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Abstract

Since being introduced by Oystein Ore in his 1933 paper, “Theory of Non-

Commutative Polynomials” [6], non-commutative, skew, or Ore polynomials have

been studied extensively. One prominent application of skew polynomials is in the

generation of codes. This paper covers some key facets of the structure of skew

polynomials and aims to find a divisor polynomial for two given polynomials that

satisfies certain properties of divisibility.
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Chapter 1

Introduction

As seen in [1], skew polynomials can be used to generate codes. In certain

circumstances, as outlined in [2], such codes have properties similar to cyclic codes.

The main focus of this paper was inspired by a search for polynomial p(x) of minimal

degree in a skew polynomial ring R that is in the intersection of the right ideal of

a polynomial f(x) and the left ideal of a polynomial g(x) for use in a new coding

methodology.

Certainly f(x)g(x) is in the intersection of these ideals, but it may not be the

polynomial of least degree. If some polynomial d(x) can be found which is of maximal

degree such that f(x) = f ′(x)d(x) and g(x) = d(x)g′(x), then we can write

f(x)g(x) = f ′(x) d(x) d(x) g′(x),

where there is some redundancy “between” the polynomials. Indeed, we may write

f(x) = f ′(x) d(x)

g(x) = d(x) g′(x)

p(x) = f ′(x) d(x) g′(x),
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where we can visualize that p(x) is divisible on the left by f(x) and on the right by

g(x), so p(x) is in the intersection of ideals. It is hoped that by taking advantage

of the overlap of d(x), this is the smallest such polynomial. Thus, the goal becomes

finding such d(x), which we refer to as the greatest common left-right divisor (gclrd)

of f(x) and g(x). This problem took on a life of its own, motivating a search for

structure between the right and left roots of certain types of polynomials. It is the

aim of this paper to examine some results toward an algorithm for computing the

gclrd of two polynomials.

In Chapter 2, we review some of what was already known about skew polyno-

mials. The basic structure of skew polynomial rings is laid out, along with definitions

for the greatest common right divisor and greatest common left divisor as extensions

of the concept of gcd for commutative polynomials, as well as similar extensions for

the lcm. The formula for evaluation of skew polynomials is also provided, along with

a discussion of independent sets of roots.

Chapter 3 covers our original developments toward the greatest common left-

right divisor. First, left evaluation is examined as a modification of right evaluation

along with corresponding formulations of the left evaluation of products and interpo-

lation. Then special cases of polynomials in which a known formula for a nontrivial

polynomial which is a right divisor of f(x) and a left divisor of g(x) are presented.

Finally, a condition necessary for a certain construction to share left and right roots

is given.

This is followed in Chapter 4 by a description of implementing skew polynomial

multiplication in the MAGMA programming language. The functions written to

manipulate skew polynomials and aid the search for the gclrd are outlined. Finally,

Chapter 5 reviews the results so far and lays out paths for further study of the gclrd.
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Chapter 2

Background

2.1 Introduction to Skew Polynomials

Skew polynomials were introduced by Oystein Ore in his 1933 paper, “Theory

of Non-Commutative Polynomials” [6].

Definition 2.1. Let K be any division ring, let σ : K → K be an injective homo-

morphism and let δ be a σ-derivation; that is, δ : K → K is a homomorphism with

respect to addition such that δ(ab) = σ(a)δ(b) + δ(a)b for all a, b ∈ K. Then let R

be the set of polynomials of the form f(x) =
∑n

i=0 aix
i, where n ∈ N and ai ∈ K

for i ∈ {0, 1, . . . , n}. Under standard polynomial addition and with multiplication

determined by the rule

xa = σ(a)x+ δ(a) (2.1)

for all a ∈ K, this forms a ring of skew polynomials over K, which we write as

R = K[x;σ, δ].

The following example defines the skew polynomial ring that we will use

throughout the manuscript.
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Example 2.1. Let K = F25 = F2[α]/(α5 + α + 1), σ(a) = a2, and δ ≡ 0. Then

α is a primitive element of K. We let R = K[x;σ, δ], which we may also write as

R = K[x;σ] for brevity, since δ ≡ 0.

We note that in our particular work, not only will K be a division ring, but it

will in fact be a field. We will take K to be a degree m extension of a finite field, Fq,

so that K = Fqm . This forces σ to be an automorphism, and we take δ ≡ 0. In this

case, we may write R = K[x;σ]. The above, however, is the most general definition

of skew polynomials, and is sufficient to prove several key properties.

2.2 Properties of Skew Polynomials

Since their introduction, several properties have already been determined about

skew polynomials, some of which will be outlined here. A skew polynomial ring R

is not in general commutative. It is right Euclidean, and if σ is surjective, left Eu-

clidean. Ideals of R are principal. Factorization is not unique, but the terms of prime

factorizations are pairwise similar [6]. Additionally, skew polynomials can be used to

generate codes [1] and skew-cyclic codes [2]. Efficient algorithms exist for computing

greatest common divisors and least common multiples [3].

The first important property to note is that unlike traditional polynomials,

multiplication of skew polynomials is not commutative in general. If σ is not the

identity homomorphism, then we must have some a ∈ K such that σ(a) 6= a, and it

is easy to see that then

xa = σ(a)x+ δ(a) 6= ax.

Using this example, it is easy to see that skew polynomial multiplication is com-

mutative if and only if σ is the identity homomorphism and δ ≡ 0, in which case

multiplication simplifies to ordinary polynomial multiplication.
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Example 2.2. In R = K[x;σ, δ] from the previous example,we have that

(x+ α)(x+ α2) = x2 + xα2 + αx+ α3

= x2 + σ(α2)x+ αx+ α3

= x2 + (α4 + α)x+ α3

= x2 + α30x+ α3,

whereas

(x+ α2)(x+ α) = x2 + xα + α2x+ α3

= x2 + σ(α)x+ α2x+ α3

= x2 + (α2 + α2)x3α

= x2 + α3.

By repeated application of (2.1), we see that axm · bxn will be a polynomial

with degree m + n and with leading coefficient aσm(b). We see that σm(b) = 0 only

if σm−1(b) = 0, and so on down to b = 0, and since there are no zero divisors in K,

a, b 6= 0 implies aσ(b) 6= 0. We apply the normal rules of associations and distribution,

so this allows us to find the product of any arbitrary polynomials. If f(x) is of degree

n and g(x) is of degree m, then the degree of the resulting polynomial will be m+ n,

and so the degree of a product is the sum of the degrees of the factors. In fact,

this is where the definition of skew polynomial multiplication originates from as a

generalization of regular polynomial multiplication.

The following is shown in [6]:

Lemma 2.1. A skew polynomial ring R is a right Euclidean ring and, if σ is surjec-

tive, a left Euclidean ring.

Proof. We see this by first considering polynomials f(x) of degree n and g(x) of degree

m ≤ n. Then if f(x) =
∑n

i=0 aix
i and g(x) =

∑m
i=0 bix

i, we find that the leading
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term of xn−mg(x) is σn−m(bm)xn−mxm = σn−m(bm)xn. Thus, anσ
n−m(b−1m )xn−mg(x)

has leading term

anσ
n−m(b−1m )σn−m(bm)xm = anσ

n−m(b−1m bm)xn

= anσ
n−m(1)xn

= anx
n.

Since this is the same leading term as f(x), the difference

f(x)− anσn−m(b−1m )xn−mg(x)

has no term of degree n and thus is of degree less than n. We may repeat this process

with the remaining difference until the degree of the difference is less than m or the

remaining polynomial is 0. Collecting the monomial terms used as the polynomial

qr(x) will allow us to write

f(x) = qr(x)g(x) + rr(x), (2.2)

where deg rr(x) < m = deg g(x) or rr(x) = 0. We call this right division and it makes

the ring R of skew polynomials right Euclidean, with the Euclidean function being the

degree of the polynomial. If σ is surjective, then we may also perform left division.

That is, for any polynomials f(x), g(x) ∈ R, there exist polynomials ql(x), rl(x),∈ R

such that

f(x) = g(x)ql(x) + rl(x), (2.3)

with either deg rl(x) < deg g(x) or rl(x) = 0. We note that while we can always

find an element k = anσ
n−m(b−1m ) such that kxn−mg(x) has the same leading term as

6



f(x), it is not necessarily possible to find an element k ∈ K such that g(x)kxn−m

has the same leading term as f(x). This is because the leading term of g(x)kxn−m is

bmσ
m(k)xn, while the leading term of f(x) is anx

n, so we must have bmσ
m(k) = an,

or σm(k) = anbm. To always have a solution for any f(x) and g(x), σ(k) = a must

have a solution k ∈ K for any a ∈ K, and so σ must therefore be surjective. If σ is

surjective, then this will always have a solution, and so left division is possible in the

same manner as right division. This makes R left Euclidean as well.

Example 2.3. Using the same R as before, we take

f(x) = x3 + α19x2 + α17x+ α

and g(x) = (x− α7).

We find that

f(x) = (x2 + α4x+ α4)g(x) + α5,

so we have qr(x) = x2 + α4x+ α4 and rr(x) = α5. On the other hand,

f(x) = g(x)(x2 + α15x+ α25),

so we have ql(x) = x2 + α15x+ α25 and rl(x) = 0.

Definition 2.2. If rr(x) = 0, we say that g(x) divides f(x) on the right and write

g(x)|rf(x). If rl(x) = 0, we say that g(x) divides f(x) on the left and write g(x)|lf(x).

In the previous example, for instance, we have that g(x)|lf(x), but g(x) 6 |rf(x).

Definition 2.3. The greatest common right divisor (denoted gcrd) of two polynomi-

als f(x), g(x) ∈ R is the monic polynomial dr(x) = gcrd(f(x), g(x)) ∈ R such that

7



dr(x)|rf(x), dr(x)|rg(x), and for any d′(x) ∈ R such that d′(x)|rf(x) and d′(x)|rg(x),

we have d′(x)|rdr(x).

Lemma 2.2. For any two given polynomials f(x), g(x) ∈ R, there exists a unique

gcrd(f(x), g(x)).

Proof. The division algorithm set out above allows us to perform a right Euclidean

algorithm to find the gcrd. We start with f1(x) and f2(x), equal to f(x) and g(x)

such that deg f1(x) ≤ deg f2(x). Then for i ≥ 3, we perform division of fi−2(x) by

fi−1(x), with the quotient being qi(x) and the remainder being fi(x). That is,

fi−2(x) = qi(x)fi−1(x) + fi(x).

This process is repeated until we have fj(x) = 0 for some j ≥ 3. We let k = j − 1

and consider the polynomial fk(x). If the leading coefficient of this polynomial is

a ∈ F∗qm = Fqm \ {0}, then define dr(x) = a−1fk(x) so that dr(x) is monic. We then

claim that dr(x) = gcrd(f(x), g(x)). Since adr(x) = a(a−1fk(x)) = fk(x), we have

that dr(x)|rfk(x). By definition of k, we have that

fk−1(x) = qk+1(x)fk(x) + fk+1(x)

= qk+1(x)fk(x) + 0

= qk+1(x)fk(x),

and so fk(x)|rfk−1(x). If we have fk(x)|rfi(x) and fk(x)|rfi−1(x), then because

fi−2(x) = qi(x)fi−1(x) + fi(x),

and fk(x) divides both terms on the right, it divides the sum on the right, and so

8



fk(x)|rfi−2(x) as well. This allows us to work back through the sequence of equations

to see that fk(x)|rf1(x) and fk(x)|rf2(x).

At this stage, we note that if a(x)|rb(x) and b(x)|rc(x), then we can write

b(x) = b′r(x)a(x) and c(x) = c′r(x)b(x) = c′r(x)b′r(x)a(x), and so a(x)|rc(x). Thus,

right divisibility is transitive (the same is true of left divisibility as well). This means

that dr(x)|rf1(x) and dr(x)|rf2(x), so dr(x)|rf(g) and dr(x)|rg(x). We then con-

sider any polynomial d′(x) such that d′(x)|rf(x) and d′(x)|rg(x). Then we have that

d′(x)|rf1(x) and d′(x)|rf2(x). We note that if d′(x)|rfi−2(x) and d′(x)|rfi−1(x), we

may rewrite the equations above as

fi(x) = fi−2(x)− qi(x)fi−1(x),

and so d′(x)|rfi(x). Starting with d′(x)|rf1(x) and d′(x)|rf2(x), this allows us to follow

the equations down to d′(x)|fk(x), and since dr(x) = a−1fk(x), we have d′(x)|rdr(x).

This means that dr(x) is a monic polynomial such that dr(x)|rd(x), dr(x)|rg(x),

and for any polynomial d′(x) ∈ R such that d′(x)|rf(x) and d′(x)|rg(x), we have

d′(x)|rdr(x).

Consider any other polynomial d2(x) satisfying these conditions. Then in

particular, d2(x)|rdr(x) and dr(x)|rd2(x), which means that d2(x) = d′2(x)dr(x) and

dr(x) = d′r(x)d2(x) = d′r(x)d′2(x)dr(x). By the property that the degree of the product

is the sum of the degrees of the factors, we know that d′r(x)d′2(x) must be of degree

0, and so d′2(x) must be of degree 0. This means that d2(x) is a constant multiple of

dr(x). Thus, if d2(x) is also monic, it must be 1 · dr(x) = dr(x), and so dr(x) is the

unique monic polynomial satisfying the conditions stated above.
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Example 2.4. If we take

f1(x) = x3 + α23x2 + α23x+ α8

and

f2(x) = x3 + α28x2 + α27x+ α13,

then we find

f1(x) = 1 · f2(x) + α25x2 + α2x+ α10

f2(x) = (α12x+ α14)(α25x2 + α2x+ α10) + α30x+ α

α25x2 + α2x+ α10 = (α27x+ α9)(α30x+ α) + 0,

and so gcrd(f1(x), f2(x)) = a−30(α30x+ α) = x+ α2

If σ is surjective, then the greatest common left divisor dl(x) of f1(x) and f2(x),

written dl(x) = gcld(f(x), g(x)), is defined in the same manner using left division:

Definition 2.4. The greatest common left divisor (gcld) of f(x), g(x) ∈ R = K[x;σ, δ],

where σ is surjective, is the unique monic polynomial dl(x) = gcld(f(x), g(x)) such

that dl(x)|lf(x), dl(x)|lg(x), and for any d′(x) such that d′(x)|lf(x) and d′(x)|lg(x),

we have d′(x)|ldl(x).

Remark. We note here that a greatest common left divisor may exist without σ

being surjective, but without σ being surjective, it is not always possible to do left

division. Thus the corresponding proof of existence and uniqueness which relies on

the Euclidean algorithm is no longer possible.

We may also speak of the least common left multiple ml(x) = lclm(f(x), g(x))

of two polynomials f(x) and g(x):

10



Definition 2.5. The least common left multiple (lclm) of f(x), g(x) ∈ R is the unique

monic polynomial ml(x) = lclm(f(x), g(x)) such that f(x)|rml(x), g(x)|rml(x), and

for any m′(x) ∈ R such that f(x)|rm′(x) and g(x)|rm′(x), we have ml(x)|rm′(x).

Ore gives an algorithm for computing this polynomial in [6] Theorem 8, but a

more computationally efficient algorithm is given in Section 2 of [3]. It is computed

as follows: If we let si(x) and ti(x) be the multipliers in the extended Euclidean

algorithm then we have

s1(x) = 1 s2(x) = 0 si(x) = si−2(x)− qi(x)si−1(x)

t1(x) = 0 t2(x) = 1 ti(x) = ti−2(x)− qi(x)ti−1(x),

which guarantee that

si(x)f1(x) + ti(x)f2(x) = fi(x)

for all i such that 3 ≤ i ≤ k + 1. In particular, since fk+1(x) = 0, we have that

sk+1f1(x) + tk+1f2(x) = 0, and so sk+1f1(x) is also right divisible by f2(x), and since

the degree is the same as the degree given by Ore, we find that sk+1f1(x) is the lclm

of f1(x) and f2(x) up to a constant (as with the gcrd, we define the lclm to be the

unique monic polynomial meeting the conditions).

Example 2.5. If we use the previous example, then we find that

s3(x) = 1− 1 · 0 = 1

s4(x) = 0− (α12x+ α14) · 1 = α12x+ α14

s5(x) = 1− (α27x+ α9)(α12x+ α14) = α20x2 + α19x+ α12,

11



which means

lclm(f1(x), f2(x)) = s5(x)f1(x)

= (α20x2 + α19x+ α12)(x3 + α23x2 + α23x+ α8)

= α20x5 + α20.

We may similarly define a polynomial lcrm of f(x) and g(x) based on left

divisibility if left division is available.

Definition 2.6. The least common right multiple (lcrm) of f(x), g(x) ∈ R = K[x;σ, δ],

where σ is surjective, is the unique monic polynomial mr(x) = lcrm(f(x), g(x)) such

that f(x)|lmr(x), g(x)|lmr(x), and for any m′(x) ∈ R such that f(x)|lm′(x) and

g(x)|lm′(x), we have mr(x)|lm′(x).

The computation of this lcrm is analogous to the computation of the lclm, but

with the extended left Euclidean algorithm.

2.3 Right Evaluation

To understand the root structure of skew polynomials, we first wish to define

evaluation for skew polynomials. For a commutative polynomial f(x) ∈ K[x], the

process of evaluating f(x) at a ∈ K (denoted f(a)) is as simple as “plugging in” the

value a in place of every x in a polynomial and then carrying out the proper operations.

However, for a skew polynomial, this results in a value that isn’t necessarily the

remainder of right division by (x−a). In particular, this means a polynomial divisible

by (x− a) on the right may not be 0 when evaluated at a, a property that we desire

of the evaluation. Thus, we use an alternate definition of evaluation.

12



Definition 2.7. For any polynomial f(x) ∈ R and any a ∈ K, by using right division

we may write f(x) = qr(x)(x − a) + r. Here, r = 0 or deg r < deg(x − a) = 1, so

deg r = 0 and r is a constant. Then the evaluation of f(x) on the right at a is

f(a)r = r. Likewise, if σ is surjective, then left division is possible and we may write

f(x) = (x− a)ql(x) + s, where s = 0 or s is a constant, and the evaluation of f(x) on

the left at a is f(a)l = s.

To summarize, f(x) evaluated at a on the right should be r, the remainder of

the right division of f(x) by the polynomial (x− a).

Example 2.6. We return to the example where

f(x) = x3 + α19x2 + α17x+ α.

Since we had that

f(x) = (x2 + α4x+ α4)(x− α7) + α5,

we have f(α7)r = α5. On the other hand, we have that

f(x) = (x− α7)(x2 + α15x+ α25) + 0,

and so f(α7)l = 0.

A formula for such evaluation without carrying out division is described in [4],

and we repeat it here with our notation.

Theorem 2.3. We define recursively

N0(a) = 1

Ni+1(a) = σ(Ni(a))a+ δ(Ni(a))

13



for all a ∈ K and i ≥ 1. For any a ∈ K and any polynomial f(x) =
∑d

i=0 bix
i ∈ R,

we have f(a)r =
∑d

i=0 biNi(a).

This means that f(a)r as computed above is the remainder of dividing f(x)

on the right by (x− a), as desired. The proof of this is in [4] and is as follows:

Proof. For any k ≥ 0, we have (x− a)|r(xk −Nk(a)). This is trivially true for k = 0,

as tx0 − N0(a) = 1 − 1 = 0, and so it is trivially divisible by (x − a). Then we may

use induction, assuming it is true for some k ≥ 0 and see that

xk+1 −Nk+1(a) = xk+1 − σ(Nk(a))a− δ(Nk(a))

= xk+1 − σ(Nk(a))a+ (σ(Nk(a))x− σ(Nk(a))x)− δ(Nk(a))

= xk+1 + σ(Nk(a))(x− a)− (σ(Nk(a))x+ δ(Nk(a)))

= σ(Nk(a))(x− a) + xk+1 − xNk(a)

= σ(Nk(a))(x− a) + x(xk −Nk(a)).

From our hypothesis, (x−a)|r(xk−Nk(a)), so both terms on the last line are divisible

on the right by (x−a). This proves that (x−a)|r(xk−Nk(a)) for any k ≥ 0. We then

note that f(x)−f(a)r =
∑d

i=0 bix
i−
∑n

i=0 biNi(a) =
∑d

i=0 bi(x
i−Ni(a)). By applying

what we just proved to each term in the sum, we find that (x− a)|r(f(x)− f(a)r), so

we may write f(x)− f(a)r = qr(x)(x− a), which means f(x) = qr(x)(x− a) + f(a)r.

Since f(a)r = 0 or has degree 0, that means it is indeed the remainder of division of

f(x) by (x− a) on the right, as we desire.

We will generally take δ ≡ 0, and since we operate with K = Fqm , a finite field,

σ must be an automorphism. We in fact take σ to be the Frobenius automorphism.

14



That is, for any a ∈ K, σ(a) = aq. Combined with the above, we see that

N0(a) = 1

Ni+1(a) = Ni(a)qa,

and this allows us to solve the recursion as Ni(a) = a
qi−1
q−1 . We use the notation

JiK = qi−1
q−1 to write this more compactly as Ni(a) = aJiK. Then we can compactly

write

f(a)r =
n∑
i=0

bia
JiK.

2.4 Evaluation of Products

Much as simply replacing x with a does not necessarily result in the proper

evaluation of a skew polynomial, if we have h(x) = f(x)g(x), it is not necessarily

the case that h(a)r = f(a)rg(a)r. We thus seek a formula that can be used for the

evaluation of products of polynomials. As in [4], we first define, for any element

a ∈ K and any other element c ∈ K \ {0}:

ac = (σ(c)a+ δ(c))c−1. (2.4)

Then for any other d ∈ K \ {0}, we see that

(ac)d = (σ(d)[σ(c)a+ δ(c)]c−1 + δ(d))d−1

= (σ(d)[σ(c)a+ δ(c)]c−1 + δ(d)cc−1)d−1

= (σ(d)σ(c)a+ σ(d)δ(c) + δ(d)c)(dc)−1

= (σ(dc)a+ δ(dc))(dc)−1

= adc.
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We say that a, b ∈ K are (σ, δ)-conjugate if there is some c ∈ K \ {0} such that

ac = b, and this is an equivalence relation on the elements of K, so it partitions K

into conjugacy classes of elements that are all (σ, δ)-conjugate to each other.

Using this notion, we have the following:

Theorem 2.4. If h(x) = f(x)g(x) where f(x), g(x) ∈ R, then for any a ∈ K, if

g(a)r = 0, h(a)r = 0, but if g(a)r 6= 0, we have h(a)r = f(ag(a)r)rg(a)r.

Proof. First, in the case g(a)r = 0, we have (x − a)|rg(x), and since g(x)|rh(x), we

also get (x− a)|rh(x) by transitivity of right divisibility, and thus h(a)r = 0 as well.

Otherwise, we take c = g(a)r and have that c 6= 0, so c ∈ K \{0}, and if we let b = ac,

then we have

(x− b)c = xc− bc

= σ(c)x+ δ(c)− acc

= σ(c)x+ δ(c)− (σ(c)a+ δ(c))c−1c

= σ(c)x+ δ(c)− σ(c)a− δ(c)

= σ(c)(x− a).

If we then write that g(x) = q1(x)(x − a) + c and f(x) = q2(x)(x − b) + f(b)r, then

because we may use this to write

h(x) = f(x)g(x)

= f(x)q1(x)(x− a) + f(x)c

= f(x)q1(x)(x− a) + q2(x)(x− b)c+ f(b)rc

= f(x)q1(x)(x− a) + q2(x)σ(c)(x− a) + f(b)rc

= [f(x)q1(x) + q2(x)σ(c)](x− a) + f(b)rc,

the remainder of dividing h(x) on the right by (x−a) is f(b)rc = f(ac)c = f(ag(a))g(a),

which means h(a)r = f(ag(a))g(a).
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When we again consider the specific case that K = Fqm with σ(a) = aq and

δ ≡ 0, then we have that

ac = (σ(c)a+ δ(c))c−1

= (cqa+ 0)c−1

= cqac−1

= acq−1.

2.5 Factorization

We note here that in general, a skew polynomial ring R is not a unique factor-

ization ring. In fact, many different factorizations may be possible, as the following

example shows

Example 2.7. We let f(x) = x4+α17x3+α16x2+α9x+α3 and find that the following

are all of the factorizations of f(x) into monic irreducible factors:

(x+ α) (x+ α2) (x2 + x+ 1)

(x+ α24) (x+ α10) (x2 + x+ 1)

(x+ α12) (x+ α22) (x2 + x+ 1)

(x+ α) (x2 + α20x+ α18) (x+ α15)

(x+ α24) (x2 + α9x+ α24) (x+ α17)

(x+ α12) (x2 + α26x+ α2) (x+ α20)

(x2 + α19x+ α13) (x+ α6) (x+ α15)

(x2 + α19x+ α13) (x+ α4) (x+ α17)

(x2 + α19x+ α13) (x+ α) (x+ α20)
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We note that in the example, each factorization has two factors of degree 1

and one of degree 2. This is not an accident. We introduce some terminology and a

theorem from [6] to see why.

Definition 2.8. A polynomial p(x) ∈ R that is monic and irreducible; that is, p(x)

has no monic factors other than 1 and p(x), is said to be prime.

Definition 2.9. For any two polynomials f(x), g(x) ∈ R, lclm(f(x), g(x)) is divisible

by g(x), and the polynomial f ′(x) = lclm(f(x), g(x))/g(x) is called the transform of

f(x) by g(x).

Definition 2.10. If f(x), g(x) ∈ R are relatively prime (gcrd(f(x), g(x)) = 1) and

f ′(x) is the transform of f(x) by g(x), then deg(f ′(x)) = deg(f(x)), and we say that

f ′(x) is similar to f(x).

With these definitions in place, we restate Theorem 1 from Chapter 2 of [6]:

Theorem 2.5. Every monic polynomial has a representation as the product of prime

factors. Two different decompositions of the same polynomial have the same number

of prime factors and the factors are similar in pairs.

This result is actually stronger than we need here, but in particular, since

similar polynomials have the same degree and any two factorizations have terms that

are similar in pairs, any two factorizations have terms that may be paired up which

have the same degree, and so they must have the same number of factors with any

given degree.

2.6 Closures

At this point, it is important to speak of the closure of a set of elements of K.

First, we must define the left and right minimal polynomials of such a set.
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Definition 2.11. The right minimal polynomial of a set Z = {a1, a2, . . . , an}, with

ai ∈ K for i ∈ {1, . . . , n} is the monic polynomial µZ,r(x) ∈ R of minimal degree such

that µZ,r(ai)r = 0 for all i ∈ {1, . . . , n}. Similarly, the left minimal polynomial of Z

is the monic polynomial µZ,l(x) ∈ R of minimal degree such that µZ,l(ai)l = 0 for all

i ∈ {1, . . . , n}.

We will see how to find such a polynomial in the next section. Now that the

minimal polynomial has been defined, define the closure of a set of elements.

Definition 2.12. The right closure of Z = {a1, a2, . . . , an}, denoted Z
r
, is the set of

all k ∈ K such that µZ,r(k)r = 0, and likewise the left closure, Z
l

of Z is the set of

all k ∈ K such that µZ,l(k)l = 0.

Example 2.8. If we continue to work in the same ring R as before and consider the

set Z = {α2, α3}, we find the polynomial µZ,r(x) = x2+α15x+α25, and since the right

roots of this polynomial are α2, α3, and α20, we have that Z
r

= {α2, α3, α20}. Since

Z 6= Z
r
, we say that Z is not closed on the right. We also find µZ,l(x) = x2+α26x+α26,

and the left roots of this polynomial are α2, α3, and α16, so Z
l
= {α2, α3, α16}. This

also means Z is not closed on the left.

As seen in the example, other than the elements of Z, there is no guarantee

of other elements in Z
r

being in Z
l
.

With these definitions in place, we may also define the independence of a set.

Definition 2.13. A set Z = {a1, a2, . . . , an} is called right independent if for any

i ∈ {1, . . . , n}, µZ\{ai},r(ai)r 6= 0. Similarly, Z is left independent if µZ\{ai},l(ai)l 6= 0

for all i ∈ {1, . . . , n}.
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2.7 Interpolation

Using the formula for evaluation of products, we can interpolate polynomials

with a given set of roots. Let a1, a2, . . . , an be elements of K. Let f1(x) = x − a1.

Then clearly f1 has only a1 as a root, since f1(a1)r = 0. Then for 2 ≤ i ≤ n, we

calculate ci = fi−1(ai)r. If ci = 0, then we take fi(x) = fi−1(x), but if ci 6= 0, we take

fi(x) = (x−acii )fi−1(x) = (x−aicq−1i )fi−1(x). Since (x−acii ) evaluated at acii is 0, we

have that fi(ai)r = 0. By this construction, we will have that fi(x) has a1, a2, . . . , ai

as roots. This can be continued up to i = n to construct the polynomial fn(x) with

all of a1, . . . , an as roots.

Theorem 2.6. The polynomial fn(x) constructed above is the right minimal polyno-

mial µZ,r(x) for Z = {a1, a2, . . . , an}.

Proof. We proceed by induction. First, if we take Z1 = {a1}, then f1(x) = (x − a1)

has degree 1. Any polynomial of degree 0 will be a constant, which when evaluated

at a1 will be nonzero. The zero polynomial is not monic, so the monic polynomial of

minimal degree with a1 as a root must have degree at least 1. Since deg(f1(x)) = 1,

f1(x) is the minimal polynomial. We then assume that for some 1 ≤ m < n, fm(x) is

the minimal polynomial of Zm = {a1, . . . , am}, so fm(x) = µZm,r(x). If fm(am+1)r = 0,

then by definition of µZm,r(x), no nonzero polynomial of lesser degree can have all of

Zm as right roots, and so no lesser degree polynomial can have Zm∪{am+1} as roots.

Since fm(am+1)r = 0, and fm(x) = µZm,r(x) is monic, it therefore is the minimal

polynomial of Zm+1 = Zm ∪{am+1}. In this case we defined fm+1(x) = fm(x), and so

we indeed have fm+1(x) = µZm+1,r(x).

If we instead have fm(am+1) 6= 0, then if we let d = deg(fm), by our assump-

tion, no polynomial of degree less than d has all of Zm as right roots. If a polynomial

f ′m(x) of degree d had all of Zm+1 as right roots, then multiplying by the inverse of
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the leading coefficient will generate a monic polynomial with all of Zm as right roots

(in addition to am+1). By the divisibility property of the minimal polynomial, this

must be µZm,r(x) = fm(x), but this contradicts ai not being a root of fm(x), and so

no polynomial of degree d has all of Zm+1 as right roots. Since in this case fm+1(x) is

of degree d+1 and has all of Zm+1 as right roots, and is monic because it is a product

of two monic polynomials, we must have that fm+1(x) = µZm+1,r(x). Thus, in either

case fm+1(x) = µZm+1,r(x), and so by induction, fn(x) = µZ,r(x).
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Chapter 3

Partial Results toward the GCLRD

Now that the necessary parts of the existing framework of skew polynomials

have been laid out, it is possible to discuss the work that has been done specifically

for this paper. In this chapter, unless indicated otherwise, we will assume that the

field K is finite, so K = Fqm for some prime power q and some integer m ≥ 1. We

further assume that σ(a) = aq for any a ∈ K (this is the Frobenius automorphism),

and that δ ≡ 0. In this case we may write R = Fqm [x;σ]. Furthermore, we see that

σ−1 is is defined by σ−1(a) = aq
m−1

.

3.1 Left Evaluation

We have previously defined right evaluation and left evaluation, and we have

seen a formula for right evaluation. We wish to find a similar formula for left evalu-

ation; that is, we wish to define some recursive formula for Mi(a) such that we may

write f(a)l =
∑n

i=0 biMi(a) and have f(a)l be the remainder of dividing f(x) on the

left by (x− a). Assuming that σ is an automorphism, we may make use of σ−1. In a

natural similarity to the case for right evaluation, we have the following theorem.
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Theorem 3.1. We define recursively

M0(a) = 1

Mi+1(a) = aσ−1(Mi(a))− δ(σ−1(Mi(a)))

for all a ∈ K and i ≥ 1. For any a ∈ K and any polynomial f(x) =
∑n

i=0 bix
i ∈ R,

we rewrite f(x) =
∑n

i=0 x
ib′i ∈ R and have f(a)l =

∑n
i=0Mi(a)b′i.

Proof. We wish to show that (x − a)|l(xk −Mk(a)) for all k ≥ 0. Again, for k = 0,

this is trivial, as x0−M0(a) = 1−1 = 0, and (x−a)|l0. Then we again use induction,

assuming that for some k ≥ 0, we know that (x− a)|l(xk−Mk(a)). We then consider

xk+1 −Mk+1(a) = xk+1 − aσ−1(Mk(a)) + δ(σ−1(Mk(a)))

= xk+1 − aσ−1(Mk(a)) + (xσ−1(Mk(a)))

−xσ−1(Mk(a))) + δ(σ−1(Mk(a)))

= (x− a)σ−1(Mk(a)) + xk+1 − [xσ−1(Mk(a))− δ(σ−1(Mk(a)))]

= (x− a)σ−1(Mk(a)) + xk+1 − [σ(σ−1(Mk(a)))x

+δ(σ−1(Mk(a)))− δ(σ−1(Mk(a)))]

= (x− a)σ−1(Mk(a)) + (xk −Mk(a))x.

From our induction hypothesis, (x− a)|l(tk −Mk(a)), and so both terms on the last

line are divisible on the left by (x− a), which means (x− a)|l(xk+1 −Mk+1(a)), and

by induction, (x − a)|l(xk − Mk(a)) for all k ≥ 0. This means that if we rewrite

f(x)
∑n

i=0 bix
i as f(x) =

∑n
i=0 x

ib′i (which is possible since σ is invertible), and let

f(a)l =
∑n

i=0Mi(a)b′i, we find that

f(x)− f(a)l =
n∑
i=0

xib′i −
n∑
i=0

Mi(a)b′i =
n∑
i=0

(xi −Mi(a))b′i,
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and applying what we just proved to each term of the sum as before, we find that

(x − a)|l(f(x) − f(a)l). This means we may write f(x) − f(a)l = (x − a)ql(x), or

f(x) = (x− a)ql(x) + f(a)l. Since f(a)l has degree 0, we know that f(a)l is thus the

remainder of division of f(x) by (x − a) on the left, which is the property we desire

of a left evaluator.

3.1.1 Left Evaluation of Products and Interpolation

Just as we were able to find a formula for the evaluation of a product of two

polynomials on the right, we can find a formula for the evaluation of a product on

the left. For any a ∈ K and any c ∈ K \ {0}, we can define

ca = σ−1(c)ac−1 = cq
m−1−1a. (3.1)

Theorem 3.2. If h(x) = f(x)g(x), then for any a ∈ K, if f(a)l = 0, then h(a)l = 0,

but if f(a)l 6= 0, we have h(a)l = f(a)lg(f(a)la)l. Moreover, if Z = {a1, . . . , an} ⊆ K,

let g1(x) = x − a1, and for 2 ≤ i ≤ n, calculate di = gi−1(ai)l. If di = 0, take

gi(x) = gi−1(x), and take gi(x) = gi−1(x)(x− diai) otherwise. Then gn is the minimal

polynomial of Z.

The proof of these is analogous to the proof for right evaluation of products

and right minimal polynomials.

3.1.2 Left Evaluation as Right Evaluation

We note that the structures of f(a)r and f(a)l are very similar, and so we

attempt to write f(a)l as g(a)r, for some polynomial g(x) related to f(x). This leads

us to the following result.
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Theorem 3.3. Let K be a field. If we define σ′ = σ−1 and δ′ = −δ ◦ σ−1, then

R′ = K[x;σ′, δ′] is a skew polynomial ring, and for any polynomial f(x) =
∑d

i=0 bix
i

rewritten as f(x) =
∑d

i=0 bix
i =

∑d
i=0 x

ib′i ∈ R and any a ∈ K, f(a)l = f ′(a)r, where

f ′(x) ∈ R′ is the polynomial f ′(x) =
∑d

i=0 b
′
ix
i.

Proof. We see that σ−1 is already an endomorphism of K. We then wish to show

that −δ ◦ σ−1 is a σ−1-derivation. First, we need to show that it is an additive

homomorphism of K. We find that

−δ(σ−1(a+ b)) = −δ(σ−1(a) + σ−1(b))

= −δ(σ−1(a))− δ(σ−1(b))

because σ−1 is an automorphism and δ is a homomorphism. Thus, we find that

−δ ◦ σ−1 is an additive homomorphism of K. Next, we check

−δ(σ−1(ab)) = −δ(σ−1(a)σ−1(b))

= −
[
σ(σ−1(a))δ(σ−1(b)) + δ(σ−1(a))σ−1(b)

]
.

Here, we run into a problem in that this doesn’t appear to fit the general form of

a σ−1-derivation. However, since K is not only a division ring but a field, and thus

commutative, we get

−δ(σ−1(ba)) = −δ(σ−1(ab))

= −
[
σ(σ−1(a))δ(σ−1(b)) + δ(σ−1(a))σ−1(b)

]
= −

[
δ(σ−1(b))a+ σ−1(b)δ(σ−1(a))

]
= σ−1(b)(−δ(σ−1(a))) + (−δ(σ−1(b)))a.

25



Thus, if we let σ′ = σ−1 and δ′ = −δ ◦ σ−1, we have

δ′(ba) = σ′(b)δ′(a) + δ′(b)a

for all a, b ∈ K, which means δ′ is a σ′-derivation. We can then find that

M0(a) = 1

Mk+1(a) = aσ−1(Mk(a))− δ(σ−1(Mk(a)))

= σ′(Mk(a))a+ δ′(Mk(a)),

which we can see means Mk(a) = N ′k(a), where N ′k(a) is the function used in right-

evaluation of polynomials in R′ = K[x;σ′, δ′]. We then furthermore note that we

have

f(a)l =
n∑
i=0

Mi(a)b′i =
n∑
i=0

b′iMi(a) =
n∑
i=0

b′iN
′
i(a) = f ′(a)r

That is, left-evaluation of f(x) at a in R is the right-evaluation of the polynomial

f ′(x) at a in R′, where f ′ is the polynomial with left-coefficients equal to the right-

coefficients of f(x) when it is transformed to have only right-coefficients.

3.2 The GCLRD

For any two polynomials f(x) and g(x) in R, we wish to define a polynomial

divisor that is somehow the largest polynomial “between” f(x) and g(x). We define

the set H = {h(x) ∈ R : h(x)|rf(x) and h(x)|lg(x)}. The temptation is to define the

greatest common left-right divisor (gclrd) as the polynomial d(x) ∈ R such that

1. d(x) ∈ H

2. ∀h(x) ∈ H, h(x)|rd(x) and h(x)|ld(x),
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so that the definition is similar to that of the gcrd and the gcld; that is, if d′(x)|rf(x)

and d′(x)|lg(x), we have d′(x)|rd(x) and d′(x)|ld(x). However, an example shows why

this definition is not appropriate.

Example 3.1. Continuing to work in the case case where K = F25 , with α a primitive

element of K and σ(a) = a2 for all a ∈ K, we let f(x) = x2 + α11x + α19 and

g(x) = x3 +α5x2 +α8x+α27. Then the polynomials in H(f(x), g(x)) of degree 2 are

x2 + α11x+ α19

α26x2 + α6x+ α14

α29x2 + α9 + α17.

Unfortunately, none of these is divisible by all of the other elements of H on both

sides, so none of these satisfy Property 2 from above. Any polynomial in H of lesser

degree is clearly not divisible by any of these three polynomials, and so there is no

polynomial satisfying Properties 1 and 2.

We therefore use an alternate definition.

Definition 3.1. For any two polynomials f(x), g(x) ∈ R, let the set

H = {h(x) ∈ R : h(x)|rf(x) and h(x)|lg(x)}.

A greatest common left-right divisor d(x) of f(x) and g(x) is a polynomial such that

d(x) ∈ H, and deg(d(x)) ≥ deg(h(x)) for all h(x) ∈ H. We let gclrd(f(x), g(x)) be

the set of all such polynomials.

We know that such polynomials exist because trivially 1|rf(x) and 1|lg(x), so

1 ∈ H, which means H is nonempty, and the degree of any polynomial in H is at most
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min{deg(f(x)), deg(g(x))}. Thus, examining the set of the degrees of polynomials in

H, we find that there is a maximum, and any polynomial in H of that degree will

satisfy the above definition.

3.2.1 Special Cases

There are some special cases where it is possible to give a nice formula for

a polynomial sharing the roots of two polynomials. In this section, we assume

f(x), g(x) ∈ R are products of linear factors.

Exactly Two Common Roots

Here, we consider a polynomial which is an interpolation of two elements of

K which are right roots of f(x) and left roots of g(x).

Theorem 3.4. Let

Z = {k ∈ K|f(k)r = 0 and g(k)l = 0}.

Then if |Z| = 2, and Z = {a1, a2} is independent,

(a1 − a2)q
2Jr−1KµZ,r ∈ H.

Proof. We have that

µZ,r(x) = (x− σ(a2 − a1)a2(a2 − a1)−1)(x− a1)

by Theorem 2.6. We let c = (a1 − a2)Jr−1K. In this way, cq−1 = (a1 − a2)q
m−1−1.
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We then see that

µZ,l(x)c = (x− a2)(x− σ−1(a1 − a2)a1(a1 − a2)−1)c

= (x− a2)(x− (a1 − a2)q
m−1−1a1)c

= (x− a2)σ(c)(x− (a1 − a2)q
m−1−1a1(σ(c))−1c)

= (x− a2)σ(c)(x− (a1 − a2)q
m−1−1a1c

−(q−1))

= (x− a2)σ(c)(x− (a1 − a2)q
m−1−1a1(a1 − a2)−(q

m−1−1))

= (x− a2)σ(c)(x− a1)

= σ2(c)(x− (σ2(c))−1a2σ(c))(x− a1)

= cq
2

(x− (cq−1)−qa2)(x− a1)

= cq
2

(x− ((a1 − a2)q
m−1−1)−qa2)(x− a1)

= cq
2

(x− (a1 − a2)−1(a1 − a2)qa2)(x− a1)

= cq
2

(x− (a1 − a2)q−1a2)(x− a1).

If 2|q, then we have a1− a2 = −(a1− a2) = a2− a1. If instead we have that q is odd,

then q− 1 is even, so (a1− a2)q−1 = (a2− a1)q−1. This means that the above gives us

µZ,l(x)c = cq
2

(x− (a2 − a1)q−1a2)(x− a1)

= cq
2

(x− σ(a2 − a1)a2(a2 − a1)−1)(x− a1)

= (a1 − a2)q
2Jr−1KµZ,r(x).

Since these interpolations are minimal polynomials, they are also the lclm’s of the

relevant linear factors, and by the divisibility property of the lclm, any right multiple

of µZ,l(x) by a constant will divide g(x) on the left, and any right multiple of µZ,r(x)

by a constant will divide f(x) on the right. Thus, this polynomial is in H.
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Unfortunately, while this polynomial clearly has each element of Z as both a

left and a right root, this does not guarantee that it is the polynomial of greatest

degree with this property. In turn, it is not guaranteed that it is the polynomial of

largest degree in H. For instance, the following is a simple counterexample.

Example 3.2. If we let f(x) = g(x) = x3 + α19x2 + α14x + 1, then it is clear that

f(x)|rf(x) and f(x)|lg(x), so f(x) ∈ H. Furthermore, it is clear that f(x) has the

highest possible degree of any polynomial in H, so f(x) ∈ gclrd(f(x), g(x)). We can

verify that f(x) is the right interpolation of {α6, α14, α18}, so it is a product of linear

factors, and

Zr = {α6, α7, α14, α18, α24, α26, α29}.

Similarly, g(x) is a left interpolation of {α6, α14, α16}, so it is a product of linear

factors, and

Zl = {α6, α9, α11, α12, α14, α16, α25}.

Thus, we find that Z = Zr ∩ Zl = {α6, α14}, and so m(x) = (a1 − a2)q
2Jr−1KµZ,r ∈ H,

but deg(m(x)) = 2 < 3, so m /∈ gclrd(f(x), g(x)).

Extensions of Degree Two

If we work in a field K = Fqm where m = 2, then we have that σ(a) = aq for

all a ∈ K, and also σ−1(a) = aq
2−1

= aq = σ(a), and so σ−1 = σ. If we again consider

δ ≡ 0, this allows us to find the following result.

Theorem 3.5. Again let

Z = {k ∈ K|f(k)r = 0 and g(k)l = 0}.

If R = Fq2 [x;σ], then for any two polynomials f(x), g(x) ∈ R, µZ,r(x)|r gcrd(f(x), g(x)),

where if g(x) =
∑d

i=0 gix
i, g(x) =

∑d
i=0 σ

i(gi)x
i.
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Proof. We note that as in Theorem 3.3, g(a)l = g′(a)r. Here, g′(x) =
∑d

i=0 b
′
ix
i, where

g(x) =
∑d

i=0 bix
i =

∑d
i=0 x

ib′i. Since we have that δ ≡ 0, we have that xib′i = σi(b′i)x
i,

and so if b′i = σ−i(bi), we have xib′i = bix
i. Since σ−1 = σ, we can also write

b′i = σi(bi). This means we have g′(x) =
∑d

i=0 σ
i(bi)x

i = g(x). Further, we note that

g(x) ∈ R′, but R′ = K[x;σ−1] = K[x;σ] = R, so g(x) ∈ R, and so we may consider

d(x) = gcrd(f(x), g(x)).

Next, we see that since g(a)l = g(a)r, the right roots of g(x) are precisely the

left roots of g(a). This means that right roots of d(x) are right roots of f(x) and

right roots of g(x), and thus left roots of g(x). This means that the right roots of

d(x) are in Z by the definition of Z. Furthermore, note that any element a ∈ Z is a

right root of f(x), so (x − a)|rf(x), and is a left root of g(x), and thus a right root

of g(x), so (x− a)|rg(x). Together, this means that (x− a)|r gcrd(f(x), g(x)). Since

this is true for all a ∈ Z, we find that µZ,r(x)|r gcrd(f(x), g(x)) by the properties of

µZ,r(x) being the lclm of all of the factors (x− a).

It is possible that gcrd(f(x), g(x)) has factors that are not in µZ,r(x), and so

we do not necessarily have equality.

Example 3.3. If we consider K = F32 = F3[α]/(α2 + 2α + 2) such that α is a

primitive element of K, with σ(a) = a3 for all a ∈ K and once again take δ ≡ 0, then

we consider f(x), g(x) ∈ R = K[x;σ], where

f(x) = (x+ 1)(x+ α)(x+ α2) = x3 + α7x+ α3

and

g(x) = (x+ α2)(x+ 2)(x+ α5) = x3 + α5x+ α3.

Clearly f(x) and g(x) are products of linear factors by definition. We then find that
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Zr = Zl = {α5, α6}, and so Z = {α5, α6}. From this we can compute the minimal

polynomial µZ,r(x) = x2 + 2x+ α3. We also compute

g(x) = σ3(1)x3 + σ(α5)x+ α3 = x3 + α7x+ α3 = f(x),

and so gcrd(f(x), g(x)) = gcrd(f(x), f(x)) = f(x), and we certainly have µZ,r(x)|rf(x),

because all right roots of µZ,r ar right roots of f(x), but we also clearly do not have

equality because the degrees do not match.

3.2.2 A Necessary Condition

At this point, we consider a set of elements that is left and right independent

and wish to examine a condition that is necessary for some left multiple of right

minimal polynomial of these elements to also be a right multiple of the left minimal

polynomial. First, however, we note an important result of multiplying a polynomial

by a constant on the left.

Modifications of Left Roots

Let us study the set of left roots of two polynomials when one is a constant

multiple of the other.

Theorem 3.6. If L = {a1, . . . , an} is the set of left roots of f(x), then for any nonzero

b ∈ K, the set of left roots of bf(x) is L′ = {b(σ−1(b))−1a1, . . . , b(σ−1(b))−1an}.

Proof. We start with L = {a1, . . . , an} as the set of left roots of f(x). This means,

for any i ∈ {1, . . . , n}, that f(ai)l = 0. This in turn means that f(x) = (x− ai)ql(x)

for some ql(x) ∈ R.
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We then have that

bf(x) = b(x− ai)ql(x)

= (xσ−1(b)− bai)ql(x)

= (x− bai(σ−1(b))−1)σ−1(b)ql(x),

and since (b(σ−1(b))−1ai − bai(σ−1(b))−1)) = 0, we have that bf(b(σ−1(b))−1ai)l = 0,

and so b(σ−1(b))−1ai is a left root of bf(x). Since this is true for all i ∈ {1, . . . , n},

we have that L′ as defined above contains left roots of bf(x).

Now we must show that it is an extensive list. Consider any left root k ∈ K

of bf(x). Then we have that (x− k)|lbf(x), so

bf(x) = (x− k)q′l(x)

= (x− k)σ−1(b)(σ−1(b))−1q′l(x)

= (bx− kσ−1(b))(σ−1(b))−1q′l(x)

= b(x− b−1kσ−1(b))(σ−1(b))−1q′l(x).

Thus, we may write f(x) = (x− b−1kσ−1(b))(σ−1(b))−1q′l(x), so b−1kσ−1(b) is

a left root of f(x), and thus b−1kσ−1(b) = ai for some i ∈ {1, . . . , n}. Then we have

that kσ−1(b) = bai, and k = b(σ−1(b))−1ai ∈ L′. This means that not only are all

elements of L′ left roots of bf(x), but all left roots of bf(x) are elements of L′. Thus

L′ is the set of left roots of bf(x), as stated.

Left Multiple of Right Minimal Polynomial

We are interested in characterizing the polynomials in gclrd(µZ,r, µZ,l) when

Z = {a1, . . . , an}. That is, we consider when the left multiple of a right minimal

polynomial of a set is simultaneously a right multiple of the left minimal polynomial
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of the same set. In particular, we consider the set Z to be independent on both sides.

Theorem 3.7. Let Z = {a1, . . . , an} ⊂ K be a set of elements that is left independent

and right independent. Then if

bµZ,r(x) = µZ,l(x)c

for some b, c ∈ K, b must be a solution to

b−1σ−n(b) =
n∏
i=2

fi−1(ai)
q−1
r

gi−1(ai)
qm−1−1
l

,

and c = σ−n(b), where fi(x) and gi(x) are as defined in Section 2.7.

Proof. Since the elements of Z are left and right independent, when we interpolate

µZ,r(x) and µZ,l(x), we start with f1(x) = (x − a1) and g1(x) = (x − a1), and have,

for 1 < i ≤ n,

fi(x) = (x− σ(fi−1(ai)r)aifi−1(ai)
−1
r )fi−1(x)

gi(x) = gi−1(x)(x− σ−1(gi−1(ai)l)aigi−1(ai)−1l ).

Then we have µZr(x) = fn(x) and µZ,l(x) = gn(x) and consider the constant terms of

both fn(x) and gn(x). Specifically we let fi(x) =
∑i

j=0 bi,jx
j and gi(x) =

∑i
j=0 ci,jx

i,

and then we let di =
bi,0
ci,0

.

For i = 1, it is clear that b1,0 = −a1 = c1,0, and so di = 1. Then we examine

an arbitrary i > 1. We see that

bi,0 = σ(fi−1(ai)r)aifi−1(ai)
−1
r bi−1,0

= fi−1(ai)
q
raifi−1(ai)

−1
r bi−1,0

= fi−1(ai)
q−1
r aibi−1,0
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and

ci,0 = σ−1(gi−1(ai)l)aigi−1(ai)
−1
l ci−1,0

= gi−1(ai)
qm−1

l aigi−1(ai)
−1
l ci−1,0

= gi−1(ai)
qm−1−1
l aici−1,0,

so we have that

di =
bi,0
ci,0

=
fi−1(ai)

q−1
r aibi−1,0

gi−1(ai)
qm−1−1
l aici−1,0

=
fi−1(ai)

q−1
r

gi−1(ai)
qm−1−1
l

di−1.

This means that di = fi−1(ai)
q−1
r

gi−1(ai)
qm−1−1
l

di−1, and following this recursive formula,

we get that

dn =
n∏
i=2

fi−1(ai)
q−1
r

gi−1(ai)
qm−1−1
l

.

Then we note that if bµZ,r = µZ,lc, then bfn(x) = gn(x)c, and by comparing the

coefficients of xn, we must have c = σ−n(b). Then comparing the constant coefficients,

we have that bbn,0 = cn,0σ
−n(b), so bn,0

cn,0
= b−1σ−n(b), or b−1σ−n(b) = dn and so b must

be a solution to

b−1σ−n(b) =
n∏
i=2

fi−1(ai)
q−1
r

gi−1(ai)
qm−1−1
l

.

If b is a solution to this equality, then we have bµZ,r(x) ∈ gclrd(µZ,r(x), µZ,l(x)),

and so this characterizes a special case of the gclrd.
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Chapter 4

Implementation

To help formulate and test new hypotheses, several algorithms were imple-

mented to ease computation with skew polynomials. Since the MAGMA language

is designed to work with algebraic structures already, it was chosen to minimize the

amount of work that had to be done from scratch. In particular, once the field K is

specified, all of the operations in the finite field are handled intuitively by MAGMA.

In MAGMA, the built-in definitions of polynomial rings either take multipli-

cation to be commutative, or treat multivariate multiplication as non-commutative

in the variables, but still commutative with respect to multiplication of variables and

coefficients. This meant that simply specifying the rule for multiplication of x · a

in a predefined polynomial ring structure was not possible. Additionally, there were

problems with the order of function declaration that prevented easy overloading of

predefined operators.

Thus, in order to represent skew polynomials, we interpreted them as maps

applied to sequences of coefficients, as explained in Chapter 1, Section 2 of [5]; That is,

we consider the ring R = ⊕∞i=0K, where an element {ai}∞i=0 represents the polynomial∑
i∈N|ai 6=0 aix

i (this sum is possible because in the direct product, only finitely many
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terms of the sequence are nonzero). We then consider x : R→ R defined by, for any

{ai}∞i=0 ∈ R,

(a0, a1, . . . ) 7→ (0, σ(a0), σ(a1), . . . );

that is, x({ai}∞i=0) = {bi}∞i=0, with b0 = 0 and bi = σ(ai−1) for i ≥ 1. These are

precisely the coefficients one obtains by multiplying a polynomial by x on the left.

Repeated multiplication by x on the left is the same as repeated application of this

map. This means that addition may be defined as normal for direct sums, and if we

define multiplication in R by converting the first sequence into a polynomial in x and

applying it to the second sequence, we find that R is isomorphic to the ring K[x;σ]

used throughout the paper.

By using MAGMA’s functions for working with mappings, this allowed skew

polynomial operations to be defined in terms of operations with maps, and the ac-

tual map x itself could be defined as part of setting up the skew polynomial ring,

eliminating the function declaration problem.

Once this definition was in place, overloading the ∗ and + operators allowed for

natural expressions. However, MAGMA outputs the resulting skew polynomial as an

abstract mapping from ⊕∞i=0K to ⊕∞i=0K. To retrieve the coefficients, it is necessary to

apply the mapping to the sequence (1, 0, 0, . . . ). That is, we multiply on the right by

1. With this translation between a mapping and a sequence of coefficients, it became

possible to write algorithms that worked with the coefficients of polynomials without

having to worry about specifying the rules for multiplying and adding polynomials

(for these operations, polynomials are considered as maps and MAGMA handles the

operations).

As in the proof of Lemma 2.1, polynomial division can be broken down into a

process of polynomial long division. Starting with f(x) of degree n and g(x) of degree
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m, the coefficient anσ
n−m(b−1m ) is calculated and given as the coefficient for xn−m in the

quotient, and the process is continued with the difference f(x)−anσn−m(b−1m )xn−mg(x)

and so on until the degree of the difference is less than m. This algorithm returns the

quotient and the remainder. Left division is done in the same manner. In turn, both

of these are used to carry out the Euclidean algorithm to find the gcrd and gcld of

any two polynomials. Left and right evaluation were implemented as the algorithms

would indicate, with the simplification that δ ≡ 0.

The following are the principal functions implemented:

OpMap(Coeff): PowSeqEnum -> mapping

Converts the sequence of coefficients Coeff into the corresponding operator

map

[q, r] = rDiv(f, g): mapping,mapping -> mapping,mapping

Performs right division, returning operator maps q and r such that f = qg+r,

with r = 0 or r corresponding to a polynomial of lower degree than g.

[q, r] = lDiv(f, g): mapping,mapping -> mapping,mapping

Performs left division, returning operator maps q and r such that f = gq + r,

with r = 0 or r corresponding to a polynomial of lower degree than g.

rFac(f1, f2): mapping,mapping -> boolean

Returns true if f1(x)|rf2(x) and returns false otherwise. Relies on rDiv.

lFac(f1, f2): mapping,mapping -> boolean

Returns true if f1(x)|lf2(x) and returns false otherwise. Relies on lDiv.
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Oregcrd(f, g): mapping,mapping -> mapping

Returns the map corresponding to dr(x) = gcrd(f(x), g(x)). Employs the

standard Euclidean Algorithm.

Orelclm(f, g): mapping,mapping -> mapping

Returns the map corresponding to ml(x) = lclm(f(x), g(x)). Employs the

formula elaborated in [3]

H(f1,f2): mapping,mapping -> list of mappings

Returns a list of mappings corresponding to the set H of polynomials that

divide f1(x) on the left and f2(x) on the right. This function currently makes use of

brute force.

reval(f,val): mapping, FinFldElt -> FinFldElt

Returns the value f(val)r.

leval(f,val): mapping, FinFldElt -> FinFldElt

Returns the value f(val)l.

rroots(f): mapping -> sequence of FinFldElts

Returns the all a ∈ K such that f(a)r = 0. Uses brute force.

lroots(f): mapping -> sequence of FinFldElts

Returns the all a ∈ K such that f(a)l = 0. Uses brute force.
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rinterp(roots): sequence of FinFldElts -> mapping

Returns minimal polynomial interpolated on the right from the elements given

in the sequence roots.

linterp(roots): sequence of FinFldElts -> mapping

Returns minimal polynomial interpolated on the left from the elements given

in the sequence roots.

Most of these currently make use of brute force techniques as they are suffi-

ciently fast for the size of fields and polynomials being used in this research while also

being simple enough to not require devoting extensive time to debugging. Since the

fields in use are finite, it is possible to simply evaluate a polynomial at each element

of the field to find an exhaustive list of all roots. Similarly, for f(x) of degree m and

g(x) of degree n, it is possible to form an exhaustive list of all polynomials h(x) up

to degree min{m,n} and test if h(x)|rf(x) and h(x)|lg(x), resulting in the set H.
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Chapter 5

Conclusion

Here, we briefly review the results so far and consider paths for future work.

5.1 Review

With a skew polynomial ring R = K[x;σ, δ] for some field K, it is possible to

perform right division, and thus the ring is right Euclidean and has the gcrd and lclm

as analogues to the gcd and lcm in commutative polynomial rings. Additionally, if

σ is surjective, the ring is left Euclidean and so has the gcld and lcrm as analogous

concepts for left division.

We may always evaluate polynomials and their products on the right, and if

σ is surjective, we may similarly evaluate polynomials and the products thereof on

the left. Not only are skew polynomial rings not commutative, but factorizations are

not necessarily unique. They are, however, identical up to similarity, and thus the

degrees of factors must be the same.

A set of elements of the field K can be used to define a minimal polynomial,

and by examining the roots of such a polynomial, we may speak of the closure of
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the set of elements, and likewise speak of a set of elements being independent. This

may always be done on the right, and as before, if σ is surjective, it is also possible

to speak of left closures and independence. Using a simple algorithm, we are able to

interpolate polynomials to construct the minimal polynomial of given linear factors.

We find that with a modification of the formula for right evaluation and evalu-

ation of products, we obtain the corresponding formulas for left evaluation, and that

we are able to view left evaluation as right evaluation in a separate polynomial ring

R′ = K[x;σ′, δ′].

When considering a new coding methodology, we encounter the idea of the

maximal factor “between” two polynomials. Several particular cases have been ex-

amined. When there are exactly two common roots, a polynomial can be found in H

which is maximal for a given property, but is demonstrably not always in the gclrd.

In extensions of degree 2, σ−1 = σ, and so we are able to find a polynomial with

guaranteed roots, but are not able to fully characterize this polynomial.

Finally, upon examining a set that is independent on both sides, it is possible

to find a condition that is necessary for a left multiple of the minimal polynomial on

the right to be a right multiple of the minimal polynomial on the left, and this ties

into the gclrd of those two polynomials.

5.2 Further Work

Moving forward, there are a couple of key directions to examine. First, there

are additional properties that might be proven about skew polynomials. For instance,

not only must the degrees of any two factorizations match up to rearrangement, but

the polynomial factors themselves must be similar. Examining this concept may

generate new leads toward the gclrd.
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With the main focus being the gclrd, it is possible that there is a unified way

to compute the gclrd that will work regardless of the number of shared roots between

the two polynomials or the degree of the field. For specifics, though, more work

can be done to examine the two special cases. In particular, it may be possible to

characterize when the minimal polynomial of the shared roots is in the gclrd, or when

the polynomial found in an extension of degree 2 is not only divisible by the minimal

polynomial of the shared roots, but is equal to it, and furthermore when it is in H or

the gclrd.

Finally, while the condition found for a set that is independent on both sides

to have the minimal polynomials be multiples of each other is a necessary condition,

there may be special cases where it is also sufficient. There is also the separate issue

of determining precisely when a solution will exist. While some partial progress has

been made to that end, there is still significant research to be done in that direction.
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