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Abstract

The regulation of gene expression is essential for the maintenance of homeostasis within an

organism. Thus, the ability to predict which genes are expressed and which are silenced based on

the cellular environment is highly desired by molecular biologists. Mathematical models of gene

regulatory networks have frequently been given in terms of systems of differential equations, which

although useful for understanding the mechanisms of regulation, are not always as interpretable as

discrete models when one wishes to analyze the global-level dynamics of the system. In particular,

Boolean network models have been previously shown to be simple yet effective tools for modeling

operons such as the lactose operon in Escherichia coli. In this thesis, we propose a Boolean model

of a similar nature for the arabinose operon. While this operon is also used by E. coli to regulate

sugar metabolism, it contains several unique biological features such as a positive inducible control

mechanism that distinguish it from previously modeled gene networks. By treating the network

model as a polynomial dynamical system, analysis of the system dynamics shows that our model

accurately captures the biological behavior of the operon and also provides insight into interactions

within the network.
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Chapter 1

Introduction

A core theme throughout molecular biology is the central dogma, which explains how infor-

mation flows from genotype (the genetic code) to the phenotype (the observable physical character-

istics of an organism) [C+70]. Genetic information encoded in the nucleotides of the DNA strand

undergoes transcription by RNA polymerase enzymes to produce a messenger RNA (mRNA) strand.

This mRNA is then translated by ribosomes into an amino acid sequence known as a polypeptide,

or protein. The functions of these proteins then lead to the phenotype. Clearly this process requires

extensive regulation, as the desire for presence or absence of a protein, as well as its concentration,

are dependent on the current state of the organism and its environmental conditions [VCS11].

Regulation of gene expression can occur at any of the steps during the flow of information, in-

cluding transcription, post-transcription, translation, and post-translation modifications [LBZ+00].

The regulation of transcription in prokaryotic organisms has been particularly well-studied, and most

of the early understanding of genetic regulatory systems came from the study of operons [JM61].

An operon is a collection of contiguous genes with related functions that are all transcribed onto a

single mRNA strand, along with two adjacent control sequences that regulate their expression. The

genes whose protein products perform some coordinated function are known as structural genes. The

two control sequences are a promoter, a region of DNA to which RNA polymerase binds to initiate

transcription of the structural genes, and an operator, a sequence of nucleotides located between the

promoter and structural genes whose status determines whether transcription will occur. The state

of the operator and its method of controlling gene expression can be categorized into one of four

types: the transcription of the structural genes can be regulated by positive (an activator protein
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binds to the operator to initiate transcription) or negative (a repressor protein bound to the oper-

ator prevents transcription) control, and the mechanism of regulation can be inducible (addition of

a metabolite initiates transcription) or repressible (addition of a metabolite prevents transcription)

[EB68].

The first described and most extensively studied operon is the lactose (lac) operon in E.

coli [JPSM05]. The structural genes of the lac operon produce enzymes that participate in the

catabolism of the sugar lactose, which the cell can use as an alternative energy source to the more

preferred sugar glucose. Thus transcription of the system of genes should occur only when lactose

is present and glucose is not available. This transcriptional control is accomplished by the binding

of a repressor protein to the operator, which physically blocks RNA polymerase from binding to the

promoter region, and which can only be removed by the presence of lactose. The second method of

control occurs due to catabolite repression, where the presence of glucose inhibits the synthesis of

the enzymes necessary for lactose metabolism.

The lac operon is the prototypical example of a negative inducible operon, and for many

years it was assumed that this was the only mechanism by which these gene regulatory networks

were regulated. Later discoveries proved this hypothesis false, as the tryptophan (trp) [BKL+75] and

arginine (arg) [LHA92] operons exhibit negative repressible control mechanisms, and the arabinose

(ara) operon utilizes both positive and negative inducible control mechanisms [GS71].

Many proposed models of the interactions between the elements of the lac operon exist,

where the dynamics of the system are frequently modeled as a system of ordinary differential equa-

tions (ODEs) [SM08]. While these models are very useful for understanding mechanisms and obtain-

ing quantitative information about the state of the system at a given time, their inherent complexity

can make qualitative interpretations of the solutions a daunting task. Furthermore, these solutions

are dependent on specific initial conditions, parameter values, and rate constants, many of which

are experimentally determined and can require extensive knowledge of the reaction kinetics occur-

ring within the system in order to make an accurate prediction [DB08]. An alternative modeling

approach under a discrete framework uses Boolean networks (BNs), which in many cases provide a

more intuitive description of the biological system. In this case, each component of the network is

assigned a value of 0 or 1 at each time step, usually indicating absence or presence (relative to some

specified threshold) of a biological product at the current time step. More recent models of the lac

operon have found this modeling framework to be effective both in capturing the key qualitative

2



features of the network and in accurately predicting the behavior of the operon, in the sense that

the resulting state of the network agrees with the state of the operon for each given set of initial

conditions [VCS11].

Another well-studied operon that frequently appears in the biological literature is the ara-

binose (ara) operon. Similar to the lac operon, the function of the ara operon is the metabolism

of the sugar arabinose in the absence of glucose. However, the mechanism by which the network

is regulated is significantly different and also more complex than that of the lac operon, as the ara

operon exhibits both positive and negative inducible control [MHS86]. Although continuous models

such as systems of ODEs have been formulated [Yil12], no logical model of the ara operon has been

proposed.

In this thesis, we present a Boolean network model of the arabinose operon and analyze

the system to show that it is a valid interpretation of how the operon functions biologically. The

organization is as follows. In Chapter 2 we give a mathematical treatment of Boolean networks,

describe how such models are analyzed, and discuss how a model can be reduced in order to capture

the core qualitative behavior. In Chapter 3 we review the work done by Stigler and Veliz-Cuba on

the lac operon as a motivating example for the use of this modeling framework with gene regulatory

networks. Our novel Boolean network model of the ara operon is presented in Chapter 4, along

with a discussion of the network dynamics. Finally, we end with some remarks on possible future

projects in Chapter 5.
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Chapter 2

Boolean Network Models

2.1 Preliminaries

In this section we give a brief mathematical background of Boolean networks. Throughout,

let F2 = {0, 1} denote the finite field of order 2.

Definition 2.1.1. A Boolean network(BN) F = (f1, f2, . . . , fn) on n variables x1, x2, . . . , xn is a

sequence of Boolean functions fi : Fn
2 −→ F2.

The Boolean functions in Definition 2.1.1 that govern the dynamical evolution of the network

are given as logical functions of the model variables. That is, we define the functions fi in terms

of the xi using the logical operators AND (∧), OR (∨), and NOT ( ). We can then apply these

functions to update the network variables at each timestep to obtain the new state of F . Frequently,

the updates are performed synchronously across the variables, although it is possible to update

asynchronously. In fact, an asynchronous update schedule is more “natural” in the biological sense,

as particular molecules or structures are changing states at varying rates. However, synchronous

updates still capture the qualitative behavior of the biological system, so we choose in this thesis to

consider the synchronous case.

Definition 2.1.2. The wiring diagram of a Boolean network F is the directed graph with vertex

set V = {1, 2, . . . , n} and edges (i, j) if function fj depends on variable xi.

The structure of the connections within the network (or network topology) depicted in the

wiring diagram provides useful biological information in the form of directed cycles known as feedback
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loops. A given directed edge (i, j) has a circle at its head if variable xi has an inhibitory interaction

with xj . This corresponds to the presence of NOT xi, or xi, in the Boolean function fj . Otherwise

the edge has an arrow at its head indicating a positive interaction.

The state transitions of the network are referred to as the network dynamics. In order to

evaluate the dynamics of the system F , we need to evaluate the functions fi over all possible variable

inputs. We can then view the dynamics as a directed graph known as the state space of F, where

each node in the graph represents a particular state of the network, where the edges are of the form

x −→ f(x) for all x ∈ Fn
2 .

Definition 2.1.3. Directed cycles in the state space are called limit cycles. If the length of the

limit cycle is 1, then it is called a fixed point.

In biological applications, a fixed point is equivalent to a steady state of the system. From

an applied standpoint, we are interested in determining whether the biological system reaches a

fixed point, enters into a longer limit cycle, or exhibits some other behavior given initial conditions

on the system. However, as the state space grows exponentially with the number of variables in the

system, determining the state space via brute force calculations is not computationally feasible for

any reasonably sized network. In the next section we discuss an alternative method of determining

the fixed points of a network via computational algebra. First, we require a few algebraic definitions.

Definition 2.1.4. Let K be a field and consider K[x1, . . . , xn], the ring of polynomials in n variables

with coefficients in K. Let F ⊂ K[x1, . . . , xn]. We define the ideal generated by F to be the set

〈F〉 = {p1f1 + . . .+ prfr | f1, . . . , fr ∈ F , p1, . . . , pr ∈ K[x1, . . . , xn]}.

Definition 2.1.5. Consider the set of monomials

M = {xi11 x
i2
2 · · ·ximm | i1, i2, . . . , im ∈ N}

of K[x1, . . . , xn]. A monomial order on M is a total order ≺ such that

(i) the constant monomial 1 is the smallest monomial.

(ii) it is multiplicative. That is, if xi11 · · ·ximm ≺ x
j1
1 · · ·xjmm then xi1+k1

1 · · ·xim+km
m ≺ xj1+k1

1 · · ·xjm+km
m .
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Definition 2.1.6. Fix a monomial order ≺. Every polynomial p ∈ K[x1, . . . , xn] has a unique

initial monomial, denoted by in≺(f), defined as the largest monomial xa = xa1
1 · · ·xam

m (with respect

to ≺) in f with a non-zero coefficient. The initial ideal in≺(I) is the ideal generated by the initial

monomials of all f ∈ I.

Definition 2.1.7. A finite subset G of an ideal I is called a Gröbner basis with respect to a monomial

order ≺ if

in≺(I) = 〈in≺(g) | g ∈ G〉.

Suppose, in addition, that the following conditions hold:

(i) For each g ∈ G, the coefficient of the initial monomial of g is 1.

(ii) The set of initial monomials minimally generates in≺(I).

(iii) No trailing term of any g ∈ G is in in≺(I).

Then we say that G is a reduced Gröbner basis.

It can be shown that for a fixed monomial order, any ideal I ⊂ K[x1, . . . , xn] has a unique

reduced Gröbner basis which can be computed using the Buchberger algorithm (see [Stu96], [CLO92],

for a more detailed exposition). Our application of Gröbner bases will be in solving systems of

polynomial equations. The variety of a set of polynomials F is the set of all common zeros of the

polynomials. Since the variety does not change when F is replaced by another set of polynomials

which generate the same ideal, we can in particular compute the variety of the reduced Gröbner

basis G of F to find the solution set to the system {fi = 0 | fi ∈ F}. Therefore, in our Boolean

network context, if we can convert our Boolean functions to polynomial functions over the finite

field F2, we can then compute the variety of the corresponding reduced Gröbner basis G to find the

fixed points. In practice, computational algebra systems are used to compute G, and the solution to

the resulting system is “obvious,” as our polynomials are over F2.

2.2 Analyzing a model

Suppose we are given a Boolean network model F = (f1, . . . , fn). We convert fi to polyno-

mials pi in F2[x1, . . . , xn] using the following rules to convert the logical operators AND, OR, and

NOT:
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• xi ∧ xj = xixj

• xi ∨ xj = xi + xj + xixj

• xi = xi + 1

Solving for the fixed points {fi = xi | i = 1, . . . , n} in the Boolean network is equivalent to

solving the system of polynomials F = {pi + xi = 0}. To accomplish this we perform the following

algorithm for each combination of parameter values:

1. Define I = 〈pi + xi〉, where i = 1, . . . , n, to be the ideal generated by our polynomials.

2. Compute a (reduced) Gröbner basis G = {gj} of I using the computer algebra system Sage

(code that accomplishes this is given in Appendix A).

3. Solve the system of polynomials {gj = 0 | j = 1, . . . , n} to obtain the solution set S ⊆ Fn
2 .

Since S is also the solution set to F , each element x ∈ S corresponds to a fixed point of the

network.

2.3 Reduction of Boolean models

A question frequently of interest is to determine what the “essential” components are of

a given network, in the sense that the dynamics of the entire network can be captured by only

examining the qualitative behavior of this subnetwork of essential components. In order to find this

subnetwork, we would like to delete those nodes and edges that are nonfunctional, or do not directly

function in the regulation. This can be determined logically by simplifying the Boolean expressions

in the logical functions. Below is the method used in [VCS11] to reduce a given Boolean network

and its associated wiring diagram.

1. Simplify Boolean expressions using Boolean algebra to delete nonfunctional variables.

2. Remove edges not corresponding to Boolean expressions to delete nonfunctional edges.

3. Remove vertices xi whose associated Boolean function fxi
does not depend on xi.

(a) If the vertex y depends on xi, replace fy(x1, . . . , xi, . . . , xn) by fy(x1, . . . , fxi , . . . , xn).

(b) Replace edges (y, xi), (xi, z) by (y, z).

7



Chapter 3

The lac operon

3.1 Biological background

In this section, we give a biological description of the lac operon found in E. coli. The

majority of this description is adapted from information in the book [Pie12].

The proteins produced by the structural genes (lacZ, lacY, lacA) of this system carry out

the metabolism of the lactose sugar, which is used as an energy source by the cell. Lactose enters the

cell via the transporter protein β-galactoside permease (LacY), where it can be cleaved into glucose

and its stereoisomer galactose by the enzyme β-galactosidase (LacZ). This enzyme is also responsible

for converting lactose to allolactose. Finally, β-galactoside transacetylase (LacA) transfers an acetyl

group from acetyl-CoA to β-galactoside.

The expression of these structural genes is regulated by the repressor protein product of the

lacI gene. In the absence of lactose, this repressor protein is tightly bound to the operator site of

the operon. This prevents RNA polymerase from binding to the promoter and therefore it cannot

transcribe the structural genes, so the operon is “off”. If extracellular lactose is available, diffusion

of the sugar can occur at low concentrations. The few available molecules of β-galactosidase can

convert the lactose to its isomer, allolactose. This isomer binds to the repressor protein, causing

it to undergo a conformational change and the protein subsequently dissociates from the operator.

Thus the binding of the RNA polymerase to the promoter is no longer blocked, the structural genes

are transcribed, and the operon is “on”.

Glucose also plays a role in regulating the transcription of the structural genes via catabolite
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repression. In addition to the inactivation of the repressor, a substrate bound protein known as

the cyclic AMP catabolite activator protein complex (or cAMP-CAP complex) must bind to the

promoter region to cause the DNA to undergo further conformational changes to enhance the binding

of RNA polymerase to the promoter. The presence of glucose inhibits the production of cAMP,

thereby preventing transcription of the lac operon.

Finally, in the absence of glucose there exists a certain range of “medium” extracellular

lactose concentrations such that the operon’s behavior exhibits bistability. That is, if a particular

population of cells is exposed to a growth medium containing an extracellular lactose concentration

in this range, we can expect to find some cells with the lac operon being actively transcribed and

other cells with the operon repressed. Whether the lac operon is on or off under medium lactose

levels depends on whether the cell developed in a lactose-rich or lactose-starved environment.

3.2 A Boolean model

This Boolean model of the lac operon is comprised of the variables and functions representing

the presence or absence of the molecules involved in the gene regulatory network. We take as

parameters the presence or absence of extracellular glucose (Ge) and extracellular lactose (Le, Lem).

Note that intracellular lactose, extracellular lactose, allolactose, and repressor protein concentrations

have been split into two variables (no subscript and m subscript) in order to represent three possible

states for those variables:

Concentration of X =


low Xm = X = 0

medium Xm = 1, X = 0

high Xm = X = 1

Splitting these variables in this manner will allow our model to capture the bistability

present in the network when extracellular lactose is at a medium concentration.

3.2.1 Boolean variables

The Boolean variables are labeled as follows:

• M = lac mRNA
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• P = lac permease

• B = lac β-galactosidase

• C = cAMP-CAP complex

• R = repressor protein

• A = allolactose

• L = lactose

• G = glucose

where the subscript m denotes medium concentration and e denote extracellular concentrations.

3.2.2 Derivation of Boolean functions

The derivation of the Boolean functions is as follows:

• For the structural genes’ mRNA to be transcribed, we need the presence of the cAMP-CAP

complex as well as the absence of the repressor protein. Thus the Boolean function is fM =

C ∧R ∧Rm.

• For the permease protein to be produced, there must be mRNA present that can be translated.

Thus the Boolean function is fP = M .

• For the β-galactosidase enzyme to be produced, there must be mRNA present that can be

translated. Thus the Boolean function is fB = M .

• For the cAMP-CAP complex to form, high concentrations of cAMP are necessary, which only

occurs in the absence of glucose. Thus the Boolean function is fC = Ge.

• The repressor protein will be active in the absence of allolactose. Thus the Boolean function

is fR = A ∧Am.

• The repressor will be active at a medium level or higher in the absence of allolactose, or if the

repressor was active at a high level. Thus the Boolean function is fRm
= (A ∧Am) ∨R.

• To have high concentrations of allolactose, we need intracellular lactose to be present and the

enzyme β-galactosidase to be present. Thus the Boolean function is fA = L ∧B.
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• To have medium concentrations of allolactose, we need either medium or high concentrations

of intracellular lactose so that the basal number of β-galactosidase molecules can convert the

lactose. Thus the Boolean function is fAm
= L ∨ Lm.

• To have high concentrations of intracellular lactose, we need both the membrane permease

protein and extracellular lactose to be present and also extracellular glucose to be absent.

Thus the Boolean function is fL = P ∧ Le ∧Ge.

• To have medium concentrations of intracellular lactose, we need extracellular lactose to be

available in either high concentrations so that it can readily diffuse across the membrane

without the assistance of the permease protein, or we require the presence of the permease

with at least medium concentrations of extracellular lactose. We also require extracelluluar

glucose to be absent. Thus the Boolean function is fLm
= ((Lem ∧ P ) ∨ Le) ∧Ge.

3.2.3 Wiring Diagram

The wiring diagram of the model is given below in Figure 3.1. We denote parameters by

square nodes and variables by circular nodes. Edges between nodes with an arrow indicate positive

interactions and circles indicate negative interactions. The shaded region represents intracellular

space. Note that we have displayed L,Lm as a single node, as well as Le, Lem, R,Rm, and A,Am.

MC

A

P

R

B

LGe Le

Figure 3.1: The wiring diagram of a Boolean model of the lac operon.
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3.3 Network dynamics

We can analyze the dynamics of our Boolean network model by specifying initial conditions

on the parameters and then evaluating the Boolean functions at each time step to determine if the

system eventually reaches a steady state in the form of a fixed point of the state space. This is

equivalent to solving the system {fxi = xi | i = 1, . . . , 10} where we have renamed our Boolean

variables as follows:

(M,B,R,A,L, P,C,Rm, Am, Lm) = (x1, x2, x3, x4, x5, x6, x7.x8, x9, x10)

To perform this analysis, we first convert our logical functions to a system of polynomial

equations in F2[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] using the methods described in Chapter 2. By

working in this algebraic setting, we will be able to use computational algebra to assist in our network

analysis. The resulting system of polynomials F is



fM = C ∧R ∧Rm = M

fB = M = B

fR = A ∧Am = R

fA = L ∧B = A

fL = P ∧ Le ∧Ge = L

fP = M = P

fC = Ge = C

fRm
= (A ∧Am) ∨R = Rm

fAm = L ∨ Lm = Am

fLm = ((Lem ∧ P ) ∨ Le) ∧Ge = Lm

⇐⇒



x1 + x7(x3 + 1)(x8 + 1) = 0

x2 + x1 = 0

x3 + (x4 + 1)(x9 + 1) = 0

x4 + x2x5 = 0

x5 + x6Le(Ge + 1) = 0

x6 + x1 = 0

x7 +Ge + 1 = 0

x8 + (x4 + 1)(x9 + 1) + x3 + x3(x4 + 1)(x9 + 1) = 0

x9 + x5 + x10 + x5x10 = 0

x10 + (x6Lem + Le + x6LemLe)(1 +Ge) = 0

For each of the 6 parameter combinations (Ge, Lem, Le) ∈ F3
2, where we do not consider the

results with Lem = 0, Le = 1 (since this case cannot occur) we must solve F using the algorithm

described in Chapter 2, where the resulting solutions will be the fixed points of the network. The

results obtained for each parameter combination and the biological interpretation are given in Table
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3.1. Observe that the operon being ON corresponds to a solution where M = P = B = 1 and being

OFF corresponds to a solution where M = P = B = 0.

Parameters Fixed point(s) Operon
x = (Ge, Lem, Le) (M,P,B,C,R,Rm, A,Am, L, Lm) ON or OFF ?

(0,0,0) (0, 0, 0, 1, 1, 1, 0, 0, 0, 0) OFF
(0,1,0) (0, 0, 0, 1, 1, 1, 0, 0, 0, 0) OFF

(1, 1, 1, 1, 0, 0, 0, 1, 0, 1) ON
(0,1,1) (1, 1, 1, 1, 0, 0, 1, 1, 1, 1) ON
(1,0,0) (0, 0, 0, 0, 1, 1, 0, 0, 0, 0) OFF
(1,1,0) (0, 0, 0, 0, 1, 1, 0, 0, 0, 0) OFF
(1,1,1) (0, 0, 0, 0, 1, 1, 0, 0, 0, 0) OFF

Table 3.1: Fixed points of the lac operon Boolean network model for each choice of parameters.

From the table we see that the presence of extracellular glucose causes the model to predict

the operon to be OFF, regardless of the other parameter values. If extracellular glucose is absent,

the model predicts the operon to either be OFF, bistable, or ON when extracelluluar lactose is

at low, medium, or high concentrations, respectively. Thus the model is consistent with biological

observations.

3.4 A reduced model

We now use the method outlined in Chapter 2 to compute a reduced model F ′ involving

only the variables M,L, and Lm. The new Boolean functions are as follows:

• For mRNA to be transcribed, we require the presence of the cAMP-CAP complex, which will

be present if extracellular glucose is absent. Also, we require the repressor protein to be absent,

which occurs if intracellular lactose is present. Thus the Boolean function is fM = Ge∧(L∨Lm).

• In order for intracellular lactose to be at a high concentration, permease protein must be present

(which requires mRNA to be transcribed) and also extracellular lactose must be present.

Furthermore, extracelluluar glucose must be absent. Thus the Boolean function is fL =

M ∧ Le ∧Ge.

• In order for intracellular lactose to be at a medium concentration we need extracellular lactose

to be present at a medium concentration and permease protein (which requires transcribed

mRNA) or we need a high concentration of extracellular lactose that can diffuse into the cell.
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Furthermore, we require the absence of extracellular glucose. Thus the Boolean function is

fLm
= ((Lem ∧M) ∨ Le) ∧Ge.

The associated wiring diagram of the reduced model is shown in Figure 3.2. Note that the

variables L,Lm and Le, Lem have been grouped into single nodes.

M

L

Ge

Le

Figure 3.2: The wiring diagram of the reduced Boolean model of the lac operon.

To find the fixed points, we rename the variables

(M,L,Lm) = (x1, x2, x3)

and convert the logical functions to polynomials in F2[x1, x2, x3] as seen below:


fM = Ge ∧ (L ∨ Lm) = M

fL = M ∧ Le ∧Ge = L

fLm = ((Lem ∧M) ∨ Le) ∧Ge = Lm

⇐⇒


(Ge + 1)(x2 + x3 + x2x3) + x1 = 0

x2 + x1Le(Ge + 1) = 0

x3 + (x1Lem + Le + x1LemLe)(Ge + 1) = 0
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If we solve this system for the 6 parameter combinations (Ge, Lem, Le) ∈ F3
2, where we do

not consider the results with Lem = 0, Le = 1 (since this case cannot occur), we obtain the results

shown in Table 3.2. Note that the operon being ON corresponds to a solution where M = 0 and the

operon is OFF if M = 1.

Parameters Fixed point(s) Operon
x = (Ge, Lem, Le) (M,L,Lm) ON or OFF ?

(0,0,0) (0, 0, 0) OFF
(0,1,0) (0, 0, 0) OFF

(1, 0, 1) ON
(0,1,1) (1, 1, 1) ON
(1,0,0) (0, 0, 0) OFF
(1,1,0) (0, 0, 0) OFF
(1,1,1) (0, 0, 0) OFF

Table 3.2: Fixed points of the lac operon Boolean network model for each choice of parameters.

From the table we see that we obtain precisely the same qualitative results with the reduced

model as with the full model. That is, the reduced model predicts the operon to be ON only when

extracellular glucose is absent and extracellular lactose is present in high concentrations, and also

the reduced model exhibits bistability when extracellular glucose is absent and extracellular lactose

is at a medium concentration.
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Chapter 4

The ara operon

4.1 Biological background

In this section we give a biological treatment of the arabinose operon by describing the

molecules and structures included in our model and examining how they interact with one another.

The majority of this information is adapted from the extensive work done by the Schleif lab [Sch00].

In the bacterium E. coli, the five-carbon sugar L-arabinose can be metabolized to use as

a carbon and energy source. The three structural genes involved in the metabolism are araBAD,

whose transcription is controlled by the corresponding promoter pBAD. The isomerase AraA con-

verts L-arabinose to L-ribulose, the kinase AraB phosphorylates L-ribulose to L-ribulose-phosphate,

and finally the epimerase AraD converts L-ribulose-phosphate to D-xylulose-phosphate, which then

enters the pentose phosphate pathway. The transport of arabinose into the cell is controlled by two

different transport systems, both located upstream from the ara operon. The araE gene produces

AraE, a membrane bound protein that functions as a transporter in a low affinity transport sys-

tem, and the araFGH genes produce three corresponding proteins that together form a high affinity

transport system known as an ATP-binding cassette.

The expression of these structural genes is regulated by the protein AraC, which is unusual

in the sense that it can function as either a repressor or an activator depending on the intracellular

concentrations of arabinose. The cell maintains a small amount (approx. 20 molecules) of AraC at

all times, which binds to two sites, I1 and O2, of the DNA strand that causes a DNA loop structure

(Figure 4.1). This loop acts as a repressor of transcription of both the araBAD genes and the araC
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Figure 4.1: The ara operon in the absence and presence of arabinose.

gene by physically blocking RNA polymerase from attaching to either promoter sequence. Note that

this method of repression is quite different than the method used in the lac operon, but the end

result is the same. If extracellular arabinose is present, some molecules can be transported into the

cell via passive transport. Once intracellular arabinose is available, these molecules will bind to the

AraC protein and cause it to undergo a conformational change, which leads to the AraC protein

dissociating from the O2 operator site and subsequently binding to the I2 site. In this arabinose-

bound form, AraC now functions as an activator and induces the binding of RNA polymerase to

the pBAD, pE , pFGH , and pC promoter regions.

Glucose also plays a role in regulating the transcription of the structural genes via catabolite

repression. In addition to the arabinose-bound AraC protein, a second activator known as the cyclic

AMP catabolite activator protein complex (or cAMP-CAP complex) must bind to the promoter

region to cause the DNA to undergo further conformational changes to allow the binding of RNA

polymerase. As in the lac operon, the presence of glucose inhibits the production of cAMP, thereby

preventing transcription of the ara operon.

17



4.2 A Boolean model

Our Boolean model for the arabinose operon is comprised of variables and functions repre-

senting the presence or absence of molecules and structures involved in the gene regulatory network.

We take as parameters the presence or absence of extracellular glucose (Ge), extracellular arabinose

(Ae), and AraC protein that is not bound to arabinose (AraC−). Note that we have split intra-

cellular arabinose into two variables, Am and A, representing low and high intracellular arabinose

concentrations respectively, in order to maintain the Boolean structure while accurately capturing

the biological mechanism. Also, two variables MS and MT representing mRNA are used, as the

structural genes and transport genes are transcribed onto separate mRNA strands. Finally, we also

distinguish between AraC protein that is unbound to arabinose (acting as a repressor) and bound

to arabinose (acting as an activator) with the parameter AraC− and variable AraC+ respectively.

4.2.1 Boolean variables

The Boolean variables are labeled as follows:

• MS = araBAD mRNA

• MT = araEFGH mRNA

• T = transport proteins (AraEFGH proteins)

• A = intracellular arabinose

• C = cAMP-CAP protein complex

• L = DNA loop

• Ara+ = arabinose-bound AraC protein

where the subscript m denotes medium concentration and e denotes extracellular concentrations.

4.2.2 Derivation of Boolean functions

The derivation of the Boolean functions is as follows:
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• For the structural genes’ mRNA to be transcribed, we need the presence of the cAMP-CAP

protein complex and the arabinose-bound AraC protein, as well as the absence of the DNA

loop structure. Thus the Boolean function is fMS
= C ∧Ara+ ∧ L.

• For the transport genes’ mRNA to be transcribed, we need the presence of the cAMP-CAP

protein complex and the arabinose-bound AraC protein. Thus the Boolean function is fMT
=

C ∧Ara+.

• For the transport proteins to be produced, we need the presence of the transport genes’ mRNA.

Thus the Boolean function is fT = MT .

• For intracellular arabinose to be at a low concentration (or higher), we require the presence of

either extracellular arabinose at a high concentration or a medium concentration of extracel-

lular arabinose and the transport protein, and the absence of extracellular glucose. Thus the

Boolean function is fAm
= ((Aem ∧ T ) ∨Ae) ∧Ge.

• For intracellular arabinose to be at a high concentration, we require the presence of extracellular

arabinose and transport proteins, as well as the absence of extracellular glucose. Thus the

Boolean function is fA = Ae ∧ T ∧Ge.

• For the cAMP-CAP protein complex to be produced we require the absence of external glucose.

Thus the Boolean function is fC = Ge.

• For the DNA loop to be formed, we require the presence of the AraC protein, but for the

protein to not be bound to arabinose. Thus the Boolean function is fL = AraC− ∧AraC+.

• For the arabinose-bound form of the AraC protein to be formed, we require the presence of

the AraC protein and either low or high concentrations of intracellular arabinose. Thus the

Boolean function is fAra+
= Ara− ∧ (Am ∨A).

4.2.3 Wiring Diagram

The wiring diagram of our model is given below in Figure 4.2. We denote parameters by

square nodes and variables by circular nodes. Edges between nodes with an arrow indicate positive

interactions and circles indicate negative interactions. The shaded region represents intracellular

space. Note that we have displayed A,Am as a single node as well as Ae, Aem.
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T

L

MT

AAra+Ge Ae

Figure 4.2: The wiring diagram of our proposed Boolean model of the ara operon.

4.3 Network dynamics

We can analyze the dynamics of our Boolean network model by specifying initial conditions

on the parameters and then evaluating the Boolean functions at each time step to determine if the

system eventually reaches a steady state in the form of a fixed point of the state space. This is

equivalent to solving the system {fxi
= xi | i = 1, . . . , 8} where we have renamed our Boolean

variables as follows:

(Am, A,Ara+, C, L,MS ,MT , T ) = (x1, x2, x3, x4, x5, x6, x7, x8).

To perform this analysis, we first convert our logical functions to a system of polynomial equations

in F2[x1, x2, x3, x4, x5, x6, x7, x8] using the methods described in Chapter 2. By working in this

algebraic setting, we will be able to use computational algebra to assist in our network analysis.
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The resulting system of polynomials F is



fAm = ((Aem ∧ T ) ∨Ae) ∧Ge = Am

fA = Ae ∧ T ∧Ge = A

fAra+ = (Am ∨A) ∧Ara− = Ara+

fC = Ge = C

fL = Ara+ ∧Ara− = L

fMS
= Ara+ ∧ C ∧ L = MS

fMT
= Ara+ ∧ C = MT

fT = MT = T

⇐⇒



x1 + (Aemx8 +Ae +AemAex8)(Ge + 1) = 0

x2 + x8Ae(Ge + 1) = 0

x3 + (x1 + x2 + x1x2)Ara− = 0

x4 +Ge + 1 = 0

x5 + (x3 + 1)Ara− = 0

x6 + x3x4(x5 + 1) = 0

x7 + x3x4 = 0

x8 + x7 = 0

For each of the 12 parameter combinations (Ae, Aem, Ge, Ara−) ∈ F4
2, where we do not

consider the cases with Aem = 0, Ae = 1 (since this case cannot occur), we must solve F using

the algorithm described in Chapter 2, where the resulting solutions will be the fixed points of the

network. The results obtained for each parameter combination and the biological interpretation are

given in Table 4.1. Observe that the operon being ON corresponds to a solution where MS = MT = 1

and being OFF corresponds to a solution where MS = MT = 0.

Parameters Fixed point(s) Operon
x = (Ae, Aem, Ge, Ara−) (Am, A,Ara+, C, L,MS ,MT , T ) ON or OFF ?

(0,0,0,0) (0, 0, 0, 1, 0, 0, 0, 0) OFF
(0,0,0,1) (0, 0, 0, 1, 1, 0, 0, 0) OFF
(0,0,1,0) (0, 0, 0, 0, 0, 0, 0, 0) OFF
(0,0,1,1) (0, 0, 0, 0, 1, 0, 0, 0) OFF
(0,1,0,0) (0, 0, 0, 0, 0, 0, 0, 0) OFF
(0,1,0,1) (0, 0, 0, 1, 1, 0, 0, 0) OFF

(1, 0, 1, 1, 0, 1, 1, 1) ON
(0,1,1,0) (0, 0, 0, 0, 1, 0, 0, 0) OFF
(0,1,1,1) (0, 0, 0, 0, 1, 0, 0, 0) OFF
(1,1,0,0) (1, 0, 0, 1, 0, 0, 0, 0) OFF
(1,1,0,1) (1, 1, 1, 1, 0, 1, 1, 1) ON
(1,1,1,0) (0, 0, 0, 0, 0, 0, 0, 0) OFF
(1,1,1,1) (0, 0, 0, 0, 1, 0, 0, 0) OFF

Table 4.1: Fixed points of our ara operon Boolean network model for each choice of parameters.

From the table we see that the presence of extracellular glucose causes the model to predict

the operon to be OFF, regardless of the other parameter values. Similarly, the model predicts the
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operon to be OFF in the absence of AraC protein or any level of extracellular arabinose. The only

case in which the model predicts the operon to be exclusively ON is in the presence of high levels of

extracellular arabinose and AraC protein and in the absence of extracellular glucose. Finally, if we

have a medium concentration of extracellular arabinose and AraC protein, but extracellular glucose

is absent, we observe bistability.

4.4 A reduced model

We now use the method outlined in Chapter 2 to compute a reduced model F ′ involving only

the variables MS , A,Ae, Ge, and Ara−. The new corresponding Boolean functions are as follows:

• For mRNA to be transcribed we need the presence of the cAMP-CAP protein complex which

requires absence of glucose. We also need absence of the loop which requires presence of

arabinose-bound AraC protein which in turn requires presence of arabinose in at least medium

concentration. Finally, we require the presence of arabinose-bound AraC protein as an acti-

vator which requires both the unbound AraC protein and intracellular arabinose in at least

medium concentration. This simplifies to give the Boolean function fM = Ge∧Ara−∧(A∨Am).

• For intracellular arabinose to be at a high concentration, we require the presence of extracellular

arabinose at high concentration and the absence of glucose. We also require the presence of

the transport proteins which requires the transcription of the transport protein mRNA which

requires the presence of the cAMP-CRP protein complex which requires the absence of glucose.

This simplifies to give the Boolean function fA = Ge ∧Ae ∧M .

• For intracellular arabinose to be at a medium concentration, we require the absence of glucose

and either a high concentration of extracellular arabinose that can diffuse across the membrane

or a medium concentration of extracellular arabinose and the transport proteins. For the

transport protein to be present we also require transcription of the mRNA which in turn needs

the presence of the cAMP-CAP protein complex. This simplifies to give the Boolean function

fAm = Ge ∧ ((Aem ∧M) ∨Ae).

The associated wiring diagram of the reduced model is shown in Figure 4.3.

22



M Ara−

A

Ge Ae

Figure 4.3: The wiring diagram of the reduced Boolean model of the ara operon.

To find the fixed points, we rename the variables

(M,A,Am) = (x1, x2, x3)

and convert the logical functions to polynomials in F2[x1, x2, x3] as seen below


fM = Ge ∧Ara− ∧ (A ∨Am) = M

fA = Ge ∧Ae ∧M = A

fAm = Ge ∧ ((Aem ∧M) ∨Ae) = Am

⇐⇒


x1 + (x2 + x3 + x2x3)(Ge + 1)Ara− = 0

x2 +Aex1(Ge + 1) = 0

x3 + (Aemx1 +Ae +AemAex1)(Ge + 1) = 0

If we solve this system for 12 parameter combinations (Ae, AemGe, Ara−) ∈ F4
2, where we

have excluded the cases where Ae = 1 and Aem = 0, we obtain the results shown in Table 4.2. Note

that the operon being ON corresponds to a solution where M = 1 and the operon is OFF if M = 0.
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Parameters Fixed point(s) Operon
x = (Ae, Aem, Ge, Ara−) (M,A,Am) ON or OFF ?

(0,0,0,0) (0, 0, 0) OFF
(0,0,0,1) (0, 0, 0) OFF
(0,0,1,0) (0, 0, 0) OFF
(0,0,1,1) (0, 0, 0) OFF
(0,1,0,0) (0, 0, 0) OFF
(0,1,0,1) (0, 0, 0) OFF

(1, 0, 1) ON
(0,1,1,0) (0, 0, 0) OFF
(0,1,1,1) (0, 0, 0) OFF
(1,1,0,0) (0, 0, 1) OFF
(1,1,0,1) (1, 1, 1) ON
(1,1,1,0) (0, 0, 0) OFF
(1,1,1,1) (0, 0, 0) OFF

Table 4.2: Fixed points of our ara operon Boolean network model for each choice of parameters.

From the table, we see that we obtain precisely the same qualitative results with the reduced

model as with the full model. The reduced model predicts that the operon will be OFF if extracellular

glucose is present or if AraC protein is absent. If extracelluluar glucose is absent, AraC protein is

present, and extracellular arabinose is at low, medium, or high concentration, then the model predicts

the operon to be OFF, bistable, and ON, respectively.
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Chapter 5

Conclusions

Mathematical modeling of biological systems has been popular for decades, and the mod-

eling of gene regulatory networks is no exception. However, until recently, most formulations were

continuous models that could obscure biological insight beneath technical details. With the advent

of Boolean modeling techniques came clearer qualitative interpretations of the network dynamics of

transcriptional gene expression, providing both an increased interest in these modeling techniques

from the biological community and a fruitful new area of research for mathematicians.

In this thesis, we have extended the work done by Stigler and Veliz-Cuba in their Boolean

network model of the lac operon by providing a model for the ara operon. This model incorporates

the unique features of the arabinose operon, (such as the use of both positive and negative inducible

control mechanisms and the use of DNA looping), and still exhibits the expected biological behavior

for every combination of parameters of extracellular environmental conditions. The reduced model

also exhibits the same dynamics, and shows that the core components of the network are the araBAD

mRNA and arabinose. Furthermore, both models manage to capture the bistability of the network

when arabinose is at a medium concentration.

Based on the success of the Boolean framework in modeling inducible operons, in the future

it would be sensible to apply these techniques to negative repressible operons such as the tryptophan

and arginine operons. Negative repressible operons provide a unique challenge in modeling, as many

of them use a mechanism known as attenuation in addition to the usual repressor/activator binding

mechanism. In the process of attenuation, transcription is interrupted prematurely before the RNA

polyermase finishes transcribing the structural genes. This stoppage occurs due to differential folding
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of the DNA which is dependent on the concentration of a regulatory molecule. In the case of the

trp operon, this molecule is tryptophan itself, leading to the additional complication that events

occurring during translation are affecting the transcription process. Furthermore, more complex

regulatory networks such as the glutamine synthetase (gln) operon could benefit from this Boolean

network approach [UNBM83]. The gln operon has several added difficulties. Multiple regulatory

genes (glnG, glnL) are present within a single operon, where glnG controls expression of the structural

gene directly and glnL regulates the protein product of glnG. There also exist additional regulatory

proteins which are both activators and repressors. Finally, the operon contains three promoters

instead of the usual single promoter.

Future work could also focus on other mechanisms of genetic regulation. Most Boolean net-

work modeling of gene regulatory networks has focused on operons, but operons are only commonly

found in prokaryotic organisms. Eukaryotic organisms possess other common methods of controlling

gene expression which could benefit from these qualitative modeling techniques [BKCC03]. For ex-

ample, RNA interference (or RNA silencing) involves small RNA molecules that can interfere with

transcription and translation in a variety of ways, but currently only continuous models exist and

they fail to explain certain key features of the silencing behavior [BMA03]. Perhaps Boolean models

could not only provide a better interpretation of the regulatory behavior, but in addition could be

used to predict biological function in some cases where the mechanism or regulatory molecule is

unknown.

Finally, it is still necessary to find an algebraic method of detecting and identifying limit

cycles of size greater than one in the state space of a Boolean network. The current use of Gröbner

bases allows us to find fixed points in the state space, but we have no guarantee that other network

behaviors are not possible without directly observing the state space diagram. In the case of the lac

and ara operon, the size of the network allows us to enumerate every initial state and compute the

trajectory taken in the state space to verify the absence of limit cycles that are not fixed points, but

this is clearly not a feasible method for larger, more complex networks. Therefore it is desirable to

develop an algorithm that will allow the use of computational algebra to find these limit cycles.
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Appendix A Sage code

A.1 Refined Model Code

The code below defines the polynomial ring F2[x1, . . . , x8], specifies the parameter values

for (Ae, Aem, Ge, Ara−), computes the ideal I corresponding to our system of polynomial equations,

and then computes the Groebner basis B corresponding to I.

P.<x1,x2,x3,x4,x5,x6,x7,x8> = PolynomialRing(GF(2),8,order=’lex’);

Ae = 0; Aem = 0; Ge = 0; ara = 1;

I = ideal(x1+(Aem*x8+Ae+Aem*Ae*x8)*(Ge+1), x2+x8*Ae*(Ge+1), x3+(x1+x2+x1*x2)*ara,

x4+Ge+1, x5+(x3+1)*ara, x6+x3*x4*(x5+1), x7+x3*x4, x8+x7);

B = I.groebner.basis();

We have included three sample outputs corresponding to the parameter combinations (0, 0, 0, 1), (1, 1, 0, 1),

and (0, 1, 0, 1). The returned Grobner bases correspond to the operon being OFF, ON, and bistable

respectively.

1. B = [x1, x2, x3, x4 + 1, x5 + 1, x6, x7, x8]

2. B = [x1 + 1, x2 + 1, x3 + 1, x4 + 1, x5, x6 + 1, x7 + 1, x8 + 1]

3. B = [x1 + x8, x2, x3 + x8, x4 + 1, x5 + x8 + 1, x6 + x8, x7 + x8]

A.2 Reduced Model Code

The code below defines the polynomial ring F2[x1, x2, x3], specifies the parameter values for

(Ae, Aem, Ge, Ara−), computes the ideal I corresponding to our system of polynomial equations,

and then computes the Groebner basis B corresponding to I.

P.<x1,x2,x3> = PolynomialRing(GF(2),3,order=’lex’);

Ae = 0; Aem = 0; Ge = 0; ara = 1;

I = ideal(x1+(Ge+1)*ara*(x2+x3+x2*x3),x2+(Ge+1)*Ae*x1,x3+(Aem*x1+Ae+Aem*Ae*x1)*(Ge+1));

B = I.groebner.basis();
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We have included three sample outputs corresponding to the parameter combinations (0, 0, 0, 1), (1, 1, 0, 1),

and (0, 1, 0, 1). The returned Grobner bases correspond to the operon being OFF, ON, and bistable

respectively.

1. B = [x1, x2, x3]

2. B = [x1 + 1, x2 + 1, x3 + 1]

3. B = [x1 + x3, x2]
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de gènes à expression coordonnée par un opérateur [cr acad. sci. paris 250 (1960) 1727–
1729]. Comptes rendus biologies, 328(6):514–520, 2005.

[LBZ+00] Harvey Lodish, Arnold Berk, S Lawrence Zipursky, Paul Matsudaira, David Baltimore,
James Darnell, et al. Molecular cell biology, volume 4. WH Freeman New York, 2000.

[LHA92] Chung-Dar Lu, John E Houghton, and Ahmed T Abdelal. Characterization of the
arginine repressor from salmonella typhimurium and its interactions with the carab
operator. Journal of molecular biology, 225(1):11–24, 1992.

30



[MHS86] Katherine Martin, Li Huo, and Robert F Schleif. The dna loop model for ara repression:
Arac protein occupies the proposed loop sites in vivo and repression-negative mutations
lie in these same sites. Proceedings of the National Academy of Sciences, 83(11):3654–
3658, 1986.

[Pie12] Benjamin A Pierce. Genetics: A conceptual approach. Macmillan, 2012.

[Sch00] Robert Schleif. Regulation of the l-arabinose operon of escherichia coli. Trends in
Genetics, 16(12):559–565, 2000.

[SM08] Moisés Santillán and Michael C Mackey. Quantitative approaches to the study of bista-
bility in the lac operon of escherichia coli. Journal of The Royal Society Interface,
5(Suppl 1):S29–S39, 2008.
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