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Abstract

The “domination chain,” first proved by Cockayne, Hedetniemi, and Miller in 1978, has been

the focus of much research. In this work, we continue this study by considering unique realizations

of its parameters. We first consider unique minimum dominating sets in Cartesian product graphs.

Our attention then turns to unique minimum independent dominating sets in trees, and in some

direct product graphs. Next, we consider an extremal graph theory problem and determine the

maximum number of edges in a graph having a unique minimum independent dominating set or a

unique minimum maximal irredundant set of cardinality two. Finally, we consider a variation of

domination, called identifying codes, in the Cartesian product of a complete graph and a path.
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Chapter 1

Definitions

Graph theory is a field of many definitions. Thus, in this chapter, we devote our attention

to defining the major terms and key concepts that we will be using throughout the remainder of

this work. A reader well-versed in the terminology of graph theory can safely skip this chapter and

continue with Chapter 2.

1.1 Basics

We begin with the following definition.

Definition 1. A graph G is an ordered pair (V (G), E(G)), where V (G), called the vertex set of G,

is a non-empty set, and E(G), called the edge set of G, is a, possibly empty, set of distinct unordered

pairs of elements from V (G). For notational convenience, we denote the edge {u, v} by either uv or

vu.

The elements in V (G) are called vertices, while the elements in E(G) are called edges. We note that

if the graph G is understood from context, then V (G) and E(G) are often denoted by V and E

respectively for simplicity. The cardinality of V (G) is the order of G, while the cardinality of E(G)

is the size of G. If V (G) is a finite set, then G is a finite graph. We will exclusively consider finite

graphs in our work. Additionally, if |V (G)| = 1, then G is trivial. All other graphs are nontrivial. If

u and v are vertices of G, we say that u and v are adjacent if uv is an edge in E(G). Moreover, we

say that u and v are incident with the edge uv and vice versa. In a similar manner, two edges are

1



adjacent if they share a vertex in common. Note that by Definition 1, two vertices may be joined

by at most one edge. Thus, we are only considering simple graphs in our work.

As an example, the following defines a graph.

G = ({a, b, c, d}, {ab, ac, ad, bd, bc})

Here, G has four vertices and five edges. We see that vertex a, for example, is adjacent to vertices

b, c, and d. Additionally, the edges ab and bd are adjacent.

Graphs are typically visualized by placing a dot for each vertex, and connecting two dots

if their corresponding vertices form an edge. For example, the graph G above could be depicted as

follows.

a b

c d

Figure 1.1: An example of a graph

Notice, however, that G could also be depicted in the following manner.

a b

c

d

Figure 1.2: The same graph depicted differently

Thus, we see that the relative positions of the vertices and edges is irrelevant. Importance lies only

in what vertices are present, and which are adjacent.

To better acquaint ourselves with graph notation, we now consider a few special graph

families. These families will appear and be used frequently throughout our work.

First, we consider the complete graph on n ≥ 1 vertices, denoted Kn. It has vertex set

2



V (Kn) = {1, 2, . . . , n} and edge set E(Kn) = {ij : i, j ∈ V (Kn), i 6= j}. As illustrations, the graphs

K3, K4, and K5 are depicted below.

K3

1 2

3

K4

1 2

3 4

K5

1 2

3 4

5

Figure 1.3: Complete graphs

The completely disconnected graph on n ≥ 1 vertices, denoted Kn, has V (Kn) = {1, 2, . . . , n} and

E(Kn) = ∅.

The path on n ≥ 1 vertices, denoted Pn, has vertex set V (Pn) = {1, 2, . . . , n} and edge set

E(Pn) = {i(i+ 1) : 1 ≤ i ≤ n− 1}. For example, P3 and P4 are depicted below.

P3

1 2 3

P4

1 2 3 4

Figure 1.4: Paths

The cycle on n ≥ 3 vertices, denoted Cn, has vertex set V (Cn) = {1, 2, . . . , n} and edge set defined

by E(Cn) = E(Pn) ∪ {1n}. C3 and C4 are depicted below.

C3

1 2

3

C4

1 2

4 3

Figure 1.5: Cycles

For n ≥ 1, the n-dimensional hypercube, denoted Qn, has as its vertex set the set of all n-digit

3



binary strings. That is, V (Qn) = {i1i2 · · · in : ij ∈ {0, 1}, 1 ≤ j ≤ n}. Two vertices in Qn are

adjacent if their corresponding strings differ in exactly one position. For illustration, Q1, Q2, and

Q3 are shown below.

Q1

0

1

Q2

00

01

10

11

Q3

000

010

100

110

001

011

101

111

Figure 1.6: Hypercubes

Finally, a graph G is bipartite if its vertex set can be partitioned into two sets V1 and V2 (called partite

sets) such that each edge in E(G) is incident with one vertex in V1 and one vertex in V2. The complete

bipartite graph Km,n has V (Km,n) = V1 ∪ V2 with V1 = {α1, α2, . . . , αm}, V2 = {β1, β2, . . . , βn} and

E(Km,n) = {αiβj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. See Figure 1.7 for an example. In a similar manner,

one can define the complete multipartite graph Km1,m2,...,mk . The vertex set for this graph is the

disjoint union of k sets of cardinalities m1,m2, . . . ,mk respectively. Each vertex in Km1,m2,...,mk is

adjacent to every vertex outside of its own partite set.

K4,3

α1

α2

α3

α4

β1

β2

β3

Figure 1.7: Complete bipartite graph

Two graphs G and H are equal if V (G) = V (H) and E(G) = E(H). Thus, when we consider

the two graphs A and B in Figure 1.8, we see that they are not equal since their respective vertex

sets are distinct.

4



A

a b

c d

B

e f

g h

Figure 1.8: Two isomorphic graphs

However, A and B essentially depict the same relationships. We say that A and B are isomorphic.

A formal definition follows.

Definition 2. Two graphs G and H are isomorphic if there exists a bijection φ : V (G) → V (H)

such that uv ∈ E(G) if and only if φ(u)φ(v) ∈ E(H).

If G and H are isomorphic, we denote this by writing G ∼= H. The bijection guaranteed by the

definition is called an isomorphism. In our example above, an isomorphism φ is defined by φ :

{a, b, c, d} → {e, f, g, h} such that φ(a) = e, φ(b) = f, φ(c) = g, and φ(d) = h.

It is often the case that when studying graphs, the particular names of the vertices are not

important. In such situations, isomorphic graphs, for all intents and purposes, are identical. Hence,

we may at times write G = H to denote the fact that G and H are two representatives from the same

isomorphism class, even if their sets of vertices and edges are distinct. This convention, for example,

allows us to refer to the complete graph on three vertices, regardless of the particular vertex labels

used. It also allows us to depict graphs without explicitly labeling each vertex.

If v is a vertex of G, the neighbors of v are those vertices adjacent to v. The degree of

v is equal to the number of vertices adjacent to v. We denote this by degG(v) or deg(v) if G is

understood from context. A vertex of degree one is called a leaf, while a vertex adjacent to a leaf is

called a support vertex. We let δ(G) and ∆(G) denote the minimum and maximum vertex degrees

in G respectively. If δ(G) = ∆(G), then G is a regular graph. For example, Kn and Cn are regular

graphs.

Given a graph G, a subgraph of G is any graph H such that V (H) ⊆ V (G) and E(H) ⊆

E(G). If H is a subgraph of G, we denote this by writing H ⊆ G. If S ⊆ V (G), the subgraph of G

induced by S, denoted G〈S〉 is the graph H such that V (H) = S and E(H) = {ij : i, j ∈ S, ij ∈

E(G)}. For example, in Figure 1.9, S is a subgraph of G and T is the subgraph of G induced by

5



{a, b, c, e}.

G

a b

c d

e

f

S

a b

c

e

T

a b

c

e

Figure 1.9: A subgraph and an induced subgraph

Subgraphs obtained by deleting either a subset of vertices or a subset of edges will appear frequently

throughout our work. In particular, if S ⊆ V (G), the graph G − S is defined to be the graph

G〈V (G) − S〉. If S is a singleton set, say {v}, we simplify the notation G − {v} to G − v for

convenience. If B ⊆ E(G), the graph G−B is defined to be the graph H with V (H) = V (G), and

E(H) = E(G) − B. Once again, we simplify the notation from G − {e} to G − e in the case of

B = {e}, a singleton edge. As an illustration, the graphs G, G − a and G − {ab, ae} are shown in

Figure 1.10 below.

G

a b

c d

e

f

G− a

b

c

e

f d

G− {ab, ae}

a b

c d

e

f

Figure 1.10: Deletion subgraphs

Given a graph G, a supergraph of G is any graph H such that G ⊆ H. For example, if G

and H are distinct graphs, then their union, denoted G ∪H, is the graph defined by V (G ∪H) =

V (G)∪V (H) and E(G∪H) = E(G)∪E(H). As another example, the join of disjoint graphs G and

H is the graph G+H defined by V (G+H) = V (G)∪V (H) with E(G+H) = E(G)∪E(H)∪{gh :

g ∈ V (G), h ∈ V (H)}. Similar to deletion subgraphs, we can also consider addition subgraphs. For
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example, if G is a graph and S is a set of vertices not in V (G), then G + S is the graph defined

by V (G + S) = V (G) ∪ S and E(G + S) = E(G). In a similar manner, edges can be added to G.

For example, if u and v are two nonadjacent vertices in G, then the graph G + uv is defined by

V (G + uv) = V (G) and E(G + uv) = E(G) ∪ {uv}. Vertices and edges can also simultaneously be

added to a graph. For example, given a graph G, the graph G ◦K1 is the graph formed from G by

adding a vertex u′ and the edge uu′ for each u ∈ V (G). This is a specific example of a more general

corona of two graphs. An illustrative example is shown below.

G

a b

c d

G ◦K1

a b

c d

a′ b′

c′ d′

Figure 1.11: A corona

A walk W in a graph is an alternating sequence of vertices and edges

W = v0, e1, v1, e2, . . . , ek, vk

such that ei = vi−1vi is an edge of the graph. The initial vertex of the walk is v0, while vk is called

the terminal vertex of the walk. This makes W a v0 − vk walk. The length of W is the number

of edges it contains. If v0 = vk, then the walk is said to be closed. If a walk contains no repeated

vertex, then the walk is a path, while a closed walk with no repeated vertices (other than the initial

and terminal vertex) is a cycle. If for each pair of vertices u and v in a graph G there is a path from

u to v, then G is said to be connected. The maximally connected induced subgraphs of G are called

the components of G. A graph containing no cycles is called an acyclic graph, or a forest, while a

connected, acyclic graph is called a tree.

The distance between two vertices u and v, denoted dG(u, v) (or d(u, v) if G is known

from context), is the length of a shortest path in G from u to v. If there are no paths from u

to v, then d(u, v) = ∞. The diameter of a connected graph G, denoted diam(G), is defined by

7



diam(G) = maxu,v∈V (G) d(u, v). A diametral path in G is a path between two vertices u and v such

that d(u, v) = diam(G).

G

a b

c d

e

f

Figure 1.12: A walk

As an illustration of a few of these definitions, consider Figure 1.12. In the figure, the walk

e, ea, a, ac, c, ce, e, ef, f is highlighted by darkened edges. Observe that a, b, and c form a cycle,

and that e, ea, a, ac, c and e, ec, c are two paths from e to c. We see that d(e, b) = 2, d(e, c) = 1, and

that diam(G) = 2. Thus, e, ea, a, ab, b is a diametral path.

1.2 The Domination Chain

Most of our work in the following chapters concern a family of graph invariants that are

linked together by a well-known and often-studied inequality chain, called the domination chain,

presented as Theorem 5 below. The three big concepts in the chain: domination, irredundance, and

independence, are discussed in this section. After presenting the requisite definitions, we illustrate

the chain itself by showing how the three concepts are related.

1.2.1 Domination

Let v be a vertex of G. The open neighborhood of v, which we denote by N(v), is the set

of vertices sharing an edge with v. That is, N(v) = {u ; uv ∈ E(G)}. The closed neighborhood of v,

denoted N [v], is the set N(v) ∪ {v}; v is said to dominate every vertex in its closed neighborhood.

Given a set S ⊆ V (G), the open neighborhood of S, denoted N(S), is defined by N(S) = ∪v∈SN(v),

and the closed neighborhood of S, denoted N [S], is given by N [S] = N(S)∪S. Similar to the above,

S is said to dominate every vertex in its closed neighborhood.

8



Definition 3. A dominating set in G is any set S ⊆ V (G) such that N [S] = V (G). Equivalently,

S is a dominating set if every vertex in G is either in S, or is adjacent to a vertex in S.

Note that every graph G contains a dominating set since V (G) itself satisfies N [V (G)] = V (G).

Definition 4. The domination number of G, denoted γ(G), is the minimum cardinality of a domi-

nating set in G.

The following distinction between minimum and minimal is somewhat unique to graph

theory, thus we carefully make the following definitions.

Definition 5. A minimum dominating set of G, also called a γ-set of G, is a dominating set S of

G for which |S| = γ(G).

Definition 6. A minimal dominating set of G is any dominating set S such that for each v ∈ S,

S − {v} is no longer a dominating set.

Thus, we see that a minimum dominating set is, necessarily, a minimal dominating set, but a

minimal dominating set need not be a minimum dominating set. With this distinction now made,

we can also define the following parameter.

Definition 7. The upper domination number of G, denoted Γ(G), is the maximum cardinality of a

minimal dominating set. A minimal dominating set of cardinality Γ(G) is called a Γ-set.

Given our observations above, note that the domination number of G can also be defined as the

minimum cardinality of a minimal dominating set. Thus, in particular, we see that γ(G) ≤ Γ(G)

for any graph G.

G

a b

c d

e

f

Figure 1.13: Domination example
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As an illustration, consider the graph G in Figure 1.13. S = {f, c, d} is a dominating set

since every vertex in G is either in S (in the case of f , c, and d) or is adjacent to a vertex in S (in

the case of e, a, and b). Notice, however, that S is not minimal since S − {f} is still a dominating

set. For this graph, γ(G) = 1 since {c} is a dominating set. Hence, {c} is a minimum dominating

set or a γ-set. Notice additionally that {a} is a γ-set. Thus, we see that graphs, in general, can have

many γ-sets. Now, consider the set {e, b}. This set is clearly a dominating set. Moreover, it is a

minimal dominating set since neither of the sets {b} or {e} is dominating. Thus, {e, b} is a minimal

dominating set that is not a minimum dominating set. In fact, {e, b} is a Γ-set.

Thus far, we have presented vertex domination. This is only one of many different types of

domination. For example, one can consider selecting a set of edges of a graph so that every edge is

either in the set, or is adjacent to an edge in the set. Such a set is then called an edge dominating

set. In vertex domination, vertices in the dominating set need not be adjacent to another vertex

in the set. If we add this requirement, the result is total domination. Distance-k domination is

a weakening of vertex domination in that every vertex not in the dominating set now only needs

to be within distance k of a vertex in the set. Other examples of domination include Roman

domination, independence domination (not to be confused with independent domination considered

below), rainbow domination, k-domination, signed domination, and broadcast domination, just to

name a few.

1.2.2 Irredundance

To understand irredundance, we first need the following definition.

Definition 8. Let G be a graph and let S ⊆ V (G) with x ∈ S. A private neighbor of x with respect

to S is any vertex v for which N [v] ∩ S = {x}. If v is a private neighbor of x and v 6= x, then v is

also called an external private neighbor of x with respect to S. The private neighborhood of x with

respect to S, denoted pn(x, S), is the set of private neighbors of x with respect to S.

Notice that x can be a private neighbor of itself with respect to S. An example will help illustrate

this definition. Let G be the graph below.
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G
a

bc

d

e

f

h

Figure 1.14: Irredundance example

Consider the set S defined by S = {a, b}. Notice that S is not a dominating set since h is not

adjacent to any vertex in S. Observe that a is adjacent to c, but b is not adjacent to c. Thus, c is

a private neighbor of a with respect to S. Since f is adjacent to both a and b, f is not a private

neighbor of either a or b. In fact, we see that pn(a, S) = {c} and pn(b, S) = {d, e}.

Definition 9. A set S ⊆ V (G) is irredundant (or is an irredundant set), if for each x ∈ S,

|pn(x, S)| > 0. Equivalently, S is irredundant if for each x ∈ S, N [x] − N [S − {x}] 6= ∅. If S

is not irredundant, it is redundant.

Definition 10. A set S ⊆ V (G) is maximal irredundant if S is irredundant and for each x ∈ V −S,

S ∪ {x} is redundant.

Definition 11. The irredundance number of G, denoted ir(G), is the minimum cardinality of a

maximal irredundant set. A maximal irredundant set of cardinality ir(G) is called an ir-set. The

upper irredundance number of G, denoted IR(G), is the maximum cardinality of an irredundant set.

A maximal irredundant set of cardinality IR(G) is called an IR-set.

Consider once again the graph G from Figure 1.14 and the set S = {a, b}. First, note that S is

irredundant since pn(a, S) 6= ∅ and pn(b, S) 6= ∅. Is S maximal irredundant? Consider creating

a new set from S, call it S′, by adding the vertex c. We see that pn(c, S′) = {h}. Thus, c has a

private neighbor with respect to S′. However, by adding c, a no longer has a private neighbor. Thus,

S′ = {a, b, c} is redundant. In fact, S is maximal irredundant. To see this, observe the following.

• S′ = {a, b, c} is redundant since pn(a, S′) = ∅.

• S′ = {a, b, d} is redundant since pn(d, S′) = ∅.
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• S′ = {a, b, e} is redundant since pn(e, S′) = ∅.

• S′ = {a, b, f} is redundant since pn(a, S′) = pn(f, S′) = ∅.

• S′ = {a, b, h} is redundant since pn(a, S′) = ∅.

In fact, ir(G) = 2. Thus, S = {a, b} is an ir-set. Also observe that IR(G) = 4 and that S =

{d, e, f, h} is an IR-set with each element of S a self-private neighbor.

As in domination, there are also different types of irredundance. As we have defined irredun-

dance, a set S ⊆ V (G) is irredundant if for all x ∈ S, N [x]−N [S−{x}] 6= ∅. In open irredundance, we

say that a set S ⊆ V (G) is open irredundant if for all x ∈ S, N(x)−N [S−{x}] 6= ∅. Hence, every ver-

tex in the set must have an external private neighbor. By altering the open and closed neighborhoods,

we also have open-open irredundance in which each vertex x ∈ S satisfies N(x) −N(S − {x}) 6= ∅,

and closed-open irredundance in which each vertex x ∈ S satisfies N [x]−N(S − {x}) 6= ∅.

1.2.3 Independence

The last of the three domination chain concepts is independence.

Definition 12. Let G be a graph and S ⊆ V (G). The set S is independent (or is an independent

set) if no two vertices in S share an edge.

Equivalently, S ⊆ V (G) is independent if G〈S〉 has no edges.

Definition 13. A set of vertices S ⊆ V (G) is maximal independent if S is independent and for each

x ∈ V − S, S ∪ {x} is not independent.

Definition 14. The independence number of G, which we denote by β0(G), is the maximum car-

dinality of an independent set. An independent set of cardinality β0(G) is called a β0-set. The

minimum cardinality of a maximal independent set is denoted i(G), and a maximal independent set

of cardinality i(G) is called an i-set.

The parameter i(G) is also called the independent domination number for reasons that will

be made clear in the following subsection. To illustrate these definitions, consider the graph in

Figure 1.15.
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f
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l

Figure 1.15: Independence example

The set S = {b, d, h, f} is independent, as no two vertices in S share an edge. Moreover,

S is maximal independent, since every vertex in V − S shares an edge with a vertex in S. In fact,

i(G) = 4, in which case S is an i-set. For this graph, β0(G) = 6 with S′ = {a, c, e, g, i, k} a β0-set.

1.2.4 Relationships

We conclude this section by showing how domination, irredundance, and independence are

related to one another. We begin with the following.

Proposition 1. Every maximal independent set of vertices in a graph is a minimal dominating set.

Proof. Let G be a graph and let S be a maximal independent set. Let x ∈ V (G) − S. If x is not

adjacent to any vertex in S, then S ∪ {x} is independent. Thus, since S is maximal independent,

there exists v ∈ S such that x ∈ N [v]. Hence, S is a dominating set. To see that S is minimal

dominating, let v ∈ S and consider S − {v}. Since S is independent, S − {v} fails to dominate v.

Thus, S is minimal dominating and our result follows.

This result gives us the following corollary, which illustrates how domination and independence are

related.

Corollary 2. For any graph G, γ(G) ≤ i(G) ≤ β0(G) ≤ Γ(G).

13



Next, we observe the following.

Proposition 3. Every minimal dominating set in a graph is a maximal irredundant set.

Proof. Let G be a graph and let S be a minimal dominating set. Let x ∈ S and consider pn(x, S).

Suppose that pn(x, S) = ∅. This implies that there exists v ∈ S for which vx ∈ E(G) (since otherwise

x ∈ pn(x, S)) and that there exists no u ∈ V (G) − S for which N [u] ∩ S = {x} (since otherwise

u ∈ pn(x, S)). Hence, S − {x} is a dominating set, a contradiction. Thus, since pn(x, S) 6= ∅

for all x ∈ S, we see that S is irredundant. To see that S is maximal irredundant, suppose there

exists z ∈ V − S for which pn(z, S ∪ {z}) 6= ∅. This implies there exists y ∈ V (G) for which

N [y] ∩ (S ∪ {z}) = {z}. This, however, implies that S does not dominate y, a contradiction. Thus,

S is maximal irredundant.

Corollary 4. For any graph G, ir(G) ≤ γ(G) ≤ Γ(G) ≤ IR(G).

By combining Corollary 2 and Corollary 4, we arrive at the domination chain first proved

by Cockayne, Hedetniemi, and Miller in 1978 [2].

Theorem 5. For any graph G, ir(G) ≤ γ(G) ≤ i(G) ≤ β0(G) ≤ Γ(G) ≤ IR(G).

For more on domination, see [19].

1.3 Graph Products

We have already seen a few methods for constructing a new graph from a given graph. For

example, the deletion subgraphs considered in Section 1 produce a smaller graph from a given graph.

In this section, we consider methods, called graph products, for constructing a new larger graph given

two starting graphs. There are many different types of graph products. For our purposes, we will

only need to focus on two: the Cartesian product, and the direct product.

1.3.1 The Cartesian product

We begin with a definition.

Definition 15. Let G and H be graphs. The Cartesian product of G and H, denoted G�H, is the

graph defined by V (G�H) = V (G)× V (H) with (g1, h1)(g2, h2) ∈ E(G�H) if and only if either

g1 = g2 and h1h2 ∈ E(H) or h1 = h2 and g1g2 ∈ E(G).
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Recall that V (G)×V (H) is the Cartesian product of sets. Thus, each vertex of G�H is an ordered

pair (g, h) where g ∈ V (G) and h ∈ V (H). Let’s consider an example.

1 2

1

2

(1,1) (2,1)

(1,2) (2,2)

Figure 1.16: K2 �K2

We see that K2 �K2 produces a “box”. This, in fact, is the motivation for the � notation for the

product itself.

The Cartesian product produces a graph which has similarities to both of its factors. It

is this fact that often makes the Cartesian product useful and easy to work with. For example,

properties of G�H often depend on the corresponding properties holding in one of G or H. We will

see an example of this in Chapters 2 and 4 to come. To better illustrate this discussion, we consider

another example.

0

1

2

(0,0)

(0,1)

(0,2)

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

(2,2)

0 1 2

Figure 1.17: P3 � C3

In Figure 1.17, we see that there are three copies of C3 ((0, 0), (0, 2), and (0, 1) induce one), and
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three copies of P3 ((0, 0), (1, 0), and (2, 0) induce one). We refer to these “copies” as either layers

or fibers.

1.3.2 The Direct Product

The direct product of two graphs is defined as follows.

Definition 16. Let G and H be graphs. The direct product of G and H, denoted G×H, is the graph

defined by V (G×H) = V (G)× V (H) with (g1, h1)(g2, h2) ∈ E(G×H) if and only if g1g2 ∈ E(G)

and h1h2 ∈ E(H).

As in the Cartesian product, the notation × used for the direct product is motivated by considering

the product of two K2s.

1 2

1

2

(1,1) (2,1)

(1,2) (2,2)

Figure 1.18: K2 ×K2

The direct product behaves quite differently to the Cartesian product. For example, the

Cartesian product of two connected graphs is a connected graph. The case of K2 ×K2 above illus-

trates that the direct product of two connected graphs may not be a connected graph. Additionally,

the “copies” of the factors found in the Cartesian product are not as obvious in the direct product.

That is, if we fix the first component of a vertex in G � H and let the second component vary,

we induce a copy of H. If we fix the first component of a vertex in G × H and let the second

component vary, we induce an independent set. These differences, among others, make the direct

product interesting to work with. For illustrative purposes, the graph K3 ×K2 is given below.
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1 2 3

1

2

(1,1) (2,1)

(1,2) (2,2)

(3,1)

(3,2)

Figure 1.19: K3 ×K2

Before concluding, we note that in the literature, the Cartesian product is sometimes denoted

G ×H. In our work, the Cartesian product will always be denoted G �H and the direct product

will always be denoted by G×H.

For more on the Cartesian and direct product, and for more on product graphs in general,

see [18].
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Chapter 2

Unique minimum dominating sets

in some Cartesian product graphs

In our discussion of domination in Chapter 1, we saw an example of a graph that had two

distinct minimum dominating sets. In this chapter, we consider graphs having a unique minimum

dominating set. More precisely, we consider unique minimum dominating sets in graphs G � Kn

where G is a finite, simple, connected, nontrivial graph and Kn is the complete graph on n vertices.

In our discussion, we first characterize the unique γ-sets in such graphs in Section 2.3 by illustrating

the special form they take. Using this characterization, we then generalize a main result of [17]

in Section 2.4, thereby giving a method for recognizing a γ-set in G � Kn as unique when the

first factor G is a tree. In Section 2.5, we consider the ways two such graphs, each having a unique

minimum dominating set, can be combined while preserving a unique γ-set. We use these operations

in Section 2.6 to present the proof of our first main result, that if T is a nontrivial tree with minimum

dominating set D, then T �Kn has a unique minimum dominating set if and only if every vertex in

D has at least n + 1 external private neighbors. We thus characterize those trees whose Cartesian

product with a complete graph has a unique γ-set. In Section 2.7, we apply our results thus far to

graphs G�Kn1
�Kn2

� · · ·�Knr . These so-called “repeated products” share properties similar to

both the graphs G�Kn considered in the section, and the graphs G�H considered in Chapter 4.

Note that the work in this chapter is a more thorough discussion of the two publications [23] and

[24]. As such, the results in this chapter will not be specifically referenced to those papers.
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2.1 Introduction and background

The study of unique minimum vertex dominating sets began with Gunther, Hartnell, Markus

and Rall in [17] where the authors established a method for recognizing unique γ-sets in trees, and

provided a characterization of those trees which have a unique γ-set. Their work was later expanded

upon by Fischermann in [5] where block graphs were considered, and by Fischermann and Volkmann

in [10] where cactus graphs were considered. The maximum number of edges contained in graphs with

unique γ-sets was studied in [7] and [13]. We will continue this study in Chapter 4. For complexity

results concerning unique γ-sets, see [8]. Uniqueness of other types of dominating sets has also been

studied. For example, edge domination was studied in [36] and [9]. Distance k domination was

analyzed in [9]. Total domination was first studied in [20] and later in [6]. Mixed domination was

considered in [10], and paired domination was studied in [1]. Connections between unique minimum

dominating sets and unique irredundant and independent dominating sets was studied in [12], while

connections between maximum independent sets and unique upper dominating sets can be found

in [11]. Finally, properties of unique domination were used in [27] and [26] to study properties of

Roman dominating sets.

2.2 Notation

In Chapter 1, we defined pn(x,D) to be the set of private neighbors of x ∈ D with respect

to D, where D is an arbitrary subset of vertices. In this chapter, we will be particularly interested

in external private neighbors. Thus, for notational convenience, we let epn(x,D) denote the set of

external private neighbors of x ∈ D with respect to D. Recall that since every minimal dominating

set is a maximal irredundant set, if D is a minimum dominating set of some graph G, then pn(x,D) 6=

∅ for all x ∈ D. However, epn(x,D) may or may not be empty.

As we are considering Cartesian product graphs in this chapter, we will make extensive use

of the following. Given the graph G1 � G2, for i = 1, 2, let the projection πGi : G1 � G2 → Gi be

defined by πGi((u1, u2)) = ui. As an example, consider the graph P3 �K3 in Figure 2.1 below. Let

D be the set of white vertices, that is D = {(1, 0), (0, 2)}. We see that πP3(D) ⊆ V (P3) is the set

{0, 1}, while πK3
(D) ⊆ V (K3) is the set {0, 2}.
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1

2

(0,0)

(0,1)

(0,2)

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

(2,2)

0 1 2

Figure 2.1: Projections

We note that if A is a dominating set of G1 �G2, then πGi(A) dominates Gi for i = 1 and i = 2.

As further notational convenience, for (u1, u2) ∈ V (G1 � G2), we let G
(u1,u2)
i denote the

induced subgraph

G
(u1,u2)
i = 〈{(v1, v2) : πG3−i((v1, v2)) = πG3−i((u1, u2))}〉

and refer to it as the Gi-layer through (u1, u2). For example, in Figure 2.2 below, the G1-layer

through (v, 2) is the subgraph induced by the white vertices.

G1
u v w x

G2

1

2

(u,1) (v,1) (w,1) (x,1)

(u,2) (v,2) (w,2) (x,2)

Figure 2.2: T -layer illustration

For other graph product terminology not explicitly mentioned, we follow [18].

We first consider graphs G � Kn where G is a connected, finite, simple, nontrivial graph.
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As in Chapter 1, we assume that the vertex set of Kn is {1, 2, . . . , n} which we will denote by [n] for

brevity. For convenience, for u ∈ V (G) and for k ∈ [n], we denote the G-layer of G �Kn through

(u, k) as Gk. We let U denote the class of all finite simple graphs that have a unique minimum

dominating set. If G ∈ U , then we let UD(G) denote the unique γ-set for G.

With our notation now defined, our main result is the following.

Theorem 6. Let n be a positive integer, let T be a nontrivial tree, and let D be a γ-set of T . The

graph T �Kn is in U if and only if for all v ∈ D, |epn(v,D)| ≥ n+ 1.

2.3 Basic Structure

Suppose that G � Kn ∈ U . What, if anything, can we say about UD(G � Kn)? We begin

with the following observation.

Lemma 7. If G � Kn ∈ U , then there exists S ⊆ V (G) such that UD(G � Kn) = S × [n].

Proof. Denote UD(G�Kn) byD. Without loss of generality, suppose that (v, 1) ∈ D but (v, 2) /∈ D.

Let

D′ = {(x, 1) : (x, 2) ∈ D} ∪ {(y, 2) : (y, 1) ∈ D} ∪ {(w, j) : (w, j) ∈ D, 3 ≤ j ≤ n}.

We claim that D′ is also a γ-set for G � Kn.

• If x ∈ πG(D), then by the definition of D′, it follows that the Kn-layer through (x, 1) is

contained in N [D′].

• If x 6∈ πG(D), then for 1 ≤ j ≤ n, each (x, j) is dominated by some (vj , j) in D. Thus, (x, 1)

is dominated by (v2, 1) in D′, (x, 2) is dominated by (v1, 2) in D′, and (x, j) is dominated by

(vj , j) in D′ for 3 ≤ j ≤ n. Hence, every vertex in the Kn-layer through (x, 1) is contained in

N [D′].

Thus, we see that D′ is a γ-set of G � Kn distinct from D, proving our result.

This result can be used to quickly determine that a graph G�Kn is not an element of U .

For example, the graph P3 �K2 is shown below in Figure 2.3, with a γ-set indicated in white. Since

this γ-set is not of the form S × [2] for any S ⊆ V (P3), we immediately know that P3 � K2 6∈ U .
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Notice, however, that {(2, 1), (2, 2)} is also a γ-set of P3 � K2 and it is of the form S × [2] with

S = {2}. Thus, having a γ-set of the form S × [n] for S ⊆ V (G) does not imply that G�Kn ∈ U .

1 2 3

1

2

(1,1) (2,1) (3,1)

(1,2) (2,2) (3,2)

Figure 2.3: P3 �K2

Our first result also has the following corollary.

Corollary 8. If G � Kn ∈ U , then γ(G � Kn) is a multiple of n.

As illustrated in P3 �K2 above, γ(P3 �K2) = 2 is a multiple of 2. Thus, our corollary demonstrates

that knowledge of γ(G�Kn) may be sufficient to deduce that G�Kn 6∈ U , however, more knowledge

may be required.

Given Lemma 7, we say that any subset A of V (G � Kn) such that A = S × [n] for some

subset S of V (G) has the stacked property. Before proceeding to our next result, we recall the

following lemma from [17].

Lemma 9 ([17]). Let G be a graph with a unique γ-set D. Let uv be any edge in G other than an

edge connecting a vertex in D to one of its private neighbors. If G− is the graph obtained from G

by deleting the edge uv, then G− has D as the unique γ-set.

We now consider the following consequence of Lemma 7.

Proposition 10. If G � Kn ∈ U , then G ∈ U . Moreover, G � Km ∈ U for 1 ≤ m ≤ n.

Proof. Denote UD(G � Kn) by D. By Lemma 7, there exists S ⊆ V (G) such that D = S × [n].

Thus, for any (x, i) ∈ D, the external private neighbors of (x, i) with respect to D all belong to Gi.

Define H to be the graph

G � Kn − {(v, n)(v, j) : v ∈ V (G), 1 ≤ j ≤ n− 1}.
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We see that H is isomorphic to (G � Kn−1) ∪ G. By Lemma 9, D is still the unique γ-set for H.

The proposition follows by induction.

Thus, we see that if G�Kn ∈ U , then UD(G�Kn) = UD(G)× [n] and thus, πG(UD(G�Kn)) =

UD(G). Once again, P3 � K2 illustrates that the converse of Proposition 10 does not hold since

P3 ∈ U , however P3 �K2 6∈ U .

In [17], the authors prove the following lemma for general graphs.

Lemma 11 ([17]). If G has a unique γ-set D, then every vertex in D that is not an isolated vertex

has at least two private neighbors other than itself.

In our specialized setting, we can improve upon this bound as follows.

Suppose that A ⊆ V (G � Kn) has the stacked property and that {v} × [n] ⊆ A. If

(u, j) ∈ epn((v, j), A) for some j, then (u, i) ∈ epn((v, i), A) for 1 ≤ i ≤ n. Bearing this in

mind, suppose that D is a γ-set of G � Kn with the stacked property. Additionally, suppose that

(v, 1) ∈ D has epn((v, 1), D) = {(u1, 1), (u2, 1), . . . , (uj , 1)} for some j ≤ n. This implies that

epn((v, i), D) = {(u1, i), (u2, i), . . . , (uj , i)} for 2 ≤ i ≤ n. The set D′ defined by

D′ =

(
D − {(v, 1), (v, 2), . . . , (v, j)}

)
∪ {(u1, 1), (u2, 2), . . . , (uj , j)}

is a γ-set of G � Kn distinct from D. Thus, we have the following.

Lemma 12. If G � Kn ∈ U , then for each element v ∈ UD(G � Kn),

|epn(v, UD(G � Kn))| ≥ n+ 1.

The graph K1,n+1 �Kn demonstrates that this “bound” is sharp. That is, K1,n+1�Kn ∈ U

and each vertex v ∈ UD(K1,n+1 � Kn) has exactly n + 1 external private neighbors. The family

of graphs Km � Kn, m ≥ n, demonstrates that no condition on the number of external private

neighbors for vertices in a minimum dominating set is, by itself, sufficient to force the product with

Kn to have a unique γ-set. For use in the proof of Theorem 21 to follow, we note here the following.

Observation 13. If v ∈ V (G) has at least n+ 1 leaf neighbors, then {v}× [n] is contained in every

γ-set of G � Kn.

Thus far, we have considered the structural properties of UD(G�Kn) when G�Kn ∈ U .

We now consider the structural properties of G �Kn when G �Kn ∈ U . To that end, in [17], the
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authors prove the following lemma.

Lemma 14 ([17]). Let D be a γ-set of a graph G. If for every x ∈ D, γ(G− x) > γ(G), then D is

the unique γ-set of G.

The following statement is a generalization of this result to our setting.

If G � Kn has a γ-set D satisfying the stacked property such that for every v ∈ πG(D),

γ(G � Kn − ({v} × [n])) > γ(G � Kn), then D is the unique γ-set of G � Kn.

This statement, however, does not hold for a general product G � Kn. The graph G illustrated in

Figure 2.4 provides a counterexample. Define H to be the graph G � K2. The set D defined by

D = {1, 2, 3, 4, 5, 6} × {1, 2}

is a γ-set satisfying the stacked property such that for every v ∈ πG(D), γ(H − {(v, 1), (v, 2)}) >

γ(H). However, D is not a unique γ-set since the set

{(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1), (5, 1), (6, 1), (10, 2), (14, 2), (18, 2)}

is also a γ-set of H.
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Figure 2.4: Counterexample
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In the next section, we will show that if G is a tree, then the conditions above do imply

that G � Kn ∈ U . The following lemma will be used in the proof.

Lemma 15. If G � Kn has a γ-set D satisfying the stacked property such that for every v ∈ πG(D),

γ(G � Kn − ({v} × [n])) > γ(G � Kn), then for all y ∈ D, |epn(y,D)| ≥ n+ 1.

Proof. Let v ∈ πG(D). Suppose for some j ≤ n that

epn((v, 1), D) = {(u1, 1), (u2, 1), . . . , (uj , 1)}.

Since D satisfies the stacked property,

epn((v, i), D) = {(u1, i), (u2, i), . . . , (uj , i)}

for 1 ≤ i ≤ n. The set

(
D − ({v} × [n])

)
∪ {(u1, 1), (u2, 2), . . . (uj , j), (uj , j + 1), . . . , (uj , n)}

is a dominating set of G � Kn − ({v} × [n]) of cardinality equal to |D|, a contradiction. Thus, our

result follows.

Before we proceed to our first theorem, we recall the following two lemmas from [17].

Lemma 16 ([17]). If G is a graph that has a unique γ-set D, then for any x ∈ G−D, γ(G− x) =

γ(G).

Lemma 17 ([17]). If G is a graph that has a unique γ-set D, then γ(G− x) ≥ γ(G) for all x ∈ D.

We can now generalize these lemmas to our setting.

Lemma 18. Let G � Kn ∈ U and let v 6∈ πG(UD(G � Kn)). For any subset B of {v} × [n],

γ(G � Kn −B) = γ(G � Kn).

Proof. Suppose that γ(G � Kn − B) < γ(G � Kn). This implies that G � Kn − B is dominated

by a set D′ with |D′| < |UD(G � Kn)|. However, for any (v, i) ∈ B, D′ ∪ {(v, i)} is a dominating

set of G � Kn distinct from UD(G � Kn) of cardinality less than or equal to |UD(G � Kn)|, a

contradiction. Thus, γ(G � Kn −B) ≥ γ(G � Kn). Since UD(G � Kn) dominates G � Kn −B,

we see that γ(G � Kn −B) = γ(G � Kn).
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Lemma 19. Let G � Kn ∈ U and let v ∈ πG(UD(G � Kn)). For any subset B of {v} × [n],

γ(G � Kn −B) ≥ γ(G � Kn).

Proof. For the sake of contradiction, suppose that γ(G � Kn − B) < γ(G � Kn) for some B ⊆

{v} × [n]. If D′ is a γ-set of G � Kn − B, then |D′| < |UD(G � Kn)| and D′ dominates all of

the external private neighbors of the vertices in B with respect to UD(G � Kn). However, for any

(v, i) ∈ B, D′ ∪ {(v, i)} is a γ-set of G � Kn and UD(G � Kn) 6= D′ ∪ {(v, i)}, a contradiction.

2.4 Trees

In this section, we restrict our attention to graphs T � Kn where T is a nontrivial tree. We

prove a set of equivalences which can be used to determine whether a γ-set in T � Kn is unique.

This result, formulated as Theorem 21 below, is a generalization of the following theorem from [17],

and as such, the notation and proof structure are similar.

Theorem 20 ([17]). If T is a tree of order at least 3, then the following conditions are equivalent:

1. T has a unique γ-set D.

2. T has a γ-set D for which every vertex x ∈ D has at least two private neighbors other than

itself.

3. T has a γ-set D for which every vertex x ∈ D has the property that γ(T − x) > γ(T ).

Theorem 21. Let T be a nontrivial tree. The following conditions are equivalent.

1. T � Kn ∈ U .

2. T � Kn has a stacked γ-set D such that for all v ∈ D, |epn(v,D)| ≥ n+ 1.

3. T � Kn has a stacked γ-set A such that for every v ∈ πT (A), γ(T � Kn − ({v} × [n])) >

γ(T � Kn).

Proof. By Lemma 7 and Lemma 12, we see that statement (1) implies statement (2). We first show

that statement (2) implies statement (1). We proceed by induction on |V (T )|.

The base case is given by T = K1,n+1 where the result holds. We note that for any other

tree T on n + 2 vertices, statement (2) does not hold for T � Kn. Suppose then that the result
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has been shown whenever |V (T )| < r. Let T be a tree on r vertices for which there exists a subset

S ⊆ V (T ) such that S × [n] is a γ-set for T � Kn and such that every element v ∈ S × [n] satisfies

|epn(v, S × [n])| ≥ n+ 1. To simplify notation, we let D = S × [n] and H = T � Kn. Suppose that

H − D contains two vertices (u, 1), (v, 1) which are connected by the edge (u, 1)(v, 1). Let H(u)

be the component of (T − uv) � Kn containing (u, 1), and let H(v) be the component containing

(v, 1). Let D(u) = D ∩ V (H(u)) and D(v) = D ∩ V (H(v)). We first claim that D(u) and D(v)

are γ-sets for H(u) and H(v) respectively. To see this, note that D(u) and D(v) dominate H(u)

and H(v). Additionally, if H(u), for example, has a γ-set A of cardinality smaller than |D(u)|, then

A∪D(v) is a dominating set of T � Kn smaller than D, a contradiction. Since all private neighbors

with respect to D are preserved in the individual components, our induction hypothesis implies that

D(u) and D(v) are the unique γ-sets for H(u) and H(v) respectively.

Assume now that D′ is a γ-set of H distinct from D. If D′ ∩ ({u, v} × [n]) = ∅ then

D′ ∩ V (H(u)) = D(u) and D′ ∩ V (H(v)) = D(v), a contradiction. Thus, D′ ∩ ({u, v} × [n]) 6= ∅.

• If D′ ∩ ({u} × [n]) 6= ∅, then D′ ∩ V (H(u)) dominates H(u) in which case |D′ ∩ V (H(u))| >

|D(u)|. Similarly, if D′ ∩ ({v} × [n]) 6= ∅, then |D′ ∩ V (H(v))| > |D(v)|.

• If D′ ∩ ({u} × [n]) = ∅ but D′ ∩ ({v} × [n]) 6= ∅, then certainly D′ ∩ V (H(u)) dominates

H(u) − ({u} × [n]) in which case by Lemma 18, |D′ ∩ V (H(u))| ≥ |D(u)|. Similarly, if

D′ ∩ ({v} × [n]) = ∅ but D′ ∩ ({u} × [n]) 6= ∅, then |D′ ∩ V (H(v))| ≥ |D(v)|.

Thus, since D′ ∩ ({u, v} × [n]) 6= ∅, we see that |D′| = |D′ ∩ V (H(u))|+ |D′ ∩ V (H(v))| > |D(u)|+

|D(v)| = |D|, a contradiction. Hence, in this case, D is the unique γ-set for H.

Our last case assumes there are no edges in H of the form (u, 1)(v, 1) with (u, 1), (v, 1) ∈

V (H)−D. In this case, let (x, i) ∈ D. If (y, i) is an external private neighbor of (x, i) with respect

to D, then y is a leaf of T . Hence, x ∈ V (T ) has at least n + 1 leaf neighbors. As observed above,

this implies that {x} × [n] is contained in every γ-set of H. Since (x, i) ∈ D was arbitrary, we see

that D is the unique γ-set of H. Hence, we have now shown that (1) and (2) are equivalent.

Assume now that statement (3) holds. By Lemma 15, statement (2) holds. Our work above

then implies that statement (1) also holds. Thus, we next prove that statement (1) implies statement

(3).

Let T � Kn ∈ U . Let D = UD(T � Kn) and let H = T � Kn. By Lemma 7, there exists

S ⊆ V (T ) such that D = S × [n]. Suppose that {v} × [n] ⊆ D. Partition N((v, 1)) ∩ V (G1) as
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epn((v, 1), D) ∪Q((v, 1)). Let

epn((v, 1), D) = {(p1, 1), (p2, 1), . . . , (pm, 1)}

and

Q((v, 1)) = {(q1, 1), (q2, 1), . . . , (qk, 1)}.

We know that m ≥ n + 1 and that k ≥ 0. Let H(pi), respectively H(qj), be the component of

H − ({v}× [n]) containing (pi, 1), respectively (qj , 1). For 1 ≤ i ≤ m, let D(pi) = D∩V (H(pi)) and

define D(qj) similarly. Since T is a tree, we see that

γ(H) = |D| = n+

m∑
i=1

|D(pi)|+
k∑
j=1

|D(qj)|.

Since H − ({v} × [n]) is the disjoint union

[
m⋃
i=1

H(pi)

]⋃ k⋃
j=1

H(qj)

 ,
we can calculate γ(H − ({v} × [n])) by calculating γ(H(pi)) and γ(H(qj)) for each i and j and

summing the results.

First, we consider H(pi). If V (H(pi)) = {pi} × [n], then D(pi) = ∅. In this case, it is easy

to see that γ(H(pi)) = 1 = |D(pi)|+ 1.

If V (H(pi)) 6= {pi} × [n], then D(pi) 6= ∅. Moreover, for each j such that 1 ≤ j ≤ n, no

neighbor of (pi, j) in the graph H(pi) is in D(pi), since (pi, j) ∈ epn((v, j), D). Thus, D(pi) is not

a γ-set for H(pi) since it does not dominate (pi, 1). Nevertheless, suppose that γ(H(pi)) = |D(pi)|,

and let B be a γ-set of H(pi). It follows that (D−D(pi))∪B is a dominating set of H of cardinality

equal to |D|, contradicting the uniqueness of D. Hence, γ(H(pi)) > |D(pi)|. Since D(pi) ∪ {(pi, 1)}

dominates H(pi), we see, once again, that γ(H(pi)) = |D(pi)|+ 1.

Next, we consider H(qj). Since (qj , i) 6∈ epn((v, i), D) for 1 ≤ i ≤ n, we see that D(qj) is a

γ-set of H(qj). Moreover, for each v ∈ D(qj), |epn(v,D(qj))| ≥ n + 1. Thus, D(qj) is the unique

γ-set of H(qj), giving us that γ(H(qj)) = |D(qj)|.
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Thus, we can now compute γ(H − ({v} × [n])):

γ(H − ({v} × [n])) =

m∑
i=1

γ(H(pi)) +

k∑
j=1

γ(H(qj))

=

m∑
i=1

(|D(pi)|+ 1) +

k∑
j=1

|D(qj)|

= γ(H) +m− n

≥ γ(H) + (n+ 1)− n

= γ(H) + 1

> γ(H).

Thus, we see that statement (1) implies statement (3), and our proof is complete.

This result is useful in that if we are given a γ-set in a graph T �Kn, we can immediately

determine whether T �Kn ∈ U simply by analyzing the γ-set. That is, all we must do is determine

if the γ-set is stacked, and if so, count the number of external private neighbors for each vertex.

However, there is a problem. If we are simply given a graph T �Kn, to use this theorem, we must

first find a γ-set for the graph. This may be difficult to do. Thus, this theorem is of limited use on

its own. In Section 2.6 to follow, we will use this result to show that finding a γ-set in T � Kn is

not required to determine whether T � Kn ∈ U . We will show that analysis of a γ-set of T will

suffice.

2.5 Combining Graphs With Unique γ-sets

Suppose that G1 �Kn and G2 �Kn have unique minimum dominating sets. In this section,

we consider the ways in which these two graphs can be combined to produce a new graph having a

unique minimum dominating set. We discuss four operations. Throughout this section, G1 � Kn

and G2 � Kn, denoted H1 and H2 respectively, are graphs in U with G1 and G2 nontrivial. Let D1

and D2 denote the sets UD(G1 � Kn) and UD(G2 � Kn) respectively.

Operation 1. If x 6∈ πG1(D1) and y 6∈ πG2(D2), then ((G1 ∪G2) + xy) � Kn ∈ U and UD(((G1 ∪

G2) + xy) � Kn) = D1 ∪D2.

Proof. Let H denote the graph ((G1 ∪ G2) + xy) � Kn. First, we see that D1 ∪D2 dominates all
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of H. Let D be a γ-set for H. It follows that

|D| ≤ |D1 ∪D2| = |D1|+ |D2|.

Without loss of generality, suppose that |D ∩ V (H1)| ≤ |D1|. Since the only vertices of H1 that

could be dominated from outside of H1 are elements of {x} × [n], we see that either D ∩ V (H1)

dominates all of H1, or D ∩ V (H1) fails to dominate a subset B of {x} × [n].

First, suppose that D ∩ V (H1) dominates all of H1. Since H1 has a unique γ-set, and since

we’re assuming |D ∩ V (H1)| ≤ |D1|, we have that D ∩ V (H1) = D1. However, if D ∩ V (H1) = D1,

then we also have D∩V (H2) = D2 since x 6∈ πG1(D1). Thus, in this case, we have that D = D1∪D2.

Now suppose that D ∩ V (H1) fails to dominate a subset B of {x} × [n]. By Lemma 18, we

have that |D ∩ V (H1)| ≥ |D1|. Since |D| ≤ |D1| + |D2|, we have that |D ∩ V (H2)| ≤ |D2|. Note,

however, that D∩V (H2) intersects {y}× [n], in which case we have a set of cardinality at most |D2|

that is distinct from D2 and dominates H2. This contradicts the uniqueness of D2. Our result now

follows.

We have seen that K1,3 �K2 ∈ U . Operation 1 implies that we can connect two copies of

K1,3 �K2 as in the Figure 2.5 below, and the result is still in U .

Figure 2.5: Operation 1 example

Operation 2. Let x ∈ πG1(D1) and y ∈ πG2(D2). If u is a new vertex in neither G1 nor G2, then

((G1 ∪G2 ∪ {u}) + {ux, uy}) � Kn ∈ U and UD(((G1 ∪G2) + {ux, uy}) � Kn) = D1 ∪D2.

Proof. Let H denote the graph ((G1 ∪ G2 ∪ {u}) + {ux, uy}) � Kn. First, note that D1 ∪ D2

dominates H. If D is a γ-set of H with |D| < |D1| + |D2|, then D ∩ ({u} × [n]) 6= ∅. Sup-

pose that {(u, i1), (u, i2), . . . , (u, ik)} ⊆ D. In this case, the vertices in {(x, i1), (x, i2), . . . , (x, ik)}

and {(y, i1), (y, i2), . . . , (y, ik)} need not be dominated from H1 and H2 respectively. However,

by Lemma 19, we know that |D ∩ V (H1)| ≥ |D1| and that |D ∩ V (H2)| ≥ |D2|. Thus, |D| ≥
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|D1| + |D2| + k > |D1 ∪ D2|. Thus, no γ-set of H intersects {u} × [n]. Hence, any γ-set of H

intersects each of V (H1) and V (H2) in a γ-set, in which case D = D1 ∪D2.

A visual example of Operation 2 is given in Figure 2.6

(u,1)

(u,2)

Figure 2.6: Operation 2 example

Before we discuss the next operation, we need the following lemma.

Lemma 22. Let T be a tree, and let T � Kn ∈ U . If (v, i) 6∈ UD(T � Kn) is adjacent to at least

two elements of UD(T � Kn), then (T − v) � Kn ∈ U and UD((T − v) � Kn) = UD(T � Kn).

Proof. Let H ′ denote the graph (T−v) � Kn and let D denote the set UD(T � Kn). By Lemma 18,

we know that γ(H ′) = γ(T � Kn). Thus, D is a γ-set for H ′. We must show that D is the only

γ-set for H ′. Note that the removal of (v, 1), (v, 2), . . . , (v, n) from T � Kn breaks T � Kn into

k ≥ 2 components; call them H1, H2, . . . ,Hk.

We claim that for i = 1, 2, . . . k, Di = D ∩ V (Hi) is the unique γ-set for Hi. Without loss

of generality, consider D1. Clearly D1 is a dominating set for H1. If D′1 were a smaller dominating

set of H1, then D′1 ∪D2 ∪ · · · ∪Dk would be a smaller γ-set for T � Kn. Thus, D1 is a γ-set. By

the same logic, D1 is the unique γ-set for H1.

Thus, each Hi has Di as its unique minimum dominating set, in which case H ′ has D =

D1 ∪D2 ∪ · · · ∪Dk as its unique γ-set.

Operation 3. Let G2 be a tree. If x ∈ πG1(D1), y 6∈ πG2(D2), and y is a neighbor of at least two

vertices in πG2
(D2), then ((G1 ∪G2) +xy) � Kn ∈ U and UD(((G1 ∪G2) +xy) � Kn) = D1 ∪D2.

Proof. Let H denote the graph ((G1 ∪G2) +xy) � Kn. Note that D1 ∪D2 dominates H. Let D be

a γ-set of H. Suppose that ({y} × [n]) ∩D 6= ∅. This implies that some subset of {x} × [n] will be

dominated from outside of H1. By Lemma 19, we still have that |D ∩ V (H1)| ≥ |D1|. Additionally,

D∩V (H2) dominates H2, in which case |D∩V (H2)| > |D2| since D2 is the unique γ-set for H2 and
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y 6∈ πG2(D2). Thus, we have |D| > |D1 ∪D2|. This implies that no γ-set of H intersects {y} × [n].

Hence, if D is a γ-set for H, then D ∩ V (H1) = D1. Lemma 22 then implies that D ∩ V (H2) = D2.

Thus, D1 ∪D2 is the unique γ-set for H.

An example of Operation 3 is shown below.

Figure 2.7: Operation 3 example

Operation 4. Let G1 and G2 be trees. If x ∈ πG1(D1) and y ∈ πG2(D2), then ((G1∪G2)+{xy}) �

Kn ∈ U and UD(((G1 ∪G2) + {xy}) � Kn) = D1 ∪D2.

Proof. Once again, let H denote the graph ((G1 ∪G2) + {xy}) � Kn. Since D1 ∪D2 dominates H,

we have that γ(H) ≤ |D1 ∪D2| = |D1|+ |D2|. Let A denote the set {x} × [n], let B denote the set

{y} × [n], and suppose that D is a γ-set for H.

• If A ⊆ D and B ⊆ D, then D ∩ V (H1) and D ∩ V (H2) are γ-sets for H1 and H2, respectively,

in which case D = D1 ∪D2.

• Suppose that D ∩ A = ∅. This implies that D ∩ V (H1) dominates H1 − A. However, by

Theorem 21, we know that γ(H1 − A) > γ(H1) = |D1|. Additionally, in this case D ∩ V (H2)

is a γ-set of H2 implying that D ∩H2 = D2. Thus, we have |D| > |D1| + |D2| = |D1 ∪D2|.

The same contradiction arises if D ∩B = ∅.

• This leaves us with one case to consider. Without loss of generality, suppose that 0 < |D∩A| <

|A| and that D ∩ B 6= ∅. In this case, D ∩ V (H1) dominates H1 and D ∩ V (H2) dominates

H2. However, since D1 and D2 are the unique γ-sets for H1 and H2 respectively, and since
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A ⊆ D1, we have that |D ∩ V (H1)| > |D1| and that |D ∩ V (H2)| ≥ |D2|. Thus, we have

|D| > |D1 ∪D2|, a contradiction.

Thus, we have D = D1 ∪D2, which implies D1 ∪D2 is the unique γ-set for H.

Our final visual example, of Operation 4, is below.

Figure 2.8: Operation 4 example

2.6 First Main Result

We are now able to prove our first main result, which we restate for your convenience.

Theorem 6. Let n be a positive integer, let T be a nontrivial tree, and let D be a γ-set of T . The

graph T �Kn is in U if and only if for all v ∈ D, |epn(v,D)| ≥ n+ 1.

Proof. First, suppose that T�Kn has a unique γ-set, denoted UD. Since T�Kn ∈ U , Proposition 10

implies that T also has a unique γ-set. Hence, our γ-set D of T is the unique γ-set of T . Moreover,

by our observations following Proposition 10, we see that UD = D × V (Kn). By Lemma 12, for

every element w ∈ UD, |epn(w,UD)| ≥ n+ 1. Since UD satisfies the stacked property, this implies

that every element v ∈ D also satisfies |epn(v,D)| ≥ n+ 1. Thus, we see that if T �Kn ∈ U , then

for all v ∈ D, |epn(v,D)| ≥ n+ 1.

Now suppose that for all v ∈ D, |epn(v,D)| ≥ n + 1. First note that since n is a positive

integer, every vertex v ∈ D has at least two private neighbors other than themselves. Thus, by

Theorem 20, D is the unique γ-set of T . Let H be the graph T �Kn, and let D′ = D × [n]. Since

D is a dominating set of T , D′ is clearly a dominating set of H. Futhermore, since for all v ∈ D,

|epn(v,D)| ≥ n+ 1, we see that for all w ∈ D′, |epn(w,D′)| ≥ n+ 1. Thus, if we can prove that D′

is a γ-set for H, then Theorem 21 will imply that D′ is the unique γ-set for H. We show this by

induction on γ(T ) = |D|.
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The base case is given by γ(T ) = 1. If γ(T ) = 1, then T = K1,m with m ≥ n+ 1 where the

result holds. Thus, assume the result holds whenever γ(T ) < r. Suppose that γ(T ) = r. Consider

a diametral path in T , call it v1v2 · · · vk. Note that vk is a leaf and is not an element of D. This

implies that vk−1 ∈ D. Since vk−1 has at least n+1 external private neighbors with respect to D, we

see that vk−1 is adjacent to at least n− 1 leaves besides vk. Let A be the set {vk−1} ∪ epn(vk−1, D)

and let B = {v ∈ N(vk−1) : v 6∈ D, |N(v)∩D| ≥ 2}. We note that B equals either the empty set or

{vk−2}. By Theorem 20, {vk−1} and D−{vk−1} are the unique minimum dominating sets for T 〈A〉

and T − (A∪B) respectively. By our induction hypothesis, {vk−1}× [n] and D′− ({vk−1}× [n]) are

the unique minimum dominating sets for T 〈A〉 � Kn and (T − (A ∪ B)) � Kn respectively. Our

graph H can be reconstructed from T 〈A〉 � Kn and (T − (A∪B)) � Kn by performing at least one

of the operations discussed in Section 5 above. Hence, not only is D′ a γ-set for H, but it is also

the unique γ-set for H.

Theorem 6 implies that in order to determine whether T � Kn ∈ U it is sufficient to

consider T alone through the following procedure. First, find a γ-set in T , call it D. Next, for

each vertex v ∈ D, determine the number of external private neighbors v has with respect to D.

Let m = minv∈D |epn(v,D)|. If m = 1, then Theorem 20 implies that T 6∈ U . If T 6∈ U , then

T � Kn 6∈ U by Proposition 10. If m ≥ 2, then Theorem 20 implies that D is the unique γ-set

of T , and Theorem 6 implies that T � Kn ∈ U if and only if m ≥ n + 1. Notice that this is an

improvement upon Theorem 21 since finding a γ-set in T can be done in linear time (see [15]). Thus,

we ultimately see that the problem of determining for which Kn, T � Kn has a unique minimum

dominating set can be solved in polynomial time.

We now consider an example of the procedure outlined above. Consider the tree T in

Figure 2.9 below. The set D = {u, v, w} is a γ-set for T . We see that |epn(u,D)| = 3, |epn(v,D)| = 5,

and |epn(w,D)| = 6. Thus, according to Theorem 6, T �K1, and T �K2 each have a unique γ-set.

However, T �Kn 6∈ U for n ≥ 3.
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d = |V (T )| n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9
2 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0
4 1 1 0 0 0 0 0 0 0
5 1 1 1 0 0 0 0 0 0
6 3 1 1 1 0 0 0 0 0
7 4 1 1 1 1 0 0 0 0
8 6 3 1 1 1 1 0 0 0
9 11 4 1 1 1 1 1 0 0
10 22 6 3 1 1 1 1 1 0
11 38 7 4 1 1 1 1 1 1
12 75 13 6 3 1 1 1 1 1
13 153 23 7 4 1 1 1 1 1
14 308 40 9 6 3 1 1 1 1
15 616 61 14 7 4 1 1 1 1
16 1310 106 25 9 6 3 1 1 1
17 2776 188 41 10 7 4 1 1 1
18 5884 351 63 16 9 6 3 1 1
19 12697 609 91 26 10 7 4 1 1
20 27810 1073 140 43 12 9 6 3 1
21 60771 1936 229 64 17 10 7 4 1

Table 2.1: The number of trees T on d vertices for which T �Kn ∈ U

u v
w

Figure 2.9: Tree Example

By applying this procedure to every tree on d vertices, we can enumerate the number of

trees on d vertices for which T � Kn ∈ U . Table 2.1 presents the results of this work. We invite

the interested reader to determine a closed form expression for the number of trees on d vertices for

which T �Kn ∈ U .
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2.7 Repeated Products

Up to this point, we have only considered unique γ-sets in G � Kn. In this section, we

consider graphs G � Kn1
� Kn2

� · · · � Knr . A Cartesian product of complete graphs is called

a Hamming graph. Thus, we can alternatively say that in this section we are considering unique

minimum dominating sets in the Cartesian product of a nontrivial graph and a Hamming graph.

As notational convenience, if the Cartesian product of m Kn factors is performed, we simplify the

notation Kn �Kn � · · · �Kn to Km
n . According to this convention, the n-dimensional hypercube

Qn is denoted Kn
2 . Our first result is the following.

Lemma 23. If G�Km
n ∈ U , then UD(G�Km

n ) = UD(G)× V (Km
n ).

Proof. As noted just after the proof of Proposition 10, if G�Kn ∈ U , then UD(G�Kn) = UD(G)×

[n]. Thus, we see that

UD(G�Km
n ) = UD(G�Km−1

n �Kn) = UD(G�Km−1
n )× [n].

By induction, we see that UD(G�Km
n ) = UD(G)× V (Km

n ).

Additionally, since the Cartesian product is both commutative and associative, Proposi-

tion 10 gives us the following result.

Proposition 24. If G�Km
n ∈ U , then G�Kn1 �Kn2 � · · · �Knr ∈ U for 1 ≤ ni ≤ n and

1 ≤ i ≤ r ≤ m.

Proof. Suppose that G�Km
n ∈ U . By associativity, (G�Km−1

n )�Kn ∈ U . By Proposition 10, we

then have that (G�Km−1
n )�Kn1

∈ U so long as 1 ≤ n1 ≤ n. By commutativity, we have that

(G�Kn1
)�Km−1

n ∈ U . By induction, our result follows.

As a result of Proposition 24, in order to determine whether G�Kn1 �Kn2 � · · · �Knr ∈

U , it may suffice to consider whether G�Kr
n ∈ U where n = max{n1, n2, . . . , nr}. Thus, we are

motivated to define the following parameter.

Definition 17. Let G ∈ U and let U �
n (G) denote the integer m such that G�Km

n ∈ U , but

G�Km+1
n 6∈ U . If G�Km

n 6∈ U for any m ≥ 1, define U �
n (G) = 0, while if G�Km

n ∈ U for all

m ≥ 1, define U �
n (G) =∞.
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As an illustration of this definition, consider the following examples. The graph K1,2 ∈ U

but K1,2 �K2 6∈ U (see Figure 2.10). Thus, U �
2 (K1,2) = 0. When we consider the graph K1,3, we

see that K1,3 �K2 ∈ U but K1,3 �K2
2 6∈ U . Hence, U �

2 (K1,3) = 1. Finally, when considering the

graph K1,4, we see that K1,4 �K2
2 ∈ U , but K1,4 �K3

2 6∈ U . Thus, U �
2 (K1,4) = 2.

K1,2 K1,2 �K2

Figure 2.10: K1,2 ∈ U but K1,2 �K2 6∈ U

We now determine U�
n (K1,p) for n ≥ 2. For notational purposes, let V (K1,p) = {0, 1, . . . , p}

with 0 denoting the support vertex (non-leaf). Additionally, denote the vertices of Km
n as strings of

length m over the alphabet [n]. By the jth cube of K1,p�Km
n , we mean the subgraph of K1,p�Km

n

induced by {j} × V (Km
n ). The zeroth cube will be referred to as the central cube, while all other

cubes will be referred to as the outer cubes.

Proposition 25. If 2 ≤ p ≤ n, then U �
n (K1,p) = 0. If p > n ≥ 2, then U �

n (K1,p) =
⌊
p−2
n−1

⌋
.

Proof. By Theorem 6, we see that if 2 ≤ p ≤ n, then K1,p�Kn 6∈ U . Hence, in this instance,

U �
n (K1,p) = 0 as claimed.

Suppose then that p > n. Let m = b p−2
n−1c, and consider K1,p�Km

n . Let D be the set

{0}×V (Km
n ), and note that D is certainly a dominating set for K1,p�Km

n . Suppose that D′ is a γ-

set for K1,p�Km
n and that for some k > 0, |D−D′| = k. In Km

n , every vertex is of degree (n−1)m.

Thus, D′ contains at least d k
(n−1)m+1e vertices from each of the p outer cubes of K1,p�Km

n . Hence,

we see that

|D′| ≥ nm − k + (p)

⌈
k

(n− 1)m+ 1

⌉
.

Since m < p−1
n−1 , we see that (n− 1)m+ 1 < p in which case (p)

⌈
k

(n−1)m+1

⌉
> k. Hence |D′| > nm,

a contradiction. Thus, D is the unique γ-set for K1,p�Km
n .

Now consider K1,p�Km+1
n . Once again, D = {0} × V (Km+1

n ) is a dominating set for

37



K1,p�Km+1
n . Construct a new set D′ from D by deleting (0, 11 · · · 1) and all of its neighbors in the

central cube from D. Since (m + 1) ≥ 2, |D′| > 0. Thus, the only vertex of the central cube not

dominated by D′ is (0, 11 · · · 1). Let D′′ = D′ ∪ {(i, 11 · · · 1) | 1 ≤ i ≤ p}. D′′ is a dominating set for

K1,p�Km+1
n . Additionally, we see that

|D′′| = |D| − [1 + (n− 1)(m+ 1)] + p

≤ |D| −
[
1 + (n− 1)

p− 1

n− 1

]
+ p

= |D| − p+ p

= |D|.

Hence, we have constructed a dominating set D′′ distinct from D of cardinality at most |D|. Thus,

K1,p�Km+1
n cannot have a unique γ-set by Lemma 23. Our result now follows.

Proposition 25 provides us with the following result.

Lemma 26. If G�Km
n ∈ U , then for all v ∈ UD(G�Km

n ), |epn(v, UD(G�Km
n ))| ≥ m(n−1)+2.

Proof. For notational convenience, let D denote the set UD(G�Km
n ) and let D′ denote the set

UD(G). Recall that by Lemma 23, D = D′×V (Km
n ). This implies that if v ∈ D′ with epn(v,D′) =

{p1, p2, . . . , pk}, then for all x ∈ V (Km
n ), (v, x) ∈ D with epn((v, x), D) = {(p1, x), (p2, x), . . . , (pk, x)}.

For the sake of contradiction, suppose that (u,w) ∈ D has epn((u,w), D) = {(p1, w), (p2, w), . . . , (pj , w)}

for some j < m(n−1) + 2. Since U �
n (K1,j) < m, this implies that the subgraph of G�Km

n induced

by {u, p1, p2, . . . , pj} × V (Km
n ) has a γ-set, call it B, distinct from {u} × V (Km

n ). In that case,

(D − ({u} × V (Km
n ))) ∪ B is a dominating set for G�Km

n distinct from D of cardinality at most

|D|, a contradiction.

This lemma, along with Theorem 6 allows us to classify the trees T for which T �Km
n has

a unique γ-set. For notational purposes, if v ∈ V (T ), then we let the vth cube of T �Km
n denote

the subgraph of T �Km
n induced by {v} × V (Km

n ).

Theorem 27. Let n ≥ 2, m ≥ 1, and let T be a tree. The Cartesian product T �Km
n has a unique

γ-set if and only if T �Km(n−1)+1 has a unique γ-set.

Proof. First, suppose that T �Km
n ∈ U . By Lemma 23, UD(T �Km

n ) = UD(T ) × V (Km
n ). By

Lemma 26, we know that for each v ∈ UD(T �Km
n ),
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|epn(v, UD(T �Km
n ))| ≥ m(n− 1) + 2. This implies that for each w ∈ UD(T ), |epn(w,UD(T ))| ≥

m(n− 1) + 2. By Theorem 6, it follows that T �Km(n−1)+1 has a unique γ-set.

Now suppose that T �Km(n−1)+1 ∈ U . By Proposition 10 and Theorem 6, we see that T

has a unique γ-set S so that every element in S has at least m(n− 1) + 2 external private neighbors

with respect to S. Consider then T �Km
n . Note that the set S × V (Km

n ) is a dominating set for

T �Km
n . We must show that it is a γ-set for T �Km

n , and that it is the unique γ-set for T �Km
n .

We proceed by induction on γ(T ). If γ(T ) = 1, then T is a star K1,p with p ≥ m(n− 1) + 2.

By Proposition 25, we see that T �Km
n has UD(T ) × V (Km

n ) as its unique γ-set. Thus, suppose

the result has been proven whenever γ(T ) < q. Let T be a tree such that γ(T ) = q and such that

T �Km(n−1)+1 has a unique γ-set. Let S be the unique γ-set for T . We know that for all x ∈ S,

|epn(x, S)| ≥ m(n − 1) + 2. Consider a diametral path x1x2 . . . xt−1xtxt+1 in T . Note that xt ∈ S

and that t ≥ 3.

Case One

First, suppose that xt−1 6∈ epn(xt, S). In this case, since |epn(xt, S)| ≥ m(n − 1) + 2, we see that

xt is adjacent to at least m(n − 1) + 2 leaves. Thus, by the proof of Proposition 25, every vertex

of the xtth cube in T �Km
n will be selected for inclusion in every γ-set of T �Km

n . Let T ′ denote

the tree obtained by removing xt and all of its private neighbors with respect to S from T . Note

that by Lemma 9, T ′ ∈ U with UD(T ′) = S − {xt}. Additionally, observe that if x ∈ S − {xt},

then epn(x, S − {xt}) ⊇ epn(x, S). Thus, by Theorem 6, we also see that T ′�Km(n−1)+1 ∈ U .

Since γ(T ′) < γ(T ), our induction hypothesis implies that T ′�Km
n ∈ U and that UD(T ′�Km

n ) =

(S − {xt})× V (Km
n ).

Suppose then that D is a γ-set for T �Km
n and that D 6= S × V (Km

n ). By our observations

above, we know that {xt} × V (Km
n ) ⊆ D. Let B = D − ({xt} × V (Km

n )) and note that B ⊆

V (T ′�Km
n ). If B dominates T ′�Km

n , then since UD(T ′�Km
n ) = (S − {xt})× V (Km

n ) and since

B 6= (S − {xt}) × V (Km
n ), this implies that |B| > |(S − {xt}) × V (Km

n )|. This, however, implies

that S × V (Km
n ) is a smaller cardinality dominating set for T �Km

n , a contradiction.

Thus, assume that B does not dominate T ′�Km
n . Since D is a dominating set of T �Km

n ,

this implies that B fails to dominate some subset of the xt−1-cube in T ′�Km
n . In particular, this

implies that some subset of the xt−1-cube is not contained in B. We consider two sub cases.

Subcase One

Suppose that xt−1 6∈ S.
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• First, suppose that N(xt−1) = {xt−2, xt}. Since xt−1 6∈ epn(xt, S), this implies that xt−2 ∈ S.

Apply Lemma 9 to T , and remove the edge xt−2xt−1. It follows that T ′ − xt−1 ∈ U and

that UD(T ′ − xt−1) = S − {xt}. This further implies, by the same logic as above, that

(T ′ − xt−1)�Km
n ∈ U with unique γ-set given by (S − {xt}) × V (Km

n ). Note that since B

does not dominate all of the xt−1-cube in T ′�Km
n , this implies that B does not contain all of

the xt−2-cube.

If B contains no vertices from the xt−1-cube, then B is a dominating set for (T ′− xt−1)�Km
n

distinct from (S − {xt}) × V (Km
n ). This contradicts our assumption that D was a γ-set for

T �Km
n .

Hence, we see that B contains some subset of the xt−1-cube. Let

{(xt−1, p1), (xt−1, p2), . . . , (xt−1, pj)} ⊆ B. This implies that

B ∩ {(xt−2, p1), (xt−2, p2), . . . , (xt−2, pj)} = ∅

since otherwise D would not be a γ−set for T �Km
n . Thus, consider the set

(B − {(xt−1, p1), . . . , (xt−1, pj)}) ∪ {(xt−2, p1), . . . , (xt−2, pj)}.

This is a dominating set for (T ′−xt−1)�Km
n distinct from (S−{xt})×V (Km

n ), a contradiction.

• Now suppose that xt−1 is adjacent to a vertex, call it y, not on the diametral path. First,

note that y ∈ S. If y 6∈ S, then since xt−1 6∈ S, y would have a neighbor in S which, with

its external private neighbors, could be used to create a longer path in T . In particular, any

neighbors of xt−1 in T not on the diametral path are in S and have only leaf neighbors. Since

our initial assumption was that each element of S has at least m(n − 1) + 2 external private

neighbors, this implies that y has m(n− 1) + 2 leaf-neighbors in T . Hence, by the same logic

as applied to xt above, every vertex of the y-cube will be contained in every γ-set for T �Km
n .

However, this implies that {y}×V (Km
n ) ⊆ D which further implies that B dominates T ′�Km

n ,

a contradiction.

Thus, in both cases, xt−1 6∈ S leads to a contradiction.

Subcase Two
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Suppose now that xt−1 ∈ S. This implies that |epn(xt−1, S)| ≥ m(n−1)+2 by our earlier assumption.

If xt−1 has an external private neighbor other than xt−2 that is not a leaf, then a longer path in

T can be found. Hence, we see that xt−1 has at least m(n − 1) + 1 leaf-neighbors in T , call them

l1, l2, . . . , lr. Note that if r ≥ m(n− 1) + 2, then every vertex of the xt−1-cube will be contained in

every γ-set of T �Km
n implying that B is a dominating set for T ′�Km

n , a contradiction.

Thus, we see that xt−1 has exactly m(n − 1) + 1 leaf-neighbors and xt−2 ∈ epn(xt−1, S).

Recall that some subset of the xt−1-cube in T �Km
n is not contained in B. To be specific, assume

k vertices of the xt−1-cube are not contained in B. This implies that at least d k
m(n−1)+1e vertices

from each of the l1, l2, . . . , lr-cubes are contained in B. Additionally, the vertices in the xt−2-cube

that are adjacent to vertices in ({xt−1} × V (Km
n ))−B will be dominated by vertices outside of the

xt−1-cube. Since

[m(n− 1) + 1] · d k

m(n− 1) + 1
e ≥ k

we see that B contains exactly k vertices from the l1, l2, . . . , lr-cubes in total, since otherwise a

smaller dominating set for T �Km
n could be constructed. Consider the set obtained from B by

removing the k vertices from the l1, l2, . . . , lr-cubes and including the k missing vertices from the

xt−1-cube. This set will be a dominating set for T ′�Km
n distinct from (S − {xt}) × V (Km

n ), a

contradiction.

Case Two

Finally, suppose that xt−1 ∈ epn(xt, S). In this case, xt is adjacent to at least m(n− 1) + 1 leaves,

call them l1, l2, . . . , lp. Note that the only neighbors of xt−1 are xt and xt−2. If xt−1 had any

other neighbors, either a longer path in T could be found, or xt−1 would not be an external private

neighbor of xt with respect to S.

Suppose that D is a γ-set of T �Km
n which does not contain k vertices of the xtth cube.

This implies that D contains at least d k
(n−1)m+1e vertices from each of the l1, l2, . . . , lp-cubes. In fact,

if (m(n− 1) + 1)d k
(n−1)m+1e > k, then we have reached a contradiction since a smaller dominating

set for T �Km
n could be found simply by including every vertex of the xtth cube. In particular, this

implies that (m(n− 1) + 1)d k
m(n−1)+1e = k.

We now claim that D contains at least one vertex from the xt−1-cube. To see this, first note

that the tree T ′′ defined by T ′′ = T − {xt, xt−1, l1, . . . , lp} belongs to U with UD(T ′′) = S − {xt}.

Additionally, since epn(x, S − {xt}) = epn(x, S) for all x ∈ S − {xt}, Theorem 6 implies that
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T ′′�Km(n−1)+1 ∈ U . Thus, our induction hypothesis implies that T ′′�Km
n has a unique γ-set

given by (S − {xt})× V (Km
n ). If no vertices from the xt−1-cube are included in D, then

D ∩ V (T ′′�Km
n ) = (S − {xt})× V (Km

n ).

This, however, results in at least k vertices of the xt−1-cube being undominated by D since xt−2 6∈

S − {xt}. This is a contradiction.

Thus, D contains at least one vertex from the xt−1-cube. If we “shift” these vertices to

their corresponding positions in the xt−2-cube, remove the vertices from D in the l1, l2, . . . , lp-cubes,

and add in the missing vertices from the xt-cube, we will create a γ-set D′ distinct from D which

induces a γ-set distinct from (S − {xt})× V (Km
n ) on the subgraph T ′′�Km

n , a contradiction.

Hence, if D is a γ-set for T �Km
n , then every vertex of the xt-cube is included in D. By

the logic applied above, this implies that S × V (Km
n ) is the unique γ-set for T �Km

n .

Thus, we see that if T �Km(n−1)+1 ∈ U , then T �Km
n ∈ U .

Before we conclude, we note that Theorem 27 and Theorem 6 together imply the following

corollary concerning hypercubes.

Corollary 28. Let T be a nontrivial tree, and let m ≥ 1. The following conditions are equivalent.

• T �Qm ∈ U .

• T �Km+1 ∈ U .

• T has a γ-set D such that for all v ∈ D, |epn(v,D)| ≥ m+ 2.

As we observed above, since a γ-set in a tree can be found in linear time (see [15]), the problem of

determining for which m, T �Qm ∈ U can be solved in polynomial time.

2.8 Moving Forward

In this chapter, we considered unique minimum dominating sets. In the next chapter we

turn our attention to unique minimum independent dominating sets. We will see that there are

many interesting correspondences between the results in this chapter and the results in the next. In

Chapter 4, we will then expand upon the results of Chapters 2 and 3 to discuss unique γ-sets and

i-sets in graphs G�H and G×H where H is a vertex-transitive graph.

42



Chapter 3

Unique minimum independent

dominating sets

3.1 Introduction

In this chapter we consider graphs having a unique minimum independent dominating set.

As we saw in the previous chapter, graphs having a unique minimum dominating set have been

much studied. Graphs containing a unique minimum independent dominating set have received

less attention. In [12], the authors discussed a hereditary class of graphs containing all graphs

G for which every induced subgraph of G has a unique i-set if and only if it has a unique γ-set.

Unique i-sets in trees T satisfying γ(T ) = i(T ) were also considered. In Chapter 5, we consider

the maximum number of edges in a graph having a unique i-set of cardinality 2. We note that

minimum independent dominating sets can also be viewed as maximal independent sets of minimum

cardinality. Quite a bit of work has been done on graphs having a unique maximum independent

set, and, in general, the total number of maximal independent sets in a given graph. We direct the

reader towards [28], [36], [35], [11], and [37] for just a few examples of such work.

In this chapter, we begin in Section 3.2 by discussing the effects of deleting a vertex, or the

closed neighborhood of a vertex, from a graph having a unique minimum independent dominating set.

We then turn our attention to trees in Section 3.3, where we strengthen some of our earlier results.

In Section 3.4, we consider a collection of operations which can be used to combine two graphs
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having a unique i-set to produce a new graph also having a unique i-set. Finally, in Section 3.5, we

use these operations to characterize those trees having a unique minimum independent dominating

set. As in Chapter 2, the work in this chapter is a more thorough discussion of the work in [21].

Any results here not already referenced can be assumed to be a result from this paper.

As notational conventions, we let UI represent the class of graphs having a unique minimum

independent dominating set. If G ∈ UI, we let I(G) denote the unique i-set of G.

3.2 Deleting vertices and closed neighborhoods

In [12], the authors prove the following.

Lemma 29 ([12]). If any graph G has a unique i-set I(G), then every vertex in I(G) fulfills either

|epn(x, I(G))| = 0 or |epn(x, I(G))| ≥ 2.

We are thus motivated to make the following definitions.

Definition 18. Given a graph G ∈ UI and its unique i-set I(G), we define the following sets.

A(I(G)) = {v ∈ I(G) : |epn(v, I(G))| ≥ 2}

B(I(G)) = {v ∈ I(G) : |epn(v, I(G))| = 0}

We see that if G ∈ UI, then we can partition V (G) into V (G) = A(I(G)) ∪ B(I(G)) ∪ (V (G) −

I(G)). Bearing this is mind, we now consider the implications of deleting a vertex, or the closed

neighborhood of a vertex, chosen from each of these classes.

We begin with the following.

Lemma 30. Let G ∈ UI. For any v ∈ V (G)− I(G), i(G− v) = i(G).

Proof. Since v 6∈ I(G), we see that I(G) dominates G − v. Hence, i(G − v) ≤ i(G). Suppose that

i(G− v) < i(G), and let D be an i-set for G− v. Consider then D in G. If D dominates G, then we

arrive at a contradiction since this implies that I(G) is not a minimum independent dominating set.

Thus, D fails to dominate v. In this case, D ∪ {v} is an independent dominating set of cardinality

at most |I(G)|. This contradicts the uniqueness of I(G). Our result is shown.

We briefly note that if G ∈ UI and we delete a vertex v ∈ V (G) − I(G), it is not guaranteed that
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G− v ∈ UI. For example, P3 ∈ UI, but if we delete a leaf from P3, the resulting graph, P2, is not

in UI.

The conditions in Lemma 29, while necessary, are not sufficient for general graphs (take

K3,3 for example). They are, however, sufficient for trees T satisfying γ(T ) = i(T ) as illustrated in

[12]. The following set of conditions provide a necessary and sufficient condition for G ∈ UI for an

arbitrary graph G.

Lemma 31. A graph G has a unique minimum independent dominating set if and only if there

exists an i-set D of G such that for all v ∈ V (G)−D, i(G−N [v]) ≥ i(G).

Proof. First, suppose that G ∈ UI. In this case, let D = I(G), and consider v ∈ V (G)−D. For the

sake of contradiction, suppose that i(G−N [v]) < i(G). Let D′ be an i-set for G−N [v]. We see that

D′ ∪{v} is then an independent dominating set for G of cardinality at most |I(G)|, a contradiction.

Thus, we see that i(G−N [v]) ≥ i(G) as claimed.

Now suppose that G has an i-set D such that for all v ∈ V (G) − D, i(G − N [v]) ≥ i(G).

For the sake of contradiction, suppose that G 6∈ UI. Let D′ be an i-set distinct from D, and let

v ∈ D′ − D. We see that D′ − {v} is an i-set for G − N [v]. Thus, i(G − N [v]) = |D′ − {v}| =

|D′| − 1 = |D| − 1 < i(G). This, however, is a contradiction since D does not satisfy the assumed

property.

We now consider deleting a vertex from I(G).

Lemma 32. Let G ∈ UI. For any v ∈ A(I(G)), i(G− v) ≥ i(G).

Proof. Let v ∈ A(I(G)) and suppose that i(G − v) < i(G). If D is an i-set for G − v, then D

dominates every vertex in epn(v, I(G)). Consider then D in G. If D dominates G, then I(G) is

not a minimum independent dominating set, a contradiction. Hence, D fails to dominate v. In this

case, D ∪ {v} is an independent dominating set of cardinality at most |I(G)| distinct from I(G),

contradicting the uniqueness of I(G).

We briefly note that it is possible for i(G−v) = i(G) for some v ∈ A(I(G)) as the following example

illustrates.
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v
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Figure 3.1: i(G− v) = i(G)

We see that i(G) = 2, I(G) = {v, z}, and that i(G − v) = 2 with an i-set given by {x, y}. We also

note that if u ∈ A(I(G)), then G − u is not guaranteed to be in UI. This is in contrast to the

following result.

Lemma 33. Let G ∈ UI. For any v ∈ B(I(G)), G− v ∈ UI, and I(G− v) = I(G)− {v}.

Proof. Since v ∈ B(I(G)), v has no external private neighbors. Thus, I(G)− {v} dominates G− v.

Hence, i(G − v) ≤ i(G) − 1. Suppose that i(G − v) < i(G) − 1 and let D be an i-set for G − v. If

D dominates G, then I(G) is not a minimum independent dominating set for G. Thus, D does not

dominate v. This implies that D∪{v} is an independent dominating set of G of cardinality at most

|I(G)|−1, a contradiction. Thus, we see that i(G−v) = i(G)−1, with I(G)−{v} an i-set for G−v.

Suppose G− v has another i-set, call it D′. Note that D′ dominates G− v but does not dominate

G, else we would have i(G) = i(G)− 1. In that case, D′ fails to dominate v in G. This implies that

D′∪{v} is an independent dominating set of G of cardinality at most |I(G)|. Since D′ 6= I(G)−{v}

we see that D′ ∪ {v} 6= I(G), a contradiction. Thus, G− v ∈ UI with I(G− v) = I(G)− {v}.

A(I(G)) and B(I(G)) are similar in the following respect.

Lemma 34. Let G ∈ UI. For any v ∈ I(G), i(G − N [v]) = i(G) − 1, G − N [v] ∈ UI, and

I(G−N [v]) = I(G)− {v}.

Proof. First note that I(G)−{v} is an independent dominating set for G−N [v]. Thus, i(G−N [v]) ≤

i(G)− 1. Suppose i(G−N [v]) < i(G)− 1, and let D be an i-set for G−N [v]. In this case, D ∪ {v}

is an independent dominating set for G of cardinality at most i(G) − 1, a contradiction. Thus, we

see that i(G−N [v]) = i(G)− 1. If G−N [v] has an i-set distinct from I(G)− {v}, call it D′, then

D′ ∪ {v} is an i-set of G distinct from I(G), a contradiction. Thus, we see that G−N [v] ∈ UI with

I(G−N [v]) = I(G)− {v}.
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Our last result does not concern deleting a vertex or a private neighbor. Nevertheless, these

ideas are used in the proof, in which case we present the result here.

Lemma 35. If G is a tree in UI with v ∈ V (G)− I(G), then N(v) ∩ A(I(G)) 6= ∅.

Proof. Note that since I(G) is a dominating set, |N(v) ∩ I(G)| ≥ 1. For the sake of contradiction,

suppose that (N(v)∩ I(G)) ⊆ B(I(G)) with N(v)∩ I(G) = {b1, b2, . . . , bk}. Consider then G−N [v].

Since G is a tree, it is acyclic. This implies that I(G)−{b1, b2, . . . , bk} is an independent dominating

set for G−N [v]. Thus, i(G−N [v]) ≤ i(G)−k for some k ≥ 1. This, however, contradicts Lemma 31.

Thus, v has a neighbor in A(I(G)).

We will make use of this result in our characterization to come.

3.3 Trees

In this section, we seek to improve upon Lemma 32 in the case when G is a tree. Throughout

this section we will be discussing rooted trees. Thus, a preliminary discussion of rooted trees is

required.

A rooted tree is simply a tree T in which a specific vertex, called the root, has been identified.

When a rooted tree is depicted, the root typically appears at the top. The neighbors of the root then

appear below the root and are called the children of the root. The root, in a similar manner, is then

called their parent. The vertices at distance two from the root are then drawn below the children of

the root, and so on and so forth. By rooting the tree, a parent/child relationship is established for

each edge uv ∈ E(T ). In particular, if uv ∈ E(T ), then u is the parent of v if the distance from u to

the root is less than the distance from v to the root; otherwise v is the parent of u. By establishing

this parent/child relationship, we can then set the descendants of a vertex v to be the set of children

of v together with their children and so on and so forth. For notational convenience, if T is a rooted

tree, then for v ∈ V (T ), we let Tv denote the subgraph of T induced by v and all of its descendants.

A graphical example will help to clarify these definitions.
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Figure 3.2: A rooted tree

In Figure 3.2, a tree T appears on the left. On the right, the same tree T is depicted rooted

at a. We see that b and c are the children of a, while d and e are the children of b. Additionally, g

is the parent of h while the descendants of c are f , g, and h. Finally, the subtree Tc is the graph

T 〈{c, f, g, h}〉 (the vertices of which are shown in white). Observe that our decision to root T at a

was arbitrary. In fact, a tree can be rooted at any vertex. Notice, however, that if we change the

root, the parent/child relationships will change.

We begin with the following.

Lemma 36. Let T ∈ UI, v ∈ A(I(T )), and epn(v, I(T )) = {p1, p2, . . . , pk}. For 1 ≤ j ≤ k,

i(Tpj ) = |I(T ) ∩ V (Tpj )|+ 1.

Proof. Root T at v. Consider Tp1 , the subtree of T induced by p1 and all of its descendants. By

Lemma 34, T −N [v] ∈ UI with I(T −N [v]) = I(T ) − {v}. This implies that Tp1 − p1 ∈ UI with

I(Tp1 − p1) = V (Tpi) ∩ I(T ). Notice, however, that V (Tp1) ∩ I(T ) does not dominate p1 since p1

is an external private neighbor of v with respect to I(T ). In particular, this implies that none of

the descendants of p1 are contained in I(T ). Thus, let D be an i-set of Tp1 . There are two cases to

consider.

• First, suppose that p1 6∈ D. In this case, some descendant of p1 is contained in D, and D is

an independent dominating set for Tp1 − p1. Since Tp1 − p1 ∈ UI and no descendant of p1 is

contained in I(Tp1 − p1), we see that |D| > |I(Tp1 − p1)| = |I(T ) ∩ V (Tp1)|.
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• Now suppose that p1 ∈ D. In this case, no descendant of p1 is contained in D. Let d1, d2, . . . , dn

denote the descendants of p1. Now, note that if we delete p1 from Tp1 , we are left with a forest

whose components, namely Td1 , Td2 , . . . , Tdn , are also found in T −N [v]. Hence, by Lemma 34

the components of Tp1 − p1 are each graphs in UI. Hence, we see that

|D| = 1 + |D ∩ V (Tp1 − p1)|

= 1 +

n∑
j=1

|D ∩ V (Tdj )|

= 1 +

n∑
j=1

|I(T ) ∩ V (Tdj )| by Lemma 30

= 1 + |I(T ) ∩ V (Tp1 − p1)|

= 1 + |I(T ) ∩ V (Tp1)|.

Thus, we see that i(Tpj ) > |I(T ) ∩ V (Tpj )| for 1 ≤ j ≤ k. Moreover, we also see that pj ∪ (I(T ) ∩

V (Tpj )) is an independent dominating set for Tpj . Thus, our result is proven.

This lemma is particularly nice since it implies the following.

Proposition 37. Let T ∈ UI. For all v ∈ A(I(T )), i(T − v) > i(T ).

Proof. Root T at v. Let epn(v, I(T )) = {p1, p2, . . . , pk} and letN(v)−epn(v, I(T )) = {n1, n2, . . . , nm}.

If we delete v from T , are left with k +m components, namely

Tp1 , Tp2 , . . . , Tpk , Tn1 , Tn2 , . . . , Tnm .

Recall from the proof of Lemma 36 that pj ∪ (I(T ) ∩ V (Tpj )) is an i-set for Tpj , 1 ≤ j ≤ k. Let F

denote the subforest of T − v given by Tn1
∪ Tn2

∪ · · · ∪ Tnm , and let α = |I(T ) ∩ V (F )|. Note then

that

|I(T )| = 1 +

k∑
s=1

|I(T ) ∩ V (Tps)|+ α.
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Moreover, we see that

i(T − v) =

k∑
s=1

i(Tps) +

m∑
t=1

i(Tnt)

=

k∑
s=1

(1 + |I(T ) ∩ V (Tps)|) + i(F )

= k +

k∑
s=1

|I(T ) ∩ V (Tps)|+ i(F )

= k + (|I(T )| − 1− α) + i(F )

Consider i(F ). We see that if i(F ) > α− k + 1, then our result is shown.

Suppose, then, that i(F ) ≤ α− k + 1. Let D be an i-set for F . In this case, we see that

D ∪
k⋃
s=1

(pj ∪ (I(T ) ∩ V (Tpj )))

is an independent dominating set of T , distinct from I(T ), of cardinality at most |I(T )|. This

contradicts the uniqueness of I(T ).

Thus, we see that i(F ) > α− k + 1, in which case i(T − v) > i(T ).

Thus, we see that when we consider trees in UI, the result of Lemma 32 can be improved upon.

Continuing on, our next result will be used in Section 3.4.

Lemma 38. If T ∈ UI is a tree with v ∈ V (T )− I(T ) a shared neighbor of at least two vertices in

I(T ), then T − v ∈ UI with I(T − v) = I(T ).

Proof. Let T1, T2, . . . , Tk be the components of T − v, and let Ij = I(T )∩V (Tj) for 1 ≤ j ≤ k. Note

that Ij is an independent dominating set for Tj . If D is an i-set for Tj , then

D ∪
⋃
s6=j

Is

is an independent dominating set for T . This observation implies that Ij is, in fact, an i-set for Tj ,

and that each Tj ∈ UI. Since each Tj ∈ UI, T − v ∈ UI as well. Our result is shown.
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3.4 Operations

Using our observations above, we now illustrate a collection of operations which allow us to

construct a new graph in UI by combining two graphs in UI. In particular, throughout this section,

G1 and G2 are assumed to both be graphs in UI. We let I1 denote the unique i-set of G1 and I2

denote the unique i-set of G2.

Operation 5. For j = 1, 2, choose uj ∈ V (Gj)− Ij. If G is the graph defined by G = (G1 ∪G2) +

u1u2, then G has the unique i-set I1 ∪ I2.

Proof. First, observe that I1 ∪ I2 is an independent dominating set for G. Thus, i(G) ≤ |I1 ∪ I2| =

|I1|+ |I2|. Suppose that i(G) < |I1|+ |I2|, and let D be an i-set of G. In particular, this implies that

D 6= I1 ∪ I2. Let D1 = D ∩ V (G1) and D2 = D ∩ V (G2). Without loss of generality, suppose that

|D1| ≤ |I1|. If D1 dominates G1, then we have D1 = I1 and thus D2 = I2 as well, a contradiction.

Thus, D1 does not dominate G1. Since the only vertex of V (G1) that can be dominated from outside

of V (G1) by D is u1, we see that D1 fails to dominate u1, in which case u2 ∈ D2. This implies each

of the following.

• D2 independently dominates V (G2). Since I2 is the unique i-set of G2, and since u2 6∈ I2, we

see that |D2| > |I2|.

• D1 independently dominates G− u1. Hence, by Lemma 30, |D1| ≥ |I1|.

Hence, we see that |D| = |D1|+ |D2| > |I1|+ |I2|, a contradiction.

Thus, we see that i(G) = |I1 ∪ I2|. By the logic applied above, if D is any i-set of G

containing one of u1 or u2, then |D| > |I1 ∪ I2|. Thus, we see that I1 ∪ I2 is the unique i-set of

G.

Operation 6. For j = 1, 2, choose vj ∈ A(Ij). Let u be a new vertex, not in G1 nor G2. If G is

the graph defined by V (G) = V (G1) ∪ V (G2) ∪ {u} and E(G) = E(G1) ∪ E(G2) ∪ {v1u, uv2}, then

G has the unique i-set I1 ∪ I2.

Proof. First, observe that I1 ∪ I2 is an independent dominating set for G. Thus, i(G) ≤ |I1 ∪ I2| =

|I1| + |I2|. Let D be an i-set for G. Once again, let D1 = D ∩ V (G1) and let D2 = D ∩ V (G2).

There are two cases to consider.
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• First, suppose that u ∈ D. Since D is independent, this implies that v1 6∈ D and that v2 6∈ D.

Hence, D1 is an independent dominating set for G1−v1 and D2 is an independent dominating

set for G2 − v2. By Lemma 32, this implies that |D1| ≥ |I1| and |D2| ≥ |I2|. Hence, we see

that |D| = |D1 ∪D2 ∪ {u}| = |D1|+ |D2|+ 1 ≥ |I1|+ |I2|+ 1 > |I1|+ |I2|, a contradiction.

• Now suppose that u 6∈ D. In this case, D1 is an independent dominating set for G1 and D2

is an independent dominating set for G2. This implies that D1 = I1 and D2 = I2. Thus,

D = I1 ∪ I2.

Hence, we see that G has a unique i-set given by I1 ∪ I2.

Operation 7. Let G1 ∈ UI be a tree and let G2 ∈ UI. Let v1 ∈ A(I1) and v2 ∈ B(I2). Let u be a

new vertex, not in G1 nor G2. If G is the graph defined as in Operation 6, then G has the unique

i-set I1 ∪ I2.

Proof. First, observe that I1 ∪ I2 is an independent dominating set for G. Thus, i(G) ≤ |I1 ∪ I2| =

|I1|+ |I2|. Let D be an i-set for G. Let D1 = D ∩ V (G1) and let D2 = D ∩ V (G2). Once again, we

consider two cases.

• First, suppose that u ∈ D. Since D is independent, this implies that v1 6∈ D and that v2 6∈ D.

Hence, D1 is an independent dominating set for G1−v1 and D2 is an independent dominating

set for G2 − v2. By Proposition 37 and Lemma 33, we see that

|D| = 1 + |D1|+ |D2|

≥ 1 + |D1|+ |I2| − 1

= |D1|+ |I2|

> |I1|+ |I2|

= |I1 ∪ I2|.

Thus, we have arrived at a contradiction. Hence, u is not a member of any i-set of G.

• Now suppose that u 6∈ D. In this case, D1 is an independent dominating set for G1 and D2

is an independent dominating set for G2. This implies that D1 = I1 and D2 = I2. Thus,

D = I1 ∪ I2.
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Thus, we see that G has a unique i-set given by I1 ∪ I2.

We note that if G1 is not a tree, then Operation 7 is not guaranteed to produce a graph in

UI. For example, if we let G1 be the graph from Figure 3.1 with v1 = v, and let G2 = K1, then

Operation 7 will produce the graph below, which does not have a unique i-set.

Figure 3.3: Operation 7 requires G1 a tree

Operation 8. Let G1 ∈ UI be a tree and let G2 ∈ UI. Let v1 ∈ V (G1)− I1 be a common neighbor

of at least two vertices in I1, and let v2 ∈ A(I2). If G is the graph formed by joining G1 and G2

with the new edge v1v2, then G has the unique i-set I1 ∪ I2.

Proof. Once again, we see that I1∪I2 is an independent dominating set forG. Thus, i(G) ≤ |I1|+|I2|.

Let D be an i-set for G. Let D1 = D ∩ V (G1) and let D2 = D ∩ V (G2). We consider two cases.

• First, suppose that v1 ∈ D. In this case, D1 is an independent dominating set for G1. Since

v1 6∈ I1, this implies that |D1| > |I1|. Additionally, if v1 ∈ D then v2 6∈ D. Hence, D2 is

a dominating set for G2 − v2. By Lemma 32, we see that |D2| ≥ |I2|. Hence, we see that

|D| = |D1|+ |D2| > |I1|+ |I2|, a contradiction.

• Now suppose that v1 6∈ D. This implies that D2 is a minimum independent dominating set

for G2. Thus, D2 = I2. This implies that D1 is a minimum independent dominating set for

G1 − v1. Thus, by Lemma 38, we see that D1 = I1. Thus, D = I1 ∪ I2.

Hence, we see that G ∈ UI and that I(G) = I1 ∪ I2.

In the operation above, if v2 ∈ B(I2), then the resulting graph G is not guaranteed to have

a unique i-set. For example, in the figure below, if we add in the dashed edge v1v2, the resulting

graph no longer has a unique i-set.
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Figure 3.4: Operation 8 requires v2 ∈ A(I2)

The ultimate problem in this example is that i(G1 −N [v1]) = i(G1). Thus, given a graph G ∈ UI,

let

C(G) = {v ∈ V (G)− I(G) : |N(v) ∩ I(G)| ≥ 2 and i(G−N [v]) > i(G)}.

With this notation established, we have the following operation.

Operation 9. Let G1 ∈ UI be a tree and let G2 ∈ UI. Let v1 ∈ C(G1) and let v2 ∈ B(I2). If G is

formed by joining G1 and G2 with the new edge v1v2, then G has the unique i-set I1 ∪ I2.

Proof. As I1∪ I2 is an independent dominating set for G, we once again have that i(G) ≤ |I1|+ |I2|.

Thus, let D be an i-set for G, and let D1 = D ∩ V (G1) and let D2 = D ∩ V (G2). We consider two

cases.

• First, suppose that v1 ∈ D. In this case, D1 is an independent dominating set for G1. Since

v1 ∈ C(G1), this implies that |D1| ≥ |I1| + 2. Additionally, if v1 ∈ D then v2 6∈ D. Hence,

D2 is an independent dominating set for G2 − v2. By Lemma 33, we see that |D2| ≥ |I2| − 1.

Hence, we see that |D| = |D1|+ |D2| ≥ |I1|+ 2 + |I2| − 1 > |I1|+ |I2|, a contradiction.

• Now suppose that v1 6∈ D. This implies that D2 is a minimum independent dominating set

for G2. Thus, D2 = I2. This implies that D1 is a minimum independent dominating set for

G1 − v1. Thus, by Lemma 38, we see that D1 = I1. Thus, D = I1 ∪ I2.

Hence, we see that G ∈ UI and that I(G) = I1 ∪ I2.
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It is important to notice that after performing each of these five operations, A(I(G)) = A(I1)∪A(I2)

and that B(I(G)) = B(I1) ∪ B(I2).

3.5 Characterizing Trees

In this section, we characterize the trees T ∈ UI.

Theorem 39. If T is a tree in UI, then T can be constructed from a disjoint union of isolated

vertices and stars, each with at least two leaves, by a finite sequence of Operations 5 through 9.

Proof. We proceed by induction on i(T ). If i(T ) = 1, then T is either K1 or a star with at least 2

leaves. In either case, the result holds.

Assume the result holds for all trees T in UI satisfying i(T ) < k, k ≥ 2. Let T ∈ UI be a

tree satisfying i(T ) = k. We consider two cases, and many subcases.

Case One: T has a leaf in I(T ).

Suppose that T has a leaf, call it l, in I(T ). Let v denote the support vertex of l. First,

notice that v 6∈ I(T ), since I(T ) is independent. Additionally, by Lemma 35, some neighbor of v,

distinct from l, is in A(I(T )). Let a1 ∈ N(v) ∩ A(I(T )). We consider the following two subcases.

Subcase One: |N(v) ∩ I(T )| = 2.

First suppose that |N(v) ∩ I(T )| = 2. Let N(v) = {l, a1, o1, o2, . . . , ok}. Observe that

o1, o2, . . . , ok are not in I(T ). Root T at v. By Lemma 38, each of Ta1 , To1 , To2 , . . . , Tok has a unique

i-set. Thus, by our induction hypothesis, each of these subtrees can be constructed from a disjoint

union of isolates and stars by a finite sequence of Operations 5 through 9. To construct T , first

note that since a1 ∈ A(I(T )), we also have a1 ∈ A(I(Ta1)). Thus, we can connect v, l, and Ta1 by

applying Operation 7. Call this resulting graph F . From there, we can construct T by connecting

To1 , To2 , . . . , Tok to F by performing Operation 5 k-times.

Subcase Two: |N(v) ∩ I(T )| > 2.

Now suppose that |N(v) ∩ I(T )| > 2. Once again, root T at v. Let

N(v) = {l, a1, a2, . . . , aj , b1, b2, . . . , bk, o1, o2, . . . , om}

where a1, a2, . . . , aj ∈ A(I(T )), b1, b2, . . . , bk ∈ B(I(T )) and o1, o2, . . . , om ∈ V (T ) − I(T ). Let

T ′ = T − l. Recall that since T ∈ UI, Lemma 31 implies that i(T − N [v]) ≥ i(T ). Thus, in
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particular, we have that

i(T ′ −NT ′ [v]) = i(T −N [v])

≥ i(T )

> i(T )− 1

= i(T − l)

= i(T ′).

Thus, we see that i(T ′ − NT ′ [v]) > i(T ′). Thus, v ∈ C(T ′). Recall that T ′ ∈ UI by Lemma 33.

Thus, by our induction hypothesis, T ′ can be constructed from a disjoint union of isolated vertices

and stars by a finite sequence of Operations 5 through 9. We can then reconstruct T from T ′ and l

by applying Operation 9.

Case Two: No leaf of T is in I(T ).

Suppose now that no leaf of T is in I(T ). Consider a diametral path v1v2 · · · vk−2vk−1vkvk+1

in T . Since i(T ) ≥ 2, we see that k ≥ 4. Observe that vk+1 6∈ I(T ) in which case vk ∈ I(T ). This

further implies that vk ∈ A(I(T )). We once again consider two subcases.

Subcase One: vk−1 ∈ epn(vk, I(T )).

First suppose that vk−1 ∈ epn(vk, I(T )). In this case, observe that N(vk−1) = {vk−2, vk}

since otherwise either I(T ) contains a leaf or v1v2 · · · vk+1 is not a diametral path. Moreover,

since vk−1 ∈ epn(vk, I(T )), we see that vk−2 6∈ I(T ). Thus, consider T − N [vk]. By Lemma 34,

T − N [vk] ∈ UI and i(T − N [vk]) = i(T ) − 1. Thus, we can apply our induction hypothesis to

T −N [vk]. We can then reconstruct T from T −N [vk] and N [vk] by applying Operation 5.

Subcase Two: vk−1 6∈ epn(vk, I(T )).

Finally, suppose that vk1 6∈ epn(vk, I(T )). Since vk ∈ A(I(T )), this implies that vk has at

least two leaf neighbors. Consider N(vk−1). We see that |N(vk−1) ∩ I(T )| ≥ 2, and that vk−1 has

no leaf neighbors.

First suppose N(vk−1) = {vk−2, vk}. In this case, vk−2 ∈ I(T ). Since T − N [vk] ∈ UI by

Lemma 34, we can apply our induction hypothesis to T −N [vk]. We can then reconstruct T from

T −N [vk], vk−1, and {vk} ∪ epn(vk, I(T )) by applying either Operation 6 or Operation 7.

Suppose now that N(vk−1) = {vk−2, vk, o1, o2, . . . , or}. Since I(T ) contains no leaves, we
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see that o1, o2, . . . , or are each in A(I(T )). In particular, this implies that each has at least two

leaf neighbors. Root T at vk−1. By Lemma 38, Tvk−2
∈ UI in which case our induction hypothesis

implies it can be reconstructed using a finite sequence of our operations. We can then reconstruct

T as follows. First, combine {vk} ∪ epn(vk, I(T )), {o1} ∪ epn(o1, I(T )), . . . , {or} ∪ epn(or, I(T ))

through one Operation 6 followed by Operation 8 (r − 1)-times. From there, we can reconstruct

T by performing Operation 9 if vk−2 ∈ B(I(T )), Operation 8 if vk−2 ∈ A(I(T )), or Operation 5 if

vk−2 6∈ I(T ).

We conclude this chapter by giving a concrete example of the constructions discussed above.

Consider the tree T in Figure 3.5. This tree has a unique i-set given by {a, e, g, j}. The construction

of T using our five operations above is depicted in Figure 3.6. We begin with a disjoint union of

stars and isolates in T1. We then apply Operation 7 letting our new vertex be d. We then connect

the vertices d and f through an application of Operation 5. Our initial tree T is then constructed

through one more application of Operation 7 by letting our new vertex be i.

a

b

c

d

e

f g

h

i

j

T

Figure 3.5: Construction example
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a

b

c
d

e
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j

T4

Figure 3.6: Construction steps
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Chapter 4

Graph products of a

vertex-transitive graph

At the conclusion of Chapter 2, we considered the existence of unique minimum dominating

sets in T �Km
n . The Hamming graph Km

n is a specific example of a vertex-transitive graph. In this

chapter, we continue our work from Chapter 2 and consider unique minimum dominating sets and

unique minimum independent dominating sets in graphs G�H and G×H where G is a nontrivial

graph containing at least one edge and H is a connected, nontrivial, vertex-transitive graph. After

briefly discussing and defining vertex-transitive graphs in Section 4.1, we then focus on unique

minimum dominating sets in the Cartesian product in Section 4.2. We then turn our attention to

the direct product in Section 4.3, where unique minimum independent dominating sets will be our

main subject.

We continue with the same notation used in the previous two chapters. That is, U represents

the class of graphs G having a unique minimum dominating set, denoted UD(G), and UI represents

the class of graphs having a unique minimum independent dominating set, denoted I(G).

4.1 Vertex-transitive graphs

Recall from Chapter 1 that an isomorphism between two graphs G1 and G2 is a bijection

φ : V (G1) → V (G2) such that uv ∈ E(G1) if and only if φ(u)φ(v) ∈ E(G2). As we have seen,

59



isomorphisms are primarily used to show that two graphs are essentially the same. An automorphism

is a special kind of isomorphism.

Definition 19. An automorphism on a graphG is a bijection φ : V (G)→ V (G) such that uv ∈ E(G)

if and only if φ(u)φ(v) ∈ E(G).

Thus, we see that an automorphism is an isomorphism of a graph with itself. As a trivial example,

the identity mapping is an automorphism. A nontrivial example follows.

Consider the graph G below.

G

0 1

2

3

4

5

6

7 8

Figure 4.1: Automorphism

We claim that the following mapping defines an automorphism.

v 0 1 2 3 4 5 6 7 8

φ(v) 1 2 0 5 6 7 8 3 4

Clearly φ is a bijection. Additionally, φ preserves all adjacencies and non-adjacencies. For example,

we see that the edge 04 is mapped to the edge 16, while the edge 03 is mapped to the edge 15. We

leave it to the reader to verify that all other adjacencies and non-adjacencies are preserved.

Since automorphisms preserve vertex adjacencies and non-adjacencies, we see that an auto-

morphism φ, among other things, also preserves each of the following.

• Vertex Degrees: For all vertices v ∈ V (G), deg(v) = deg(φ(v)).

• Dominating Sets: If D is a dominating set of G, then φ(D) = {φ(v) : v ∈ D} is a dominating

set of G.

• Independent Sets: If I is an independent set of G, then φ(I) = {φ(v) : v ∈ I} is an independent

set of G.

Consider once again the graph G in Figure 4.1. Our automorphism φ mapped 0 to 1.

Another automorphism of G exists which maps 0 to 2. However, given our statements above, no
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automorphism will map 0 to any other vertex, since deg(0) = 4 and each of the remaining vertices

are of degree 1. This consideration provides us with the motivation for vertex-transitive graphs.

Definition 20. A graph G is vertex-transitive if for any distinct pair of vertices u and v in V (G),

there exists an automorphism φ of G such that φ(u) = v.

The cycle Cn, the complete graph Kn, the hypercube Qn, and the complete bipartite graph

Kn,n are all examples of vertex-transitive graphs. The following famous graph, known as the Petersen

Graph, is also vertex-transitive. Note that since automorphisms preserve vertex degrees, and since

for any two distinct vertices u and v there is an automorphism which maps u to v, we see that all

vertex-transitive graphs are regular graphs.

Figure 4.2: Petersen Graph

In our graph G from Figure 4.1, if we imagine being dropped onto a vertex and looking out

at the rest of the graph, the “view” from each of 0, 1, and 2 is the same (provided we ignore the

vertex labels). However, the view from, say, 4 looks quite different. In a vertex-transitive graph, the

view from each and every vertex is the same.

4.2 Unique γ-sets and i-sets in G�H

In this section, we wish to consider unique γ-sets and i-sets in graphs G�H. Throughout

this section, we assume that G is nontrivial and connected. We also assume that H is connected

and vertex-transitive. Since K1 is vertex-transitive and G �K1
∼= G, in order to avoid this trivial

case, we additionally assume that H is nontrivial. We begin with the following well-known result.

Lemma 40. Let σ be an automorphism of G, and let φ be an automorphism of H. The mapping

f : V (G�H)→ V (G�H) defined by f(g, h) = (σ(g), φ(h)) is an automorphism of G�H.
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Proof. First, observe that f is a bijection on V (G�H) since both σ and φ are bijections on V (G)

and V (H) respectively. Next, suppose that (g1, h1)(g2, h2) ∈ E(G�H). There are two cases.

• Suppose g1 = g2 and h1h2 ∈ E(H). In this case, we see that σ(g1) = σ(g2) since σ is a

well-defined function, and that φ(h1)φ(h2) ∈ E(H) since φ is an automorphism on H. Thus,

f(g1, h1)f(g2, h2) ∈ E(G�H).

• Suppose now that h1 = h2 and that g1g2 ∈ E(G). In this case, we see that φ(h1) = φ(h2)

since φ is a well-defined function, and that σ(g1)σ(g2) ∈ E(G) since σ is an automorphism on

G. Hence, once again f(g1, h1)f(g2, h2) ∈ E(G�H).

Next, suppose that f(g1, h1)f(g2, h2) ∈ E(G�H). Once again, there are two cases.

• Suppose σ(g1) = σ(g2) and that φ(h1)φ(h2) ∈ E(H). In this case, since σ is one-to-one,

g1 = g2. Additionally, since φ is an automorphism, h1h2 ∈ E(H). Hence, (g1, h1)(g2, h2) ∈

E(G�H).

• Finally, suppose that σ(g1)σ(g2) ∈ E(G) and that φ(h1) = φ(h2). Since φ is injective we see

that h1 = h2. Additionally, since σ is an automorphism, g1g2 ∈ E(G). Thus, we see that

(g1, h1)(g2, h2) ∈ E(G�H).

Thus, we see that (g1, h1)(g2, h2) ∈ E(G �H) if and only if f(g1, h1)f(g2, h2) ∈ E(G �H). Thus,

f is an automorphism of G�H.

This result allows us to generalize Lemma 7 as follows.

Lemma 41. Let H be a vertex-transitive graph. If G �H ∈ U , then there exists S ⊆ V (G) such

that UD(G � H) = S × V (H). Similarly, if G � H ∈ UI, then there exists S ⊆ V (G) such that

I(G�H) = S × V (H).

Proof. Let D be a γ-set (or i-set) of G�H. Let v ∈ V (G) and suppose that (v, h1) ∈ D but (v, h2) 6∈

D for some h1 and h2 in V (H). Let φ be an automorphism of H for which φ(h1) = h2. Construct

the automorphism f as in Lemma 40 by taking the identity mapping as the automorphism on G and

φ as the automorphism on H. Since automorphisms preserve dominating sets and independence, we

see that the image of D under f is another γ-set (or i-set) of G�H.
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Once again, for convenience, we say that a set A ⊆ V (G � H) is stacked if A = S × V (H) for

some S ⊆ V (G). The keen observer now sees that this causes trouble in the case of independent

domination.

Proposition 42. If H is a connected, nontrivial, vertex-transitive graph, then G � H 6∈ UI for

any graph G.

Proof. Suppose G � H ∈ UI. By Lemma 41, I(G � H) = S × V (H) for some S ⊆ V (G). Since

H is nontrivial and connected, this implies there exists two vertices (v, h1) and (v, h2) in I(G�H)

for which h1h2 ∈ E(H). However, since (v, h1)(v, h2) ∈ E(G � H), we see that I(G � H) is not

independent, a contradiction.

Upon further reflection, this result is not at all surprising given how the Cartesian product is defined.

Unique minimum dominating sets, however, do exist in G � H, and they share many of

the same characteristics as the unique γ-sets discussed in Chapter 2. For example, our observations

following the proof of Proposition 10 still hold.

Proposition 43. Let H be a vertex-transitive graph. If G�H ∈ U , then G ∈ U and UD(G�H) =

UD(G)× V (H).

Proof. Suppose that G � H ∈ U . By Lemma 41, this implies there exists S ⊆ V (G) such that

UD(G�H) = S × V (H). If we consider the set S, we see that not only is S a dominating set of G,

but it is also the unique γ-set of G. This follows since if S is not a dominating set of G, then S×V (H)

is not a dominating set of G �H. Moreover, if S′ is another dominating set of G with |S′| ≤ |S|,

then S′×V (H) is a dominating set of G�H distinct from S×V (H) and |S′×V (H)| ≤ |S×V (H)|.

Thus, our result is shown.

It comes as no surprise to note that the converse of Proposition 43 once again does not hold. That

is, if G ∈ U , it does not follow that G � H ∈ U . Our example from Chapter 2, in fact, still holds

here. The graph P3 ∈ U , but P3 �K2 6∈ U .

Following the lead of Chapter 2, we now consider the number of external private neighbors

a vertex in UD(G�H) is guaranteed to have. Recall that if G ∈ U , then every vertex in UD(G) is

guaranteed to have at least two external private neighbors, while if G�Kn ∈ U , then every vertex

in UD(G �Kn) is guaranteed to have at least n + 1 external private neighbors. To make progress

in our new general setting, we must first restrict our vertex-transitive graph H to be twin-free. Two
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vertices u and v in a graph G are called twins if N [u] = N [v]. Thus, we assume that if u and v are

two distinct vertices in H, then N [u] 6= N [v]. The reason for this restriction will be made evident

in the proof of Proposition 44. We note that by assuming H to be twin-free, we exclude the cases

of H ∼= Kn.

Taking a cue from Section 2.7, we first consider stars K1,n. Note that if n = 0, then we

have K1,0 � H ∼= H, which never has a unique γ-set so long as H is non-trivial. If n = 1, then

K1,1
∼= P2 and P2 6∈ U . Thus, K1,1 �H 6∈ U for any (vertex-transitive) H by Proposition 43. Thus,

we restrict our attention to n ≥ 2. We once again let V (K1,n) = {0, 1, . . . , n} with 0 denoting the

support vertex. Additionally, for notational convenience, we let H(j) denote the H-layer of K1,n�H

through (j, h).

Proposition 44. Let H be a twin-free, vertex-transitive graph of vertex degree regularity d. If

K1,n � H ∈ U , then n ≥ d+ 2.

Proof. Suppose that 2 ≤ n ≤ d + 1. If K1,n � H ∈ U , then by Proposition 43, UD(K1,n � H) =

{0}×V (H). For convenience, let D denote the set {0}×V (H). Pick an arbitrary vertex h ∈ V (H),

and construct the set

D′ = (D − ({0} ×N [h])) ∪ ({1, 2, . . . , n} × {h}).

Since h is twin-free, the only vertex in H(0) not dominated by D− ({0} ×N [h]) is (0, h). Thus, by

including {1, 2, . . . , n}×{h} in D′, we see that D′ is a dominating set of K1,n �H. Moreover, since

|N [h]| = d + 1, and since n ≤ d + 1, we see that the cardinality of D′ is less than or equal to |D|.

Thus, K1,n �H 6∈ U .

Before proceeding, we note that in the proof above, had we not restricted H to be twin-free, then

the set D′ constructed would not necessarily be a dominating set. For example, if H = Km, then

{0} ×N [h] = {0} × V (Km) for all h ∈ V (Km). Thus, in this case, the set D′ would dominate each

of H(1), H(2), . . . ,H(n), but it would not dominate H(0).

Proposition 45. Let H be a graph having maximum vertex degree d. If n ≥ d+2, then K1,n�H ∈

U .

Proof. Let D′ be a dominating set of K1,n � H, and let k be the number of vertices in H(0) but

not D′. Since H satisfies ∆(H) = d, we see that D′ contains at least d k
d+1e vertices from each of
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H(1), H(2), . . . ,H(n). Hence, we see that

|D′| ≥ |V (H)| − k + (n)

⌈
k

d+ 1

⌉
.

However, we see that

(n)

⌈
k

d+ 1

⌉
≥ n · k

d+ 1
≥ (d+ 2) · k

d+ 1
> k.

Thus, D′ contains more vertices than the dominating set {0} × V (H). Thus, {0} × V (H) is the

unique γ-set for K1,n �H.

Corollary 46. If H is a twin-free, vertex-transitive graph of vertex degree regularity d, then

K1,n�H ∈ U if and only if n ≥ d+ 2.

Having established this result, we can now give our general characterization for the number

of external private neighbors of a vertex in UD(G�H).

Proposition 47. Let H be a nontrivial, twin-free, vertex-transitive graph of vertex degree regularity

d. If G�H ∈ U , then for all v ∈ UD(G�H), |epn(v, UD(G�H))| ≥ d+ 2.

Proof. Let D denote the set UD(G�H) and let D′ denote the set UD(G). By Proposition 43,

D = D′ × V (H). Observe that if v ∈ D′ with epn(v,D′) = {p1, p2, . . . , pk}, then for all x ∈ V (H),

(v, x) ∈ D with epn((v, x), D) = {(p1, x), (p2, x), . . . , (pk, x)}. Bearing this in mind, suppose, for the

sake of contradiction, that (u,w) ∈ D has

epn((u,w), D) = {(p1, w), (p2, w), . . . , (pj , w)}

for some j < d + 2. Since K1,j �H 6∈ U , this implies that the subgraph of G�H induced by

{u, p1, p2, . . . , pj} × V (H) has a γ-set, call it B, distinct from {u} × V (H). In that case, (D −

({u} × V (H))) ∪ B is a dominating set of G�H of cardinality at most |D| distinct from D, a

contradiction.

As in Chapter 2, we can now use this result to classify the trees T for which T �H has a

unique γ-set. We once again let H(v) denote the H-layer of T �H through the vertex (v, h). We

note here that the proof of Theorem 48 is almost identical to that of Theorem 27. We have included

it here for completeness.
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Theorem 48. Let H be a nontrivial, twin-free, vertex-transitive graph of vertex degree regularity

d, let T be a tree, and let S be a γ-set of T . The Cartesian product T �H has a unique minimum

dominating set if and only if every vertex v ∈ S has at least d+ 2 external private neighbors.

Proof. First, suppose that T �H ∈ U . By Proposition 43, we see that T ∈ U and that UD(T �H) =

UD(T ) × V (H). Thus, in this case, S = UD(T ). By Proposition 47, we know that for each

v ∈ UD(T �H), |epn(v, UD(T �H))| ≥ d + 2. This, however, implies that for each w ∈ S,

|epn(w, S)| ≥ d+ 2. This completes the forward direction of our proof.

We now suppose that every element in S has at least d+ 2 external private neighbors. We

first note that since d+ 2 ≥ 2, Theorem 20 implies that T ∈ U . That is, S is the unique minimum

dominating set of T . We wish to show that T �H ∈ U . The set S × V (H) is clearly a dominating

set for T �H. We must show that it is a γ-set for T �H, and that it is the unique γ-set for T �H.

We proceed by induction on γ(T ) = |S|. If γ(T ) = 1, then T is a star K1,p with p ≥ d+ 2.

By Corollary 46, we see that T �H has S × V (H) as its unique γ-set. Thus, suppose the result

has been proven whenever γ(T ) < q. Suppose now that γ(T ) = q. Consider a diametral path

x1x2 . . . xt−1xtxt+1 in T . Note that xt ∈ S and that t ≥ 3.

Case One

First, suppose that xt−1 6∈ epn(xt, S). In this case, since |epn(xt, S)| ≥ d + 2, we see that xt is

adjacent to at least d + 2 leaves. Thus, by the proof of Proposition 45, every vertex of H(xt)

is included in every γ-set of T �H. Let T ′ denote the tree obtained by removing xt and all of its

private neighbors with respect to S from T . Note that by Lemma 9, T ′ ∈ U with UD(T ′) = S−{xt}.

Additionally, observe that if x ∈ S − {xt}, then epn(x, S − {xt}) ⊇ epn(x, S). Since γ(T ′) < γ(T ),

our induction hypothesis implies that T ′�H ∈ U and that UD(T ′�H) = (S − {xt})× V (H).

Suppose then that D is a γ-set for T �H and that D 6= S × V (H). By our observations

above, we know that {xt}×V (H) ⊆ D. Let B = D−({xt}×V (H)) and note that B ⊆ V (T ′�H). If

B dominates T ′�H, then since UD(T ′�H) = (S−{xt})×V (H) and since B 6= (S−{xt})×V (H),

this implies that |B| > |(S − {xt}) × V (H)|. This, however, implies that S × V (H) is a smaller

cardinality dominating set for T �H than D, a contradiction.

Thus, assume that B does not dominate T ′�H. Since D is a dominating set of T �H, this

implies that B fails to dominate some subset of H(xt−1) in T ′�H. In particular, this implies that

some subset of H(xt−1) is not contained in B. We consider two subcases.

Subcase One
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Suppose that xt−1 6∈ S.

• First, suppose that N(xt−1) = {xt−2, xt}. Since xt−1 6∈ epn(xt, S), this implies that xt−2 ∈ S.

Apply Lemma 9 to T , and remove the edge xt−2xt−1. It follows that T ′ − xt−1 ∈ U and

that UD(T ′ − xt−1) = S − {xt}. This further implies, by the same logic as above, that

(T ′ − xt−1)�H ∈ U with unique γ-set given by (S − {xt}) × V (H). Note that since B does

not dominate all of H(xt−1) in T ′�H, this implies that B does not contain all of H(xt−2).

If B contains no vertices from H(xt−1), then B is a dominating set for (T ′−xt−1)�H distinct

from (S − {xt}) × V (H). Thus, |B| > |(S − {xt}) × V (H)| implying that |D| > |S × V (H)|.

This contradicts our assumption that D was a γ-set for T �H.

Hence, we see that B contains some subset of H(xt−1). Let this subset be

{(xt−1, p1), (xt−1, p2), . . . , (xt−1, pj)} ⊆ B.

This implies that

B ∩ {(xt−2, p1), (xt−2, p2), . . . , (xt−2, pj)} = ∅

since otherwise D is not a minimum cardinality dominating set for T �H. Thus, consider the

set

(B − {(xt−1, p1), . . . , (xt−1, pj)}) ∪ {(xt−2, p1), . . . , (xt−2, pj)}.

This is a dominating set for (T ′− xt−1)�H distinct from (S−{xt})×V (H), a contradiction.

• Now suppose that xt−1 is adjacent to a vertex, call it y, not on the diametral path. First,

note that y ∈ S. If y 6∈ S, then since xt−1 6∈ S, y would have a neighbor in S which, with

its external private neighbors, could be used to create a longer path in T . In particular, any

neighbors of xt−1 in T not on the diametral path are in S and have only leaf neighbors. Since

our initial assumption was that each element of S has at least d+2 external private neighbors,

this implies that y has d + 2 leaf-neighbors in T . Hence, by the same logic as applied to xt

above, every vertex of H(y) is contained in every γ-set for T �H. However, this implies that

{y} × V (H) ⊆ D which further implies that B dominates T ′�H, a contradiction.

Thus, in both cases, xt−1 6∈ S leads to a contradiction.

Subcase Two
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Suppose now that xt−1 ∈ S. This implies that |epn(xt−1, S)| ≥ d+ 2 by our earlier assumption. If

xt−1 has an external private neighbor other than xt−2 that is not a leaf, then a longer path in T

can be found. Hence, we see that xt−1 has at least d+ 1 leaf-neighbors in T , call them l1, l2, . . . , lr.

Note that if r ≥ d+ 2, then every vertex of H(xt−1) is contained in every γ-set of T �H implying

that B is a dominating set for T ′�H, a contradiction.

Thus, we see that xt−1 has exactly d+1 leaf-neighbors and xt−2 ∈ epn(xt−1, S). Recall that

some subset of H(xt−1) in T �H is not contained in B. To be specific, assume k vertices of H(xt−1)

are not contained in B. This implies that at least d k
d+1e vertices from each of H(l1), H(l2), . . . ,H(lr)

are contained in B. Additionally, the vertices in H(xt−2) that are adjacent to vertices in ({xt−1} ×

V (H))−B are dominated by vertices outside of H(xt−1). Since

[d+ 1] · d k

d+ 1
e ≥ k

we see that B contains exactly k vertices from H(l1), H(l2), . . . ,H(lr) in total, since otherwise a

smaller dominating set for T �H could be constructed. Consider the set obtained from B by remov-

ing the k vertices from H(l1), H(l2), . . . ,H(lr) and including the k missing vertices from H(xt−1).

This set is a dominating set for T ′�H distinct from (S − {xt})× V (H), a contradiction.

Case Two

Finally, suppose that xt−1 ∈ epn(xt, S). In this case, xt is adjacent to at least d+1 leaves, call them

l1, l2, . . . , lp. Note that the only neighbors of xt−1 are xt and xt−2. If xt−1 had any other neighbors,

either a longer path in T could be found, or xt−1 would not be an external private neighbor of xt

with respect to S.

Suppose that D is a γ-set of T �H which does not contain k vertices of H(xt). This implies

that D contains at least d k
d+1e vertices from each of H(l1), H(l2), . . . ,H(lp). In fact, if pd k

d+1e > k,

then we have reached a contradiction since a smaller dominating set for T �H could be found simply

by including every vertex of H(xt). In particular, this implies that pd k
d+1e = k.

We now claim that D contains at least one vertex from H(xt−1). To see this, first note

that the tree T ′′ defined by T ′′ = T − {xt, xt−1, l1, . . . , lp} belongs to U with UD(T ′′) = S − {xt}.

Additionally, since epn(x, S − {xt}) = epn(x, S) for all x ∈ S − {xt}, our induction hypothesis

implies that T ′′�H has a unique γ-set given by (S − {xt}) × V (H). If no vertices from H(xt−1)
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are included in D, then

D ∩ V (T ′′�H) = (S − {xt})× V (H).

This, however, results in at least k vertices ofH(xt−1) being undominated by D since xt−2 6∈ S−{xt}.

This is a contradiction.

Thus, D contains at least one vertex from H(xt−1). If we “shift” these vertices to their

corresponding positions in H(xt−2), remove the vertices from D in H(l1), H(l2), . . . ,H(lp), and add

in the missing vertices from H(xt), we create a γ-set D′ distinct from D which induces a dominating

set distinct from (S−{xt})×V (H) on the subgraph T ′′�H. Hence, D is not a minimum dominating

set, a contradiction.

We thus see that if D is a γ-set for T �H, then every vertex of H(xt) is included in D. By

the logic applied in the above paragraph, this implies that S × V (H) is the unique γ-set for T �H.

Thus, we see that if T has a minimum dominating set S for which every element in S has

at least d+ 2 external private neighbors, then T �H ∈ U .

By combining this result with Theorem 6, we have the following corollary.

Corollary 49. Let T be a nontrivial tree and let D be a γ-set of T .

1. T �Kn ∈ U if and only if for all v ∈ D, |epn(v,D)| ≥ n+ 1.

2. T �Qn ∈ U if and only if for all v ∈ D, |epn(v,D)| ≥ n+ 2.

3. T �Cn ∈ U if and only if for all v ∈ D, |epn(v,D)| ≥ 4.

4. Let P denote the Petersen graph. T �P ∈ U if and only if for all v ∈ D, |epn(v,D)| ≥ 5.

5. Let H(n1, n2, . . . , nk) denote the Hamming graph Kn1�Kn2�· · ·�Knk . T �H(n1, n2, . . . , nk) ∈

U if and only if for all v ∈ D, |epn(v,D)| ≥ (n1 − 1) + (n2 − 1) + · · ·+ (nk − 1) + 2.

4.3 Unique γ-sets and i-sets in G×H

In this section, we turn our attention to the direct product. We once again assume that G

is nontrivial and connected. Additionally, we assume that H is connected, nontrivial, and vertex-

transitive. As in the previous section, we begin by discussing an automorphism of G × H. Like

Lemma 40, the following result is well known.
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Lemma 50. Let σ be an automorphism of G and let φ be an automorphism of H. The mapping

f : V (G×H)→ V (G×H) defined by f(g, h) = (σ(g), φ(h)) is an automorphism of G×H.

Proof. Since σ and φ are bijections on V (G) and V (H) respectively, f is a bijection on V (G×H).

Observe that (g1, h1)(g2, h2) ∈ E(G×H) if and only if g1g2 ∈ E(G) and h1h2 ∈ E(H). This holds

if and only if σ(g1)σ(g2) ∈ E(G) and φ(h1)φ(h2) ∈ E(H) since both of σ and φ are automorphisms.

Thus, we see that (g1, h1)(g2, h2) ∈ E(G ×H) if and only if f(g1, h1)f(g2, h2) ∈ E(G ×H). Thus,

f is an automorphism on G×H.

This result again implies that unique γ-sets and unique i-sets in G×H satisfy the stacked

property, as we now prove.

Lemma 51. Let H be a vertex-transitive graph. If G×H ∈ U , then UD(G×H) = UD(G)×V (H).

If G×H ∈ UI, then I(G×H) = I(G)× V (H).

Proof. Let D be the unique γ-set of G × H, and let (v, h1) ∈ D. If h2 ∈ V (H), then, since H

is vertex-transitive, there exists an automorphism φ of H for which φ(h1) = h2. Construct the

automorphism f as in Lemma 50 with the identity mapping as the automorphism on G and φ as

the automorphism on H. Since f(D) = D and since f(v, h1) = (v, φ(h1)) = (v, h2), we see that

(v, h2) ∈ D. Thus, there exists S ⊆ V (G) such that D = S × V (H). Similarly, if J is the unique

i-set for G×H, then there exists a set T ⊆ V (G) such that J = T × V (H).

By our observations above, if G×H ∈ U , then UD(G×H) = S×V (H) for some S ⊆ V (G).

S is certainly a dominating set for G, since if S is not a dominating set for G, then S×V (H) is not

a dominating set for G×H. If S is not a γ-set of G, then a smaller dominating set for G×H can

be found. In fact, if S is not the unique γ-set for G, then G ×H has two distinct γ-sets. Thus, if

G×H ∈ U , then UD(G×H) = UD(G)× V (H). The case of G×H ∈ UI follows similarly.

Recall from Proposition 42 that if H is connected and nontrivial, then G�H 6∈ UI for any

G. The following is an interesting “dual” to this result.

Proposition 52. If G is a connected graph on at least two vertices, and H is a connected, vertex-

transitive graph on at least three vertices, then G×H 6∈ U .

Proof. Suppose G × H ∈ U . By Lemma 51, UD(G × H) = S × V (H) for some S ⊆ V (G). Let

x ∈ S, h ∈ V (H), and consider (x, h). We claim that epn(x, h) = ∅. To see this, suppose that
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(y, h1) ∈ N((x, h)). This implies that xy ∈ E(G) and hh1 ∈ E(H). Since |V (H)| ≥ 3, and since H

is connected, there exists h2 ∈ V (H) such that h1h2 ∈ E(H). Thus, (x, h2) ∈ UD(G×H) implying

that (y, h1) is not an external private neighbor of (x, h). Thus, since (y, h1) was an arbitrary element

in N((x, h)), we see that (x, h) does not have at least two private neighbors other than itself. Thus,

by Lemma 11, G×H 6∈ U .

Given this, we see that if H is vertex-transitive, then G × H ∈ U only if H = K2. For

the moment, we consider this case. Recall that when we considered G �Kn ∈ U in Chapter 2, we

were able to improve upon the general bound for external private neighbors given by Lemma 11 in

Lemma 12. Unfortunately, Lemma 11 cannot be improved upon in the case of G ×K2 ∈ U as the

case of P3×K2 attests. That is, if G×K2 ∈ U , then every vertex v ∈ UD(G×K2) has at least two

external private neighbors and this bound is sharp.

We have seen that if G×K2 ∈ U , then G ∈ U . However, as in the Cartesian product cases

above, if G ∈ U , it does not imply that G×K2 ∈ U as the graph G in Figure 4.3 illustrates. We see

that UD(G) = {b, e} but {(b, 1), (c, 1), (d, 2), (e, 2)} is a γ-set for G×K2 that is not stacked.

a b c

d e f

g

G G×K2

(g, 1) (b, 1) (c, 1) (f, 1) (e, 1) (d, 1) (a, 1)

(g, 2) (b, 2) (c, 2) (f, 2) (e, 2) (d, 2) (a, 2)

Figure 4.3: G ∈ U but G×K2 6∈ U

However, we do have the following.

Proposition 53. Let B be a bipartite graph. If B ∈ U , then B ×K2 ∈ U .

Proof. If B is a bipartite graph, then B ×K2
∼= B ∪B. Hence, if B ∈ U , then B ∪B ∈ U .

Since every tree T is bipartite, Proposition 53 has the following corollary.
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Corollary 54. Let T be a nontrivial tree. The following are equivalent.

1. The tree T has a unique minimum dominating set.

2. The tree T has a minimum dominating set D such that for all v ∈ D, |epn(v,D)| ≥ 2.

3. The graph T ×K2 has a unique minimum dominating set.

Thus, we see that this result is a natural parallel to Theorem 6.

Unique i-sets in G×H prove to be both more interesting, and more difficult to work with.

In order to mirror our earlier work, we restrict our attention to H = Kn for n ≥ 2 (G ×K1 ∈ UI

for all G). We first make the following definition.

Definition 21. LetD be an i-set forG×Kn. For v ∈ V (G), let fD(v) = |{(v, h) : h ∈ V (H), (v, h) ∈

D}|. If D is understood from context, we simplify the notation to f(v).

With this notation established, we have the following result.

Lemma 55. If D is an i-set in G×Kn, then fD(v) ∈ {0, 1, n} for all v ∈ V (G).

Proof. Suppose 2 ≤ fD(v) ≤ n − 1 for some v ∈ V (G). If uv ∈ E(G), then fD(u) = 0, since

otherwise D is not independent. This, however, implies that D is not a dominating set since there

is at least one vertex in {v} × V (H) that is not contained in D, and is thus not dominated.

By considering this result with Lemma 51, we see that if G×Kn ∈ UI, then fI(G)(v) ∈ {0, n}

for all v ∈ V (G). This observation, while simple, actually highlights a very interesting point. Observe

that for any j ∈ V (Kn), the set V (G) × {j} is an independent dominating set for G ×Kn since G

is assumed to be connected. Thus, if G ×Kn ∈ UI, then it is the case that i(G ×Kn) < |V (G)|.

Moreover, if G × Kn ∈ UI, then i(G × Kn) = n · i(G) by Lemma 51. Thus, we actually have a

stronger result, namely that i(G) < |V (G)|
n . Hence, if i(G) ≥ |V (G)|

n , then we immediately know that

G×Kn 6∈ UI.

Proposition 56. If G×Kn ∈ UI, then i(G) < |V (G)|
n .

What else can be said concerning I(G × Kn)? If n ≥ 3, then Lemma 51 implies that if

G×Kn ∈ UI, then B(I(G×Kn)) = I(G×Kn). That is, unlike in the general graph case considered

in Chapter 3, no vertex in the unique i-set in G × Kn has any external private neighbors. Thus,

thanks to Lemma 33, we have the following result.
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Proposition 57. Let n ≥ 3. If G × Kn ∈ UI, then for all v ∈ I(G × Kn), i(G × Kn − v) =

i(G×Kn)− 1, G×Kn − v ∈ UI and I(G×Kn − v) = I(G×Kn)− {v}.

While no vertex in I(G×Kn) has any external private neighbors, what can be said concerning the

external private neighbors of I(G) when G×Kn ∈ UI?

Proposition 58. If G×Kn ∈ UI, then for all v ∈ I(G), |epn(v, I(G))| = 0 or |epn(v, I(G))| ≥ n.

Proof. Suppose that G × Kn ∈ UI with I(G × Kn) = I(G) × V (Kn). Let D denote I(G × Kn).

Consider v ∈ I(G). Suppose for some j, 1 ≤ j ≤ n − 1, that epn(v, I(G)) = {p1, p2, . . . , pj}. This

implies that ({p1, p2, . . . , pj} × V (Kn)) ∩ D = ∅. In this case, (D − {(v, 2), (v, 3), . . . , (v, n)}) ∪

{(p1, 1), (p2, 1), . . . , (pj , 1)} is an independent dominating set of G ×Kn of cardinality at most |D|

that is distinct from D, a contradiction.

Recall that if T is a nontrivial tree, then T �Kn ∈ U if and only if T has a γ-set D such

that |epn(v,D)| ≥ n + 1 for all v ∈ D. One might hazard a guess at this point, and predict that

T × Kn ∈ UI if and only if T ∈ UI with all v ∈ I(T ) either satisfying |epn(v, I(T ))| = 0 or

|epn(v, I(T ))| ≥ n, then T ×Kn ∈ UI. This, however, does not turn out to be the case, as the graph

T in Figure 4.4 illustrates.

x y

T

Figure 4.4: T ∈ UI but T ×K4 6∈ UI

We see that T ∈ UI with I(T ) = {x, y}. Additionally, |epn(x, I(T ))| = 4 while |epn(y, I(T ))| = 0.

However, T ×K4 6∈ UI by Proposition 57, since i(T ) = 2 > 7
4 = |V (T )|

n . In fact, {x, y} × V (K4) is

not an i-set for T ×K4. We see that V (T )×{j} is a smaller independent dominating set for T ×K4

where j is an arbitrary vertex in V (K4).
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4.4 Looking ahead

We have now considered unique γ-sets, and unique i-sets. Thinking of the domination chain

presented as Theorem 5, we have yet to consider unique ir-sets, unique β0-sets, unique Γ-sets, or

unique IR-sets. We do so in the following chapter in an extremal graph setting.
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Chapter 5

Maximum Graphs

5.1 Background

In our introductory chapter, we were introduced to the domination chain

ir(G) ≤ γ(G) ≤ i(G) ≤ β0(G) ≤ Γ(G) ≤ IR(G)

which holds for every graph G. Many research papers have been devoted to its study. In this chapter,

we consider a specialization of this chain as it pertains to unique realizations of these parameters in

an extremal graph setting.

In [7] and [13] the problem of determining the maximum number of edges in a graph having

a unique γ-set was considered. In this chapter, we build on this work and consider the maximum

number of edges in a graph having a unique ir-set, i-set, β0-set, Γ-set, or IR-set of cardinality 2. In

so doing, we show that the domination chain above still holds in this different setting.

The work that follows appears in [25] which has been accepted for publication and is to

appear. For ease, we do not specifically reference this paper when stating and proving theorems in

this chapter.
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5.2 Definitions and Notation

Let P be one of ir, γ, i, β0, Γ, or IR. In this chapter we are not only interested in graphs

having a unique P-set, but also the number of edges they contain. We make the following definitions.

Definition 22. Let m∗P(n, k) denote the maximum number of edges in a graph on n vertices having

a unique P-set of cardinality k.

Definition 23. Let mP(n, k) denote the maximum number of edges in an isolate free graph on n

vertices having a unique P-set of cardinality k.

Observe that mP(n, k) ≤ m∗P(n, k). Furthermore, if one can find a graph G of order n and δ(G) ≥ 1

having a unique P-set such that |E(G)| = m∗P(n, k), then mP(n, k) = m∗P(n, k).

With this notation now defined, our main result in this chapter is as follows.

Theorem 59. For n ≥ 6

mir(n, 2) = mγ(n, 2) ≤ mi(n, 2) ≤ mβ0
(n, 2) = mΓ(n, 2) = mIR(n, 2)

and

m∗ir(n, 2) = m∗γ(n, 2) ≤ m∗i (n, 2) ≤ m∗β0
(n, 2) = m∗Γ(n, 2) = m∗IR(n, 2)

We prove this theorem by computing, or recalling in the case of mγ(n, 2), the exact values for each

of these parameters.

In Section 5.3, we collect the results from [7] and [13] which we need for our discussion of

unique irredundant sets in Section 5.4. In Section 5.5, we return our attention to unique minimum

independent dominating sets of cardinality 2, while in Section 5.6 we consider unique β0-sets, Γ-sets,

and IR-sets of cardinality k for k ≥ 2. Finally, in Section 5.7, as we bring our discussion of unique

domination chain parameters to a close, we pose several open problems.

5.3 Unique minimum dominating sets

In this section, we briefly collect the results from [7] and [13] concerning unique minimum

dominating sets that we will need in our work to come. We first note the following result from [7].

Proposition 60 ([7]). For n ≥ 3, mγ(n, 1) =
(
n
2

)
− dn−1

2 e.
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This bound is achieved by constructing a graph G on n vertices having a single vertex of degree

n − 1, with all other vertices having degree at most n − 2. For example, the graphs in Figure 5.1

below all have a unique γ-set of cardinality one (given by the white vertex in each case) and have a

maximum number of edges.

n = 3 n = 4 n = 5

Figure 5.1: mγ(n, 1) =
(
n
2

)
− dn−1

2 e

For purely comparative purposes in Section 5.5 to follow, we also note the following result from [7].

Theorem 61 ([7]). For k ≥ 2, mγ(3k, k) = 2k + 2
(
k
2

)
.

The following result, from [13], will be used in Section 4 below.

Theorem 62 ([13]). For n ≥ 6, mγ(n, 2) =
(
n−2

2

)
.

There are precisely two graphs on six vertices having a unique minimum dominating set of cardinality

2 that achieve the bound from Theorem 62 and they are pictured in Figure 5.2 below.

G1 G2

Figure 5.2: mγ(n, 2) =
(
n−2

2

)

By combining Proposition 60 and Theorem 62, we see the following.

Proposition 63. For n ≥ 6, m∗γ(n, 2) = mγ(n− 1, 1) =
(
n−1

2

)
− dn−2

2 e.
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Proof. Suppose G is a graph on n ≥ 6 vertices having a unique γ-set of cardinality 2. Note that G

has at most one isolated vertex. If G is isolate free, then |E(G)| ≤
(
n−2

2

)
by Theorem 62. However,

if G has one isolate and a unique γ-set of cardinality 2, then the component of G containing n− 1

vertices necessarily induces an isolate free graph having a unique γ-set of cardinality 1. Hence, if G

has an isolate, then |E(G)| ≤
(
n−1

2

)
− dn−2

2 e by Proposition 60. Since this upper bound is strictly

greater than
(
n−2

2

)
and can be achieved, our result follows.

5.4 Unique minimum maximal irredundant sets

We now turn out attention to the maximum number of edges in a graph G on n vertices

having a unique ir-set of cardinality 2. The only graph on two vertices having a unique ir-set of

cardinality 2 is the graph consisting of two isolated vertices, namely K2. Additionally, no graph on

three vertices has a unique ir-set of cardinality 2. Thus, we first restrict ourselves to graphs on n ≥ 4

vertices. Note that if G has two or more isolated vertices, then ir(G) ≥ 3. Thus, we first suppose

that G has one isolated vertex. In this case, G has a component of order n − 1, call it C, which

necessarily satisfies ir(C) = 1. Since ir(C) = 1 if and only if γ(C) = 1, we see that, in fact, C has a

unique γ-set of cardinality 1. Hence, by Proposition 60, C, and thus G, has at most
(
n−1

2

)
− dn−2

2 e

edges. As we saw above, this bound can be achieved. Thus, we have that m∗ir(n, 2) ≥
(
n−1

2

)
−dn−2

2 e.

Hence, by Proposition 63, if n ≥ 6, then m∗ir(n, 2) ≥ m∗γ(n, 2).

We now restrict ourselves to isolate free graphs. It can be readily checked that no isolate

free graph on two, three, or four vertices has a unique ir-set of cardinality 2. Among the isolate

free graphs on five vertices, twelve satisfy ir(G) = 2, and none has a unique ir-set (see Figure 5.3).

Thus, we restrict ourselves to graphs on n ≥ 6 vertices.
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Figure 5.3: Isolate free graphs on five vertices satisfying ir(G) = 2

Suppose G is an isolate free graph on n ≥ 6 vertices having a unique ir-set of cardinality 2,

call it D. We see that D is either a dominating set, or it is not a dominating set. In the following

two subsections, we consider each case.

5.4.1 D is not a dominating set

We first consider the case when D is not a dominating set. Observe that in this case,

ir(G) < γ(G), for if γ(G) = 2 also, then D is not a unique ir-set in G since every minimal dominating

set is maximal irredundant.

We begin by considering an example. Let the graph F on n ≥ 7 vertices be constructed as

follows. Let V (F ) = {x, y, x′, y′, w, z, v, b1, b2, . . . , bn−7}. Let F 〈{v, b1, b2, . . . , bn−7}〉 be complete.

Additionally, let

N(x) = {y, v, x′, b1, b2, . . . , bn−7}

N(y) = {x, v, y′, b1, b2, . . . , bn−7}

N(v) = {x, y, b1, b2, . . . , bn−7}

N(x′) = {x,w, y′, b1, b2, . . . , bn−7}

N(y′) = {y, z, x′, b1, b2, . . . , bn−7}

N(w) = {x′}

N(z) = {y′}.

The case of n = 8 is illustrated below for convenience.
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x

x′

v

b1

y

y′

w z

Figure 5.4: n = 8 case

We claim that {x, y} is the unique ir-set of F .

Proof. First, note that ir(F ) ≥ 2 since ∆(F ) < n−1. Consider {x, y}. This set is irredundant, since

x has x′ as a private neighbor and y has y′ as a private neighbor. Moreover, this set is maximal

irredundant since the inclusion of w, z, x′, y′, or b1, b2, . . . , bn−7 eliminates the private neighbor of x

or y while the inclusion of v results in v not having a private neighbor. Thus, ir(F ) = 2 and {x, y}

is an ir-set. It remains to show that {x, y} is the only maximal irredundant set of cardinality 2.

To see that no other two element subsets of V (F ) containing x are maximal irredundant,

observe first that {x, v} and {x, bi} for 1 ≤ i ≤ n − 7 are both redundant sets. Additionally, since

the sets {x, x′, z}, {x, y′, w}, and {x,w, z} are irredundant, we see that {x, x′}, {x, y′}, {x,w} and

{x, z} are not maximal irredundant.

We leave it to the interested reader to verify, in a manner similar to the above, that any

other two element subset of V (F ) distinct from {x, y} is either redundant, or is contained in a larger

irredundant set. We thus have that {x, y} is the the unique ir-set of F .

Before proceeding, we note that |E(F )| =
(
n−2

2

)
− 2.

We now prove the following theorem through a sequence of claims.

Theorem 64. Let n ≥ 7. If G is a graph of order n such that δ(G) ≥ 1, ir(G) = 2, γ(G) ≥ 3,

and G has a unique ir-set D, then |E(G)| ≤
(
n−2

2

)
− 2. Furthermore, there exists such a G that has

exactly
(
n−2

2

)
− 2 edges.

Proof. Among all isolate free graphs on n vertices with domination number at least 3 and having a

unique ir-set of cardinality 2, suppose that G has the maximum number of edges. Note that since
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γ(G) ≥ 3, ∆(G) ≤ n− 3. Let D = {x, y} denote the unique ir-set of G. Define the following sets.

• Dx = N(x)−N [y]

• Dy = N(y)−N [x]

• Dxy = N(x) ∩N(y)

• R = V (G)− (N [x] ∪N [y])

We note that R is the set of vertices not dominated by x or y. Since D is not a dominating set, we

have that |R| > 0. This implies that xy ∈ E(G), since if xy 6∈ E(G), then {x, y, w}, where w ∈ R,

is independent and is thus irredundant. The fact that xy ∈ E(G) further implies that Dx 6= ∅ and

that Dy 6= ∅.

We first consider the set R.

Claim 1. |R| ≥ 2.

Proof of Claim: For the sake of contradiction, suppose |R| = 1 with w ∈ R. Since D is maximal

irredundant, {x, y, w} is redundant. Since w is a self-private neighbor with respect to {x, y, w}, we

see that either w dominates Dx or w dominates Dy. Without loss of generality, assume w dominates

Dx. In this case, {y, w} is a dominating set of G, a contradiction. Hence, |R| ≥ 2.

Claim 2. Every vertex in R either dominates Dx or Dy.

Proof of Claim: Suppose w ∈ R does not dominate Dx or Dy. Since w is not dominated by D,

we see that {x, y, w} is irredundant, a contradiction to the maximality of D.

Claim 3. γ(G〈R〉) ≥ 2.

Proof of Claim: Suppose that γ(G〈R〉]) = 1. Let w ∈ R dominate G〈R〉. By Claim 2, w dominates

Dx or Dy. Without loss of generality, assume w dominates Dx. In this case, {w, y} is a dominating

set of G, a contradiction.

Claim 4. There exists w ∈ R that dominates Dx but not Dy and z ∈ R that dominates Dy but not

Dx.

Proof of Claim: Without loss of generality, suppose every vertex in R dominates Dx. This implies

every vertex in Dx dominates R. Consider γ(G〈Dx〉). First, assume that γ(G〈Dx〉) = 1. In this
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case, if x′ ∈ Dx dominates G〈Dx〉, then {x′, y} is a dominating set of G, a contradiction. Thus,

γ(G〈Dx〉) ≥ 2. This, implies that |Dx| > 1. Let x′ ∈ Dx and x′′ ∈ Dx be non-adjacent. Consider

x′. We have seen that x′ dominates R. If x′ also dominates Dy, then {x, x′} dominates all of G, a

contradiction. Thus, there exists y′ ∈ Dy such that x′y′ 6∈ E(G). However, we now see that {x, y}

is not maximal irredundant, since {x, x′, y} is irredundant (x has x′′ as a private neighbor, y has y′

as a private neighbor, and x′ has any vertex in R as a private neighbor). Thus, our result follows.

Next, we consider the set Dxy.

Claim 5. No vertex in Dxy dominates R.

Proof of Claim: Suppose v ∈ Dxy dominates R. Recall that deg(v) ≤ n − 3. Since v is adjacent

to x, y, and every vertex in R, this implies that there are at least two vertices in Dx ∪ Dy ∪ Dxy

that are not neighbors of v. Suppose the only vertices not adjacent to v are in Dx and Dxy. This

implies that v dominates Dy in which case {x, v} is a dominating set, a contradiction. By similar

reasoning, the vertices not adjacent to v cannot lie in only Dy and Dxy, only Dx, only Dy, or only

Dxy. Thus, there exists x′ ∈ Dx and y′ ∈ Dy for which x′v 6∈ E(G) and y′v 6∈ E(G). This, however,

implies that D = {x, y} is not maximal irredundant, since {x, y, v} is irredundant, a contradiction.

Claim 6. Dxy 6= ∅.

Proof of Claim: Suppose that Dxy = ∅. If γ(G〈Dx〉) = γ(G〈Dy〉) = 1, with x′ ∈ Dx dominating

Dx and y′ ∈ Dy dominating Dy, then {x′, y′} is a dominating set of G, a contradiction. Thus,

either γ(G〈Dx〉) ≥ 2 or γ(G〈Dy〉) ≥ 2. Without loss of generality, assume that γ(G〈Dx〉) ≥ 2. Let

x′ ∈ Dx. If x′ does not dominate Dy, then {x, y, x′} is irredundant, a contradiction. Hence, we see

that every vertex in Dx dominates Dy. This implies that every vertex in Dy dominates Dx as well.

Hence, if x′ ∈ Dx and y′ ∈ Dy, then {x′, y′} is a dominating set of G, a contradiction.

Corollary 65. If G is an isolate free graph on six vertices having a unique ir-set of cardinality 2,

then γ(G) = 2.

Finally, we consider the sets Dx and Dy.

Claim 7. If v ∈ Dx or v ∈ Dy, then deg(v) ≤ n− 4.
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Proof of Claim: Since ∆(G) ≤ n− 3, we immediately know that if x′ ∈ Dx, then deg(x′) ≤ n− 3.

For the sake of contradiction, suppose that deg(x′) = n− 3 and that x′ is not adjacent to a and y.

(We note that x′ ∈ Dx implies x′ is not adjacent to y.)

• If a ∈ Dxy or a ∈ Dy, then {x′, y} dominates G, a contradiction.

• If a ∈ Dx, then {x′, x} dominates G, a contradiction.

• If a ∈ R, then since every vertex in R either dominates Dx or Dy, we see that a dominates

Dy. This however, implies that {x′, y′} dominates G for any y′ ∈ Dy.

Hence, we have arrived at a contradiction. Our claim follows.

Claim 8. If x′ ∈ Dx, then x′ either dominates Dx or Dy. If y′ ∈ Dy, then y′ either dominates Dx

or Dy.

Proof of Claim: If x′ ∈ Dx does not dominate Dx and does not dominate Dy, then {x, x′, y} is

irredundant by Claim 4.

Corollary 66. If γ(G〈Dx〉) > 1 or γ(G〈Dy〉) > 1, then each vertex in Dx dominates Dy and each

vertex in Dy dominates Dx.

Proof. Suppose γ(G〈Dx〉) > 1. This implies that no vertex in Dx dominates Dx. Hence, by Claim 8,

each vertex in Dx dominates Dy. This also implies that each vertex in Dy dominates Dx. The case

of γ(G〈Dy〉) > 1 follows similarly.

Claim 9. No vertex in Dx or Dy dominates Dxy.

Proof of Claim: Suppose x′ ∈ Dx dominates Dxy. x′ itself either dominates Dx or Dy by Claim 8.

We consider each case.

First suppose x′ dominates Dx. If there exists y′ ∈ Dy that dominates Dy, then {x′, y′} is

a dominating set of G, a contradiction. Thus, no vertex in Dy dominates Dy. Hence, every vertex

in Dy dominates Dx. This, however, implies that every vertex in Dx also dominates Dy. Hence,

{x′, y′} is a dominating set of G for any y′ ∈ Dy, a contradiction.

Suppose now that x′ dominatesDy but notDx. If there exists y′ ∈ Dy such that y′ dominates

Dx then {x′, y′} is a dominating set of G, a contradiction. Thus, no vertex in Dy dominates Dx,

in which case every vertex in Dy dominates Dy. Let x′′ be a vertex in Dx not dominated by x′.
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If x′′ does not dominate Dy, then {x, x′′, y} is irredundant, a contradiction. Thus, x′′ dominates

Dy. Since this is true for every vertex in Dx not dominated by x′, we see that each vertex in Dy

dominates the vertices in Dx not dominated by x′. This implies that {x′, y′} is a dominating set of

G for any y′ ∈ Dy.

Claim 10. No vertex in Dx dominates R. No vertex in Dy dominates R.

Proof of Claim: Suppose x′ ∈ Dx dominates R. If x′ dominates Dx, then {x′, y} dominates G,

a contradiction. Thus, x′ dominates Dy. This, however, implies that {x, x′} dominates G, again a

contradiction. Hence, no vertex in Dx dominates R. By the same logic, no vertex in Dy dominates

R.

Claim 11. For each pair of vertices {x′, y′} such that x′ ∈ Dx and y′ ∈ Dy, there exists a vertex

v ∈ Dxy not adjacent to either x′ or y′.

Proof of Claim: Suppose x′ ∈ Dx, y′ ∈ Dy, and that Dxy ⊆ (N [x′] ∪N [y′]). We consider several

cases.

• If x′ dominates Dx and y′ dominates Dy, then {x′, y′} dominates G, a contradiction.

• If x′ dominates Dy and y′ dominates Dx, then {x′, y′} dominates G, a contradiction.

• Suppose both x′ and y′ dominate Dy but not Dx. In this case, consider x′′ ∈ (Dx − N [x′]).

If x′′ does not dominate Dy, then {x, x′′, y} is irredundant, a contradiction. Thus, we see

that each vertex in Dx − N [x′] dominates Dy, in which case every vertex in Dy dominates

Dx −N [x′]. Thus, once again we see that {x′, y′} dominates all of G, a contradiction.

• If both x′ and y′ dominate Dx but not Dy, then {x′, y′} will dominate all of G in a manner

similar to the case above.

Our result follows.

Considering the results above, we see that G has one of the four graphs below as an induced

subgraph.
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Figure 5.5: Induced Subgraphs

We now show that if |R| ≥ 3, |Dx| ≥ 2, or if |Dy| ≥ 2, then |E(G)| ≤ |E(F )| =
(
n−2

2

)
− 2,

where F is the graph considered at the beginning of this section. We prove this by constructing a

graph G′ from G satisfying |E(G)| ≤ |E(G′)| and G′ ⊆ F .

Suppose that at least one of the following is true concerning G.

• |R| ≥ 3

• |Dx| ≥ 2

• |Dy| ≥ 2

Find, and label, vertices w and z in R such that w dominates Dx but not Dy and such that z

dominates Dy but not Dx. Next, find, and label, vertex x′ in Dx that is not dominated by z and

vertex y′ in Dy that is not dominated by w. Finally, for the pair {x′, y′}, find, and label, the vertex

v in Dxy that is not dominated by x′ or y′. Observe that v is not adjacent to w or z, since if v is

adjacent to either w or z, then {x, y, v} is irredundant. Define the following sets.

• D∗x = Dx − {x′}

• D∗y = Dy − {y′}

• R∗ = R− {w, z}

• D∗xy = Dxy − {v}

Note that if there are no edges between {w, z} and D∗x, D∗y, D∗xy, and R∗, then G is isomorphic to

a subgraph of F above. Bearing this in mind, consider the following procedure.

Let G′ be a distinct copy of G. We alter G′ after considering G.
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1. If wz 6∈ E(G), continue to Step 2 below. If wz ∈ E(G), then there exists r ∈ R∗ for which

wr 6∈ E(G) by Claim 3. In G and G′, delete the edge wz and add the edge wr.

2. Consider D∗x in G. If |D∗x| = 0, continue to Step 3 below. Otherwise, for each s ∈ D∗x proceed

as follows. Note that s is adjacent to w, but is not adjacent to y (by definition of Dx) and at

least one vertex in R (by Claim 10), call it rs. In G′, delete the edge sw and add the edge sy.

If s is adjacent to z, then in G′ delete the edge sz and add the edge srs. Note that after the

completion of Step 2, |E(G)| = |E(G′)| and NG′({w, z}) ∩D∗x = ∅.

3. Consider D∗y in G. If |D∗y| = 0, continue to Step 4 below. Otherwise, for each t ∈ D∗y, proceed

as follows. Note that t is adjacent to z, but is not adjacent to x (by definition of Dy) and at

least one vertex in R (by Claim 10), call it rt. In G′, delete the edge tz and add the edge tx.

Additionally, if t is adjacent to w, in G′ delete the edge tw and add the edge trt. Note that

after the completion of Step 3, |E(G)| = |E(G′)| and NG′({w, z}) ∩D∗y = ∅.

4. Consider R∗ in G. If |R∗| = 0, continue to Step 5 below. Otherwise, for each u ∈ R∗, proceed

as follows. Note that u is not adjacent to x, y, or v. In G′, add the edges uv, ux, and uy. If u

is adjacent to w in G, delete the edge uw from G′. If u is adjacent to z in G, delete the edge uz

from G′. Note that after the completion of Step 4, |E(G)| ≤ |E(G′)| and NG′({w, z})∩R∗ = ∅.

5. Finally, consider D∗xy in G. If |D∗xy| = 0, then we are done. Otherwise, partition D∗xy as

follows.

• Let S1A denote the set of vertices p in D∗xy which dominate all but one vertex in R, and

which do not dominate Dx ∪Dy ∪ {v}.

• Let S1B denote the set of vertices p in D∗xy which dominate all but one vertex in R, and

which dominate Dx ∪Dy ∪ {v}.

• Let S2 denote the set of vertices p in D∗xy which do not dominate two or more vertices in

R.

For each p ∈ S1A, proceed as follows. Let op denote the vertex in Dx ∪Dy ∪ {v} that p is not

adjacent to, and let rp denote the vertex in R that p is not adjacent to. In G′, delete the edges

pw and pz (if they exist), add the edge pop, and add the edge prp if and only if rp is distinct

from w and z.
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For each p ∈ S1B , proceed as follows. Let rp denote the vertex in R that p is not adjacent to.

First, observe that there is at least one vertex in Dxy −N [p] since deg(p) ≤ n− 3. Next, note

that (Dxy −N [p])∩ (S1A ∪ S2) 6= ∅, since otherwise {p, x′} or {p, y′} dominates G (depending

upon whether rp dominates Dx or Dy). Thus, let op ∈ (Dxy−N [p])∩ (S1A∪S2). In G′, delete

the edges pw and pz (if they exist), add the edge pop, and add the edge prp if and only if rp

is distinct from w and z.

For each p ∈ S2, let r1 and r2 denote the vertices in R that p is not adjacent to. In G′, delete

the edges pw and pz (if they exist), and add the edges pr1 and pr2 if and only if r1 and r2 are

distinct from w and z respectively.

Note that after the completion of Step 5, |E(G)| = |E(G′)| and that NG′({w, z}) ∩D∗xy = ∅.

Upon completion of Step 5, we see that the graph G′ is isomorphic to a subgraph of the

graph F constructed above and that |E(G)| ≤ |E(G′)|. Hence, we have proven that if |R| > 2,

|Dx| > 1, or |Dy| > 1, then |E(G)| ≤
(
n−2

2

)
− 2.

Suppose now that G satisfies |R| = 2, |Dx| = 1, |Dy| = 1 and |Dxy| = n − 6. As before,

find, and label, the vertices w, z, x′, y′ and v as before. Note that x′ is not adjacent to z and that y′

is not adjacent to w by Claim 10. Additionally, v is not adjacent to either w or z, since otherwise

{x, y, v} is irredundant. If no vertex in Dxy shares an edge with w or z, then G is a subgraph of

F , in which case |E(G)| ≤
(
n−2

2

)
− 2. Thus, suppose there exists a vertex, call it p, in Dxy which

is adjacent to a vertex in R. Note that |N(p) ∩ R| ≤ 1 by Claim 5. Create a copy G′ of G, and

proceed as follows.

1. For each vertex p ∈ Dxy, if p is adjacent to a vertex in R but is not adjacent to one of x′, y′,

or v, delete the edge from p to R in G′ and add the edge px′, py′, or pv as appropriate.

2. If there are still vertices in Dxy that share an edge with a vertex in R, proceed as follows.

Suppose that p ∈ Dxy is adjacent to a vertex in R, say z without loss of generality. Consider

then x′. Note that x′ does not dominate V (G)−N [p] since other {x′, p} dominates G. Hence,

there exists a vertex which neither x′ nor p is adjacent to, call it c. Note that c 6= z. In G′,

exchange the pz edge for the pc edge. Since x′c 6∈ E(G), c does not share an edge with a vertex

in R.

Since the total number of edges is preserved in Step 1, and since the only edges added in Step 2 are

from a vertex sharing an edge with a vertex in R to a vertex not sharing an edge with a vertex in

87



R, we see that |E(G)| = |E(G′)|. Since G′ is a subgraph of F , we see that |E(G)| ≤
(
n−2

2

)
− 2. We

have thus proven our result.

5.4.2 D is a dominating set

Suppose now that G is an isolate free graph on n-vertices (n ≥ 6) having a unique ir-set

of cardinality 2, call it D, which is a dominating set. Since D is a dominating set, this implies

that D is a γ-set, since if γ(G) = 1, then ir(G) = 1 as well, a contradiction. Moreover, D is a

unique γ-set in G, since if G has a γ-set distinct from D, call it D′, then D′ is maximal irredundant,

contradicting the uniqueness of D. Hence, by Theorem 62, |E(G)| ≤
(
n−2

2

)
. To see that this bound

can be achieved, consider the following two constructions.

First, the following graph on six vertices, together with Corollary 65, shows that mir(6, 2) =(
6−2

2

)
= 6.

Figure 5.6: n = 6 case

For the n ≥ 7 case, consider the following. Let

V (H) = {x1, x2, . . . , xn−5, y1, y2, s, l, p}.

Let H〈{x1, x2, . . . , xn−5}〉 be complete. Additionally, let

N(y1) = {x1, x2, . . . , xn−5, s}

N(y2) = {x1, x2, . . . , xn−5, s, p}

N(s) = {y1, y2}

N(l) = {x1}

N(p) = {x2, x3, . . . , xn−5, y2}.

The case of n = 7 is illustrated in the figure below.
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Figure 5.7: n ≥ 7 case

Similar to the graph F considered in the previous section, the reader can verify that H has a

unique ir-set of cardinality 2 given by {x1, y2}. Since |E(H)| =
(
n−2

2

)
, we have the following result.

Theorem 67. For n ≥ 6, mir(n, 2) =
(
n−2

2

)
.

Additionally, by considering our work at the beginning of this section, we have the following.

Theorem 68. For n ≥ 4, m∗ir(n, 2) =
(
n−1

2

)
− dn−2

2 e.

Before concluding this section, we note that not every graph G having a unique γ-set of

cardinality 2 has a unique ir-set of cardinality 2, even when ir(G) = γ(G) = 2. For example, the

graph P6 has a unique γ-set of cardinality 2, but does not have a unique ir-set. Moreover, the set

of isolate free graphs on n vertices having a unique ir-set of cardinality 2 and a maximum number

of edges is a proper subset of the set of all isolate free graphs on n vertices having a unique γ-set of

cardinality 2 and a maximum number of edges. For example, the graph below has a unique γ-set

of cardinality 2 (and a maximum number of edges), but does not have a unique ir-set, even though

ir(G) = 2.

Figure 5.8: γ(G) = ir(G) = 2, unique γ-set, not a unique ir-set
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5.5 Unique minimum independent dominating sets

In this section, we consider the maximum number of edges in a graph on n vertices having

a unique i-set of cardinality 2. First, we note that no graph on one or three vertices has a unique

i-set of cardinality 2. The only graph on two vertices having a unique i-set of cardinality two is

the completely disconnected graph K2. Additionally, the only graph on four vertices which has a

unique i-set of cardinality two is P3∪K1. Putting these trivial cases aside, we now restrict ourselves

to graphs on at least five vertices. Let G be a graph on n ≥ 5 vertices having a unique minimum

independent dominating set of cardinality 2 and having a maximum number of edges. Let D denote

the unique i-set of G, and for notational purposes, let D = {x, y}. Additionally, let R = V (G)−D.

Partition R as follows.

• Dx = N(x)−N(y)

• Dy = N(y)−N(x)

• Dxy = N(x) ∩N(y).

Consider a vertex v ∈ R. What is the maximum degree of v? We see that if deg(v) = n− 1,

then {v} itself is an independent dominating set of cardinality one, a contradiction. If deg(v) = n−2,

with v not adjacent to u, then {u, v} is an independent dominating set of cardinality two distinct

from D, a contradiction. Thus, deg(v) ≤ n− 3. Additionally, note that if deg(v) = n− 3, then the

two vertices not adjacent to v are not adjacent.

Using the familiar result that |E(G)| = 1
2

∑
v∈V (G) deg(v), we see that

|E(G)| ≤ 1

2
(|Dx|+ 2|Dxy|+ |Dy|+ (n− 3)(n− 2))

≤ 1

2
(2(n− 2) + (n− 3)(n− 2))

=
1

2
((n− 2)(n− 1))

=

(
n− 1

2

)
.

When n = 3k + 2, k ≥ 1, this upper bound on |E(G)| can be achieved if R = Dxy and

G〈R〉 is a complete graph minus the edges of k disjoint triangles (see Figure 5.9). Thus, we see that

m∗i (3k + 2, 2) =
(

3k+1
2

)
.
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Figure 5.9: mi(8, 2) = 21

Suppose now that n = 3k or n = 3k + 1, for k ≥ 2. Note that the upper bound on |E(G)|

found above is achievable if and only if R = Dxy with each vertex v ∈ R satisfying deg(v) = n− 3.

Thus, suppose that R = Dxy and that each vertex in R has degree n − 3. If v ∈ R is not adjacent

to vertices v1 and v2, by our observations above, v1v2 6∈ E(G). Since we are assuming R = Dxy, we

see that v1 ∈ Dxy and v2 ∈ Dxy. Hence, deg(v1) = n − 3 and deg(v2) = n − 3. Moreover, the two

vertices not adjacent to v1 are v and v2, while the two vertices not adjacent to v2 are v and v1. Thus,

each of v, v1 and v2 dominates R − {v, v1, v2}. Since the above logic can be applied to each vertex

in R, R can be partitioned into sets of cardinality 3 such that each set S induces an independent set

in G that dominates R− S. This, however, is clearly a contradiction since |R| 6≡ 0 (mod 3). Thus, if

n = 3k or n = 3k + 1, we have |E(G)| ≤
(
n−1

2

)
− 1. This upper bound can be achieved in each case

as follows.

If n = 3k, we let R = Dxy. Initially, we let G〈R〉 be complete. After removing the edges of

k − 1 disjoint triangles from R, find the one remaining vertex in R of degree n− 1 and make it not

adjacent to any two other vertices in R. An example construction is illustrated in Figure 5.5.

If n = 3k + 1, we once again let R = Dxy and once again initially set G〈R〉 to be complete.

In this case, after removing the edges of k − 1 disjoint triangles from R, we find the remaining two

vertices in R of degree n− 1, call them v1 and v2. We remove the edge v1v2 from G, and then pick

an arbitrary vertex v ∈ R, (v 6= v1 and v 6= v2) and remove the edges vv1 and vv2. An example

construction is illustrated in Figure 5.5.
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Figure 5.10: mi(6, 2) = 9 and mi(7) = 14

Thus, we summarize our results as follows.

Theorem 69. For n = 2, n = 4, or n ≥ 5,

m∗i (n, 2) =


(
n−1

2

)
if n ≡ 2 (mod 3),(

n−1
2

)
− 1 otherwise.

By observing that the graphs constructed in the n ≥ 5 case are all isolate free, we also have the

following.

Corollary 70. For n ≥ 5,

mi(n, 2) =


(
n−1

2

)
if n ≡ 2 (mod 3),(

n−1
2

)
− 1 otherwise.

5.5.1 Unique minimum independent dominating sets of cardinalities greater

than 2

Determining the exact value for m∗i (n, k) is more difficult when k ≥ 2. However, if n satisfies

certain modular congruences, then determining exact values is possible.

Let G be a graph having a unique i-set of cardinality k ≥ 2, call it D. As above, let

R = V (G)−D. Since D is independent, we see that the maximum degree of a vertex v ∈ D is n−k.

That is, v is not adjacent to itself and k − 1 other vertices. By an argument similar to that above,

we see that the maximum degree of a vertex v ∈ R is n − k − 1. Thus, if G has a unique i-set of
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cardinality k, then we have

|E(G)| =
1

2

∑
v∈V (G)

deg(v)

=
1

2

(∑
v∈D

deg(v) +
∑
u∈R

deg(u)

)

≤ 1

2
(k · (n− k) + (n− k) · (n− k − 1))

=
(n− k)(n− 1)

2
.

Consider this upper bound. In the case of n = 8 and k = 3, we see that |E(G)| ≤
(8−3)(8−1)

2 = 35
2 , which is not an integer. Thus, unlike the case of k = 2 in the previous sub-

section, the trivially produced upper bound on |E(G)| cannot always be achieved. However, we do

have the following result.

Proposition 71. Let k ≥ 2 and let n > k. If n ≡ k (mod k + 1), then m∗i (n, k) = mi(n, k) =

(n−k)(n−1)
2 .

Proof. By our observations above, we know that m∗i (n, k) ≤ (n−k)(n−1)
2 . We show that this upper

bound can be achieved. Let α = n−k
k+1 . Since n ≡ k (mod k + 1), α is an integer. Let G be the

complete multipartite graph on α partite sets each of cardinality k + 1. That is, let

G = Kk + 1, k + 1, . . . , k + 1︸ ︷︷ ︸
α times

.

Note that

|E(G)| =

(
α

2

)
(k + 1)2

=
α · (α− 1)

2
· (k + 1)2

=

n−k
k+1 ·

(
n−k
k+1 − 1

)
2

· (k + 1)2

=
(n− k) · (n− k − (k + 1))

2

=
(n− k) · (n− 2k − 1)

2
.

Let H be the join of G and Kk. That is, H = Kk+1,k+1,...,k+1 +Kk. Recall that H is formed from
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G by adding k new vertices and making each new vertex adjacent to every vertex in V (G). We see

that these k new vertices form an independent dominating set of H of cardinality k. This set, in

fact, is the unique i-set of H since any independent dominating set containing a vertex from V (G)

is necessarily of cardinality k + 1. We see that

|E(H)| = |E(G)|+ k(n− k)

=
(n− k) · (n− 2k − 1)

2
+ k(n− k)

= (n− k) ·
(
n− 2k − 1

2
+ k

)
= (n− k) ·

(
n− 2k − 1

2
+

2k

2

)
=

(n− k)(n− 1)

2
.

Since H is isolate free when n > k, our result is shown.

5.6 Unique maximum independent, maximum minimal dom-

inating, and maximum irredundant sets

In this section, we consider unique β0-sets, Γ-sets, and IR-sets of cardinalities at least 2.

We begin with unique β0-sets.

Theorem 72. Let k ≥ 2. For n ≥ k, m∗β0
(n, k) =

(
n
2

)
−
(
k
2

)
.

Proof. Let k ≥ 2, and let G be a graph on n ≥ k vertices having a unique β0-set of cardinality k.

First, observe that since G contains k mutually non-adjacent vertices, |E(G)| ≤
(
n
2

)
−
(
k
2

)
. Since

the graph Kn − E(Kk) has a unique β0-set of cardinality k and has
(
n
2

)
−
(
k
2

)
edges, our result

follows.

Before proceeding, note that if n > k, then Kn − E(Kk) is isolate free in which case mβ0
(n, k) =(

n
2

)
−
(
k
2

)
as well.

As it turns out, unique Γ-sets and unique IR-sets of cardinality k can be handled similarly.

Theorem 73. Let k ≥ 2. For n ≥ k, m∗Γ(n, k) = m∗IR(n, k) =
(
n
2

)
−
(
k
2

)
.
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Proof. Let k ≥ 2, and let G be a graph on n ≥ k vertices having a unique Γ-set or a unique IR-set

of cardinality k, call it D. In either case, we have that D is maximal irredundant.

Partition D into two subsets S1 and S2 such that every vertex in S1 has an external private

neighbor, while every vertex in S2 does not have an external private neighbor. If S1 = ∅, then D is

an independent set in which case |E(G)| ≤
(
n
2

)
−
(
k
2

)
as illustrated in the proof of Theorem 72.

Thus, suppose that S1 6= ∅. Note that for each vertex v in S1, there is a vertex uv ∈ V (G)−D

satisfying N [uv] ∩D = {v}. We construct a graph G′ from G as follows. For each v ∈ S1, let the

vertices in N(v) ∩D be w1, w2, . . . , wr. Delete the edge vwi and add the edges wiuv and vuwi for

each 1 ≤ i ≤ r. If v has no neighbors in S1, no edges need be deleted or added. Once this has

been completed, we see that D forms an independent set in G′. Since |E(G′)| > |E(G)|, we see that

|E(G)| <
(
n
2

)
−
(
n
k

)
.

The graph Kn −E(Kk) satisfies Γ(Kn −E(Kk)) = IR(Kn −E(Kk)) = k and has a unique

Γ-set and a unique IR-set. Thus, our result follows.

Once again, if n > k, then we have mΓ(n, k) = mIR(n, k) =
(
n
2

)
−
(
k
2

)
.

By combining Proposition 63 and Theorems 62, 67, 68, 69, 72, and 73, we have our main

result.

Theorem. For n ≥ 6

mir(n, 2) = mγ(n, 2) ≤ mi(n, 2) ≤ mβ0(n, 2) = mΓ(n, 2) = mIR(n, 2)

and

m∗ir(n, 2) = m∗γ(n, 2) ≤ m∗i (n, 2) ≤ m∗β0
(n, 2) = m∗Γ(n, 2) = m∗IR(n, 2).

5.7 Open Problems

Before concluding this chapter, we pose a few open problems.

• What are the values for mir(n, k) and m∗ir(n, k) for k ≥ 3?

• What are the values for mi(n, k) and m∗i (n, k) for k ≥ 3 not handled in our result above?

95



• For k ≥ 3 and n sufficiently large, does the following inequality hold?

mir(n, k) ≤ mγ(n, k) ≤ m∗i (n, k) ≤ m∗β0
(n, k) ≤ m∗Γ(n, k) ≤ m∗IR(n, k)
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Chapter 6

Identifying codes in some

Cartesian product graphs

6.1 Introduction

While discussing domination in Chapter 1, we saw that there are many different types of

domination. In this concluding chapter, we consider a special kind of dominating set called an

identifying code. The study of identifying codes in graphs began with Chakrabarty, Karpovsky, and

Levitin in [29] in 1998. Since then, identifying codes have been studied in many different classes of

graphs, including product graphs. For example, identifying codes in the direct product were studied

by Rall and Wash in [34]. Identifying codes in lexicographic product graphs were studied by Feng

and Wang in [4], and while not strictly a graph product, identifying codes have also been studied in

corona graphs by Feng, Xu, and Wang in [3]. Our interest will be in the Cartesian product, where,

again, much work has been done (see [29], [31], [33], and [30]). Of particular interest to our work,

Gravier, Moncel, and Semri considered identifying codes in the Cartesian product of two complete

graphs of the same size in [16]. This work was later expanded upon to consider identifying codes in

the Cartesian product of two arbitrary complete graphs by Goddard and Wash in [14].

In this chapter, we study identifying codes in the Cartesian product of a complete graph

and a path. We first characterize identifying codes in such graphs, providing a set of conditions

which can be used to determine whether a given set in such a graph is an identifying code. Using
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these conditions, we then determine the minimum cardinality of an identifying code in Kn�Pm for

all m ≥ 3 when n = 3 and when n ≥ 5 by constructing codes whose cardinalities attain a provable

lower bound.

For more on identifying codes in graphs, we direct the reader to the excellent bibliography

maintained by Lobstein [32]. As in previous chapters, we note here that the work in this chapter is

a discussion of the work in [22]. The results and proofs in this chapter are assumed to be from this

paper unless otherwise stated.

6.2 Definitions and Notation

If A is a subset of V (G), we call N [x] ∩ A the set of identifiers of x with respect to A,

or simply the set of identifiers of x if A is understood from context. The set A is said to separate

vertices y and z in V (G) if the sets of identifiers for y and z are distinct. In other words, A separates

y and z if there exists some x ∈ A for which x ∈ N [y]∩A but x 6∈ N [z]∩A or for which x ∈ N [z]∩A

but x 6∈ N [y] ∩A.

For example, consider the graph in Figure 6.1. Let A be given by the set A = {a, c, f} (the

white vertices). The set of identifiers for b is N [b] ∩ A = {a, c} while the set of identifiers for c is

{c}. We thus see that b and c are separated by A since N [b] ∩ A 6= N [c] ∩ A. A, however, does not

separate e and g since N [e] ∩A = {f} = N [g] ∩A.

a b c d e f g

Figure 6.1: Identifiers and separating sets

Any subset C of V (G) which is a dominating set that separates all distinct pairs of vertices

is called an identifying code. Note that if a distinct pair of vertices, say x and y, satisfy N [x] = N [y],

then G contains no identifying codes. However, if G is twin-free, then G contains an identifying code,

namely V (G) itself. An identifying code of G of minimum cardinality is called a minimum identifying

code, and its cardinality is denoted by γID(G). A minimum identifying code will henceforth be

referred to as a γID-set. Vertices in an identifying code C are commonly referred to as codewords.

Considering once again the graph from Figure 6.1, we see that A = {a, c, f} is not an
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identifying code. While A is dominating, it does not separate each pair of distinct vertices. The set

C = {a, c, e, g}, however, is an identifying code, since each vertex has a unique set of identifiers.

• N [a] ∩ C = {a}

• N [b] ∩ C = {a, c}

• N [c] ∩ C = {c}

• N [d] ∩ C = {c, e}

• N [e] ∩ C = {c}

• N [f ] ∩ C = {e, g}

• N [g] ∩ C = {g}.

In our work to follow, we consider minimum identifying codes in Kn�Pm where, once again,

Kn denotes the complete graph on n vertices and Pm denotes the path on m vertices. Unless stated

otherwise, we assume that n ≥ 3 and that m ≥ 3. As in Chapter 1, we define V (Kn) = {1, 2, . . . , n}

and V (Pm) = {1, 2, . . . ,m} for ease. For convenience, we denote the Kn-layer through (i, y) by Ky.

That is, Ky is the subgraph of Kn �Pm induced by V (Kn)×{y}. The two Kn-layers Ki and Kj are

adjacent if ij ∈ E(Pm), and are non-adjacent otherwise. Finally, if C ⊆ V (Kn�Pm), we define the

function fC : V (Pm)→ {0, 1, . . . , n} by fC(i) = |C ∩ V (Ki)|. For other graph product terminology,

we follow [18].

6.3 Properties

Suppose that C ⊆ V (Kn�Pm) is a dominating set. To determine whether C is an identi-

fying code, we need to determine whether N [u] ∩ C 6= N [v] ∩ C for all distinct vertices u and v in

V (Kn�Pm). For 1 ≤ i ≤ m, define the set Bi(C) as follows.

Bi(C) =


{v : C ∩ {(v, 2)} 6= ∅} if i = 1,

{v : C ∩ {(v, i− 1), (v, i+ 1)} 6= ∅} if 2 ≤ i ≤ m− 1,

{v : C ∩ {(v,m− 1)} 6= ∅} if i = m.

We have the following result.
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Proposition 74. If C is an identifying code for Kn�Pm, then |Bi(C)| ≥ n− 1 for 1 ≤ i ≤ m.

Proof. For the sake of contradiction, suppose that |Bi(C)| ≤ n−2 for some i. Let {u, v}∩Bi(C) = ∅.

In this case, we see that N [(v, i)]∩C = C∩V (Ki) = N [(u, i)]∩C, in which case C is not an identifying

code. Our result follows.

Corollary 75. If C is an identifying code for Kn�Pm, then fC(2) ≥ n − 1, fC(m − 1) ≥ n − 1,

and fC(i) + fC(i+ 2) ≥ n− 1 for 1 ≤ i ≤ m− 2.

After factoring in that C is a dominating set, we also have the following.

Corollary 76. If C is an identifying code for Kn�Pm, then fC(1) + fC(2) ≥ n, fC(m − 1) +

fC(m) ≥ n, and fC(i) + fC(i+ 1) + fC(i+ 2) ≥ n for 1 ≤ i ≤ m− 2.

These two corollaries, will be used extensively in our identifying code constructions in Section 6.4

to come.

Proposition 77. If C ⊆ V (Kn�Pm) is a dominating set satisfying |Bi(C)| ≥ n−1 for 1 ≤ i ≤ m,

then every pair of vertices that both belong to the same Kn-layer or which respectively belong to non-

adjacent Kn-layers are separated by C.

Proof. First, note that since C is dominating, for all v ∈ V (Kn�Pm), N [v]∩C 6= ∅. Next, note that

for all distinct vertices (u, i) and (v, i) in V (Ki), N [(u, i)]∩C 6= N [(v, i)]∩C since |Bi(C)| ≥ n− 1.

Thus, each pair of distinct vertices within a given Kn-layer is separated by C.

For the sake of contradiction, suppose that N [(u, i)]∩C = N [(v, i+ j)]∩C for some j ≥ 2.

If j ≥ 3, then N [(u, i)] ∩ N [(v, i + j)] = ∅, a contradiction. By the same reasoning, we see that if

j = 2, then u = v. However, if N [(u, i)] ∩ C = N [(u, i + 2)] ∩ C, then N [(u, i)] ∩ C = {(u, i + 1)}

and fC(i) = fC(i + 2) = 0. This, however, implies that |Bi+1(C)| = 0, contradicting our earlier

assumption.

The following proposition gives a sufficient condition for vertices in adjacent Kn-layers to

be separated from each other.

Proposition 78. Let C ⊆ V (Kn�Pm). If fC(i) ≥ 2, then any vertex in V (Ki) is separated from

any vertex in V (Kn�Pm)− V (Ki) by C.
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Proof. If fC(i) ≥ 2, then each vertex of Ki has at least two vertices from Ki in its set of identifiers.

Any vertex outside of Ki contains at most one vertex from Ki in its set of identifiers. Our result

follows.

We have now proven the following proposition, which will be critically important in Section 6.4 to

follow.

Proposition 79. Let C be a dominating set of Kn�Pm for which |Bi(C)| ≥ n− 1 for 1 ≤ i ≤ m.

If each Kn-layer either contains at least two vertices in C or is only adjacent to Kn-layers containing

at least two vertices in C, then C is an identifying code.

In Section 6.5, we consider identifying codes for which adjacent Kn-layers each contain a

single vertex in the code. Thus, assume now that C ⊆ V (Kn�Pm) is a dominating set, satisfies

|Bi(C)| ≥ n − 1 for 1 ≤ i ≤ m, and that fC(i) = fC(i + 1) = 1 for some i. Note that if i ∈

{1, 2,m − 1,m − 2} or if m ≤ 5, then C is not an identifying code by Corollary 75. Thus, assume

that m ≥ 6 and that 3 ≤ i ≤ m− 3. Without loss of generality, assume that (1, i) ∈ C. We consider

two cases.

1. Suppose that (1, i + 1) ∈ C. In this case, (1, i) and (1, i + 1) are separated if and only if

{(1, i− 1), (1, i+ 2)} ∩C 6= ∅. This case illustrates that if C contains an isolated edge, then C

is not an identifying code.

2. Suppose that (j, i+ 1) ∈ C for j 6= 1. In this case, (j, i) and (1, i+ 1) are separated if and only

if {(j, i− 1), (1, i+ 2)} ∩ C 6= ∅.

These two cases will be used frequently in the proof of Theorem 87.

6.4 Code Constructions for n ≥ 5

In this section, we determine γID(Kn�Pm) when n ≥ 5 and m ≥ 3. We first need the

following lemma, which actually holds so long as n ≥ 3.

Lemma 80. Let C ⊆ V (Kn�Pm) where n ≥ 3,m ≥ 4. If fC(i) = n−2, fC(i+1) = 1, fC(i+2) = 1,

and fC(i+ 3) = n− 2 for some i, then C is not an identifying code.

Proof. Suppose that (j, i + 1), (k, i + 2) ∈ C. Since fC(i) = n − 2 and fC(i + 2) = 1, in order for

|Bi+1(C)| ≥ n−1, we see that (k, i) 6∈ C. Similarly, since fC(i+1) = 1 and fC(i+3) = n−2, we see
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Figure 6.2: γID-set for Kn�P3 and Kn�P4 respectively

that (j, i+3) 6∈ C. If j = k, thenN [(j, i+1)]∩C = {(j, i+1), (j, i+2)} = N [(j, i+2)]∩C, in which case

C is not an identifying code. If j 6= k, then N [(k, i+1)]∩C = {(j, i+1), (k, i+2)} = N [(j, i+2)]∩C,

in which case C is not an identifying code.

We now begin our construction of minimum identifying codes. For ease, we will depict our

code constructions using a grid in which the Kn-layers are represented by rows, and the Pm-layers

are represented by columns. If vertex (i, j) is included in the constructed code, then a circle will

appear in the ith cell of the jth row. For conciseness, we depict our codes in the case of K5 �Pm.

However, in each case, we designate how a code for Kn�Pm with n ≥ 6 can be constructed. In

particular, when a column is appended on the right of the grid, the circles appearing outside of the

grid indicate which vertices in that new column to include.

For each proof in the remainder of this section, we assume that we have been given a γID-set

and its corresponding function f .

Proposition 81. For n ≥ 3, γID(Kn � P3) = 2n− 2.

Proof. By Corollary 75, we see that f(1) + f(3) ≥ n− 1. Additionally, by Corollary 75, we see that

f(2) ≥ n− 1. Hence, γID(Kn � P3) ≥ 2n− 2. Since

{(1, 1), (2, 2), (3, 2), . . . , (n, 2), (3, 3), (4, 3), . . . , (n, 3)}

is an identifying code (see Figure 6.2), the result follows.

Proposition 82. For n ≥ 3, γID(Kn�P4) = 2n.

Proof. By Corollary 76, f(1) + f(2) ≥ n and f(3) + f(4) ≥ n. Hence, γID(Kn � P4) ≥ 2n. As

{1, 2, . . . , n} × {2, 3} (see Figure 6.2) is an identifying code, the result follows.

Proposition 83. For n ≥ 5 and k ≥ 1, γID(Kn�P4k+1) = (2k + 1)(n− 1) + 1.
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k − 1 times

Figure 6.3: γID-set for Kn�P4k+1, k ≥ 1

Proof. Let m = 4k+1. By Corollary 76, we see that f(1)+f(2) ≥ n. Additionally, by Corollary 75,

f(m− 2) + f(m) ≥ n− 1 and f(m− 1) ≥ n− 1. Each consecutive four Kn-layer collection between

the K2 and Km−2-layers includes at least 2n−2 vertices from any γID-set according to Corollary 75.

Hence, we see that

γID(Kn�P4k+1) ≥ 3n− 2 + (k − 1) · 2(n− 1) = (2k + 1)(n− 1) + 1.

The construction illustrated in Figure 6.3 gives a set which satisfies this lower bound as well as

Proposition 79. Thus, γID(Kn�P4k+1) = (2k+1)(n−1)+1. We note that the four layer collection

shown on the left can be inserted into the figure to the right and repeated (one on top of the other)

k − 1 times.

Proposition 84. For n ≥ 5 and k ≥ 1, γID(Kn�P4k+2) = (2k + 2)(n− 1).

Proof. Let m = 4k + 2. Corollary 75 implies that f(1) + f(3) ≥ n − 1, f(2) ≥ n − 1, f(m − 2) +

f(m) ≥ n − 1, and f(m − 1) ≥ n − 1. In addition, every γID-set contains at least 2n − 2 vertices

from each consecutive four Kn-layer collection between K3 and Km−2. Hence, γID(Kn�P4k+2) ≥

4(n−1) + (k−1) ·2(n−1) = (2k+ 2)(n−1). The construction in Figure 6.4 satisfies Proposition 79

and satisfies this lower bound. Hence our result is shown.

Proposition 85. For n ≥ 5 and k ≥ 1,

γID(Kn�P4k+3) =


(k + 1) · 2(n− 1) if n ≥ k + 3,

(k + 1) · 2(n− 1) + 1 otherwise.
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k − 1 times

Figure 6.4: γID-set for Kn�P4k+2, k ≥ 1

Proof. First, suppose that n ≥ k + 3 and let C be any γID-set of Kn � P4k+3. Among any four

consecutive Kn-layers, at least 2(n− 1) vertices are included in C. Additionally, |C ∩ (V (K4k+1) ∪

V (K4k+2) ∪ V (K4k+3))| ≥ 2(n− 1). Thus, we find that γID(Kn�P4k+3) ≥ (k + 1) · 2(n− 1). This

bound can be shown to be exact under the following construction. When considering Kj :

• If j is congruent to 1 modulo 4, add (1, j), (2, j), . . . , (p+ 1, j) where p = b j4c.

• If j is congruent to 2 modulo 4, add (1, j), (2, j), . . . , (n− 1, j).

• If j is congruent to 3 modulo 4, add (n, j), (n− 1, j), . . . , (p+ 3, j) where p = b j4c.

• If j is congruent to 0 modulo 4, do not add any vertices.

This construction produces a set satisfying the given lower bound as well as Proposition 79. Hence,

the first part of our result is shown.

Now suppose that n < k + 3, and let C be an identifying code of Kn�P4k+3. Let f = fC

be as defined in Section 6.2. Consider the following system of inequalities:

f(s) + f(s+ 2) ≥ n− 1 (s ≡ 1 (mod 4), 1 ≤ s ≤ 4k + 1)

f(t) + f(t+ 2) ≥ n− 1 (t ≡ 2 (mod 4), 1 ≤ t ≤ 4k − 2)

f(4k + 2) ≥ n− 1.

By Corollary 75, each of these inequalities holds. Thus, once again, we see that γID(Kn�P4k+3) ≥

(k + 1) · 2(n− 1). We claim that at least one of these inequalities is a strict inequality.

To see this, suppose not. First, consider f(2). By Corollary 75, f(2) ≥ n−1. Since f(2) = n

would give us f(2) + f(4) > n− 1, we see that f(2) = n− 1. This implies that f(1) ≥ 1 since C is a
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k − 1 times

Figure 6.5: γID-set for Kn�P4k+3, k ≥ 1, n < k + 3

dominating set, that f(4) = 0 by our equalities above, and that the vertices selected in K3 and K5

dominate all of the vertices in K4. Since f(1)+f(3) = n−1 with f(1) ≥ 1, we see that f(3) ≤ n−2.

Hence, we see that f(5) ≥ 2. Finally, since f(4) = 0, we have f(6) ≥ n − 1 by Corollary 75. As

above, this implies that both f(6) = n− 1 and that f(8) = 0.

By continuing the logic applied above, we see that, in general, f(4j+1) ≥ j+1 for 1 ≤ j ≤ k.

Thus, since k ≥ n− 2, this implies that f(4k+ 1) ≥ n− 1. However, this implies that f(4k+ 3) = 0.

If f(4k+3) = 0, then f(4k+2) = n in order for C to be a dominating set. This, however, contradicts

our assumption that f(4k+ 2) = n−1. Thus, if n < k+ 3, at least one of the inequalities mentioned

above is strict. If we let the f(2) +f(4) ≥ n−1 inequality be strict, we can achieve the construction

in Figure 6.5 letting all of the other inequalities hold at equality. Our result is shown.

Proposition 86. For n ≥ 5 and k ≥ 2, γID(Kn�P4k) = 2k(n− 1) + 3.

Proof. Let m = 4k, let C be an identifying code for Kn�Pm, and let f = fC be defined as in

Section 2. Consider the inequalities

f(1) + f(2) ≥ n

f(s) + f(s+ 2) ≥ n− 1 (s ≡ 3 (mod 4), 3 ≤ s ≤ 4k − 5)

f(t) + f(t+ 2) ≥ n− 1 (t ≡ 0 (mod 4), 4 ≤ t ≤ 4k − 4)

f(4k − 1) + f(4k) ≥ n.

By Corollaries 75 and 76, each of these inequalities holds, implying that γID(Kn�P4k) ≥ 2k(n−

1) + 2. We claim that at least one of these inequalities is a strict inequality.
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k − 2 times

Figure 6.6: γID-set for Kn�P4k, k ≥ 2

For the sake of contradiction, suppose each inequality above holds at equality. First, note

that f(2) ≥ n − 1 by Corollary 75. Thus, by our equations above, we have that f(1) ≤ 1. By

Corollary 75, this implies that f(3) ≥ n − 2. Observe that if f(3) = n − 1, then by our equations

above, f(5) = 0. This, and the fact that C is a dominating set, implies that f(4) + f(6) = n, which

contradicts our assumption that each inequality holds at equality. Thus, we have f(3) = n − 2,

f(1) = 1, and f(2) = n − 1. By the same logic, we have that f(4k − 2) = n − 2, f(4k) = 1, and

f(4k − 1) = n− 1.

Once these six values are determined, we see that all of the remaining values for f are also

determined. That is,

• If s ≡ 3 (mod 4) with 3 ≤ s ≤ 4k − 5, then f(s) = n− 2.

• If s ≡ 1 (mod 4) with 5 ≤ s ≤ 4k − 3, then f(s) = 1.

• If s ≡ 2 (mod 4) with 6 ≤ s ≤ 4k − 2, then f(s) = n− 2.

• If s ≡ 0 (mod 4) with 4 ≤ s ≤ 4k − 4, then f(s) = 1.

This, however, implies that f(3) = n−2, f(4) = 1, f(5) = 1, and that f(6) = n−2. This contradicts

Lemma 80. Hence, we see that at least one of our inequalities cannot hold at equality.

A code can be constructed in which only one inequality is strict. This code, illustrated in

Figure 6.6, shows that γID(Kn�P4k) = 2k(n− 1) + 3.
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6.5 K3 � Pm

Given an identifying code C for K3 � Pm, it is possible for fC(i) = 0 for some i. We,

however, wish to first show that for m ≥ 3, K3 � Pm has a minimum identifying code C for which

fC(i) > 0 for 1 ≤ i ≤ m. For conciseness, if fC(i) = 0, we say that Ki is empty with respect to C.

Theorem 87. For m ≥ 3, K3 � Pm has a minimum identifying code C for which fC(i) > 0 for

1 ≤ i ≤ m.

Proof. We first consider 3 ≤ m ≤ 5. In these cases, the sets

{(1, 1), (2, 2), (3, 2), (3, 3)}

{(1, 1), (2, 2), (3, 2), (1, 3), (2, 3), (3, 4)}

{(3, 1), (2, 2), (3, 2), (1, 3), (1, 4), (2, 4), (3, 5)}

are minimum identifying codes for K3 �P3, K3 �P4, and K3 �P5 respectively satisfying the condi-

tion in the statement of the theorem. Thus, we now restrict ourselves to the family K3 � Pm with

m ≥ 6.

Among all minimum identifying codes for K3 � Pm, let C be such that the cardinality of

{i : fC(i) = 0} is a minimum. If fC(i) > 0 for 1 ≤ i ≤ m, then we are done. Thus, for the sake of

contradiction, suppose that fC(i) = 0 for some i. For notational ease, we denote fC by f for the

remainder of the proof.

First, suppose that for some i, f(i) = 0 and f(i + 1) = 0. By Corollary 75, f(2) > 0 and

f(m − 1) > 0. Thus, we have 3 ≤ i ≤ m − 3. Since C is a dominating set, f(i − 1) = 3 and

f(i + 2) = 3. Additionally, by Corollary 75, C satisfies f(i− 2) ≥ 2 and f(i + 3) ≥ 2. However, in

this case, the set (C − {(1, i− 1), (1, i+ 2)})∪ {(2, i), (2, i+ 1)} is a minimum identifying code with

fewer empty K3 layers, a contradiction. Thus, from this point on, we assume that no adjacent K3

layers are both empty with respect to C.

Consider the smallest i for which f(i) = 0.

• First, suppose i = 1. Since C is a dominating set, f(2) = 3. Additionally, by Corollary 75,

f(3) ≥ 2. In this case, (C − {(1, 2)}) ∪ {(2, 1)} is a γID-set with fewer empty K3 layers, a

contradiction. By similar logic, if f(m) = 0, then an alternative γID-set can be found with

fewer empty K3 layers. Thus, we assume that f(1) 6= 0 and that f(m) 6= 0.
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• By Corollary 75, we see that i = 2 is not possible. Similarly, i = m− 1 is not possible.

• Next, suppose that i = 3. By Corollary 75, f(1) ≥ 2, f(2) ≥ 2, and f(5) ≥ 2. Additionally,

note that f(4) > 0 since we are assuming that no adjacent K3 layers are both empty with

respect to C.

Suppose that for some k, (k, 4) ∈ C and (k, 5) ∈ C. In this case, let C ′ = C−(V (K1)∪V (K2)),

and let j ∈ {1, 2, 3} such that j 6= k. The set C ′′ defined by C ′′ = C ′∪{(j, 1), (j, 2), (k, 2), (k, 3)}

is a γID-set with fewer empty K3 layers, a contradiction.

Now suppose that no k exists for which (k, 4) ∈ C and (k, 5) ∈ C. In this case, we see that

f(4) = 1 and f(5) = 2. Without loss of generality, assume that

{(1, 4), (2, 5), (3, 5)} ⊆ C. Let C ′ = C − (V (K1) ∪ V (K2)). The set C ′′ defined by C ′′ =

C ′ ∪ {(3, 1), (2, 2), (3, 2), (2, 3)} is a γID-set with fewer empty K3-layers, a contradiction.

Thus, we now assume that f(3) 6= 0 and that f(m− 2) 6= 0.

• We now assume that 4 ≤ i ≤ m− 3. Since f(i) = 0, by Corollary 75 we see that f(i− 2) ≥ 2

and that f(i+2) ≥ 2. We additionally see that f(i−3) > 0 and that f(i−1) > 0 by our choice

of i. Since we assume there are no adjacent, empty K3 layers, we also have that f(i+ 1) > 0.

Without loss of generality, assume that (1, i− 3) ∈ C.

Since C is a dominating set, note that either f(i− 1) ≥ 2 or f(i+ 1) ≥ 2.

– First, suppose that f(i− 1) = 3.

Suppose for some k that (k, i + 1) ∈ C and that (k, i + 2) ∈ C. The set C ′ defined by

C ′ = (C−{(2, i−1)})∪{(k, i)} is a γID-set with fewer empty K3 layers, a contradiction.

Suppose now that no such k exists. Let j ∈ {1, 2, 3} be such that (j, i+ 1) 6∈ C. We then

see that the set C ′ defined by C ′ = (C − {(2, i − 1)}) ∪ {(j, i)} is a γID-set with fewer

empty K3 layers.

By applying similar logic, if f(i+ 1) = 3, then a γID-set with fewer empty layers can be

found. Hence, we now assume that f(i− 1) < 3 and that f(i+ 1) < 3.

– Next, suppose that f(i − 1) = 2 and that f(i + 1) = 2. In this case, let k be such that

(k, i+ 1) 6∈ C. Let C ′ be the set defined by C ′ = (C − V (Ki−1)) ∪ {(k, i)}.

If f(i − 3) = 1, then let j be such that (j, i − 3) 6∈ C and such that j 6= k. The set

C ′ ∪ {(j, i− 1)} is a γID-set with fewer empty K3 layers.
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If f(i − 3) ≥ 2, then let j ∈ {1, 2, 3} be such that j 6= k. The set C ′ ∪ {(j, i − 1)} is a

γID-set with fewer empty K3 layers.

Hence, we now have just two cases left to consider: f(i − 1) = 2, f(i + 1) = 1 and

f(i− 1) = 1 and f(i+ 1) = 2.

– First, suppose that f(i − 1) = 2 and that f(i + 1) = 1. We note that in this case,

f(i+ 2) = 3 in order to separate the vertices in V (Ki+1) from those in V (Ki).

If (1, i − 1), (2, i − 1) ∈ C, then (3, i + 1) ∈ C since C is dominating. In this case, if

f(i− 2) = 2 with (1, i− 2), (3, i− 2) ∈ C, then the set (C − {(1, i− 1)})∪ {(1, i)} gives a

contradiction. Otherwise, (2, i− 2) ∈ C in which case the set (C − {(1, i− 1)}) ∪ {(2, i)}

gives a contradiction.

If (1, i− 1), (3, i− 1) ∈ C, then (2, i+ 1) ∈ C. If f(i− 2) = 2 with (1, i− 2), (2, i− 2) ∈ C,

then the set (C − {(1, i− 1)} ∪ {(1, i)} gives a contradiction. Otherwise, (3, i− 2) ∈ C in

which case the set (C − {(1, i− 1)}) ∪ {(3, i)} is a γID-set with fewer empty K3 layers.

If (2, i − 1), (3, i − 1) ∈ C, then (1, i + 1) ∈ C. If (1, i − 2), (2, i − 2) ∈ C, then the set

(C − {(2, i− 1)})∪ {(2, i)} yields a contradiction. If (1, i− 2), (3, i− 2) ∈ C, then the set

(C − {(3, i − 1)}) ∪ {(3, i)} gives a contradiction, while if (2, i − 2), (3, i − 2) ∈ C, then

(C − {(3, i− 1)}) ∪ {(2, i)} gives a contradiction.

– Finally, suppose that f(i − 1) = 1 and f(i + 1) = 2. Since our initial assumption was

that (1, i − 3) ∈ C, we see that either (2, i − 1) ∈ C or (3, i − 1) ∈ C. Without loss of

generality, we assume that (2, i − 1) ∈ C. This implies that (1, i + 1), (3, i + 1) ∈ C as

well.

First, note that f(i − 2) = 3. This follows from the fact that the vertices of Ki−1 are

separated from (2, i) by C. If i = 4, then (C −{(3, i− 2)})∪ (2, i) is a γID-set with fewer

empty K3 layers. If i > 4, then f(i − 4) > 0 by our choice of i. If (3, i − 4) 6∈ C, then

(C − {(3, i− 2)}) ∪ (2, i) is a γID-set with fewer empty K3 layers. If (3, i− 4) ∈ C, then

(C − {(2, i− 2)}) ∪ (1, i) is a γID-set with fewer empty K3 layers.

Thus, C satisfies the property that fC(i) > 0 for 1 ≤ i ≤ m, completing our proof.

By combining this result with Lemma 80, we have the following.
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Proposition 88. Let C be a γID-set for K3 � Pm (m ≥ 4), satisfying fC(i) > 0 for 1 ≤ i ≤ m.

One of f(i), f(i+ 1), f(i+ 2), or f(i+ 3) is at least 2 for each 1 ≤ i ≤ m− 3.

This gives us the following corollary.

Corollary 89. For m ≥ 4, γID(K3 � Pm) ≥ m+ bm−4
4 c+ 2.

Proof. Let C be a γID-set for K3 � Pm such that fC(i) > 0 for 1 ≤ i ≤ m. This implies that

|C| ≥ m. Since f(2) ≥ 2 and f(n− 1) ≥ 2, we see that |C| ≥ m+ 2. Finally, by Proposition 88 we

see that among the K3 layers K3,K4, . . . ,Km−2, bm−4
4 c layers will contain at least two vertices in

C, giving us the result.

We can now determine γID(K3 �Pm) for all m ≥ 4.

Theorem 90. For m ≥ 4, γID(K3 � Pm) = m+ 2 + bm−4
4 c.

Proof. We construct an identifying code C of cardinality m + 2 + bm−4
4 c. We proceed by adding

vertices from K1, then K2, and so on, stopping after Km−2. When adding vertices from Ki, we

follow the rules below.

• If i ≡ 1 (mod 4), add (k, i) such that (k, i− 1) 6∈ C and such that (k, i− 2) 6∈ C. If i = 1, add

any vertex from V (K1) to C.

• If i ≡ 2 (mod 4), add (k, i) and (j, i) such that (k, i− 1) 6∈ C and (j, i− 1) 6∈ C.

• If i ≡ 3 (mod 4), add (k, i) such that (k, i− 2) 6∈ C.

• If i ≡ 0 (mod 4), add (k, i) such that (k, i− 1) 6∈ C, (k, i− 2) ∈ C.

After this has been done, consider V (Km−1). If m − 2 ≡ 2 (mod 4), add any two vertices from

V (Km−1) to C, and then add any vertex from V (Km) to C. If m − 2 6≡ 2 (mod 4), add (k,m −

1), (j,m − 1) to C so that (k,m − 2) and (j,m − 2) are not in C, and then add (p,m) such that

(p,m− 2) 6∈ C. This will then be an identifying code of cardinality m+ 2 + bm−4
4 c. Since we know

that γID(K3 � Pm) ≥ m+ 2 + bm−4
4 c, we see that C is a γID-set.

6.6 Closing Remarks

Computing γID(K4 �Pm) proves to be more difficult. Determining exact values is possible

for certain values of m. However, in other cases, only upper bounds can be obtained.
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Figure 6.7: γID(K4 �P7) = 12

Figure 6.8: γID(K4 �P9) ≤ 17

For example, consider the case of K4 �P7. If C is a minimum identifying code for K4 �P7,

then by Corollary 75 we have fC(1) + fC(3) ≥ 3, fC(2) ≥ 3, fC(5) + fC(7) ≥ 3 and fC(6) ≥ 3. That

is, γID(K4 �P7) ≥ 12. The identifying code constructed in Figure 6.7 achieves this lower bound.

Thus, γID(K4 �P7) = 12.

Now consider the case of K4 �P9. Similar to the proof of Proposition 83, if C is a minimum

identifying code for K4 �P9, then by Corollary 75 and Corollary 76 we have that fC(1)+fC(3) ≥ 3,

fC(2) ≥ 3, fC(4) +fC(6) ≥ 3, fC(5) +fC(7) ≥ 3, and fC(8) +fC(9) ≥ 4. Thus, γID(K4 �P9) ≥ 16.

The identifying code illustrated in Figure 6.8 illustrates that γID(K4 �P9) ≤ 17. Does K4 �P9 have

a minimum identifying code of cardinality 16? Answering this question involves considering many

cases. For larger values of m, similar questions arise only with more cases to consider.

111



Bibliography

[1] Mustapha Chellali and Teresa Haynes. Trees with unique minimum paired-dominating sets.
Ars Combin., 73:3–12, 2004.

[2] Ernest Cockayne, Stephen Hedetniemi, and Donald Miller. Properties of hereditary hypergraphs
and middle graphs. Canad. Math. Bull., 21(4):461–468, 1978.

[3] Min Feng and Kaishun Wang. Identifying codes of corona product graphs. Discrete Appl. Math.,
169:88–96, 2014.

[4] Min Feng, Min Xu, and Kaishun Wang. Identifying codes of lexicographic product of graphs.
Electron. J. Combin., 19(4):Paper 56, 8, 2012.

[5] Miranca Fischermann. Block graphs with unique minimum dominating sets. Discrete Math.,
240(1-3):247–251, 2001.

[6] Miranca Fischermann. Unique total domination graphs. Ars Combin., 73:289–297, 2004.

[7] Miranca Fischermann, Dieter Rautenbach, and Lutz Volkmann. Maximum graphs with a unique
minimum dominating set. Discrete Math., 260(1-3):197–203, 2003.

[8] Miranca Fischermann, Dieter Rautenbach, and Lutz Volkmann. A note on the complexity of
graph parameters and the uniqueness of their realizations. J. Combin. Math. Combin. Comput.,
47:183–188, 2003.

[9] Miranca Fischermann and Lutz Volkmann. Unique minimum domination in trees. Australas.
J. Combin., 25:117–124, 2002.

[10] Miranca Fischermann and Lutz Volkmann. Cactus graphs with unique minimum dominating
sets. Util. Math., 63:229–238, 2003.

[11] Miranca Fischermann and Lutz Volkmann. Unique independence, upper domination and upper
irredundance in graphs. J. Combin. Math. Combin. Comput., 47:237–249, 2003.

[12] Miranca Fischermann, Lutz Volkmann, and Igor Zverovich. Unique irredundance, domination
and independent domination in graphs. Discrete Math., 305(1-3):190–200, 2005.

[13] Michael Fraboni and Nathan Shank. Maximum graphs with unique minimum dominating set
of size two. Australas. J. Combin., 46:91–99, 2010.

[14] Wayne Goddard and Kirsti Wash. Id codes in cartesian products of cliques. J. Combin. Math.
Combin. Comput., 85:97–106, 2013.

[15] Seymour Goodman, Ernest Cockayne, and Stephen Hedetniemi. A linear algorithm for the
domination number of a tree. Inform. Process. Lett., 4:41–44, 1975.

112



[16] Sylvain Gravier, Julien Moncel, and Ahmed Semri. Identifying codes of Cartesian product of
two cliques of the same size. Electron. J. Combin., 15(1):Note 4, 7, 2008.

[17] Georg Gunther, Bert Hartnell, Lisa Markus, and Douglas Rall. Graphs with unique minimum
dominating sets. In Proceedings of the Twenty-fifth Southeastern International Conference on
Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1994), volume 101, pages
55–63, 1994.

[18] Richard Hammack, Wilfried Imrich, and Sandi Klavžar. Handbook of product graphs. Discrete
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