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Abstract

Hybrid electric vehicle (HEV) technology has evolved in the last two decades

to become economically feasible for mass produced automobiles. With the integration

of a lithium battery pack and electric motors, HEVs offer a significantly higher fuel

efficiency than traditional vehicles that are driven solely by an internal combustion

engine. However, the additional HEV components also introduce new challenges

for the powertrain thermal management system design. In addition to the common

internal combustion engine, the battery pack, the generator(s), as well as the electric

motor(s) are now widely applied in the HEVs and have become new heat sources, and

they also require proper thermal management.

Conventional cooling systems have been typically equipped with a belt driven

water pump and radiator fan, as well as other mechanical actuators such as a thermo-

stat valve. The operation of these components is generally determined by the engine

speed. This open-loop cooling strategy has a low efficiency and suffers the risk of

over-cooling the coolant and components within the system. In advanced thermal

management systems, the mechanical elements are upgraded by computer controlled

actuators including a servo-motor driven pump, variable speed fans, a smart thermo-

stat, and an electric motor driven compressor. These electrified actuators offer the

opportunity to improve temperature tracking and reduce parasitic losses.

This dissertation investigates a HEV powertrain thermal management system
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featuring computer controlled cooling system actuators. A suite of mathematical

models have been created to describe the thermal behavior of the HEV powertrain

components. Model based controllers were developed for the vehicle’s cooling systems

including the battery pack, electric motors, and internal combustion engine. Optimal

control theory has been applied to determine the ideal battery cooling air temperature

and the desired heat removal rate on the e-motor cooling surface. A model predictive

controller(MPC) was developed to regulate the refrigerant compressor and track the

battery cooling air temperature. A series of Lyapunov-based nonlinear controllers

have been implemented to regulate the coolant pumps and radiator fans in the cooling

systems for the engine and e-motors.

Representative numerical results are presented and discussed. Overall, the

proposed control strategies have demonstrated the effectiveness in improving both

the temperature tracking performance and the cooling system power consumption

reduction. The peak temperature error in the selected A123 battery core can be

tracked within 0.25 ◦C of the target; a 50% reduction of the vapor compression

system energy consumption can be obtained by properly designing the cooling air

flow structure. Similarly, the cooling system of HEV electric motors shows that the

machine internal peak temperature can be tracked to the target value with a maximum

error of 3.9 ◦C and an average error of 0.13 ◦C. A 70% to 81% cooling system energy

consumption reduction can be achieved comparing to classical controller, maintaining

a similar level of hotspot temperature stabilization under different driving cycles. The

proposed optimal nonlinear controller tracks the engine coolant temperature with

an average error of 0.35 ◦C and at least 13% reduction in engine cooling power.

Further, a close analysis on the cooling system energy consumption reduction has

been conducted with a heat exchanger simulation tool established for cooling system

design optimization.
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This research has developed the basis for the holistic control of HEV powertrain

thermal management systems by including a suite of model based nonlinear controllers

to simultaneously regulate the cooling actuators for the battery pack, e-motors, and

conventional internal combustion engine. Numerical studies have been conducted with

a high fidelity HEV model under real life driving cycles to demonstrate the advantages

of introducing advanced control theory into multi-mode vehicle drive systems.
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Chapter 1

Introduction

The transportation industry consumes over 25% of the world’s energy usage

and is responsible for a considerable share of the global CO2 emissions due to fossil

fuel combustion. With the growing number of ground vehicles around the world,

significant fuel economy improvements are required to stabilize and eventually reduce

greenhouse gas emissions. To achieve higher fuel efficiency, hybrid electric vehicle

(HEV) technology has been introduced in the late 1970’s (Nairobi and Kenya, 2009).

In addition to the conventional internal combustion engine, hybrid electric vehicle

powertrains are characterized by a secondary electric energy storage device (e.g.,

batteries) and electric propulsion motors. In most instances, an electric generator is

coupled to the gasoline or diesel engine to produce power. These technology upgrades

allow an obvious improvement in fuel economy but also complicate the powertrain

structure and make the HEV cooling task more difficult. This dissertation is fo-

cused on the investigation of thermal management control strategies for a heavy duty

military HEV powertrain.
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1.1 Background

For the last two decades, vehicle emission control has drawn increasing atten-

tion from governments, environment protection organizations, and automobile manu-

factures. Nowadays, high efficiency, low emission, operation safety, and cabin comfort

have become the top objectives sought by the automobile industry. To achieve these

objectives, new techniques and devices are continuously introduced and integrated

into the design of the vehicles. Some of that include high level power management,

battery material test and battery life improvements, electric motor modelling and size

scaling, as well as smart thermal management systems.

It is reported that the road transportation sector is responsible for 23% of the

global CO2 emissions from fossil fuel combustion, following electric and heat gener-

ation which contributes 42%. The remaining 35% of the CO2 emission is attributed

to residential, industry, and other sectors (IEA, 2014). With the expected tripling

of the number of light duty vehicles in the coming years and a resulting doubling of

CO2 emissions, unprecedented attention has been focused on improving vehicle fuel

economy (Wambsganss, 1999). Different countries around the world are introducing

increasingly stringent emission standards for automotive manufacturers to achieve

greenhouse gas reductions. For example, the European Union released a mandatory

emission reduction target for new cars of 130 grams of CO2 per kilometre (g/km) by

2015. The policy relating to achieving this target has been in effect since 2012. An

updated emission target is set at 95 g/km for 2021. This requires a reduction of 18%

and 40%, respectively when compared against the 2007 fleet average of 158.7 g/km

(Policy, 2015). China and the United States together contribute over one third of the

global greenhouse gas emissions. In November 2014, the United States and China

released a joint announcement on climate change and clean energy cooperation. The
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two countries agreed to cut net greenhouse gas emissions between 26% to 28% from

the 2005 level by the year 2025 (Whitehouse, 2014).

To meet the increasingly tough greenhouse gas emission standards, vehicle

manufactures have developed powertrain designs for higher fuel efficiency. With this

background, new structure of vehicle powertrain design equipped with secondary

propulsion motors and energy storage devices were eventually introduced into the

industry.

1.2 Hybrid Electric Vehicle Technology

Conventionally, a vehicle’s propulsion system is driven by an internal com-

bustion engine (ICE). A standard ICE based powertrain has two main components:

the engine, and the transmission gear box. The overall propulsion system perfor-

mance, especially the fuel economy, is highly dependent on the engine’s efficiency.

Meanwhile, the internal combustion engine, either gasoline or diesel, needs to work

within a proper temperature range to remain reliable and efficient. However, the con-

ventional ICE powertrain suffers some obvious drawbacks in fuel conservation. For

example, a large portion of the combustion energy is wasted when the engine operates

at idle speed without crankshaft load. Further, the energy lost during braking cannot

be recovered. Due to their high power density, developed manufacturing techniques,

and great energy density of fossil fuel, ICE driven vehicles are still widely used in

daily life.

There are a number of proposed solutions to maximize the fuel economy of

ICE powered vehicles. One of the most intuitive methods is to restore the energy

that has been wasted by the powertrain. Hybrid electric vehicles (HEV) maintain

the advantage of high energy density from the conventional ICE driven vehicles, and
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introduces a secondary energy storage device into the propulsion system which makes

energy regeneration possible. Researchers started studies on hybrid electric vehicles

back in the 1970’s. HEVs became available on the global market in 1997. During the

last two decades, significant developments have been achieved in HEV industry. New

battery materials, advanced e-motor designs and the evolution of real time control

system have all contributed to the successes realized. Fig. 1.1 shows the number of

HEVs that have been produced by different areas around the world (IEA, 2014).

Figure 1.1: Global Hybrid Vehicle Assembly (thousands) by Region 1997 - 2014 (IEA,
2014), Where NA is North America and EU is European Union

Unlike ICE propelled vehicles, a typical HEV powertrain is characterized by

two power sources. The vehicle combines an engine and an electric motor, with

battery pack, to enable energy regeneration and shutting down during idle conditions

and braking. Two typical HEV powertrain architectures are shown in Fig. 1.2. The

parallel hybrid, in which both of the prime movers operate on the same drive shaft,

allows the two propulsion sources to drive the vehicle individually or simultaneously.
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Figure 1.2: HEV Powertrain Architectures: (left) Parallel Hybrid and (right) Series
Hybrid. Black Arrows: Mechanical Power; Red Arrows: Electrical Power

The series hybrid, in which the electric motors alone drive the vehicle, permits the

electricity to be supplied either by a battery or by an engine-driven generator. Fig.

1.3 compares the energy flow in a ICE driven vehicle with a HEV(Demirdöven and

Deutch, 2004). It can be observed that HEV achieves higher fuel efficiency through

utilizing the energy lost during engine idle stop, brake regeneration, and ensuring the

ideal operation range for the engine.

Despite the fact that an HEV is potentially 10% to 30% heavier in weight

than an ICE driven vehicle (Guzzella and Sciarretta, 2007) due to the added bat-

tery pack, the HEV technique is still very meaningful and considered the favourable

solution of the future vehicle powertrain designs for the following reasons. First of

all, HEV technology enables power regeneration by applying the reversible secondary

power source and energy storage device. Secondly, HEV design permits a high level

powertrain management optimization approach which ensures the engine operation

within the “sweet spot” range. Lastly, HEV offers the potential of engine downsize

and even shut-down to achieve “zero emission” (Zhang et al., 2014a).

Most of the components in the HEV powertrain will generate a considerable

amount of heat during driving cycles. The electrified powertrain elements are quite
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Figure 1.3: Normalized Energy Flow for Various Vehicle configurations (Same Ef-
fective Wheel Propulsion = 12.6). (A) Baseline ICE powertrain, the Conventional
Internal Combustion, Spark Ignition Engine, Input Energy = 100; (B) HEV, a Hy-
brid Vehicle with e-motors and Parallel Powertrain which Eliminates Idling Loss and
Captures some energy of braking, Input Energy = 47.3 (Demirdöven and Deutch,
2004)

vulnerable in overheated environments. On the other hand, the auxiliary energy loss

caused by the thermal management system accessories contributes to the fuel con-

sumption. Given the importance of high fuel efficiency, a reliable, high efficiency

thermal management system is necessary. This dissertation proposes a thermal man-

agement system featuring electrified actuators and advanced control unit for HEV

propulsion components to guarantee their proper performance, safe operation, high

efficiency output, and finally, a long usage life cycle.
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1.3 Powertrain Thermal Management

Powertain thermal management has been a lasting challenge in the automotive

industry. Traditional engine cooling systems are equipped with a belt driven coolant

pump and a clutched cooling air fan. Their operation speeds are determined by the

engine crankshaft. Due to this dependency on the engine operation, it is noticeable

that the conventional cooling system functionality is not optimized for the overall

thermal management performance with its open-loop control structure. For exam-

ple, this dependency on the engine speed will result in a small coolant flow at low

engine speeds and high loading conditions of the engine, which is usually a driving

condition associate with large heat generation rates comparing to the idle speed con-

dition. Additionally, in the traditional engine cooling system, the coolant flow rate

is regulated by a thermostat valve to prevent the engine from overheating or being

overcooled. This coolant flow rate regulation design, based on mechanical actuators

is very inefficient. A large amount of fuel energy is wasted due to parasitic losses of

the unnecessary cooling activities.

The cooling system for the internal combustion engine has been studied for

years. Researchers have conducted analytical studies on the cooling system by intro-

ducing the numerical modelling of the system (PricewaterhouseCoopers, 2007) (Park

and Jung, 2008). To improve the performance of the engine cooling system, Saxena

at. al (Saxena et al., 2010) applied a HEV cooling system simulation to evaluate

the cooling circuit transients for a given driving cycle. Recently, the replacement of

the traditional thermal management system actuators with a variable speed pump

and a electric flow control valve provides the opportunity for an optimal control of

the coolant flow rate and better coolant temperature tracking (Choi et al., 2007). A

smart thermostat valve shows enhanced coolant flow control performance by Wagner
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et al. (Wagner et al., 2003). Advanced controller design has been implemented into

the engine cooling system by Salah et al. (Salah et al., 2008) and they demonstrated

a significant improvement in coolant temperature tracking for the engine cooling

system. The electrified computer controlled actuators offer the possibility to track

coolant temperature at a very high level of accuracy. However, the existing ther-

mal management strategies can hardly achieve the accurate controlling of the engine

piston wall temperatures during different thermal loading conditions.

1.4 Problem Statement

The goal of this dissertation is to seek a systematic approach to design a hybrid

electric vehicle (HEV) powertrain thermal management system featuring computer

controlled cooling actuators. Thermal management design for HEV powertrain faces

two main problems that require careful consideration. First, the components in HEV

powertrain operate at different temperatures, which means they all need individual

cooling strategies designed specifically for the unique ideal temperature range. Sec-

ond, the complexity of the HEV powertrain results in large cooling loads and thermal

management system power consumption. How to minimize this auxiliary energy loss

is a key question addressed in this dissertation.

The thermal management system of a HEV is more complicated when com-

pared to a conventional ICE driven vehicle. In addition to stabilizing the engine

coolant temperature within a proper range, other electronic accessories in the pow-

ertrain also require a comprehensive designed thermal management strategy. The

electric components have different requirements of the operational temperature range

for safety and high efficiency performance, which vastly increase the difficulty of the

powertrain thermal management tasks. For example, the battery pack needs to be
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maintained with a very narrow margin of temperature range to keep the proper inter-

nal electro-chemical reaction stable output. Although operation under high temper-

ature will reduce battery internal resistance and joule loss, overheated environments

endanger the battery safety with high risks of thermal runaway and explosion. Pre-

vious studies show that the life cycle of a Li-ion battery is influenced by its operation

temperature. The battery life drops dramatically when the battery is operated at tem-

peratures higher than 60 ◦C or lower than 10 ◦C (Lam et al., 2000)(Bhatti, 1997).

This temperature range is much lower than the typical ICE operation temperature.

Thus the battery pack requires its own thermal management unit separated from ICE

cooling cycle.

In addition to different target temperature ranges for the battery pack, e-motor

and engine, the increased cooling load may be considerable. The fuel consumption

contributed by the cooling system power loss is a portion that needs to be carefully

reduced to improve the overall fuel economy. In this dissertation, the proposed cool-

ing system design for HEV powertrains aims to minimize the overall cooling power

consumption by applying advanced numerical modelling methods and control theories

to optimize the cooling actuators operation.

The HEV powertrain thermal management system will accommodate the heat

removal task for all the heat source components in the battery pack, the electric

motors and the internal combustion engine.

1.5 Research Approach and Objectives

This dissertation proposes a thermal management system design for HEV pow-

ertrains, highlighted by the integration and control of electro-mechanical actuators.

The objectives of this dissertation can be summarized as follows:
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1: Develop synchronous supervisory control unit which simultaneously regu-

lates the temperatures inside the battery pack, e-motor, and the IC engine

through real time monitoring by a series of mathematical thermal models

with a selected level of sophistication corresponding to the temperature

tracking accuracy requirement.

2: Minimize power consumption through the nonlinear controlled manage-

ment and optimized operation of the distributed cooling system actuators

(coolant pumps, refrigerant compressor, cooling air fans) while satisfying

heat rejection requirements.

3: Develop a numerical simulation tool for the heat exchanger size scaling and

controller design purposes.

A suite of mathematical models with different level of sophistication are cre-

ated for the powertrain heat generating elements by considering the balance of the

fidelity importance and the calculation cost in respect to the real time control purpose.

For battery pack thermal management, a lumped parameter electro-thermal battery

cell model is implemented. The cooling air is provided by an vapor compression sys-

tem modelled in a commercial software package AMESim. An optimal controller is

developed for calculating the ideal cooling air temperature. The vapour compres-

sion system compressor is regulated by a model predictive controller for cooling air

temperature tracking.

The thermal management system for the e-motors is designed based on a

reduced-order thermal model developed at the University of Michigan. A linear opti-

mal controller is introduced to calculated the ideal heat removal rate from each motor

and a nonliear tracking controller is established to regulate the electric motors cooling

cycle operation.
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For the sake of completeness, the control strategy design for the conventional

internal combustion engine cooling system temperature stabilization and power re-

duction will also be covered in the future work. The dissertation also looks into

the thermal management performance and its effect on the fuel economy of a Mine

Resistant Ambush Protected All Terrain Vehicle (M-ATV). The vehicle simulation

is built up in MATLab/Simulink environment and a detailed thermal management

system model is implemented into the simulation using the commercial software pack-

age AMESim. The structure of the high fidelity heavy duty military purpose vehicle

simulation is shown in Fig. 1.4.
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The research project has been conducted in collaboration with the Clemson

University International Center for Automotive Research (CU-ICAR) and University

of Michigan Electric Engineering Department as shown in Fig. 1.5. Together, the

team is investigating a new concept and systematic method of heavy duty military

purpose hybrid electric vehicle powertrain design with consideration of cooling sys-

tem power consumption. The research will be carried on to the ICE cooling system

controller design and heat exchanger size scaling optimization tool. Numerical case

studies will be conducted to demonstrate the improvements in the HEV powertrain

thermal management system performance on vehicle level simulation. The results to

date demonstrate the significant advantages in both temperature tracking and energy

conservation in comparison to traditional methods.

Figure 1.5: Collaborative Research Investigation of HEV Powertrain Design
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1.6 Dissertation Organization

This dissertation is organized into six chapters. Chapter 1 gives the back-

ground introduction of this study. Chapter 2 introduces an overall concept of the

holistic control strategy designed for the HEV powertrain thermal management sys-

tem. Chapter 3 discusses in detail the modelling and controller development for a

HEV battery pack thermal management system, focussing on the ideal cooling air

temperature and mass flow rate derivation for the battery core temperature stabi-

lization, under an urban assault driving cycle. Chapter 4 will demonstrate a model

predictive controller designed for the vapour compression system to obtain the bat-

tery pack cooling air at a prescribed ideal temperature. Chapter 5 covers the study

on a cooling system designed for the electric motors, based on a reduce-ordered FEA

e-motor thermal model. Chapter 6 present a simultaneous fan, pump and valve

control strategy designed for the conventional internal combustion engine thermal

management system. Chapter 7 contains the conclusions of the dissertation and rec-

ommendation of the future work.
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Chapter 2

Hybrid Electric Vehicle Thermal

Management System - Nonlinear

Controller Design

The components in a hybrid electric vehicle (HEV) powertrain include the

battery pack, an internal combustion engine, and the electric machines such as mo-

tors and possibly a generator. These components generate a considerable amount

of heat during driving cycles. A robust thermal management system with advanced

controller, designed for temperature tracking, is required for vehicle safety and energy

efficiency. this chapter examines the integration of advanced control algorithms to a

HEV powertrain cooling system featuring an electric-mechanical compressor, coolant

pump, three radiators, and heat exchanger and radiator fans. Mathematical models

are developed to numerically describe the thermal behaviour of these powertrain el-

ements. A series of controllers are designed to effectively manage the battery pack,

electric motors, and the internal combustion engine temperatures. These controllers

regulate the refrigerant compressor, coolant pump, and cooling fans to minimize the
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temperature fluctuations while reducing the overall cooling system power consump-

tion. Simulation results for assault and convoy escort driving cycles are presented

to show that the controllers meet the powertrain heat removal requirements. The

battery core temperature can be tracked to within 0.8 ◦C of the target value, the

internal (stator) temperature of electric motors can be maintained within 1.1 ◦C of

the desired value. The coolant temperature at engine’s outlet exhibited a 0.4 ◦C error

range from the prescribed target value of 90 ◦C. The overall auxiliary power con-

sumption of the cooling system is reduced by 45% when compared to a conventional

cooling control method.

2.1 Introduction

The development of hybrid electric vehicles (HEV) has required increasingly

complex powertrain designs and advanced control systems to optimize the consump-

tion of available energy. A number of different energy sources and storage devices

exist in modern ground vehicles tracks which can offer new challenges to the thermal

management system’s design. Compared to the internal combustion engine (ICE) in

a traditional powertrain, the battery package and the electrical machines in the HEV

powertrains are more vulnerable in overheated environments. The Li-ion battery cells

that commonly applied in HEVs are sensitive to temperature changes. Consequently,

their performance will be significantly reduced if the internal chemical reaction cannot

proceed in a proper temperature range. Long time operation under overheated con-

ditions will also decrease the battery cycle life. In more severe conditions, the battery

cells may catch on fire or explode if the heat accumulated. The heat generation during

continuously battery charging/discharging must be effectively removed to guarantee

the battery pack performance and longevity. Similarly, the electrical motors produce
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heat due to the conduction and core losses and also requires a proper thermal man-

agement system. Finally, the internal combustion engine remains a crucial power

source, as well as a heat source, in HEV powertrains. An improved thermal man-

agement system should remove the waste heat from these components to maintain

their prescribed working temperatures while reducing the auxiliary cooling actuators

power consumption.

Previous studies have investigated overall cooling system architectures for con-

ventional and hybrid vehicles plus their affect on the cooling system power consump-

tion (Park and Jung, 2010). Salah et al. (Salah et al., 2008)(Salah et al., 2010)

applied the nonlinear control theory to advanced thermal management system design

for the internal combustion engine cooling fan and demonstrated the improvements in

temperature tracking and power efficiency. Cho et al. (Cho et al., 2007) explored the

benefit of a controllable electric pump in a truck engine cooling system. The study

results showed a significant reduction in the pump power consumption and possible

heat exchanger downsize. Shams- Zahraei et al.(Shams-Zahraei et al., 2012) presented

a hybrid vehicle energy management system incorporating an engine thermal manage-

ment method which offers the global optimal battery charge and discharge . A high

level powertrain management optimization was completed using a dynamic program-

ming method by Zhang et al. (Zhang et al., 2014a). They considered the influence of

battery cooling auxiliary losses and increased the overall fuel economy. However, lim-

ited work has been focused on the development of holistic control algorithms for the

entire HEV powertrain thermal management system. This chapter evaluates the per-

formance of a computer controlled thermal management system equipped with model

based controllers. A set of thermal models of the heat generating components in the

HEV powertrain are developed. Different approaches of modelling have been cho-

sen with consideration of practical applications, computational cost, and real-time
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Figure 2.1: Hybrid Electric Vehicle Powertrain Thermal Management System

controller design. Advanced control theories are introduced to track the reference

temperatures, minimize the temperature fluctuations, improve the cooling fluids reg-

ulation process, and reduce the cooling power consumption. The proposed thermal

management system structure is shown in Fig. 2.1. The reminder of this chapter

is organized as follows. The cooling system main components, including the battery

pack, e-machines, and internal combustion engine, will be introduced with a series of

mathematical models in Section 2.2 to establish a basis for controller design. A suite

of controllers will be developed in Section 2.3. Section 2.4 presents the numerical

results of simulations under different driving cycles and cooling conditions. Section

2.5 concludes this chapter.
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2.2 A Hybrid Electric Vehicle Cooling System Mathe-

matical Model

The proposed thermal management aims to address the heat removal task for

main components in the HEV powertrain, including the battery pack, electric motors

and the internal combustion engine. The battery pack in this study is equipped with

an air conditioning system for active air cooling. The electric motors and internal

combustion engine are cooled by circulated coolant. The thermal models of each

components are introduced in this section.

2.2.1 Battery Pack Thermal Model

In this study, a battery pack consisting of 360 AHR32113 cells is cooled with

an air conditioning (AC) system. The AC system includes a radiator, a evaporator, a

cooling air fan, and a refrigerant compressor. The AC system provides cooling air for

circulation through the battery pack and back to the evaporator. For controller design

purposes, in this work, a lumped-parameter thermal model (Forgez et al., 2010) is

applied to simulate the transit change in the cylindrical battery cells in terms of the

core temperature, Tcore, and surface temperature, Ts.

Ccore
dTcore
dt

=
(
Ts−Tcore
Rcore

)
+Qb (2.1)

Cs
dTs
dt

=
(
Tf −Ts
Ru

)
−
(
Ts−Tcore
Rcore

)
(2.2)

where Ccore and Cs are the heat capacity of the battery core and the battery surface,

respectively. The thermal resistance, Rcore, between the battery core and the battery
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surface, is assumed to be a constant value. The thermal resistance between the

battery surface and the cooling air, Ru, is obtained based on the convective heat

transfer coefficient on the battery surface and convective transfer area. Lin et al.

(Lin et al., 2011) proposed a parametrization method to estimate Ccore , Cs, Re, and

Rcore. The heat generation, Qb , is approximately equal to the concentrated Joule

loss in the battery. The detailed battery electrical sub-model is reported in (Tao and

Wagner, 2014) to analytically obtain the heat generated by the Joule loss from the

input battery current. Finally, the cooling air temperature dynamic change while

flowing across the battery bank is written as

Cf
dTf,k
dt

= ṁaircp,air
(
Tf,k−1−Tf,k

)
+ Ts−Tf,k

Ru
(2.3)

where Ru is the thermal resistance at the battery surface. The parameter Cf is the

heat capacity of the air surrounding one battery column, cp,air is the specific heat of

air under atmosphere pressure, and the subscript k is the column index. A larger k

means that the column is positioned further away from the air inlet port. The cooling

air temperature that passes the k − th column, Tf,k, denotes the outlet cooling air

temperature at the k−th column. The battery cell thermal model structure is offered

in Fig. 2.2.

In the AC system, the most power consuming actuator is the refrigerant com-

pressor because it provide a pressure rise in the refrigerant path. The variable speed

refrigerant compressor can be controlled to adjust the cooling air temperature. Due

to the highly nonlinear thermal dynamics and phase change, a detailed simulation of

the AC system is too sophisticated and not necessary for controller design purpose.

An AC system model has been built in AMESim.
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Figure 2.2: Single Cell Thermal Model with Three Temperature States - Battery
Core, Tcore, Battery Surface, Ts, and Cooling Air, Tf .

2.2.2 Engine Thermal Model

The internal combustion engine is the primary power source of the vehicle.

It converts approximately one third of the fuel’s chemical energy into propulsion

power and other third is taken away by the exhausted waste gas. The rest of the

combustion energy is directed into waste heat that needs to be removed by the cooling

system. The traditional engine cooling system consists of a belt driven coolant pump,

a clutched radiator fan, and a wax thermostat. In this study, these components are

upgraded with servomotor actuators. The mechanical coolant pump and radiator fan

are replaced by computer controlled pump and fans.

The transit thermal performance of the engine cooling system can be described

by the following equations for the dynamic temperatures change in the engine, coolant

and cooling air

Ce
dTe
dt

=Qe−he (Te−Th) (2.4)
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Figure 2.3: Internal Combustion Engine Thermal Management System Featuring a
Variable Speed Coolant Pump and a Cooling Air Fan (Constructed in AMESim)

Mw,ecp,w
dTh
dt

= he (Te−Tc) + ṁwcp,w (Tc−Th) (2.5)

Mw,radcp,w
dTc
dt

= hr (Tamb−Th) + ṁwcp,w (Th−Tc) (2.6)

Mair,radcp,air
dTair,o
dt

= hr (Th−Tamb) + ṁaircp,air (Tamb−Tair,o) (2.7)

where Ce is the equivalent thermal capacity of the engine block. The parameter Mw,e

and Mw,rad are the coolant mass in the engine and radiator, Mair,rad is air mass

stored in the radiator. cp,w is the specific heat of coolant water. The variables Te,

Th, Tc and Tair,o denote engine temperature, coolant water temperature at engine
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outlet, coolant water temperature at radiator outlet, and air temperature at radiator

outlet respectively. Lastly, he is the equivalent heat transfer coefficient in the engine,

which is also a function of the coolant mass flow rate, ṁw. The engine cooling system

structure is shown in Fig. 2.3.

2.2.3 Electric Motor Thermal Model

The electric motor is another critical element of the HEV powertrain. Its

propulsion output is constrained by the temperature limits. Real time thermal man-

agement with knowledge of the machine’s internal temperature is very helpful for

improving the machine operation safety and determining the torque/power capabil-

ity at any time instant during a driving cycle. A Lumped-parameter thermal model

has been introduced to capture the thermal performance of the electric machine (El-

Refaie et al., 2004). The mathematical descriptions execute very fast but are not

capable of demonstrating the temperature distribution inside the machine. For accu-

rately estimating the electric machine’s internal temperature, a finite element based

thermal model has also been developed (Zhou et al., 2011). Unfortunately, the full

order FEA thermal models for electric machine with complicated geometry is compu-

tationally too burdensome for a real time controller design. In this study, a reduced

order 3D finite element based dynamic thermal models of a electric machine is chosen

to explore a new concept of thermal control.

The partial differential equation of thermal conduction is given as

d
dT
dt
− k5 2T = q (2.8)

where T is the continuum temperature, k and d are the motor thermal conductivity

and specific heat respectively. q denotes the heat flux. The above equation can be
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written in discrete form by finite element analysis techniques.

D−̇→t −K−→t = −→q (2.9)

where −→t is the nodal temperature vector of the finite element mesh, K is the finite

element matrices which corresponds to thermal conductivity, and D is the finite el-

ement matrix which corresponds to specific heat. The vector −→q corresponds to the

excitation of the thermal model, including heat transfer on cooling surface, friction

and windage losses, conduction and core losses. With a change of basis and model

order reduction, this FEA model may be finalized into a state-space form models

corresponding to the stator and rotor, respectively.

−̇→x s = As
−→x s + Bs

−→q s (2.10)

−→
t s = Vs

−→x s (2.11)

−̇→x r = Ar
−→x r + Br

−→q r (2.12)

−→
t r = Vr

−→x r (2.13)

In these expressions, −→t s and −→t r are the temperature nodes of motor stator

and motor rotor respectively. The model input is the heat flux vector −→q s and −→q r.

There’s conduction heat transfer in the air gap between the stator inner surface

and the rotor external surface. This heat flux can be calculated by determining the

boundary temperatures and the effective conduction heat transfer coefficient in the

24



Figure 2.4: Electric Motor Thermal Model with Stator and Rotor plus the Accompa-
nying Heat Transfer Effects

air gap, so the thermal model of the stator and rotor can be developed separately and

coupled by heat transfer effect. The detailed procedures of the reduced-order three

dimensional thermal model are reported in (Zhou et al., 2013). The thermal model

of the electric motor with stator and rotor parts and the heat transfer behaviours are

illustrated in Fig. 2.4.

The cooling surface heat flux is one of the element in the input vector −→q s,

and is the only controllable input for the cooling system. To obtain the heat flux, the

overall cooling surface heat transfer is calculated as

Qs =min [hm(Tso−Tc),(Tso−Tc)ṁwcp,w] (2.14)

where the heat transfer coefficient, hm, is a function of the coolant mass flow rate

ṁw. The electric motor cooling system model is built with the same approach as

described in Eq. (2.6) and Eq. (2.7).
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2.3 Thermal Control Algorithms

A series of controllers, designed using the thermal models for each powertrain

element will be presented in this section. For the battery pack thermal management,

the system aims to maintain the battery core temperature at a desired value for op-

timal performance. A nonlinear controller is developed for the engine cooling system

operation to track the coolant temperature at the engine’s outlet and to reduce the

power consumption of the actuators. With the help of the high fidelity e-motor ther-

mal model, a new cooling strategy concept is developed to maintain the hot spot

temperature in the e-motor’s stator by tracking an ideal heat removal rate on the

cooling surface.

2.3.1 Battery Pack Cooling Control

To ensure the battery pack is properly working, the battery internal tempera-

ture, Tcore, should be maintained at a desired value during the charging/discharging

events. The battery thermal model establishes a basis for the controller designs. The

cooling air mass flow rate is set to a constant value in this study, so the thermal

resistance at the battery cell surface, Rs, is constant. The controller is designed to

track the battery core temperature, Tcore, to a prescribed reference value, Tcore,r, by

controlling the inlet cooling air temperature, Tf,in.

First, the thermal model can be written in a state space form as

Ẋb = AbXb + BbUb (2.15)

where Xb =
[
Tcore,Ts,Tf

]
and Ub = [Qb,Tf,in].

To track the battery core temperature with reasonable cooling air temperature
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change, define a quadratic cost function as

Jb =
∫ t1

t0

{[
Xb−Xb,r

]T
R1
[
Xb−Xb,r

]
+UbR2Ub

}
dt (2.16)

in which R1 and R2 are positive weighting matrices. Applying optimal control theory,

the control law is defined with a feed forward term and a feedback term as

Tf,in,d =−F−1
0 Xb +H−1

c Xb,r (2.17)

The feedback gain and feed forward gain is defined as

F0 =R−1
2 BT

b P (2.18)

and

Hc =R1 (Ab−BbF0)−1 Bb (2.19)

where P is solved by a corresponding Riccati equation. Set R1 = [1,0,0;0,0,0;0,0,0]

and R2 = [1,0;0,0.01] to reduce the battery core temperature error, ecore = Tcore −

Tcore,r, by minimizing the cost function, Jb. Eq. (2.17) offers the ideal inlet cooling

air temperature.

The cooling air is generated by an air conditioning (AC) system. The refriger-

ant compressor is the most power consuming part and its speed needs to be controlled

to track the cooling air temperature at the prescribed value, Tf,in,d. In a previous

study, a model predictive controller has been developed to regulate the compressor

speed using a step-response model.
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Figure 2.5: Controller Design for Battery Cooling System

The compressor speed is controlled as

ωt =
∫
δωtdt (2.20)

where δωt is designed to minimize the error between the model predicted cooling air

temperature and its desired value based on previous compressor speed input ωt−1.

The overall controller structure for the battery cooling system is shown in Fig. 2.5.

In a conventional battery cooling control system, a switch on/off control may

be applied. The cooling system is triggered “on” when the battery temperature

reaches the prescribed threshold, Tcore,max, and switched “off” when the temperature

is cooled down. The compressor operation in conventional method can be expressed

as

ωt =


ωmax; if Tcore ≥ Tcore,max

ωmin; if Tcore ≤ Tcore,min
(2.21)
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2.3.2 Engine Cooling Control

The internal combustion engine is the largest heat source in a vehicle. In this

thermal management design for the internal combustion engine, a liquid-air cooling

cycle is applied. The coolant pump and the cooling air fan are both electrically con-

trolled. This provide the opportunity to improve the temperature tracking, optimize

the coolant flow rate, and reduce the cooling power consumption. The thermal model

of the engine cooling system described in Eq. (2.4) to Eq. (2.7) is applied to design

a non-linear controller to stabilize the coolant temperature at the engine’s outlet by

regulating the coolant and cooling air flow rates. There are three assumptions made

to facilitate the controller design process, (A1), The thermal valve is fully opened so

that all the coolant at engine outlet will flow through the radiator. (A2), All the

temperature states can be measured with available sensors and used as feedback sig-

nals in the control system. (A3), The radiator size is large enough to satisfy the heat

removal requirement.

Set the desired coolant temperature at engine’s outlet as Th,d, and define the

control error as the difference between the actual value eh = Th−Th,d. A Lyapunov-

based nonlinear controller can be designed to regulate the coolant mass flow rate and

achieve the temperature tracking. The error dynamic can be written as

ėh = Ṫh− Ṫh,d = Ṫh (2.22)

Referring to Eq. (2.5), the coolant mass flow rate control law can be derived

using the following procedures

ėh = Ṫh− Ṫh,d = Ṫh (2.23)
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Define a Lyapunov cost function as

V1 = 1
2eh

2 (2.24)

so that

V̇1 = ehėh = ehṪh (2.25)

To eliminate the tracking error, define the mass flow rate control law as

ṁw = Mw,ecp,wK1eh +he(Te−Tc)
cp,w(Th−Tc)

(2.26)

Now substitute flow rate into Eq. (2.5), so that the tracking error dynamic

becomes

Ṫh =−K1eh (2.27)

and Eq. (2.25) can be rewritten as

V̇1 =−K1e
2
h (2.28)

which indicates that the error eh→ 0 with the proposed coolant mass flow rate.

The cooling air driven fan consumes a large amount of power and its speed

needs to be controlled too. The cooling air mass flow rate control law is derived by

tracking the coolant temperature at the radiator outlet (also the engine inlet), Tc, to

a desired value, Tc,d, such that the heat taken away by the coolant flow is same to the

heat transferred from the engine. The desired coolant temperature at the radiator

outlet is defined as

Tc,d = −K1ehMw,ecp,w−he (Te−Tc)
ṁwcp,w

(2.29)
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To reduce the power consumption of the cooling air fan, it is reasonable to

find the minimal cooling air mass flow rate required. With assumption A3, the heat

exchanger size is large enough to allow the maximal possible heat transferred from the

coolant to the air, and this means that the cooling air and the coolant temperatures

are very close to each other when flow out from the radiator. So, the necessary

cooling air mass flow rate can be derived by driving the cooling air temperature at

the radiator outlet, Tair,o, to the prescribed coolant temperature at the engine inlet,

Tc,d, which is calculated in Eq. (2.29).

Define another Lyapunov cost function as

V2 = 1
2eair

2 (2.30)

where eair = Tair,o−Tc,d, so that

V̇2 = eair ˙eair = eair(Ṫair,o− Ṫc,d) (2.31)

Refer to Eq. (2.7), the desired air mass flow rate control law is set as

ṁair = Mair,rcp,air(−K2eair + Ṫc,d)−hr (Th−Tamb)
cp,air(Tamb−Tair,o)

(2.32)

where K2 is a positive constant, and the term Ṫc,d can be obtained from Eqs. (2.4),

(2.5), (2.6) and measured coolant mass flow rate. Plug the prescribed air mass flow

rate into Eq. (2.7), the dynamic change of the air temperature at radiator outlet can

be expressed as

Ṫair,o =−K2eair + Ṫc,d (2.33)

By replacing the Ṫair,o term in the Eq. (2.31) by the Eq. (2.33), it can be seen
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that the dynamic change of the error cost function V2 becomes

V̇2 =−K2e
2
air (2.34)

which indicates that the proposed mass flow rate will eliminate the error eair, given

the heat exchanger size is large enough, the coolant water temperature at the radiator

outlet is also converges to its desired value. Eq. (2.26) and Eq. (2.32) supply the

control law of coolant mass flow rate for temperature tracking and minimal cooling

air mass flow rate to meet the heat removal rate requirement.

2.3.3 Electric Motor Cooling Control

The state-space form of the thermal model enables the design of an optimal

regulator with five inputs; only the third input state (conductive cooling heat transfer

at e-motor surface) can be practically controlled. It is reasonable to take only the

stator portion of the e-motor as the cooling subject since the heat source is located

there and the hottest spots are always found in the stator. Thus, the optimal con-

troller can be designed based on the state-space stator thermal model using matrices

As, Bs, and Vs.

Generally, the stator thermal model shows that the highest temperature spots

inside are those elements whose indexes are between 2 to 12 in the output vector, −→t r,

which correspond to the positions near the windings. With this observed simulation

results, the control objective can be reduced to only 10 elements by properly weighting

matrices design. To develop an optimal controller to calculate the ideal heat removal

requirement, define the cost function as

Jm =
∫ t1

t0

{
[−→t s−

−→
t s,r]TR3[−→t s−

−→
t s,r] + q̃Ts R4q̃s

}
dt (2.35)
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where, R3, and R4 are positive symmetric weighting matrices. In this case, R3 is

designed to only stabilize the stator’s highest internal temperature, the 2nd to 12th

elements in model output vector −→t s, but not controlling the rest elements in the

output vector. So the weighting matrices R3 is written such that only the 2nd to

12th elements on its diagonal are large positive constants, and the value of the other

diagonal elements are set to be zero. The term q̃s = −→q s− −→q s,0 defines the range of

change of the heat flux, and −→t s,r is the reference stator temperature vector.

The linear optimal control law for ideal heat flux on the cooling surface is

derived as
−→q s,d =−F−1

1
−→x s + −→q s,0 (2.36)

The feedback and feed forward gain is defined as

F1 =R−1
4 BT

s P2 (2.37)

and
−→q s,0 = Cs(R3(As−BsF1)Bs)−1−→t s,r (2.38)

where P2 is solved as the non-negative-definite solution of the corresponding algebraic

Riccati equation. The term −→q s,d is the target input of the stator model: core loss;

conduction loss; cooling heat flux; heat flux at machine end and heat flux at the

air gap surface. Thus, the ideal heat removal rate at the machine cooling surface

is identified by the third element in −→q s,d obtained from Eq. (2.36) minimizing the

prescribed cost function, J2. To emphasize the important limitation that only the

third input of this model is controllable, design the second weighting matrices in the
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cost function as follows

R4 =



5× 107 0 0 0 0

0 5× 107 0 0 0

0 0 1 0 0

0 0 0 5× 107 0

0 0 0 0 5× 107


(2.39)

In other words, the weighting coefficient of the third input is much smaller than

the rest of the four uncontrolled inputs. To minimize the prescribed cost function,

the regulator would address the feedback gain mainly on the third input. The large

weighting coefficients for the rest of the inputs reduce the change range requirements

of uncontrollable heat transfer.

The ideal heat removal flux on the motor surface, −→q s,d, obtained by the linear

optimal regulator based on the motor thermal model is supplied to the cooling system

control unit as a reference for tracking. A nonlinear tracking controller is developed

to operate the coolant pump and fan speed for ideal heat removal rate tracking at the

motor surface. The e-motor cooling system control structure is shown in Fig. 2.6.

Based on the heat transfer rate defined in Eq. (2.14), the heat removal rate

tracking control error is defined as

eQ =Qs,d−min [hm(Tso−Tc),(Tso−Tc)ṁccp,w] (2.40)

where Qs,d, is the desired cooling surface heat flow rate, which is the product of

the ideal heat flux and the motor cooling surface area. The term hm is the heat

transfer coefficient expressed as a function of coolant mass flow rate. Now design a
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Figure 2.6: Controller Design for E-Motor Cooling System

cost function

V3 = 1
2e

2
H (2.41)

and its time derivative expressed as

V̇3 = eQ(Q̇s,d− Q̇s) (2.42)

The controller can be derived by formulating an ideal heat removal rate change

as

Q̇s = Q̇s,d +K3eQ (2.43)

where K3 is a positive constant. If one investigates the relationship between the heat

removal rate and the coolant mass flow rate, then the heat transfer on the stator

cooling surface follows the dynamic change rule as

Q̇s = (Tso−Tc)
∂hm
∂ṁw

dṁw

dt
−hm(dTc

dt
) (2.44)
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The ideal coolant mass flow rate in each motor is designed as

dṁw

dt
=
Q̇s,d +K3eQ−hm dTc

dt

(Tso−Tc) ∂hm
∂ṁw

(2.45)

so that the control law to obtain the coolant water mass flow rate is

ṁw =
∫ Q̇s,d +K3eH −hm dTc

dt

(Tso−Tc) ∂hm
∂ṁw

dt (2.46)

By replacing the ∂hm
∂ṁw

term in Eq. (2.44) by Eq. (2.45)and Eq. (2.46), it

can be obtained that Q̇s = Q̇s,d +K3eQ. The dynamic change of the tracking error

function V̇3 becomes

V̇3 = eH(Q̇s,d− Q̇s,d−K3eH) =−K3e
2
H (2.47)

and this proves that the proposed coolant mass flow rate in the Eq. (2.46) will achieve

the Qs,d tracking.

In the e-motor cooling system, all four motors on-board are simultaneously

cooled by the same radiator, as shown in Fig. 2.1. To reduce power waste in the

radiator fan, the air flow rate may be optimized. To investigate the minimal air flow

rate required, it is assumed that the heat removed by the cooling air flow from the

radiator is the same as the heat removed from the motors by the coolant. So set the

air mass flow rate proportional to the desired heat removal rate in the radiator, which

is four times of the desired heat flux on the cooling surface for each e-motor. The

radiator fan in the e-motor cooling cycle is operated such that

ṁair = 4Qs,d
cp,air(Tair,o−Tamb)

(2.48)

36



For comparison purpose, a classical PI controller is introduced to track the

stator hotspot temperature and expressed as follows

ṁw =KI

∫
R3(−→t s−

−→
t s,r)dt+KPR3(−→t s−

−→
t s,r) (2.49)

For both e-motor cooling and the internal combustion engine cooling system,

the mass flow rate of the coolant is proportional to the pump speed and the mass

flow rate of the air is proportional to the fan speed. The power consumption rates of

the fan and pump are simplified to be proportional to the cubic of the air mass flow

rate and coolant mass flow rate, respectively. In the simulation, the cooling system

power consumption requirement is provided by the AMESim fan/pump sub-model.

2.4 Numerical Results and Discussion of System

Performance

To evaluate the proposed thermal management system, a numerical study is

conducted on a series hybrid electric vehicle simulation. The hybrid electric vehicle

model is developed with a MATLab/Simulink and AMESim co-simulation structure.

The driver, supervisory controller, thermal management system controller, and the

power system (include power pack, battery, e-motors, and powerbus) are developed

with lookup data tables. The derived mathematical models are applied in the thermal

management system simulation. The air conditioning system is modeled in AMESim;

the cooling system is connected to the Simulink model using the AMESim-Simulink

interface. The supervisory powertrain controller is programmed to optimize the power

flow distribution in the system to ensure that the power output from the gen-set

satisfies both the propulsion and cooling requirements. A Detailed introduction to
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Table 2.1: Parameter Values and Simulation Specifications

Parameter Value Unit
Ccore 268 J/◦C
cp,air 4090 J/◦C
cp,w 994 J/◦C
Cs 18.8 J/◦C
he 4000 W/◦C
hr 3500 W/◦C

Mair,r 0.3 kg
Mw,e 2 kg
Mw,r 2 kg
Rc 1.266 ◦C/W
Ru 0.65 ◦C/W

Component Specifications
Vehicle Hybridized mid-size truck
Weight 14,000 kg
Engine 7.2L Turbo-Diesel Engine:

330 kW
E-motors Permanent Magnet: 4×95

kW
Battery Pack Li-ion AHR32113 cells: 9

kW •h

the series hybrid electric vehicle model is offered in (Zhang et al., 2014a). A summary

of the thermal model parameters and the HEV simulation specifications are listed in

the Table 2.1. An urban assault driving cycle and a convoy escort driving cycle are

investigated in the study to evaluate the controller designs. The vehicle speed profile

for both driving cycles is shown in Fig. 2.7. For each driving cycle, the battery

current load profile is determined based on the vehicle speed profile and generated by

the supervisory powertrain control unit.

For the purpose of comparisons, two different cooling system control methods

are investigated. In Method 1, the powertrain thermal management system is oper-
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Figure 2.7: Vehicle Speed Profile for Urban Assault and Convoy Escort Driving Cycles

ated with the proposed controllers introduced in the Section 2.3. The target battery

core temperature, Tcore,r, is set as 30 ◦C; the target engine coolant temperature at

engine outlet, Th,d, is 90 ◦C and the ideal e-motor internal hotspot temperature is

set as 90 ◦C. In Method 2, conventional thermal management control system is in-

vestigated with the same driving cycles. For the battery pack, the cooling system

is operated by a on/off controller. When the battery core temperature reaches 30
◦C, the compressor in the air condition system is switched on and operates at its

maximum speed, when the battery core is cooled under 29 ◦C, the cooling system

is switched off and the compressor operates at its minimum speed. The cooling air

fan and the coolant pump in the engine cooling system is assumed to be driven by a

belt, so their speeds are both proportional to the engine shaft speed. The e-motors

cooling cycle is operated by a classical PI controller to regulated the stator internal

hot spot temperature at target value of 90 ◦C.

Eight tests were evaluated in the numerical simulation study. In Tests 2.1, 2.3,

2.5 and 2.7, the ambient temperature, Tamb, is set as 48 ◦C. In the Tests 2.2, 2.4,

2.6 and 2.8, the ambient temperature is set as 25 ◦C. In first four tests, the HEV
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cooling system is operated with Method 1. In Tests 2.5 to 2.8, the cooling system is

operated with Method 2. The temperature tracking performance in the battery core,

the engine outlet coolant, and the e-motor stator hotspots will be investigated. The

power consumption of the AC system compressor, the cooling air fans and coolant

pumps for engine and e-motors are reported during the simulation. The driving cycle

applied and the cooling method used in each test are listed in the Table 2.2.

Table 2.2: Numerical Study Test Conditions

Test Cooling
Algorithm

Driving
Cycle

Surrounding
Temperature [◦C]

1 Method 1:
Nonlinear

Controllers

Urban
Assault

48
2 25
3 Convoy

Escort
48

4 25
5 Method 2:

Conventional
Controllers

Urban
Assault

48
6 25
7 Convoy

Escort
48

8 25

Fig. 2.8 shows the simulated battery and cooling air temperatures in Test 2.1.

The battery core temperature is stabilized at 30 ◦C with an average error of only 0.73
◦C. In practical process, the weighting matrices R1 and R2 can be easily adjusted to

reduce the cooling air temperature change range and compressor power consumption.
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Figure 2.8: Test 2.1 - Battery and Cooling Air Temperatures for Urban Assault
driving Cycle and Nonlinear Controllers

The engine and coolant temperatures simulated in Test 2.1 are displayed in

Fig. 2.9. The coolant temperature at the engine outlet is maintained at target value

of 90 ◦C with a small error of 0.4 ◦C and the temperature fluctuation in the engine

itself is bellow 10 ◦C.

The e-motors on the vehicle are heated by the conduction loss and core losses

mainly in the stator, where the windings are located. Thus the cooling task focuses

on the stator inner hotspots temperature tracking. Fig. 2.10 displays the simulation

result of the electric motor cooling in Test 2.1. It can be observed that, the hotspot

temperature inside the machine stator can be stabilized around the reference value.

Meanwhile, the outer surface temperature only drops when the internal temperature is

too high. The controller with full state feedback takes advantage of the temperature

gradient from the heat generation points to the cooling surface which avoids the

unnecessary cooling.

Fig. 2.11 presents the temperatures in battery package per Test 2.5. The

battery core temperature in this test is also stabilized at target value with an average
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Figure 2.9: Test 2.1 - Engine and Coolant Temperatures for Urban Assault driving
Cycle and Nonlinear Controllers

Figure 2.10: Test 2.1 - E-motor Temperatures for Urban Assault driving Cycle and
Nonlinear Controllers
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Figure 2.11: Test 2.5 - Battery and Cooling Air Temperatures for Urban Assault
driving Cycle and Conventional Controllers

error of 1.13 ◦C. The conventional on/off cooling strategy tends to consume larger

power due to the constant speed of the compressor. The battery and the cooling air

suffers a larger temperature fluctuation. In Test 2.5, the engine coolant pump and

cooling air fan are both driven off the engine shaft. In this conventional open loop

control, coolant temperature has no feedback for coolant pump regulation but only

influences the opening of the coolant thermal valve. The unnecessary power consumed

by the cooling system is very significant. Due to the fully opened valve (A3), during

most of the driving cycle, it can be seen that the engine is over cooled. But when

large heat generation occurs, the engine still suffers the risk of being overheated. In

Test 2.5, the e-motors are cooled with a classical PI controller by tracking the stator’s

hotspot temperatures to the target value, 90 ◦C. With only the stator hotspots tem-

perature feedback, the simulation results show a large delay in temperature tracking.

Both the hotspots and the cooling surface temperatures experience a large magnitude

fluctuation.

Table 2.3 summarizes the temperature tracking errors and the power consump-
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Figure 2.12: Test 2.5 - Engine and Coolant Temperatures for Urban Assault driving
Cycle and Conventional Controllers

tion of the cooling system actuators for each test. In Method 2, the engine coolant

pump and the fan speeds are directly coupled with the engine shaft. The open loop

control method can hardly achieve coolant temperature tracking without the regula-

tion of coolant valve opening. Once the speed ratio between the pump and the engine

shaft is fixed for high ambient temperature condition, the engine will be overcooled

in low temperature cases. Thus, the engine coolant temperature tracking errors for

Tests 2.6 and 2.8 are not reported.

Comparing to the conventional cooling strategy, the proposed thermal man-

agement controllers provide excellent temperature tracking performance for cooling

various subjects under different driving cycles and ambient temperatures. More im-

portantly, the proposed cooling system control algorithm (Method 1 in Tests 2.1 to

2.4) offers an average 45% reduction in the total cooling power requirement compared

to the conventional cooling methods (Method 2 in Tests 2.5 to 2.8).
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Figure 2.13: Test 2.5 - E-motor Temperature for Urban Assault Driving Cycle and
Conventional Controllers

2.5 Summary

The thermal management system for the hybrid electric vehicle powertrains

can be improved by applying mechatronic controlled, variable speed cooling system

actuators. A series of thermal models for the heat generating components in a HEV

powertain, including battery pack, internal combustion engine, and the electric mo-

tors, has been mathematically developed. Based on these thermal models, an optimal

controller has been designed for the ideal battery cooling air calculation and a MPC

controller is proposed for the air conditioning system compressor pump operation.

A nonlinear control strategy was introduced for the engine coolant temperature sta-

bilization while minimizing the system power consumption. The novel concept of

e-motor thermal management was developed by taking advantage of a high fidelity

3D reduced ordered thermal model by determining a desired heat removal rate on

the motor’s cooling surface. Numerical simulations under prescribed driving cycles

has demonstrated the advantages offered by the proposed control system in both

temperature tracking and the power consumption reduction.
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Chapter 3

Cooling Air Temperature and Mass

Flow Rate Control for Hybrid Electric

Vehicle Battery Thermal Management

Lithium-Ion (Li-ion) batteries are widely used in electric and hybrid electric

vehicles for energy storage. However, a Li-ion battery’s lifespan and performance

is reduced if it’s overheated during operation. To maintain the battery’s tempera-

ture below established thresholds, the heat generated during charge/discharge must

be removed and this requires an effective cooling system. This chapter introduces a

battery thermal management system (BTMS) based on a dynamic thermal-electric

model of a cylindrical battery. The heat generation rate estimated by this model

helps to actively control the air mass flow rate. A nonlinear back-stepping controller

and a linear optimal controller are developed to identify the ideal cooling air temper-

ature which stabilizes the battery core temperature. The simulation of two different

operating scenarios and three control strategies has been conducted. Simulation re-

sults indicate that the proposed controllers can stabilize the battery core temperature
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with peak tracking errors smaller than 2.4 ◦C by regulating the cooling air temper-

ature and mass flow rate. Overall the controllers developed for the battery thermal

management system show improvements in both temperature tracking and cooling

system power conservation, in comparison to the classical controller. The next step

of this study is to integrate these elements into a holistic cooling configuration with

AC system compressor control to minimize the cooling power consumption.

3.1 Introduction

The evolution of battery technology has prompted the replacement of the lead-

acid and nickel-metal-batteries with Li-ion batteries. In current electric vehicles (EV)

and hybrid electric vehicles (HEV), the Li-ion battery is widely chosen as an energy

source due to its high power density and low self-discharge rate when not in use.

For specific applications in EV/HEVs, the requirements of safety and reliability as

well as long battery life should be taken into consideration. Thermal management is

one of the most important tasks in battery management. Li-ion batteries generate a

considerable amount of heat sourced from Joule losses during both the charge and the

discharge phase. The volume of the battery package is usually very limited in vehicles,

and the ventilating space for heat removal is small. Meanwhile, a Li-ion battery is

very vulnerable in overheated environments during high C rate HEV operations. If

the heat is accumulated in the battery package, the temperature exceeds certain

limitations, which might lead to serious battery failure. Especially considering that

high temperature will reduce the electric resistance at the battery electrode end, an

even larger current might be resulted and leads to a higher heat generating rate.

Therefore, the battery temperature should be strictly controlled within a narrow

margin and avoid this kind of thermal runaway. Forced air or liquid cooling is required
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in EV/HEVs’ battery modules to effectively remove the heat.

Research on reliable battery thermal management system design focuses on

several issues, including battery modeling, cooling structure design, and control algo-

rithms. On the battery cell’s level, finite element analysis (FEA) is one of the most

applied methods in the battery thermal performance modeling. The FEA method is

straightforward and provides accurate temperature prediction in different locations

inside the battery package with various geometry and cooling structure (Yeow et al.,

2012) (Karimi and Li, 2013). But it’s too time-consuming for real time controller

design. For the purpose of temperature stabilization control, high accuracy tempera-

ture prediction has been achieved using a very fast battery thermal modeling in state

space form (Hu et al., 2011a). Forgez et al. (Forgez et al., 2010) introduced a lumped

parameter thermal model of a cylindrical battery as the battery thermal behaviours

were described by the dynamic change of battery core and surface temperatures.

On the battery module’s level, a transient approach based on loosely coupled

method was introduced to estimate temperature distribution within short simula-

tion time in (Wang et al., 2011). Lin et al. (Lin et al., 2011) presented an online

parametrization method and adaptive observer to estimate the cylindrical battery’s

core temperature and sensor deployment for overall temperature states observability.

Discussions for maintaining uniformed battery module temperature also suggest cool-

ing structure improvements (Duan and Naterer, 2010) (Sun et al., 2011) (Mahamud

and Park, 2011) to regulate the cooling air flow path and assure the similar cooling

condition for each battery cell. The thermal management system should be able to

stabilize the battery temperature within a safe zone so that the battery bank won’t

be overheated during continuously high rate charging/ discharging and provide the

overall optimal fuel efficiency without being switched off.

This study proposes an air cooling based battery thermal management system
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which controls the temperature of the cooling air to stabilize the battery’s internal

temperature, applying a dynamic electrical-thermal coupled model of a cylindrical Li-

ion battery and regulates the cooling air mass flow rate based on the estimated battery

heat generation rate. The model simulates the battery power output, state-of-charge

(SOC), heat generation and internal/surface temperatures change. The reminder of

the paper is organized as follows. The modelling approach will be demonstrated in

Section 3.2. A nonlinear back stepping controller and a linear optimal controller

designed for inlet cooling air temperature control is introduced in Section 3.3. Simu-

lations of two operating scenarios have been conducted, and the simulation result is

discussed in Section 3.4. The conclusion of this chapter is contained in Section 3.5.

3.2 Mathematical Models

The battery’s electrical and thermal behaviour interplay with each other and

should both be considered in the battery cell modelling. A proper level of model

complication is required for temperature control purposes. A microscopic battery

model might be beneficial in analysing the electrochemical behaviour inside battery

and gaining better understandings of the fundamentals governing the battery perfor-

mance (Jayaraman et al., 2011) (Fang et al., 2010), but not necessary in controller

designs for the battery thermal management system.

3.2.1 Electrical Model

In this study, the battery electrical behavior, represented by the Randles model

(Guzzella and Sciarretta, 2007), is described by an equivalent circuit. The circuit

contains an ideal power source, an internal resistance, and an equivalent RC network
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Figure 3.1: Randles Lumped Parameter Battery Model to Describe the Electrical
System Transient.

shown as Fig. 3.1. The electric dynamic equations can be expressed as

dVcap
dt

=− Vcap
RoC

+ 1
C
I (3.1)

since

I − IRo + Icap = Vcap
Ro

+C
dVcap
dt

(3.2)

where I is the input current. The term Vcap denotes the voltage across the capacitor.

The equivalent capacity, C, is a constant. The term is the current across the resistance

Ro, and I is the current across the capacitor. The open circuit voltage, Vb, and the

estimation of the state-of-charge (SOC) are the outputs of the electrical model. An

online SOC estimation method was introduced in (Di Domenico et al., 2008). While

the power distribution optimization and power train management are not the main

topic of interests in this work, the SOC calculation in the simulation is simplified to

a coulomb counting method, or SOC = SOC0− 1
Ah

∫ t
t0 I (t)dt. The term SOC0 is the
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initial battery state of charge, and Ah is the battery nominal energy capacity.

The internal electric resistances, Re and Ro, are functions of the SOC, the

battery core temperature, Tcore, and the difference in the charge and discharge phases.

In this study, the battery internal resistances of an AHR32113 Li-ion battery cell are

approximated as

Re =


α1− β1Tcore; discharge

α2− β2Tcore; charge

Ro =


α3− β3TcoreSOC; discharge

α4− β4Tcore− γSOC; charge

(3.3)

where αiandβi (for i=1, 2, . . . , 4) and γ are the original resistance and influen-

tial coefficients. The values of these parameters are listed in the Table 3.1. The

parametrizations given here are based on experimental battery characterization de-

veloped at Ohio State University, which have been modified to be representative of

typical cylindrical batteries. The ideal power source, Eb, is also slightly influenced by

the SOC and the temperature but assumed (A1) to be constant. Finally, the battery

output voltage is obtained as

Vb = Eb−ReI −Ve (3.4)

3.2.2 Thermal Model

A lumped parameter thermal model is chosen for its effectiveness in represent-

ing dynamic changes of temperatures while not over computationally costing for real
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time temperature control. The battery cell thermal model consists of three states:

the battery core temperature, the battery surface temperature, and the temperature

of the cooling air. The structure of the thermal model is shown in 3.2. The battery

core thermal resistance, Rcore, between Tcore and Ts is a constant. The heat genera-

tion, Qb, is approximated as the Joule loss, so that, with IRo = Vcap

Ro
, the relationship

becomes

Qb =ReI
2 +RoI

2
Ro

(3.5)

The lumped-parameter thermal model is a set of differential equations simu-

lating the temperatures’ transit change as

Ccore
dTcore
dt

=
(
Ts−Tcore
Rcore

)
+Qb (3.6)

Cs
dTs
dt

=
(
Tf −Ts
Ru

)
−
(
Ts−Tcore
Rcore

)
(3.7)

The battery external thermal resistance, Ru, is determined by the convective

heat transfer coefficient, hb, at battery surface and it changes with the cooling fluid

flow velocity. The average convective heat transfer coefficient for the entire batteries

bundle can be analytically derived using heat transfer theory. The average Nusselt

number for airflow across tube bundles composed in line layout is obtained as

NuD = 0.97cRemDPr0.36

 Pr

Prs

1/4
 (3.8)

The Reynolds number,ReD, may be expressed as

ReD = ρairVmaxD/µ (3.9)
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The variable Vmax is the maximum velocity of air flowing around the batteries

and it’s proportional to the cooling air mass flow rate, ṁair. The terms Pr and Prs

are the Prandtl numbers of the cooling air evaluated at the cooling air and the cooling

surface temperatures, respectively. The parameters c and m are factors determined

by the distance between the battery cells and . The air density, ρair, the dynamic

viscosity, µ, and the thermal conductivity, kair, are related to the air temperature

and considered constant in this work. When ReD is larger than 2000, which satisfies

most scenarios, the heat transfer coefficient hb becomes

hb =NuD (kair/D) (3.10)

When the cooling air flows across a row of battery cells, the cooling air is

heated by the battery. The transit change of air temperature at the k− th row of the

cell is simulated as

Cair
dTf,k
dt

= Ts−Tf,k
Ru

ṁaircp,air
(
Tf,k−1−Tf,k

)
(3.11)

where the heat transfer resistance at the battery surface becomes Ru = 1/(hA) . The

term A denotes the cooling surface area for each cell. The constant Cair is the heat

capacity of the air stored inside the battery bank in the space surrounding one cell.

Subscript k in Eq. (3.11) is the row index. A larger k means that the battery row

is further away from the air inlet port. The cooling air temperature increases as it

carries away the heat from the battery surface, hence, the larger k indicates higher

cooling air temperatures. Eq. (3.11) described the temperature change of cooling air,

which reflects the thermal performance of battery cells locates in different position.

The temperature distribution across the whole battery bank should be as uniform as
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possible. The temperature distribution uniformity can be improved by the cooling

air flow path configuration design, the cooling surface optimization, and the compact

geometry of the battery package (Damodaran et al., 2011)(Tran et al., 2014) (Park,

2013). The temperature change of the cooling air is the main factor leading to uneven

temperature distribution across the battery bank (Xu and He, 2013).

Figure 3.2: Single Battery Cell Thermal Model with Three Temperature States −
Battery Core, Tcore, Surface, Ts, and Cooling Air, Tf

Other than the temperature difference between the battery cells, large temper-

ature gradients inside the battery cell also lead to non-uniformity in both the electrode

reaction rates and the electrolyte concentration distributions (Gu and Wang, 2000).

The layout of the battery cells influences the thermal resistance at the cooling surface,

which also influences the prescribed temperature gradient. For the in-line layout, the

battery cell distance can be denoted by SL and ST . The surface thermal resistance

is mainly determined by the cooling air mass flow rate. With a given cooling air mass

flow rate, smaller SL and ST provide a larger Reynolds number. Meanwhile, the

closer the batteries are located to each other, higher pressure drops in the cooling air
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flow will occur. Hence, a closer cell layout requires larger cooling air fan power. In

this study, the battery pack consists of 240 AHR32113 cells. Each cell contains 14.6

Watt • hour of energy and its nominal discharging rate is 550 Watts. The batteries

are evenly distributed in 12 power modules with 20 cells in each. In every module, 20

batteries layout in 10 columns and 2 rows. The cooling air is evenly routed into four

streams and each stream of cooling air flows through three battery modules. Every

three modules, including 60 battery cells, are cooled in one stream of cooling air.

Figure 3.3: 60 Batteries in 3 Modules Layout in 10 Columns and 6 Rows along One
Cooling Air Flow Path

With the symmetric layout of the battery cells and uniformed cooling air

flow rate in each cooling fluid path, it’s reasonable to assume (A2), that the cooling

condition in every stream of cooling air is same. The cooling air flow and battery

layout in the simulation is shown as Fig. 3.3. The manufacturing data and the

simulation parameters of the thermal management system designed for AHR32112

package are listed in Table 3.1.
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Table 3.1: Data Sheet for AHR32113 Cell and Thermal Model Parameters
Symbol Value Unit Symbol Value Unit
A 0.01136 m2 Ru 0.65 K/W
c 0.27 - SOC0 70% -
C 1500 F SL 35 mm

Ccore 148 J/K ST 35 mm
Cair 0.708 J/K Tcore,r 30 ◦C
cp,air 993 J/kg/◦C Qavg 0.94 kW
Cs 18.8 JK−1 α1,a2 4e-3 -
D 32 mm α3 1.6e-3 -
Eb 3.3 V α4 8e-3 -
k 0.0258 W/mK β1 4.4e-5 -
KI -0.05 - β2 4.2e-5 -
Kp -0.1 - β3 2.5e-5 -
m 0.63 - β4 2.5e-5 -
Pr 0.72 - λ 3.6e-3 -
Prs 0.707 - µair 14.82e-6 Pa • sec
Rcore 2.0 K/W ρair 1.217 Kg/m3

3.3 Controller Designs

The electrochemical reaction inside the battery core is largely influenced by

temperature. The advanced thermal management system aims to stabilize battery

internal temperature at reference value with minimum error. This section describes

the procedures of calculating the mass flow rate and ideal temperature of the inlet

cooling air. For optimal temperature calculation, three controllers are developed

using a back stepping method, a linear optimal regulator method and the classical

proportional integral approach. The estimated heat generating rate is applied to

calculate the mass flow rate of the cooling air, which should be large enough to keep

the temperature distribution across the battery bank uniform. The battery pack

model is developed in MATLab/Simulink. The model structure is shown in Fig. 3.4.

The inputs of the system are the battery load current and the cooling air. The thermal

management actuators are the cooling air fan and the coolant compressor in the air
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conditioning (AC) system. Thus the thermal management system can only regulate

the mass flow rate and the inlet temperature of the cooling air. However, the heat

generation determined by the input electrical current load can’t be controlled.

Figure 3.4: Battery Model Structure with System Inputs and Outputs

The temperature difference across the module is caused by the cooling air

temperature change. The cooling air mass flow rate should be large enough so that

the temperature change caused by the heat load is restricted to a reasonable small

range. The cooling air mass flow rate of each stream is determined based on the

relationship

ṁair = nbQb
[
cp,air

(
Tf,o−Tf,in

)]
(3.12)

where and are the cooling air temperatures at the battery bank outlet and inlet. nb

is the number of battery cells cooled by this air flow, in this case 60. Specifically,

assume (A3) that the heat carried away by the cooling air should be equal to the

heat generated from the batteries. The term denotes the air temperature change af-

ter flowing across the battery bank which leads to uneven temperature distributions

across the battery module. In this study the cooling air mass flow rate is controlled
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such that. When the ambient temperature is high, it is difficult to achieve the bat-

tery core temperature stabilization by only controlling the cooling air mass flow rate

(Zhang et al., 2014b). Given that the cooling air mass flow rate is large and provides

a perfect heat transfer at the battery surface, the maximum possible heat removal

rate limitation is

Qmax = nb
(
Tcore−Tf

)
/Rcore (3.13)

Other than the cooling air mass flow rate, the input cooling air temperature,

Tf,in, should be controlled to insure that the heat removal rate, Qmax, can be large

enough comparing to the heat generating rate, given the target core temperature and

the internal thermal resistance Rcore are constant. In this study, the controllers focus

on achieving the ideal cooling air temperature. The AC system is applied to generate

the cooling air. The ideal cooling air temperature is achieved by properly controlling

the refrigerant compressor speed in the AC system. There are four assumptions

imposed for the controller designs: (A4), All the temperature states, Tcore, Ts, and Tf ,

can be measured with sensors. (A5), The heat generation rate, Qb, can be estimated

from the input current I. (A6), Battery cells in one row share the same cooling

condition and cooling air temperature. (A7), Battery inner thermal resistance, Rcore,

is constant.

With the stated assumptions, the thermal performance can be described by a
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single cell model. The battery model can be written in the state space form as



dVcap

dt

dTcore
dt

dTs
dt
dTf

dt


=



−1
RoC

0 0 0

− 2I
Ro

−1
RcoreCcore

1
RcoreCcore

0

0 1
RcoreCs

−1
RcoreCs

+ −1
RuCs

1
RuCs

0 0 1
RuCair

(−ṁaircp,air−1)
RuCair





Vcap

Tcore

Ts

Tamb


+



0

0

0

ṁaircp,air


Tf,in +



I
C

1
C

(
(Ro +Re)I2 +C2

(
dVcap

dt

)2)
0

0


(3.14)

3.3.1 Back Stepping Controller

Both the heat generation rate and the inlet cooling air temperature Tf,in,

are the effective inputs that influence the battery core temperature. However, the

heat generation rate can only be estimated by the model but not controllable by

the thermal management system. Considering the nonlinear relationship between

the current input, I and the temperature state, a cooling air temperature regulator

with information of the system inputs, I and Tf ,in using a Lyapunov-based nonlinear

controller is designed for battery core temperature tracking, using the hand-crafted

back stepping method (Salehi and Shahrokhi, 2009). Based on the electrical model

and Eq. (3.5), the heat generating rate Qb from battery core can be rewritten in the

following form given the input current I as

Qb = I2 (Ro +Re)− 2CIRo
dVcap
dt

+C2
(
dVcap
dt

)2
Ro (3.15)
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where dVcap

dt is also derived as a function of I in Eq. (3.1). To quantify the battery

core temperature stabilization performance, the tracking error is defined as

ecore = Tcore−Tcore,r (3.16)

where Tcore,r is the desired value of Tcore, and it is a constant. The time derivative

of the tracking error based on Eq. (3.6) and Eq. (3.16) becomes

decore
dt

= dTcore
dt

= Qb + (Ts−Tcore)/Rcore
Ccore

(3.17)

The controller design objective is to reduce the temperature tracking error,

ecore. It is assumed that all the temperature states, Tcore, Ts, and Tair, are measurable

or can be estimated.

Define a positive definite function J1 as

J1 = e2
core

2 (3.18)

The tracking error can be eliminated if the time derivative of J1 is a negative

definite function so that

dJ1
dt

= ecore
decore
dt

=−k1e
2
core (3.19)

Along with Eq. (3.17), the desired temperature of battery surface, Ts,d, is

solved as

Ts,d = Tcore−QbRcore− k1ecoreCcoreRcore (3.20)

The error between the actual surface temperature and its desired value, es,
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can be defined as

es = Ts−Ts,d;es +Ts,d = Ts (3.21)

By substituting Ts using Eq. (3.21), plug it in Eq. (3.17) and Eq. (3.19),

the actual derivative of J1 becomes dJ1
dt = −k1e2

core + es
RcoreCcore

ecore. To cancel out

the positive term and eliminate the tracking error in the surface temperature state,

define another positive definite function as

J2 = 1
2e

2
core + 1

2e
2
s (3.22)

Set the time derivative of L2 as a negative definite function as

dJ2
dt

= ecore
decore
dt

+ es
des
dt

=−k1e
2
Tcore

+ es
RcoreCcore

ecore + es
des
dt

=−k1e
2
Tcore
− k2e

2
Ts

(3.23)

Based on the desired temperature of surface obtained in Eq. (3.20), the time

derivative of es is written as

des
dt

= dTs
dt
− dTcore

dt
+ k1CcoreRcore

decore
dt

+Rcore
dQb
dt

(3.24)

Combine Eq. (3.7), Eq. (3.23) and 3.24, so that the ideal cooling air temper-

ature can be solved as

Tf,in =
(
dTcore
dt

− k2eses− k1
decore
dt

CcoreRcore−
ecore

CcoreRcore

)
CsRu

+ (Ts−Tcore)Ru
Rcore

+Ts

(3.25)

The suggested input cooling air temperature in Eq. (3.25) stabilizes the bat-

tery core temperature by driving the error function J2 to zero. It can be seen in
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Section 3.4 that this controller designed with consideration of Qb can successfully

track Tcore,r, but requires a large magnitude of input change.

3.3.2 Linear Optimal Controller

The system can be decoupled by replacing the input I with the heat generation

rate, Qb, derived from Eq. (3.5). The term Qb is an uncontrollable disturbance.

Because Qb is determined by I and it can’t be regulated by the thermal management

system. By taking only the cooling air inlet temperature as the controllable input, the

thermal model decoupled from the electrical model is rewritten in a linear state-space

form as


dTcore
dt

dTs
dt
dTf

dt

=


−1

RcoreCcore

1
RcoreCcore

0
1

RcoreCs

(
−1

RcoreCs
+ −1

RuCs

)
1

RuCs

0 1
RuCair

(−ṁaircp,air−1)
RuCair




Tcore

Ts

Tf

+


1

Ccore
0

0 0

0 ṁaircp,air


 Qb

Tf,in


(3.26)

where the state vector, Xb, and input, Ub, vectors are defined as Xb =
[
Tcore,Ts,Tf

]T
and Ub =

[
Qb,Tf,in

]T
.

To avoid large magnitude input, the range of the inlet cooling air temperature

should be restricted. An optimal controller is developed based on the thermal model

to identify the ideal temperature of the cooling air at battery package inlet, Tf,in, by

minimizing the function defined as

Jb =
∫ t1

t0

{[
Xb−Xb,r

]T
R1
[
Xb−Xb,r

]
+ ŨbR2Ũb

}
dt (3.27)
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where R1, and R2 are positive symmetric weighting matrices. A larger weight-

ing coefficient would reduce the magnitude of the corresponding terms in the cost

function. The objective state to be controlled is the battery core temperature, set

R1 = [1,0,0;0,0,0;0,0,0] to reduce core temperature error. The variable Ũb is the

magnitude of the inlet cooling air temperature change range. The first input of the

thermal model, Qb, is not regulated by the thermal management controller. The only

controllable input is the inlet cooling air temperature, Tf,in. Design R2 = [1,0,0,0.01],

the Qb term in the cost function is applied a large weighting coefficient and the regula-

tor mathematically restricted the ideal vary range of this uncontrollable input. With

a smaller weighting coefficient on Tf , in term, the regulator essentially minimizes the

cost function relying only on the second input of the system.

The optimal control law can be obtained by solving for the feedback controller

gain matrix. The reference point, Tcore,r, is not zero, and the linear optimal controller

is written in the form

Tf,in =−F0Xb +H−1
c Xb,r (3.28)

in which 

H−1
c =

(
R1 (Ab−BbF0)−1 Bb

)−1

F0 =R−1
2 BT

b P ;u0 =H−1
c Xb,r

Tf,in =−F0Xb +u0

(3.29)

where P is solved by an algebraic Riccati equation. The terms Ab and Bb are the

matrices present in the state-space model per Eq. (3.26). The variable Tair,in is the

result of optimal inlet cooling air temperature obtained by calculating the feedback

gain F0 and feed forward gain H−1
c in Eq. (3.28). The controller stabilizes the battery

internal temperature by minimizing the cost function defined in Eq. (3.27).

Comparing to the back stepping controller introduced in last section, the op-
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timal controller reduces the magnitude of ideal cooling air temperature range with

a compensation term designed in the cost function, and thus it’s more practical to

be applied in AC system operation. The optimal controller takes advantage of the

temperature gradient from battery core to battery surface and avoids unnecessary

cooling. The controller design method is suitable for other battery models and cool-

ing configurations. The thermal model can be replaced by more sophisticated ones

such as FEA thermal model, in which case the size of the system matrix would be

change but the design procedure is still valid.

3.3.3 Classical PI Controller

From historical perspective, control papers tend to evaluated various controller

designs to demonstrate performance. The PI controller was chosen since it’s widely

used in the auto transfer industry to regulate temperature for electro mechanical

systems. A classical proportional-integral (PI) controller is developed as

Tf,in =−KP ecore +
∫
KIecoredt (3.30)

where ecore is the battery core temperature tracking error that defined in Eq. (3.16).

The term KI is the integral gain and KP is the proportional gain defined using the

PI tuner in Simulink and are both negative constants due to the way how ecore is

defined.

3.4 Case Study - Numerical Results

Numerical simulations are conducted to validate the proposed thermal man-

agement control system designs. Eight tests with different electric current input
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profile and cooling scenarios, as listed in Table 3.2, were implemented in the MAT-

Lab/Simulink and AMEsim simulations, for comparison.

Table 3.2: Simulation Scenarios for Tests 3.1 - 3.8
Case No. Active Control Input Current Load,I,(A) Cooling Air Temp,Tf,in

3.1 Yes

30sin(0.01t)

Back Stepping Control
3.2 Yes Optimal Control
3.3 No Fixed; 25 ◦C
3.4 Yes PI Control
3.5 Yes

Urban Assault
Drving Profile

Back Stepping Control
3.6 Yes Optimal
3.7 No Fixed; 25 ◦C
3.8 Yes PI Control

The back stepping controller designed in last section is implemented in Tests

3.1 and 3.5. The linear optimal controller is applied in Tests 3.2 and 3.6. A fixed

cooling air temperature of 25 ◦C is offered in Tests 3.3 and 3.7. A classical PI

controller is implemented with only battery core temperature feedback in Tests 3.4

and 3.8. When the cooling air flow rate is set as constant 0.27 kg/sec for all tests, the

battery modules suffer an uneven temperature distribution. So in the Tests 3.2, 3.4,

3.6 and 3.8, the cooling air mass flow rate is applied as described in Eq. (3.12). The

input of the simulation is the battery current load, I. In Tests 3.1 - 3.4, the input

current is a sine wave with amplitude of 30 Amps. In Tests 3.5 to 3.8, the current

load input to the battery model is from an urban assault profile. The current load

profiles applied are shown in Fig. 3.5.

A vapour compression air conditioning (AC) system model, including an evap-

orator, a condenser, a electric coolant compressor with displacement of 100 ml, and

a 20 mm diameter fan, was created in AMESim. In vapour compression systems, the

power consumption required by the coolant compressor is generally larger than that of

the cooling air fan motor since the compressor provides a pressure rise in the coolant
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Figure 3.5: Input Current Profile for Tests 3.1 - 3.4 (Sine Wave), and for Tests 3.5 -
3.8 (Urban Assault)

flow path. In this study, only the power consumption of the coolant compressor is

investigated, which is provided by the AMESim AC model. The total heat removal

out from the battery module, Qo, is obtained as a function of the temperature change

in the cooling air and its mass flow rate as follows

Qo =
∫ t

0
ṁaircp,air

(
Tf,o−Tf,in

)
dt (3.31)

Four sets of data are investigated for the thermal management system per-

formance evaluation. The simulation results of Tests 3.1 - 3.8 are listed in Table

3.3.

In Test 3.1, the input cooling air temperature is regulated by the back stepping

controller. The simulated battery and cooling air temperatures are shown in Fig.

3.6. The battery core temperature tracking error is very small and stabilized around

reference value well. The peak value of the tracking error is 0.62 ◦C. In Test 3.2,

the cooling air is sent into the battery bank at the ideal temperature calculated by
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Table 3.3: Tests 3.1 - 3.8 Numerical Results

Test No.
Peak, Average
Tracking error,

max, average(◦C)

Total Heat
Removal,
Qo (kJ)

Peak Core
Temperature
Difference,

Tcore,6−Tcore,1 (◦C)

Compressor
Energy

Consumption,
(kW •hr)

3.1 0.62,0.39 1,598 4.08 0.09
3.2 2.31, 0.85 1,484 3.44 0.08
3.3 12.54, 7.12 1,280 2.84 0.08
3.4 6.94„0.01 1,328 4.12 0.10
3.5 0.84„0.2 1,703 4.43 N/A
3.6 2.43„0.67 1,628 3.91 0.10
3.7 8.27„4.97 1452 3.24 0.04
3.8 3.52„-0.53 1,650 3.52 0.11

the linear optimal controller. The error between the battery core temperature and

its target value of 30 ◦C is smaller than 2.31 ◦C.

Figure 3.6: Test 3.1 - Battery Core, Battery Surface, and Cooling Air Temperatures
Verse Time with Back Stepping Controller.

In Test 3.3, the cooling air temperature is fixed at 25 ◦C. The first column

of the battery and cooling air temperatures is shown in Fig. 3.7. With a fixed inlet

cooling air temperature, the battery core temperature is hardly stabilized around

the target value of 30 ◦C. The tracking error reaches 12.54 ◦C and keeps increasing
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at the end of the simulation. The heat removal, Qo, in Test 3.1 is 24.8% larger

than the total heat removal in this test which proves that active controlled cooling air

temperature benefits the heat dissipated inside the battery modules. Comparing with

Test 3.3, results of Tests 3.1 and 3.2 shows that the cooling air temperature control

is an effective method in battery internal temperature stabilization. In Test 3.4, a

classical PI controller is implemented and the battery core temperature is stabilized

around the reference value but with a large tracking error. The energy consumed by

the cooling system is larger than Tests 3.1 and 3.2.

Figure 3.7: Test 3.3 - Battery Core, Battery Surface and Cooling Air Temperatures
Vases Time with Fixed Cooling Temperature.

In Test 3.5, the current load applied on the battery pack is an urban assault

profile per Fig. 3.5. The nonlinear back stepping controller is implemented; however

the controller responds to the input current and heat generating rate. With the ap-

plied current profile of urban assault cycle, the ideal cooling air temperature changes

drastically and not likely achieved by the AC system so the power consumption of the

coolant compressor was not reported. The simulated result indicates that the bat-

tery internal temperature can be accurately stabilized at the target value by the back
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stepping controller, assuming that the inlet cooling air temperature can be accurately

tracked by the AC system. The simulated peak tracking error is 0.84 ◦C.

Figure 3.8: Test 3.6 - Battery Core, Surface, and Cooling Air Temperatures Verse
Time with Linear Optimal Controller

In Test 3.6, the cooling air temperature is obtained for the optimal controller.

The simulation results in Fig. 3.8 indicate that the internal battery temperature under

the urban assault current load profile can be controlled with an error of 2.43 ◦C. The

total cooling air mass flow rate across the battery package is actively controlled using

Eq. (3.12) based on the estimation of heat generation. The mass flow rate of the

cooling air in the Test 3.6 is shown is the Fig. 3.9.

The cooling air temperature at the battery module inlet is fixed at 25 ◦C in

Test 3.7. The results indicate that the battery internal temperature is not accurately

tracked with a fixed temperature cooling air since the peak battery core temperature

tracking error is 8.27 ◦C off the target value.

In Test 3.8, the input cooling air temperature is derived from a classical PI

controller with the tracking error of the battery core temperature feedback. The

simulated battery and cooling air temperatures are shown in Fig. 3.10. With the
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Figure 3.9: Test 3.6 - Cooling Air Mass Flow Rate Verse Time with Linear Optimal
Controller

active control of the cooling air temperature, Tair, the battery core temperature is

gradually stabilized around the target value after a relatively longer time. The heat

removal is 1650 kJ but the energy consumed in the refrigerant compressor is 0.11

kW •hr, and is higher than that in Test 3.6, which is 0.1 kW •hr.

The numerical simulation results validate the proposed thermal management

methods introduced in Section 3.2.1. With larger energy consumed by compressor in

AC system comparing to that when the cooling air temperature is fixed at 25 ◦C,

the heat removal rate and battery internal temperature stabilization are significantly

improved by actively controlling the cooling air temperature. It is clear that the

cooling air temperature is a key variable to be controlled for battery core temperature

tracking. The nonlinear back-stepping controller and linear optimal controller are

designed to find the ideal inlet cooling air temperature. Both methods can stabilize

the battery core temperature at target value within a small error. Comparing with a

classical PI controller, the linear optimal controller offers better performance in both

temperature stabilization and AC system power conservation.
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Figure 3.10: Test 3.8 - Battery Core, Battery Surface, and Cooling Air Temperatures
Verse Time with Classical Controller

3.5 Summary

In hybrid power vehicles, Li-ion batteries are widely used for energy storage.

With high rate current load applied on the batteries, the heat generated from Joule

losses easily leads to battery system failure due to unsteady temperature control. To

improve the battery core temperature stabilization, an electric-thermal model of the

cylindrical Li-ion battery is developed for air-cooling battery thermal management

systems. A nonlinear back-stepping controller and a linear optimal controller are

proposed for ideal cooling air temperature calculations. Cooling air mass flow rate

is obtained based on the heat generating rate from the battery thermal model to

keep the temperature distribution uniform across the battery bank. The numerical

results show that the battery internal temperature can be stabilized by controlling

the optimal cooling air temperature with tracking errors smaller than 2.43 ◦C. The

improvements in cooling power conservation are observed by optimal controlling the

cooling air temperature in comparison to a classical PI controller.
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Chapter 4

Hybrid Electric Vehicle Battery Pack

Thermal Management System -

Modeling and Control

The lithium-ion battery pack in hybrid electric vehicles is an important energy

storage device that requires proper thermal management. A considerable amount of

heat is generated by the battery cells due to their internal resistance during charging

and discharging, especially for peak vehicle loads. This study focuses on developing

a smart controlled thermal management solution integrating a vapour compression

system. A lumped parameter cylindrical battery thermal model is developed with a

Kalman observer to estimates the transit temperature changes of the battery surface,

battery core, and cooling air flowing around the cells. For the first time, the optimal

battery cooling air temperature is investigated using optimal control theory. A model

predictive controller is then introduced to regulate the refrigerant compressor and

track the ideal cooling air temperature. In a case study, the power consumption of

the thermal management system and the battery internal temperature behaviours
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are investigated under an urban assault cycle. For various operation configurations

and conditions, the numerical results demonstrate that peak error of the battery core

temperature can be tracked within 0.25 ◦C of the target value and the cooling system

energy consumption can be reduced by up to 58%.

4.1 Introduction

Battery performance is of great importance in electric and hybrid electric ve-

hicle (HEV) operation. Battery cells generate a high amount of heat during charging

and discharging, mainly due to internal resistance. This heat generation leads to a

temperature rise inside the battery pack. The thermal behaviour of the batteries in-

fluences their chemistry and electrical reactions. In general, the battery capacity will

be reduced if the temperature regularly exceeds the normal operating range. Conse-

quently, batteries must be controlled within a certain desired working temperature

level to ensure stable performance and long life. Much attention is now being fo-

cused on developing reliable thermal management systems for the battery package in

ground vehicles.

A Li-ion battery with generally larger heat generation rate for given volume, is

considered the most attractive electrical energy storage solution for its better power

density than either lead-acid or NiMH batteries (Pollet et al., 2012). To realize

higher HEV mileage and power output requirements, various topics on Li-ion battery

thermal management system design have been studied. A large amount of research

work has been completed on electric vehicle battery modeling (Fang et al., 2010)(Hu

et al., 2011b). Peck et al. (Peck et al., 2012) developed a battery model to estimate

current density, voltage distribution, and local heating on the electrodes. Gross and

Clark (Gross and Clark, 2011) introduced a battery life aging model and applied it to
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real world environmental conditions, which permitted optimization of battery thermal

management strategies. Sun et al. (Sun et al., 2011) discussed the effect of different

cooling structures on the heat rejection from battery packs. Teng and Yeow (Teng,

2012)(Teng and Yeow, 2012) developed a series of battery thermal models using a

finite element analysis approach. Lastly, a systematic approach for Li-ion battery

thermal management was proposed by Jayaraman et al. (Jayaraman et al., 2011).

This dissertation investigates a computer controlled battery thermal manage-

ment system (BTMS) to stabilize the internal temperature of battery cells by tracking

a prescribed cooling air temperature applying a vapor compression air conditioning

(AC) system. A cylindrical battery cell applied in the standard commercial A123

system (Pistoia, 2014) was chosen as the object of this study. The AC system is

modeled in AMESim. A battery electric-thermal model is created to estimate the

transit temperature change of the battery surface, battery core, and the coolant flow-

ing through the battery bank. The battery model also simulates the electrical output

voltage and the state of charge (SOC). The model-based battery cooling controller

has been designed to determine the optimal inlet cooling air temperature. Next, a

model predictive controller is applied to the air condition system to track the desired

cooling air temperature as determined by the battery cooling controller. The overall

thermal management system structure is shown in Fig. 4.1. This chapter also investi-

gates how different cooling structures affect the cooling air temperature tracking and

their influences on heat removal efficiency to provide insights into battery thermal

management design and manufacture process.

The reminder of the chapter is organized as follows. In Section 4.2, an AHR32113

cylindrical battery cell model is mathematically described. The procedures to cal-

culate the ideal cooling air temperature using a Kalman filter and a linear optimal

controller are outlined in Section 4.3. Section 4.4 introduces a model predictive con-
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Figure 4.1: Battery Thermal Management System Structure

troller designed to regulate the refrigerant compressor speed in the AC system and

provide the ideal cooling air temperature. Section 4.5 presents the numerical re-

sults for a battery thermal management system performance. The simulation results

demonstrate that the proposed control method works as expected and stabilizes the

battery temperature around the target value with a small error. Section 4.6 concludes

this chapter.
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4.2 Battery Pack Model

In this study, the selected battery pack has a nominal power rating of 110 kW

powered by 240 AHR32113 cells. The batteries are evenly distributed in 12 modules

with 20 cells each. The battery layout in every module is uniformed - 10 columns

and 2 rows. Three modules, 6 rows of battery cells in total, are cooled in the same

air stream as shown in Fig. 4.1. To identify the ideal temperature of inlet cooling air

Tcore,r, and the air mass flow rate necessary to remove the heat load, ṁair, the battery

pack model considers three factors: electrical dynamics, state of charge (SOC), and

thermal behaviour as shown in Fig. 4.2.

Figure 4.2: Battery Thermal Electric Model Structure
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The battery’s electrical behavior is represented by the Randles model (Guzzella

and Sciarretta, 2007) corresponding to a simplified circuit. The model describes the

battery with an ideal power source, an internal resistance, and a RC network. The

electric dynamic equation can be expressed as

Vb = Eb−ReI −Ve (4.1)

where I = C dVe
dt + Ve

Re
, Eq. (4.1) can be rewritten as ReI = Eb−Vb−Vcap, so the above

relationships becomes

ReC
dVcap
dt

= Eb−Vb−Vcap
(

1 + Re
Rb

)
(4.2)

where I = C dVcap

dt + Vcap

Rcap
. Eq. (4.1) can be rewritten as RcapI = Eb−Vb−Vcap, so the

above relationships becomes

Ccore
dTcore
dt

=
(
Ts−Tcore
Rcore

)
+Qb (4.3)

where Vcap is the voltage applied on the capacitor, and Vb is the battery output

voltage. The load current, I , is an input to the battery electric sub-model.

The values of Re and Rcap in the electric model are dependent on the SOC,

battery core temperature, Tcore, and the difference in the charge and discharge phases.

The state of charge estimator output includes the open source voltage, the SOC, and

the internal resistances Rb and Rcap. A detailed online SOC estimation method using

a Kalman filter was introduced in (Di Domenico et al., 2008), but the power distribu-

tion optimization is not the main topic of interest. In this work, the SOC calculation

is simplified to a Coulomb Counting method, SOC = SOC0− 1
Ah

∫ t
t0 I (t)dt. The term

SOC0 is the initial battery state of charge, and Ah is the battery’s nominal capacity.
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The battery thermal sub model is derived based on a two-state, surface temper-

ature, Ts, and core temperature, Tcore, cylindrical battery thermal model introduced

by Forgez et al. (Forgez et al., 2010) introduced (refer to Fig. 4.2) with the dynamics

Cs
dTs
dt

=
(
Tf −Ts
Ru

)
−
(
Ts−Tcore
Rcore

)
(4.4)

The parameters Ccore and Cs are the heat capacity of the battery core and the

battery surface, respectively. The thermal resistance, Rcore, between the battery core

and the battery surface, was assumed to be a constant value (A4). And the thermal

resistance between the battery surface and the cooling air, Ru , is decided by the

convective heat transfer coefficient, h, on the battery surface and convective transfer

area. Lin et al. (Lin et al., 2011) proposed a parameterization method to estimate ,

Ccore, Cs, Rcore and Re. The heat generation rate, Qb, is approximately equal to the

concentrated Joule loss as

Qb = I2Re + I2
RbRb (4.5)

The relationship between the cooling air flow rate requirement and the heat

generation rate in the battery pack was established in (Damodaran et al., 2011). The

cooling air flow rate is determined to maintain a uniform temperature distribution

across the battery bank and effectively expel the heat. The air temperature change

should be controlled under 5 ◦C. The battery surface convective heat transfer coef-

ficient, h, varies with the cooling air mass flow rate and the average convective heat

transfer coefficient for the entire batteries bundle is derived by the average Nusselt

number for air flow across the tube bundles composed of 10 rows

ReD = ρairVmaxD/µ (4.6)
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Figure 4.3: Battery Layout Configuration in Three Modules (Top View)

NuD = 0.262RemDPrc
 Pr

Prs

1/4
 (4.7)

where c and m are factors determined by the distance between each cell, the number

of battery rows and ReD. When Re > 2000, as it is in this case, the heat transfer

coefficient, hb, is given as

hb =NuD (kair/D) (4.8)

The configuration parameters of the battery cells inside the module can be

described by the battery distances, SL and ST , as shown in Fig. 4.3 per top view of

three lined up battery modules.

The variable Vmax in Eq. (4.6) denotes the maximum air flow velocity inside

the battery pack. Since the batteries are placed in lines, the maximum flow velocity
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can be calculated as

Vmax =
(

ṁair

ρairAcross

)(
ST

ST −D

)
(4.9)

The air density, ρair, the dynamic viscosity, µ, and the air thermal conductivity

kair, are considered constant. The values of Across, D, SL, and ST are also fixed.

Substituting the thermal characteristics of air in Table 4.1 into Eq. (4.6) through Eq.

(4.9), allows the estimated relationship between the cooling air mass flow rate and

the battery surface convective heat transfer coefficient to be expressed in a simplified

form as

hb = 617.04ṁ0.6
air (4.10)

Using the convective heat transfer coefficient, the differential equation describ-

ing the cooling air transit temperature change flows across the battery bank is written

as

Cf
dTf,k
dt

= Ts−Tf,k
Ru

ṁaircp,air
(
Tf,k−1−Tf,k

)
(4.11)

where Ru = 1/(hbAb) is the thermal resistance at the battery surface and Ab is the

battery cooling surface area. The parameter Cf is the heat capacity of the air sur-

rounding one battery column, cp,airis the specific heat of air under atmosphere pres-

sure, and the subscript k is the column index. A larger k means that the column is

positioned further away from the air inlet port. The cooling air temperature, Tf,k,

denotes the air temperature at the k − th column’s outlet position. This thermal

model of cooling air reflects its temperature change at different battery columns, and

estimates the resulting uneven temperature distribution inside the battery bank.
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4.3 Optimal Control and Kalman Filter for Battery Core

Temperature

Traditional battery thermal management system designs often consider the

cooling air mass flow rate, but do not select the cooling air temperature as a control

variable. Constant inlet air temperature may not achieve the target battery core

temperature stabilization regardless of the applied cooling air mass flow rate., es-

pecially when the heat generation rate exceeds a critical value (for instance, if the

Qb > (Tcore,r − Tf )/Rcore, the target temperature will not be reached) (Teng et al.,

2011). This section will introduce an observer to estimate the battery core tempera-

ture, and an optimal controller to calculate the ideal inlet cooling air temperature.

The lumped parameter thermal model for the cylindrical battery and cooling

system establish a basis for the controller design. Given a constant cooling air mass

flow rate, the cooling surface heat transfer coefficient is time invariant too. Consider-

ing the battery heat generated, Qb, in Eq. (4.3), and the inlet cooling air temperature,

Tf,0, in Eq. (4.11) as the system inputs, the thermal model of the battery cell in first

column can be expressed in a linear state space form as


dTcore
dt

dTs
dt
dTf

dt

=


−1

RcoreCcore

1
RcoreCcore

0
1

RcoreCs

(
−1

RcoreCs
+ −1

RuCs

)
1

RuCs

0 1
RuCf

(−ṁaircp,air−1)
RuCf




Tcore

Ts

Tf

+


1

Ccore
0

0 0

0 ṁaircp,air


 Qb

Tf,in


(4.12)

The battery surface and cooling air temperature, Ts and Tf , can be directly
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measured, but the battery core temperature, Tcore , cannot be measured by sensors.

The error in the battery core temperature estimation exists due to heat generation

calculation uncertainties, and the lack of core temperature feedback. The model

output is defined as

Ŷ =

 Ts

Tf

=

 0 1 0

0 0 1



Tcore

Ts

Tf

 (4.13)

The battery core temperature stabilization problem can be solved by using

linear optimal control theory. This system can be shown to be both observable and

controllable. From a controller design stand point, the battery heat generation is not

a controllable input but rather considered to be a disturbance as it’s not determined

by the cooling system. To find the optimal inlet cooling air temperature, Tf,d, to

remove the generated heat, the battery core temperature must be estimated.

An observer is required to correct the battery core temperature. The observer

is built using Kalman filter theory, to estimate the unmeasured temperature states,

based on measured states, Ts and Tf . Several assumptions are applied in the observer

design process. (A1), Battery cells located in same column share a uniform cooling

condition; (A2), Only battery surface and the cooling air temperatures, Ts and Tf ,

can be measured with sensors; (A3), Constant and uniform cooling fluid (air) flow

rate, ṁair (constant thermal resistance Ru at battery surface) across all batteries;

and (A4), Battery inner thermal resistance, Rcore, is constant.
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The observer is constructed in the following form


˙̂
Xb = AbX̂b + BbUb +L

(
y−CbX̂b

)
Y = CbX̂b

(4.14)

where Ab and Bb are the system matrices defined in the Eq. (4.12) The feedback

gain matrix, L, is designed to minimize the cost function that may be defined as∫ t1
t0

[
eT (t)We(t)

]
dt where e=Xb− X̂b and W is the weighting matrix.

L=QCT
(
wwT

)−1
(4.15)

The mean measurement error vector maybe defined as w = [w1;w2], where w1

is mean error magnitude of the battery surface temperature sensors, and w2 is the

mean error magnitude of the cooling air temperature sensors. In Eq. (4.15), Q is

obtained by finding the nonnegative definite symmetric solution of a corresponding

algebraic Riccati equation, and the gain matrices L can be solved off-line, given that

the system matrices and the measurement noise magnitude vector are time invariant.

With the corrected estimation of the battery core temperature, the optimal

temperature of the inlet cooling air, Tf,d, can be determined by applying the optimal

controller design technique. The control law is designed to minimize the selected

function

∫ t1

t0

{[
Xb,r (t)− X̂b (t)

]T
R1
[
Xb,r (t)− X̂b (t)

]
+ ŨTR2Ũ

}
dt (4.16)

where R1 and R2 are positive symmetric weighting matrices. In this study, R1 =

[1,0,0;0,0,0;0,0,0] and R2 = [1,0;0.001,0] were selected to stabilize the battery core

temperature, Tcore , to its reference value, Tcore,r .The variable Ũ =
[
Qb,Tf,d−U0

]T
is
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the input magnitude vector from Eq. (4.12). The first element is the heat generation

rate, and the second element is the range of the target inlet cooling air temperature.

The optimal control law is obtained by solving the feedback and feed forward

gain matrices with the set point . The linear optimal controller is constructed as



Hc = (R1 (Ab−BbF0)−1 Bb

F0 =R−1
2 BT

b P ;U0 =H−1
c Xb,r

Ub =−F0X̂b +U0

(4.17)

in which P is solved as the non-negative definite solution of the corresponding alge-

braic Riccati equation. The term is an adjusting parameter. The controller obtains

the ideal inlet cooling air temperature, Tf,d, as the second element in the optimal

input

Tf,d = Ub (2) (4.18)

The ideal inlet cooling air temperature to minimize the cost function in Eq.

(4.16) is identified in Eq. (4.18).

4.4 Model Predictive Controller for AC System

In this section, a controller will be constructed to track the ideal cooling air

temperature by regulating the air conditioning (AC) refrigerant compressor speed us-

ing model predictive control theory. The AC system typically consists of a compressor,

a condenser, an expansion valve, an evaporator, and an accumulator. These compo-

nents are connected by a set of tubes and pipes. A big dynamic modeling challenge

lies in accurately addressing the phase changing (liquid, two phase or superheated

vapor) of the refrigerant. In previous work (McKinley and Alleyne, 2008)(Li et al.,
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2011)(Li and Alleyne, 2010), a moving boundary method was introduced to model a

transient heat exchanger with a large set of states. However, highly nonlinear models

are too sophisticated for real time controller design. In this study, a model predictive

controller based on a step response model will be utilized to regulate the battery

cooling air temperature at the battery pack’s air inlet.

Model predictive control treats the condition air temperature tracking problem

as an infinite horizon optimal control strategy design with a quadratic performance

criterion (Rawlings, 1999). The controller design procedure includes reference speci-

fication, output prediction, control action sequence computation, and error feedback.

The system uses the ideal cooling air temperature, Tf,d, as the reference. With ap-

plication of a reduced order step response model, the controller is built in following

steps. First, apply a step signal to the compressor speed, from 100 RPM to 1,000

RPM at t = t0. Then record the output conditioned air temperature every one sec-

ond to generate the model array Astep = [a1,a2,a3, . . . ,a70]. The total sample time

is chosen as 70 seconds (70 elements in the model array), which is sufficient for the

system to reach steady state. The element ai denotes the conditioned air temperature

at the i− th second after the step input change has been applied. The sampling time

constant is 1 second which is small enough to accurately describe the transit response

of the system.

Define u(i) as the normalized compressor speed at the i− th time instant so

that the actual compressor speed may be obtained as

ω(i) = β1u(i) + β2 (4.19)
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The compressor speed change at i− th instant becomes

δω(i) = β1
(
u(i)−u(i−1)

)
(4.20)

where β1and β2 are constant controller parameters, correspond to the step input of

the compressor speed. With the normalized input u(i) , define the past input array

as

U(i−1) =
[
u(i−70),u(i−69),u(i−68)...u(i−1)

]T
(4.21)

The prediction horizon is an adjustment parameter. In this case, a five second

prediction is applied considering both tracking accuracy and computation cost. The

input change in the future five seconds may be constructed as


∆u(i) = u(i)−u(i−1)

∆U(i) =
[
∆u(i),∆u(i+1), ...∆u(i+4)

]T (4.22)

Applying the convolution theorem, the predicted conditioned air temperature

vector at the i+ 1− th instant after the pump speed change would be

T̂air (i+ 1) = TssH −S(i)∆U(i)−S0U(i−1) (4.23)

where H ∈ R5×1 is a vector with all elements are 1. To maintain the positive rela-

tionship between the input and the output, it is convenient to define a new array S as

Eq. (4.24), whose element si = Tss− ai. The variable Tss is the steady state output

air temperature under 100 RPM pump speed. S and S0 are both the step response
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sample model system matrices constructed as:

S =



s1 0 0 0 0

s2 s1 0 0 0

s3 s2 s1 0 0

s4 s3 s2 s1 0

s5 s4 s3 s2 s1


(4.24)

S0 =



s70− s69 ... s4− s3 s3− s2 s2

0 s70− s69 ... s4− s3 s3

0 0 s70− s69 ... s4

0 0 0 ... s5

0 0 ... s7− s6 s6


(4.25)

To implement a recirculation cooling air flow configuration, Eq. (4.23) needs

to be modified for the model predictive controller. The reference MPC output should

now be the difference between the target cooling air temperature and the air tem-

perature at the battery package outlet, Tf,out , rather than the constant value of the

ambient air temperature. The predicted cooling air temperature vector becomes

T̂air (i+ 1) = Tf,outH −S(i)∆U(i)−S0U(i−1) (4.26)

In this study, a five-second predictive horizon control is robust enough to offer

accurate cooling air temperature tracking performance. Let the prediction vector be
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expressed as following equations.


Ŷ(i+1) = [ŷ(i+ 1), ŷ(i+ 2)...ŷ(i+ 5)]T

Ŷ 0
(i+1) =

[
y(i+ 1)0,y(i+ 2)0...y(i+ 5)0]T (4.27)

where ŷ(i) is the prediction of the conditioned air temperature decreased in the evap-

orator. The element y0
(i+5) is the prediction of the conditioned air temperature de-

creased at i-th time instant if the compressor speed maintains current value. The

prediction of the output conditioned air temperature under varying input is obtained

by substituting the future inputs change defined in Eq. (4.22) into the step response

model so that 
Ŷ(i+1) = S∆U(i) + Ŷ 0

(i+1)

Ŷ 0
(i+1) = S0U(i−1)

(4.28)

Feedback updates are implemented to correct the predicted output due to

inaccurate predictions. Applying the latest measurement of the conditioned air tem-

perature at the evaporator outlet, Tf (i) . The measured output is the air temperature

decreased, y(i) = Tf,out−Tf (i) . The corrected prediction of the step response becomes

Ỹ(i+1) = S∆U(i) + Ŷ 0
(i+1) +H

(
y(i)− ŷ(i)

)
(4.29)

where Ỹ ∈R5×1,U(i−1) ∈R70×1,S ∈R5×5 and S0 ∈R5×70

Fig. 4.4 shows a comparison of the simulated conditioned air temperatures

generated by the step response model and the AMESim simulation for a same com-

pressor speed profile. It can be observed that the step response agrees favourably

with AMESim. Thus, the step response model can be applied in the model predictive

controller design.
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The controller calculates the compressor speed derivatives for the future time

instants as an input vector as

∆U(i) =
[
∆u(i),∆u(i+1)...∆u(i+4)

]T
(4.30)

The optimized ∆U is calculated to minimize a selected quadratic performance

criterion of the error between the predicted system output and the desired output

over the prediction horizon. The selected quadratic performance cost function, J(i),

may be stated as

J(i) =
(
Yr− Ỹ(i+1)

)T
M1

(
Yr− Ỹ(i+1)

)
+∆U(i)M2∆U(i) (4.31)

where the M1 and M2 are the weighting matrices, and Yr =
[
yr(i+1),yr(i+2), ...yr(i+5)

]T
is the reference trajectory matrices obtained from ideal cooling air signal sent from

battery cooling controller. The variable Yr may be obtained from Eq. (4.18) so that

yr(i) = Tf,out(i−5)−Tf,d(i−5) (4.32)

To minimize the quadratic performance function, J(i). Set ∂J(i)/∂∆U(i) = 0.

The control law can be derived based on the Eq. (4.29) to Eq. (4.31) so that



E0
(i+1) = Yr(i)−S0U(i−1)

Ke =
(
STM1S+M2

)−1
STM1

∆U(i) =KeE
0
(i+1)

(4.33)

Given that the cooling air mass flow rate and refrigerant valve position are fixed

in this context, the system is SISO. The error feedback gain, Ke , can be evaluated
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Figure 4.4: Simulated Conditioned Air Temperatures in Step Response Model and
AMESim

off line, which is favourable for real time control. Fig. 4.4 shows that the conditioned

air temperature simulated by the step response model agrees with the results from

AMESim model very well.

4.5 Case Study - Battery Thermal Management

To evaluate the thermal management system controller design, the electric

current profile for an urban assault cycle (refer to Fig. 4.5) will be considered in

the case study. The variables of interest include the battery core temperature,Ecomp,

and the cooling system compressor energy consumption, . The evaporator fan power

consumption is not discussed since a constant cooling air mass flow rate has been

imposed. The AHR32113 battery pack and the mathematical model parameters for

this case study are listed in Table 4.1.

Eight tests will be conducted with two different surrounding temperatures,

two air circulation configurations, and two different control strategies as listed in

Table 4.5. The reference battery core temperature, Tcore,r, is 30 ◦C for all tests. The
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Table 4.1: AHR32113 Module and Model Parameter
Cell cooling area 0.1136 m2

Cell Diameter 32 mm
Cell height 110 mm

Cell Capacity 4.5/4.3 Ah
Energy Content 14.6 Wh
Discharge Power 550 W

Voltage 3.3 V
Operating Temp -30 to 55 ◦C

Storage Temp -40 to 60 ◦C
Across 0.0455 m2

c 0.36 None
Ccore 268 JK−1

Cf 0.708 JK−1

Cs 18.8 JK−1

kair 0.0258 W/m/K
m 0.63 None
ṁair 0.18 kg/sec
Pr 0.71 None
Rcore 1 K/W
SL 35 mm
ST 35 mm
ρair 1.16 kg/m3

µ 1.864e-5 Ns/m3

control strategies are the optimal model predictive control and the traditional on/off

control. The air circulation structures include single path and recirculation. In the

former one, cooling air is sourced from the surroundings; thus, the air temperature

at the evaporator inlet is the same as the ambient temperature. The cooling air is

then completely exhausted to the ambient from the battery pack once the cell heat

removal process has occurred. The latter approach recirculates the cooling air from

the battery pack outlet back into the evaporator which is expected to reduce the

energy consumption and increase the efficiency (Wang et al., 2011) in comparison to

the first design, especially for high ambient temperatures.
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Figure 4.5: Battery Current Profile Verses Time for The Urban Assault Cycle

In the study, two sets of battery package models are integrated into the system.

The plant model is created with both an electric submodel and a thermal model for

heat generation input. The controller model is designed with the Kalman observer

using the cooling air temperature and battery surface temperature feedback from the

plant model sensors. The overall controller structure for the battery cooling system

is shown in Fig. 4.6.

For Test 4.1, the optimal controller and MPC controller are applied. The

cooling air is drawn directly from the surroundings and then exhausted to the ambient

environment from the battery pack outlet, per the single path configuration. The

initial battery core temperature is set as 30 ◦C in the plant model while the initial

value of the battery core temperature in the controller model is set as 35 ◦C. Fig.

4.7 shows the observer performance, in which the dotted line is the estimated battery

core temperature in the controller model and the solid line denotes the simulated

battery core temperature from the plant model. These graphical results indicate that

the estimated and measured battery core temperature error converges to zero within

30 seconds.
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Figure 4.6: Battery Thermal Management Controller Structure

Fig. 4.8 displays the reference ideal inlet cooling air temperature, Tf,d, calcu-

lated by the optimal controller. The model predictive controller regulates the com-

pressor speed in the vapor compression system to adjust the cooling air temperature,

Tf , at the evaporator outlet. The measured cooling air temperature tracks the refer-

ence trajectory with an average error of 1.71 ◦C.

The corresponding battery pack and cooling air temperatures are displayed

in Fig. 4.9. The battery core temperature is maintained to a small neighbourhood

of the reference value with an average error of 0.24 ◦C. If needed, the error can

be further reduced by adjusting the weighting matrix R2 in the cost function and

the matrix M2 in the quadratic performance index per Eq. (4.16) and Eq. (4.31).

However, in practice, a decrease in the weighting matrices R2, may cause the ideal

cooling air temperature to exceed the normal output range which will require intense

speed changes in the refrigerant pump operation.
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Figure 4.7: Test 4.1 - Estimated and Actual Battery Core Temperature with Optimal
Observer

Figure 4.8: Test 4.1 - Model Predictive Control (MPC) Cooling Air Temperature
Tracking Performance (Solid) for Optimal Control Reference Signal (Dash)
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The single path cooling air flow configuration can typically remove heat at a

larger magnitude than the heat generated by the battery cells. The cooling air at the

battery pack outlet is generally only increased by 3 ◦C to 6 ◦C and still cooler than

the surrounding temperature. By recycling the cooling air from the battery package

outlet back to the evaporator, the heat load in the evaporator will be reduced. In Test

4.3, the recirculated cooling air flow structure with the modified MPC provides good

cooling air and the battery core temperature tracking per Table 4.5. However, the

energy consumption of the compressor in the 1,200 second simulation is significantly

reduced when compare with Test 4.1 by 58%.

Figure 4.9: Test 4.1 - Simulated Battery Core, Surface plus the Cooling Air Temper-
atures

In Tests 4.5 to 4.8, the surrounding temperature is set at 40 ◦C. Test 4.5 uses

the single path cooling air configuration. When the ambient temperature is higher

than the desired battery core temperature, the reference cooling air temperature is

very difficult to achieve with this air flow structure. Applied with maximum compres-

sor speed, the cooling air temperature is still higher than target value. Consequently,

the battery core was not driven to target temperature within the simulation time and
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the total energy cost of the compressor is as high as Ecomp =5517 kJ .

Figure 4.10: Test 4.7 - Model Predictive Control (MPC) Cooling Air Temperature
Tracking Performance (Solid) for Optimal Control Reference Signal (Dash)

For the Test 4.7, the recirculated cooling air flow reduces the heat load so that

the cooling system can successfully track the battery core temperature. The ideal

cooling air temperature, Tf,d, calculated by the optimal controller is displayed in

Fig. 4.10 with the actual cooling air temperature as tracked by the model predictive

controller. The average error in the cooling temperature is 1.56 ◦C with a compressor

energy usage of 1,439 kJ per Table 4.5. Fig. 4.11 displays the simulation results

of Test 4.7. The battery core temperature is cooled down to 30 ◦C from the initial

surrounding temperature within a relatively short time and was maintained at this

temperature with an average error of 0.25 ◦C. The results indicate that the proposed

MPC method using a step response model can satisfactorily track the desired cooling

air temperature, although the vapour compression system is highly nonlinear.

To investigate the advantage of the optimal control strategy in power conser-

vation, Tests 4.2, 4.4, 4.6, and Test 4.8 were conducted with a conventional switched

on/off control strategy. In these four tests, the compressor operates with its maxi-
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Figure 4.11: Test 4.7 - Simulated Battery Core, Surface plus the Cooling Air Tem-
peratures

mum speed when the battery core temperature reaches 30.5 ◦C. When the battery

core is cooled to 29 ◦C, the compressor speed is reduced to 150 rpm to avoid poten-

tial local hot spots. In Test 4.2 (single path), the compressor energy consumption

is 801 kJ , which is higher than Test 4.1. The compressor energy consumption in

Test 4.4 (recirculation path) is 542 kJ , and it is 1.4 times higher than Test 4.3. In

Test 4.6, simulation results are similar to Test 4.5 with the compressor operating at

maxim speed during the whole simulation due to the single path cooling air configura-

tion. With recirculation cooling air configuration, the proposed optimal/MPC control

strategy provides the advantages of a 23% to 58% power conservation in comparison

to conventional on/off strategy.

4.6 Summary

A hybrid electrical vehicle battery thermal management control system using

a model predictive controller has been proposed. The air conditioning system is in-

tegrated into the battery thermal management system (BTMS) to effectively remove
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the heat generated by the battery cells during high load charging/ discharging oper-

ations. A traditional battery cooling system only controls the flow rate rather than

the temperature of the coolant, which limits the heat removal rate. This study inves-

tigated the cooling air temperature control problem for the first time. The proposed

BTMS applies a Kalman filter to correct the immeasurable battery core temperature

estimation and calculates the ideal cooling air temperature by optimal control the-

ory. The identified ideal cooling air temperature is sent to the AC control system as

a reference input signal. Model predictive control (MPC) theory is then applied to

regulate the AC refrigerant compressor speed. Simulation results demonstrate that

the MPC controller is able to handle the conditioned air temperature tracking with a

small error and delay. The batteries’ core temperature can be stabilized around the

target for various cooling conditions while minimizing the power consumption.
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Chapter 5

An Electric Motor Thermal

Management System for Hybrid

Vehicles - Modeling and Control

The permanent magnet electric motor (e-motor) is widely seen in the hybrid

electric vehicles (HEV) powertrains. The motor internal temperature tolerance limits

its torque/power capabilities. The dominant heat sources inside the e-motors locate

near the machine windings in the stator, thus the local temperatures of different po-

sitions inside the machine are not uniformly distributed. To keep the electric motor

functioning properly without exceeding the temperature limits, an robust thermal

management system is introduced. This study proposes a new concept of thermal

management system for permanent magnet electric motors with a reduced order

thermal model, which is utilized for real-time peak temperature control. A linear

quadratic optimal regulator is built to calculate the ideal (target) heat removal rate

at the e-motor cooling surface. Then a nonlinear tracking controller is designed to

govern the air-liquid cooling system operation and achieve the target heat removal
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rate tracking. In a urban assault driving cycle simulation with the proposed cooling

control strategy, the motor stator hot spot is stabilized with an average error of 0.13
◦C, and a 81% power consumption reduction is achieved comparing to the classical

controller to maintaining a same level of temperature tracking. In the convoy escort

driving cycle, the proposed cooling system energy consumption can be reduced by

71%.

5.1 Introduction

The continuous developments in electric (EV) and hybrid-electric vehicle (HEV)

propulsion systems require highly efficient and powerful electric motors (e-motors).

The temperature limitations of permanent magnet electric motors are rather strict due

to the thermal impact on the torque and power capabilities. Therefore, a reliable elec-

tric motor thermal management strategy is required to maintain the machine’s ther-

mal stabilization. Meanwhile, the power consumption of the cooling system should be

minimized to promote fuel efficiency. Recently, increased attention has been focused

on the development of advanced HEV powertrain thermal management systems (Park

et al., 2013)(Shams-Zahraei et al., 2012).

A brief literature survey will be presented. Li et al. (Li et al., 2006) investi-

gated a cooling system for e-motors applying both numerical simulation and exper-

imental tests under various fan hub configurations. Salah et al. (Salah et al., 2010)

applied nonlinear control theory to an advanced thermal management system design

for the internal combustion engine (ICE) cooling fan and demonstrated the improve-

ments in temperature tracking and power efficiency. For the cooling system design

purposes, the thermal behaviour of the electric motors has been described by lumped

parameter thermal models (Bellettre et al., 1997), (Mellor et al., 1991). Soparat and
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Benyajati (Soparat and Benyajati, 2013) introduced a thermal management system

designed for motors using liquid coolant. Tao et al. proposed a model based con-

troller design for HEV battery pack thermal management systems to achieve battery

core temperature stabilization (Tao and Wagner, 2016). Based on previous work (Tao

et al., 2015) (Salah et al., 2008), the e-motor’s thermal management system efficiency

can be largely improved with optimized cooling actuator operation which utilize ad-

vanced control theories. This approach should lead to enhanced temperature tracking

performance while minimizing power consumption for the subsystem components.

In this paper, a new HEV e-motor thermal management system concept using

optimal and nonlinear back-stepping control theories will be investigated. The pro-

posed cooling system control algorithm tracks the prescribed heat removal rate with

the help of a reduced-order e-motor thermal model. The thermal model is derived

from a full order three dimensional (3D) finite element analysis (FEA) model whose

order is reduced for fast temperature prediction and real time control purposes. The

simplified thermal model can accurately predict the machine internal temperature

with a high computational efficiency. A cooling cycle with a counter flow air-liquid

heat exchanger is also modelled. The coolant pump and fan rotational speeds are reg-

ulated by a nonlinear back-stepping controller. A numerical study will be conducted

with different cooling scenarios and control strategies. The simulation results should

demonstrate that the proposed e-motor thermal management system can stabilize the

machine’s highest internal temperature within the desired range, while reducing the

cooling system auxiliary power consumption.

The rest of the paper is organized as follows. Section 5.2 offers a brief introduc-

tion of the reduced-order e-motor thermal model. In Section 5.3, the cooling system

model is mathematically described. Section 5.4 introduces the optimal regulator

which is designed to calculate the ideal cooling surface heat removal rate. Next, the
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Figure 5.1: Geometry of an Interior Permanent Magnet (IPM) Machine

back-stepping controller is created for the heat removal rate tracking. The numerical

study and accompanying discussion are presented in Section 5.5 to demonstrate the

performance of the proposed e-motor thermal management system. The last section

concludes the paper.

5.2 Reduced Order Electric Motor Thermal Model

The proposed thermal management system aims to regulate the highest tem-

perature inside the electric motor mechanical housing. To accomplish this goal, a

thermal model for the electric motor must be available to monitor the machine’s

dynamic temperature changes. 3D finite element analysis (FEA) is frequently used

to describe thermal behaviour. A full-ordered FEA model is capable of providing

accurate temperature estimation inside the electric machine, but may have large

computational requirements and therefore not suitable for real time controller design.

A UQM PowerPhase 145 machine (UQM, 2015) is considered with the physical
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Table 5.1: PowerPhase 145 Machine Parameters
Parameters Value Unit

Continuous power 85 kW
Continuous torque 250 Nm

Diameter 280 mm
Length 279 mm

Maximum speed 8000 RPM
Maximum efficiency 94% -

Peak power 145 kW
Peak torque 400 Nm

Power density 2.9 kW/kg
Weight 50 kg

dimensions and the performance parameters listed in Table 5.1. The structure of the

e-motor, shown in Fig. 5.1, includes a stator and a rotor. The windings, which are the

dominant heat source, are located in the stator. The stator is generally hotter than

the rotor. The coolant flows across the stator outer surface and removes heat from

the cooling surface. A reduced-order 3D finite-element based dynamic thermal model

of the electric machine, with high computational efficiency, will be derived using an

orthogonal decomposition method to maintain the temperature prediction accuracy.

The process followed to derive the reduced-order thermal model will be briefly

reviewed. The partial differential equation associated with thermal conduction in the

electric motor is given as

d
dT
dt
− k∇2T = q (5.1)

where T is the continuum temperature. The parameters d and k are the specific heat

and the thermal conductivity, respectively. The heat flux, q, is the system input. The

conduction Eq. (5.1) can be written in discretized form by meshing the model using

the standard FEA method as

D−̇→t + K−→t = −→q (5.2)
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In this expression, −→t is the nodal temperature vector of the finite element

mesh, K is the finite element matrix corresponding to the material thermal conduc-

tivity, and D is the finite element matrix corresponding to the specific heat. The terms

K and D are both symmetric matrices. The vector −→q denotes the excitation of the

thermal model, including losses and the convection heat transfer on the boundaries

of the machine.

The full order finite element model is too computationally demanding, and

consequently, will execute too slowly. Thus, the model order must be reduced for

real time control purposes. Considering Eq. (5.2), the system eigenvector matrix, V

can be obtained by solving (K−λiD)−→v i = 0. Next, the model may be reformed by

changing the basis, −→t = V−→x , so that Eq. (5.2) becomes

VTDV−̇→x + VTKV−→x = VT −→q (5.3)

The eigenmodes may be separated into “dynamic” and “static” modes so that

V = [Vd;Vs] (Donaldson, 2006) . The most significant excited eigenstates are con-

sidered to be the dynamic modes. These elements may be selected by evaluating the

extent of excitation of the i− th eigenmode for a given input vector −→q so that

Ei = τi
−→v T
i
−→q (5.4)

where τi is the time constant of the i−th eigenmode. The system response of interest

is governed by the eigenmodes with the slowest time constant. Consequently, the
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following variables may be defined as



VT
d DVd = dd

VT
s DVs = ds

VT
d KVd = kd

VT
s KVs = ks

(5.5)

where dd, ds, kd, and ks are all diagonal matrices.

Assuming that the static modes instantaneously converge to their quasi-steady-

state values, the nodal temperatures become

−→
t = Vd

−→x d +
(
K−1−Vdk−1

d VT
d

)−→q (5.6)

Substituting Eq. (5.6) into Eq. (5.2), the dynamic eigenmodes can be decou-

pled and simulated separately as

dd −̇→x d + kd−→x d = VT
d
−→q (5.7)

Applying the proposed order-reduction method to both the original stator and

rotor FEA models, the model order can be reduced to a reasonable number for real

time prediction of the machine temperature with a small simulation error. In the

current study, the orders of the stator and rotor thermal models are chosen as 40 and

20, respectively. The maximum relative errors of this reduced order model are 1.15%

and 0.07% when compared to the full order FEA model, whose states are 120K for the

stator, and 97K for the rotor. The detailed derivation and experimental validation of

this task has been reported in a previous work (Zhou et al., 2013).
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5.3 Cooling System Model

The cooling system consists of an electrically controlled pump, a counter flow

radiator, and a variable speed air fan. The coolant, driven by the electric pump, flows

through the radiator and dissipates the heat transported from the motors. The heat

transfer rate inside the radiator, and the heat removal rate on the electric motors’

cooling surfaces are critical for accurate temperature tracking. In this section, the

air-liquid cooling system will be modeled. The model simulates the heat removal

rate under varying coolant and air flow rates, plus it predicts the transit temperature

changes in the fluids. The power consumption of the pump and radiator fan will also

be estimated.

5.3.1 Heat Exchanger Model

The flow paths of the coolant and the air outside the radiator are evenly divided

into small control volumes. The cooling system thermal structure is displayed in Fig.

5.2. The overall heat transfer coefficient of the radiator, Urad, is a function of the mass

flow rates of the coolant and cooling air. This coefficient can be derived by applying

empirical relations, the NTU method (Iu et al., 2007), experimental measurements,

and/or computational fluid dynamics. The radiator heat transfer coefficient may be

empirically described as

hrad = 1
1

kwall
+ 1

awṁ
bw
w

+ 1
aairṁ

bair
air

(5.8)

where kwall is the tube wall material conductivity, and aair, aw, bair and bw are

constant parameters associated with the heat exchanger structure. The subscript

“air” and “w” indicate air and coolant sides respectively. Assuming that the radiator
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Figure 5.2: E-motor Cooling System Model Structure.

is divided into n control volumes, and that the heat exchange surface area of the

radiator is Arad, then the equivalent heat transfer coefficient for each control volume

may be determined to be hradArad/n.

The heat transfer rate from the hot to the cold fluids in the i− th control

volume may be calculated based on the local fluid temperature difference at the

control volume inlet so that

∆Trad(i) = Tw(i)−Tair(i) (5.9a)

qrad(i) = min
{
∆Trad(i)AradUrad

n
; ∆Trad(i)ṁaircp,airṁwcp,w

ṁaircp,air + ṁwcp,w

}
(5.9b)

The subscript “i” is the control volume index. The variables ṁair and ṁw

denote the mass flow rates of air and coolant, cp,air and cp,w are the specific heat of air

and coolant, and ∆Trad(i) is the temperature difference between the two fluids at the

inlet of the i− th control volume. Based on heat transfer principles, the heat transfer
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rate inside each control volume cannot be larger than ∆Trad(i)
ṁaircp,airṁwcp,w

ṁaircp,air+ṁwcp,w
. This

is the maximum possible heat transfer rate which will make the temperatures of the

two fluids converge at the outlet of this control volume.

The change in control volume temperatures is determined by the mass flow

rates of the coolant and cooling air. The fluid temperature inside the i− th control

volume may be expressed as

dTw(i)
dt

= (Tw(i)−Tw(i+ 1)) nṁw

Mw,rad
− nqrad(i)
Mw,radcp,w

(5.10)

The first term on the right side of Eq. (5.10) describes the temperature change

due to coolant flow. The second term accounts for the heat transfer from the other

fluids. The parameter Mw,rad represents the mass of the coolant located inside the

radiator. Similarly, the transit temperature change of air inside the i− th control

volume may be described as

dTair(i)
dt

= (Tair(i)−Tair(i+ 1)) nṁair

Mair
+ nqrad(i)
Maircp,air

(5.11)

The parameter Mair denotes the mass of radiator cooling air. By connecting

the flow path segments representing hot coolant and cold air flows in a reversed

direction, the overall counter flow structure can be simulated.

The total radiator heat removal rate is the sum of the heat transfer inside all

the control volumes such that

Qrad =
n∑
i=1

qrad(i) (5.12)
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5.3.2 Estimation of Cooling System Power Consumption

The cooling system power consumption is an important index to evaluate

overall efficiency. The energy cost associated with the cooling cycle, mainly attributed

to the radiator fan and the coolant pump, can be mathematically described as



ṁw = NpumpDisρw

60

dPw = (NpumpDis
60Aflow

)2ρwCp,rad + ṁ2
wCp,pipe

Epump = NpumpDisdPw

60

(5.13)

where the variable ṁw denotes the coolant mass flow rate, and Epump represents the

estimated pump power. The term Npump is the pump rotating speed. The parameter

Dis is the maximum pump displacement, ṁw is the estimated coolant mass flow rate,

Cp,rad and Cp,pipe are the pressure rise coefficients in the radiator and in the pipes,

and Aflow is the cross section area of the internal coolant flow path in the radiator.

The term dPw is the total coolant pressure increased due to the pump.

In a similar manner, the performance and power consumption of the radiator

cooling fan may be stated as



ṁair = D3
fanCflowNfanρair

60

dPa =D2
fanCpres(

Nfan

60 )2ρair

Efan = D3
fanCflowNfandPa

60

(5.14)

where the variable Nfan is the fan speed and ṁair is the air mass flow rate. The

parameters Cflow and Cpres denote the flow rate coefficient and the pressure drop

coefficient, respectively. The parameter Dfan is the fan diameter, dPfan is the total

pressure increased due to the fan, and Efan is the total power consumption rate of
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the radiator fan in watts.

The values of Aflow, Cp,rad, Cflow, Cp,pipe, Cpres, Dis, ρair and ρw, are all

considered to be constant. Thus, the estimation of power consumption of coolant

pump and cooling air fan can be related directly to the mass flow rate of the fluids

through the heat exchanger. It can be shown that the power consumption of the

coolant pump and fan are proportional to the cubed flow rates.

5.3.3 Heat Removal on Motor Cooling Surface

A series hybrid electric vehicle (HEV) configuration with four electric motors,

which are located at each wheel is under study. The cooling system must simulta-

neously handle the heat removal task for all motors. It is assumed that the motor

torque and speed, as well as their heat generation rates, are uniform. To maintain

proper machine temperature, the coolant exiting the radiator is evenly divided into

four streams and delivered to each motor. After cooling the electric motors, the

coolant streams merge and recirculate through the pump and radiator.

To integrate together the cooling and e-motor thermal models, the stator ex-

ternal cooling surface heat transfer must be considered. The governing equation for

the coolant temperature in each motor becomes

dTw,o
dt

= (Tw,in−Tw,o)
ṁw,m

Mm
+ Qm
Mmcp,w

(5.15)

where Tw,in and Tw,o are the coolant temperatures at motor inlet and outlet. The

variable ṁw,m is the mass flow rate of the coolant inside the electric motor. For an

HEV with four motors, ṁw,m = 0.25ṁw. The coolant mass in one electric motor,

Mm, is assumed to be constant since the mass flow rates at motor inlet and outlet

are equal. The first term of the right side of Eq. (5.15) is the coolant temperature

112



change due to the heat transferred by the coolant flow rate. The second term is the

temperature change resulting from the motor heat transfer.

The heat transfer on the motor cooling surface, qm is given by

Qm = ∆TmhuAu (5.16)

In this expression, ∆Tm is the log mean temperature difference between the

stator outer surface and the coolant temperature such that

∆Tm = Tw,in−Tw,o
ln[(Tso−Tw,o)/(Tso−Tw,in)] (5.17)

where Tso is the temperature of the stator’s outer cooling surface with an effective

cooling area, Au. The effective convection coefficient at the machine cooling surface,

hu, is derived analytically (Bergman et al., 2011).

The coolant travels across the motor surface as turbulent flow inside a circular

tube, and the heat transfer coefficient is estimated as follows,



NuD = (f/8)(ReD−1000)Pr
1+12.7(f/8)1/2(Pr2/3−1)

ReD = 4ṁw,m/Dh/µw

f = (0.79logReD− 1.64)−2

hu = kwNuD/Dh

(5.18)

The heat flux,−→q s, on the cooling surface, is the only element of the thermal

model input vector,that can be regulated by the cooling system. It may be defined

as the heat transfer rate on a unit area of the motor cooling surface so that

−→q s = Qm
Au

(5.19)
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5.4 Design of Controllers

A series of two controllers will be designed to adjust the operations of the

coolant pump and radiator fan for stator peak internal temperature tracking and

power minimization. The prescribed e-motor thermal model can be rewritten in state

space form as 
−̇→x s = As

−→x s + Bs
−→q (s)

−→
T s = Vds

−→x + Ds
−→q (s)

(5.20)


−̇→x r = Ar

−→x r + Br
−→q (r)

−→
T r = Vdr

−→x r + Dr
−→q (r)

(5.21)

where −→x s and −→x r are the stator and rotor eigenmodes respectively. The state space

system matrices, derived using Eq. (5.7) may be expressed as



As =−kd,sd−1
d,s

Bs = Vd,sd−1
d,s

Ds =
(
K−1
d,s−Vd,sk−1

d,sV
T
d,s

)
d−1
d,s

Ar =−kd,rd−1
d,r

Br = Vd,rd−1
d,r

Dr =
(
K−1
d,r−Vd,rk−1

d,rV
T
d,r

)
d−1
d,r

(5.22)

The conduction heat transfer in the air gap between the stator inner surface

and the rotor external surface can be calculated using the boundary temperatures

as well as the effective conduction heat transfer coefficient in the air gap. Thus, the

stator and rotor thermal models can be derived separately and then joined by the air

gap heat transfer shared by both parts.
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The stator’s state-space thermal model in Eq. (5.20) is employed to design

a linear regulator for calculating the ideal heat flux, −→q s,d. As the only controllable

input is the convective heat flux at the motor’s cooling surface, the controller will

consider just the stator portion of the e-motor.

5.4.1 Ideal Heat Removal Rate

The e-motor hot spots generally correspond to positions inside the windings.

With this observation, the control objectives can be reduced to only a few elements

in the thermal model output vector by properly designing the weighting matrix. To

design an optimal controller to calculate the ideal heat removal requirement, define

the cost function as

Jm =
∫ t1

t0

{
[−→T s−

−→
T s,r]TR2[−→T s−

−→
T s,r] + ũTR3ũ

}
dt (5.23)

where R2 ∈ Rns×ns and R3 ∈ R5×5 are positive symmetric weighting matrix. The

parameter ns represents the number of stator model output vector elements. The

variable ũ= −→q s,d−u0 denotes the magnitude of the system inputs, while Ts,r is the

reference stator peak temperature.

In this study, R2 is designed to only stabilize the stator’s peak internal tem-

perature.(e.g., the 2nd to 12th output vector elements). So R2 is constructed such

that only the 2nd to 12th elements on its diagonal are non-zero

R2(ij) =


PR2; i= j and 1< i < 13

0; otherwise
(5.24)
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The linear optimal controller may be expressed as



H−1
c = (R2 (As−BsF0)Bs)−1

u0 = VdsH
−1
c
−→
T s,r

F0 =R−1
3 BT

s P

−→q s,d =−F0Ts +u0

(5.25)

where P is solved as the non-negative definite solution of the corresponding Algebraic

Riccati equation.

The ideal heat removal rate at the machine cooling surface is identified by

the corresponding element in the ideal stator heat flux, −→q s,d, to minimize the cost

function Eq. (5.23). To emphasize the limitation that only the convection heat

transfer input of this model, which is the third element in this case, is controllable,

the weighting matrix, R3, is designed such that

R3(ij) =



PR3; i= j = 1,2,4,5

1; i= j = 3;

0; i , j;

(5.26)

Thus the weighting coefficient of the third input is much smaller than the rest

of the four uncontrolled inputs.

To minimize the prescribed cost function, the regulator impacts the feedback

gain mainly on the third input. The large weighting coefficients of the other inputs re-

duce the allowed magnitude of these uncontrollable heat flux. The ideal heat removal

rate at the motor cooling surface may be calculated as

Qm,d = −→q so,dAu (5.27)
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where −→q so,d is the corresponding element of the target input vector, −→q s,d calcu-

lated in Eq. (5.25). This target heat removal rate is supplied to the cooling system

controller as a reference signal.

5.4.2 Nonlinear Controller Design for Heat Removal Rate Tracking

A nonlinear tracking controller will be designed to regulate the coolant pump

and radiator fan for ideal heat removal rate tracking. The control objective is to

eliminate the heat removal rate tracking error, eQ, which is defined as

eQ =Qm,d−Qm (5.28)

The controller is designed to achieve the tracking error’s asymptotically sta-

bility so that

eQ < εe as →∞ (5.29)

where εe is a small positive constant. This stability can be realized if the tracking

error changes can be constructed in the following form

deQ
dt

=−keeQ (5.30)

where the variable ke should be a positive constant. To formulate the state equation,

the time derivative of the tracking error in Eq. (5.28) becomes

deQ
dt

= dQm,d
dt

− dQm
dt

(5.31)

Substituting Eq. (5.30) and Eq. (5.31) into (5.28) yields the cooling surface
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heat removal rate needed
dQm
dt

= dQm,d
dt

+ keeQ (5.32)

The relationship between the coolant mass flow rate and the heat removal rate

in Eq. (5.16) to Eq. (5.18) allow the time derivative of the heat removal rate to be

defined as

dQm
dt

=Au∆Tm
∂hu
∂ṁw

dṁw

dt
+Auhu

d∆Tm
dt

(5.33)

The time derivative of the log mean temperature difference, d∆Tm
dt , is obtained

as
d∆Tm
dt

= ∂∆Tm
∂Tw,m

dTw,m
dt

+ ∂∆Tm
∂Tw,r

dTw,r
dt

(5.34)

We substitute Eq. (5.33) into (5.32) so that the control law of the coolant

mass flow rate can be written as

ṁw,m =
∫ dQm,d

dt + eQ−Auhu d∆Tm
dt

(Au∆Tm ∂hu
∂ṁw

)
dt (5.35)

In the above expression, ∂hu
∂ṁw

can be obtained from Eq. (5.18) and the dQm,d

dt

term may be eliminated using integration by parts. The proposed coolant mass flow

rate ṁw in each motor to track the ideal heat removal rate, Qm,d, is given as

ṁw,m = 1
Au

∂hu
∂ṁw

Qm,d
∆Tm

+
∫
Qm,d

d∆Tm
dt

∆T 2
m

dt

+ 1
∂hu
∂ṁw

∫ eQ−hu d∆Tm
dt

∆Tm
dt

(5.36)

It is assumed that the coolant mass flow rate is proportional to the pump speed.
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Similarly, the air mass flow rate is proportional to the fan speed. The air mass flow

rate will be set to be proportional to the coolant mass flow rate as ṁair = 16ṁw,m.

The operation speed of pump and fan can be immediately obtained from Eq. (5.13)

and Eq. (5.14). However, the actual heat removal rate, qm is not a measurable

feedback so an observer must be constructed.

5.4.3 Heat Transfer Rate Estimation

Practically, the heat removal rate in each motor cannot be directly measured.

In the coolant temperature governing Eq. (5.15), the second term on the right hand

side contains the cooling surface heat transfer rate, qm. This heat removal rate is

estimated using an observer constructed with measurable parameters that include

the coolant temperatures at motor inlet and outlet, as well as the coolant mass flow

rate, ṁw.

The exit coolant temperature observer may be designed as follows.

dT̂w(out)
dt

=(Tw,in−Tw,o)
ṁw

Mm
+

K1
(
Tw,o− T̂w(out)

)
+K2

∫ (
Tw,o− T̂w(out)

)
dt

(5.37)

Applying Laplace transforms on both equations (5.15) and (5.37), it can be

shown that the estimation of the heat transfer rate q̂m becomes

Q̂m =Mw,mcp,w×[
K1

(
Tw,o− T̂w(out)

)
+K2

∫ (
Tw,o− T̂w(out)

)
dt
] (5.38)

The unmeasurable coolant mass flow rate term eQ term in Eq. (5.36) can be

replaced by êQ where êQ =Qm,d− Q̂m.
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The proposed thermal management control strategy structure is demonstrated

in Fig. 5.3.

5.5 Case Study - Urban Assault and Convoy Escort Driv-

ing Cycles

To validate the proposed control strategy, a representative series of numerical

simulation will be conducted for different operating scenarios and thermal manage-

ment control methods. All the studies correspond to real life driving cycles with the

total simulation time set to t= 1,800 sec. A summary of the case numbers and driv-

ing cycles, as well as cooling methods, is listed in Table 5.3. For the first three cases,

the simulations correspond to the urban assault driving cycle while the last three

cases simulate the convoy escort driving cycle. The ambient temperature is 48 ◦C.

and the target stator internal peak temperature is set at Ts,r =90 ◦C. Table 5.2 lists

the constant parameters in the prescribed cooling system model and the controller

designs.

Table 5.2: Cooling System Parameter Data
Parameters Value Unit Parameters Value Unit

Au 0.113 m2 KP 4 -
Aflow 1 cm2 Mh 2 kg
cp,air 1000 J/kg/◦C Mc 0.5 kg
cp,w 4090 J/kg/◦C Mw 0.5 kg

Cp,pipe 0.8 - PR2 3× 105 -
Cpres 0.7 - PR3 5× 105 -
Cflow 0.348 - TB 0.5 ◦C
Dis 25 cm3 Ts,r 90 ◦C
Dfan 0.35 m ρair 1.099 kg/m3

Dh 2 cm ρw 0.001 kg/cm3

kw 0.6 W/m◦C µw 0.0014 N
KI 150 -
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Figure 5.3: E-motor Thermal Management System Controller Design

For comparison purposes, a proportional-integral (PI) and a bang-bang (switch

On/Off) controller are also considered. The classical PI control may be stated as

ṁw =KP ehot +KI

∫
ehotdt (5.39)

where KP and KI are the selected positive proportional and integral controller gains.

The error signal, ehot, represents the error between the hot spot temperature and the

target value.

The conventional bang-bang control, or switch on/off controller is used in

vehicle thermal management systems. When the stator peak internal temperature

reaches upper limit Tmax = Ts,r+TB, the pump and radiator fan are switched on and

operate at the maximum speed. When the stator peak internal temperature drops

down to Tmax = Ts,r−TB, the coolant pump and radiator fan are switched off, where

TB = 0.5 ◦C.
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Figure 5.4: Test 5.1 - Heat Removal Rate Tracking with Observer and Optimal-
Tracking Control: Actual Heat Removal Rate, Qm, Desired Heat Removal Rate,
Qm,d, and Estimated Heat Removal Rate, Q̂m

The cooling system performances for Tests 5.1 to 5.6 are summarized in Ta-

ble 5.3. The heat removed, stator peak internal temperature performance, and the

cooling system power consumption are listed. For Tests 5.1 and 5.4, the nonlinear

controllers designed in Section 5.4 are applied. The optimal regulator calculates the

ideal heat removal rate per unit area on the stator surface, Hm,d. The tracking con-

troller regulates fan and pump speeds to track the prescribed ideal heat removal rate.

For Tests 5.2 and 5.5, the cooling system is operated by the classical PI controller. A

conventional bang-bang control is applied in Tests 5.3 and 5.6.

The numerical results for Test 5.1 are displayed in Fig. 5.4 with the heat

removal rate versus time. The blue solid line is the actual heat removal rate, qm. The

red dash line is the ideal heat removal rate that is calculated by the optimal regulator,

qmd, and the green dot line is the heat removal rate estimated by the observer, q̂m

based on the measurements of coolant temperature change and its mass flow rate.

The observer achieves an accurate estimation of heat removal rate and enables the

nonlinear controller tracking heat removal rate to the target value with fast response

and small error.

Fig. 5.5 displays the e-motor rotor and stator temperatures for Test 5.1. The
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Figure 5.5: Test 5.1 - Simulated E-motor Temperatures of Stator, Ts, Rotor, Tr,
and Cooling Surface, Tso, under Urban Assault Driving Cycle with Optimal-Tracking
Control.

graph shows that the peak temperature inside the machine housing can be stabilized

around the reference value with maximum error of 3.85 ◦C. The stator internal

peak temperature is tacked with an average error of ehot =0.13 ◦C. The temperature

gradient across the stator is maintained below 12 ◦C.

The e-motor temperatures simulated in Test 5.2 are presented in Fig. 5.6. By

applying the classic PI controller, the stator peak internal temperature is stabilized

around the target value of 90 ◦C. However, without considering the thermal resistance

of the stator and the heat generation rate, the average tracking error is ehot =1.98 ◦C

which obviously exceeds Test 5.1.

The driving cycle simulation results for Test 5.3 are shown in Fig. 5.7. The

bang-bang controller offers acceptable hot spot temperature tracking around the tar-

get with the average tracking error ehot =1.68 ◦C. A drawback of this control method

is that the cooling surface temperature is much lower than the peak internal temper-

ature, which indicates a large temperature gradient from the internal to the external
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Figure 5.6: Test 5.2 - Simulated E-motor Temperatures of Stator, Ts, Rotor, Tr, and
Cooling Surface, Tso, under Urban Assault Driving Cycle Hot Spot Temperature with
PI Control.

Table 5.3: Numerical Study: Control Scenarios and Simulation Results
Test
No.

Driving
Cycle

Control
Strategy

Heat
Removal [kJ ]

Hot Spot Temp Tracking Error [◦C] Energy Cost [kJ ]
Maximum Average Pump Fan

5.1 Urban
Assault

Optimal
Tracking 8.44× 102 3.85 0.13 0.63 33.7

5.2 Hot Spot PI 8.05× 102 5.16 1.98 1.94 1.05× 102

5.3 Switch On/Off 8.5× 102 3.82 1.68 0.68 36

5.4 Convoy
Escort

Optimal
Tracking 1.26× 103 7.84 0.32 3.2 1.75× 102

5.5 Hot Spot PI 1.28× 103 8.45 1.25 4.62 2.46× 102

5.6 Switch On/Off 1.25 8.13 1.85 4.05 2.16× 102

motor surface. The unnecessary cooling and the large coolant flow rate together

require a greater cooling system power consumption.

The simulation results of the electric motor temperature for Test 5.4 are dis-

played in Fig. 5.8. It can be observed that, during most of the driving cycle, the

peak stator inner temperature was stabilized around the reference value of 90 ◦C.

However, when the heat generation rate is higher than the heat removal capability of

the cooling cycle, the stator hot-spot temperature reaches a peak value of 98 ◦C. This

situation occurs even though the cooling system operates with maximum fan/pump
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Figure 5.7: Test 5.3 - Simulated E-motor Temperatures of the Stator, Ts, Rotor, Tr,
and Cooling Surface, Tso under the Urban Assault Driving Cycle with Switch On/Off
Control

speed due to the demanding driving cycle. The optimal-tracking controller offers an

average tracking error of ehot = 0.32 ◦C.

The simulation results for Test 5.6 are demonstrated in Fig. 5.9. The stator

peak internal temperature is stabilized by the bang-bang controller with an average

tracking error of ehot =1.85 ◦C. The bang-bang control runs the coolant pump and

fan at full speed. The machine suffers a large temperature fluctuation in this test.

In contrast, the classic PI controller offers smaller tracking error of ehot =1.25 ◦C in

Test 5.5.

The power consumption and the total heat removal for each test are also

listed in Table 5.3. The proposed thermal management system (Tests 5.1, 5.4) offers

advantages in power consumption. For the urban assault driving cycle, the classical

PI controller requires about 210% more cooling system power consumption when

compared to the proposed optimal-tracking control strategy. In Test 5.3, the fan

and coolant pump consumed only 106% of the energy cost in Test 5.1, but with
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Figure 5.8: Test 5.4 - Simulated E-motor Temperatures of Stator, Ts, Rotor, Tr,
and Cooling Surface, Tso, under Convoy Escort Driving Cycle with Optimal-Tracking
Control.

larger average hot spot temperature tracking error. For the convoy escort driving

cycle, the proposed control strategy also shows advantages in cooling actuator’s power

conservation. The energy lost in Test 5.4 is 178.2 kJ while in Test 5.5 the classic PI

controller took 40% higher power consumption.

The optimal-tracking controller takes advantage of the temperature gradient

and the conductive heat transfer between the heat source and the cooling surface

using the reduced-order thermal model. This control method effectively tracks the

heat generation inside the machine and balance the heat removal rate to it, and

consequently reduces the energy waste from unnecessary over-cooling. Tests 5.1 and

5.4 provide better performance in both hot spots temperature stabilization and power

consumption conservation. Furthermore, the controller is suitable in practical cooling

systems designed for various kinds of electric machines with minimized cooling system

power costs.
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Figure 5.9: Test 5.6 - Simulated E-motor Temperatures of the Stator, Ts, Rotor, Tr,
and Cooling Surface, Tso under the Convoy Escort Driving Cycle with Switch On/Off
Control.

5.6 Summary

A reduced-order electric motor thermal model, derived from a three-dimensional

finite element analysis simulation, offers high accuracy and computational efficiency.

The e-motor model serves as the basis for a thermal management system which stabi-

lizes the peak temperature inside the machine under driving cycles with large torque

loads. A linear regulator, based on optimal control theory, calculates the optimal

heat removal rate on the motor’s interior cooling surface. This ideal heat removal

rate serves as the reference in a nonlinear tracking controller. Two numerical case

studies have demonstrated that the proposed thermal management system can stabi-

lize the hot spot temperatures inside the electric motor at the target value with small

tracking error and reduced cooling system power consumption.
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Chapter 6

An Engine Thermal Management

System Design for Military Ground

Vehicle – Simultaneous Fan, Pump and

Valve Control

The pursuit of greater fuel economy in internal combustion engines requires

the optimization of all subsystems including thermal management. The reduction of

cooling power required by the electro-mechanical coolant pump, radiator fan(s), and

thermal valve demands real time control strategies. To maintain the engine temper-

ature within prescribed limits for different operating conditions, the continual esti-

mation of the heat removal needs and the synergistic operation of the cooling system

components must be accomplished. The reductions in thermal management power

consumption can be achieved by avoiding unnecessary over-cooling efforts which are

often accommodated by extreme thermostat valve positions. In this paper, an op-

timal nonlinear controller for a military M-ATV engine cooling system will be pre-
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sented. The prescribed engine coolant temperature will be tracked while minimizing

the pump, fan(s), and valve power usage. A case study investigates the proposed con-

trol strategy’s performance in comparison to other methods for temperature tracking

and energy conservation. The optimal nonlinear controller offered satisfactory coolant

temperature tracking with an average error of 0.35 ◦C and at least 13% reduction in

total cooling power.

6.1 Introduction

Modern ground vehicles apply a variety of electronic sensors, on-board con-

troller systems, and electric driven actuators to regulate the powertrain’s operation for

improved fuel economy and reduced tailpipe emissions. Advanced control algorithms

have been introduced for precise fuel injection, spark delivery, air flow management,

and transmission shifting to name a few process to satisfy federal regulations while

meeting consumer demands. Applying model-based control strategies for accurate

thermal management system operation is a promising approach as vehicle cooling has

not yet received thoughtful widespread attention from the automotive engineering

community.

In an engine cooling system, the actuators (pump, fans) operate at full ro-

tational speed to reach their maximum heat removal capabilities when the engine

load and ambient temperature are high. In this instance, the thermostat valve will

be fully open. In contrast, the actuator speeds can be reduced and thermostat valve

predominately closed when the thermal load and ambient temperatures are low which

promotes passive convective cooling. However, in between these extremes, the ther-

mal management system’s operation needs to be optimized for variable heat rejection

to achieve temperature tracking with minimal power usage. A medium thermal load
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under a moderate surrounding temperature provides a space for advanced thermal

management controller designs as shown in Fig. 6.1.

An efficient thermal management system design is essential for powertrain

reliability, fuel economy, and performance (Park et al., 2013). In a study by Park and

Jung (Park and Jung, 2010), various powertrain cooling system architectures and the

accompanying effect on the power consumption has been investigated. The upgrade

of mechanical actuators in cooling systems by real time controlled electro-mechanical

components facilitates improved efficiency under most operating conditions. A variety

of control strategies, applied to advanced vehicle powertrain thermal management

systems, have been studied (Badekar et al., 2006)(Tao and Wagner, 2014). The

integration of an electric pump and smart valve for faster engine coolant warm up

time and reduced temperature fluctuation has been reported in (Wagner et al., 2002).

Cho et al. (Cho et al., 2007) explored the benefit of a controllable electric pump

for truck engine cooling which offers a significant reduction in power consumption

and possible heat exchanger downsize. Page et al. (Page and Kozierowski, 2005)

investigated a classical PID controller for the cooling system featuring with multiple

electric radiator fans and heat controlled thermostats. A suite of nonlinear control

strategies was developed by Salah et al. (Salah et al., 2010) to adjust the smart

valve position and the coolant flow rate to track the desired engine temperature.

A differential flatness nonlinear controller has demonstrated improved temperature

trajectory tracking performance (Aschemann et al., 2011).

The radiator fan(s) has been identified to consume that greater power within

engine cooling systems when compared to the other components (pump, smart valve)

(Moyle et al., 2006). Recently, attention has focused on optimizing the fan(s) speed

to minimize power usage while rejecting sufficient heat. Wang et al. (Wang et al.,

2015) conducted a detailed experimental analysis of multiple electric radiator fan
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Figure 6.1: Engine Cooling System Optimization Control Space for Power Cost Re-
duction: Variable Heat Rejection for Medium Thermal Load under Moderate Ambient
Temperature

configurations. A rule of thumb and optimization control strategy for total fan array

power minimization based on thermal load was proposed (Wang and Wagner, 2015a).

Within the area of hybrid electric vehicles (HEV), Tao et al. (Tao and Wagner,

2016) developed a model predictive controller to regulate the compressor speed in

vapour compression systems to track cooling air temperature and stabilize core bat-

tery temperatures within battery packs. A high fidelity electric motor thermal model

was implemented in a heavy-duty HEV cooling system controller which tracked the

motor’s inner peak temperature (Tao et al., 2015).

This research study will examine an engine thermal management system for

military ground vehicles, specifically an M-ATV, as shown in Fig. 6.2. The pro-

posed control strategy will synchronously regulate the radiator fan, coolant pump,

and smart valve operations to track the prescribed reference temperature with con-
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Figure 6.2: Notional MRAP All-Terrain Vehicle (M-ATV).

sideration power consumption. The remainder of this paper is arranged as follows. In

Section 6.2, a lumped parameter thermal model is presented that describes the engine

cooling system’s thermal behaviour. In addition, a suite of actuator models will be

developed to estimate the power consumption. In Section 6.3, an optimal nonlinear

controller, with two supplemental controllers, will be designed. A case study with nu-

merical results will be presented and discussed to explore the performance and power

consumption for different control strategies in Section 6.4. Section 6.5 concludes this

work.

6.2 Library of Mathematical Models

An engine thermal management system, featuring electric driven actuators,

will be mathematically modeled to establish a basis for controller designs. The M-

ATV proposed cooling system configuration consists of an internal combustion engine

(ICE), electric coolant pump, smart valve, variable speed fan, and radiator (refer to
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Figure 6.3: Engine Cooling System Configuration.

Fig. 6.3). A lumped parameter approach will be pursued to develop the differential

and algebraic equations.

6.2.1 Thermal Dynamics of the Engine and Heat Exchanger

The coolant is circulated by the electric pump through the cooling system as

shown in Fig.6.3. The smart valve allows a temperature dependent portion of the total

coolant flow through the radiator and the remainders goes back to engine directly.

The coolant discharges the combustion heat in the radiator via forced convective heat

transfer. The governing thermal equation for the coolant temperature change at the

engine outlet, Th, may be expressed as

Mw,ecp,w
dTh
dt

= he (Te−Tc) + ṁwcp,w (Tc−Th) (6.1)
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where Mw,e is the coolant mass inside the engine. The parameter cp,w is the specific

heat of water. The term Qe represents the engine waste heat from combustion. The

second term on the right side of Eq. (6.1) is the heat removal attributed to the coolant

mass flow rate, ṁw.

The coolant at the pump’s outlet, or engine inlet, is a mixture of the cold and

hot coolant streams. The smart valve regulates the coolant mass flow through the

radiator and bypass. A portion of the coolant will flow into the radiator and discharge

the waste heat to the ambient surroundings. The bypass circuit directs the remaining

fluid flow right to pump. In this study, the valve is electrically driven and linearly

controlled such that 0 ≤Kv ≤ 100%. When Kv = 100%, the valve is fully open and

all the coolant will be directed into the radiator. In contrast, Kv = 0% means that

the valve is closed and all the coolant is routed through the bypass to the pump.

The the coolant temperature at the pump’s outlet, Tpump, is a linear combi-

nation of the hot, Th, and cold, Tc, coolant temperatures defined as

Tpump = (1−Kv)Th +KvTc (6.2)

The differential equation for cold coolant temperature at the radiator outlet,

Tc, may be written as

Mw,rcp,w
dTc
dt

=Kvṁwcp,w (Th−Tc)−Qrad (6.3)

where Mw,r is the coolant masses inside the radiator, the variable Qrad on the right

side is the heat transfer from the coolant to the cooling air in the radiator. The

term Kvṁwcp,w (Th−Tc) denotes the heat transferred by the coolant flow itself due

to temperature differences.
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Finally, the dynamic change in the cooling air temperature at the radiator

outlet, Tair,o, is modelled as

Mair,rcp,air
dTair,o
dt

=Qrad + ṁaircp,air (Tamb−Tair,o) (6.4)

In this expression, the parameter Mair,r is the air mass inside the radiator

control volume, and denotes the specific heat of air. The term Tamb represents the

temperature of the ambient air, which will be delivered through the radiator by the

variable speed fan at mass flow rate, ṁair.

6.2.2 Cooling Actuators: Radiator Fan and Pump

The total power consumption of the cooling system should be reduced to help

satisfy the legislated fuel and emissions requirements. Only the power consumed by

the radiator fan and the coolant pump will be analysed, given that the power used

by the smart valve is negligible. The radiator heat transfer is directly affected by the

cooling air mass flow rate provided by the fan which may be written as

ṁair =D3
fanCflowρair

(
Nfan

60

)
(6.5)

where Nfan is the fan speed, and Cflow is the flow rate coefficient. The parameters

Dfan and ρ denote the equivalent fan diameter and the cooling air density.

The total air pressure increase due to the fan, dPfan may be calculated as

dPfan =D2
fanCpressρair

(
Nfan

60

)2
(6.6)

where the parameter Cpress is defined as the pressure drop coefficient across the
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radiator. The fan power consumption rate, Efan , is given as

Efan =D3
fanCflowdPfan

(
Nfan

60

)
(6.7)

For a given cooling system, the values of Cflow, Cpress, Dfan, and ρw are

constant. Thus, the estimation of the radiator fan power consumption can be char-

acterized as a function of the air mass flow rate so that

Efan = kfanṁ
3
air (6.8)

where kfan = D−4
fanCpressρ

−1
airC

−2
flow, The coolant mass flow rate. ṁw, driven by the

electric pump, is dependent on the pump rotation speed, Npump, such that

ṁw = ρw

(
Npump

60

)
Dis (6.9)

where the term Dis is the maximum pump displacement. The parameter ρw denotes

the water density while the variable Npump is the pump speed.

The total pressure drop across the radiator and the pipe in the coolant flow is

calculate as

dPw = ρwCp,rad

(
NpumpDis

60Aflow

)2
+ ṁ2

wCp,pipe (6.10)

where Cp,rad and Cp,pipe denote the pressure rise coefficients in the radiator and

pipe, respectively. The parameter Aflow is the coolant flow cross section area in the

radiator. The pump power consumption rate, Epump, is defined as

Epump = dPw

(
Npump

60

)
Dis (6.11)
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The pump’s power consumption can be summarized as a function of the coolant

mass flow rate given the parameters Aflow, Cp,rad, Cpipe, Dis, and ρw for a given

cooling system as

Epump = kpumpṁ
3
w (6.12)

where kpump = ρ−1
w Cp,pipe +A−2

flowρ
−2
w Cp,rad,

Note that the power consumption of the water pump and radiator fan are both

proportional to the cube of the given fluid flow rate.

6.3 Controller Designs

An optimal nonlinear controller, based on the thermal model, will be designed

to minimize the total power consumption of the prescribed ICE cooling system. For

comparison purposes, two other control strategies will also be introduced including a

state flow controller, and a classical PI controller.

6.3.1 Optimal Nonlinear Control

An optimal nonlinear controller will simultaneously regulate the operation of

the coolant pump, radiator fan, and smart valve to track the desired engine tem-

perature while using the theoretically minimum total power. The primary control

objective is to stabilize the coolant temperature, Th, to the prescribed target value,

Th,d.
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6.3.1.1 Pump Speed Control

The coolant pump electric motor shaft speed will be controlled by an adaptive

nonlinear controller. Define the coolant temperature tracking error as

eh = Th−Th,d (6.13)

The Tpump term in Eq. (6.1) may be replaced by Eq. (6.2), and divide both

side of the equation by Mw,ecp,w, the coolant temperature change at the engine

outlet can be simplified as

dTh
dt

= 1
Mw,e

[
Qe
cp,w
−Kvṁw(Th−Tc)

]
(6.14)

Considering that the waste heat of combustion, Qe, is not measurable, an

estimation of engine heat generation, Q̂e, is applied in the controller design. So,

define the heat generation estimation error as

Q̃= Q̂e−Qe (6.15)

The desired target coolant temperature, Th,d, is constant. The tracking error

dynamic change may be evaluated by computing the time derivative of Eq. (6.13) so

that

ėh = Ṫh− Ṫh,d = dTh
dt

(6.16)

To stabilize the coolant temperature, the control objective can be stated as

eh ≤ ξ as t→∞ (6.17)
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To realize this control purpose, a Lyapunov based backstepping adaptive con-

troller may be developed to regulate the pump speed by determining the coolant mass

flow rate, . First, define the second term in Eq. (6.3) as

u1 = Kvṁw

Mw,e
(Th−Tc) (6.18)

A Lyapunov function, V , can be selected as

V = 1
2
(
e2
h + Q̃2

e

)
(6.19)

The Lyapunov function must be positive definite. If its time derivative is

negative definite, the coolant temperature tracking error and the heat generation

estimation error converges to zero eventually (De Queiroz et al., 2012). Assuming

that the change of Qe is slow, then the Lyapunov function time derivative can be

written as

V̇ = ehėh + Q̃e + ˙̂
Qe (6.20)

A control law, u1, may be proposed with the form

u1 = keeh + Q̂e
Mw,ecp,w

(6.21)

Replace the second term in Eq. (6.14) by Eq. (6.21), so that the dynamic

change of the coolant temperature tracking error becomes

ėh =−keeh−
Q̃e

Mw,ecp,w
(6.22)
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Now design the heat generation estimation as

˙̂
Qe = eh

Mw,ecp,w
(6.23)

In the next step, substitute Eq. (6.22) and Eq. (6.23) into Eq. (6.20), the

derivative of the Lyapunov function can be written as

V̇ =−kee2
h + Q̃e

(
˙̂
Qe−

eh
Mw,ecp,w

)
=−kee2

h (6.24)

The Lyapunov function converges to zero with a negative definite time deriva-

tive. This indicates that the coolant tracking error, eh, can be stabilized by applying

the proposed input U1 in Eq. (6.21). The desired coolant mass flow rate in the engine

can be solved with Eqs. (6.19) and (6.22) as

Ṁw,d =
Mw,e

[
keeh +

∫
ehdt

(Mw,ecp,w)2

]
Kv(Th−Tc)

(6.25)

6.3.1.2 Fan Speed Control for Total Power Minimization

The overall objective of the optimal nonlinear controller design is to minimize

the total cooling system power consumption. Thus, the operation of the radiator fan

must be optimized as it represents the largest electrical power consumption. The

cooling air mass flow rate control law is developed by tracking the cold coolant tem-

perature, Tc, to a desired value, Tc,d, such that the total power consumption of the

pump and fan is minimized with any arbitrary thermal load. Consider the system

model in a static condition. It can be observed from Eqs. (6.3) and (6.4) that when

the time derivatives of the cooling fluids temperatures are zero, the heat transfer rate
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inside the radiator is proportional to the coolant and air mass flow rates as

Qrad =Kvṁwcp,w(Th−Tc) (6.26)

Qrad = ṁaircp,air(Ta,o−Tamb) (6.27)

To facilitate the optimization process, assume that the radiator size is large

enough to satisfy the heat removal rate and the heat transfer can be fully developed

inside the radiator. Consequently, the cooling air and the coolant temperatures are

considered very close to each other at the radiator outlet. An optimization variable,

Tx, to be defined as

Tx = Tair,o = Tc (6.28)

Substituting Eqs. (6.26) and (6.27) into Eqs. (6.8) and (6.12), allows the total

power consumption rate, E, of coolant pump, Epump , and the radiator fan, Efan, to

be derived as

E = kfan

(
Qrad

Kvcp,w(Th−Tx)

)3
+ kpump

(
Qrad

cp,air(Tx−Tamb)

)3
(6.29)

To minimize the total power consumption rate with respect to the fluids tem-

perature at the radiator outlet, Tx, a desired value of Tx can be solved by

∂E

∂Tx
= 0 (6.30)

which leads to the result

(
Tx−Tamb
Th−Tx

)
=
(
kpump
kfan

) 1
4
(
cp,air
cp,wKv

) 3
4

=X (6.31)

141



Given that the hot coolant temperature is tracked to Th,d, and the ambient air

temperature, Tamb, is constant, the desired cooling air temperature at the radiator

outlet can be derived by solving Eq. (6.30) and Eq. (6.31) so that

Tair,o,d = Th,d−
Th,d−Tamb

1 +X
(6.32)

When the coolant and air flow exiting the radiator converges to the desired

temperature per Eq. (6.31), the total power consumption of the pump and fan, E,

reaches a minimum point. The radiator fan speed is regulated to track this outlet

cooling air temperature, Tair,o,d. A nonlinear adaptive controller can be developed in

a similar manner as the coolant mass flow rate controller. Define the radiator outlet

air temperature tracking error, ea,o, as

ea,o = Tair,o−Tair,o,d (6.33)

To track the coolant temperature, the control objective can be stated as

ea,o ≤ ξ as t→∞ (6.34)

Comparing Eqs. (6.1) and (6.4), it may be observed that the procedure to

construct the cooling air mass flow rate control law will be similar to the coolant

mass flow rate control law. Hence, the desired cooling air mass flow rate in the

radiator is finally given as

ṁair,d =
Mair,rad

[
keeair,o +

∫
eair,odt

(Mair,radcp,air)2

]
(Tair,o−Tamb)

(6.35)
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Note that in the above expression, there’s no Kv term involved in the denom-

inator, since the smart valve operation does not affect the radiator air flow.

6.3.1.3 Smart Valve Position Control

To avoid the potential of localized peak temperatures that exceed established

limits inside the engine block, the minimum coolant mass flow rate is established

as When the target coolant mass flow rate derived from Eq.(6.25) is smaller than

ṁw,min, the smart thermal valve is closed to reduce the coolant flow through the

radiator and achieve the target u1. The valve opening, Kv, may be calculated as

Kv =

[
ke + eh + ∈ehdt

(Mw,ecp,w)2

]
Mw,e

(Th−Tc)ṁw,min
(6.36)

The fan and pump speed can be easily achieved by solving Nfan and Npump

in Eqs. (6.5) and (6.8) using the target mass flow rates of the cooling fluids, ṁair,d

and ṁw,d , from Eqs. (6.25) and (6.35), respectively. The control diagram of the

proposed optimal nonlinear control system is displayed in Fig. 6.4.
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6.3.1.4 Derivation of Desired Cooling Air Temperature at the Radiator Outlet

As discussed in Section 6.3.1.2, the cooling air temperature at the radiator

outlet can be treated as design variable for the optimized fan speed controller design.

To minimize the total power consumption rate with respect to the fluids temperature

at the radiator outlet, Tx,a desired value of Tx can be solved by

∂E

∂Tx
= 0 (6.37)

where E = kfan
(

Qrad
Kvcp,w(Th−Tx)

)3
+ kpump

(
Qrad

cp,air(Tx−Tamb)

)3
. Now, Eq. (6.37) can be

written after taking the partial derivative as

3kfan
(

Qrad
Kvcp,w(Th−Tx)

)2( −Kvcp,w

[Kvcp,w(Th−Tx)]2

)

+ 3kpump
(

Qrad
cp,air(Tx−Tamb)

)2(
cp,air

[cp,air(Tx−Tamb)]2

)
= 0

(6.38)

Now divide both sides of this expression by 3Qrad2, and then move the second

term on the left side to the right side so that

(
kfanKvcp,w

[Kvcp,w(Th−Tx)]4

)
=
(

kpumpcp,air

[cp,air(Tx−Tamb)]4

)
(6.39)

This expression may be re-arranged to express temperature on one side as

(
(Tx−Tamb)4

Th−Tx

)
=
(
kpumpc

3
p,air

kfanK3
vc

3
p,w

)
(6.40)

Thus, the design variable Tx may be defined such that

(
Tx−Tamb
Th−Tx

)
=
(
kpump
kfan

) 1
4
(
cp,air
cp,wKv

) 3
4

(6.41)
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which is same as Eq. (6.31). Based on this analysis, the ideal temperature for the

air and coolant at the radiator outlet is not influenced by the radiator heat removal

rate, Qrad. Consequently, the proposed desired temperature, Tx, per Eq. (6.31) is a

function of the valve position, Kv, that minimizes the total power consumption, E.

6.3.2 State Flow Control

A state flow control strategy has been investigated to simultaneously regulate

the radiator fan coolant pump and smart valve. According to Wang and Wagner

(Wang and Wagner, 2015b), the coolant temperature responds to different cooling

actuator combinations with varying magnitudes and time responses. For instance,

the smart valve causes the largest coolant temperature change. In contrast, the

pump operation provides a faster temperature variation response time with larger

fluctuations. Finally, the temperature change due to the radiator fan requires a

longer response time when compared to the valve and pump operation. Since the

engine fan uses the most power and the smart valve operation consumes a negligible

amount, the state flow control strategy can be designed as shown in Fig. 6.5.

In the initial state, the valve is half closed and the coolant flow rate is set to a

minimum. The radiator fan is operated on due to the high power cost. To facilitate

the implementation of the state flow control algorithm, define a series of threshold

values of the engine coolant temperature as

Th,max > Th,high > Th,d > Th,low > Th,min (6.42)

The parameters Th,max,Th,high,Th,low, and Th,min are selected to determine

the operation of the cooling system. When the coolant warms up and reaches its

desired temperature value, Th,d, the valve will fully open to Kv = 1. If the coolant
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Figure 6.5: State Flow Control System

147



temperature keeps rising up to Th,high, then the coolant pump will be switched to its

maximum speed. The radiator fan is only switched on to maximum speed when the

sensor measurement Th reaches the upper band Th,max. The radiator fan will then

continue operating at its maximum speed until the coolant temperature drops to Th,d.

When the coolant temperature starts dropping to Th,d, the radiator fan will

be switched off first. The coolant pump speed is then decreased to its minimum value

when the coolant temperature drops to Th,low. The smart valve is placed in a half

open state with Kv = 0.5 if the coolant temperature continues to drop into the lower

band, Th,min. By operating the cooling actuators in this synchronized manner, the

engine coolant temperature can be regulated around the prescribed value, Th,d.

6.3.3 Classic PI Control

A classical proportional integral (PI) controller may be designed to simulta-

neously regulate the fan, pump, and smart valve operations. The coolant pump and

radiator fan speeds, as well as the valve opening position, can be stated in the compact

form as

[
Npump,Nfan,Kv

]
= (KP + eh +KI

∫
ehdt)

[
1, r, 1

Npump,min

]
+u0 (6.43)

where u0 = (Np,0,Nfan,0,Kv,0) is the initial input. The proportional, KP , and inte-

gral, KI , gains are positive constants. These values are selected such that the cooling

air and coolant mass flow rate are proportional per a constant ratio, r, selected by

the Calibration Engineer. The initial input u0 is applied at the beginning of each

test. The valve opening position, Kv, has been normalized to an interval of [0,1] by

dividing the pump speed by its minimum value, Npump,min
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6.4 Case Study - Numerical Results

To evaluate the three control methods designed for an engine cooling system,

a case study has been conducted using an engine thermal management system will

be modeled in AMESim while the controllers in MATLab/Simulink. The simulation

results will be presented and discussed to demonstrate the advantages of the optimal

nonlinear controller, in comparison to the conventional state flow and the classical

PI controllers. The mean average value of the coolant temperature tracking error,

and the total energy consumption of the coolant pump and fan will be reported. The

system model and controller parameters have been summarized in Table 6.1.

The military ground vehicle studied is a hybridized mid-size truck equipped

with a 7.2 L turbo-diesel engine. Urban assault and convoy escort driving cycles were

investigated for cooling performance designs. For each cycle, the engine heat gener-

ation rate has been estimated based on the vehicle speed profile, the corresponding

fuel consumption rate, and the effective engine propulsion power output. The engine

waste heat generation rate, Qe, for both driving cycles have been displayed in Fig.

6.6.

Six tests were conducted in the Case study as shown in Table 6.2. The target

coolant temperature, Th,d, is set to be 90 ◦C. In the Tests 6.1 to 6.3, the urban assault

driving cycle is implemented. While Tests 6.4 to 6.6, feature the convoy escort driving

cycle. The coolant temperature tracking and power consumption of the radiator fan

and coolant pump were recorded.
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Table 6.1: Parameter Values and Simulation Specifications
Parameter Value Unit

cp,w 4090 J/(kg◦C)
cp,air 994 J/(kg◦C)
Dfan 500 mm
Dis 25 mL
kfan 78.8 -
kpump 86.4 -
ke 2 -
KI 10 -
KP 300 -
Kv,0 1 -
Mair,r 0.3 kg
Mw,e 2 kg
Mw,r 2 kg

Npump,min 1200 RPM
Npump,0 1200 RPM
Nfan,0 2000 RPM
r 1.5 -

Tamb 30 ◦C
Th,d 90 ◦C
Th,max 93 ◦C
Th,high 91.5 ◦C
Th,low 88.5 ◦C
Th,min 87 ◦C
ρair 1.2 kg/m3

ρw 1000 kg/m3

150



Ta
bl

e
6.

2:
N

um
er

ic
al

St
ud

y
Te

st
C

on
di

tio
ns

an
d

Si
m

ul
at

io
n

R
es

ul
ts

Te
st

N
o.

D
riv

in
g

C
yc

le
C

oo
lin

g
C

on
tr

ol
A

lg
or

ith
m

Te
m

pe
ra

tu
re

Tr
ac

ki
ng

Er
ro

r,
e h

[◦ C
]

C
oo

la
nt

Pu
m

p
En

er
gy

C
os

t
[k

J
]

R
ad

ia
to

r
Fa

n
En

er
gy

C
os

t
[k

J
]

To
ta

lE
ne

rg
y

C
os

t
[k

J
]

Pe
ak

Av
er

ag
e

6.
1

U
rb

an
A

ss
au

lt

O
pt

im
al

N
on

lin
ea

r
3.

8
0.

35
61

.5
16

2.
4

22
3.

9
6.

2
St

at
e

Fl
ow

5.
9

1.
33

31
1.

4
14

78
.5

17
89

.9
6.

3
C

la
ss

ic
al

PI
4.

2
0.

45
36

.5
21

9.
6

25
6.

.1
6.

4
C

on
vo

y
Es

co
rt

O
pt

im
al

N
on

lin
ea

r
2.

1
0.

34
15

9.
6

43
9.

5
59

9.
1

6.
5

St
at

e
Fl

ow
5.

3
1.

76
63

6.
5

30
85

.4
37

21
.9

6.
6

C
la

ss
ic

al
PI

5.
7

0.
79

50
.8

64
3.

9
69

4.
7

151



In Test 6.1, the optimal nonlinear control strategy developed in the Section

6.3.1 was implemented. The coolant temperature responses are displayed in Fig. 6.7,

have been stabilized about the target value within an average error of 0.35 ◦C. The

radiator coolant temperature was tracked to its target value, Tair,o,d, while minimizing

the total actuators energy cost by controlling the radiator fan speed. The mass flow

rates of the cooling air and coolant inside the radiator are displayed in Fig. 6.8. The

energy costs of the pump and are 61.5 kJ , and 162.4 kJ respectively.

In Test 6.2, the state flow control strategy is applied to regulate the engine

cooling system operation. By switching the radiator fan and pump to their maximum

speeds whenever the coolant temperature reaches the corresponding threshold, and

keeping these actuators operating at the maximum speeds until the coolant tempera-

ture is too cold, the coolant temperature suffered frequent fluctuations but remained

bounded inside a given range. The average coolant temperature tracking error was

1.33 ◦C. In comparison to Test 6.1, the state flow controller requires more actuator

energy due to the unnecessary maximum cooling effort.

The coolant temperatures at the engine and radiator outlets and for Test 6.3

have been displayed in Fig. 6.9. Similarly, mass flow rates of the cooling air and

coolant inside the radiator have been shown in Fig. 6.10. It may be observed that

the classical PI controller stabilizes the coolant temperature to the desired 90 ◦C with

a relatively large fluctuation compared to the optimal nonlinear controller in Test 6.1.

The average tracking error was 0.45 ◦C with pump and fan power costs of 36.5 kJ

and 219.6 kJ . The total energy use was 12% higher than the total cooling energy loss

in Test 6.1.

Overall, Tests 6.1 to 6.3 demonstrate that the three control strategies can

track the engine coolant to a prescribed desired value with different error magnitudes

and cooling energy consumptions. The proposed optimal nonlinear controller and the
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Figure 6.6: Engine Waste Heat Generation Rate in Numerical Study for Urban As-
sault and Convoy Escort Driving Cycles

Figure 6.7: Test 6.1 - Engine and Radiator Coolant Temperatures with Urban Assault
Driving Cycle and Optimal Nonlinear Controller
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Figure 6.8: Test 6.1 - Coolant and Cooling Air Mass Flow Rates in Radiator with
Urban Assault Driving Cycle and Optimal Nonlinear Controller

Figure 6.9: Test 6.3 - Engine and Radiator Coolant Temperatures with Urban Assault
Driving Cycle and Classical PI Controller
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Figure 6.10: Test 6.3 - Coolant and Cooling Air Mass Flow Rates in Radiator with
Urban Assault Driving Cycle and Classical PI Controller

classical PI controller provide stable temperature tracking performance when viewed

against the state flow controller. The cooling energy use of the optimal nonlinear

controller is the smallest for the urban assault driving cycle comparing to the other

cooling control algorithms. The engine cooling performance for the different control

methods over the convoy escort driving cycle have been investigated in Tests 6.4 to

6.6. The engine coolant temperature in Test 6.4, was tracked favourably to the target

value of 90 ◦C with an average tracking error of 0.34 ◦C as shown in Fig. 6.11. The

total cooling system power consumption is 599 kJ .

In Test 6.5, the engine coolant temperature is regulated inside the temperature

band of [Th,max,Th,min] by the state flow controller. Fig. 6.12 displays the simulated

coolant temperature responses with cyclical temperature profile. The control strategy

shut down the radiator fan when the coolant temperature drops lower than Th,d.

This action limited the heat removal capacity of the radiator, and consequently, the
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Figure 6.11: Test 6.4 - Engine and Radiator Coolant Temperatures With Convoy
Escort Driving Cycle And Optimal Nonlinear Controller.

coolant temperature rose greatly. The temperature tracking error was 1.76 ◦C, and

significantly exceeded the results from Test 6.4. The maximum speed fan and pump

operations, without considering the real time heat removal rate requirement, led to

a large waste of energy due to unnecessary cooling the fluids. As a result, the total

cooling energy cost was much larger than the proposed nonlinear-optimal method.

Finally, the classical PI controller stabilized the engine coolant temperature

with an average error of 0.79 ◦C in Test 6.6 for the convoy escort profile. The total

energy consumed by the radiator fan and pump was 694 kJ , and 15% higher than Test

6.4. Overall, the proposed optimal nonlinear control strategy offered better coolant

temperature tracking performance and reduced energy consumption for the convoy

escort driving cycle.
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Figure 6.12: Test 6.5 - Engine and Radiator Coolant Temperatures with Convoy
Escort Driving Cycle And State Flow Controller.

6.5 Summary

The replacement of the mechanical-based actuators in a conventional engine

cooling system with electronic computer controlled elements provides the opportunity

to improve the thermal management system performance. In this paper, an optimal

nonlinear controller has been proposed for a heavy duty M-ATV engine cooling sys-

tem to simultaneously control the coolant pump, radiator fan, and smart valve. A

numerical case study with two driving cycles demonstrates that the nonlinear cooling

control strategy offered smaller temperature tracking error and temperature fluctu-

ation. Further, a 14% reduction in total cooling system power consumption was

realized when compared to the conventional state flow controller and the classical PI

controller. The proposed engine cooling control strategy provides advantages that

merit further study and field testing.
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Chapter 7

Conclusions and Recommendations

Cooling remains one of the top challenges for ground vehicles industry. Tradi-

tional powertrain thermal management system with mechanical cooling components

is hardly capable of meeting the increasingly stringent cooling requirements of the

modern vehicle powertrains. This dissertation investigates an advanced powertrain

thermal management system for hybrid electrical vehicles to achieve improved tem-

perature tracking performance as well as cooling system power consumption mini-

mization. The study topics included numerical modelling of the HEV power train

thermal management system, integration and holistic control of electro-mechanical

thermal management actuators. Extensive work has been accomplished on the ther-

mal management systems designed for a lithium-ion battery pack, the electric motors,

as well as the internal combustion engine.

In Chapter 3 and Chapter 4, a thermal management system for the HEV bat-

tery pack integrating a vapour compression cooling system with real time controller

has been developed. A detailed battery pack cooling system has been modeled in an

AMESim-Simulink co-simulation to investigate the impact of real life driving cycle

electric current profiles on the batteries’ thermal behaviours and subsequent smart
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cooling system operation. A Kalman filter has been applied to estimate the unmea-

surable battery core temperature based on the battery surface and its surrounding

cooling air temperature. A model predictive controller (MPC) has been developed

using a step response AC system model to regulates the cooling air temperature for

accurate internal battery temperature tracking. Numerical results showed that the

battery core temperature can be track to the target value within an error of 0.25 ◦C

and reduce the compressor power consumption by 50% comparing with conventional

control method for an urban assault driving cycle.

In Chapter 5, a new cooling concept has been proposed for the in-hub electric

motors for the hotspots temperature tracking. A high-fidelity reduced order electric

motor thermal model is applied as the basis for real time controller design. An op-

timal controller has been formulated to estimate the ideal motor heat removal rate

requirements. Then, a nonlinear backstepping controller has been developed to regu-

late the coolant pump speed for the ideal heat removal rate tracking. The proposed

control strategy is suitable for thermal models with different levels of sophistication.

Controller concept validation has been conducted under the speed and torque pro-

files corresponding to real life driving cycles too. the stator hotspot temperature is

stabilized with an average error of 0.13 ◦C. A 68% and 28.9% total cooling power

consumption reduction were observed in the the urban assault cycle and the convoy

escort driving cycle, respectively.

An optimal nonlinear control strategy that simutanously regulating the en-

gine cooling pump, fan and coolant valve has been presented in Chapter 6. This

engine cooling system optimization has been developed upon the existing thermal

management system and heat exchanger models for total cooling power consumption

minimization and improved engine coolant temperature tracking. Numerical results

demonstrated a significant reduction of the power consumption, and the coolant tem-

159



perature tracking error is only 0.35 ◦C.

In this dissertation, a unified thermal management architecture has been cre-

ated with proposed controllers for hybrid electric vehicles, to minimize the overall

cooling power consumption through the smart management and optimized operation

of the distributed cooling system actuators (coolant pumps, refrigerant compressor,

cooling air fans), while satisfying the waste heat rejection requirements. A complete

mathematical model for a HEV powertrain thermal management system has been

developed, which include heat exchangers, coolant pump, cooling air fan, and air

conditioning system. A collaborative case study presented at 2015 ARC Annual Re-

view titled “Multi-objective Optimization and Thermal Management of the Vehicle

Power System” demonstrated the benefits and influences in between the advanced

models for electric machines, holistic approach for thermal management and the ve-

hicle energy management and design optimization on a the whole M-ATV powertrain

level.

The accomplished work has established a fundamental basis for improving the

vehicle performance through advanced thermal management system control strate-

gies. The research results showed significant advantages in both temperature tracking

and energy conservation by introducing the advanced model-based control theory into

the HEV powertrain thermal management system. The following works are recom-

mended to be concerned for the future steps of this study.

A. Experimental tests would be valuable for the e-motor cooling concept val-

idation and improvement. In the previous work, the development of the

e-motor thermal model has been experimentally validated under the speed

and torque profiles corresponding to the real life driving cycles without

optimal control of the pump and fan speeds. At this point, the controllers’
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performance has only been evaluated within a high fidelity HEV simula-

tion. However, it is recommended to add the experimental validation of

the proposed thermal management concept in the future research.

B. Developing new high-fidelity thermal model for the battery pack and in-

ternal combustion engine using computational fluid dynamics (CFD) and

finite element analysis (FEA) methods will be meaningful. Current lumped

parameter thermal model is convenient for controller design while not capa-

ble of predicting the hotspots temperature in the system. The application

of the reduced ordered FEA based e-motor model with a fast simulation

speed has been proven to be a powerful tool for the accurate real-time in-

ternal hotspots temperature tracking. Similar high fidelity thermal model

should be built for the different versions of battery pack and internal com-

bustion engine, especially the battery pack, for its high sensitivity to the

overheated core temperature.

C. Besides continuing exploring the advantages of applying nonlinear con-

trollers to improve the cooling system performance, innovation on the cool-

ing system architecture featuring with new system material could serve

great benefits. Optimization of the cooling structure for different power-

train components by introducing thermal bus is expected to offer more

compact structure, less cooling actuators, improved overall system safety

and higher heat removal efficiency.
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