts , it is defined  

 

 t t ds s    (3.25) 

 

where d  is the season period length. 

Apply the difference operator d  at lag d  to the series 

 

 ( ) ( ) ( )

( ) ( )

d t d t d t d t

t t d t t d t t d

t t d t t d

X m s Y

m m s s Y Y

m m Y Y

  

 

    

     

   

  (3.26) 
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The new d tX  is a series with only trend component ( )t t dm m  and stationary 

series ( )t t dY Y  . To get the stationary series, further apply the previous differencing 

method as Equation (3.21) to (3.23). 

 

Model Establishment and Parameter Estimation 

Once the stationary data is acquired, different classes of models can be established. 

Trial and error is one way to find the best-fit model. The autocorrelation function 

(ACF) and partial autocorrelation function (PACF) are two additional functions that can 

be used for model suggestions. ACF and PACF can help identify the autocorrelations at 

different time lags (given respectively as Equation (3.27) and (3.28)).  

 

 
( )

( ) ( , )
(0)

x
x t h t

x

h
h corr X X




     (3.27) 

 , ,( ) ( ( ), ( ))t h t h t h t t h th Corr X P X X P X       (3.28) 

 

Here, , ( )t h tP X  is the projection of tX  onto the space spanned by the sub-series 

between the time ( 1)t  and ( 1)t h  . 

Stationary data should have a fast-decaying value in both ACF and PACF. Through 

the ACF and PACF, the data internal correlation can be identified. A dominant ACF 
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indicates an autoregressive model, while a dominant PACF indicates a moving average 

model; large values of ACF and PACF at lag h  indicate the order of potential models.  

Once the model class is selected, parameters of the model can be estimated.  

There are many methods can be used for parameter estimation. Three main 

estimation techniques are introduced here. 

 

Yule-Walker 

For a 
thp  order autoregressive model, the auto-covariance and parameters can be 

written as Equation (3.29). 

 

 

 

1 0 1 2 2 1 1
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    
    
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



   








  (3.29) 

 

In short,  

 

 R r   (3.30) 

 

The auto-covariance 0 1r  , and the R  is square coefficients matrix. R is full-rank 

and symmetric, thus invertible. The parameter vector can be estimated as 
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 1ˆ  R r . (3.31) 

 

Innovation Algorithm 

For a 
thq  order moving average model, define the innovation estimates ˆ ˆ, m m   for 

1,2,..., 1m n  , by the recursion relation 0̂
ˆ(0)  . The parameters can be estimated 

through Equation (3.32) and (3.33). 

 

 
1

1
, , ,

0

ˆ ˆ ˆˆˆ ˆ[ ( ) ], 0,1,..., 1
k

m m k k m m j k k j j
j

v m k v k m   



  



       (3.32) 

 
,

1
2

0

ˆˆ ˆ ˆ(0)
m m j

m

m j
j

   






    (3.33) 

 

Maximum Likelihood 

In this case, the maximum likelihood estimation technique (see Equation (3.34) and 

(3.35)) is used to estimate the parameters for different ARMA models.  

 The Gaussian likelihood for an ARMA process can be written as  

 

 
� 2

2

22
1 10 1

( )1 1
( , , ) exp{ }

2(2 )

n
j j

n
j jn

X X
L

rr r
  

  


  


  (3.34) 

 

Maximum likelihood estimators: 



103 
 

 

 �  2
1 ( , )n S     (3.35) 

 

where ��∅�, ��� = ∑ ��� − ��
� �

�
/����

�
��� , and ∅�, ��  are the values estimated through the 

minimization of �(∅, �) = ln�����(∅, �)� + ��� ∑ ln ����
�
��� , and �� =  � ������ −

����
��

�
� /��.  

Additional estimation techniques can be found in [3.1]. 

 

3.2.2 Augmentation of Time Series Analysis in Energy Forecasting 

Time series analysis and forecasting methods are widely used in many fields, such 

as finance [3.2] and marketing [3.3]. Recently, they have been applied to energy study.  

Researchers from Lebanon studied the electric energy consumption in their country, 

which has had several intermittent power outages and increasing demand during the studied 

period [3.4]. In their study, they established three univariate models, namely, the 

autoregressive (AR) model, autoregressive integrated moving average (ARIMA) model, 

and combination process from AR(1) and highpass filter. According to their test results, 

they claimed the AR(1)/highpass filter model yields the best forecasting results for their 

particular data. Authors used electric energy consumption data from January 1970 to May 

1999. In this period of time, the country went through the civil war (1975-89), several 

economic outbursts, and substantial demand increasing. By comparing the mean absolute 

errors (MEA) and mean square errors (MSE), the author claimed the AR(1)/high-pass was 
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best models among the three classes. However, the modeling processes did not consider 

any other possible influential effects on the electricity usage. Even though the fitted model 

performed well in the selected period of time, it is delicate to the disturbance and 

uncertainty in electricity consumption. Neither the fitted model considers or explain the 

influences from the war or economic outbursts.  

In 1996, R. E. Abdel-Aal and A. Z. Al-Garni used the univariate Box-Jenkins time-

series analysis to model and forecast the domestic electric energy monthly consumption in 

the East Provinces of Saudi Arabia. Though data plotting, ACF and PACF analysis, the 

authors came up with a multiplicative combination of seasonal and non-seasonal 

autoregressive integrated moving average (ARIMA) models (as Equation (3.36) and (3.37)) 

to forecast the sixth year’s energy consumption based on the previous five years data.  

 

 12
1 12(1 )(1 ) t tB B w a      (3.36) 

 12
1 12(1 )(1 )t tw B B a      (3.37) 

 

In Equation (3.36) and (3.37),  and    are the ARIMA parameters, B  is the backward 

shift operator as defined in (3.17), tw  is the observed series, and 2(0, )ta IID � . Authors 

also compared the results with regression and adductive network machine-learning models. 

According to their results, they proved that the ARIMA models require less data, have 

fewer coefficients, and are more accurate [3.5].  



105 
 

Time series with multiple seasonal patterns were discussed in [3.6]. In this paper, 

authors built a state space model and used innovation approach to explicit models for 

multiple seasonal cycles. Authors used the utility demand data, and observed both daily 

and weekly seasonality in the series. Holt-Winters (HW) method was used to decompose 

the data ty  in two four parts – noise t , level t , trend tb  and seasonal component ts . 

 

 1 1t t t t m ty b s         (3.38) 

 

where 2(0, )t IID  , and 

 

 1 1t t t tb        (3.39) 

 1t t tb b     (3.40) 

 t t m ts s      (3.41) 

 

where ,  and     are the smoothing parameters for the level, trend and seasonal terms 

respectively. In genera,l HW method, it can only include one seasonal term. The paper 

observed two seasonal patterns in the data series, and developed HW methods into multi-

seasonal models (for number of seasons/cycles r smaller than the number of sub-cycles 

k ). First of all, a set of dummy variables based on r  shorter cycles was defined 
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1 if time period  occurs when sub-cycle  is in effect;

0 otherwise.                                                                it

t i
x


 


  (3.42) 

 

Let 1 2 3[ , , , , ]'t t t rtx x x x tx  and 1 2 3[ , , , , ]'t t t rts s s s ts . Then general multi-seasonal 

models can be written as 

 

 
11 1 ,

1

r

t t t it i t m t
i

y b x s   


      (3.43) 

 
1,

1

            ( 1, , )
r

it i t m ij jt t
j

s s x i r 


 
   

 
    (3.44) 

 

where noise t , level t , trend tb  are the same as the general HW model. In the paper, the 

authors used examples from utility loads and traffic flows to illustrate how the method can 

be used to include both hourly and daily patterns, and the forecasting results show the 

actual values are within the 80% confidence intervals.  

The previous three papers [3.4 – 3.6] indicate that the time series models can be 

used on energy modeling and forecasting. Though the models may need to be adjusted 

according to the data series (e.g., adjust model to include multiple seasonal cycles as [3.6]), 

time series models are claimed to be more accurate, require smaller data set, and have 

less coefficients/parameters need to be estimated. However, these papers did not 

consider the energy consumption deviation from exogenous factors, nor addressed the 
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problem of over-fitting. Their application to a longer period of time forecasting is 

suspicious. 

The overfitting problem should be avoided to guarantee an accurate forecasting. S. 

Sp. Pappas and his team use the time series approach to model the national electricity 

demand load in Greece [3.7]. They de-seasonalized and fitted and autoregressive moving 

average model by minimizing the Akaike Corrected Information Criterion (AICC) (as 

Equation (3.45)).  

 

 
2( 1)ˆlog

1 2

p q n
AICC R

n p


 
 

  
  (3.45) 

 

where n  is the sample size, ( , )p q  is the model order, and R̂   is a maximum likelihood 

estimation (in many other publications written as L̂ ). AICC gives a penalty to the models 

with higher order, therefore to avoid the problem of overfitting. In this paper the model 

selection through AICC is not only based on the accuracy of data fitting (guaranteed by 

maximum likelihood estimation R̂  ), but also considers the problem of higher order 

model over-fitting through penalty (
2( 1)

1 2

p q n

n p

 

  
). The main contribution of this work 

was 1) it proved the electricity loads in the power market can be modeled by an ARMA 

process, and 2) it addressed the problem of overfitting by comparing model order selection 

criteria under the presence of noise. 
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 Besides the problem of overfitting, sudden changes in the data training series and 

forecasting periods also call attention from researchers. The sudden changes are the descent 

or ascent impulses in data series. Researchers are eager to find the scientific explanations 

to the causes behind these impulses. Once the reasons are found, these influential factors 

are introduced into the time series model as exogenous inputs. 

C. E. Asbury studied how the weather affects the electric demand [3.8]. The heat 

sensitive portion of the load is separated from base load. The author established an energy 

model utilizing a summer weather load model, which takes into account the probability 

variation of weather factors. Historical information was used to establish the system load 

characteristics and process the regression analysis of electric load and weather information. 

This model can be used for intermediate forecasting, ranging from 3 to 10 years, but cannot 

be used for short term prediction in hours or days, because the historical data acquired were 

in low time resolution (monthly data). 

Another challenge is from uncertainty. The power generation from solar and wind 

sources is difficult to predict because of their high uncertainty. Yanting Li and his 

colleagues use the time series to analyze the power output of a photovoltaic system [3.9]. 

The photovoltaic system uses the solar energy as the source energy input, which highly 

depends on the weather condition. Due to the high uncertainty, the authors introduced 

multiple exogenous inputs into the traditional time series model to increase the model 

accuracy. The authors also use the Bayesian information criterion (BIC) to avoid the 

problem of over-fitting. As a result, the ARMA model with exogenous inputs (ARMAX) 

of daily average temperature, precipitation amount, insolation duration and humidity is 
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believed to be the most accurate model compared with many other models. Thus, the 

ARMAX is shown to be efficient in modeling processes with high uncertainties.  

As to short term energy forecasting with exogenous inputs, a Spanish group 

discussed the short-term (one day) electricity load forecasting of Spanish system operator 

[3.10]. In their model, the exogenous inputs like weather information and special days are 

incorporated with the electricity consumption seasonality and trend. The authors assumed 

the model is in additive logarithms (as Equation (3.46)). 

 

 ln t t t t t tC p s CSD CWEA U       (3.46) 

 

where tp  denotes the trend, ts  denotes part of the seasonality, tCSD  as the contribution of 

special days, tCWEA  as the contribution of meteorological variables, and tu  is a stationary 

disturbance that may display some short-term, transitory dynamics. The authors further 

separated the model into two parts – basic consumption tBC  (as Equation (3.47)) and joint 

contribution of special days and weather variables (as Equation (3.50)).  

 

 ln lnt t t t t t tBC C CSD CWEA p s u        (3.47) 

 ( ) ( )ln ( )t tL L BC L a     (3.48) 

 

There are strong trend and weekly seasonal patterns recognized when plotting the data 

series. Thus, authors specify the ( )L  as 7
7 (1 )(1 )L L    . Authors further specified 
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the multiplicative form of Equation (3.47), in to a stationary ARIMA model with annual 

seasonal factor. The Equation (3.47) can be written as Equation (3.49). 

 

 7 365 7 365
7 365 7 7 365( ) ( ) ( ) ln( ) ( ) ( ) ( )t tL L L L BC L L L a         (3.49) 

 

The joint contribution of special days and weather variables in Equation (3.50) can be 

further expressed as Equation (3.50). 

 

 , ,
1 1

( ) ( )
m n

t t i i t j j t
i j

CSD CWEA L SD L WEA 
 

      (3.50) 

 

where 1, 2, ,, , , t t m tSD SD SD  are m  dummy variables that define the different classes of 

special days; 1, 2, ,, , , t t m tWEA WEA WEA  represent n  transformations of the observed 

meteorological variables; and ( ), ( ), 1,..., , and 1,...,i jL L i m j n    are lag polynomials. 

Authors compared the developed method with other two benchmarks, and claimed that the 

proposed time series models were more accurate in terms of mean absolute percentage 

errors (MAPE). 

 

3.2.3 Knowledge Gap Summary  

Though the mathematical background of the time series analysis is well studied, 

and the application of mathematical method to energy usage is developed, its application 
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to manufacturing plant energy modeling is rare. How to apply the time series analysis to 

manufacturing plant energy consumption is a question that has never been studied.  

On the other hand, the manufacturing plant energy consumption has known (e.g., 

scheduled production volume), predictable (e.g., weather condition), and has uncertain 

variables (e.g., unexpected production line breakdown). The question of how to introduce 

the influential factors into time series model, and what influential factors should be 

included are the other two questions worth to be studied.  

Finally, because of the recent attention to the energy consumption on the 

manufacturing plant, as well as the quick development in metering/sensor and data system, 

a tool to deal with a large energy database system is urgent. Time series analysis is deemed 

as the solution to deal with large scale energy database [3.11]. However, how much data is 

required in model training to guarantee an accurate forecasting, while not sacrifice the 

efficiency of parameter estimation, is another question explored in this research work. 

 

3.3 Proposed Approach 

In the previous chapter, energy modeling approach is proposed (as Figure 3.1), and 

the top-down strategy is demonstrated (as the purple elements in Figure 3.1). In this chapter, 

the refined statistical model will be established.  
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Figure 3.1: Flowchart of Energy Modeling in Plant 
(Bottom-Up Strategy Highlighted in Red) 

 

First the statistical model at high or low level models can be established simply 

based on the metering data. However, as mentioned previously, the simple statistical 

models suffer from the problem of inaccuracy. Thus, a more robust model needs to be 

established.  
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Sensitive/key variables from lower level models can be identified through the 

physical models. With these key influential variables, the second step is to introduce them 

into the previous simple statistical models. Depending on the levels of models, sensible 

variables can vary.  

In time series models, the simple statistical models are the traditional ARMA model. 

The key influential variables can be introduced through the exogenous inputs of ARMAX 

model. Therefore, establish refined models with high robustness. This process is illustrated 

as the red elements in Figure 3.1.  

Since the exogenous features are from the physical energy model of low level in 

the plant, they are different from the national electricity, or any other energy consumption, 

and are unique to the manufacturing plants. Sensitivity analysis can be applied to all the 

variables, while only the key features should be included in the final model(s). Acquired 

data can also be separated into larger and smaller sets to help decide the size of training 

data set. 

 

3.4 Case Study 

BMW Spartanburg Automotive Manufacturing plant is the studied case. The 

assembly plant has its own onsite boilers to supply hot water for heating, and chillers to 

supply chilled water for cooling. How the heating and cooling energy demand affects the 

purchased energy supply is illustrated in Figure 2.19. 

In the previous chapter, systematic energy modeling approaches were proposed, 

and a case study was applied to illustrate the top-down modeling strategy of the approach. 
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This section will illustrate how the bottom-up strategy (as Figure 3.2) could be used to 

make the higher level models more robust. 

 

Figure 3.2: Flowchart of Energy Modeling in Studied Case  
(Bottom-Up Strategy Highlighted in Red) 

 

3.4.1 Sensitive Variables 

In the previous chapter, systematic energy modeling approaches were proposed, 

and a case study was applied to illustrate the top-down modeling strategy of the approach. 
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This section is going to illustrate how the bottom-up method could be used to make the 

higher level models more robust. 

 

At the high level, there are three major components of energy – production process, 

technical building service, and building shell. These three major components in the 

manufacturing system are relatively independent but are also somewhat correlated (as 

Figure 3.3). Independent models can be established to represent the energy usage in each 

component. For those plants with large heating processes, the interaction between the 

production processes and building cannot be neglected. To simulate the correlation, 

internal and building heating gain or loss can be added when determine the building status 

in terms of temperature and relative humidity.  

 

 

Figure 3.3: Three Major Components of Energy in Plant 
 

In Chapter Two, Section 0, models of the HVAC system of the painting spray booth 

were established and validated. Further implementation of such HVAC models can be used 

on the plant buildings. However, unlike the paint spray booth, the building is a feedback 
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system that correlates the internal and external gain/loss through its monitored temperature. 

Figure 3.4 is the painting spay booth HVAC feed forward system. In this system, the logic 

process in the air conditioning unit is summarized in the right part of the figure. Air in the 

painting booth is used to remove the residual paint in the air and collect it through the 

downdraft in the scrubber. Unless there is a non-working day, the air will continuously 

blow to guarantee the quality of the paint. The fast air flow rate was designed to balance 

the moisture brought in by the moving vehicle. In a steady state, the internal air temperature 

and humidity is controlled in the tolerance range. In this case, a feedforward system is 

applied. However, in a building environment, conditioning is on and off from time to time, 

considering the heat gain/loss from the internal production lines/cells/equipment and 

external environment. The monitored building temperature and humidity state is the 

interconnection parameter among the air conditioning unit of the technical building service, 

production process and building shell. Monitored building status feed backed to the control 

window decides when and whether the air condition unit should be on or not. The process 

is summarized in Figure 3.5. 
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Figure 3.4: Painting Spray Booth Feedforward System 
 

 

Figure 3.5: Building Feedback System 
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A building HVAC system consumes a great amount of energy every year. It is 

important to have an effective HVAC system for the plant building to guarantee a good 

working environment and protect the weather-sensitive equipment. The studied case has 

air supply houses for plant building temperature control. Unlike the painting spray booth, 

the building HVAC system only controls the air temperature of the building, but not 

humidity.  

Building air supply units use the air from outdoors, and control the temperature 

before inlet into the building. To protect the confidentiality of the studied case, and for the 

convenience of further discussion, the following assumptions were made on 

internal/external gain, air flow rate and building temperature setpoint. Assume there is one 

building in the plant with building set point temperature 22 C , and air flow rate 650,000

3 /m hr  (as Table 3.1).  

 

Table 3.1: Paint Shop Building Original Setpoint 
 Setpoint Unit 

Building Temperature 22 ℃ 

Building Flow Rate 650 1,000��/ℎ� 

 

According to the local weather information, annual energy consumption can be 

calculated through a function related to the local weather, internal gain/loss, external 

gain/loss, setpoint, and air flow rate (as Equation (3.51)). 

 

 
(local weather, internal gain, 

external gain, setpoint, air flow rate)

buildingE f
  (3.51) 
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Figure 3.6: Effect of Constant Temperature Set Point on Annual Building Total Energy 
Consumption 

 

Figure 3.6 shows a convex curve, with the minimum energy consumption of the 

point of 20℃. 

In the previous chapter, the building to booth air supply concept was introduced. 

Figure 3.7 and Figure 3.8 are the figures to illustrate different air flow routes. In our studied 

case, the building to booth concept is used. 

 

Figure 3.7: Separate Air Inlet Flow Route 
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Figure 3.8: Building to Booth Air Flow Route 
 

 

While keep the building ���� = 24℃, the set point of the booth temperature effects 

on the booth energy is more linear – higher booth set point means higher energy demand. 

Considering the global optimum, there are three different scenarios in optimization: 

building temperature is smaller than the minimum booth temperature; building temperature 

is within the booth temperature control window; and, building temperature is larger than 

the maximum booth temperature. First, when the building temperature is below the 

minimum temperature of booth setting, only a chiller is used to condense water from air, 

but the heater must be turned on to heat up all the time. Second, when the building 

temperature is within the constraint of booth temperature window, (i.e., ����_��� ≤ ���� ≤

����_��� is always true) the energy used in supplying air to the booth is only used in 

controlling the humidity – over chill to condense water and reheat to the designed 

temperature. In this case, the energy difference caused in booth temperature difference is 

the saving of the overchill energy to dehumidify and reheat energy after the 

dehumidification. Third, when the building set point is higher than the booth temperature, 
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the chiller is constantly on, being used in both cool down and dehumidification. These three 

scenarios are summarized in Table 3.2. 

 

Table 3.2: Summary of Three Scenarios 

Scenarios 
Chill 

Down 

Heat 

Up 
Over Chill and Reheat Up 

���� ≤ ����_��� - 1 1,0 

����_��� ≤ ���� ≤ ����_��� - - 1,0 

����_��� ≤ ���� 1 - 1,0 
(1-equipment on; 0-equipment off; 1,0-either on or off) 

 

Unlike the local optimization for building or booth only, the global optimum of 

building temperature set point on booth energy consumption is more complex. 

 

 

Figure 3.9: Effect of Building Temperature Set point on Annual Booth Total Energy 
Consumption 

 

Figure 3.9 shows the stages in booth annual energy consumption. Stage 1 has a very 

low building setpoint. During this stage, the atmosphere into the building is condensed, 

which means the building has very low humidity ratio (�), even the condensation is not 
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intentional. And actually, it is so low that during this stage, no dehumidification process is 

needed. The air condition unit of paint booth simply consumes energy to heat the moist air 

to designed booth temperature. A tremendous increase in energy consumption happened 

when temperature increase above the 17℃. This is because during the stage 2, the over 

chill and reheat up is required. And the increase of vapor in dry air will also call for large 

amount of heating energy. And then as the temperature increases, less energy is used for 

heating. While the air is mixed before the air conditioning, if the temperature of mixed air 

is larger than the minimum point of the booth temperature (test 3), no heating is necessary. 

That is the reason of fast energy drop at the point around 19℃. And when the temperature 

of building is equal or above the booth temperature, less inlet air needs to be treated.  

The energy consumption of the combined building and booth air condition is 

coupled together, the temperature with minimum building energy consumption does not 

necessarily lead to minimum combined energy consumption. And the set point for booth 

air to achieve the least energy demand will also vary according to different selection of 

building temperature. For example, if we look at the minimum energy consumption of 

building, Figure 3.9 shows the best result can be reach by setting ���� = 20℃. Then the 

combined energy consumption is 52GWh. However, this combination is 9GWh away from 

the global minimum of 43GWh within the test range. The effect of building and booth 

temperature set points on combined energy consumption is illustrated in the 3D plot of 

Figure 3.10. 
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Figure 3.10: Effect of Building and Booth Temperature Set point on Combined Energy 
Consumption 

 

Out of the purpose of research, we fully explore the set point range 15℃ ≤ ���� ≤

30℃, 21℃ ≤ ���� ≤ 26℃. But in the real case study, energy managers need to select 

optimum operation strategy under the constraint of a feasible control window. 

This example demonstrates how the building and process energy can be related and 

interact with each other. In this example, both booth and building temperature are critical 

in energy consumption at low level. However, when it comes to plant level energy 

consumption, the sensitive variables could be different. More sensitive variable analysis 

were developed in Chapter Five Section 5.1.1. In Chapter Five, it was concluded that the 

sensitive variables from the physical model include the weather information, the 

productivity of the plant, also the week of the days and special occasions, such as the 

maintenance days and national holidays. These manufacturing featured variables should be 

introduced into a high level model. 
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3.4.2 Data 

The time series analysis requires a set of historical data from the past for model 

training.  

 

Data Source 

Because of the nature of the time series model, it requires reliable data inputs from 

history.  

There are four main electrical feeders in the plant; the total electricity consumption 

of the plant is the summation of the four feeders’ energy (as Equation (3.52)).  

 
4

1

( / ) i
i

Electricity kWh Day Feeder


   (3.52) 

Daily data from May 28th, 2013 to July 16th, 2015 were collected. There are 780 

data points in total. Occasional outliers in the data series were identified by the meter 

malfunction. Due to the large number of data points, outliers were directly removed from 

the data series without impairing the series trend and seasonality. In this particular series, 

the outliers were very obvious – extremely larger than the normal electricity consumption. 

Figure 3.11 is the plot of subset of the data series with outliers. The x-axis represents the 

normalized time ( t ) from 1 to 22, where 1 as January 22nd 2014 and 22 as February 12th 

2014. The y-axis represents the electrical energy, which was normalized to protect the 

information of studied plant. It is obvious that there are two outliers at time 13 ( 13t  ) and 

14 ( 14t  ).  
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Figure 3.11: Outlier Example 
 

There are 38 outliers in the collected series. When the sample amount is small, it is 

infeasible to delete the data from the series. However, in this case, the number of outlier is 

relatively small (38 outliers out of 780 sample, <5%). Directly removing the small set of 

outliers will not cause problem. After the outlier removal, there left 742 data points as later 

model raw data (equation (3.53)). 

 { , 1,2, 742}tX t     (3.53) 

This data series was further split into two parts, the first 726 data points for model 

training, and the later 16 data points for model forecasting validation. 

The training data was plotted in Figure 3.14. The training data is not stationary. 

There are obvious increasing trend and seasonality (as Figure 3.12) in the data series. It is 

important to identify the trend and seasonality for later model establishment.  
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Figure 3.12: Annual Seasonality in Observed Data 
 

Figure 3.12 shows the increasing annual trend and winter/summer seasonality. 

Further analyzing of the data series reveals the weekly periodicity. Figure 3.13 is the plot 

to typical four weeks’ daily energy consumption.  
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Figure 3.13: Weekly Seasonality 
 

Figure 3.13 x-axis represent the days 1 as Monday, 2 as Tuesday, and such that. 

The y-axis represents the normalized energy consumption. The figure shows a relatively 

stable energy consumption during the weekdays, and lower energy consumption on 

Saturdays and Sundays.  

 

Size of training dataset  

The amount of available historical data (training data) will affect the model in two 

main ways. 1) Training computational time. More training data will require more 

computation time to estimate the model parameters. 2) Trend and seasonality. The larger 

the data set is, the better for trend and seasonality analysis. Take the example from our 

studied case. Figure 3.14 shows more than two years of data. From this figure, we can 

clearly visualize the increasing trend and annual seasonality in the data (see fitting 
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increasing trend and annual seasonality in Figure 3.12). If we zoom into weeks of data, it 

is also obvious to see the 7 days (weekly) seasonality (as Figure 3.13).  

 

 

Figure 3.14: Historical Data Plot 
 

However, if the training data set is limited to a smaller data set, these features may 

not be so easy to observe. If we select only part of the data (e.g., smaller data set from t=1 

to t=150, in this period of time, the training data set shows a linear decreasing trend. 

Meanwhile, since the data only includes 150 days, it is impossible to get the annual 

seasonality from it. Thus, when training, the model will be fitted with a simple decreasing 

linear trend (as Figure 3.15). The fitted model may also behave well in forecasting the next 

few days’ results. However, if the fitted model is used in the long run (selected model class 

with trained parameters), the results will diverge from the observed data (as Figure 3.16). 
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Figure 3.15: Small Data Set Decreasing Trend 
 

 

Figure 3.16: Diverged Forecasting Results 
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Figure 3.17 is a simplified sketch of time series modeling procedure.  

 

 

Figure 3.17: Time Series Modeling Procedure 
 

These two problems can be solved in the future with the help of the big data system. 

With a big data system, it is expected to have a more efficient data fetching and 

computational time. Updating the stored model parameters frequently by training the 

model with larger data sets and more recent data inputs (i.e., frequently repeat the training 

procedures in Figure 3.17) will make forecasting results more accurate. 

 

3.4.3 Model 

By establishing a time series model, we can reveal the energy demand variation 

phenomenon in the manufacturing plant; therefore, we can better understand the energy 

usage and plan for the next steps’ energy operation and control strategy. Unlike the national 

electricity consumption example reviewed in the previous section, a manufacturing system 

is believed to have more predictable noise factors and working conditions. For example, 

the energy used for the automotive assembly plant is proved to be related to the weather 

condition. Adding the exogenous input of weather conditions into the time series model 

makes the forecasting result more robust and interpretable. On the other hand, the known 
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variables such as national holidays and vehicle production plan (i.e., number of vehicles 

being produced) can also be taken into the model for a better understanding the 

phenomenon in the time series. Exogenous information is discussed in more detail in 

Chapter Five. 

 

Stationary Data Series Preparation 

The observed training data are plotted in Figure 3.12 and seen to be non-stationary. 

Before fitting the model, the data need to be transformed into a stationary series. 

Autocorrelation function (ACF) and partial autocorrelation function (PACF) are two 

functions that help identify the autocorrelation at different time lags (given as Equation 

(3.27) and (3.28)).  

 

 

Figure 3.18: Training Data ACF 
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Figure 3.19: Training Data PACF 
 

Figure 3.18 and Figure 3.19 are the ACF and PACF plot of training data 

respectively. Figure 3.18 shows a slow degradation trend in the ACF value, while a strong 

correlation at time lag 7. This verifies the previous observations on the data trend and 

seasonality. Figure 3.19 also supported the lag 7 seasonality. 

In order to achieve a stationary time series, the trend and seasonality need to be 

removed from the original data series. There are many different techniques that can be 

applied. Here, we assume the data series can be represented as Equation (3.14). Thus the 

new stationary series tY , can be written as Equation (3.15). One of the typical methods 

used to get the trend and seasonality is through the regression model and least square 

estimation.  

 

Linear regression 
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 ˆ
tY t     (3.54) 

 

Quadratic regression 

 

 2
1 2

ˆ
tY t t       (3.55) 

 

thn  order regression 

 

 2
1 2

ˆ n
t nY t t t          (3.56) 

 

where the parameters   and s can be estimated through the least square 

estimation: 

 

 21 ˆmin ( )
2

t tY Y   (3.57) 

 

The original data series trend and seasonality can be represented in terms of 

regression fitting. By subtracting the best fit given through least square estimation, a new 

data series without trend and seasonality can be achieved.  

There are many other approaches to detect and remove the trend and seasonality. 

Differencing is another straightforward method in de-trending and de-seasonality, given as 
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Equation (3.16) – (3.26). To remove the trend and seasonality, the difference as Equation 

(3.58) can be applied to the training data series. 

 

 
365 7 1

365 7(1 )(1 )(1 )

t t

t

Y X

B B B X

   

   
  (3.58) 

 

In Equation (3.58), the first order difference is to get rid of the increasing trend, the 

seventh order difference is to remove the weekly seasonality, while the 365th order 

difference is to remove the annual seasonality. 

No matter what de-trending and de-seasonality methods were use, a new stationary 

data series plot should not show obvious trend and seasonality. After processing, the new 

data series is plotted as Figure 3.20, where has no apparent trend and seasonality. Further 

exam the expectation and covariance values (as Figure 3.21 and Figure 3.22), the new data 

series is qualified as weakly stationary (weakly stationary is defined in Section 0). 
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Figure 3.20: New Data Series tY   

 

 

Figure 3.21: New Data Series tY  Expectation Values 
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Figure 3.22: New Data Series tY  Covariance Values 

 

ACF and PACF can be applied to further exam the stationary data set. The new data 

series ACF and PACF plots are in Figure 3.23 and Figure 3.24 respectively. The fast 

decreasing rate of ACF and PACF suggest there is no obvious trend, but a relatively strong 

correlation at the time lag 7 suggests possible MA(7) or AR(7) model. 
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Figure 3.23: ACF of tY   

 

 

Figure 3.24: PACF of tY   

 

Once the model were selected and the parameters were estimated, the unit circle 

method (as Section 0) can also be used to help identify if the fitted series is stationary.  
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Estimation 

The estimation methods as Section 0 are applied, and results are shown in Table 

3.3.  

 

Model Selection 

Once the models are fitted, different criteria can be used to evaluate the models. 

The Mean Square Error (MSE) can be used to measure the accuracy. Except for accuracy, 

the problem of overfitting can be avoid by the Akaike information criterion (AIC), Akaike 

information corrected criterion (AICC), and Bayesian information criterion (BIC). AIC, 

AICC, and BIC, as well as the MSE can be calculated as: 

 

 
( , )

2 ln , , 2( 1)p q

p q

S
AIC L p q

n

 
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From Equation (3.59) to (3.62), ( )L   is the likelihood of models,  and i j   are the 

parameters for auto-regressive and moving average models respectively,  and p q  are the 

orders of auto-regressive and moving average models respectively, n  denotes the number 

of training data, tX  is the training data, and ˆ
tX  is the estimated data. 

All these four criteria can be used to aid in the model selection. The lower values 

of these criteria, the better accuracy are, and less likely have the problem of overfitting. 

However, the AIC has a tendency to overestimate the p order [3.1]. The AICC and BIC 

has a greater penalty for large-order models; thus these two are more commonly used for 

model selection, AICC is used in this work.  

Both AICC is used as indicators to avoid the problem of overfitting. Table 3.3 

provides the AICC indicators, as well as the MSE of training data and MSE of the next 16 

days’ forecasting. From this table, we can see the ARMA(7, 7) model has the smallest 

AICC, training MSE, and forecasting MSE, so it can be selected as a stationary 

representation of the series. 

 

Table 3.3: ARMA Model Test Results 
 AICC Training MSE Forecasting MSE 

AR(1) 683 1.75 0.88 

AR(7) 651 7.32 2.09 

MA(7) 581 1.71 0.26 

ARMA(7,7) 412 0.97 0.16 
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Figure 3.25: ARMA Model Comparison 
 

Figure 3.25 compares the forecasting results from four ARMA models. As the 

figure shows, ARMA(7, 7) model is obviously better in flowing the tY  data. 

 

Exogenous Inputs 

As stated before, the automotive manufacturing plant has many features that can be 

taken as exogenous inputs into the time series model to make it more robust and 

interpretable. From the previous lower level analysis, the sensible variables are from three 

main aspects – weather, productivity, and working days. These three aspects were further 

developed into the following representations: 

 

  Weather Productivity Working Daysu   (3.63) 
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where u  is the exogenous inputs/sensible variables matrix, while 

 

 avg Max Min Max MinWeather T T T CDD HDD rH rH      (3.64) 

 

where T  represents the temperature, rH  represents the relative humidity, CD D  the 

cooling degree days, HDD  heating degree days; subscript avg  denotes the average value 

in one day, Max  denotes the maximum value in one day, and Min  denotes the minimum 

value in one day.  

 

 1,1 2,1 3,1 ,Productivity [ ]m nV V V V    (3.65) 

 

where V  represents the number of vehicles produced in one day; subscript 

(i, j)={(1, 1)  (2, 1)  (3, 1)  ...  (m, n)} denotes the vehicle model i  from department j . 

 

 Working Days [ ]D NW MT    (3.66) 

 

where D  represents the 
thi  day in a week, NW  represents the non-working/working days 

condition, and MT  represents the maintenance condition. Other variables can also be 

included in the matrixes. Then the exogenous inputs in (3.63) can be written as (3.67). 
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u   (3.67) 

 

where ,i ju  represents the 
thj  exogenous input at time t . 

 

In this studied case, four independent variables ( u ) were selected – CDD ( iCDD ), 

working/nonworking days ( iNWD ), total number of Vehicle Type I made in one day ( iVA ), 

and total number of Vehicle Type II made in one day ( iVB ) (as Equation (3.68)). 

 

 

1 1 1 1

2 2 2 2

t t t t

CDD NWD VA VB

CDD NWD VA VB

CDD NWD VA VB

 
 
 
 
 
 

   
u   (3.68) 

 

ARMAX with different orders were tested (as Equation (3.10)). The model with 

the given exogenous inputs shows improvements in AIC and MSE (as Table 3.4). The 

fitted models has absolute value of auto-regressive parameters smaller than 1, which means 

the unit roots tested to be stationary. Among all the ARMAX model, ARMAX(7, 7, 5) 

performs best with AIC of 21.91 and forecasting MSE of 0.0154. 

 



143 
 

Table 3.4: ARMAX Model Test Results 
 AIC Training MSE Forecasting MSE 

ARMAX(7,7,5) 21.91 0.0068 0.0154 

ARMAX(0,7,5) 21.99 0.0072 0.0327 

ARMAX(7,0,5) 21.92 0.0069 0.0195 

 

Model Comparison 

The models with exogenous inputs and the best fit of ARMA model are shown here 

for comparison. 

 

 

Figure 3.26: Model Forecasting Results Comparison 
 

Figure 3.26 shows how the time series model performs better with exogenous inputs, 

especially in days with a sudden change with assignable cause. ARMAX is much better at 

forecasting 5t  . This is because, during this period of time, the plant begins to produce 

after a long shutdown. The ARMAX model follows the sudden energy increase right after 
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the shutdown ( 5t  ), while it takes ARMA(7, 7) model a longer time (after 11t  ) to 

follow the increase.  

It is obvious that the traditional time series models cannot quickly follow the sudden 

energy consumption change, nor are they more accurate than the ARMAX model. With the 

exogenous inputs from ARMAX model the accuracy is much improved (in terms of MSE) 

and more robust to the predicable and scheduled changes.  

 

Residual Randomness 

The residuals from the ARMAX(7, 7, 5) were also tested.  

 

 

Figure 3.27: Scatterplot of Residuals  
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Figure 3.27 is the scatter plot of residuals. This figure does not show obvious mean 

and variation value change over the orders, i.e., the residual values are independent on 

orders. 

 

Figure 3.28 shows a histogram distribution of the residuals. It indicates the residual 

randomness and distribution about 0. 

 

 

Figure 3.28: Residual Normally Distributed 
 

Further analyses of ACF and PACF of the residuals (as Figure 3.29 and Figure 3.30) 

indicates no correlations among the residuals, i.e., the residuals are random. 
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Figure 3.29: ACF of Residuals 
 

 

Figure 3.30: PACF of Residuals 
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3.5 Chapter Summary 

In this chapter, time series models from the mathematical domain were introduced. 

Manufacturing energy consumption at the lower level was further analyzed. Sensitive 

features from the manufacturing systems were categorized into three classes, and 

introduced into time series models to illustrate the bottom-up modeling approach. 

Traditional time series models and models with exogenous inputs were established 

for an automotive assembly manufacturing plant to illustrate the application of time series 

techniques into the manufacturing plant energy forecasting. Data trend and seasonality 

were detected, and estimations were made to the model parameters. The ARMAX models 

with exogenous inputs show a better accuracy in MSE and are more robust to the sudden 

deviation. 

 

3.5.1 Chapter Broader Impact 

The time series approach for energy consumption can also be applied to other 

similar plants and other resources, such as water consumption. The result of the energy 

consumption forecasting from the ARMAX model can be as one of the inputs for the later 

energy supply system optimization constraints.  

Detailed broader impact can be found in Chapter Five Section 5.1.2. 

 

3.5.2 Chapter Contribution 

The contributions of the research in this chapter are as follows. 
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1) This work recognized the increasing trend, annual, and weekly 

seasonality in the energy consumption of automotive assembly plant. 

2) This work introduced manufacturing featured key variables into the 

traditional time series models, and improved the model accuracy and 

robustness. 

3) The energy demand forecasting results are essential to intelligently 

schedule the production, manage the working conditions, and stabilize 

energy supply. 

4) This work can assist the understanding on how the manufacturing plants 

affect the local energy distribution. 

5) This work is promising to be further applied into real time forecasting 

and its outputs can be used as constraints for on-site energy optimization. 
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 CHAPTER FOUR 
ENERGY SUPPLY OPTIMIZATION 

 

4.1 Research Question Restatement 

Research Question Three: What are the tradeoffs of optimal energy operation 

strategies in a manufacturing plant? 

 

4.2 Background and Knowledge Gap Introduction 

The previous chapters introduced the importance of understanding energy 

consumption within the manufacturing plants, and how to build models to help identify the 

energy consumption and potential conservation opportunities. This chapter is going to 

study the optimization problems in the plant energy supply system, especially for the plants 

with on-site energy conversion and transmission systems. Generally, manufacturing plants 

have demand on many different energy carriers and the on-site energy supply system can 

be operated variously to satisfy the demand. However, “How to operate the system? What 

to optimize – energy, monetary cost, or emission pollutants?” are the questions discussed 

in this chapter. 

This section will begin with the introduction of some basic concepts – energy 

carriers, energy conversion and transmission system, equipment efficiencies, and 

renewable energy methods. Then the literature of the plant energy supply optimization will 

be reviewed. Finally, the knowledge gaps in energy supply optimization of manufacturing 

plants are summarized. 
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4.2.1 Introduction to Energy Carriers  

The energy carrier, also known as secondary energy, is a substance or phenomenon 

that contains energy which can be used for energy transport and further conversion to apply 

to manufacturing production lines. Common energy carriers include electricity, hot water, 

natural gas, and compressed air. In many manufacturing plants, a variety of energy carriers 

are employed to support the complex production system [4.1]. The schematic location for 

the energy carrier is shown in Figure 4.1. 

 

 

Figure 4.1: Manufacturing Plant Energy System 

 

Electricity is one of the most general energy carriers. It is widely used to power 

production equipment (such as motors and pumps) and to maintain the building 

environment (such as lighting and ventilation). Thermal energy is another widely-used 

energy which can be contained in multiple carrier types such as hot water, steam and natural 

gas. Another popular energy carrier is compressed air, which can be easily converted to 

mechanical energy; however, at a higher cost.  
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In later sections of this chapter, we refer the primary energy sources and energy 

carriers from the utility companies as purchased energy; the secondary energy from the 

onsite energy conversion and transmission system as demand energy. 

 

4.2.2 Energy Conversion and Transmission 

Purchasing all demand energy directly from the utility company requires only a 

small capital investment but it is neither cost reasonable, nor pragmatic in the long term. 

To face the variable production conditions and changeable energy prices, plants are 

typically equipped with an onsite (decentralized) energy conversion and transmission 

system. While the purpose of energy transmission is only to deliver the same forms and 

amount to the production lines, conversion involves changes in the energy forms and 

quantities. Typical energy conversion forms include combustion, electricity generation, air 

compression and thermal energy exchange. Representative examples of the energy 

conversion is given here. Combustible energy (such as coal, oil and natural gas) are burned 

in the combustion chamber to generate steam which rotates the turbine connected with an 

electrical generator. In this way, the chemical energy from the primary energy is converted 

to electricity. Traditional fired generation systems release the exhaust gas to the atmosphere; 

however, a co-generation or tri-generation system will recover part of the thermal energy 

through heat exchange to create hot water or steam for later use. In this case, the thermal 

energy is also captured [4.2]. Take other examples, burners convert chemical and thermal 

energy and chillers convert electricity and thermal energy. Usually, a burner/boiler will be 

on-site to supplement hot water/steam for production or building heating [4.3]. Chillers use 
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electricity to generate chilled water, used for equipment and building cooling [4.4]. In the 

case of air compression, air compressors use electricity as energy input to compress air to 

a higher pressure for carrying energy to the shop floor [4.5]. Detailed energy modeling of 

these traditional energy conversion and transmission systems is relatively straightforward 

and well-studied [4.6].  

 

4.2.3 Efficiency and Coefficient of Performance 

Efficiency is one of the key parameters to evaluate the effectiveness of energy 

conversion and transmission. It is usually calculated as the ratio of amount of output energy 

( outE ) to input energy ( inE ):  

 

 /out inE E    (4.1) 

 

The coefficient of performance (COP) is another parameter used to measure the 

effectiveness of energy conversion, especially in cooling processes [4.7]. The formula for 

calculating COP is given as follows: 

 

 

Net Capacity (Watts)

Power Input (Watts)

(Gross Cooling Capacity) -  (Supply Fan Heat)

(Supply Fan) + (Compressor(s)) + (Condenser Fan(s))

net

in

C
COP

P
 



  (4.2) 
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For a heat pump with COP=2.5, it means it can produce two and a half times as 

much heat than the heat equivalent of the watts input. Typically, a vapor compression 

chiller (e.g. centrifugal compression chiller) has a COP of 4.0, and the absorption chiller 

has a COP of 0.5 since it requires a tremendous amount of thermal energy input.  

 

4.2.4 Renewable Energy 

Apart from the geothermal and biomass energy, which have high requirements on 

the techniques and are particular to location, solar and wind generation are two relative 

popular renewable energy sources for the manufacturing plants. However, compared with 

traditional energy supplies, solar and wind are relatively unstable.  

Solar energy is used to provide high temperature as a process heat source, which 

has seen increased use recently [4.8], or electrical power from photovoltaic (PV) solar 

panels, which depends on weather condition and temperature. Researchers use the MPPT 

(maximum power point tracker) to calculate the most power they can obtain from the sun: 

 

 1( , ) (1 )s s TP G T k A G k T         (4.3) 

 

where sA  is the total area of the PV model ( 2m ), c crefT T T    the temperature 

difference between the cell temperature cT  and the reference cell temperature 

 ( ), cref TT C k  is the temperature coefficient, and 1k  is the PV module generation efficiency 
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[4.9]. Solar irradiation G  is often described in stochastic models to solve the problem of 

unstable availability of the solar input. 

Wind power can be captured through coupled wind towers and turbines. The 

available wind generator power outP  can be expressed as a function of wind speed windV : 

 

 

( )
 if 

( )

( )                        if 

0                                  Otherwise.      

k k
wind in

rated in wind ratedk k
in rated

out wind rated rated wind out

V V
P V V V

V V

P V P V V V

 
   


  




  (4.4) 

 

where ratedP  is the rated power of turbine which is design specifics generally given 

by the turbine manufacturers, inV  is the cut-in wind speed, ratedV  is the rated wind speed, 

outV  is the cut-out wind speed, k  is the Weibull shape parameter. Like solar irradiation, 

wind speed is also commonly described by a random variable distribution function [52].  

Landfill gas is another renewable energy used to replace the consumption of natural 

gas. Compared with natural gas, landfill gas has lower methane content and relatively low 

quality. Generally, landfill gas has only half heating content of natural gas. However, 

compared with other renewables, landfill gas is highly reliable and constant. As long as the 

manufacturing plant can find suppliers with landfill gas, and can have a long-term contract 

and by small modifications to their current equipment (usually burners), landfill gas can be 

used directly. 
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4.2.5 Plant Energy Supply Optimization  

Multiple criteria need to be taken into consideration when making decisions about 

sustainability in energy management. Jiangjiang Wang and his colleagues reviewed the 

work done in energy decision making [4.10]. According to their paper, the criteria can 

come from techniques, economy, environment and society. They also pointed out that the 

decision of criteria selection could be difficult, and they came up with the principles to 

follow and elementary methods to apply when choosing the major criteria.  

The weighting method is one of the most popular approaches when dealing with 

multicriteria optimization. Generally, the decision maker will assign preferential weights 

to different normalized criteria and force the multi-objective problem to be a single cost 

function. Equal weights method without prudent knowledge gives the objectives the same 

priority and treated equally, while rank-order weighting drives the ranking of each 

objective hierarchically to determine the priority in optimization. This method does not 

necessarily encompass deeper knowledge of the problem (such as the lexicographic 

optimization), but instead calls for subjective opinions [4.11]. 

 Apart from converting to single objectives, multicriteria programming allows for 

solving the problem with non-dominated points called efficient or Pareto optima [4.11]. 

The Pareto optimal solution is a state where it is impossible to improve one objective 

without sacrificing at least one of the others. In planning distributed energy resources, 

applications of the Pareto optima approach are seen in [4.12 – 4.14] Rodriguez and his 

group organized a review on the multi-objective planning of distributed energy resources; 
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they concluded that this area is promising and will provide guidance to the future 

development of distributed energy sources [4.12]. 

D. Buoro and his team studied an industrial area where different economic sectors 

(e.g., food, plastics, furniture manufacturers, and so on) clustered to share an energy facility 

– a district heating network, small CHP systems, large centralized solar plant and a thermal 

storage [4.13]. In their paper, mixed integer linear programming was used to consider the 

influence from energy cost and carbon dioxide emission caused by the operation. The 

relative weights of the energy and emission minimization objectives were varied to identify 

the Pareto front solutions. This optimization was developed under the condition of steady 

state operation without considering the fluctuation caused by demand variation in different 

scenarios. 

A. Lazzaretto and A. Toffolo took an example to discuss the energy objective in 

terms of exergetic efficiency in a cogeneration plant, economy in the total cost of fuel and 

environment effects through the conversion of pollution damage cost of multiple emission 

pollutants [4.14]. Their research considered the primary zone combustion temperature, 

combustor inlet pressure and pressure drop in the combustion chamber of cogeneration 

system to calculate the emission of nitrogen oxides and carbon monoxide. Single objective 

on each of the cost functions and multicriteria optimization with a Pareto surface was given 

in the paper to illustrate the tradeoff of the optimal solutions. This paper concentrated on 

the thermal systems design, but neglected the multiple energy demands of current 

manufacturing systems. 
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4.2.6 Knowledge Gap Summary 

Besides the traditional straightforward energy supply, modern manufacturers tend 

to have their own on-site distributed energy generation and conversion systems to fulfill 

the variety energy carriers’ demands over the production cycle. However, the questions of 

1) how to efficiently operate on-site energy conversion and transmission systems, 2) how 

to coordinate the on-site system with the primary energy delivery from the utility 

companies, and 3) how to achieve the best results in terms of energy, cost, and emissions, 

have rarely been discussed before. 

 

4.3 Approach 

Although the initial investment and construction is critical, our research focuses on 

the post-processing stage of the energy usage and its associated effects. The main 

assumptions of the below-described approaches are: 

 The supply system is already on-site, and there is no need for further capital 

investment; 

 In order to achieve the optimal energy supplies, there is no need for production 

equipment upgrade; 

 The energy inputs from the suppliers can satisfy the plant demand and can be 

provided in time. 
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4.3.1 Objectives 

It is unlikely the manufacturers can rely on the renewable energy completely, 

purchasing energy from suppliers is most of the cases. Meanwhile the relation between 

environmental impact and the energy consumption is well known. While the objectives of 

energy cost in terms of megawatt hours, U.S. dollars or emissions do not always lead to 

consistent energy management strategy. It is of importance to understand the analysis and 

optimization objectives. 

 

Purchased Energy in MWh 

Energy consumption per unit production is one of the key parameters to evaluate 

the overall efficiency of the energy usage from the manufacturing plant. In 1992, the U.S. 

Environmental Protection Agency (EPA) launched a voluntary program (ENERGY STAR) 

that was intended to assist the public to save money and protect the environment. In this 

program, fifteen industrial foci compared and published the energy use in the same areas 

to encourage the best practice. Therefore, the amount of energy purchased by the plant is 

one of the objectives. In this chapter, we calculate the amount of purchased energy in the 

unit of MWh and the first objective/criterion function can be expressed as: 

 

 1 1
1

m

i m
i

z E J E


     (4.5) 
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where iE  is the amount of purchased energy in MWh; m is the number of types of energy 

inputs to the plant.  

 

Cost – operation cost, purchased energy cost 

The cost of the energy operation comes from two major parts –facility maintenance 

cost [4.15], and operation source energy consumption. While the operation source energy 

consumption is continuously proportional to the use of primary energy input, the 

maintenance cost is mostly periodic according to the scheduling [4.15].  

 

 2
1 1

( )
m n

i j j
i j

z CE k CM
 

      (4.6) 

 

where iCE  is the cost of thi  purchased energy; j is the index of equipment in the energy 

system; n  is the number of pieces of equipment; jk  is the number of maintenance 

resources deployed during the modeling period to the 
thj  equipment; jCM  is the 

maintenance cost of 
thj  equipment. This is expressed in the format of the matrix  

 

 2 1 1m nz J CE J CM       (4.7) 

 

where the ones matrix J  is used for summation. CE  and CM  are the matrices with 

elements of iCE  and iCF . 
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Emission – CO2, NOX and SO2 

Emission related to energy usage can be quantified through the emission index (also 

known as the environmental coefficient) with units of kilograms per megawatt hour. For 

example, the three major emissions – sulfur dioxide, nitrogen oxides and carbon dioxide 

from electricity in South Carolina, USA can be found in [4.16]. The pollutant effect of the 

emission can be used as one environment objective. Sulfur dioxide is the major component 

in the formation of acid rain. Nitrogen oxides can contribute to acidification and 

eutrophication of waters and soils; and when it exits the atmosphere, could be the reason 

of particle matter and ground-level ozone formation. Both sulfur dioxide and nitrogen 

oxide can cause health problems in the respiration system. Carbon dioxide is well known 

for its greenhouse gas effect, and series of impacts related to global warming. The objective 

in this case could be formulated as 

 

 3z EF E    (4.8) 

 

where EF  is the emission vector for each of the emission. For example, in the latter case 

where the plant purchases landfill gas, natural gas and electricity. Emission objective 3z  

can be constructed as  
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  

 . (4.9) 

 

While considering several pollutants together, it is difficult to compare the impact 

each of them could have on the environment. Simply put, the harmfulness from one gram 

of carbon dioxide is not equal to the harmfulness of one gram of nitrogen oxide. Thus, 

straightforward summation of these parameters is not an ideal way to set one objective. In 

paper [4.17, 4.18], the concept of pollution damage cost was introduced. They took the 

emission from a district heat network and calculate the spending on heat pumps, 

cogeneration and/or gas furnace conversion. The monetary cost per kilogram of nitrogen 

oxides and carbon dioxide were calculate based on their system specifics. The revised third 

objective function can be expressed as: 

 

 3 'z CEM EF E     (4.10) 

 

where ��� is the pollution damage cost matrix [$/kg].  

Once the environmental impact is expressed in terms of monetary cost, the third 

objective is combined with the second objective to formulate the criterion of combined 

operational and environmental cost.  
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 23 1 1m nz J CE J CM CEM EF E          (4.11) 

 

However, the absolute values of pollution damage cost are difficult to stipulate. The 

reasons are complex, including but not limited to the lack of data on pollution damages, 

and inability to precisely measure the emissions [4.19]. For example, carbon dioxide (CO2) 

is the most famous emission ostensibly causing global warming. It is also the emission gas 

correlated most closely with monetary cost in many countries. The amount that needs to be 

paid to emit CO2 into atmosphere is called the Carbon Price. Basically, the carbon price is 

related the greenhouse gas CO2 with the market. The largest carbon market is the European 

Union Emission Trading Scheme (EU ETS), in terms of market value and trading volume 

[4.20]. EU ETS puts limit on overall emissions from high-emitting industry sectors. Within 

the limit, companies can buy and sell emission allowances as needed. Therefore, the “cap-

and-trade” approach gives companies the flexibility to cut their emissions in the most cost-

effective way. EU ETS covers more than 11,000 power stations and manufacturing plants. 

In total, around 45% of overall EU emissions are limited by EU ETS [4.21]. The European 

Climate Exchange (ECX) is the largest carbon exchange market within the EU ETS, since 

its daily carbon trading volume generally accounts for over 80% of the total carbon trading 

volume of EU ETS [4.22]. It is reported that the variation of the carbon price is caused by 

institutional decisions; energy prices and weather events; macroeconomic and financial 

market shocks [4.23]. 
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Multicriteria objective function 

As long as the objectives in the optimization problems are more than one, the 

problem is called multicriteria objective optimization. In this case, three objectives are 

concurrently minimized: 

 

 1 2 3min( , , )z z z   (4.12) 

 

There are many ways to deal with the different objectives. The simplest is to assign 

equal weights to each of the normalized objective and sum them to be one objective. In this 

way, the outcome will treat each of the objective as having the same preference. 

 

 1 1 2 2 3 3Z z z z       (4.13) 

 

Programmers can also change the weights based on decision makers’ preference on 

the objectives, or give multiple options to rank different priorities to the problem.  

 

4.3.2 Constraint 

The constraints of the optimization problem come from three aspects – equipment 

capacity, utility supply and production demand. 
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Equipment 

The existing facility will have a constant number of equipment available, and the 

capacity of each piece of equipment is fixed in certain range. During the optimization, 

equipment capacity needs to be set to limit the feasible solutions. For example, if the 

maximum capacity of the burner is 100MWh per day and the plant owns two burners, the 

constraints for the burner should be set as 200 MWh per day.  

 

Supply 

Energy suppliers and the stability of renewable energy resources need to be 

carefully considered in an energy system. An optimal solution outside of the supply 

capacity is infeasible. For example, in a cloudy day, the energy outputs of solar panels 

cannot reach maximum due to the shortage of supply solar energy. Constraints should be 

set according to the availability of supply energy. 

 

Demand 

The energy demand from the manufacturing production line is one of the most 

important constraints needing to be satisfied. The energy demand is not constant; it depends 

on many factors, such as the production schedule, productivity, weather conditions, process 

line maintenance, and mixture ratios of the products. For example, in extreme days like 

very cold winter days, the energy demand on the hot water and electricity will be 

tremendously high. Optimization to satisfy these extremes is crucial in guaranteeing the 

throughput. It will be beneficial to have an energy demand forecasting model in order to 
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have a single day or single week prediction on the coming energy demand. Therefore, the 

output of forecasting results in Chapter Three can be the one of the inputs in the 

optimization. In that case, a dynamic optimization can be developed in everyday operations 

to reach the objectives.  

With the on-site energy generation, conversion and transmission system, the energy 

demand can be calculated by the amount of purchased energy through the equipment 

specifics.  

 

 ,i i h hE x ED    (4.14) 

 

where h  is the index of energy from production line demand; hED  is amount of 

thh  the energy demand; ,i hx  is the facility operational parameter to convert energy demand 

from manufacturing processes to the plant purchased energy.  

 

4.4 Case Study 

In this section, the authors use the programming methods developed in section 3 to 

study an automotive assembly manufacturing system and illustrate how the approach is 

applied.  
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4.4.1 Case Study Introduction 

The automotive assembly manufacturing plant production lines can be separated 

into three main departments – body shop, paint shop and final assembly shop. The body 

shop is mainly responsible for the vehicle body welding. Stamped panels and parts 

produced on site, or from an external supplier will be welded together to a vehicle body-

in-white. In the body shop, energy is used to move the parts from one location to another, 

and electricity and compressed air will be used in the welding process. The vehicle body-

in-white from the body shop will be transported to the paint shop.  

The paint shop is reported to be the most energy intensive department in the plant 

[4.24]. The painting and sealing process will be deployed in this department to make the 

vehicle corrosion resistant and protected. The vehicle body will go through several painting 

and sealing process followed by oven curing. A pretreatment tank with warm phosphate 

solution, booth with controlled temperature and humidity, and oven with controlled air 

flow temperature will call for large amounts of energy. Hot water, chilled water, natural 

gas, and electricity are typically required in this department to support the processes.  

Final assembly is the department which assembles the vehicle components and 

powertrain to the painted body. This department also needs energy carriers such as 

electricity and compressed air. Besides the energy used on the process lines, energy 

demand in the plant is also used on building services, mainly lighting, heating, ventilation 

and air conditioning [4.25]. 

In summary, the energy carriers’ demand includes: electricity, natural gas, hot 

water chilled water and compressed air. The studied manufacturing plant purchases three 
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energy carries from the suppliers – electricity, natural gas and landfill gas. Thus, the onsite 

energy conversion and transmission should be modeled as a three-input, five-output system 

as represented in Figure 4.2. 

 

 

Figure 4.2: On-site Energy Conversion and Transmission System 

 

The cluster of onsite energy conversion and transmission systems is referred to in 

this chapter as the Energy Center, and represented in Figure 4.3. 

 

 

Figure 4.3: Energy Center Input-Output Schema 
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This figure is a simplification diagram of the case study, which illustrates a typical 

multiple input multiple output (MIMO) energy system. Electricity, natural gas and landfill 

gas are used as three energy source inputs to the Energy Center. Electricity, natural gas, 

hot water, chilled water and compressed air are the five outputs of the Energy Center. 

The cogeneration system, which converts burnable fuel to both electricity and heat, 

is believed to have an average payback period of 2 – 5 years [4.26, 4.27]. In general, the 

combined heat and power (CHP) cogeneration system improves the energy efficiency over 

separate systems from traditionally 30% to an encouraging 70% (as Figure 4.4).  

 

 

Figure 4.4: Cogeneration System Sketch 
 

The cogeneration system can use many different energy sources, such as 

combustion gas, gasoline, coal, or biofuel, and depends on the equipment specifics; in our 

case the energy source is landfill gas, and it generates two forms of energy – electricity and 

hot water. Hot water can also be produced from boilers to supplement the combustion gas 

chemical energy to thermal energy. In this case, landfill gas and/or natural gas are used in 

boilers. The hot water could also be circulated back from energy outputs to the absorption 

chiller for chilled water production. The introduction of the absorption chiller to 
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cogeneration, is making the whole system even more efficient [4.28, 4.29]. In some 

publications, the incorporate of the absorption chiller to the CHP is called tri-generation 

[4.29]. 

Air compressors and centrifugal chillers transform the electricity into compressed 

air and chilled water respectively. From here we can define the energy conversion as a 

process of changing energy forms and qualities; energy pass-through, on the other hand is 

defined as a process of delivery energy in the same form and quality. Case study energy 

system includes both energy conversion and pass-through.  

In the processes of energy conversion and pass-through, auxiliary power is 

unavoidable. For example, landfill gas from supplier needs to be pretreated before send to 

the combustion chamber of the cogeneration equipment. And during the process of 

pretreatment, such as gas filtration to eliminate the particle matter, electricity is used. In 

our model, the auxiliary procedures like the gas pretreatment of the cogeneration system 

are not discussed as an individual process. Instead, it is taken as a part of the cogeneration. 

And the electricity usage caused by the auxiliary processes is calculated as the conversion 

loss/inefficiency of the Energy Center. 

 

4.4.2 Model Establishment 

The Energy Center processes energy from suppliers and delivers the desired forms 

and amount of energy to the production line. The optimization discussed in this section 

focuses on the energy processed in the Energy Center.  
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Optimization Criteria 

Three energy inputs from the suppliers need to be purchased. Here we assign an 

index to each of the three inputs as Table 4.1. 

 

Table 4.1: Purchased Energy Indicator Assignment 

Energy Inputs Index i  

Electricity: 1 

Natural Gas: 2 

Landfill Gas: 3 

 

In this case m  number of indexes 3 . The energy purchase vector is:  

 

 
1

2

3

MWh Purchased Electricity

MWh Purchased Natural Gas

MWh Purchased Landfill Gas

E

E E

E

   
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   
      

  (4.15) 

 

Thus Equation (4.5) can be written as: 
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  (4.16) 
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To simplify the problem, here we only consider the cost from the energy purchased, 

excluding the maintenance and degradation fees. Equation (4.6) in the previous section can 

be written as: 

 

 
3

2 1
1

i m
i

z CE J CE


     (4.17) 

 

where the unit price of the three purchased energy used is represented in the price vector 

2F : 
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  

  (4.18) 

 

2F  has the unit of US Dollars per megawatt hour.  

The elements in the vector CE  – cost of energy, and the second objective ( 2z ) 

function can be expressed as follows:  

 

 2 2( )Tz F E    (4.19) 

 

In terms of the environmental objective. The purchased electricity and natural gas 

can be converted to environmental emissions based on how the electricity was generated 
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and natural gas composition respectively. According to the US Environmental Information 

Administration, in year 2012, South Carolina has the electricity emission profile as shown 

in Table 4.2. 

 

Table 4.2: 2012 South Carolina Electricity Emission Profile [4.16] 

Emissions Value [lbs/MWh] 

Sulfur Dioxide 1.5 

Nitrogen Oxide 0.5 

Carbon Dioxide 778 

 

Natural gas has a range for the emission profile according to the boilers used and 

the quality of natural gas. These values are given in Table 4.3. 

 

Table 4.3: Natural Gas Emission Profile [4.30] 

Emissions 
Volumetric Mass 

[lbs/106scf]a 
Power-Normalized Mass 

[lbs/MWh] 

Sulfur Dioxide 0.6b 0.0020 

Nitrogen Oxide 32 – 100c 0.11 – 0.33 

Carbon Dioxide 120,000d 401.39 
a The value is based on an average natural gas high heating value of 1,020 Btu/scf. 
b Based on 100% conversion of fuel sulfur to SO2, with the natural gas sulfur 
content of 2,000 grains/106scf. 
c Based on small boilers with <100MMBtu/hr heat input. The value range is caused 
by the NOx control condition: 100 is uncontrolled, 32 is low NOx burner with flue 
gas recirculation.  
d Based on 100% carbon converted to CO2.  
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The emission caused by the landfill gas used is worthy of discussion. The main 

components in the landfill gas are methane and carbon dioxide. Additionally, there are 

many unstable compositions of both organic and inorganic compounds. The combustion of 

landfill gas will release greenhouse gases and other emissions into the atmosphere. 

However, the landfill gas is produced from landfill, without centralized collection and 

pretreatment for the later use, it would be discharged to the environment directly [4.31]. 

On the other hand, due to the consumption of landfill gas, the manufacturing plant does not 

need to purchase more electricity and natural gas, while the consumption of both energy 

inputs can cause environmental problem. In this case, we should considere landfill gas as 

a clean energy source which helps to prevent emissions by using less electricity and natural 

gas. Thus, when dealing with the landfill gas emissions, we will use negative values that 

represent the emission reduction by replacing the electricity and natural gas (as Table 4.4).  

 

Table 4.4: Landfill Gas Emission Profile 

Emissions 
Through Cogeneratione 

Value [lbs/MWh] 
Through Boilerf 

Value [lbs/MWh] 

Sulfur Dioxide -0.45 -0.0020 

Nitrogen Oxide (-0.21) – (-0.33) (-0.11) – (-0.33) 

Carbon Dioxide -447.47 -401.39 
e Based on 30% efficiency in electricity, 40% efficiency in hot water, and 75% 

efficiency in boilers. 
f Based on the same efficiency in boilers for both gases.  
 

If one of the three major pollutants is used as an objective, the third single objective 

function can be written as: 
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 3 3( )Tz F E    (4.20) 

 

3F  could be the vector with any of the emission pollutants. For example, if choose 

carbon dioxide as the objective emission, 3

778

401

447

F

 
 
 
  

 when landfill gas is only used in 

cogeneration system, with unit of pound per megawatt hour. 3F  can also be any set of 

combined emission factors to represent the degree of harm from each energy to the 

environment. For example, in paper [4.32], the authors use the unification of damage cost 

to combine the factors from different emission pollutants. However, in this case study, 

emissions from different pollutants are not combined because of the big gaps among the 

countries and years.  

 

Efficiency 

Equipment efficiencies and energy conversion ratios are represented as an energy-

equipment coefficient and all together denoted in the 6 8  matrix Coeff  as shown below. 

 

 ,{ , 1,2,...,6; 1,2,...,8}i jCoeff c i j     (4.21) 
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Consider ,i jc  to represent the coefficient of thi  energy carriers with 
thj  equipment. 

For example, the hot water produced through CHP has the efficiency of 40%. Here, i  

refers to the hot water generated, j  refers to the CHP system, and , 0.4i jc   in the matrix. 

The matrix can be written as Table 4.5. 

 

Table 4.5: Coeff matrix 

 

For a specific energy supply system, the coefficient matrix can be obtained from 

the equipment manual or energy monitoring system. 

 

Constraints 

Energy supplied from the Energy Center to the production line can be expressed as: 

 

 [ ]S TF Coeff X B X       (4.22) 
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where TF  is 5 6  transfer matrix;  6 8Coeff    Coefficient matrix;  8 1X    

Equipment/Energy Center consumption vector (it is processed as the form of energy, and 

in unit of MWh), and B  is 5 8  inner loop matrix that represents the amount of energy 

cycling inside of the Energy Center.  

Demand should be no more than the output of the Energy Center, i.e.. D S  where 

 5 1D    Energy demand vector. 

Assume the optimization is developed on a daily basis. The average energy demand 

distribution to the three departments is shown in Figure 2.23. In order to protect the 

confidentiality of operational data at the OEM, a nominal representative value of daily 

energy demand DE  from the major plant was chosen, and all energy data can be normalized 

to this value. 

 

Aside from major plant demand, constraints also come from capacities. Constraints 

from equipment lower bounds and upper bounds can be defined through the matrix 

:X LB X UB   as shown in Table 4.6. 
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Table 4.6: Lower and Upper Bound 

[MWh] Lower Bound Upper Bound 

Cogeneration 0 0.70�� 

Boiler (LFG) 0 0.70�� 

Boiler (NG) 0 0.25�� 

Absorption Chiller 0 0.02�� 

Centrifugal Chiller 0 0.04�� 

Air Compressor 0 0.04�� 

Pass Through Gas 0 ∞ 

Pass Through Electricity 0.03�� ∞ 

 

The lower bound is assumed as the situation when the plant is completely shut down 

and the only electricity consumption is to make sure the plant and its facilities are protected 

from damage. The upper bound is assumed as the equipment and/or supply capacity.  

In addition, the transfer function T  is used to transform the energy consumed by 

equipment to energy purchased from suppliers, as 
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 (4.23) 

3 8T    Transfer matrix (transfer equipment/Energy Center consumption vector 

X  to E ); 

3 8E    Purchased Energy vector.  

 

4.4.3 Results 

Table 4.7 summarizes the optimization result for each single objective. 

 

Table 4.7: Optimization Results 

                Result 
Objective 

Supply 
[MWh] 

Cost 
[$] 

Emission 
[kg CO2] 

Energy � 1.35� 45.38�� 

Economy 1.17� � −�� 

Environment 1.17� � −�� 

(�: energy in MWh; �: cost in US Dollars; ��: emission in kg CO2.) 

 

Table 4.7 gives out the optimization results on three objectives and also the 

resultant energy supply, monetary cost and carbon dioxide emission while operating the 
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Energy Center under each objective strategy. The minimum amount of energy is used when 

the objective is set to be MWh of energy; however, the cost to purchase the minimum 

amount of energy is 35% more than the result of monetary cost oriented optimization, while 

the emission is about 45.38 times of the environment oriented optimization. Likewise, the 

economy and environment oriented optimization gives out results with the minimum US 

Dollar cost and kg of CO2 released, but has a higher result on the amount of supply energy 

in terms of megawatt hours. It proves the conflict among different objectives, and 

quantifies the differences.  

It is worth paying attention to the results of the emission objective. In this 

automotive assembly plant, landfill gas is used as a renewable energy to generate hot water 

and electricity. Without the consumption of landfill gas, more electricity and natural gas 

will be used. In this consideration, the emission factor of landfill gas was set to be negative. 

Thus extra constraints need to be set to avoid the problem of misapplication the landfill gas 

to decrease plant emission. In the results of environmental emission as the objective, the 

negative result of emission will be achieved, since the system will automatically use more 

landfill gas over the electricity directly from the grid. 

 

Energy Demand 

A good energy demand forecasting for the next few steps (usually in days) are 

critical in energy operation strategy on the supply side. The traditional energy demand 

forecasting techniques are based only on the historical records and cannot typically satisfy 

the accuracy requirement. An inaccurate forecasting of the energy demand can lead to 
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waste in energy supply operations or supply failures, which can result in tremendous 

monetary loss. Energy demand of the manufacturing plant depends on many variables; 

some key inputs are the production rate, production schedule, working shifts, maintenance, 

and weather conditions [4.33]. Incorporating this extra knowledge into the traditional time 

series model can make the forecasting more robust and reliable. A time series model is 

proposed in Chapter Three to predict the energy demand for a given time horizon. By 

combining the energy demand forecasting and energy supply optimization, manufacturers 

can create a more informed strategy for the production scheduling and realize potentially 

high energy savings, as well as to monetary cost and carbon dioxide emission.  

The original data used for demand is the plant running in a 2 shift working load 

(results shown in Table 4.7). It is common for the manufacturer to reduce the shifts for 

holidays and have fewer production planned days. However, the energy demand for half 

production does not usually equate to half the expected workload. If we assume the energy 

used in one-shift working days use about 60% of energy as a full production day, and the 

energy forms distribution keeps same breakdown as indicated in Figure 2.23. 

 

Table 4.8: Effects of Demand on Energy Supply 

[in E�] Energy Economy Environment 

Supply 2 Shifts 1 Shift 2 Shifts 1 Shift 2 Shifts 1 Shift 

Electricity 44% 26% 23% 5% 23% 5% 

Natural Gas 61% 37% 30% 18% 30% 18% 

Landfill Gas 0% 0% 70% 70% 70% 70% 
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Table 4.8 shows the percentages of each energy form in terms of daily energy 

demand �� (2 shifts) for normal production days. It compares the energy supply in two 

working load scenarios.  

When the objective is to minimize the amount of purchased energy per produced 

vehicle, the optimization results will abandon the cheap, clean landfill gas and choose to 

use electricity and natural gas directly. While the optimization objective is either economy 

or environment, except for natural gas, electricity and landfill gas do not reduce 

proportionally as the demand. They use the maximum capacity of the Energy Center to 

achieve the different goals. For example, when the optimization objective is the 

environment protection, the result show the landfill gas purchase amount is the same as the 

2-shift working load which lead to the small amount of electricity demand from the grid. 

Except for the working load change, there are many other reasons influencing the 

energy demand, such as the production rate (number of vehicles produced per day), weather 

condition (seasonal changes and extreme weather days), and implementation of energy 

intensive or energy saving equipment. The model can be easily applied to test energy 

operation strategies according to the different reasons that cause the demand change, by 

changing the demand matrix accordingly.  

 

Economy 

Economy is crucial to the manufacturing plant. Lower monetary spending on the 

energy of the plant results in a more profitable product. However, the cost of energy is 
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affected by both higher and lower level – purchase energy unit price from the suppliers and 

energy demand from the production line. 

The industrial average retail price for natural gas from Jan-2001 to Jan-2015 has 

ranged from $3.02 to $13.06 per thousand cubic feet; the heat content of NG is about 1030 

BTU/ft3. The industrial average retail price for electricity from Jan-2001 to Jan-2015 has 

ranged from 4.71 to 7.72 cents/kWh (Table 4.9).  

 

Table 4.9: Energy Unit Price Range 

USD/MWh Min Max 

Natural Gas 10.0 43.3 

Electricity 47.1 77.2 

 

Table 4.9 shows the energy unit price range for both natural gas and electricity. 

Assume the landfill gas is the half price of natural gas.  

The effect of unit price of landfill gas on the operation strategies is studied. 

 

Figure 4.5: Effect of Landfill Gas Unit Price on Purchased Energy 
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A continuous change in the landfill gas unit price show the operation strategies 

change. From Figure 4.5, we can partition the landfill gas equation into three parts:  

 

 

LFG Price < 18 USD/MWh

18 USD/MWh  LFG Price  21 USD/MWh

21 USD/MWh < LFG Price




 



  (4.24) 

 

In the first partition, when the landfill gas is inexpensive, the optimization results 

in running the full capacity of cogeneration system, even when the produced hot water is 

greater than the demand from the production line. In this way the total cost is still 

minimized, because the cogeneration system produces the maximum amount of electricity. 

In the second partition, even though the price of landfill gas increases, it still shows 

a high running rate. This is because using the extra hot water produced from the 

cogeneration system to run the absorption chiller is still less expensive than the cost of 

running centrifugal chiller by using grid power.  

In the third partition, where the landfill gas is higher than 21 USD per MWh, the 

cogeneration only runs to give out enough hot water for the production line and the 

corresponding electricity. This is still less expensive than running the boiler and purchasing 

electricity from the grid.  

Further examination also indicates that only when the unit price of landfill gas is 

larger than 33USD/MWh, operators should refrain from using the cogeneration system 

completely and choose to directly purchase grid power and natural gas instead. And it is 
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worth noting that the optimization result is highly related to the unit prices of the different 

purchased energies and also the efficient in energy conversion and transmission. In some 

cases, when the efficiencies of the equipment degrade as the time passes, the operators 

need to verify if the previous operation strategy still results in the desired state.  

To better understand the effect from the purchased energy unit prices, analyses of 

electricity and landfill gas prices and how they together will affect the optimal results are 

given below (Figure 4.6, Figure 4.7 and Figure 4.8). 
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Figure 4.6: Combined Effect of Electricity 
and Landfill Gas Unit Price on Purchased 

Energy 

Figure 4.7:Combined Effect of Electricity 
and Landfill Gas Unit Price on 

Cogeneration Operation 

 

Figure 4.8: Combined Effect of Electricity and Landfill Gas Unit Price on Overall 
Energy Cost 

 

Obviously the overall energy cost will increase along with the unit price of landfill 

gas and electricity. It worth noting that the usage of electricity and landfill gas changed 
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over the price. The reasons of shift from one energy to another is the same as explained in 

Figure 4.5.  

 

Environment 

The environmental emission is measured as the weight of the carbon dioxide in this 

section. The optimization results can be achieved through the single objective optimization 

as demonstrated in the Energy Demand and Economy. It worth to pay attention that the 

emission lead optimization also shows a discrete operation strategy as the adjustment of 

the emission parameters to each of the purchased energy. In calculating different 

environmental influences, changing the coefficient vector of �. 

 

Multicriteria Optimization (MOP) 

The decision makers will have multiple objectives in the real world energy 

management. Optimum operation strategies for the minimum energy consumption in terms 

of MWh do not necessary lead to the optimal result of energy cost. Multicriteria 

optimization is introduced in this section to illustrate how different objectives can be 

involved according to the priority of energy managers.  

 

 1 2 3min( , , )z z z   (4.25) 

 

Among many MOP techniques, weighted sum scalarization technique is one widely 

used: 
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 min( )Z   (4.26) 

 

where 1 1 2 2 3 3Z z z z     , weights 1 2 3( , , )    are assigned to each objective as the 

priority in optimization.  

Besides the weighted sum optimization, the  -constraint method is another one 

commonly used. 

 min( )kz   (4.27) 

 

Subject to ' , ' 1,2,...,     'k kz k p k k   , where p � . In this method, the 

energy managers can optimize the target objective to be minimal and control the other 

parameters low. For example, the �-constraint method can be used to minimize the cost, 

while control the energy consumption and emission within the certain thresholds.  

A plot of the objectives in both decision and criteria space is given below. In the 

decision space, the objectives are plotted in the vertical axis and the constraint is in the 

horizontal axis; while in the criteria space, one objective is plot in the vertical axis and the 

other is plotted in the horizontal axis. This method gives a better understanding on the 

relation between the constraint and objectives, and between two different objectives. It is 

only feasible when the objective is limited to two. Here, the objective of energy in MWh 

and cost in USD are selected for demonstration.  
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Figure 4.9: Objectives in Decision Space 
 

By subtracting the mean values of two objectives, the decision space multicriteria 

optimization problem is shown as Figure 4.9. In the constraint range of X1, all solutions 

are Pareto efficient solutions for this bi-objective problem. To better understand the 

relationship between the two objectives, the criteria outcome space is constructed in Figure 

4.10.  



190 
 

 

Figure 4.10: Objectives in Criteria Space 
 

In such a case with an infinite number of efficient points, the decision makers’ 

preference can be applied to choose a preferred solution.  

Normalizing the �’s and setting different weights to each of the objectives, the 

result below is achieved: 

Table 4.10: Multi-objective Optimization Results 

 �� �� �� �� �� �� 

1 1 0 0 1.48 E  2.04 E  0 E  

2 0 1 0 0.79 E  E  2.25 E  

3 0 0 1 0.79 E  E  2.25 E  

7 1/3 1/3 1/3 0.79 E  E  2.25 E  

8 8/10 1/10 1/10 0.85 E  E  2.08 E  

( 1 2 3,  ,  and E E E  are normalized to value E  in MWh.) 
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Table 4.10 gives the multi-objective optimization by giving sets of weights to each 

of the three objectives. It is interesting to see the discrete change in the result of purchased 

energy. Energy managers can select different operation strategies based on their various 

priorities of energy, cost and environment.  

 

4.5 Chapter Summary 

In this chapter, related studies on energy conversion, management, simulation, and 

optimization are summarized. Modeling approaches of plant on-site energy conversion and 

transmission system were given. A case study from an automotive assembly plant with a 

relatively complex three energy inputs and five energy outputs system was built to study 

the energy supply system. Both single objective and multi-objective optimizations were 

described in this chapter. Optimization of energy, economy and environment were 

analyzed.  

4.5.1 Chapter Broader Impact 

The research in this chapter gave example from an automotive manufacturing plants. 

The approach exemplified can be repeated to study many other systems with different 

equipment and facilities. The objectives selected in the studied case can be easily changed 

to other criteria and used to optimize the operation accordingly. 

Detailed broader impact can be found in Chapter Five Section 5.1.3. 

 

4.5.2 Chapter Contribution 

The contributions of the research in this chapter is summarized as below. 
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1) Renewable energy is critical in affecting the operation. The renewable 

energy used can be taken as the traditional energy (e.g., electricity and 

natural gas) conservation in terms of environmental emissions.  

2) The operation strategies according to different optimization criteria –

energy in megawatt hours, US Dollars, and emission pollutants are 

proved to be inconsistent. 

3) The optimal energy supply need to be adjust according to both higher 

level (e.g., energy market) and lower level (e.g., production energy 

demand). 

4) The decision makers’ priorities/preferences on the energy, cost, and 

environment directly affect the optimal operation of on-site energy 

supply. 
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 CHAPTER FIVE 
BROADER IMPACTS 

 

Three main research questions were discussed, and broader impacts of the answers 

to these questions were briefly discussed. In this chapter, further examples and discussions 

will be provided for better understanding the research intellectual merits and their potential 

application in other areas of manufacturing systems. At the end of this chapter, the relations 

between each research questions will be explained. 

 

5.1 Broader impact of research questions 

In previous chapters, the broader impacts of each research question were generally 

summarized. Here, detailed cases of the broader impact of each questions will be presented 

by example. 

 

5.1.1 Broader Impact of RQ1 

In Chapter Two, the knowledge gaps of manufacturing energy modeling were 

defined, and systematic approach was proposed. In that chapter, the example of an 

automotive assembly manufacturing plant was studied, and high and low level models were 

established. In this section, the application of the HAVC model to other areas of the plant 

will be demonstrated; other low level models will also be exemplified to show how lower 

level models can provide sensitive variables for later bottom-up modeling.  
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Further application of HVAC model to other areas in the plant 

Among the different levels of models, an HVAC model of a basecoat painting 

spraying booth was established and validated. The HVAC model of the painting booth 

serves the purpose of improvement identification well by suggesting the adjustment of 

temperature setpoint. 

Besides the implementation on the painting basecoat booth, the HAVC model can 

also be used in many other areas of the plant. The similar system including: 1) the painting 

clear-coat booth, where the clear-coat of paint was sprayed onto vehicle to give a glare 

look; 2) ovens in the paint shop, e.g., e-coat oven, basecoat oven, clear-coat oven, sealant 

oven, and; 3) building areas – shop building area where the body shop and assembly lines 

are.  

 

Clear-coat Booth 

Like the basecoat booth, the clear-coat booth is a separate room within the building, 

where the clear-coat spray is applied. The energy models of the base coat booth can be 

directly applied into the clear-coat booth, since the clear-coat booth has the similar 

building-to-booth air supply system as the basecoat booth.  

In our studied case, the clear-coat booth has a designed tolerance on humidity from 

50% to 67%. As the required model inputs, the variables in the model are: 1) inlet air 

temperature, 2) inlet air humidity, and 3) outlet air humidity. Other inputs are constant, 

namely the air flow rate and outlet air temperature. Because of the building-to-booth air 
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supply system, the inlet air temperature is actually relatively stable. However, out of the 

research purpose, it is discussed as one of the variables.  

As a previous output of the models from basecoat booth, the dehumidification 

process should be avoided as much as possible, due to its large energy demand in the 

dehumidification and reheating processes. Thus, in the clear-coat booth where the relative 

humidity is a variable, higher humidity could have better chance in avoiding the 

dehumidification process. However, the larger relative humidity (in this case 67%) in the 

outlet air also requires more energy for the extra moisture heating or cooling, i.e., in a 

simple heating or cooling process, the extra moisture (the extra 17% on the original 50%) 

requires more energy to change temperature. Which energy demand is more dominant is a 

question that needs to be answered. Experiments were designed as Table 5.1 to discuss the 

question. 

 

Table 5.1: Experimental Design and Results of HVAC Energy in Clear-coat Booth 

No. 
Inlet Air 

Temperature 
[ F  ] 

Inlet Air 
Humidity 

[%] 

Outlet Air 
Humidity 

[%] 

Dehumidification 
or not  

(1-Yes, 0-No) 

Normalized 
Energy 

Demand 
1 68 49.8 50 0 0.476 
2 68 49.8 67 0 0.478 
3 68 79.1 50 1 1.803 
4 68 79.1 67 0 0.478 
5 72 49.8 50 0 0.204 
6 72 49.8 67 0 0.205 
7 72 79.1 50 1 3.109 
8 72 79.1 67 1 1.247 

 

By comparing the energy demand two by two, Table 5.1 provides great information 

to study how energy demands are correlated to the humidity in the outlet air. In summary, 
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1. if the dehumidification process is not in the control range [50%, 67%], 50% 

consumes slightly less energy (experiments 1 and 2, 5 and 6); 

2. when both humidification and dehumidification processes are within the 

control range [50%, 67%], choosing a set point of 50% will consume less 

energy (reference Experiments 3 and 4); 

3. when the dehumidification process is in the control range [50%, 67%], 67% 

consumes less energy (reference Experiments 7 and 8). 

The test results make sense, when considering the heating/cooling process and 

dehumidification process. When the process does not need dehumidification, less humidity 

means less energy used for moisture in the air. When choosing between the process with 

and without dehumidification, the energy demand is always lower in a process without. 

When the dehumidification process is inevitable, choosing a higher relative humidity 

output needs less energy, since there is a lower amount of water condensed. Therefore, the 

best operation strategy is to set variable set points based on the inlet air condition, instead 

of a constant set point throughout the year.  

 

Ovens 

The automotive paint shop has many ovens in the painting process to cure the layers 

of paint and sealant. Generally, the vehicle in the oven will go through heating up, 

temperature hold, and cooling down processes. The oven is another relatively separate 

space from the building. Except for the temperature and humidity control inside the oven, 

the oven air supply houses can also control their inlet air flow rate. One of the energy 
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conservation strategies is to reduce the air flow rate into the oven during downtime. In this 

phase, the previous vehicle has left the oven, and the next vehicle has not entered the oven 

yet. The air supply houses adjust the airflow speed into the oven, but not shut down, to 

prevent dust and particulate matter from entering the oven. During this period of time, the 

energy can be saved from two sides – thermal energy and electrical energy. Except for the 

energy saving for heating and cooling, the electrical energy for fan speed reduction is also 

substantial.  

According to the previous HVAC model established, the airflow affected the 

heating and cooling energy linearly. Based on the specification of the fans used, the 

electrical energy is also influenced. In this way, the energy of the oven is closely related to 

the vehicle production speed. 

 

Other low level models 

Chapter Two exemplifies the low level models of paint shop, because it is the main 

energy consumer. In this section, more low-level models from body shop and final 

assembly shop will be provided to demonstrate how the production parts/vehicles can 

affect the energy consumption.  

 

Spot welding 

Welding is a main process in the body shop, which joins two parts together. As 

Section 0, general spot welding energy consumption can be written as Equation (2.6). 
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  1weld ps spot idleE E N x P T     (5.1) 

 

where ����� is the number of welding spots per product, � is the number of products to be 

produced, � is the ratio of welding engaged time to the total uptime, ����� is the no-load 

power when the welder is in idle stage, and T  is the total uptime. 

Figure 5.1 shows two spot welding schedules under different production rates. The 

green regions are the down time, while the red regions are the welding engaged time, and 

yellow regions are the idle time.  

 

Figure 5.1: Spot Welding Schedule 
 

These two scenarios have the same uptime, but during the uptime, the upper (1) 

schedule has one more part processed than the lower schedule.  

Assume the production time is T , which is also the uptime for spot welding. During 

this period of time, x  parts were processed in this particular spot welding procedure, and 

the average engagement time for each part is t . Thus, 

 
x t

T



  . (5.2) 

Therefore,   in Scenario (1) is larger than Scenario (2) in Figure 5.1. 
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If the quantity of produced parts was reduced by 20% of the original ( ' 80%x x   ), 

the welding engaged ratio becomes 

 
' 0.8

'
x t x t

T T


  
   . (5.3) 

Therefore,  

 

' ' (1 ')

0.8 (1 0.8 )

0.8 [ (1 ) ] 0.2

0.8 0.2

weld ps spot idle

ps spot idle

ps spot idle idle

weld idle

E E N x P T

E N x P T

E N x P T P T

E P T







      

        

          

    

 . (5.4) 

Let 0.2 idleP T c   , where c  is a constant, we get 

 ' 0.8weld weldE E c   . (5.5) 

Generally, Equation (5.5) can be further written as  

 E c a x     (5.6) 

where the a  is the coefficient, c  is a constant, and x  is the production rate.  

It can be concluded that the welding energy is linearly related to the production 

ratio (i.e., number of parts produced in certain uptime period). 

 

Material handling 

The production affects the energy consumption not only in terms of number of parts 

produced in certain period of time, but also in terms of vehicle type. 

As mentioned in Section 0, heavy parts handling usually involves in robotic 

material handling. Generally, robot material handling energy was summarized in Equation 

(2.4) 
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    /handling part grip robot motor handlingE L m m m v t            (5.7) 

 

This equation indicates the energy consumption of the robot handling material, and 

the variables involved in this equation are the length of the moving material (�), speed of 

moving ( �) , weight of the part ( ����� ), weight of the gripper ( �������� ), robot 

specifications such as the weight of the robot arm (������) and the angle of the robot arm 

(�), as well as the motor efficiency (������) and handling time (���������).  

From this equation, the energy of material handling was affected by part variation 

due to the different vehicle models through the parts’ weights partm . For a certain 

autonomous material handling robot, the time of handling, efficiency of the motor, 

handling route, speed, robot weight, grip weight and robot efficiency are all designed and 

constant. The equation can be simplified as  

 

 handling partE m      (5.8) 

 

where   is a constant, and   is the coefficient. In this case, 

 

 
( )grip robot

motor handling

m m v L

t










 
   (5.9) 
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motor handlingt

L v







  . (5.10) 

 

Notation: length of the moving material (�), speed of moving (�), weight of the 

part (�����), weight of the gripper (��������), robot specifications such as the weight of 

the robot arm (������) and the angle of the robot arm (�), the motor efficiency (������), 

and handling time (���������).  

 

Spot welding and material handling are two good examples to show how the 

number of parts produced and types of parts can affect the energy consumption. These 

examples provide good information in terms of influential features in plant level, and they 

are the foundations for the next sensitivity analysis of the key variables. 

 

Sensitive variables 

With these examples and the models in Chapter Two, it is concluded that the 

sensitive variables from the physical model include the: 1) weather information, 2) 

productivity of the plant, and 3) days of the week and nonworking days. These 

manufacturing featured variables should be introduced into the high-level model. These 

three types of variables can be further detailed into: 1) daily average temperature, 2) CDD, 

3) HDD, 4) daily average relative humidity, 5) day of the week, 6) working and nonworking 

days, 7) type I vehicles produced daily, and 8) type II vehicles produced daily. Daily 

average temperature is important because the building air houses heat and cool the air from 
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the atmosphere before inlet into the plant building. CDD and HDD are the two terms used 

widely in building energy calculations, and especially in the case where one type of energy 

was used only for heating or cooling, e.g., electricity is only used for cooling in our case. 

Relative humidity is proven to be critical in energy consumption of the paint booth, but not 

for the overall building HAVC. Days of the week could affect the energy in potential 

weekly productivity activities. Working and nonworking days are important, because main 

production lines will be shut down in nonworking days. Different types of vehicle have 

different geometry and weight, and could affect the energy consumption as shown in 

Section 0 and 0. Some of these seven variables are actually highly related and it is important 

to choose appropriate ones for further analyses. Correlation is analyzed among the output 

electricity consumption and eight input variables as Table 5.2. 

 

Table 5.2: Correlation Analysis 
No.  Variables Electricity 
1 Vehicle Type I 0.65 
2 Vehicle Type II 0.55 
3 Daily Average Temperature 0.43 
4 CDD -0.47 
5 HDD -0.35 
6 Daily Average Humidity 0.08 
7 Weekdays -0.26 
8 None Working Days -0.43 

 

Among these variables, the daily average temperature, CDD and HDD are not 

independent. Actually CDD and HDD are calculated directly from daily average 

temperature as 
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0,                 if 0

,  if 0
average set

average set average set

T T
CDD

T T T T

 
 

  
  (5.11) 

 
, if 0

0,                  if 0
average set average set

average set

T T T T
HDD

T T

  
 

 
  (5.12) 

 

According to the correlation analysis, CDD has the highest (maximum absolute 

value) correlation with the electricity consumption, which makes sense when considering 

the large amount of cooling energy provided by electricity. Thus, among these three 

variables, only CDD was selected as the independent variable input. Apart from these 

variables, the daily average relative humidity and weekdays are the two variables with 

lowest correlation. The low value from the table suggests not including these two in later 

modeling.  

Besides the correlation analysis, multivariable linear regression coefficient analysis 

was used to help determine the sensitive variables. Table 5.3 is the statistical result of the 

coefficient analysis on every potential input variable. The results are consistent with the 

correlation analysis. 

Except for the daily average temperature and HDD, which were excluded due to 

their dependences with CDD, daily average relative humidity and weekdays are the two 

variables with the large P-values and small F-values.  

 

Table 5.3: Linear Regression Coefficient Analysis 
 Coefficients t-value P-value 

Intercept 309147 12.95 0.000 
Vehicle Type I 57.60 22.49 0.000 
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Vehicle Type II 23.07 6.26 0.000 
Daily Average Temperature 124.2 1.78 0.076 

CDD -13297 -14.06 0.000 
Daily Average Humidity 396 1.62 0.106 

Weekdays -2108 -1.14 0.225 
None Working Days -51562 -3.49 0.001 

 

Table 5.3 suggests input variables – vehicle type I and II, CDD, and none working 

days can be selected as sensitive variables for later time series analysis.  

When comparing the statistical results with the physical models built in this chapter 

and Chapter Two, the results are consistent. Vehicle type I and II represent the two models 

of vehicles greatly different in terms of weight, which could affect the energy like welding 

and material handling. CDD is the parameter used to represent the weather information, 

because the electricity is only used for cooling. Relative humidity is an important parameter 

in the paint spraying booth but not for the whole building, and due to the relatively small 

energy share in painting booth, the relative humidity is not a sensitive variable in the high 

level. Days of the week is not a strong variable considering its main change is already 

represented in the number of vehicle produced in the day (Vehicle type I and II). The non-

working days are important, because main equipment and production will be shut down in 

a non-working day, but not necessary to consider in a low production day. 

 

5.1.2 Broader Impact of RQ2 

Chapter three gives examples of how the mathematical time series models can be 

used as a forecasting tool in the manufacturing energy prediction. Similarly, the same 

approach can also be applied to water consumption forecasting by including manufacturing 
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features into the time series models to make it more robust and accurate in water 

consumption prediction.  

Like electricity and other energy carriers used in a manufacturing plant, water is 

widely used for production purposes. In an automotive manufacturing plant, water is 

mainly used on the cooling tower, chemical solution, hot and chilled water makeup, and 

car wash. The studied cases provide daily data of the overall water purchased from 

suppliers. 2014 water consumption in the first 251 days was given, and split into two parts 

– the first 237 data points for model training, and the last 14 data points for forecasting 

validation. The training data was plotted as Figure 5.2. To protect the confidentiality of the 

studied case, the water is normalized by an arbitrary volumetric rate value. 

 

 

Figure 5.2: Normalized Water Plot in Time 
 

Figure 5.2 shows the training data set of the first 237 data points in the year 2014. 

The x axis represents the normalized time, where 1 represents the first day of 2014, and 
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time lag 1 represents one day. The y axis is the water amount normalized with its mean 

value as  

 

 
Actual Water Amount in Gallon

Normalized Water = 
Mean Value of Water Amount in Gallon

  (5.13) 

 

This figure shows a linear increasing trend with fluctuation. Further analyzing the 

data, ACF (autocorrelation function) and PACF (partial autocorrelation function) were 

calculated and plotted in Figure 5.3 and Figure 5.4. Figure 5.3 shows a slow degradation 

rate with a relatively strong 7 days pattern, which indicate a potential linear trend and 

possible 7 days repeated pattern. Figure 5.4 has a large value at lag 1 and fast decay while 

a relatively large value at lag 4. With this two figures, a trend is strongly suggested, and 

possible AR(7), MA(1), AM(4) or ARMA(7,1), ARMA(7,4) models should be considered. 

 

Figure 5.3: ACF of Training Water Data 
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Figure 5.4: PACF of Training Water Data 
 

As carried out in Chapter Three, Section 0 for energy forecasting, the training data 

of water use was also de-trended. ACF and PACF of the new data series were calculated 

and plotted in Figure 5.5 and Figure 5.6. 

 

Figure 5.5: De-Trend Training Data Series ACF 
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Figure 5.6: De-Trend Training Data Series PACF 
 

The de-trended data still show a 7 days’ pattern. Different time series models as 

suggested were tried, as summarized in Table 5.4. 

 

Table 5.4: Water ARMA Model Test Results 
 AIC Training MSE Forecasting MSE 
AR(1) 6017.3 0.0883 0.1631 
AR(4) 6019.2 0.0829 0.1651 
AR(7) 6024.3 0.0709 0.1181 
MA(1) 6081.6 0.0875 0.0651 
ARMA(1,1) 6017.1 0.0630 0.0376 
ARMA(4,1) 6020.9 0.0823 0.0206 
 

As in the approach in Chapter Three, the models were measured with goodness of 

fitting in AIC, normalized training MSE and forecasting MSE metrics. AIC and training 

MSE do not show a dramatic difference, which indicates no obvious overfitting problem 

or accuracy improvement. The best fitting result in terms of forecasting MSE is model 

ARMA(4,1).  
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The forecasting results of the models were shown in Figure 5.7. The models show 

different forecasting results of traditional time series models. The goodness of fitting is not 

acceptable.  

 

Figure 5.7: Selected Forecasting Results Plot 
 

Like electricity forecasting, exogenous inputs can be introduced into the model to 

make it more accurate and robust. However, in this research, lower level water information 

was insufficient to establish detail models for sensitivity analysis. Therefore, the exogenous 

inputs were not specified for water consumption. Out of the purpose of the approach 

demonstration, the same exogenous inputs for electricity were used here. 

Different types of time series model with exogenous inputs were tested, and the 

results shown in Table 5.5. 
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Table 5.5: Water ARMAX Model Results. 
 AIC Training MSE Forecasting MSE 
ARMAX(7,7,4) 22.41 0.0571 0.0138 
ARMAX(7,1,4) 22.32 0.0581 0.0149 
ARMAX(1,1,4) 22.36 0.0584 0.0152 
ARMAX(4,1,4) 22.45 0.0600 0.0153 

 

 

Figure 5.8: ARMAX Model Forecasting Results Plot 
 

Even though the exogenous inputs are not specified for water consumption, the 

results in Table 5.5 show a great improvements comparing with the results in Table 3.3, 

and the goodness of fitting can also be easily observed through Figure 5.8.  

 

5.1.3 Broader Impact of RQ3 

Other emission pollutants 

When answering the research question three, carbon dioxide was used as a 

representative for environmental emission. Actually, there are many other emission 
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pollutants that can be taken into consideration. The approach in Research Question three 

can not only reveal the conflicts between different objective criteria – energy in terms of 

megawatt hour, monetary cost in US dollar, and environment emission in carbon dioxide, 

but also used to discuss the relationships among the three different pollutants – sulfur 

dioxide, nitrogen oxide, and carbon dioxide. Though three of them are all indicators of 

emission pollution, will they be consistent in the “best” operation strategy? 

The approach of research question three was applied here to answer this question. 

The amount of emission per energy carriers is summarized in Table 5.6. 

 

Table 5.6: Energy Emission Indicator 

[lbs/MWh] Ele NG LFG 

Sulfur Dioxide 1.5 0.0020 -0.45 

Nitrogen Oxide 0.5 0.11 – 0.33 (-0.21) – (-0.33) 

Carbon Dioxide 778 401.39 -447.47 

 

The optimization approach in Chapter Four can still be used here, only by adjusting 

the coefficient vector to the emission indicators. 

 

 
2 2

1.5 0.5 778

0.002 ,    0.11 0.33 ,    401.39

0.45 ( 0.21) ( 0.33) 447.47
XSO NO COF F F

     
        
     
              

  (5.14) 

 

The optimization comes with the consistent optimal results throughout the energy 

emission indicator. The results suggest to use landfill gas as much as possible in the 

cogeneration. Taking a closer look into the emission indicators, it is not difficult to 
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understand the results. In Table 5.6, the emission of landfill gas is always less than the 

natural gas and natural gas is always less than electricity, whichever emission pollutant is 

chosen.  

This result also further proves that whichever pollutant is chosen to represent 

emission, the results will be consistent. Thus, it is reasonable to only use one pollutant, i.e., 

carbon dioxide to represent for the overall emission in the optimization calculation. 

 

Energy pricing 

In Chapter Four, energy prices were used as a constant vector for optimization. 

However, there are many different energy pricing agreements between the suppliers and 

manufacturing plants. In this section, energy pricing strategies were reviewed, and the 

effects of variable energy price on optimization were discussed. 

Supplier 

There are three interconnections in the US, i.e., eastern interconnection, western 

interconnection, and EROCT (Electric Reliability Council of Texas) interconnection. 

Generally, electric power companies are monopoly utilities, i.e., consumers have very 

limited choices for selection of the electricity supplier. However, in some states, such as 

Texas, customers can choose their providers from many retailers. 

Prices and Pricing Strategies 

Electricity prices are referred to as electricity rates or tariffs. A tariff is an approved 

collection of different rates that utilities offer to specific but different types of customers. 

For example, tariffs for industrial plants and residential customers are different. Electricity 
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tariffs can be affected by many factors, such as the precision of electricity usage data. The 

forecasting results of this research work can be used for negotiation of electricity rates and 

tariffs. 

For many residential customers, the flat rate and tiered rate that are typical pricing 

strategies used by utility companies. The flat rate strategy charges customer the same rate 

over a given billing cycle (see example in Figure 5.9). The tiered rate strategy charges 

different prices on blocks of consumption (see example in Figure 5.10). 

 

Figure 5.9: Flat Rate Example 

 

Figure 5.10: Tiered Rate Strategy Example (From PG&E [5.1]) 
 

As the development of metering systems improves, the utility companies can record 

electricity usage in a higher frequency. It enables newer time-based rate strategies. Here 

are some typical pricing strategies:  1) time of use (TOU) in which the price for each period 
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is determined, as shown in the example of Figure 5.11; 2) real-time pricing (RTP) in which 

the pricing rates varies hourly according to the usage, as shown in the example of Figure 

5.12; 3) variable peak pricing (VPP) in which the off-peak periods of price are defined in 

advance, but on-peak price varies according to the demand and marketing; 4) critical peak 

pricing (CPP) in which the price of critical events period raises; and 5) critical peak rebates 

(CPR) in which the customers get rebates when they use less energy than expected during 

the critical events period [5.2]. 

 

Figure 5.11: TOU Example (From PE&G [5.3])  
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Figure 5.12: Real Time Pricing Example (From ComEd [5.4]) 
 

In South Carolina, Duke Energy is the largest provider. Its service to industrial 

companies follows the tiered rate strategy, except for contracting consumers. Besides the 

basic facility and demand charge, the pricing rate is summarized in Table 5.7.  

Table 5.7: Electricity Price Rate of Duke Energy Industrial Service [5.5] 
Range   Price  

 kWh   kWh  Cents 

                -               3,000  12.1838 
         3,000           90,000  6.3497 
       90,000         125,000  4.8523 
     125,000         265,000  6.3423 
     265,000         325,000  5.9169 
     325,000         400,000  5.3708 
     400,000     1,400,000  5.1770 
  1,400,000   1,400,000+  5.0790 

 

 

Effect on Optimization Model 
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The main difference in the optimization model comes from consideration of the 

electricity pricing strategies.  

For the general case, the constant price vector 2F  in the optimization (as vector in 

(5.15)) can be changed to a function related with amount of energy purchased. 

 

2

60

30

15

F

 
 
 
  

  (5.15) 

 

2F  has the unit of USD/MWh.  

The first element in 2F  represents the average electricity price, which can be 

adjusted to equation (5.16) according to Table 5.7. 
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 (5.16) 

 

In the studied case, because the optimization is established on a daily basis and 

industrial companies are not charged time-based, it is not necessary to consider the effects 

from the time based charging strategies. In the previous work, we use a constant rate for 

the electricity price. The only different scenario happens when the electricity consumption 

is at the edge of a certain range. For example, during one billing cycle, the manufacturing 

plant can adjust the on-site energy operation to change the amount of electricity purchased 

from the utility companies, and the amount purchased can fall in different ranges, such as 

the range from 125,000 to 265,000 kWh, and range from 265,000 to 325,000 kWh. In this 

case, the electricity price will be different, and actually, the average price of electricity can 



221 
 

be reduced by purchasing more. However, the reduction rate is too small to change the 

operation strategies in our studied case (Figure 4.7).  

 

5.2 Three RQs relationships 

From Chapter Two to Chapter Four, three research questions were answered. The 

first two questions concentrated on the energy consumption, and the third one was focused 

on energy supply (as Figure 5.13). 

 

Figure 5.13: Energy System Sketch in Studied Case 
 

In the first research question, modeling approaches of a systematic manufacturing 

energy strategy were proposed, and examples were provided. Top down detail models were 

used. Sensitivity variables were identified through the top-down modeling approach. These 

variables were further analyzed in Chapter Three, and some of them were selected as 

exogenous inputs of the time series model to make it more accurate and robust. With the 

sensitive variables included, time series models can predict the energy consumption in the 

next few days. On the other hand, the energy supply optimization is constrained to satisfy 
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any energy demand from the main production plant. Therefore, the result of the research 

question two is one of the inputs for the optimization in research question three.  

With days’ ahead energy forecasting, the on-site energy supply system can schedule 

the operation accordingly. This approach results in a guarantee of stable energy supply and 

increases the situational awareness (especially in days of high or unexpected variation). 

With the on-site energy conversion and transmission systems schedule, the optimization 

results also determine the amount of energy that needs to be purchased from local supplier. 

Thus, the demand forecasting and on-site supply optimization provides more reliable 

information for the local energy distribution. The combination of research question two 

and three provides model-based prediction of energy supply to the manufacturing plant. 

In some scenarios, different energy forms are coupled together. For example, the 

hot water and electricity. In order to generate inexpensive electricity from the landfill gas 

through the cogeneration system, the hot water can be taken a byproduct of the 

cogeneration. In a scenario when the electricity is highly demanded but not the hot water, 

energy conservation actions to save hot water are not as efficient as saving electricity, even 

though they may have the same amount of energy in terms of megawatt hour. The 

optimization results of the on-site energy supply system can guide the systematic energy 

modeling by providing information on which energy is critical in certain situations, i.e., 

providing more information for better decision making when spending limited time and 

cost for modeling and improvement implementations.  

In summary, the research questions relations are illustrated in Figure 5.14. 
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Figure 5.14: Research Question Relations 
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 CHAPTER SIX 
INTELLECTUAL MERIT AND FUTURE WORK 

 

6.1 Intellectual Merit and Contribution 

The world energy consumption has been continually increasing. As an important 

part of the critical industrial activities, automotive manufacturing plants are affected by 

this increasing energy, both in terms of cost and long-term sustainability. This research 

investigated the energy consumption within individual manufacturing plants – the energy 

consumption model in the plant and lower levels, energy forecasting, and on-site supply 

system optimization. Instead of exhausting the subsystems in the complex manufacturing 

plant with a large amount of equipment and processes, this research provides modeling 

approaches and examples for energy analysis and optimization. By answering three 

research questions, the work achieved the research objectives in 1) testing the hypothesis 

that a systematic energy modeling approach based on the layered concept can improve the 

modelling in terms of improving accuracy, sharing information, identifying sensitive 

variables, and implementing conservation approaches; 2) applying and augmenting 

forecasting methods from the mathematical domain to understand energy use in the 

manufacturing domain; and 3) investigating the optimal energy operation strategies in 

manufacturing plants. Therefore, this research provides deeper knowledge in 

manufacturing energy usage and analysis.  

 

The contribution of this research can be seen from the following seven aspects. 
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1. This research quantified the energy distribution to departments and 

identified key production processes. Internally, it provided information 

for plant energy management, and pointed out the directions for 

improvement implementation. Externally, it identifies additional 

approaches for energy consumption comparison among the similar 

systems. Previously, the benchmark and other comparison models have 

been criticized by their insufficient consideration in the variation of 

technologies. In this research, the energy is more comparable by 

partitioning the consumption into department and key processes. 

2. The implementation measures can be replicated in other areas of the 

plant. Improvement suggestions were made through the model outputs, 

but the final measures taken to implement is a collective decision made 

based on the system design variables, production schedules, 

implementation timelines, and monetary cost. This research provided 

information for the business model of implementation and guided the 

measures to be taken efficiently in terms of time and monetary cost. 

3. Among many variables, this research pointed out the weather, 

productivity, and working conditions (working days or non-working 

days) are three influential factors in manufacturing energy consumption. 

Though the research scope applies to the postproduction phase, this 

research result provided constructive suggestions for earlier process 
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design phases. For example, during the plant location selection, weather 

information can be incorporated for better decision making.  

4. Energy consumption in the manufacturing plant was shown to be able 

to be modeled by time series models. Energy consumption was observed 

with trending and seasonal patterns. Informed manufacturing energy 

models were shown to be accurate in forecasting. The time series 

models were identified as a potential to be used further in later big data 

systems.  

5. With accurate consumption forecasting results, the energy supply 

system (e.g., utility companies and on-site energy supply system) can 

schedule the energy load accordingly. This strategy provides a more 

stable energy supply for local facilities and plant processes. 

6. This research revealed the tradeoffs of supply in terms of energy (MWh), 

cost (USD), and emission (as represented by CO2). Though these three 

objective criteria are correlated, the optimal operation of the on-site 

supply system is not consistent, especially in a complex system with 

renewable energy sources as might be encountered in a manufacturing 

plant.  

7. The optimization results also demonstrated how the operation strategies 

could vary according to the different scenarios caused by high and low 

levels, such as shift and energy prices.  
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Though this research successfully answered three research questions, there is a 

clear continuing path for future work. 

 

6.2 Future Work 

The potential future work to build upon this research in different areas is shown 

below.  

1. Establishing high level energy models including the local industrial 

plants, suppliers, utility companies, and landfills, i.e., models on multi-

factory and supply chain levels, would be interesting. In some cases, the 

output energy of one plant could be the energy input demand of another 

plant (e.g., extra thermal energy used as a commodity). By establishing 

high level models in the local industrial areas, information and energy 

can be shared to better benefit each facility. If incorporating the 

information from the utility company and landfill, energy delivery can 

be better distributed; therefore, it can create a more energy stable 

environment. 

2. Current manufacturing plants’ and production lines’ design and 

construction have not typically considered energy conservation as an 

objective. Establishing energy models for the design phase would be 

valuable in providing analysis for the balance of capital investment and 

long term energy savings. The design phase models can also be built in 
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high and low levels to investigate questions such as the location 

selection of plant and heat exchanger installation.  

3. The results of the water forecasting model suggest the sensitive 

variables for electricity are also the key influential inputs of the water 

consumption. Is it possible the expendable resources (e.g., other energy 

carriers, water, materials, and labor) share the same key variables? How 

about the variables in the similar plants, do they share the same ones? 

Considering the close relation between the supplier and customer, is it 

possible the other plants in the same supply chain system share these 

features (as Figure 6.1)? These are the questions worth to be studied 

further. 

 

Figure 6.1: Sensitive Variable Sharing 
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4. Time series modeling in high time resolution (e.g., in hour, minute, and 

second) would be interesting to observe energy consumption trends 

across different time scales and seasonal patterns; therefore, it could be 

used for better energy monitoring and analyzing in plant and lower 

production levels. By combining multiscale patterns with online 

estimation and big data techniques, the system can update the 

forecasting parameters frequently to provide a more accurate result. 

5. Forecasting can also be applied to monitor the device and equipment 

operations through models for devices and equipment. Setting 

comparison logic between the model outputs and monitored data can be 

used to warn and create alarms for unusual conditions. This approach 

can be termed energy health monitoring.  

6. Solar and wind energy are increasing in market use. In many countries, 

solar and wind energy are the main renewable energy sources for 

investment in the future. Including these two unstable renewable energy 

sources in the research would be promising. How could the uncertainty 

of these two energy sources affect the traditional on-site energy 

operation system? How could energy storage systems to be applied in 

such a system, and this analysis used to optimize its operation?  

7. The on-site energy generation system is also known as the distributed 

energy generation system. How would the on-site generation system 
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affect and be affected by the utility company in terms of generation 

capacity and energy price? Would it be economically or sustainably 

advantageous to sell energy back to the utility companies in non-

working days? If two-way communication is possible, how could the 

utility companies and these distributed generation system work together 

to reduce energy consumption overall? It would be interesting to study 

the effects of manufacturing plants’ consumption and supply on the 

smart grid.  

 

In summary, manufacturing energy is a broad topic worthy to be studied further. 

This research answered three main research questions and compensated current knowledge 

gaps in systematic modeling, consumption forecasting, and supply optimization. Increasing 

the understanding of energy usage in the manufacturing system and improving the 

awareness of the importance of energy conservation and environmental protection are the 

primary goals and future vision of this research work.  
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Appendix A 

Improvement Suggestions and Examples 

 

No. Category Improvement Suggestions and Examples 

1 
Energy 
Management 
Program 

 Cooperation with utility companies 
 Example of Project Energy Partnerships offered by Detroit 

Edison 
 Program expanded to Daimler Chrysler, Ford and General 

Motors in year of 2001 

2 
Energy 
Management 
Program 

 Use sub-metering 
 Example from a Canadian plant 
 3-year project 

3 
Energy 
Management 
Program 

 Closing windows and doors 
 Switch off unused machinery 
 Switch off lights and coolers when leaving an office 
 Remove superfluous lights 
 Prevent blockage of radiator and ventilation grids  
 Example from Volvo Car Company at Born (the 

Netherlands) 

4 
Energy 
Management 
Program 

 Computer-based energy management system 
 Set up procedures to shut down equipment during non-

production periods 
 Ford’s Edison Assembly Plant in New Jersey 

5 
Energy 
Management 
Program 

 Installed an energy management system that maintains 
control of compressed air, lighting, equipment power 
utilization, steam and innovative energy savings 
technologies 

 GM of Canada, Ltd. 

6 
CHP combined with 
absorption cooling 

 Absorption chillers installation 
 Continuous operation or for peak shaving 

7 
Strategic motor 
selection 

 Exchange 296 of its standard efficiency motors with energy 
efficient motors 

 Cummins Engine Company, Inc., MidRange Engine Plant in 
Indiana 

8 
Strategic motor 
selection 

 Specified new energy efficient motors for their HVAC 
system 

 Cummins Engine Company, Inc., plant in Columbus, Indiana 



234 
 

9 
Strategic motor 
selection 

 Replace five motors used in operate its furnaces with high 
efficiency motors 

 Delta Extruded Metals (UK) 

10 
Variable frequency 
drives (VFDs, 
ASDs) 

 Install VFDs 
 Energy savings are shown to vary between 7% and 60% 

11 
Variable frequency 
drives (VFDs, 
ASDs) 

 Installed VFDs together with energy management system 
(EMS) to control the VFDs as a unit 

 General Dynamics Armament Systems, Burlington, Vermont 

12 
Variable frequency 
drives (VFDs, 
ASDs) 

 Application of VFDs in the pumping of machine coolant 
 Pressure at the pumps was reduced from 64psi to 45psi 
 An U.S. Engine plant, in 1989 

13 
Variable frequency 
drives (VFDs, 
ASDs) 

 Computer chip controls on the electric blower motors, to 
regulate the motors’ speeds by continuously monitoring the 
speed and adjusting the power to meet the speed demand 

 GM Fairfax Assembly Plant in Kansas City 

14 
Variable frequency 
drives (VFDs, 
ASDs) 

 Use new energy management system to control VFDs 
 Lockheed Martin facility (Vermont) 

15 
Compressed Air 
Systems 

 Filter cleaning periodically 
 Monitor pressure drop 

16 
Compressed Air 
Systems 

 Automatic valves to separate production-line sections of the 
compressed air from the main supply 

 An U.S. automobile plant 

17 
Compressed Air 
Systems 

 Reduce leaks in pipes and equipment 

18 
Compressed Air 
Systems 

 Ultrasonic inspection tool to search for leaks 
 Repair leaks  
 Ford Stamping Plant in Geelong, Victoria (Australia) 

19 
Compressed Air 
Systems 

 Replace single stage compressors with multi-stage 
compressors 

20 
Compressed Air 
Systems 

 Reducing intake air temperature by using outside air 

21 
Compressed Air 
Systems 

 Installed a computerized control system for air compressors 
 Land Rover’s Solihull plant, in 1991 

22 Boiler 
 Improve insulation 
 New material with better insulation and a lower heat 

capacity 
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 Potential material: ceramic fiber 
 Heating will be more rapidly. 

23 Boiler 
 Maintenance 
 To ensure that all components of boiler are operating at peak 

performance 

24 
Hot Water 
Distribution 

 Improve insulation 

25 Lighting 
 Use more energy efficient lights 
 Automatic controlling systems 

26 HVAC 

 Electronic control 
 Simple as on/off switches to switched off during non-

operating hours 
 Several U.S. industrial cases 

27 HVAC 
 On-off control system 
 Climate-adapted ventilation control system  
 Volvo Torslanda Manufacturing plant in Sweden 
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Appendix B 

Water Heat Capacity Lookup Table 

 

Temperature 
Heat 

Capacity 

[°C] [kJ/(kg K)] 

5 4.204 

10 4.193 

15 4.1855 

20 4.183 

25 4.181 

30 4.179 

35 4.178 

40 4.179 

45 4.181 

50 4.182 

55 4.183 

60 4.185 

65 4.188 

70 4.191 

75 4.194 

80 4.198 

85 4.203 

90 4.208 

95 4.213 

100 4.219 

105 4.226 

110 4.233 

115 4.24 

120 4.248 

125 4.26 

130 4.27 

135 4.28 

140 4.29 
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