
Clemson University
TigerPrints

All Theses Theses

5-2016

Dynamic HPC Clusters within Amazon Web
Services (AWS)
Brandon Posey
Clemson University, bposey@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Posey, Brandon, "Dynamic HPC Clusters within Amazon Web Services (AWS)" (2016). All Theses. 2392.
https://tigerprints.clemson.edu/all_theses/2392

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2392&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2392&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2392&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2392&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/2392?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2392&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

DYNAMIC HPC CLUSTERS WITHIN AMAZON WEB SERVICES (AWS)

A Thesis
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science
Computer Science

by
Brandon Posey

May 2016

Accepted by:
Dr. Amy Apon, Committee Chair

Dr. Brian Malloy
Dr. Jim Martin

ii

ABSTRACT

Amazon Web Services (AWS) provides public cloud computing resources and

services and is one of the largest cloud computing providers in the world. However, in

order to get started using AWS, one must spend many hours overcoming the steep

learning curve and terminology associated with AWS. This is especially true for

researchers looking to create and utilize a High Performance Computing (HPC) cluster

within AWS. This is due to the massive amount of AWS services and AWS resources

that must be created and linked together in order to create a fully functional HPC cluster

with AWS. The Dynamic AWS HPC Cluster Project aims to help simplify the steps

needed to create a fully functional dynamic HPC cluster within AWS. The user simply

completes a simple wizard that specifies the details of the HPC cluster that they want: the

size and type of the shared filesystem, the type of HPC scheduler, the number of

Compute Instances, what IP addresses they want the cluster to be accessible from, and the

number of Login/Head Instances required. After all this has been specified, the Dynamic

AWS HPC Cluster project makes the required calls to the AWS APIs in order to create

all the required AWS resources. After the resources have been created, they are all

automatically configured, networked together, and have the usernames and passwords

pushed out to all of the cluster instances for SSH login. The user can then run their jobs

and when they have no more jobs left to run they can “pause” the cluster, which means

they do not pay for compute charges, and then when they have more jobs to run “resume”

the cluster and run their jobs. This allows users to only pay for the cluster when they

need it which can help save them money.

iii

ACKNOWLEDGMENTS

First, I want to thank my wife Sandra for her understanding and patience

throughout this long process. I would also like to thank my entire family for their

unwavering support and encouragement as without their love and support none of this

would have been possible.

Secondly, I want to thank Boyd Wilson for the constant guidance, support, and

suggestions he has given me throughout this project. I also want to thank Dr. Amy Apon

and my committee members Dr. Jim Martin and Dr. Brian Malloy for all of the

invaluable feedback, editing, and recommendations that they have provided me. I also

want to thank Omnibond for providing funding for this project as well as the NSF for

supporting this research through NSF Award #1212680.

Thirdly, I want to thank my co-workers and friends Richard Gillette, Aaron

Crawford, Zach Muir, Jeff Denton, Nick Watts, and anyone else whom I forgot to

mention for their major contributions to this project and for the support and sanity they

have given me. Without them and their expertise this project would never have been

possible.

Last but not least, I want to thank all of my professors that I have had up to this

point, but especially Dr. Paulus Wahjudi, without him I would have never ended up at

Clemson University and would have never had this opportunity. I also must especially

thank Dr. Barr von Oehsen for initially setting me up with this project and for supporting

me throughout my journey at both Marshall University and Clemson University.

iv

TABLE OF CONTENTS

Page

TITLE PAGE .. i

ABSTRACT ... ii

DEDICATION .. iii

ACKNOWLEDGMENTS .. iv

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

CHAPTER

 I. Introduction .. 1

 Motivation .. 1
 User Requirements ... 2
 Developer Requirements .. 5

 II. Similar Work .. 10

 CycleCloud .. 10
 CfnCluster .. 12
 Star Cluster... 15

 III. Supporting Environment .. 18

 Operating System ... 18
 OrangeFS ... 19
 Globus .. 20
 Schedulers .. 21
 Base HPC Software.. 21

 IV. Design and Implementation ... 23

 Mapping of Normal HPC Subsystems To
 Amazon Web Services (AWS) .. 23
 Design of a Cluster... 28

v

Table of Contents (Continued)

Page

Programming Languages ... 38

V. Testing and Validation ... 43

Correctness ... 43
Performance ... 47
Cost Tradeoffs .. 64
Security Tradeoffs .. 65

VI. Future Work ... 69

Meta-Scheduler Utility Set .. 69

REFERENCES .. 72

vi

LIST OF TABLES

Table Page

5.1 Cluster Creation and Deletion Correctness Testing 46

vii

LIST OF FIGURES

Figure Page

4.1 Dynamic AWS HPC Cluster Architecture ... 29

5.1 AWS HPC Cluster project EC2 Instances no Placement
Groups or Enhanced Networking vs Lab Machines
(MTU 9000) ... 51

5.2 AWS HPC Cluster project EC2 Instances no Placement
Groups or Enhanced Networking vs Lab Machines
(MTU 1500) ... 52

5.3 AWS HPC Cluster project EC2 Instances with Enhanced
 Networking and Placement Groups vs Lab Machines

(MTU 9000) ... 52

5.4 AWS HPC Cluster project EC2 Instances with Enhanced
 Networking and Placement Groups vs Lab Machines

(MTU 1500) ... 52

5.5 Randomly Ordered Ring Latency Benchmark ... 55

5.6 RandomRing Bandwidth Benchmark .. 55

5.7 MPIFFT Benchmarks... 56

5.8 MPI Random Access Benchmarks .. 56

5.9 MPI Prime Number Job Completion Time .. 58

5.10 SingleSTREAM Benchmarks .. 61

5.11 StarSTREAM Benchmarks .. 61

5.12 PTRANS Benchmark ... 62

5.13 HPL Calculated Teraflops.. 62

1

CHAPTER I

INTRODUCTION

Motivation

Many academic researchers utilize some type of computing resources in order to

perform their research. The resources utilized by these researchers can range from

simply running jobs on their own laptop to running jobs on a High Performance

Computing cluster (HPC cluster) if they have access to one. However, not many

researchers have turned to cloud resources, like Amazon Web Services (AWS), for

performing their research even though the cost of these resources has gone down and the

performance of these same resources has drastically increased. This is mainly due to the

fact that AWS and other cloud providers have extremely steep learning curves that need

to be dealt with before the researcher can even start running their experiments. This can

be a major issue for a researcher who is pressed for time and more than likely not an

experienced system administrator. They simply do not have the appropriate amount of

time required to learn how to use these services and therefore tend to avoid them all

together.

This research aims to help to eliminate the steep learning curve associated with

these cloud resources and allow researchers to be able to utilize the flexibility, cost

efficiency, and performance that the cloud provides. This research will enable

researchers who currently do not have access to a HPC cluster to be able to dynamically

create their own HPC cluster to utilize for their simulations and other jobs within AWS.

This will lead to more researchers having access to HPC cluster resources, which will

2

allow for more research to be accomplished in shorter periods of time leading to more

discoveries.

User Requirements

 There are a few different user requirements that must be considered in order for

this project to be beneficial to the end user. Many of the user requirements can be found

in just about any software development project such as security and ease of use. While

the others center on customizability and how the user can create an HPC cluster that is

well suited to their specific needs. This section gives more specific context on these

requirements and explains how they fit into the larger picture of the project.

Limited AWS Knowledge Required

 One of the major user requirements for this project centers on the concept that the

end user will have very limited AWS knowledge when they start using the project. So in

order to accommodate these users, the Dynamic AWS HPC Cluster Project must limit the

use of technical AWS terminology used throughout the project. The project also must

limit the end user interaction with the actual AWS Console. There are many different

things that a user can get overwhelmed with when they first look at and use the AWS

Console, this project needs to enable a clear and simple way to launch the application and

present some of the information found in the AWS Console in an easier to understand

fashion. This will limit the amount of interaction between the end user and the AWS

Console keeping the user from getting frustrated and giving up.

3

Dynamic and Customizable Clusters

 Another major requirement for the Dynamic AWS HPC Cluster Project is that it

has to be able to create dynamic HPC clusters that can be easily configured and then

modified after the initial cluster creation. The initial cluster configuration will be

accomplished through the use of Quick Start and Advanced options within the Dynamic

AWS HPC Cluster Project. The Quick Start option will provide end users with pre-made

cluster options that have a preset number of each type of cluster instances and are ready

to go in just a few clicks. The Advanced option will allow the user more control over

exactly how many of each cluster instance type get created and even allow users not to

create certain types of cluster instances if they so choose. In addition to the different

initial configuration options, there are also options to add and delete cluster instances

after the initial configuration of the cluster. This allows greater customization and

flexibility to the end user and allows them to customize the AWS HPC cluster to their

own personal needs.

Adding of Additional Software and Storage

 Traditionally HPC clusters have allowed users to add their own customized

software to the suite of software that is preinstalled on the HPC cluster. This is due in

part to the very stringent requirements that certain research applications have in regards

to library versions and dependencies. This process of adding in the additional software is

usually accomplished through the use of the module add command in order to “add” the

software to the user’s working environment. The Dynamic AWS HPC Cluster Project

must be to support these types of software additions as well as support an easy way to

4

install the software on all of the instances in the entire cluster without having to go to

each instance and install the software on each of them individually. There needs to be a

centralized software repository that all of the instances can access and utilize in order to

make it look like the software is natively installed on each instance.

Security

 Security is quickly becoming one of the most critical issues for everyone who

uses a computer on a daily basis. This is especially true for researchers who are working

on confidential research that has not been published yet as researchers do not want their

hard work to fall into the hands of someone else that may try and take credit for their

work. The Dynamic AWS HPC Cluster Project needs to make sure that the data and

computing resources that it creates are secure and conform to modern security standards.

In order to accomplish this, there are many different concepts that need to be utilized.

One of the first lines of defense is the use of SSL encryption between the public facing

cluster instances and the outside world. The user also must be able to specify which IP

addresses are allowed to access the actual cluster instances which can drastically help

reduce the risk of attack. The Dynamic AWS HPC Cluster Project should also only allow

authorized users to access the cluster resources; this includes data access permissions so

that the data on the cluster is not visible to any other entity within AWS. This ensures

that the researcher’s data is protected inside AWS in the same ways that it is protected on

their “on premise” clusters

5

Developer Requirements

In addition to the user requirements, there are also some developer requirements

that must be taken into consideration during this project. In order to ensure that the

project can be continued and supported for years to come, many of the developer

requirements center on the areas of interoperability, maintainability, and simplicity.

These areas are the main concepts that shaped the way that the project was coded. In

order to provide more context on these requirements, this section outlines each of the

requirements and how they fit in the overall design of the project.

Scheduler Independent

In the HPC space, there are many different options available when it comes to

HPC job schedulers. Each one provides different features and often times have

completely different syntax for commands and for the structure of the job scripts that are

submitted to them. Researchers each have a particular HPC job scheduler that they are

used to and their job scripts are specifically formulated for this particular scheduler.

Hence it is of the upmost importance that the user is able to choose which type of HPC

job scheduler they want when they are launching the cluster. Therefore the Dynamic

AWS HPC Cluster Project needs to be developed in a scheduler independent manner. In

order for this to be accomplished, the code needs to be structured in a way that lends

itself to the easy addition of the different HPC job schedulers. It is also of vital

importance to the developers that the Dynamic AWS HPC Cluster Project operates and

performs the same general functionality regardless of which scheduler is chosen and

created during the cluster launching. By crafting the code to allow for the easy addition

6

of HPC job schedulers later on, the code gains some extra flexibility as well as increasing

the overall maintainability of the project.

Scale Out Filesystem

 Traditional HPC clusters have a lot of shared storage between the different cluster

instances that allow the user’s a central repository for data that will allow the data to be

accessed on each of the other cluster instances. The users assume this to happen

automatically, but there are a few developmental considerations that must be taken into

account to ensure that this storage performs like the end user anticipates. The filesystem

must be able to scale to large capacities in order to accommodate the data that is

produced by the researchers. This scale that is being referred to is on the order of

terabytes and sometimes even on the orders of petabytes depending on the type of

research being conducted and the data being stored. The filesystem must also be

redundant and configured in a high-availability configuration to ensure that the filesystem

is always available when the researcher needs it. It also needs to be dynamically and

automatically mounted to each of the cluster instances after a cluster has initially

launched, paused, or resumed. This process should be transparent to the user and the user

should notice minimal performance differences between the scale out/shared filesystem

and the local filesystem that is found on the AWS cluster instances themselves.

Web User Interface (UI) Driven

Although many researchers utilize the command line in order to submit their HPC

jobs currently, many of them are not completely comfortable with using the command

line and prefer to be able to utilize a graphical user interface (GUI) instead. So for these

7

reasons, the Dynamic AWS HPC Cluster Project needs to be written in such a way that

the creation of these AWS HPC clusters is driven through a simple and user friendly web

user interface. This will allow many researchers who may not exactly have a lot of

command line experience to be able to quickly get started with an AWS HPC cluster and

provide them with a complete visual representation of the different resources that are

being created for them automatically. The visuals will also help them to gain a better

rudimentary understanding of just what it takes to create a fully functional AWS HPC

cluster.

Cluster Creation Wizard

The Web UI must have a simple and intuitive way for researchers to be able to

create AWS HPC Clusters. The cluster Creation Wizard must provide the users multiple

options from which to choose ranging from advanced options for technical researchers all

the way to simple “templates” for the non-technical user who is just getting started with

HPC. It must also keep the AWS terminology usage to a minimum while still obtaining

all of the information required in order to create a cluster. It has to provide a simple

“One-Click” cluster launching solution, and the cluster created must be data-driven by

the information that was entered by the user as they stepped through the Wizard.

Graphical View of Cluster

Another major feature that the Web UI must contain is the ability to show a

graphical overview of the cluster during creation, while the cluster is running, and while

the cluster is deleting. It must contain an up-to-date representation of a cluster and the

resources associated with it while providing the user enough information about the

8

resources that they do not have to go look through the AWS Console in order to find

certain pieces of information. It must also contain a way to start, stop, resume, and delete

the cluster that is being displayed in order to allow the user to easily manage and control

the state of the cluster. Color coded states should show the different statuses of the

cluster resources and should change if the state of a resource changes so that the user can

be made aware of what is happening.

Web Browser Terminal Access

One of the major advantages of AWS and the cloud is that the resources are

available everywhere. This is one aspect that the Dynamic AWS HPC Cluster Project

really wanted to capture and embrace because mobility and easy access are features that

users want. So in order to facilitate these wants, the Dynamic AWS HPC Cluster Project

needs to provide a mobile terminal that can provide SSH access to all the cluster

instances straight from any web browser. It must support user authentication via an AWS

key pair file or simple username and password combination. The terminal must also be

compatible with mobile devices and allow for researchers to be able to have access to

their cluster on the go so that they can manage their jobs and check their results from

anywhere.

Federated Login

 Today everyone has many different accounts for different websites and services

that they are trying to manage that it becomes nearly impossible to remember them all.

Rather than becoming just another service that requires a username/password

combination, the Dynamic AWS HPC Cluster Project utilizes federated login with some

9

of the major websites and identity providers in order to allow the user to take advantage

of the accounts that they may already have. The initial list of federated login providers

that the Dynamic AWS HPC Cluster Project should support is: InCommon, Google,

Twitter, and Facebook. While the other services are self-explanatory, InCommon is a

service that many have not heard of. InCommon is an identity provider that is used by

many Universities throughout the country for user access management [1]. By enabling

federated login though InCommon, many researchers can use their university credentials

just like they would on their local campus, thus eliminating the need to remember extra

passwords.

10

CHAPTER II

SIMILAR WORK

CycleCloud

 Cycle Computing is a company that provides software that leverages cloud

resources to make computation in the cloud productive at any sale [2]. Cycle Computing

has a piece of software called CycleCloud that helps users create HPC clusters within the

AWS Cloud, which is the very same functionality as the Dynamic AWS HPC Cluster

Project aims to provide to users as well. However, even though the end goal is the same

for both pieces of software and there are some similarities between the two, the methods

used by the two pieces of software are also very different. These similarities and

differences between the two pieces of software will be explained in the following

paragraphs in order to show just how the Dynamic AWS HPC Cluster Project and

CycleCloud accomplish these similar goals while retaining their individuality.

Similarly to the Dynamic AWS HPC Cluster Project CycleCloud utilizes the

AWS Virtual Private Cloud (VPC) construct for the launching and security of the cluster.

CycleCloud also allows for the integration with a number of different HPC Job

Schedulers such as Open Grid Scheduler, HTCondor, Torque, and Cycle Computing’s

own Jupiter Scheduler that can be created on demand [3] just like schedulers can be

created on demand by the Dynamic AWS HPC Cluster project. Both CycleCloud and the

Dynamic AWS HPC Cluster Project also each support a wide variety of AWS services

ranging from Networking to Storage to Compute and Database services. Both

CycleCloud and the Dynamic AWS HPC Cluster Project have a Web UI that can be used

11

to launch and view the current clusters that have been created. While the Web UIs are

vastly different, the overall purpose is the same, they exist simply to allow users to be

able to start, terminate, and manage their resources from a centralized location.

The first major difference between the Dynamic AWS HPC Cluster Project and

CycleCloud is that much of the CycleCloud Cluster specific information is contained

within a template file that needs to be modified depending upon the type of cluster that

the user is trying to create. This leads to users having to constantly modify the template

file each time they want to change the type, number of instances, or AWS features that

they want utilize in the cluster [4]. This is the opposite approach taken by the Dynamic

AWS HPC Cluster Project where there is no template file that needs to be edited and the

user does not need to add entries to the template in order to take advantages of different

AWS features such as Enhanced Networking, Placement Groups, and others. Instead of

having to modify a template to change the parameters of the cluster all that is needed in

order to modify the type of cluster created using the Dynamic AWS HPC Cluster Project

is simply just selecting a different option in the Wizard when the user goes to launch a

new cluster. Also, many of the more advanced AWS features can be enabled, or are even

automatically enabled through the Dynamic AWS HPC Cluster Project without having to

do any other configuration. For example, Placement Groups and Enhanced Networking

features do not cost anything to use in AWS so if the instances being launched support

these features, the Dynamic AWS HPC Cluster Project automatically creates a Placement

Group and enables Enhanced Networking on the instances. In contrast in order to utilize

Placement Groups in CycleCloud, the user must manually create the Placement Group

12

and then add the resource id of the placement group to the template file for the cluster in

order to be able to utilize the Placement Group [5].

Another major difference between CycleCloud and the Dynamic AWS HPC

Cluster Project is that CycleCloud requires a license to be bought from Cycle Computing

which does not come as an offering on the AWS Marketplace. CycleCloud also requires

a special “CycleCloud Server” that does the heavy lifting for the cluster creation [6].

This is similar yet slightly different to the approach taken by the Dynamic AWS HPC

Cluster Project. The Dynamic AWS HPC Cluster Project does have a central “Control

Instance” that does most of the heavy lifting during the cluster creation; however, it will

not require the purchase of an external license or the installation of any extra software to

use out of the box.

There are also a few different things that CycleCloud can do that are not yet

features of the Dynamic AWS HPC Cluster Project, such as the ability to support

multiple cloud providers such as Google Cloud Platform and Microsoft Azure [7]. Also,

CycleCloud has the ability to import “Cluster definitions” from Star Cluster, which is

another software product that is similar to the Dynamic AWS HPC Cluster Project and

will be discussed later on in this section.

CfnCluster

CfnCluster is a framework to deploy and maintain HPC clusters on AWS that was

developed by AWS [8]. CfnCluster is an open source project that creates and manages

the different parts of the HPC cluster. It is a command line and configuration file based

software utility that requires the user to input all the information into a configuration file

13

or into the command line utilities in order to create a cluster. This end goal is yet again

the exact same as the Dynamic AWS HPC Cluster Project, but yet again it is the

difference in implementation and execution that sets the two pieces of software apart.

CfnCluster and the Dynamic AWS HPC Cluster Project do share some

similarities however, both launch the cluster within an AWS VPC, both support multiple

schedulers, and both utilize many different AWS Services. Another similarity that

CfnCluster and the Dynamic AWS HPC Cluster Project share is the programming

languages and libraries that were used to create them. Both CfnCluster and the Dynamic

AWS HPC Cluster Project utilize the Python programming language along with the Boto

APIs [9]. In both projects, Python is the main glue of the application that relates the

different Boto API calls to each other and makes sure that the information from one Boto

API call is passed to the other Boto API calls that need to reference the information

returned by the previous calls. However, recently the Dynamic AWS HPC Cluster

Project has started to move away from Boto and instead has started to utilize Botocore,

which leads us to the discussion of the differences between CfnCluster and the Dynamic

AWS HPC Cluster Project.

One of the largest differences between CfnCluster and the Dyanmic AWS HPC

Cluster Project is the underlying API calls that are used in order to create the actual

cluster. CfnCluster utilizes the AWS Cloud Formation Template (CFT) construct in

order to create the cluster, while the Dynamic AWS HPC Cluster Project does not utilize

these templates but instead uses many different AWS API calls instead. The reason that

this is important is because with a CFT, there is limited flexibility available after the

14

template has been created. Once the template has been created there is no way to add

new resources to the same “stack” that the other resources were created in, existing

resources can be updated but nothing new added [10]. This creates an issue for users

who need the ability to add new groups of instances or even another filesystem after the

initial creation of the cluster. This brittleness and static nature of these templates is the

reason that the Dynamic AWS HPC Cluster Project utilizes APIs directly instead of the

CFTs. The Dynamic AWS HPC Cluster Project wants to allow the user to be able to

dynamically change the cluster even after creation and this just was not feasible with the

CFTs, although during the initial system design stages of the Dynamic AWS HPC Cluster

Project, CFTs were considered.

Another major difference that separates CfnCluster and the Dynamic AWS HPC

Cluster Project is that CfnCluster is completely command line and configuration file

driven. This is similar to the way that CycleCloud operates but instead of having separate

template files for each cluster, you can define multiple clusters within the CfnCluster

configuration file. This is yet again where a user would have to go in order to enable

some of the more complex AWS features as well as to change the makeup of their

cluster. This is in contrast to the dynamic and free flowing nature of the Dynamic AWS

HPC Cluster Project interface that allows these features to automatically be enabled

without the user having to do anything special or set any configuration values in a file.

This helps to eliminate some of the learning curve for users who may not be as familiar

with AWS as others.

15

CfnCluster does add a nice and convenient feature that is currently not available

in the Dynamic AWS HPC Cluster Project. The support of primitive job scaling features.

Basically this means that CfnCluster will create or remove compute instances based upon

the number of jobs that have been submitted to the scheduler. This is accomplished

through the monitoring of the number of submitted jobs via AWS CloudWatch which call

different scaling policies associated with an AWS Autoscaling Group in order to create or

remove compute instances based upon the number of jobs in the job queue [11]. This is a

feature that is planned to be added into the Dynamic AWS HPC Cluster Project and is

described further in Chapter VI.

Star Cluster

Star Cluster is an open source cluster-computing toolkit for AWS EC2 that was

developed at the Massachusetts Institute of Technology (MIT) [12]. Star Cluster similar

to CfnCluster, is a command line based tool that operates off of a configuration file that is

used in order to determine the cluster’s features. This means that tweaking the

configuration file is an important part of customizing the cluster that you want to create.

Yet again the goal of Star Cluster is quite similar to the Dynamic AWS HPC Cluster

Project and although the two projects do share some goals, the differences between the

two are the things that stick out the most.

Both Star Cluster and the Dynamic AWS HPC Cluster Project aim to help an end

user be able to generate an HPC cluster with AWS and do so by utilizing the Python

programming language [12]. Both projects support the starting, stopping, and resuming

of clusters as well as the ability to view the running clusters and the different instances

16

that make up each of the clusters from a central location. But besides these few

similarities, the implementation of the clusters is drastically different between the two

projects.

One of the main differences that users of the two systems will notice right away is

the fact that the Dynamic AWS HPC Cluster Project utilizes a Web UI while Star Cluster

is a command line utility. Star Cluster does help a little bit more with making the

command line user friendly then does CfnCluster, as it provides simple user-readable

host names for SSH and also provides simple commands for viewing running clusters and

for managing them [13]. However the interface can still be intimidating if you are not

used to the terminology or how AWS works in general. Whereas the main goal of the

Dynamic AWS HPC Cluster Project is to provide an interface that is much less

intimidating for new users who are just trying to get started using an HPC cluster or the

command line.

Another difference between the two is that the Dynamic AWS HPC Cluster

Project utilizes OrangeFS for shared storage across all of the cluster instances where Star

Cluster utilizes the more traditional Network File System (NFS) for its implementation of

shared storage [13]. NFS is pretty standard across the HPC industry but the one

advantage that OrangeFS has over NFS is the fact that OrangeFS supports parallel I/O

operations that can drastically cut down on the time that I/O operations take which can

drastically decrease the runtime of I/O intensive jobs.

Another difference between the two is that Star Cluster is a software utility that is

installed on a user’s local machine. This means that the user’s local machine is the one

17

doing all the heavy lifting in order to create all of the AWS resources and means that the

utility must be installed in order for the user to be able to use it to access the cluster. This

can cause issues for users who have multiple machines and move back and forth between

them. It can be extremely difficult to keep the configuration files consistent between

machines which can make cluster management difficult. In contrast, the Dynamic AWS

HPC Cluster Project Web UI runs on AWS and is accessible from any device that has a

web browser on it. This makes cluster administration and access on the go much easier

than having to install and configure a separate software package on each of the machines.

Star Cluster also supports many extra functions that are currently not supported by

the Dynamic AWS HPC Cluster Project. One of these features is that Star Cluster

supports a Python based plug-in system where users can create their own Python based

plug-ins that can then be integrated into the Star Cluster utility in order to allow them to

perform customized actions [14]. Another one of these features is that Star Cluster

provides some command line based wrappers for performing particular AWS tasks that

are required in order to be able to use Star Cluster. Another added feature that Star

Cluster has is extremely similar to the job autoscaling provided by CfnCluster. Star

Cluster supports the expanding and shrinking of the cluster based upon the number of

jobs that are in the job queue [15]. This helps to minimize costs while also maximizing

productivity.

18

CHAPTER III

SUPPORTING ENVIRONMENT

Operating Systems

The most critical supporting tool that needs to be considered for any HPC cluster

is the operating system that the cluster will run. There are many factors to be considered

when choosing an operating system: the package manager, available software, licensing

costs, and also the frequency of security patches just to name a few. For the Dynamic

AWS HPC Cluster Project two different operating system options were chosen: Red Hat

Enterprise Linux and CentOS 7.

Red Hat Enterprise Linux

Red Hat Enterprise Linux (RHEL) is a commercial version of Linux that is based

off of Fedora but is highly tuned for stability, security, and performance [16]. Unlike

many distributions of Linux, RHEL is not freely available for download and requires a

subscription in order to use many of the core features. Usually this would be a large issue

when utilizing it on an HPC cluster, but AWS has taken care of this issue for the end user

by including the cost of the subscription in the instance cost of the AWS instance. RHEL

utilizes the yum package manager and many of the tools that are used by the research

community are available for install via yum. This coupled with the large amount of detail

paid to security makes RHEL a great distribution of choice for researchers who need a

stable and secure operating system and don’t mind the small added cost.

19

CentOS

CentOS is the other operating system that is fully integrated into the Dynamic

AWS HPC Cluster Project. CentOS is based off of RHEL but it is free to modify and

does not require a subscription to use. It also utilizes the yum package manager and has a

large suite of scientific applications that are available for use. Since there is no additional

subscription cost, CentOS is actually cheaper to run on AWS and it also supports an

AWS concept of Spot Instances which RHEL does not at this time. Spot Instances are

AWS instances that a user can purchase at a lower price than usual with the caveat that

the AWS instance can disappear at any time if another user offers to pay more for a Spot

Instance. The compatibility with Spot Instances makes CentOS an appealing option for

researchers who are looking to try and get the most for their money.

OrangeFS

HPC clusters typically are configured with a large shared filesystem that is quick

and is great for storing large data sets and other user data. The Dynamic AWS HPC

Cluster Project utilizes the OrangeFS filesystem to achieve this purpose. OrangeFS is a

parallel distributed network filesystem that has native support for parallel I/O operations

that can be utilized by MPI applications in order to drastically speed up filesystem reads

and writes. The Dynamic AWS HPC Cluster Project allows a user to specify exactly

what size of a filesystem that they want and then dynamically creates and configures the

requested filesystem. How this takes place is described in a later section of this paper.

 Once created, the filesystem is automatically mounted on each instance of the

cluster so that all the cluster instances have access to the files. The OrangeFS filesystem

20

also supports WebDAV for quick and convenient access to the cluster’s filesystem

through either a WebDAV client on the user’s local machine or through the Web via an

authenticated web page located on the Login Instance within the cluster.

Globus

Data transfer into and out of AWS has always been a manual process, usually

involving SCP commands or the manual configuration of a data transfer tool on the AWS

instance. In order to help facilitate easier and faster transfer of data into and out of AWS,

Globus has been integrated into the Dynamic AWS HPC Cluster Project. Globus is a

data transfer tool set that utilizes GridFTP to quickly and efficiently transfer data between

two Globus endpoints [17]. Globus is widely used both at universities and other

corporations around the globe. This means that many of the researchers that the Dynamic

AWS HPC Cluster Project targets are used to using Globus to transfer their data to and

from their local clusters. This means that by integrating Globus capability into the

Dynamic AWS HPC Cluster Project, researchers can utilize the tools that they are already

used to using which limits the learning curve required to start moving data in and out of

an AWS HPC cluster.

The creation of Globus endpoints within AWS is not a trivial process, especially

for a non-technical researcher, so the Dynamic AWS HPC Cluster Project automates the

process and dynamically generates Globus endpoints automatically for the user. The

knowledge needed by the user is minimal as they only need to enter their Globus account

credentials and a name for the Globus endpoint and the Dynamic AWS HPC Cluster

Project takes care of the rest. The Globus endpoint is generated within the users account

21

and can easily be activated through a simple OAuth process that utilizes the local cluster

account credentials so that no local usernames or passwords are ever sent to Globus’s

servers.

Schedulers

Schedulers are by far the most critical piece of software on an HPC Cluster. The

scheduler takes user submitted jobs and then allocates the resources required to the job,

monitors the status of the job, and makes sure that the output of the job ends up where it

is supposed to be. There are many different HPC schedulers out currently however most

of them work very differently from each other which leads many researchers to prefer

one scheduler over another. This is why the Dynamic AWS HPC Cluster Project is

coded to support and dynamically configure multiple HPC schedulers based upon the

user’s personal preference. The user simply selects the type of scheduler they want

during the initial cluster creation and then the Dynamic AWS HPC Cluster Project will

dynamically configure the scheduler of choice with the cluster. This includes the

automatic and dynamic configuration of passwordless SSH to and from the compute

instances as well as the dynamic addition of new compute instances to the scheduler if

they are created after the initial cluster creation. Currently the only fully supported

scheduler is Torque/Maui, but there are many others that are currently being worked on

such as Sun Grid Engine (SGE), Slum, and Condor.

Base HPC Software

Another major area of concern for researchers when determining whether or not

to use a certain HPC cluster is the number of pre-installed software packages that are

22

available to them. If an HPC cluster is lacking many of the basic scientific software

packages and the researcher is not proficient on how to install these packages it will end

with the researcher not using that particular HPC cluster and moving to a different one.

In order to help mitigate this problem, the Dynamic AWS HPC Cluster Project comes

with many of these basic scientific software packages, such as Docker, R, SciPy, NumPy,

and many others, pre-installed and configured so that the researcher has many tools at

their fingertips as soon as the AWS HPC Cluster spins up. The Dynamic AWS HPC

Cluster Project also utilizes the common Module file method of adding software to the

user’s environment. This is a standard feature on most HPC clusters today that basically

allows the user to pick and choose exactly what software and what software version they

want in their environment. This allows the researcher to spend less time installing basic

packages and more time actually doing their research.

23

CHAPTER IV

DESIGN AND IMPLEMENTATION

Mapping of Normal HPC Subsystems to Amazon Web Services (AWS)

Traditional High Performance Computing (HPC) clusters typically consist of four

different subsystems. These four subsystems are the basic services that are required for

the successful operation of a basic HPC cluster: Compute, Networking, Storage, and

Access Management. By mapping AWS Services to each of these four core subsystems

of HPC the process of deciding which AWS services to use to create the HPC cluster on

the AWS cloud begin to take shape.

Compute

The first subsystem of traditional HPC clusters that needed to be mapped to its

AWS service counterpart is the subsystem of compute resources. This is the subsystem

that is equivalent to all the “racks” of computers/servers within a local campus data

center where they are all communicating and working together to perform most of the

grunt work that the typical HPC jobs require. This concept maps perfectly to AWS’s

Elastic Compute Cloud (EC2) service. The EC2 service allows AWS users to “create”

many different types of virtual computers/servers all from the same location and utilizing

the same protocols and process. The type of virtual hardware inside of these

computers/servers varies from an instance with just one or two cores to instances that

contain up to thirty six cores [30], this is a great advantage over traditional HPC clusters

24

because usually the compute resources found within a traditional HPC cluster are more

static and have only a certain number of hardware options to choose from.

Another advantage that utilizing AWS EC2 resources for use within an HPC

cluster is the cost and maintenance factors associated with running a traditional HPC

cluster. This issue is discussed more in depth later on in this paper, but one point that

needs to be mentioned here is that AWS is a “pay for what you use” service and has ways

that you can “pause” the resources in your cluster so that you are no longer paying for the

run time of the instances. This is extraordinarily useful due to the fact that the use of an

HPC cluster for a researcher tends to be extremely bursty to where they really only need a

cluster for a certain period of time and then they will not need it again for a while. EC2

is perfect for this type of scenario as it has all the cost saving functionality needed built

right in.

Networking

Without the network infrastructure neither traditional HPC clusters nor an AWS

HPC cluster would be possible. Unfortunately unlike the subsystem of compute

resources, there is not just a single AWS service that can encompass all the functionality

of the traditional HPC cluster networking subsystem. Instead the AWS equivalent is spilt

between four different AWS Services: Virtual Private Cloud (VPC), Route53, Placement

Groups, and Enhanced Networking. Each of these services provides a different key piece

of the overall network functionality that is required by an AWS HPC cluster.

Virtual Private Cloud (VPC) is the biggest piece of the Network subsystem puzzle

and can be thought of as basically the equivalent to a campus network. The VPC is

25

where all of the previously mentioned EC2 resources will reside and is effectively what

allows the different EC2 resources to be able to talk to each other. This is accomplished

through the use of different VPC constructs such as Network ACLs, Routing Tables,

VPC Peering Connections, Elastic Network Interfaces (ENIs), Subnets, Network Address

Translation (NAT), and Security Groups. Many of these constructs should sound familiar

to anyone who has administered a traditional HPC cluster as many of the concepts

unsurprisingly map directly to traditional networking concepts.

However the VPC service does not quite cover everything that is needed in the

Networking subsystem. One major advantage that a traditional HPC cluster has over an

AWS HPC cluster is the ability to have compute resources placed in the same racks to

minimize latency between the instances by limiting the number of networking devices the

traffic must travel through to reach its destination. This is somewhat of a wildcard in

AWS as there is no way to know where the resources will be launched within the AWS

datacenters. This is where the Placement Group construct becomes useful as it allows the

user to specify that certain instances be “grouped” together within the AWS datacenter to

allow for lower latency and for the instances to be able to take full advantage of the

underlying 10GB network within AWS [18]. This combined with the Enhanced

Networking capabilities, which utilizes the SR-IOV kernel module to increase network

throughput and performance on an EC2 instance, can lead to substantial networking

performance increases that allow the AWS network to perform at speeds that are closer to

what users are used to seeing on a traditional HPC cluster backed by 10GB Ethernet.

26

Lastly in the Networking subsystem within AWS we have Route53. Route53 is

basically AWS’s Domain Name System (DNS) solution. Route53 allows the user to

create domain name(s) for certain EC2 instances that will allow users to not have to

memorize the EC2 resource’s IP address but instead they can use a name that is more

meaningful.

Storage

The third subsystem of a traditional HPC cluster that needs mapping is the

subsystem of Storage. Storage is a critical part of any HPC cluster since many of the

HPC jobs require very large data sets as input and sometimes can generate even larger

data sets as output. Traditionally all of these data sets have been stored on a fixed size

shared or distributed filesystem that each of the compute resources can access. However

by utilizing three different AWS services, an AWS HPC cluster provides multiple options

for storing and retrieving these data sets. These three services are: Elastic File System

(EFS), Elastic Block Storage (EBS), and S3.

Elastic File System (EFS) is the closest AWS equivalent to a local shared

filesystem such as NFS. However EFS is much more flexible than just the standard

implementation of NFS. NFS is limited to a set size that has to be maintained all the time

even if most of the storage space is unused, whereas with EFS the filesystem size grows

and shrinks dynamically according to the amount of data that resides on it. This way the

user only pays for the storage when they need it and only for exactly as much storage as

they need at the time.

27

Elastic Block Storage Volumes (EBS) are typically referred to as “EBS volumes”

and are basically the AWS equivalent of a physical hard drive. An EBS volume is the

type of storage that all EC2 compute resources utilize as their boot volumes as well as

any other data disks. EBS volumes can be attached and detached from a running EC2

compute resource at will and are utilized for backing implementations of parallel

filesystems, such as OrangeFS, on the AWS HPC cluster.

The last Storage service that is utilized by the AWS HPC cluster is S3. S3 is

basically AWS’s online accessible object store and is utilized more for longer term

storage or to make certain data easily accessible from outside of the AWS Cloud. S3

allows for the creation of a storage “bucket” that is used to store the file objects in. Each

object within the S3 bucket is given a certain set of configurable permissions and a

unique URL that can be used to download the object from the S3 bucket given that the

permissions allow it. Like EFS, the user only pays for the storage space that they are

actually using and the storage space dynamically grows and shrinks when a user creates

or deletes an object from an S3 bucket.

Access Management

The last of the four subsystems that comprise a traditional HPC cluster is the

subsystem of Access Management. This is a vastly important subsystem as this is the

subsystem that determines exactly who can and who cannot have access to the HPC

cluster resources at any given time. Traditional HPC clusters have some form of

authentication for users; usually it corresponds to their own internal authentication

system such as Shibboleth, Active Directory, etc. The mapping of the subsystem of

28

Access Management on an AWS HPC cluster boils down to two AWS services the

Identity and Access Management (IAM) and DynamoDB.

The Identity and Access Management (IAM) service is used to control access to

the AWS API calls that are used in order to dynamically generate the AWS HPC cluster.

IAM makes sure that the users of the AWS HPC cluster cannot escalate privileges on the

compute resources of the cluster in order to take over the underlying AWS Account.

IAM also limits exactly which API calls certain cluster resources can perform

successfully which also helps to reduce the damage that could be done by a rouge user.

DynamoDB is AWS’s NoSQL database solution and it is used extensively during

the entire process of creating and maintaining an AWS HPC cluster. DynamoDB is

where all the user accounts and passwords are encrypted and stored. This allows each of

the cluster resources to be able to validate user credentials via DynamoDB if needed.

DynamoDB is also used extensively for the tracking of cluster meta-data and other

settings that are associated with a particular cluster. This ensures that each compute

resource is able to pull all the information it may need about other compute resources

directly from DynamoDB at any time.

Design of a Cluster

Now that the mappings of the traditional HPC subsystems to certain AWS

services have been discussed, the actual design and implementation of the AWS HPC

cluster produced by the Dynamic AWS HPC Project will now be discussed. Within a

traditional HPC cluster, there are numerous different types of resources that all have

different roles within the cluster. The same is true with an AWS HPC cluster; there are a

29

number of different resources that each play a certain role within the cluster. Some of

these resources that are required for an AWS HPC cluster are not required for a

traditional HPC cluster while other resources are extremely similar to their traditional

counterparts. There are even optional resources for the AWS HPC cluster that a user can

pick and choose to customize the cluster to their own liking. Figure 4.1 shows a visual

diagram of the architecture and pieces behind the AWS HPC cluster. There are nine

different main pieces to an AWS HPC cluster: the Control Instance, the Login Instance,

the Scheduler Instance, the Compute Instance(s), the Filesystem Instance(s), the Standby

Instance(s), Additional Storage, the Network Components, and the DynamoDB database.

Figure 4.1: Dynamic AWS HPC Cluster Architecture

30

Control Instance

The Control Instance is the “brain” of an AWS HPC cluster and does not really

have an equivalent within the confines of a traditional HPC cluster. The closest thing in

regards to a traditional HPC cluster that a Control Instance could be related to is a system

administrator. This is due to the fact that the main purpose of the Control Instance is to

perform administrative tasks and manage all the other cluster resources. It is the very

first resource that is created when launching an AWS HPC cluster and it performs some

vital tasks. Through API calls, the Control Instance creates the DynamoDB tables that

will store all the information about the AWS HPC cluster and its resources. It also runs

the Web UI that allows the easy customization of the AWS HPC cluster being created as

well as actually performing the API calls to create all the other resources needed by the

user specified cluster configuration. The Control Instance also utilizes the previously

mentioned Route53 service in order to obtain a human readable domain name that users

can use to access the Web UI instead of having to always go to the IP address. The

Control Instance is also the instance that pushes out all of the users and passwords to all

of the other cluster resources which allows SSH access and job submission to the cluster.

Login Instance

The Login Instance can be thought of as the equivalent to the head node of a

traditional HPC cluster. The head node of a traditional HPC cluster is used as the

instance which users generally will login to in order to submit their HPC jobs for

processing. The same is true for the Login Instance in an AWS HPC cluster; it is the

publicly facing instance that users must login to in order to obtain access into the internal

31

AWS HPC cluster. This means that it does have a public IP address and it also has a

domain name just like the Control Instance so there is no need to memorize IP addresses.

The users simply SSH into the Login instance using their username/password

combination that is created during the initial Dynamic AWS HPC Cluster Project set up.

Once the user has logged into the Login instance, they will be able to access any of the

other internal cluster instances, access the shared filesystem(s) if they have configured

any, as well as being able to submit jobs to the Scheduler Instance as well.

Scheduler Instance

The Scheduler Instance is a key component to any HPC cluster and is basically

the same concept for an AWS HPC cluster as it is for a traditional HPC cluster. There is

a little more configuration that has to happen for an AWS HPC cluster scheduler verses

the configuration of a traditional HPC scheduler but fortunately the extra configuration is

done behind the scenes and the user does not have to worry about it. The Scheduler

Instance dynamically configures passwordless SSH between itself and all of the Compute

Instances, and even adds the Compute Instances into its scheduling pool as they spin up

and their meta-data is added into the DynamoDB database. Since the Scheduler Instance

is an internal instance, it is not publically accessible from the Internet; however it can talk

out to the Internet to pull down security patches as well as any other files that may be

needed for an HPC job. But of course, its main job is to schedule out the HPC jobs that

are submitted to it to the Compute Instances so that the results can be delivered in a

timely manner. If necessary AWS HPC clusters support multiple Scheduler Instances per

32

cluster, however each Scheduler Instance has to have its own set of Compute Instance(s)

they cannot share the same set due to scheduling conflicts and other issues.

Compute Instance(s)

Compute Instance(s) are in both the traditional and AWS HPC clusters the

workhorse of the cluster. These are the instances that actually do the grunt work for the

HPC jobs and perform all of the calculations and data processing steps required to

produce the job output. These Compute Instance(s) get their job assignments from the

previously discussed Scheduler Instance and then work on the job until it is completed or

otherwise interrupted. These instances automatically and dynamically mount the shared

filesystem(s) that were created with the AWS HPC cluster so that they can all access the

files stored on the shared filesystem(s). They are also configured to have passwordless

SSH between themselves as well as between the Scheduler Instance since this is a

requirement of most HPC job schedulers. This is automatically configured during the

launching of the instances and there is no user intervention needed in order for it to work.

If it is found that after launch more Compute Instance(s) are needed in order to

successfully complete all of the HPC jobs, more Compute Instance(s) can be added to the

AWS HPC cluster after the initial creation and they will be dynamically configured and

added to the Scheduler Instance in the same fashion as the original Compute Instance(s)

were added.

Filesystem Instance(s)

The Filesystem Instance(s) are a feature that is most closely equivalent to the

shared filesystem on a traditional HPC cluster. Traditionally there is some type of shared

33

storage across all the HPC cluster resources that allows each cluster resource to access

the same files. The AWS HPC cluster utilizes the OrangeFS Parallel filesystem running

across multiple AWS EC2 instances in order to provide a high-availability, scalable, and

fast shared storage solution. The entire process is accomplished through the use of EC2

Compute Instances, EBS Volumes, and Elastic Network Interfaces (ENIs). The entire

storage piece of the filesystem is striped across multiple EBS volumes attached to a

specified number of EC2 Compute Instances that have an attached ENI with a particular

static IP address associated with it. This ensures that even if the EC2 Compute Instance

was to die, the EBS volumes and ENI would still remain which means that the data on the

filesystem is safe. This failure protection process will be discussed more in depth in the

Standby Instance(s) subsection.

This filesystem is also dynamically mounted on all of the internal AWS HPC

cluster instances and is even accessible through any web browser by going to the domain

name of the Login_Instance/filesystem_name and logging in using your username and

password (standard UNIX permissions still apply). Utilizing the OrangeFS set up also

allows for the easy upload and download of data into the AWS HPC cluster via a

WebDAV Client which allows a user to mount the AWS HPC cluster OrangeFS

filesystem on their local machine and transfer data to and from it at will.

Standby Instance(s)

The Standby Instance(s) are the instance(s) that allow the Filesystem Instance(s)

to operate in a high-availability configuration. These Standby Instance(s) are similar to

having a “hot spare” in a traditional HPC cluster that is ready to go online at any time

34

should one of the computers fail. These Standby Instance(s) are launched with the

Filesystem Instances and their job is to monitor the OrangeFS service on each of the

running Filesystem Instances and if it is ever determined that one of the Filesystem

Instances has failed, the Standby Instance will then “take over” the failed Filesystem

Instance’s identity and allow the OrangeFS filesystem to keep operating like nothing

happened. This entire process is accomplished through the use of EBS volumes and

ENIs. When it is determined that a Filesystem Instance has failed, the Standby Instance

that detected the failure will issue API calls that will detach the EBS volumes and the

ENI from the failed Filesystem Instance. Then after the ENI and EBS volumes have been

detached from the failed instance, the Standby Instance will then re-attach the ENI and

EBS volumes to itself through API calls and then start the OrangeFS service on itself thus

assuming the identity of the old Filesystem Instance since the IP address and data on the

EBS volumes will not have changed. This allows the filesystem to keep operating like

nothing has happened since all the information the other Filesystem Instances care about

has not changed. Once this process has completed the Standby Instance terminates the

old failed Filesystem Instance and spawns a new Standby Instance to take its place.

This process works since the ENI is assigned a static IP address and all the data

that was contained on the old Filesystem Instance is contained on the EBS volumes that

are now attached to the Standby Instance, the other Filesystem Instances do not know that

anything has changed since they are still communicating with the same IP address. This

prevents having to reconfigure the OrangeFS filesystem if a Filesystem Instance dies and

also provides a way to mitigate the damage caused by an inaccessible filesystem.

35

Additional Storage

An AWS HPC cluster also has a few other additional storage options that can

complement or replace the previously discussed Filesystem and Standby Instance(s).

These additional storage solutions are Elastic File System (EFS) and S3. These two

AWS services have already been briefly discussed before, and at the basic level are just

more places to store data. In the case of EFS, during the initial creation of an AWS HPC

cluster the user has the option to create an instance of EFS and have it dynamically and

automatically mounted across the entire cluster. This then allows shared files and a

shared filesystem for the cluster while not having the overhead of running Filesystem and

Standby Instance(s). During the initial creation, the user is also presented with an option

to create an S3 Bucket that can be used for data storage. However this S3 Bucket is not

dynamically mounted on all the cluster instances due to performance issues. S3 is meant

more for infrequent data access as opposed to frequent reads and writes [19] and hence

has some issues when trying to mount it as a native filesystem.

Adding Additional Software

The software that is installed upon an HPC cluster can make or break how useful

the HPC cluster is for certain types of research. Typically HPC clusters allow users to

add different software into their environment by utilizing the module add command

which then loads the software that is installed in a different location to be added to the

users environment and used like it was installed locally. The Dynamic AWS HPC

Cluster Project enables this same concept from traditional HPC clusters by utilizing

AWS’s EFS. An EFS instance is created and software can be installed onto the

36

filesystem and then it can be loaded via the module add command onto all of the

instances within the cluster. This allows for the software to seem “locally” installed but

without the hassle of having to go install the software one each individual machine which

can quickly become a pain with hundreds of instances.

Network Components

A functioning and correctly configured network is a key piece of any HPC cluster,

traditional or AWS based since without a network there is no cluster at all. The

networking aspect of a traditional HPC cluster is usually all handled by a network

administrator who configures and sets up the network. However for an AWS HPC

cluster, it is actually the Control Instance that sets up all the networking components and

configures the network. The Control Instance first creates a Virtual Private Cloud (VPC)

which is a “private internal network” for the AWS HPC cluster to operate within. This

makes sure that all the AWS HPC cluster instances are on the same internal network and

are sectioned off from the rest of the user’s AWS account for security reasons.

Once this VPC has been created, the Control Instance then performs dynamic

subnet calculation in order to divide the VPC’s address space into different subnets that

are generally split across the type of instance. For example the Compute Instance(s),

Filesystem and Standby Instance(s), and Scheduler(s) each have their own dynamically

generated subnet created for them when they are first launched. This comes with the

exception of the public subnet. The public subnet is reserved for the AWS HPC cluster

resources that have public IP addresses such as the previously mentioned Login

Instance(s) and the NAT Instance. The NAT instance is an instance created by the

37

Control Node that performs Network Address Translation (NAT) for each of the EC2

instances running within the VPC. This allows the internal instances to talk out to the

Internet in order to pull down security patches and to talk with DynamoDB but does not

allow for connections originating from the Internet for security purposes.

One of the other critical networking features configured by the AWS HPC cluster

Control Node is VPC Peering. This is required due to the fact that the Control Instance

has to be launched in a different VPC then the AWS HPC cluster will be launched into.

This means that the Control Instance inherently cannot talk to any of the instances within

the VPC that it creates. This is where VPC Peering comes in; it allows two VPCs to act

like they are part of a larger network so that all of the instances can talk to each other just

like they could if they were in the same VPC.

DynamoDB

The last of the major core subsystems of an AWS HPC cluster that will be

discussed is DynamoDB. This has the equivalent of the user database and the system

admin’s brain in a traditional HPC cluster as this is where all the information regarding

the configuration, users, passwords, and cluster meta-data is stored. DynamoDB is

absolutely critical to the proper functioning of an AWS HPC cluster as each of the cluster

resources depend on it for information about the rest of the cluster.

In order to help with the indexing and faster lookups of the different objects that

are stored, two DynamoDB tables are used. One table is a lookup table that contains an

index and then a pointer to the real object in the second table. The other table is an object

table that actually stores the objects associated with the cluster and is referenced by the

38

lookup table. This provides flexibility in creating quick and simple indexes that can then

be used for faster lookups.

Each of the previously mentioned instances write their own entries to DynamoDB

during their boot process in order to inform the rest of the cluster that they have

successfully launched and are configured correctly. This allows flexibility and better

tracking of the instance states along with a much simpler way of actually determining if

an instance started up successfully or not.

The DynamoDB tables also have the ability to store multiple AWS HPC clusters

at a time. This reduces the charges that come with having many DynamoDB tables as

well as provides a convenient place to query to find all the information regarding all the

AWS HPC clusters that a particular user has created.

Programming Languages

Each programming language has different strengths and weaknesses which need

to be carefully analyzed in order to determine which language is the best fit for a

particular project. However most of the time there is not just one programming language

that can effectively achieve all of the goals associated with a project. This was the case

with the Dynamic AWS HPC Cluster Project. After doing an analysis of many different

programming languages it was determined that more than one programming language

would be required in order to achieve the end goal of the project. So after much analysis

three different languages were chosen for use in the project: Python, JavaScript, and C.

39

Python

Amazon Web Services has a very wide range of SDKs available ranging from

Java, JavaScript, Go, PHP, .NET, Ruby, and Python. During the initial stages of the

project many of the available SDKs were investigated and eventually it was determined

that the Python SDK was the best SDK that was currently available. Utilizing Python as

the main programming language for the project also allowed for the use of Bottle for

interfacing the server and Web UI code. Each of the different instances/groups that were

described in the previous sections accomplishes their dynamic configuration and creation

through the use of a Python script that is run during the launch of the AWS Instance.

Each instance contains all of the different configuration scripts for each type of instance

that the Dynamic AWS HPC Cluster Project supports. The type of instance that will be

created all depends upon which script the Control Instance specifies in the launch

instance command as an AWS concept called “User Data”. This is custom data that can

be passed to an instance at launch and can even run scripts, such as the instance

configuration python scripts. The instance specific script then runs, does all the heavy

lifting and dynamically creates any of the extra AWS resources that may be required for

the instance to fulfil its role within the cluster.

Bottle

Bottle is a lightweight WSGI micro web-framework for the Python programming

languages [20]. Bottle allows for HTTP requests to be mapped to server side Python

functions through the use of clean and simple directives within the Python code itself.

This is the “glue” that joins the Web UI code to the server side Python code that actually

40

does all the heavy lifting with the AWS APIs. When a user chooses their options from

the Web UI and clicks “Create”, a Bottle route is then called that references a server side

Python function that actually goes and calls the AWS APIs in order to create all of the

resources that were requested by the user.

Boto

Boto was the initial AWS Python API set chosen to be incorporated into the

Dynamic AWS HPC Cluster Project. This was due to mainly in part to the excellent

documentation, constant updates, and the majority coverage of the AWS API set. Boto

was used extensively throughout the server code to do all the communication between

AWS and the server. There were originally some AWS API calls that were needed that

could not be done with Boto so instead the equivalent AWS CLI commands were utilized

for those specific instances.

Botocore

Botocore is a newer and vastly improved version of Boto that is much faster and

cleaner to use. In fact Amazon’s own CLI interface that they provide and the newer

version of Boto, Boto3, are both built off of the Botocore library. So instead of

continuing to use Boto, it was decided that it was time to start converting the AWS API

calls from Boto to Botocore since there was no reason to continue to use Boto, which is

built off of Botocore, when instead Botocore itself can be used. Since it is the basis of

the AWS CLI tools, Botocore is updated and maintained much more than the current

Boto3 project and Botocore also gets many of the new updated features much quicker

than Boto3. This means that by utilizing Botocore for the AWS API calls instead of

41

Boto3 it is easier and faster to integrate newer AWS services into the Dynamic AWS

HPC Cluster Project.

JavaScript

JavaScript is used within this project in order to create a simple, lightweight, and

responsive UI that could be used to make AWS HPC cluster creation easier than simply

just leaving it as a command line only tool. The main JavaScript frameworks that were

utilized for the UI were Dojo and Dojo Mama. The advantages for utilizing the Dojo and

Dojo Mama frameworks are that they provide templates for navigation and provide extra

widgets and specialized objects that build upon the objects that are normally available

through JavaScript [21]. This allows the UI to be simple yet sophisticated and allows for

easy and quick navigation between the different parts of the UI. JavaScript was also

chosen due to the ease at which it could be integrated with the Python backend, through

Bottle, that handled all of the AWS API calls and did much of the heavy lifting for the

Dynamic AWS HPC Cluster Project.

C

Since Python is an un-compiled language it makes it much easier for attackers to

go through the source code and compromise the security of the encryption and decryption

that is being done to sensitive data. While Python does allow for the compilation of

source files, the process is easily reversible and not very secure especially when dealing

with passwords and other sensitive user data. This means that in order to make the AWS

HPC cluster authentication and user data storage more secure, all of the functions that

42

deal with sensitive data, encryption, and decryption are coded and compiled in the C

programming language. While it is not impossible to reverse engineer a compiled C

binary, it is a little more difficult and requires more time and effort by the attacker. The

goal is to make the path that the project takes in order to encrypt and decrypt data more

complex and harder to follow for anyone looking to reverse engineer the system.

43

CHAPTER V

TESTING AND VALIDATION

Correctness

 For the Dynamic AWS HPC Cluster Project, there are two different types of

correctness that must be measured in order to assure researchers that the Dynamic AWS

HPC Cluster Project generated clusters can keep pace with traditional HPC clusters. One

type of correctness is that the Dynamic AWS HPC Cluster Project has to create the actual

cluster that the user has specified and the other type of correctness deals with the actual

floating point precision of the cluster’s CPUs. Both of these types of correctness have

been thoroughly tested and the results of each different test are discussed below.

Floating Point Accuracy

 Many of the jobs that are run on an HPC cluster are scientific in nature and rely

on a certain level of floating point accuracy from the cluster’s CPUs. This is because the

computations are dealing with very small and precise numbers where any rounding errors

could cause false results and lead to other issues with the research. This is one area

where the Dynamic AWS HPC Cluster Project must be the same or better than an “on

premise” cluster because otherwise the results calculated using the clusters generated by

the Dynamic AWS HPC Cluster Project would be invalid.

 There are many different benchmarks out there for testing the floating point

accuracy of a CPU; however there are only a couple, such as Linpack and the HPC

Challenge Benchmark suite, which are designed for use with HPC clusters. For this test,

the HPC Challenge Benchmark suite was run on two different clusters and then

44

compared. The first cluster was an 8 node “on premise” cluster where each node had a

2.0Ghz Intel Xeon E5-2660v2 CPU with 128GB of RAM. The second cluster was also

an 8 node cluster but was generated the Dynamic AWS HPC Cluster Project and used the

r3.4xlarge AWS instance type which utilizes a 2.5Ghz Intel Xeon E5-2670v2 CPU and

had 122GB of RAM. Since AWS only has certain configurations for their instance types

it is very hard to find an instance type that is an exact match to the “on premise”

resources and this was the configuration that was most similar to the “on premise”

cluster.

The HPC Challenge Benchmark suite was run on each of these clusters utilizing

the Torque/Maui HPC scheduler along with the MPICH 3.0.4, BLAS, and Atlas SSE3

libraries. The HPC Challenge Benchmarking suite was run a total of ten times on each

cluster and the results from each run were averaged together to get the average

performance of each cluster. The HPC Challenge Benchmark suite contains many

different tools, but the one that is utilized in checking the floating point accuracy is the

HPL benchmark. The HPL benchmark is software that solves a random dense linear

system in double precision and provides a testing and timing program to quantify the

accuracy for the obtained solution [22]. HPL first generates a random dense linear

system and then proceeds to solve the generated system and perform a residual check in

order to make sure that the solution is within the acceptable error range. This is

accomplished by utilizing relative machine precision which for all benchmark runs was

taken by HPL to be 1.110223e-16 on both clusters. This value is then utilized by a

residual check that HPL runs and the value is compared to the inputs to ensure its

45

accuracy. Both clusters passed the tests for all ten runs of the HPL benchmark showing

that the floating point accuracy between the two clusters is similar.

Cluster Creation Correctness

 The other critical area of correctness for the Dynamic AWS HPC Cluster Project

is the correctness of the cluster that it creates. If the user requests a certain cluster, they

expect to get what they requested and if the Dynamic AWS HPC Cluster Project

produces a different cluster than expected it would be unacceptable. This is a type of

correctness that only really only applies to clusters created by the Dynamic AWS HPC

Cluster Project as “on premise” clusters are pre-provisioned and are not dynamically

generated. In order to test the correctness of the Dynamic AWS HPC Cluster Project, ten

different cluster configurations were created and launched through the project and then

the resulting clusters were compared to the original requested clusters. Table 5.1 shows

the different cluster configurations that were launched and then deleted, and the pass/fail

rating for both creation and deletion.

If the requested cluster was the same as the generated cluster the create test passed

but if it differed just a little bit the test failed. Same for the delete test, if the generated

cluster deleted all the created resources it originally created then the test passed, if it

didn’t delete all the resources then the test failed. For each of the requested cluster

configurations tested with the Dynamic AWS HPC Cluster Project, all of the created

clusters exactly matched the requested cluster configuration and all the generated clusters

successfully deleted after being created. These tests show that the Dynamic AWS HPC

Cluster Project is reliable in spinning up and deleting the requested clusters and will

46

produce the exact cluster that is requested. This is critical as each time instances are

launched within AWS the user is charged for the full hour even if the AWS instance is

only used for a minute. This means that if the Dynamic AWS HPC Cluster Project

launches the wrong instances or number of instances the user will be charged for the full

hour of use which can be expensive if they are using large AWS instance types.

Requested Cluster Configuration Resulting Cluster Create and Delete
Pass/Fail

4 Compute Instances, 4 Filesystem
Instances, 1 Login Instance, 1 Scheduler, 1
NAT Instance

Create: Pass
Delete: Pass

4 Compute Instances, 4 Filesystem
Instances, 1 Login Instance, 2 Schedulers,
1 NAT Instance

Create: Pass
Delete: Pass

4 Compute Instances, 8 Filesystem
Instances, 2 Login Instances, 1 Scheduler,
1 NAT Instance

Create: Pass
Delete: Pass

8 Compute Instances, 4 Filesystem
Instances, 2 Login Instances, 1 Scheduler,
1 NAT Instance

Create: Pass
Delete: Pass

2 Compute Instances, 1 Scheduler, 1 NAT
Instance

Create: Pass
Delete: Pass

8 Compute Instances, 8 Filesystem
Instances, 2 Login Instance, 2 Scheduler, 1
NAT Instance

Create: Pass
Delete: Pass

8 Compute Instances, 8 Filesystem
Instances, 1 Login Instance, 1 NAT
Instance

Create: Pass
Delete: Pass

1 Compute Instances, 1 Filesystem
Instances, 1 NAT Instance

Create: Pass
Delete: Pass

1 Login Instance, 1 Scheduler, 1 NAT
Instance

Create: Pass
Delete: Pass

4 Filesystem Instances, 1 Login Instance, 1
Scheduler, 1 NAT Instance

Create: Pass
Delete: Pass

Table 5.1 Cluster Creation and Deletion Correctness Testing

47

Performance

 Just having the cluster spin up correctly and have a certain level of floating point

accuracy does not mean anything if the cluster’s performance is not very good.

Performance when running HPC jobs is something that many HPC cluster users take very

seriously. Many users have to constantly walk the fine line of performance and cost in

order to ensure that they stay under budget while still obtaining as many and as accurate

results as possible. In this section, the performance of the clusters generated by the

Dynamic AWS HPC Cluster Project and the performance of a local “on premise” cluster

will be compared and contrasted to show the advantages and disadvantages of utilizing

AWS based HPC clusters.

Network Performance

 Network speed is critical for many HPC applications and even the slightest

slowdown of the network can be the difference in an HPC job running for a few hours

versus the same HPC job running for a period of days. Unfortunately the network

performance of AWS is not a simple issue; Amazon is very secretive about the backbone

network that AWS utilizes for the EC2 instances which makes it hard to figure out

exactly what network performance certain instances will have. Therefore in order to

fairly cover the different types of network performance in AWS two separate benchmarks

have been performed to showcase some of the differences between the upper levels of

network performance within AWS.

The four levels of network performance for an AWS EC2 instance are: low, low

to moderate, moderate, high, and 10GB. With each increase in the level of network

48

performance the EC2 instance cost per hour also increases. Since AWS EC2 instances

are preconfigured the user cannot choose the type of network performance that a certain

instance type has, which means that the user is limited in their options if network

performance is a top concern. This was an issue that was encountered when trying to

compare the “on premise” cluster and the cluster created by the Dynamic AWS HPC

Cluster Project. In order to most closely match the number of CPUs and RAM that the

“on premise” cluster had, an instance type with only a “High” level of networking had to

be chosen. All of the other instances that had the “10GB” level of networking contained

either too few CPUs, to many CPUs, not enough RAM, or too much RAM. This caused

the choice to be made to go with the instance type most closely matching the amount

RAM and number of CPUs which handicapped the network performance of the cluster

created by the Dynamic AWS HPC Cluster Project that the HPC Challenge Benchmarks

were ran on.

In order to show the difference between the “High” level and “10GB” level of

networking, network data transfer benchmarks were ran on two instances that had the

“10GB” level of networking performance and compared against a standard 10GB

Ethernet network. These benchmarks were also done utilizing some of the advanced

networking features that the Dynamic AWS HPC Cluster Project utilizes that similar

projects do not. The benchmarks also show how the network compares to a “bare metal”

network with and without these special features enabled.

49

AWS 10GB Network Benchmarks

Many “on premise” HPC clusters have a finely tuned network backbone that is

specially formulated for low latency and high throughput between the instances of the

cluster. However, AWS is a more generalized computing environment that supports

many applications and is highly virtualized so there are fewer optimizations that can take

place in the network itself and instead more optimizations that have to be made to the

virtualization software [23].

Two of these optimizations that AWS introduces to attempt to minimize latency

and jitter in the network traffic are the concepts of Placement Groups and Enhanced

Networking. Placement Groups are a way to “logically group instances within AWS that

enables applications to participate in a low-latency 10Gbps network” [18]. While

Enhanced networking utilizes single root I/O virtualization (SR-IOV) in order to provide

higher performance (in packets per second), lower latency, and lower jitter [24]. Unlike

CycleCloud, CfnCluster, and Star Cluster, the Dynamic AWS HPC Cluster Project

enables Enhanced Networking, creates Placement Groups, and places compatible

instances inside these Placement Groups without the user having to do anything. As the

benchmarks show, this greatly increases the network performance between the cluster

instances which can drastically reduce errors and long run times for certain applications.

The backbone network of AWS utilizes the Ethernet protocol and more

specifically for instances that support the use of Placement Groups and Enhanced

Networking, a “10GB” level of network performance based upon the 10Gbps Ethernet

standard. Benchmarks were performed on both the AWS network with Placement

50

Groups and Enhanced Networking enabled as well as without Placement Groups and

Enhanced Networking enabled. These results were then compared to the exact same

benchmarks that were performed between two local “bare-metal” machines that were also

connected by a 10Gbps Ethernet network backbone. The main goal in performing these

benchmarks was to determine if the network speeds offered by AWS were comparable to

the “bare-metal” speeds that one would get if running the instances locally.

The benchmarks were obtained through the use of the iPerf network benchmark

tool, which simply sends massive amounts of data for a set time period and records

certain statistics about the speed and jitter found within the data transfer window [25].

Since internally, AWS instances can utilize Jumbo Frames, which are simply Ethernet

Frames that have a maximum transmission unit (MTU) of 9000 instead of the normal

1500 MTU, the benchmarks were performed with both 9000 MTU and 1500 MTU to get

a better feel for how the networks compared. Both the UDP bandwidth and TCP

bandwidth were tested in order to see just how much the numbers fluctuated between the

two different protocol types.

 51

Figure 5.1: AWS HPC Cluster project
EC2 Instances no Placement Groups or
Enhanced Networking vs Lab Machines
(MTU 9000)

Figure 5.2: AWS HPC Cluster project
EC2 Instances no Placement Groups or
Enhanced Networking vs Lab Machines
(MTU 1500)

Figures 5.1 and 5.2 show the output of benchmarking two standalone Dynamic

AWS HPC Cluster Project c3.8xlarge type instances with a network performance level of

“10GB” and that are not within a Placement Group nor have Enhanced Networking

enabled against the benchmarking results of the Clemson Networking Lab machines with

the MTUs of 9000 and 1500 respectively. Without the Placement Group feature, the

Clemson Networking Lab Machines outperformed the AWS machines by 2.84 Gbits/sec

with an MTU of 9000 and by 2.60 Gbits/sec with an MTU of 1500. However the same

was not true for the UDP benchmarks, as the AWS network outperformed the local

machines by 0.97 Gbits/sec with an MTU of 9000 and by 0.83 Gbits/sec with an MTU of

1500. This is along the lines of what was anticipated for TCP due to the increased

overhead that virtualization puts on the network. However, for the UDP benchmarks to

be higher in AWS was an unexpected surprise.

0

2

4

6

8

10

12

TCP UDP

Ba
nd

w
id

th
 (G

bi
ts

/s
ec

)

Protocol Used

EC2 Instances

Lab Machines

0

1

2

3

4

5

6

TCP UDP

Ba
nd

w
id

th
 (G

bi
ts

/s
ec

)

Protocol Used

EC2 Instances

Lab Machines

 52

Figure 5.3: AWS HPC Cluster project
EC2 Instances with Enhanced
Networking and Placement Groups vs
Lab Machines (MTU 9000)

Figure 5.4: AWS HPC Cluster project
EC2 Instances with Enhanced
Networking and inside Placement Group
vs Lab Machines (MTU 1500)

Figures 5.3 and 5.4 show the output of the iPerf benchmarks on the two

standalone Dynamic AWS HPC Cluster project c3.8xlarge instances within Placement

Groups and with Enhanced Networking enabled versus the Clemson Networking Lab

Machines with an MTU of 9000 and 1500 respectively. The AWS network performance

averaged out to only be 0.29 Gbits/sec less than the Clemson Networking Lab Machines

with an MTU of 9000 and a measly 0.30 Gbits/sec less than the Clemson Networking

Lab Machines with an MTU of 1500. However, the AWS UDP benchmarks were far

greater than the local UDP benchmarks averaging about and 2.50 Gbits/sec more

bandwidth available for UDP with an MTU of 9000 and 2.85 Gbits/sec more bandwidth

available for UDP with an MTU of 1500. Simply by enabling Placement Groups and

Enhanced Networking by default, the network performance provided by the instances that

support these features is much greater than the defaults of the other similar products that

do not enable these features automatically.

0

2

4

6

8

10

12

TCP UDP

Ba
nd

w
id

th
 (G

bi
ts

/s
ec

)

Protocol Used

EC2 Instances

Lab Machines

0

1

2

3

4

5

6

TCP UDP

Ba
nd

w
id

th
 (G

bi
ts

/s
ec

)

Protocol Used

EC2
Instances

Lab
Machines

 53

HPC Challenge Network Benchmarks

 The last section focused mainly on the bulk transfer of data from point to point

within the AWS network which is a useful benchmark when transferring very large files

over the network but it is not exactly indicative of how Message Passing Interface (MPI)

and other network heavy applications will perform on the network. Since MPI and other

network heavy applications utilize many simultaneous connections and many times have

large numbers of packets that are destined for the same place, the performance tends to be

significantly lower than the pure traffic based network performance.

 The performance benchmarks that were used to determine the network

performance for MPI applications was the HPC Challenge Benchmark suite. However,

instead of utilizing the HPL part of the benchmark suite, this time the focus was on the

Latency-Bandwidth-Benchmark. For this round of benchmarks, the HPC Challenge

Benchmark suite was ran a total of ten times and the results from each run were averaged

together in order to get an overall picture of the underlying network performance.. The

results of these network tests were greatly different from the “10GB” network level

benchmarks that were performed in the previous section. This is due to the instances

used to create the cluster generated by the Dynamic AWS HPC Cluster Project had a

level lower network performance, “High” versus “10GB”, than the instances used for the

“10GB” benchmarks in the previous section. This was the only way to “fairly” obtain the

benchmarks because any other AWS instance type that had a “10GB” level of network

performance would not have met, or exceeded, the CPU and RAM requirements needed

to compare to the “on premise” cluster.

 54

 The “on premise” cluster is comprised of 8 nodes where each node had a 2.0 GHz

Intel Xeon E5-2620 CPU with 128GB of RAM. While the cluster generated by the

Dynamic AWS HPC Cluster Project was comprised of 8 nodes and used the r3.4xlarge

AWS instance type which utilizes a 2.5 GHz Intel Xeon E5-2670v2 CPU, had 122GB of

RAM, and a “High” level of network performance. Since AWS only has certain

configurations for their instance types it is very hard to find an instance type that is an

exact match to the “on premise” system and this was the configuration that was most

similar to the “on premise” cluster that was available to utilize.

The key outputs of the Latency-Bandwidth-Benchmark are the Randomly

Ordered Ring Latency and the RandomRing Bandwidth. These parameters report both

the available bandwidth and the latency per process that are randomly ordered in a ring.

The available bandwidth per process is defined to be the total amount of message data

divided by the number of processes and the maximal time needed in all processes. The

latency per process is defined as the maximum time needed in all processes divided by

the number of calls to the MPI_Sendrecv or MPI_Isend in each process [26]. The

average results of the RandomRing Bandwidth and the Randomly Ordered Ring Latency

are shown in Figures 5.5 and 5.6. The “on premise” cluster achieved an average

RandomRing Bandwidth value of 0.0753 gigabits per second while the Dynamic AWS

HPC Cluster Project cluster only achieved an average score of 0.0187 gigabits per

second. That is a dramatic 75.1% decrease in bandwidth between the two clusters. The

results of the Randomly Ordered Ring Latency benchmark are not much better; the “on

premise” cluster averaged a Randomly Ordered Ring Latency value of 63.422

 55

microseconds while the Dynamic AWS HPC Cluster Project measured an average value

of 186.44 microseconds. Here having a higher number is not desirable as it means that

there is a 194% increase in latency from the “on premise” cluster to the AWS cluster.

Figure 5.5: Randomly Ordered Ring
Latency

Figure 5.6: RandomRing Available
Bandwidth

There were two other benchmarks within the HPC Challenge Benchmarking suite

that were run that measured Fast Frontier Transform (FFT) and Random Access utilizing

MPI. The FFT benchmark measures the floating point rate of execution of double

precision complex one-dimensional Discrete Fourier Transform in gigaflops per second

while the Random Access benchmark measures the rate of integer random updates of

memory in gigaupdates (GUPs) per second [21]. These benchmarks were run in order to

get an idea of the MPI performance that could be obtained by the two different clusters.

The results of these benchmarks are shown in Figures 5.7 and 5.8.

0

50

100

150

200

Randomly Ordered Ring Latency

M
ic

ro
se

co
nd

s

Randomly Ordered
Ring Latency
Benchmark

On Premise AWS HPC Cluster Project

0

0.02

0.04

0.06

0.08

RandomRing Bandwidth
G

B/
s

RandomRing
Bandwidth
Benchmark

On Premise AWS HPC Cluster Project

56

Figure 5.7: MPIFFT Benchmarks

Figure 5.8: MPI Random Access
Benchmarks

These numbers show that by far the “on premise” cluster outperforms the cluster

that was generated by the Dynamic AWS HPC Cluster Project. However, there is a

reason that this is the case that was briefly stated earlier, the AWS level of network

performance. An “on premise” cluster does not have any throttling on the amount of the

available network that it can utilize when performing the benchmarks, however this is not

the case on AWS. As previously mentioned, AWS has certain levels of network

performance that are assigned to each different AWS instance type. This means that

certain instance types are limited in the amount of the underlying AWS network that they

can use at any given time. This explains the drastic differences between the two cluster’s

performances on the network section of the benchmarks. The AWS instance type that

was used in the AWS HPC cluster had a network performance level of “High” which is

the second highest level of network performance available within AWS. However, the

difference between “High” and the highest level of network performance “10GB” is not

well documented and appears to be relatively large as the average available bandwidth

0

5

10

15

20

25

MPIFFT

G
Fl

op
/s

MPIFFT Benchmark

On Premise AWS HPC Cluster Project

0
0.002
0.004
0.006
0.008

0.01

MPIRandomAccess

G
up

/s

MPI Random Access
Benchmarks

On Premise AWS HPC Cluster Project

 57

calculated for the “10GB” instances in the previous section averaged right around 9.61

GB/s while the “High” instances averaged only 2.03 Gb/s. This is because since AWS

instances are “multi-tenant”; meaning that there are multiple AWS instances sharing the

same physical connection, the level of network performance is what specifies the

“priority” of the AWS instance in terms of how much network bandwidth it is allocated.

If the other AWS instances that are sharing the same connection are all of a lower

network performance level then there will be more network bandwidth allocated to the

AWS instance with the higher network performance level. However, the converse of that

is true as well if the AWS instances that the user is using are of a lower network

performance level than that of all the other AWS instances in the same “rack” than the

network performance of those instances will be degraded.

All of this is in stark contrast to the “on premise” cluster which has full and

complete access to its underlying network. Since the “on premise” cluster nodes are not

sharing their physical connections with each other, the amount of available bandwidth for

those nodes is much greater than that of an AWS instance that does not have the top

network priority. Thus this explains the drastic differences between the two cluster’s

HPC Challenge benchmarks and the benchmarks between the two AWS instances that

utilized the “10GB” network performance level in the previous section.

Job Completion Time Benchmarks

 Another major area of concern for HPC users is the time taken for a job to

complete as usually the researchers are sitting around waiting for the job to complete

before they can continue onto the next phase of their research. In order to show the

 58

differences between the job completion times on an “on premise” HPC cluster versus a

cluster that was generated by the Dynamic AWS HPC Cluster Project, an MPI job that

finds the largest prime number within a given set of numbers was ran through the HPC

scheduler Torque/Maui on both clusters that utilized 8 nodes and 16 processors per node

for a total of 128 processes across all the nodes on each cluster. The MPI job was ran a

total of ten times on each of the clusters in order to achieve an average job completion

time. All the parameters and executables used for this test were the same on each of the

clusters. The only differences between the two clusters were the total number of

“processes” available on the instances. The “on premise” cluster had twenty total

available processes while the AWS instances had only sixteen. This is due to the

differences in the processors and the rigidity of the AWS instance types.

Figure 5.9: MPI Prime Number Job Completion Times

Figure 5.9 shows the average results of the ten MPI job runs. The job completion

times were about seventy seconds faster on the “on premise” cluster than the job

0

100

200

300

400

MPI Find Prime Numbers Job Completion Times

Se
co

nd
s

MPI Prime Number Job Completion
Times

On Premise AWS HPC Cluster Project

 59

completion times on the cluster generated by the Dynamic AWS HPC Cluster Project.

This is about a 24.5% increase in completion time for the job which is a significant

increase in the time that it takes the job to complete. However, there is a feasible

explanation for why this happens and it has to do with the MPI network benchmarks that

were run on the same two clusters and discussed in the previous section.

Since the job utilized MPI for doing all of its computation, the limiting factor on

how fast the job can complete is again the network performance of each individual node

in the cluster. This yet again points back to the differences in the network performance

levels for each AWS instance type. Since there is a drastic drop off in network

performance and cost for each descending level of network performance theoretically

researchers could see much better performance results by paying a little more and

choosing an AWS instance type that utilized the “10GB” level of network performance

instead of trying to match the number of CPUs and amount of RAM that their “on

premise” cluster has. However, even with choosing an instance that has the “10GB”

network performance level they will probably still see some slightly slower job

completion times due to the shared nature of the AWS network and the AWS instances.

Computational Performance

 Computational performance is another major area that can affect a researcher’s

results. If the researcher’s job is very computational heavy, than the computational

performance of the CPU on the individual nodes is extremely important. If the

computational performance of the AWS instance CPU is not good enough then it will

take computational heavy jobs much longer to complete on the clusters generated by the

 60

Dynamic AWS HPC Cluster Project then it would take the same job to complete on an

“on premise” cluster.

 For these benchmarks, the HPC Challenge Benchmark suite was used with the

focus being on the SingleSTREAM, StarSTREAM, HPL Calculated Teraflops, and the

PTRANS benchmarks. The STREAM benchmarks measure the sustained memory

bandwidth to and from memory. The SingleSTREAM benchmarks test the memory

bandwidth on a single processor on one of the nodes chosen at random from within the

cluster and then the STREAM benchmark is performed ten times and averaged. While

the StarSTREAM benchmarks performs the same benchmark for memory bandwidth but

instead of just running on one processor on a random node, concurrent copies of the

benchmark are run on each processor on each node in the cluster ten times and averaged

[21]. The HPL Calculated Teraflops benchmark measures something completely

different, the rate of execution for solving a randomly generated dense linear system of

equations in double floating-point precision (IEEE 64-bit) arithmetic using MPI. While

the PTRANS benchmark measures the rate at which the system can transpose a large

array [21].

61

Figure 5.10: SingleSTREAM Benchmark

Figure 5.11: StarSTREAM Benchmark

 Figures 5.10 and 5.11 show the results of the two STREAM benchmarks for both

of the clusters. For the SingleSTREAM, the cluster generated by the Dynamic AWS

HPC Cluster Project outperformed the “on premise” cluster by 7.5% on the Scale tasks,

7.0% on the Triad tasks, 8.8% on the Add tasks, and 5.9% on the Copy tasks. These are

marginal increases compared to the “on premise” cluster but for a CPU intensive job,

these marginal increases per CPU could add up to decrease the time needed for certain

computations to complete which could speed up the job run time if used in conjunction

with the “10GB” networking level of performance.

However, the StartSTREAM benchmark seems to show otherwise. These results

show that the “on premise” cluster marginally outperformed the cluster generated by the

Dynamic AWS HPC Cluster Project by 15.7% on the Scale tasks, 14.5% on the Triad

tasks, 14.3% on Add tasks, and 15.7% on the Copy tasks when the STREAM benchmark

is ran on all of the processes simultaneously. This shows that while the AWS instance’s

CPUs may be marginally faster than the “on premise” cluster’s CPUs when all the CPUs

0

5

10

15

Scale Triad Add Copy

G
B/

s
SingleSTREAM
Benchmarks

On Premise AWS HPC Cluster Project

0

0.005

0.01

0.015

0.02

Add Scale Copy Triad

G
B/

s

StarSTREAM
Benchmarks

On Premise AWS HPC Cluster Project

 62

are running simultaneously the AWS instance’s CPUs actually run slower than the “on

premise” cluster.

The hypothesis on why has to do with the shared “multi-tenant” nature of the

AWS instances. Since there can be multiple AWS instances running on the same

hypervisor and hardware, if all of the AWS instances on that particular hardware or

hypervisor happen to all be using the CPU at the same time, there will be a slight

decrease in performance to do the available hardware constraints. When AWS instances

are launched by the Dynamic AWS HPC Cluster Project, they are placed within

Placement Groups which helps to improve the network performance of the instances but

also can place the instances on the same hypervisor or hardware. This means that when

running the STREAM benchmark on all the cluster instances simultaneously the

hypervisor and hardware supporting these AWS instances will be taxed more than if the

benchmark was only running on a single one of the AWS instances. This taxing of the

hardware can lead to the decrease in performance from running the STREAM benchmark

on one instance to running it on many instances simultaneously.

Figure 5.12: PTRANS Benchmarks

Figure 5.13: HPL Calculated Teraflops

0

2

4

6

8

10

PTRANS

G
B/

s

PTRANS Benchmark

On Premise AWS HPC Cluster Project

0

0.2

0.4

0.6

HPL

TF
lo

p/
s

HPL Calculated
Teraflops

On Premise AWS HPC Cluster Project

63

Figures 5.12 and 5.13 show the results of the PTRANS and HPL Calculated

Teraflops benchmarks respectively. The PTRANS benchmark performed on the “on

premise” cluster heavily outperformed the same benchmark performed on the cluster

generated by the Dynamic AWS HPC Cluster Project. The “on premise” cluster actually

performed 71.4% better than the cluster generated by the Dynamic AWS HPC Cluster

Project. This is due largely to the fact that the PTRANS benchmark relies heavily on

pairs of processors communicating with each other simultaneously through MPI which as

stated in the previous sections is known to perform better on the “on premise” cluster due

to the AWS network performance limits on the AWS instance types that were used in the

generation of the cluster from the Dynamic AWS HPC Cluster Project.

The HPL Calculated Teraflops benchmark told a different story though, as this

benchmark showed that the two clusters were very close in their performance. Although

in the end, the “on premise” cluster still outperformed the cluster generated by the

Dynamic AWS HPC Cluster Project, it was only by 2.1%. This is in stark contrast to the

PTRANS benchmarks and the bandwidth and latency benchmarks that have previously

been discussed. This number becomes even more interesting when looking at the fact

that the HPL Calculated Teraflops benchmark does utilize MPI in order to solve the

problem. However, the use of MPI in the benchmark itself is much less than that of the

other benchmarks that utilize MPI so there is not as much congestion or strain put on the

AWS network and hence the AWS network performance level does not matter as much

as it does with other benchmarks.

 64

Cost Tradeoffs

 One of the major draws to cloud based resources is the allure of the potential cost

saving options that are offered by the pay-per-use model instead of having to pay to keep

resources running all the time locally. This allure actually is somewhat of an illusion

however and there have been studies that have studied the cost differences between the

use of AWS instances and the use of local hardware. One such study Cost-effective

HPC: The Community or the Cloud? comes from Purdue University and analyzes the

cost effectiveness of AWS verse the “on premise” clusters found at Purdue University

[27]. This study goes to point out that a highly utilized HPC cluster is actually cheaper to

run locally instead of running it within AWS. However, the actual rate that quantifies

“highly utilized” drastically varies from institution to institution and is a hard metric to

successfully capture due to its many dependencies. These dependencies include the

amount of IT staff available to support and maintain the cluster, the number of users, size

of the cluster, and the amount of available up front capitol to invest into the cluster. All

of these factors contribute to the analysis and at a certain variable point; the cost of

running the cluster within the confines of AWS or other cloud providers becomes greater

than the initial up front cost to create a local HPC cluster.

 This also works in the other direction also, if the user does not have a large pool

of available capital to invest, the IT support to maintain the cluster, or simply will not

utilize the cluster enough to warrant running it continuously then they are a prime

candidate to move their HPC cluster to the AWS or other cloud. By utilizing the AWS

cloud, the user can leverage the ability to be able to only pay for and operate the cluster

 65

as they need it. This can save them valuable money if their budget is tight and can save

them the time and hassle of having to set everything up themselves.

 Another aspect to consider in terms of the cost of operating an HPC cluster within

the AWS cloud is the acute awareness of exactly how much money that each job costs the

user to run. With a local cluster the user has to upfront the money in order to obtain the

resources needed to run their jobs and therefore the money is already spent. Hence they

can run their jobs and anything else as little or as much as they want but either way the

money is already spent. This is a completely different mindset when using AWS as the

user is charged per hour that the AWS instances are running. This means that the user

may, even subconsciously, restrict the usage of the AWS cluster because they are

conscious of the fact that they are spending more money each time they start up the AWS

based cluster. This can be a tough mindset to adjust to as it is programmed in most users’

brains to conserve as much money as they can.

Security Tradeoffs

Security is something that is beginning to take center stage as more and more

companies start to think about moving more of their critical and sensitive services into

the cloud. There are many people who hesitate to migrate sensitive data into the cloud

because they are no longer in physical control of the data and there is always the

possibility that the cloud service provider could be hacked and their sensitive data could

be compromised. This risk is not likely to go away any time soon, but AWS and other

cloud providers have started to strengthen their security by working to achieve many

Security Compliance Certificates in order to assure their customers that they are taking

 66

the protection of their data very seriously. This along with other cloud service provider

security tools allow users to stay on top of the virtual part of securing their machines but

still does not provide a way to physically ensure the safety of the machines like having

the cluster on premise does. In order to explain this concept in more depth, a brief

comparison of security advantages and disadvantages for both the AWS cloud based

cluster and an “on premise” cluster will be given below.

AWS Security

 One of the first things that people think about when they think cloud security is

the fact that their sensitive data is being stored in some datacenter of which they have no

control over. While this is true and is a disadvantage in the sense that the user does not

have physical access to the machines or even control over who has physical access to the

machines, it is also a security advantage in a way as well. This advantage comes from

the fact that if there is a natural or manmade disaster at the location of the user, there is a

good chance that the data center where the data is stored is fine and that the data will

survive unharmed. Another area that fits into this category is the fact that AWS has 15

Certifications from different agencies such as the DoD CSM, FedRAMP, IRAP and FIPS

along with compliance procedures for many privacy laws and regulations such as HIPPA

[28]. This allows the users to feel more at ease that their data will be secure within the

confines of the AWS network and services since AWS has undergone the rigorous testing

process required for many of these certifications.

 Another area that users can utilize in order to gain better control over their AWS

security is the use of different AWS Services such as Security Groups and routing rules

 67

that allow the user to specify exactly what IP addresses can have access to certain ports

and services on the AWS instances based off of IP CIDRs. This combined with the

added security of all the AWS instances being managed by the user’s own AWS account

so they have full control over what resources are being created/deleted/running/paused at

any given time means that the user does have options when it comes to securing virtual

access to the cluster resources. AWS also provides a service called Cloud Watch that

enables a detailed log to be kept about what services were used by which account user so

that any suspicious activity can be tracked [29].

Local Security

 Local cluster security allows the user to have control over exactly who has access

to the physical machines and the data since all of the data is stored locally in the on

premise datacenter. This means that all of the machines and data are managed by people

that are usually within the same organization as the user and these same people are

responsible for monitoring the network as well. This can be a security advantage as there

is a stronger trust built if the user knows the people managing the infrastructure, but it

can also be quite a disadvantage as well as if there is a security breach at the organization.

In this situation, both the data and possibly even physical access could potentially be

compromised at the same time. One disgruntled employee with the right credentials and

a motive can take down the entire company especially with physical access to the

machines.

 With local machines and data storage the user also can have more control over the

network and who has access into and out of the network as they have control over the

 68

networking devices and all of the configurations of these devices. The user also has the

ability to obtain whichever security credentials/certificates that they deem necessary to

their work flow and are not limited to just the security certificates obtained by AWS.

This can be particularly useful when the user needs a more obscure security certificate as

it can be painful and even impossible to get certification for AWS resources that the user

wants to use.

 69

CHAPTER VI

FUTURE WORK

Meta-Scheduler Utility Set

HPC schedulers have mainly focused on the allocation of resources across a large

fixed number of dedicated HPC systems. However, these systems have certain limits

such as the number of instances, types of instances, general hardware available, and the

cost of operating these systems all the time whether they are being fully utilized or not.

However, public clouds like AWS have the ability to bring a new dimension to these

HPC schedulers by allowing for the dynamic creation of resources for which the user can

choose the number of instances, type of instance, hardware, and even control the general

cost of the instances as well. This means that the role of these traditional HPC schedulers

needs to be re-evaluated in order to better utilize the resources that public clouds make

available while at the same time staying consistent, compatible, and even interoperable

with the current HPC schedulers of today. In order for this to happen a meta-scheduler

utility set needs to be not only created but tightly integrated with the Dynamic AWS HPC

Cluster Project in order to help users take even more control over their clusters.

This proposed meta-scheduler needs to be able to interoperate and interact with

many of the current HPC schedulers such as Torque, PBS Pro, Slurm, Sun Grid Engine,

and HTCondor without requiring any modification to the underlying scheduler. It will

provide wrapper functionality in order to take advantage of certain AWS features that are

not currently integrated into any of the previously mentioned HPC schedulers.

 70

The proposed meta-scheduler utility set will at its core consist of three basic

utilities that are fundamental to all current HPC schedulers: submit, status, and delete.

These three utilities will provide the functionality that will enable a user to utilize a

common interface in order to submit, monitor, or delete a job from any of the current

generation HPC schedulers. But the biggest feature that the meta-scheduler utility set

will add to these HPC schedulers is the ability to dynamically parse a job script and

deploy the correct number and type of instances to AWS before actually launching the

job. Then once the job is finished running, it will continue to monitor the launched

instances and if they are no longer being used, they will be shut down. This saves the

user money by only requiring them only to pay for the computing resources that they

actually need.

Another area that the meta-scheduler should be able to handle is the area of data

staging. This can be utilized within the current generation of HPC schedulers as well, as

the ability to dynamically perform data staging before the instances are launched could

save the user a good deal of money since the instances will not have to be sitting idle

while the data is being transferred up to the cluster.

The last area that the meta-scheduler utility set should focus on is making the

current generation of HPC schedulers easier to use. The current generation of HPC

schedulers require the user to learn a completely different command set for each different

HPC scheduler that they want to use. The meta-scheduler utility set would provide a

common interface into all of these different HPC schedulers to where the user would just

have to submit their job script for any of the HPC schedulers and if they happen to have

 71

that type of Scheduler running in their cluster, the meta-scheduler utility set would then

parse the job and submit it to the correct scheduler without the user having to do anything

else. This can be tightly integrated into the Dynamic AWS HPC Cluster Project and

could even become the standard submission tool set used by the Dynamic AWS HPC

Cluster Project.

 72

REFERENCES

[1] "InCommon Federation." InCommon Federation. Internet2. Web. 19 Feb. 2016.
<https://www.incommon.org/federation/>.

[2] "About Us." Cycle Computing. Cycle Computing. Web. 22 Feb. 2016.
<http://cyclecomputing.com/about/>.

[3] "Scheduler Integration." Scheduler Integration — CycleCloud User Guide V6.0.0.
Cycle Computing. Web. 22 Feb. 2016.
<https://docs.cyclecomputing.com/cyclecloud/6.0.0/guide/schedulers.html>.

[4] "Customization." Customization — CycleCloud User Guide V6.0.0. Cycle
Computing. Web. 22 Feb. 2016.
<https://docs.cyclecomputing.com/cyclecloud/6.0.0/guide/customization.html>.

[5] "Using Spot Instances." Using Spot Instances — CycleCloud User Guide V6.0.0.
Cycle Computing. Web. 22 Feb. 2016.
<https://docs.cyclecomputing.com/cyclecloud/latest/guide/aws_configuration.htm
l#amazon-placement-groups>.

[6] "Installing CycleCloud." Installing CycleCloud — CycleCloud User Guide
V6.0.0. Cycle Computing. Web. 22 Feb. 2016.
<https://docs.cyclecomputing.com/cyclecloud/latest/guide/server_install.html>.

[7] "CycleCloud Overview." Cycle Computing. Cycle Computing. Web. 22 Feb.

2016. <http://cyclecomputing.com/products-solutions/>.

[8] "CfnCluster." Amazon Web Services, Inc. Amazon Web Services. Web. 23 Feb.
2016. <https://aws.amazon.com/hpc/cfncluster/>.

[9] "Getting Started with CfnCluster." Getting Started with CfnCluster — CfnCluster

1.0.1. Amazon Web Services. Web. 23 Feb. 2016.
<http://cfncluster.readthedocs.org/en/latest/getting_started.html>.

[10] "What Is AWS CloudFormation?" AWS CloudFormation. Amazon Web

Services. Web. 23 Feb. 2016.
<http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.
html>.

[11] "CfnCluster Auto-scaling." CfnCluster Auto-scaling — CfnCluster 1.0.1.
Amazon Web Services. Web. 23 Feb. 2016.
<http://cfncluster.readthedocs.org/en/latest/autoscaling.html>.

 73

[12] "StarCluster." STAR: Cluster. MIT. Web. 23 Feb. 2016.
<http://star.mit.edu/cluster/>.

[13] "What Is StarCluster?" StarCluster 0.95.6 Documentation. MIT. Web. 23 Feb.
2016. <http://star.mit.edu/cluster/docs/latest/overview.html>.

[14] "Plugin Documentation." Plugin Documentation — StarCluster 0.95.6

Documentation. MIT. Web. 23 Feb. 2016.
<http://star.mit.edu/cluster/docs/latest/plugins/index.html>.

[15] "Elastic Load Balancer." Elastic Load Balancer — StarCluster 0.95.6

Documentation. MIT. Web. 23 Feb. 2016.
<http://star.mit.edu/cluster/docs/latest/manual/load_balancer.html#>.

[16] "Fedora." Red Hat Enterprise Linux. Fedora. Web. 2 Mar. 2016.

<https://fedoraproject.org/wiki/Red_Hat_Enterprise_Linux?rd=RHEL#History>.

[17] "Globus Connect Server." Globus Connect Server. Globus. Web. 2 Mar. 2016.
<https://www.globus.org/globus-connect-server>.

[18] "Placement Groups." Amazon Elastic Compute Cloud. Amazon Web Services.

Web. 2 Mar. 2016.
<http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-
groups.html>.

[19] "Amazon Simple Storage Service (S3) - Object Storage." Amazon Web Services,

Inc. Amazon Web Services. Web. 2 Mar. 2016. <https://aws.amazon.com/s3/>.

[20] "Bottle: Python Web Framework." Bottle: Python Web Framework — Bottle
0.13-dev Documentation. Web. 2 Mar. 2016.
<http://bottlepy.org/docs/dev/index.html>.

[21] "Dojo Toolkit Reference Guide." Dojo Toolkit Reference Guide — The Dojo

Toolkit. Web. 2 Mar. 2016. <https://dojotoolkit.org/reference-guide/1.10/>.

[22] "HPCC." HPCC. Web. 19 Mar. 2016. <http://icl.cs.utk.edu/hpcc/index.html>.

[23] Roberto R. Expósito, Guillermo L. Taboada, Sabela Ramos, Juan Touriño,
Ramón Doallo, Performance analysis of HPC applications in the cloud, Future
Generation Computer Systems, Volume 29, Issue 1, January 2013, Pages 218-
229, ISSN 0167-739X, http://dx.doi.org/10.1016/j.future.2012.06.009.

 74

[24] "Enabling Enhanced Networking on Linux Instances in a VPC." Enabling
Enhanced Networking on Linux Instances in a VPC. Web. 19 Mar. 2016.
<http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-
networking.html>.

[25] "IPerf - The Network Bandwidth Measurement Tool Active Measurements in
TCP, UDP and SCTP." IPerf. Web. 19 Mar. 2016. <https://iperf.fr/>.

[26] Rabenseifner, Rolf, Sunil R. Tiyyagura, and Matthias Mueller. "Network

bandwidth measurements and ratio analysis with the HPC challenge benchmark
suite (HPCC)." Recent Advances in Parallel Virtual Machine and Message
Passing Interface. Springer Berlin Heidelberg, 2005. 368-378.

[27] Carlyle, Adam G., Stephen L. Harrell, and Preston M. Smith. "Cost-effective

HPC: The community or the Cloud?" Cloud Computing Technology and Science
(CloudCom), 2010 IEEE Second International Conference on. IEEE, 2010.

[28] "Cloud Compliance - Amazon Web Services (AWS)." Amazon Web Services,

Inc. Amazon Web Services. Web. 19 Mar. 2016.
<https://aws.amazon.com/compliance/>.

[29] "Amazon CloudWatch - Cloud & Network Monitoring Services." Amazon Web
Services, Inc. Amazon Web Services. Web. 19 Mar. 2016.
<https://aws.amazon.com/cloudwatch/>.

[30] "EC2 Instance Types – Amazon Web Services (AWS)." Amazon Web Services,
Inc. Amazon Web Services. Web. 3 Mar. 2016.
<https://aws.amazon.com/ec2/instance-types/>.

	Clemson University
	TigerPrints
	5-2016

	Dynamic HPC Clusters within Amazon Web Services (AWS)
	Brandon Posey
	Recommended Citation

	tmp.1465998485.pdf.jPC9f

