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Abstract
Smart packaging technology is growing every year, complemented by the 

development of micro-electronic devices. These two trends in innovation create unique 

capabilities for monitoring and tracking packaged products in transit. Developing in 

tandem with this momentum of invention and micro-scaling of technology is the need for 

innovative ways to power these devices. This paper details a novel system that harvests 

energy from the vibration inherent in the transportation of packaged products, stores it, 

and uses it to power sensors that measure the very same environment from which the 

energy is harvested. Also accomplished in this research is the exploration of the physical 

and electrical durability of the energy harvester, as well as its sensitivity to environmental 

relative humidity. A triboelectric energy harvester converts mechanical energy to 

electrical energy, which is then collected and used to charge a rechargeable energy cell. 

This energy cell may then be used to power small electronic devices for a myriad of 

applications, such as temperature and humidity sensors, accelerometers, or GPS tracking 

devices. This energy harvester is constructed in the form of a tier sheet to be used within 

a unit load, replacing a corrugate sheet with a device that achieves the same purpose, 

while enabling power generation. This research details a unique use of the triboelectric 

energy harvesting method in its application in packaged product distribution, as well as 

conditions, such as physical durability of the harvester and humidity of its immediate 

environment. The triboelectric energy harvester developed is experimentally validated for 

use in generating power sufficient to charge a coin cell battery capable of powering 

various field data recorders, the requirements of which are detailed in this manuscript.  
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Chapter 1 

Introduction 

The current growth of smart packaging technology is staggering. “Intelligent 

packaging demand will record double-digit annual gains, reaching $1.3 billion in 2017,” 

according to a 2014 Packaging Digest report [1]. Another trend affecting packaging, 

reported by the FDA in 2006, is that “US businesses lose up to $250 billion of profit due 

to the counterfeit drug trade every year” [2]. Together, these two trends increase the use 

of small electronic devices in packaging today. Some examples of smart packaging 

include smart labeling, oxygen and moisture control, counterfeit prevention, and 

vibration and shock monitoring of unit loads in distribution. Small electronic devices 

used to prevent counterfeiting are RFID tags, designated product codes (“track-and-

trace”), and GPS units. This increasing use of devices in packaging is expected to 

continue as capabilities increase and size and cost of these devices decrease. All of the 

technology advancements above have one major limitation in common: they use batteries 

as their power source. The necessity of replacing or recharging batteries results in limited 

run times and requires additional costs when batteries must be replaced. Also progressing 

at an incredible rate is the development and implementation of energy harvesters for real-

world applications. Surprisingly, these trends have developed independently of one 
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another, and as yet, no energy harvesting methods have been applied to address the power 

needs of smart packages in packaged product distribution.  

The research presented in this manuscript details the use of triboelectric energy 

harvesting in the packaged-product distribution environment. This energy harvester is 

built into the form of a tier sheet, and is designed for the purpose of converting 

mechanical energy (in the form of truck vibration) into electrical energy to be used in the 

charging of an energy cell. Multiple applications have been selected for the use of these 

charged batteries. Another focus of this research is the exploration of the physical 

durability and relative humidity sensitivity of the triboelectric energy harvester. The 

objective of this work is to prove this concept, and demonstrate that the system described 

above is capable of harvesting energy, and of charging rechargeable energy cells, or 

batteries.  
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Chapter 2 

Review of Literature 

2.1 Energy Harvesting 

2.1.1 An Introduction to Energy Harvesting 

A basic definition of energy harvesting is the conversion of one form of energy into 

another for a designated purpose. With this simplistic definition of energy harvesting, the 

mechanism used is usually harvesting mechanical energy in one location and using it for 

mechanical motion in another. An example of this is the windmill, which uses the force 

of the wind to turn its gears and mix or grind grain at its base. In a modern setting, energy 

harvesting can be much more complex. A modern definition of Energy Harvesting is “the 

conversion of ambient energy present in the environment into electrical energy [3].”   

There are four main ambient energy sources available for energy harvesting in the 

environment. These are: mechanical energy (such as vibration, shock, deformation of 

materials, and the flow of wind and water); thermal energy sources (temperature 

gradients); radiant energy (such as solar and infrared radiation, as well as radio waves); 

and chemical energy (chemical reactions and biochemical processes [4]). There are 

energy harvesting methods that are used for every one of these sources, most of which 

require specialized materials and processes. The environment often limits the method of 

energy harvesting to be used for an application, as these ambient sources are not available 

in every location, or during every season of the year [4]. For the purpose of harvesting 
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ambient mechanical energy from the transport environment, the focus of this study, 

vibration energy harvesting methods are the most promising [5-7]. Reviews of the most 

common methods of vibration energy harvesting have been published [5-7].  These three 

methods are electrostatic [9-12], electromagnetic [13-17], and piezoelectric energy 

harvesting [18-29]. Recently, a fourth category, triboelectric energy harvesting, has 

emerged [30-61]. In the following section, each of these vibration energy harvesting 

methods is described, followed by an in-depth review of triboelectric energy harvesting, 

the focus of this study.  

2.1.2 An Overview of Modern Vibration Energy Harvesting Methods 

Electrostatic Energy Harvesting 

Electrostatic energy harvesting generally uses structures that are composed of two 

metal capacitor plates that are isolated from one another by air, a vacuum, or some other 

type of insulator, often dielectric materials [7]. These two capacitor plates are electrically 

charged with equal, but opposite charges, which creates an electric field between the 

charged plates. Physical separation of these plates after charging generates current [8]. 

An input that would cause these two plates to constantly move relative to one another 

would generate a significant amount of electricity. Vibration is generally used to provide 

this motion [6]. Electrostatic energy harvesters designed to directly power MEMS 

devices have been developed [9-12]. Electrostatic energy harvesters are typically intricate 

metal structures that are attached to a battery for the purpose of charging the capacitor 

plates [7]. For this reason, traditional electrostatic energy harvesting, as described above, 

is not an ideal method for application in packaging distribution.  
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Electromagnetic Energy Harvesting 

Electromagnetic energy harvesting is based on Faraday’s law, which states that 

when an electrical circuit (coil) is located in a magnetic field, movement of the coil or 

change in the magnetic field results in a generated charge [7]. Electromagnetic energy 

harvesting can be applied to multiple ambient energy sources, the most common of which 

are vibration and radio waves. In the case of vibration, the physical movement of a 

magnet or the coil causes a change in the electromagnetic field, a response that is 

consistent as long as the coil and magnetic field are consistent [6]. Using vibration or 

physical motion to cause this interactive motion of the magnet and coil to occur many 

times per second can generate large amounts of electricity over time. As is the case with 

electrostatic energy harvesting, electromagnetic energy harvesting uses many materials 

that are difficult to integrate into a packaging system, and the circuitry involved can be 

very complex [8]. In addition, the typical resultant power of electromagnetic energy 

harvesters is between 0.5 V and 2.0 V, which is lower than many small electronic devices 

need in order to be powered, which indicates that additional equipment, such as a step-up 

voltage conditioner, may be necessary [8].  

Piezoelectric Energy Harvesting 

The most common of these methods, and the method that has received the most 

attention in research is piezoelectric energy harvesting [6]. The piezoelectric effect is a 

phenomenon in which certain materials become electrically polarized in response to 

applied mechanical strain. Many materials exhibit this behavior, all of which fall into 

four main categories: single crystal (such as quartz); piezoceramics (such as Lead 
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Zirconate Titanate (PZT)); thin film (such as sputtered zinc oxide); and polymeric 

materials (including Polyvinylidine Fluoride (PVDF) and many other polymers [8]). 

Recently, a fifth category has emerged, forced piezoelectric materials, or piezoelectric 

foams. This category uses mostly polymers that have been treated, usually with corona 

discharge treatment, causing them to exhibit strong piezoelectric responses. The most 

common materials used in piezoelectric systems are ceramic PZT and polymeric PVDF 

[29]. More recently, piezoelectric foam structures have been developed, due to their 

relative strength compared to traditional piezoelectric materials [26-29]. Many 

piezoelectric foams made from Polypropylene (PP) and Polyethylene Terephthalate 

(PET) [29].  

Triboelectric Energy Harvesting 

In recent years, triboelectric energy harvesting, another promising method of 

vibration energy harvesting, has piqued interest of many researchers and experienced 

significant advancement in research and practice [30, 31]. Triboelectric energy harvesting 

may be considered a subset of electrostatic energy harvesting, due to the nature of its 

operation, in which an electrical field is used for the collection of energy. Triboelectric 

energy harvesting is based on the phenomenon of the triboelectric effect, which is “a type 

of contact electrification in which certain materials become electrically charged after they 

come into frictive contact with a different material” [32]. A common name for this is 

“static electricity”. It is a type of contact electrification that results from the electrical 

output of a polymer electret, by physical contact with another material. Upon contact, 

these two materials transfer electrical charge. The triboelectric effect can be seen in many 
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materials common to packaging, and, in fact, nearly any material can participate in 

contact electrification. Though any material could be used, these harvesters commonly 

use materials such as Polydimethylsiloxane (PDMS), Glycol-modified Polyethylene 

Terephthalate (PETG), Polymethyl methacrylate (PMMA), or Polytetrafluoroethylene 

(PTFE), which are then paired with a conductor such as Silver (Ag), Aluminum (Al), 

Copper (Cu), Nylon, as these material combinations yield the best results [30, 31]. Using 

these materials, triboelectric energy harvesters can easily be built into a myriad of 

structures, and therefore may be used in a package system.  

Triboelectric energy harvesters have been significantly improved in recent years, 

and have been applied to many applications. The majority of research on triboelectric 

energy harvesters is simply on the development and optimization of these harvesters in 

terms of power output, contact geometry, and energy sources from which they are able to 

generate electricity [30, 31]. In recent years, progress has been made in the development 

and advancement of triboelectric energy miniaturized triboelectric energy harvesters, 

called triboelectric nanogenerators (TENG) [30, 31]. A great number of materials found 

in the triboelectric series have been used in experimentation, as well as a number of 

surface morphologies, all in an effort to enhance the capabilities of these generators by 

maximizing charge. In addition to harvester design, advancements have enabled 

harvesting mechanical energy from human motion such as finger tapping or walking [33-

41], the rotation of a wheel or tire [42-45], shock events [46], vibration, in multiple forms 

[47-51], bending and deformation of a material [52], wind [53-55], and flowing water 

[56, 57]. Triboelectric energy harvesting has also been combined with other methods of 
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energy harvesting in order to gain the benefits, while mitigating the downsides of both 

types. Examples of this include coupling piezoelectric and triboelectric vibration 

harvesting [58, 59], and the coupling of electromagnetic and triboelectric harvesting for 

self-powered sensors [60, 61]. 

2.1.3 Understanding the process of triboelectrification 

Contact electrification 

Triboelectricity is a type of contact electrification that results from the electrical 

output of one material when physically contacted with another material. Contact 

electrification is “A process that produces surface charges on two dissimilar materials 

when they are contacted and separated. During this contact, each material develops a 

charge of opposite polarity” [62]. Contact electrification can take place between nearly 

any combination of two materials, including metals (conductors), semiconductors, and 

insulators (non-ionic materials). The charge transfer mechanism of the first two material 

types, metals and semiconductors (ionic materials), is well understood [62-65]. The 

mechanism for metal-metal contact is described by McCarty [63]. The nature of the 

charge transfer in contact involving insulators has not yet been investigated by many, but 

has not yet been determined.  

For ionic polymers, those that have a large, covalently bound ion with small, 

mobile counterions at the surface, it has been shown that the charge transfer is carried out 

by ions. When a second, oppositely charged surface contacts the initial surface, the small 

mobile ions are transferred to the second surface, resulting in a transfer of charge, or 
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contact electrification. Furthermore, the resulting charge that is left within each material 

corresponds to the charge of the large, covalently bound ion [62]. 

Many nonionic polymers (insulators) have been shown to experience contact 

electrification, including PMMA, PE, PS, and PTFE [62, 63]. These polymers do not 

possess mobile ions on their surface, but still transfer charge. As there are no mobile ions 

to transfer when contacted with other materials, it has been concluded that another charge 

transfer mechanism must be occurring. The three proposed mechanisms of charge 

transfer involving insulators are ion-transfer, electron-transfer, and material or mass 

transfer. 

Ion transfer mechanism 

Mobile ions are not present on the surface of insulators, resulting in the exclusion 

of this charge transfer mechanism from consideration for some time. However, many 

studies have suggested that ion transfer may still take place during contact electrification 

involving insulators [62-65]. In any non-vacuum environment, there is water present in 

the atmosphere, which accumulates on the surface of materials. This has been called ‘the 

water layer’ [66]. It has been suggested hydroxide and hydronium atoms within this water 

layer are the source of this charge transfer. This is called the ‘water-bridge theory’ [66]. 

However, it was later shown that charge can be generated and transfer in a vacuum in the 

absence of any moisture, suggesting that multiple charge transfer mechanisms may take 

place simultaneously [63, 65]. 
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Electron transfer mechanism 

Liu and Bard (68, 69) have shown that this electrification is caused by the transfer 

of energetic electrons located on the surface of these nonionic polymers. When insulators 

are physically agitated, the physical contact causes stress on the structure, allowing for 

these electrons to be released (69). Once free, they are attracted to the positively charged 

contacting surface, resulting in contact electrification. This theory has been confirmed 

using electrochemistry to show that electron-exchange does occur between insulators [69, 

70].  

Material transfer mechanism 

Surface analysis methods such as x-ray photoelectron spectroscopy (XPS) have 

been used to show that the surfaces of both materials involved in contact electrification 

involving insulators are capable of transferring surface molecules to the opposite material 

surface [71]. These molecules transferred naturally carry a charge. By this same process, 

material transfer has been shown to be very localized on the surface of the material, 

resulting in localized groups of both positive and negative charges on both material 

surfaces [71, 72]. This has been called a ‘surface charge mosaic’, referring to the 

appearance of these localized charged material surfaces when using XPS [72]. This led to 

the conclusion, “Mass [material] transfer, therefore, cannot be ruled out as the 

mechanism of charge transfer in triboelectric phenomena…. Mass transfer must be 

considered in models of contact charging, simply because of the great degree to which it 

occurs [71].”  
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 Evidence supporting each of these three charge mechanisms has been reported 

and confirmed. It has been suggested that the use of materials from different origins, and 

different contact mechanisms, contact pressures, and surface contact areas may be a cause 

of some of this disagreement [63]. It is possible, of course, that all three of these charge 

transfer mechanisms may be taking place at the same time.  

Polymer electrets 

Contact electrification with some materials results in the development of a 

positive or negative charge that is held within the body of the material, leaving it 

permanently or quasi-permanently charged. Materials that can maintain charge are called 

electrets. A definition of an electret is “a material that has a permanent, macroscopic 

electrical field at its surface” [63]. There are two classifications of electrets, dipolar 

electrets and space-charge electrets [63].  

Dipolar electrets behave similarly to magnets in that they have a permanent, or 

quasi-permanent dipole across the bulk of the polymer. This means that the material has 

an electrically positive pole and an electrically negative pole. These may be fabricated by 

cooling a polymer from above its glass transition temperature (Tg) to below it, in the 

presence of a strong electrical field. When cooled, the material holds the electrical 

tendencies and has oppositely charged poles. Dipolar electrets are used in many 

applications, including electrostatic energy harvesting [63]. 

 Electrets used in triboelectric energy harvesting applications are space-charge 

electrets [63]. Space charge electrets obtain their charges differently than dipolar: they do 

not have electric poles, but instead, they possess a net macroscopic electrical charge [63]. 
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These are made from tribocharging of polymers, or the charging of polymers by means of 

contact electrification. The electrification occurs on contact with another material, as 

described in the previous section, and the electret material holds that charge. Both ionic 

and nonionic polymers can be space-charge electrets. Common nonionic polymers that 

can be space-charge electrets are Polyethylene (PE), Polystyrene (PS), and 

Polytetrafluoroethylene (PTFE) [63].  

For a polymer to be either a dipole or a space-charge electret as described above, 

it must have the ability to withstand relatively large electrical potential without breaking 

down (high dielectric strength), and it must be able to hold that electrical potential within 

its structure for a long time, meaning that it must be a material with relatively low 

conductivity. Therefore, the stronger the dielectric strength and insulative properties of 

the electret, the higher the electrical potential of the contact electrification will be, and the 

stronger the ‘desire’ of the material to obtain or donate electrons, the higher the electrical 

potential of the contact electrification will be. These two concepts lead to the use of a 

triboelectric series.  

Material selection: the triboelectric series  

Every material responds differently and develops a level of charge following 

contact electrification. Many materials don’t develop a significant charge, while others 

develop and hold significant positive or negative charges following contact 

electrification. Though the exact nature of the charging may not be known in every case, 

there are very consistent trends across a range of materials that have been observed.  
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A triboelectric series is an arrangement of materials that are ranked according to 

the polarity of charge they develop following contact electrification [65]. In a 

triboelectric series, the materials listed towards the top are those that develop the most 

positive charge following contact electrification, while those at the bottom develop the 

most negative, with the middle of the series being relatively neutral in charge. Countless 

triboelectric series have been constructed and reported. Four of the most comprehensive 

series in literature have been compiled into one, noting the differences between each 

series [62]. A typical triboelectric series is reported in Fig. 2.1.  

Questions have been raised regarding the validity of this tool, citing varying 

placement and charge response of certain materials in 

different triboelectric series across published literature. For 

example, Teflon® (PTFE) is known to be a non-polar 

polymer, but develops strong negative charges during 

contact electrification [62]. Another example of the 

limitation of the triboelectric series is the ability of two 

identical materials to experience contact electrification with 

one another, one developing a strong positive charge and the 

other a strong negative charge [64, 65]. Despite these 

concerns, triboelectric series are well established in 

literature and are used in material selection for many 

triboelectric energy harvesters, and a triboelectric series is the primary tool used for 

selection of experimental materials in this research. 

Figure 2.1: Triboelectric Series [62] 
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Surface modification of electret materials: enhancing contact electrification 

It is common to treat materials in order to raise the surface energy, for a variety of 

purposes. This is also common in the preparation of triboelectric energy harvesters, as it 

has been shown that raising the surface energy of the material can increase resultant 

triboelectric charge [75, 76]. Referring to this process, McCarty states, “Space-charge 

electrets result from adding charge to the surface or bulk of the material by bombarding it 

with an electron beam or ion beam, spraying it with ions from the corona discharge of a 

high-voltage electrode, contacting it directly with a charged electrode, or transferring 

[charge] to or from the material by other means [63].” 

Tribocharging: Physical rubbing of polymer electrets 

Space charge electrets, described in a previous section, are developed by 

tribocharging of polymers, which is the charging of polymers by means of contact 

electrification. Therefore, the act of contacting two surfaces in order to cause contact 

electrification is also the cause of the development of the electrical potential of the 

electret. It has been shown that repeated rubbing or contacting and separating of materials 

can cause the charge of the electret to become stronger, which then increases electrical 

output [65]. Tribocharging can be accomplished using a wide range of materials, and 

with a number of precise methods. The optimal method of tribocharging depends on the 

material being treated. Referring to tribocharging patterns, Galemback states, “The 

direction of charging in asymmetric contacts is materials dependent, an observation 

which is likely to play an important part in the eventual overall mechanistic 

understanding of triboelectricity. For Teflon the larger region charges positively but for 
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Nylon the larger region charges negatively [64].” It has been demonstrated that a PTFE 

sheet that has been physically rubbed causes a higher surface energy than PTFE that was 

not treated by physical rubbing [68]. 

Corona Discharge Treatment 

A second method of charging polymer electrets is the use of corona discharge 

from a high-voltage electrode [63]. In the corona treatment process, an electrical field of 

very high voltage is created between a positive and a negative electrode. In the case of 

this research, this voltage is adjusted between 10,000 and 45,000 V at a high frequency of 

4.5MHz [73]. In the area between these two electrodes, the air is subjected to this strong 

electrical field, causing a dielectric breakdown of the components of the air. This causes 

the separation of negative electrons from positive ions, and imparts a large amount of 

potential energy, resulting in high kinetic energy. The electrons and ions collide with 

others in the same area, causing the same event to occur with more electrons and ions. 

This chain reaction is called an “electron avalanche”. In the case of this research, the 

corona discharge is negative, meaning that high-energy free electrons are repelled 

outward from the electrodes and electrical field [74]. When this occurs close to a polymer 

surface, these electrons bombard the surface, causing lasting effects. The use of corona 

discharge to maximize charge of contact electrification is well documented, ranging a 

number of corona methods and materials [75-79].  

In 2015, it was concluded that a combination of both of these treatment methods 

produces the most electrically and thermally stable electrets for use in contact 

electrification. For this, a two-step process is followed in which the material is first 
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tribocharged by physical rubbing, followed by a second step in which the material is 

exposed to corona discharge [79]. This process as described above was followed for the 

treatment of the PTFE film used in this research.  

Triboelectric energy harvesting: modes of excitation 

There are four modes of contact electrification used in triboelectric energy 

harvesting: vertical contact-separation, in-plane sliding, single-electrode, and 

freestanding triboelectric layer [31]. Each of these contact modes describes the nature of 

the interaction between the two triboelectric layers in its system, and therefore prescribes 

the basic structure and type of motion required to achieve it. For the vertical contact-

separation mode considered in this study, a vertical stack design is necessary. 

Vertical contact-separation mode was the first contact mode to be used with 

triboelectric nanogenerators (TENGs) [32]. With this vertical contact design, there must 

be two different triboelectric material layers with an electrode on each layer. These two 

surfaces need to contact and then separate for a maximum transfer of charge. Typical 

excitation methods for vertical contact-separation mode are vibration and shock events, 

brought about by finger tapping [35], human walking [33, 34], engine vibration, etc. [31].  

In-plane sliding mode uses horizontal motion, rather than vertical, to achieve the 

charge transfer. In this mode, two triboelectric layers are placed in contact with one 

another, and then sliding is induced, causing relative frictive motion of the two surfaces 

[31]. The positive and negative charges on each surface of the two triboelectric layers in 

their initial positions are satisfied by the opposite charges on the opposite surface. When 
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lateral motion is induced, the charges are no longer perfectly satisfied, causing a transfer 

of charge between the two surfaces [31]. A device in which these two surfaces regularly 

slide back-and-forth is capable of generating a significant amount of charge. Devices 

using this mode of excitation typically are designed for harvesting planar or rotational 

mechanical energy, such as the rotation of a tire [42-46].  

Single-electrode mode allows for more relative motion of the two surfaces, due to 

the necessity of only one electrode [31]. With this design, only one of the materials 

involved is attached to an electrode, allowing the other material to move more freely. 

This also allows for the possibility of different structural designs than are possible with 

both vertical-contact and in-plane sliding modes [31]. With more freedom of movement, 

triboelectric energy harvesters using this contact mode have been used to harvest 

mechanical energy from the flow of water and wind. 

In freestanding triboelectric layer mode, the charge transfer takes place due to the 

relative motion of a previously charged triboelectric material and an electrode [31]. 

Oscillating motion closer and further away from the electrode causes a potential 

difference, resulting in the transfer of electrons from the triboelectric layer to the 

electrode. In this mode, there is no requirement of physical contact [31]. This mode of 

charge transfer can be accomplished after one of the above processes has taken place, or 

after charging of the polymer electret using tribocharging or corona treatment, as the 

material must have a charge in order for the free-standing triboelectric layer mode to be 

possible.  
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2.1.4 Conditions of Triboelectric Energy Harvesting in the Distribution Environment 

Triboelectric energy harvesting is a versatile method of harvesting energy. The 

number of material combinations that can be used with one another, in addition to the 

multiple contact modes and possible structural designs highlight this versatility. There 

are, however, two conditions that must be met to obtain a maximum charge during energy 

harvesting. These are the frequency of vibration input and the relative humidity of the 

environment. Both of these conditions have an optimal point at which the maximum 

possible charge is produced, with the charge decreasing as the conditions change to other 

frequencies or humidities, above or below the optimal point [62, 63, 65, 80-89].   

Excitation frequency  

The frequency at which triboelectric energy harvesters respond best, from a 

charge generation standpoint, is between 15-40 Hz [80, 81]. As frequency increases 

above this range, the charge generation of the energy harvesting system decreases. The 

narrow operating bandwidth discussed by many in research is not unique to triboelectric 

energy harvesting, but is also a design challenge for electromagnetic and electrostatic 

energy harvesters [81].  Many have successfully combined energy harvesting methods or 

developed damping systems within their energy harvesting structures to expand this 

operating bandwidth [82-84].  

 The focus of this research is the application of an energy harvesting system to the 

packaged product distribution environment. For this reason, the frequency of vibration 

typical to this distribution environment is important. It is known that the non-stationary 
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random vibration and shock events that describe this distribution environment impart 

vibrations from 1-100 Hz. [85, 86]. Other modes, including rail, sea, and air transport, 

impart similar forces to packaged products in distribution [85, 86]. The frequency 

response of the triboelectric harvester used in this research is described in Fig. B-1, in 

Appendix B. 

Humidity Concerns 

 Many have noted that humidity of the triboelectric energy harvester’s immediate 

environment has an effect on contact electrification, and that it is essential for contact 

electrification to take place [62, 63, 65, 87-89]. The extent to which it effects charge 

generation and transfer, however, is not specified. In fact, the ideal conditions for charge 

generation are debated in literature. One study shows that a relative humidity (RH) of 0% 

yields the maximum possible charge, and that charge generation steadily increases as the 

relative humidity in the immediate environment of the energy harvester decreases [88]. 

Another study demonstrates that there is an optimum relative humidity, between 20 and 

40% RH, but that the charge decreases once the humidity increases above 40% [66]. A 

third study reports that contact electrification can take place in a vacuum in the complete 

absence of any humidity in the environment, also stating that when humidity is present, 

charge generation is limited more by low humidity than by high humidity [87].  

 In a study conducted by the International Safe Transit Association (ISTA) 

monitoring containers travelling by sea from Asia, through Europe, and eventually to 

North America, the humidity fluctuated from 32% and 96% RH [89]. For the use of 

triboelectric energy harvesters in a packaging application, these data may be of concern.  



 20 

2.2 Vibration Simulation & Energy Harvester Excitation 

2.2.1 Vibration Simulation of the Distribution Environment 

It is known that packages and products are often damaged or otherwise negatively 

affected by the forces they experience while travelling through the distribution cycle. For 

this reason, laboratory techniques have been developed to simulate the forces acting on 

these packages and products, in order to use this information to develop more robust 

packages and products that are able to withstand these potentially damage-causing events. 

Techniques exist for the simulation of all of these major forces acting on packages during 

transport, including shock, vibration, compression, and environmental effects. 

International Safe Transit Association (ISTA) & ASTM International (ASTM) both 

publish industry-accepted test standards [90, 91]. As vibration is the sole input used in 

this research for the excitation of the triboelectric energy harvester in this study, this 

review focuses on the laboratory simulation of transport vibrations. 

There are three main types of vibration tests used in laboratory simulation, all of 

which can be accomplished using a servo hydraulic vibration system (Lansmont 

Corporation). These are the ‘fixed-displacement test’, which is also called the ‘bounce’ 

test (ASTM D999a), the sinusoidal (sine) tests (ASTM D999b, c), and the random 

vibration test (ASTM D4728) [92-94]. The fixed displacement test is accomplished by 

the table oscillating with a set amplitude, at a set frequency, usually between 4.4 and 4.5 

Hz [94]. This causes the product or dummy product on the table to repeatedly bounce 

with low amplitude. The sine test is accomplished by the movement of the vibration table 
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in sinusoidal motion. The two categories of sine tests are the sine sweep and the dwell 

test. Sine sweeps are useful for determining the resonant frequencies of products. The 

fixed displacement and sine tests cannot be accurately called simulations of real transport 

vibration [94]. The third category, the random vibration test, is accomplished when the 

vibration table “moves with a constantly-changing complex mixture of frequencies and 

amplitudes, generally similar to the way transport vehicles actually move [94].” 

Random vibration tests can accurately simulate the transport environment, and are 

the only type of vibration test that can do so [94]. “Random vibration tests are typically 

described by power spectral density (PSD) plots, [which are] graphs of ‘average’ 

acceleration intensity in the frequency domain (PSD as a function of frequency) [94].” 

The use of PSD plots to characterize random vibration for laboratory simulation is widely 

accepted [95]. Two common test methods for package distribution in which random 

vibration PSDs are prescribed are ASTM D4169 [96] and ISTA 3E [97]. “ASTM D4169 

Truck Assurance Level II random profile may be the most widely used general 

simulation vibration test in the world…. It’s a bit outdated now, and there are more up-to-

date-spectra available [98].” The more up-to-date spectrum referred to in the previous 

statement is the ISTA Steel Spring Random Vibration Profile, prescribed in ISTA 3E, 

Fig. 2.2 [97]. This profile is an accelerated random vibration profile made using vibration 

data collected from a steel spring truck, but it is known that other modes of transport, 

such as air, rail, and sea, produce similar forces to what is shown in this profile [85, 94, 

99].  



 22 

 

Figure 2.2: ISTA Steel Spring Random Vibration Spectrum PSD 
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Chapter 3 

The Application of a Triboelectric Energy 
Harvester in the Packaged Product Vibration 

Environment 
 

3.1 Abstract 

Smart packaging technology is growing every year, complemented by the 

development of micro-electronic devices. These two trends in innovation create unique 

capabilities for monitoring and tracking packaged products in transit. Developing in 

tandem with this momentum of invention and micro-scaling of technology is the need for 

innovative ways to power these devices. This paper details a novel system that harvests 

energy from the vibration inherent in the transportation of packaged products, stores it, 

and uses it to power sensors that measure the very same environment from which the 

energy is harvested. A triboelectric energy harvester converts mechanical energy to 

electrical energy, which is then collected and used to charge a rechargeable energy cell. 

This energy cell may then be used to power small electronic devices for a myriad of 

applications, such as temperature and humidity sensors, accelerometers, or GPS tracking 

devices. This energy harvester is constructed in the form of a tier sheet to be used within 

a unit load, replacing a simple corrugate sheet with a device that achieves the same 

purpose, while enabling power generation. Many developments have been made in the 

field of triboelectric energy harvesting in recent years, including design and input 
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optimizations. This research details a unique use of the triboelectric energy harvesting 

method in its application in packaged product distribution. In addition, the scale and 

design of this tier sheet device are novel. The triboelectric energy harvester developed is 

experimentally validated for use in generating power sufficient to charge a coin cell 

battery capable of powering various field data recorders.  

3.2 Introduction 

 The current growth of smart packaging technology is staggering. “Intelligent 

packaging demand will record double-digit annual gains, reaching $1.3 billion in 2017,” 

according to a 2014 Packaging Digest report [1]. Another trend affecting packaging, 

reported by the FDA in 2006, is that “US businesses lose up to $250 billion of profit due 

to the counterfeit drug trade every year” [2]. Together, these two trends highlight the 

importance of small electronic devices use in packaging today. Some examples of smart 

packaging include smart labeling, oxygen and moisture control, counterfeit prevention, 

and vibration and shock monitoring of unit loads in distribution. Small electronic devices 

used to prevent counterfeiting are radio-frequency identification (RFID) tags, designated 

product codes (track-and-trace), and GPS units. This increasing use of electronic devices 

in packaging is expected to continue as capabilities increase and size and cost of these 

devices decrease. All of the technology advancements above have one major limitation in 

common: they use batteries as their power source. The necessity of replacing or 

recharging batteries results in limiting run times and requires additional costs when 

batteries must be replaced. Also progressing over the last few years, is the development 

and implementation of energy harvesters for real-world applications. Surprisingly, these 
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trends have developed independently of one another, and as yet, no energy harvesting 

methods have been applied to address the power needs of smart packages in packaged 

product distribution. This paper summarizes the findings of a study of an energy 

harvester applied to charging small energy cells for a myriad of applications, and 

validated in a package distribution application. A triboelectric energy harvester is 

developed, an energy harvesting battery charger is designed, and the system is validated 

using an industry-accepted vibration test. 

There are a number of energy harvesting methods that may be used for harvesting 

mechanical energy. The three most common methods are electromagnetic, electrostatic, 

and piezoelectric energy harvesting [5, 6]. The most common of these methods, and the 

method that has received the most attention in research is piezoelectric energy harvesting 

[24]. In recent years, triboelectric energy harvesting, an subset of electrostatic energy 

harvesting, has been developed and applied to vibration energy harvesting [30, 31]. 

Electromagnetic and traditional electrostatic energy harvesting are both very effective in 

harvesting vibration energy, but use materials and structures that are difficult to use when 

designing the energy harvester for a packaging application. Both piezoelectric and 

triboelectric energy harvesting could potentially be used in the context of packaging due 

to the materials used to build them, and the flexibility of structure that is natural to both 

methods. This study uses triboelectric energy harvesting for three reasons: the required 

properties necessary for energy harvesting are inherent to the materials in triboelectric 

energy harvesting (i.e. corona treatment is not required), triboelectric energy harvesting 

has not been thoroughly explored by the scientific community, and the materials and 
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structure used for triboelectric energy harvesting are flexible, and therefore able to be 

used in packaging application.   

Triboelectricity is a type of contact electrification between two different materials 

upon their physical interaction with one another.  Contact electrification is “a process that 

produces surface charges on two dissimilar materials when they are contacted and 

separated. During this contact, each material develops a charge of opposite polarity” [62]. 

In the case of this research, the two materials are a sheet of aluminum (Al)-coated 

Polyethylene (PE) and a sheet of Teflon® Polytetrafluoroethylene (PTFE). An electrical 

charge develops when the aluminum surface contacts the PTFE surface. Upon contact, 

the charge transfers between the two sheets. The force of contact and number of contacts 

are both factors in the amount of charge that transfers over time. Therefore, a process that 

provides repetitive, forceful impacts between the two materials produces a maximum 

amount of charge between these materials.  

A triboelectric energy harvester is a device that uses the principle of contact 

electrification between two oppositely charged materials and can capture the electrical 

charge transferred between them. In order to consistently capture energy, there must be 

consistent contact and separation of these triboelectric materials. While the various shock 

inputs encountered in the distribution environment excite these harvesters, the broad-

spectrum, over-the-road truck vibration is the input of focus in this study.  

In recent years, progress has been made in the development and advancement of 

triboelectric energy harvesters, called triboelectric nanogenerators (TENG) [31]. Many of 

the materials found in the triboelectric series have been used in experimentation, as well 
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as a number of surface morphologies, all in an effort to enhance the capabilities of these 

generators by maximizing charge. In addition to harvester design, advancements have 

enabled harvesting mechanical energy from vibration [47, 48], human motion [33, 34], 

the rotation of a tire [42, 43], and flowing water [56]. Future work is expected to be 

applied to the development of self-powered sensors that are able to detect mechanical, 

chemical, temperature, and flow (wind and water) events [31]. An example of this type of 

sensor is a cylindrical triboelectric energy harvester built into the structure of a capsule 

endoscope (a small capsule that travels through and examines a person’s digestive tract) 

removing the need for an invasive procedure. Creating a self-powered capsule endoscope 

that is not limited by battery power would overcome a serious hurdle for the current 

capsule endoscopes in use [100].  

In this study, various materials and surface treatments are explored in their ability 

to generate triboelectric charge. Two different harvester configuration designs are 

evaluated for charging performance. A battery charging system is developed for energy 

storage. The optimized harvester design is then validated using an industry-accepted test 

method for simulation of the vibration encountered in truck transport.  

Three tests are run in which three batteries are charged from an average of about 

3.0 V to 3.4 V. This not only shows that the triboelectric energy harvester is capable of 

harvesting vibration energy from the package distribution environment, but also that the 

energy harvested from this environment has sufficient amperage and voltage to charge a 

battery capable of powering many small electronic devices.  
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3.3 Design of the Harvester 

 Triboelectric energy harvesters rely on contact electrification to generate charge 

between the layers that possess a large difference in charge polarity. When these layers 

come into contact, the charge is able to transfer to the opposite layer and be collected by 

electrodes built into the harvester. Triboelectric energy harvesters require a few basic 

components: at least two triboelectric material layers, physical separation of these layers, 

and electrodes for the collection of the energy that moves between these layers. Many 

different materials can be used in the structure of a triboelectric energy harvester, as long 

as they will develop charges of opposite polarity following physical contact with one 

another [63]. A triboelectric series is helpful in selecting two materials that will interact 

well with one another for triboelectric charge [62]. A triboelectric series is simply, “a list 

of materials empirically ordered according to their tendency to acquire positive or 

negative charges subsequent to mechanical contact [64], Fig. 3.1.”  
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Figure 3.1:  A basic triboelectric series [62] 

The structure used for the harvester in this study is a single vertical stack design, 

meaning that the layers are simply stacked atop one another. The harvester designed and 

built is 55.88 cm x 35.56 cm x 8.50 mm, with six layers in total: B flute corrugate board, 

aluminum-coated PE with attached positive electrode, PTFE, cushion layer, aluminum-

coated PE with attached negative electrode, and B flute corrugate board. There are four 

modes of contact electrification used in triboelectric energy harvesting: vertical contact-

separation, in-plane sliding, single-electrode, and freestanding triboelectric layer [31]. 

Each of these contact modes describes the nature of the interaction between the two 

triboelectric layers in its system, and therefore prescribes the basic structure and type of 

motion required to achieve it. For the vertical contact-separation mode considered in this 
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study, a vertical stack design is necessary, Fig. 3.2. This contact mode also determines 

the type of mechanical input required to excite the harvester. In the case of vertical 

contact-separation, vibration is commonly the mechanical input, though any vertical 

mechanical input is sufficient, i.e., shock or compression forces.  

 

Figure 3.2: The basic components of a triboelectric energy harvester 

The two triboelectric materials used in the structure of this harvester are 

aluminum-coated PE and PTFE. The aluminum-coated PE is a 0.125 mm thick film, 

coated on one side with 99.7% Al, sourced from Advent Research Materials, Ltd 

(Oxford, England). The PTFE used is a skived, virgin, 3.18 mm thick PTFE film sourced 

from CS Hyde Company (Lake Villa, Illinois).  These materials have been used in 

combination for triboelectric charging in multiple studies, and have been shown to be 

very effective [34]. Aluminum has a tendency to develop a relatively positive charge after 

physical contact with most materials, while PTFE tends to develop a very negative 

charge. In the two harvester designs developed, Fig. 3.3a,b, there are two layers of 

aluminum-coated PE, with a PTFE sheet stacked between them.  
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The physical separation needed for the proper function of triboelectric energy 

harvesting is achieved in this design by a layer of foam cushioning. Two foam-

cushioning designs are tested. The first, a foam cushion border around the edges of the 

harvester, Fig. 3.3a, is a proposed structure used in experimentation, but is not used in the 

final structure design of the energy harvester. This cushion-border design allows for 

contact to take place in the center of all materials, while achieving the separation that is 

required for triboelectric harvesters to function. This design works well for charge 

development, but allows unwanted horizontal motion between the layers of the harvester. 

This horizontal friction causes the aluminum coating on the top and bottom harvester 

layers to degrade over time, ultimately leading to a decrease in performance. These issues 

are not experienced by the final harvester design that uses a different cushioning 

structure, in which a number of circular foam cushions are affixed to one of the 

aluminum-coated PE layers, isolating it from the PTFE and aluminum-coated PE sheet on 

the other side of these cushions, Fig. 3.3b. These foam cushions separate the layers, 

enabling the development of a potential difference, without allowing the unwanted 

friction allowed by the initial design. Upon contact of these materials, the two layers 

attempt to reach equilibrium by transferring positive or negative charge or both in 

different surface locations, and the harvester’s electrodes can then harvest the mobile 

charge [64].      
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Figure 3.3a (Left): Initial triboelectric harvester design. Figure 3.3b (Right): Final triboelectric 

harvester design. 

In addition to the structural development of these harvesters, a number of surface 

treatments are also explored.  Tribocharging, the physical rubbing or friction of two 

different surfaces, is used as a material treatment in order to build up an initial charge 

both in the body and on the surface of the 

materials used in this study [63].  It has been 

demonstrated that the tribocharging of PTFE 

increases its surface energy [68].  The second 

material treatment used in this study is corona 

discharge. In the corona treatment process, a 

highly charged electric field is created, which 

causes the air to experience a dielectric 

breakdown, meaning that the components         Figure 3.4: Unit load & tier sheet 
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of the air are highly energized and the bonds are broken. The result is high-energy, free 

electrons being repelled outward from the electric field, contacting nearby objects. When 

a polymer is introduced into this area, the surface of the polymer is bombarded by these 

electrons and typically develops a significantly higher surface energy. As a result of this, 

a polymer that has been corona treated can develop significantly higher charges when 

contacted by a second material. This allows for better performance of these treated 

materials in triboelectric energy harvesting [75]. The PTFE and aluminum sheets are 

treated both by tribocharging and corona treatment in development of the harvester in this 

study. The final design of the triboelectric energy harvester uses untreated AL-coated PE 

and tribocharged, then corona-treated PTFE, as described by Rychkov et al. [79]. 

 The triboelectric energy harvester is designed to mimic a tier sheet to be used 

between product layers on a pallet load, Fig. 3.4. With this design, multiple triboelectric 

energy harvester tier sheets could be used on a single pallet of product. This 

configuration within the package system allows for the energy harvester to be located in a 

position that experiences a significant amount of mechanical energy in the form of pallet 

and product shock and vibration. Regardless of the transportation mode, there is a 

significant amount of vibration and mechanical energy input [85], but this study focuses 

specifically on the over-the-road truck vibration that is commonly experienced by 

packaged products in transit. 

In this study, the tier sheet energy harvester design is paired with an energy 

harvesting battery charger, used to charge a rechargeable coin cell battery. The system 

described in this study is as follows: a triboelectric energy harvester built into a tier sheet 
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structure that generates and captures electrical energy from mechanical input, a battery 

charger that takes this harvested energy and uses it to charge a battery, and a rechargeable 

coin cell battery that is sufficient in voltage and capacity to power a number of small 

electronic devices for a myriad of applications.  

3.4 Power Requirements for Applications 

 The battery charging system used in the harvester system is sufficient to charge a 

number of battery types, with voltages up to 5V. Almost all small, portable electronic 

devices use batteries in this range [31]. The battery used in this research is a 3.6 V, 40-

mAh lithium-ion rechargeable coin-cell battery sourced from Dantona Industries, Inc. 

(Wantagh, NY). It is capable of providing the necessary power for the applications of this 

study for varying durations of time. Three specific applications chosen for this study are a 

HOBO UX-100 temperature / humidity data logger, a Copernicus II - 12 channel GPS 

module, and a Lansmont 3X90 field data recorder, listed in order of increasing power 

requirements.  

 The HOBO UX-100 Temperature / Humidity Data Logger is a small data logger 

that continuously records temperature and humidity, and is able to do so for long periods 

of time on a single battery charge. This device is typically used in warehouses, but could 

be used in a number of environments. It may be used in the context of packaging to 

continuously monitor the package’s environment throughout its distribution cycle. It has 

relatively low power requirements, only using a small 3V coin cell battery and drawing   

1–3 mA continuously [101].  
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The Copernicus II - 12 channel GPS module is a simple GPS unit that requires 

very little power and may be used in a variety of applications. The Copernicus II requires 

44 mA at 3.3V to be fully powered, which may be supplied by the battery charged in this 

study. The sampling frequency can be modified with these units so that the unit may 

survive for days before the battery must be recharged. In distribution, expensive medical, 

pharmaceutical, and electronic device packages are frequently tracked through the 

distribution environment, which is a need that may be easily met by imbedding this unit 

into the pallet or package system [102].  

A Lansmont 3X90 Field Data Recorder is a field data recorder that has an internal 

triaxial accelerometer, temperature sensor, and humidity sensor. It is capable, when fully 

powered, to run for ninety days. The function of this unit requires a power supply of 9V, 

at approximately 1.1 mA continuous current. This unit is widely used in the distribution 

industry for characterization and monitoring of the distribution environment [103].  

Table 3.1: Power Requirements for Devices 

Device Battery Nominal 
Voltage (V) 

Device Average 
Power 

Requirement (mA) 

Continuous / 
Intermittent 

HOBO UX-100 
Temperature / Humidity 

Data Logger [101] 
3.0 2.0 Continuous 

Copernicus II GPS 
module [102] 3.3 44.0 Continuous 

Lansmont SAVER 
3X90 Field Data 
Recorder [103] 

9.0 ≈1.1 Continuous 

 

The power requirements and battery specifications of each of the three 

applications are summarized for comparison in Tab. 3.1. The battery charged in this 
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research is capable of powering all three of these applications, based on their mA 

requirements. However, the third unit, the Lansmont Saver 3X90, uses a 9 V battery as its 

power supply. The battery charging system used in this study is only capable of charging 

up to a 5 V battery. With this in mind, the power requirements of the Lansmont Saver 

3X90, though not currently supported by the batteries charged in this research, could be 

attained by charging a different battery of a sufficient voltage, using the same principles 

identified in this study. 

3.5 Validation 

A number of methods developed for the purpose of characterizing the 

performance of the triboelectric tier sheet and for measuring its ability to generate usable 

electrical energy are described in the following section. These include the use of an 

industry-accepted vibration simulation test method to provide the necessary physical 

excitation for the harvester to function, and a process for charging rechargeable coin cell 

batteries used to quantify harvester performance. With all of these key processes and test 

methods in place, it is possible to answer the question that drives this research: can 

triboelectric energy harvesters used in a packaging application generate enough to 

power field data recorders during vehicle transport? 

The battery-charging device described above is the LTC 3331- Nanopower Buck-

Boost DC/DC with Energy Harvesting Battery Charger, manufactured by Linear 

Technology (Milpitas, CA) [104]. The LTC 3331 has an input voltage range of 3.0–19.0 

V, and has a very low minimum current requirement, making it a perfect choice for 

energy harvesting applications such as triboelectric energy harvesting, a process that is 
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known to produce high voltages with low amperage. Low-current producing energy 

harvesting methods are typically not used for the charging of batteries, as battery chargers 

must supply a constant current level to the battery in order to charge it. This battery 

charger was designed to combat this limitation, and is able to step-up the voltage and 

current provided to it in order to meet the battery’s charge requirements. It also uses a 

full-wave rectifier that allows for the entire energy pulse to be used, a feature that is very 

useful with triboelectric harvesting, which frequently generates nearly equal positively 

and negatively charged events.  

This battery-charging device enables the achievement of a number of goals in this 

study.  First, it charges the battery for use with the temperature and GPS loggers, Tab.3.1. 

Next, it is used for the conversion of low-current, high voltage electrical energy using a 

system of capacitors that allow the device to convert the input voltage to a specific 

required output voltage, an essential step in the use of this generated electricity. Lastly, 

by providing a consistent system of charge and measurement, the battery charger 

provides the ability to compare multiple experiments and thereby determine ideal 

experimental conditions for the optimization of charge development by the energy 

harvesting system.  

The battery charger is able to charge the battery by providing two things: a 

constant supply of user-defined voltage that is above the current charge of the battery, 

and a consistent supply of current. The required voltage for charging the battery must 

exceed the voltage of the battery, as the voltage gradient must be higher on the battery 

charger side than the battery side in order for the charge to flow to the battery.  



 38 

Though many types of mechanical input are capable of providing the physical 

excitation needed for this triboelectric energy harvester to function, this study focuses on 

an input that most resembles the physical forces experienced by packages in transit: 

random, broad-spectrum, over-the-road truck vibration.  

It is common practice in industry to use vibration simulation equipment and test 

methods to simulate real-world vibration inputs in a laboratory setting. The International 

Safe Transit Association (ISTA) & ASTM International (ASTM) both publish industry-

accepted vibration test standards [97, 96]. This research focuses on ISTA Steel Spring 

random vibration profile, Fig. 3.5, prescribed in ISTA test standards 3B, 3E, 3F, and 3H 

[97]. In this research, the testing is performed for four hours per test on a servo-hydraulic 

vibration system (Lansmont Corporation).  

 

Figure 3.5: ISTA Steel Spring vibration profile 
 

To simulate the packaged product distribution environment, a single stack of 

corrugate boxes containing automotive electrical assemblies is used. For all testing 
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performed in this study, the triboelectric energy harvesting tier sheet is located between 

the fifth and sixth (top) layer of this package assembly, Fig. 3.6. It is generally accepted 

that in the upper layers of a unit load (or single stack of boxes, in this case), the forces 

affecting the packages are amplified by the package system itself. This causes the 

mechanical potential energy available to the energy harvester when placed near the top of 

the unit load to be greater than when it is placed near the pallet [85].  

 

Figure 3.6: Single Stack boxes with triboelectric tier sheet with layer details 

With the experimental setup described in this section, including the triboelectric 

tier sheet, the LTC 3331 battery charger, and the ISTA Steel Spring Random Vibration 

Spectrum, the triboelectric energy harvester and battery charging system are validated. 

This is accomplished by three replicate tests of ISTA Steel Spring random vibration 

profile, for a duration of four hours each. A four second window of the voltage response 

of the harvester to the steel spring vibration input is illustrated in Fig. 3.7.  The coin cell 

battery charging results from the three tests are reported in Tab. 3.2.  
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For all testing performed in this research, the battery charging unit is set with a 

UVLO (under voltage lockout) window of 5V-18V, meaning that any charge generated 

with a voltage level outside of this range could not be used by the charger, and would not 

be routed to the battery. For this reason, the charge generated in this research is described 

in terms of voltage, only. Though not quantified herein, the ability of this system to 

charge batteries demonstrates that sufficient levels of amperage (A) and power (W) are 

generated, in addition the required voltages that are recorded.  

 

   Figure 3.7: Vibration response of triboelectric harvester to ISTA Steel Spring profile 

     Table 3.2: Results of Validation Testing 

Battery Nominal 
Voltage (V) 

Battery Charge 
Initial (V) 

Battery Charge 
Final (V) 

Battery Charge 
(V) 

3.6 3.05 3.42 0.37 

3.6 3.00 3.25 0.25 

3.6 3.02 3.41 0.39 

Mean 3.02 3.36 0.34 
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3.6 Conclusions 

In this research, a triboelectric energy harvester is designed and constructed to 

generate electrical energy from a vibration common to the package distribution 

environment. This harvester is designed specifically to mimic a tier sheet, a common 

component in many unit load systems. ISTA Steel Spring random vibration profile is 

used to simulate truck vibration, and a unit load is simulated using a vertical column 

stack of corrugate boxes containing automotive electrical components in thermoformed 

trays. A battery charging system is used to provide a consistent method of battery 

charging and measurement, providing a reliable comparison of all vibration experiments 

to one another.  Using this same battery charging system, the generated electricity is used 

to charge a battery, which is then applied to one of three chosen applications for this 

study. The following conclusions are made:  

• It is possible to use triboelectric energy harvesting to charge a battery 

using the system described in this manuscript. Three 3.6 V (nominal 

charge) lithium-ion coin cell batteries were charged from a discharged 

state at 3.02V to an average charge level of 3.36V.  

• By harvesting mechanical energy natural from the packaged product 

distribution environment, it is possible to generate sufficient levels of 

electricity to fully power many types of field data recorders, including a 

HOBO UX-100 Temperature/Humidity Logger and a Copernicus II GPS 

Logger Module.  
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Chapter 4 
 

Exploration of the durability and relative 
humidity sensitivity of triboelectric energy 
harvesters in the distribution environment 

 

4.1 Introduction 

It is known that the charge generation of triboelectric contact electrification can 

be affected by certain environmental and mechanical factors, such as frequency of 

mechanical excitation and relative humidity of the environment. Another factor 

discovered in this research, and described herein, is the condition, or physical durability, 

of materials used in harvester construction, potentially a limitation due to physical 

durability constraints. Physical durability of the materials used to build the harvester is a 

concern: the surfaces of the materials may be affected by dust and other particles during 

vibration, the material surface could be affected by abrasion, or the cushion materials 

could degrade over time. These concerns stem from the nature of triboelectric harvesting, 

as physical contact is essential to the process. Initial testing with the triboelectric tier 

sheet design showed a potential weakness of the aluminum-coated PE material. Further 

work done to test these concerns is described in this research.  

A review of literature on contact electrification and triboelectric charge generation 

revealed that humidity may affect charge generation. This is due to the nature of contact 

electrification, as it involves physical contact and a transfer of mobile electrical charge 

from one material, through the environment between materials (usually air), and to the 
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surface of the second material. The dependence of triboelectric energy harvesting on 

relative humidity of the immediate environment of the harvester has been demonstrated 

in a number of studies [62, 63, 66]. The optimal humidity for charge generation, 

however, is still disputed [66, 87, 88]. The extent to which humidity affects this process, 

and the optimal humidity for the triboelectric tier sheet design are both explored in this 

research. The effect of humidity and physical durability of materials used in triboelectric 

energy harvesting, with the specific application of the triboelectric tier sheet, are 

described in the following sections.  

4.2 Durability Testing 

The triboelectric tier sheet is a five-layer triboelectric energy harvester that uses 

the vertical contact separation mode of harvester excitation, and vibration as the 

mechanical energy source. This energy source and contact mode cause the harvester to 

have some potential physical weaknesses. These potential weaknesses are damage due to 

friction and the entry of foreign particles that can cause unnatural wear on the layers. 

Despite the use of vertical contact-separation mode, there is still some horizontal motion, 

or friction, of the layers with one another. This friction between the Teflon® and the 

aluminum-coated PE can cause removal of the aluminum coating, as seen in initial 

testing. In addition, the current design of the harvester does not encapsulate the structure, 

or prevent outside materials from entering the structure of the harvester between the 

layers. In initial testing, foreign particles, such as dust, dirt, or sand, entered between the 

layers during vibration and removed the aluminum coating from the PE film, 

significantly decreasing performance. In addition, this energy harvester is designed for 
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use in the packaged-product distribution environment, in which it could experience 

vibration forces for long periods of time.  The ability of the harvester to generate charge 

for the entire duration of this extended vibration is key to the concept of the triboelectric 

tier sheet. To determine the effect of both of these physical concerns, and to test the 

ability of the energy harvester to generate charge, using forces common to the 

distribution environment, further durability testing is performed. 

Durability testing details 

 Random vibration profiles used for package and distribution testing are typically 

time-compressed profiles, meaning that the data that was recorded and used to construct 

these profiles undergoes a transformation in which the intensity of the vibration is 

increased, while the time domain is decreased. In this process, the shape of the PSD 

profile is not changed, but the intensity is increased. This appears as the PSD level on the 

profile ‘moving up’ on the profile, Fig. 4a, b. This allows for testing to be done in an 

accelerated time frame, while maintaining the integrity of the vibration simulation test 

[94]. A comparison of the ISTA Steel Spring random vibration profile and the random 

vibration profile used for this 12-hour testing is provided in Fig. 4a, b.  

The vibration test used to determine the physical durability of the triboelectric tier 

sheet energy harvester is a 12-hour random vibration profile that is not time compressed. 

The purpose of using un-compressed vibration data is to simulate actual road conditions, 

over a longer period of time than most vibration tests prescribed in testing standards. This 

is done to determine the ability of the energy harvester to withstand actual road 

conditions, or more simply, the physical durability of the energy harvester.  
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Figure 4.1a (left): ISTA Steel Spring Random Vibration Spectrum, Figure 4.1b (right): 

Non time-compressed random vibration data. 

Though foreign particles such as dirt and sand caused damage in initial testing, no 

damage was seen in later validation due to this cause. Though it is likely that the dust and 

foreign particles were still present between the layers during this testing, due to the nature 

of corrugate board, no damage to the triboelectric material layers was seen, though it was 

clearly an issue in initial testing. This can be explained by a design change to the 

structure of the triboelectric tier sheet after initial testing, which significantly reduced the 

horizontal motion of the layers, leaving almost all contact and force to be experienced in 

the vertical axis. 

Two other sources of damage were identified as a result of this testing, heat-

induced degradation of the aluminum-coated PE and the permanent deformation of 

cushioning materials, Fig 4.2. After the 12-hour durability test, it is clear that a significant 

amount of heat develops between the layers of the triboelectric energy harvester as a 

result of contact electrification. This takes place where the most contact/friction likely 
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occurs, which is localized where the cushion circles meet the material opposite them in 

the structure. Once a significant amount of friction induced-heat has developed, the 

surface of the aluminum-coated PE material becomes significantly more susceptible to 

damage, Fig. 4.2.  

 

Figure 4.2: Damage on aluminum coated PE surface caused by friction and heat  

A second type of damage found in this testing is the permanent deformation of the 

cushioning materials designed to separate the layers from one another, Fig. 4.3a,b. Over 

time, as these cushions are repeatedly compressed and released from compression, they 

begin to degrade, losing their cushioning ability. After the 12-hour vibration test was 

performed, all of these cushions were deformed, Fig 4.3b, losing approximately half of 

their initial thickness. This raises concern, as the ability of the layers of the energy 
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harvester to repeatedly contact and separate from one another is essential to its function. 

Without this separation, the energy harvester’s charge generation significantly decreases.  

 
Figure 4.3a (Left): Cushion before 12-hour durability test;  
Figure 4.3b (Right): Permanent deformation of cushion after 12-hour durability test 

 

4.3 Humidity Testing 

Multiple studies have shown that there is a humidity range at which charge generation 

or transfer due to contact electrification is at its optimal level. These studies do not 

generally agree on this optimal range.  One study shows that a relative humidity of 0% 

RH is best for contact electrification [88]. A second study shows that higher humidities 

are best for contact electrification [87]. A third study shows that there is an intermediate 

humidity range at which contact electrification is optimal, between 20% and 40% RH, 

and that charge generation/transfer decreases as humidity rises above this range [66]. It is 

known that packages travelling through distribution can be exposed to a wide humidity 

range [89]. For this reason, the triboelectric tier sheet energy harvester is tested at three 

humidity levels: 15% RH, 35% RH, and 65-70% RH. 
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Humidity testing details 

The tests used to determine the ability of the triboelectric energy harvester to 

generate charge at various humidity levels are a series of 4-hour vibration tests using 

ISTA Steel Spring Random Vibration Spectrum, each test at a specific relative humidity. 

It is important to note that this test uses the actual ISTA random vibration profile, 

meaning that this is time-compressed vibration data, unlike the vibration profile used for 

durability testing, which was non time-compressed. Five total tests were performed, one 

at a low humidity level, three at the proposed optimal humidity level [66], and one at a 

high humidity level. Table 4.1 summarizes the tests and conditions of each test performed 

for humidity testing.  

 Table 4.1: Summary of prescribed humidity tests 

 

The relative success of each test is evaluated in terms of relative battery charge. 

The system used to charge these batteries is the LTC 3331 (Linear Technologies), 

described in the previous chapter, or in full detail in Appendix A. For each test, a 3.6 V 

(nominal voltage) coin cell battery is discharged to 3.0 V. In the process of the vibration 

and charge generation, the battery is charged, and the extent to which it is charged 

Test Number Relative Humidity (% RH) Test Duration (Hr.) 

1 
2 

3 
4 

5 

15 
35 

35 
35 

65-70 

4 
4 

4 
4 

4 
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demonstrates the efficacy of the triboelectric energy harvester at each set of test 

conditions. Table 4.2 summarizes the results of these five tests.  

Table 4.2: Summary of humidity test results 

Test Number Humidity 
(% RH) 

Battery Charge 
Initial (V) 

Battery Charge 
Final (V) 

Battery Charge 
(∆V) 

1 
2 

3 
4 

5 

15 
35 

35 
35 

65 - 70 

3.00 
3.05 

3.00 
3.02 

3.00 

3.40 
3.42 

3.25 
3.41 

3.00 

0.40 
0.37 

0.25 
0.39 

0.00* 

 

The data shown in Table 4.2 show that there is not clear difference between the 

levels of battery charge between the lower humidity level, 15% RH, and the middle 

humidity level, 35% RH. There is a clear difference between the charge levels of both of 

these humidity levels the battery charge of the high humidity, 65-70% RH. In fact, the 

testing done at 65-70% RH did not yield any battery charge. It is important to note that in 

test 5, at 65-70% RH, there was charge generated. The nature of the battery charging 

process required that the voltage exceed 5.0 V in order for the battery charger to process 

this power and route it toward charging the battery. The charge generation simply did not 

exceed this 5.0 V limit, and therefore the battery was not charged. A more thorough 

description of the battery charging process is detailed in Appendix A. Though differences 

may be observed in the data shown in Table 4.2, additional testing should be performed 

using more replicates at each humidity level. 
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Chapter 5 

Conclusions 

A triboelectric energy harvester is designed and constructed to generate electrical 

energy from a vibration common to the package distribution environment. This harvester 

is designed specifically to mimic a tier sheet, a common component in many unit load 

systems. ISTA Steel Spring random vibration profile is used to simulate truck vibration, 

and a unit load is simulated using a vertical column stack of corrugate boxes containing 

automotive electrical components in thermoformed trays. A battery charging system is 

used to provide a consistent method of battery charging and measurement, providing a 

reliable comparison of all vibration experiments to one another.  Using this same battery 

charging system, the generated electricity is used to charge a battery, which could then be 

applied to one of three chosen applications for this study. The physical durability and 

relative humidity sensitivity of triboelectric energy harvesters are also explored. 

Triboelectric energy harvesters used in a packaging application have been proven to 

generate sufficient electricity to power field data recorders during vehicle transport. This 

concept is the focus of this manuscript, and has been proven herein.  The following 

conclusions are made:  

• It is possible to use triboelectric energy harvesting to charge a battery 

using the system described herein, a significant feat due to the low-current 

nature of the individual charge-generating events that are inherent to a 

contact electrification-based energy harvesting method. Three 3.6 V 
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(nominal charge) lithium-ion coin cell batteries were charged from a 

discharged state at 3.02V to an average charge level of 3.36V.  

• By harvesting mechanical energy that naturally occurs from the packaged 

product distribution environment, it is possible to generate sufficient levels 

of electricity to power many types of field data recorders, including a 

HOBO UX-100 Temperature/Humidity Logger and a Copernicus II GPS 

Logger Module.  

• Physical durability testing shows that dust and foreign particles do not 

pose a significant threat to the continued performance of the triboelectric 

energy harvester. 

• Multiple minor material damage sources were identified in durability 

testing, in including heat-abrasion and cushion deformation. Further 

testing, or an alternative cushion design may be required in later designs 

of this harvester.  

• Testing at both 15% and 35% RH produces similar levels of battery 

charge. This is contrary to the expected result, which is that low humidity 

severely limits triboelectric charge generation. Further testing at these 

humidity levels is needed to verify these conclusions, as a small sample 

set is tested in this study.  

• Humidity testing shows that high humidity (65-70% RH) does limit 

contact electrification / charge generation of the triboelectric energy 

harvester used in this study. 
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Appendix A 

Battery Charging 

Figure A-1: LTC 3331 unit with test settings highlighted 

All battery charging performed in this study is done by the use of the LTC 3331, 

Nanopower Buck-Boost DC/DC with Energy Harvesting Battery Charger, manufactured 

by Linear Technologies, Fig. A-1. The LTC 3331 has many features that are essential to 

the charging of batteries with the type of power that typically comes from energy 

harvesting sources. A few of these include a duel-input full-wave rectifier, a high-voltage 

buck DC/DC converter, an input protective shunt, and an ultra-low quiescent current.  
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The duel-input full wave rectifier allows for two power sources to be used 

simultaneously. It functions to process an AC supply or DC supply that alternates 

between positive and negative voltage, and is used by the input pins AC1 and AC2, 

indicated by point A, Fig. A-1. This unit also has a Vin pin, indicated by point B in 

Figure A-1, that allows for the bypass of these two rectifier inputs if the supply does not 

require this function. 

The high voltage buck DC/DC converter provides a window for input voltage, 

providing the ability to step down high voltage input to a usable, programmable output 

voltage level for either charging the internal battery of the unit or for powering and 

external unit. This function only operates while input supply is present, which reduces the 

overall power requirement for the operation of the LTC 3331.  

The input protective shunt simply protects the LTC 3331 unit from high voltage 

or amperage spikes, which could potentially be harmful to the unit. If these spikes are 

supplied by the input, the protective shunt essentially temporarily shuts down the 

function of the unit until input levels are ‘safe’. 

The determination and use of the correct under voltage lockout  (UVLO) settings 

are essential to the effective use of this battery charging unit. The UVLO settings 

determine the window of accepted voltage by the battery-charging unit. It is important to 

characterize the behavior of the energy harvester, as the typical current and voltage levels 

that it supplies are important to know in order to match the settings and inputs for 

optimum energy harvesting and storage. For all testing using triboelectric energy 
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harvesters in this study, a UVLO window of 5V-18V is used. UVLO rising and falling 

parameters can be set using the pins indicated by point, Fig. A-1.   

The output voltage pins, seen in point D in Figure A-1, are where the output 

voltage level of the battery charger is determined. For all testing using the triboelectric 

tier sheet energy harvester, an output voltage of 4.5V was selected. This level simply 

needs to be greater than, or equal to, the charging voltage of the battery to be charged. In 

this case, the battery’s charging voltage was 4.2V. As energy harvesting continues, the 

voltage accumulates on the Vout pin, point F in Figure A-1, until the desired output 

voltage level is reached on that pin. When this occurs, the power is then redirected to 

charge the battery.  

Also essential for optimal battery charging are the float voltage settings and 

LBSEL setting, point E in Figure A-1. Float voltage refers to the voltage that is directed 

to the battery, once the set Vout has been reached on the Vout pin. The set float voltage 

should be the charging voltage of the battery used, found in the battery’s spec sheet. For 

this testing, a float voltage of 4.2 V is used, as this is the battery’s designated charging 

voltage.  

The last setting that is key to the effective use of this unit is the OFF/ CHARGE/ 

FAST CHARGE pin, point G in Figure A-1. For this testing, the charge pin is used in 

every case, and for every test. 

* For a full description of this unit, as well as a collection of other specialized units, visit
http://www.linear.com

* LTC 3331 spec sheet: http://cds.linear.com/docs/en/datasheet/3331fc.pdf
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Appendix B 

Additional Data 

Figure B-1:  Frequency response of triboelectric harvester to ISTA Steel Spring profile 

Figure B-2: Shock response of triboelectric harvester to 18-inch drop of 18lb.box 
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