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ABSTRACT 
 
 

Amazon Web Services (AWS) provides public cloud computing resources and 

services and is one of the largest cloud computing providers in the world. However, in 

order to get started using AWS, one must spend many hours overcoming the steep 

learning curve and terminology associated with AWS.  This is especially true for 

researchers looking to create and utilize a High Performance Computing (HPC) cluster 

within AWS.  This is due to the massive amount of AWS services and AWS resources 

that must be created and linked together in order to create a fully functional HPC cluster 

with AWS. The Dynamic AWS HPC Cluster Project aims to help simplify the steps 

needed to create a fully functional dynamic HPC cluster within AWS.  The user simply 

completes a simple wizard that specifies the details of the HPC cluster that they want: the 

size and type of the shared filesystem, the type of HPC scheduler, the number of 

Compute Instances, what IP addresses they want the cluster to be accessible from, and the 

number of Login/Head Instances required.  After all this has been specified, the Dynamic 

AWS HPC Cluster project makes the required calls to the AWS APIs in order to create 

all the required AWS resources.  After the resources have been created, they are all 

automatically configured, networked together, and have the usernames and passwords 

pushed out to all of the cluster instances for SSH login. The user can then run their jobs 

and when they have no more jobs left to run they can “pause” the cluster, which means 

they do not pay for compute charges, and then when they have more jobs to run “resume” 

the cluster and run their jobs.  This allows users to only pay for the cluster when they 

need it which can help save them money.  
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CHAPTER I 

INTRODUCTION 

Motivation 

Many academic researchers utilize some type of computing resources in order to 

perform their research.  The resources utilized by these researchers can range from 

simply running jobs on their own laptop to running jobs on a High Performance 

Computing cluster (HPC cluster) if they have access to one.  However, not many 

researchers have turned to cloud resources, like Amazon Web Services (AWS), for 

performing their research even though the cost of these resources has gone down and the 

performance of these same resources has drastically increased.  This is mainly due to the 

fact that AWS and other cloud providers have extremely steep learning curves that need 

to be dealt with before the researcher can even start running their experiments.  This can 

be a major issue for a researcher who is pressed for time and more than likely not an 

experienced system administrator. They simply do not have the appropriate amount of 

time required to learn how to use these services and therefore tend to avoid them all 

together. 

This research aims to help to eliminate the steep learning curve associated with 

these cloud resources and allow researchers to be able to utilize the flexibility, cost 

efficiency, and performance that the cloud provides.  This research will enable 

researchers who currently do not have access to a HPC cluster to be able to dynamically 

create their own HPC cluster to utilize for their simulations and other jobs within AWS.  

This will lead to more researchers having access to HPC cluster resources, which will 
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allow for more research to be accomplished in shorter periods of time leading to more 

discoveries. 

User Requirements 

 There are a few different user requirements that must be considered in order for 

this project to be beneficial to the end user.  Many of the user requirements can be found 

in just about any software development project such as security and ease of use.  While 

the others center on customizability and how the user can create an HPC cluster that is 

well suited to their specific needs. This section gives more specific context on these 

requirements and explains how they fit into the larger picture of the project. 

Limited AWS Knowledge Required 

 One of the major user requirements for this project centers on the concept that the 

end user will have very limited AWS knowledge when they start using the project.  So in 

order to accommodate these users, the Dynamic AWS HPC Cluster Project must limit the 

use of technical AWS terminology used throughout the project.  The project also must 

limit the end user interaction with the actual AWS Console.  There are many different 

things that a user can get overwhelmed with when they first look at and use the AWS 

Console, this project needs to enable a clear and simple way to launch the application and 

present some of the information found in the AWS Console in an easier to understand 

fashion.  This will limit the amount of interaction between the end user and the AWS 

Console keeping the user from getting frustrated and giving up. 
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Dynamic and Customizable Clusters 

 Another major requirement for the Dynamic AWS HPC Cluster Project is that it 

has to be able to create dynamic HPC clusters that can be easily configured and then 

modified after the initial cluster creation.  The initial cluster configuration will be 

accomplished through the use of Quick Start and Advanced options within the Dynamic 

AWS HPC Cluster Project.  The Quick Start option will provide end users with pre-made 

cluster options that have a preset number of each type of cluster instances and are ready 

to go in just a few clicks.  The Advanced option will allow the user more control over 

exactly how many of each cluster instance type get created and even allow users not to 

create certain types of cluster instances if they so choose.  In addition to the different 

initial configuration options, there are also options to add and delete cluster instances 

after the initial configuration of the cluster.  This allows greater customization and 

flexibility to the end user and allows them to customize the AWS HPC cluster to their 

own personal needs. 

Adding of Additional Software and Storage 

 Traditionally HPC clusters have allowed users to add their own customized 

software to the suite of software that is preinstalled on the HPC cluster.  This is due in 

part to the very stringent requirements that certain research applications have in regards 

to library versions and dependencies.  This process of adding in the additional software is 

usually accomplished through the use of the module add command in order to “add” the 

software to the user’s working environment.  The Dynamic AWS HPC Cluster Project 

must be to support these types of software additions as well as support an easy way to 
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install the software on all of the instances in the entire cluster without having to go to 

each instance and install the software on each of them individually.  There needs to be a 

centralized software repository that all of the instances can access and utilize in order to 

make it look like the software is natively installed on each instance. 

Security 

 Security is quickly becoming one of the most critical issues for everyone who 

uses a computer on a daily basis.  This is especially true for researchers who are working 

on confidential research that has not been published yet as researchers do not want their 

hard work to fall into the hands of someone else that may try and take credit for their 

work.  The Dynamic AWS HPC Cluster Project needs to make sure that the data and 

computing resources that it creates are secure and conform to modern security standards.  

In order to accomplish this, there are many different concepts that need to be utilized.  

One of the first lines of defense is the use of SSL encryption between the public facing 

cluster instances and the outside world.  The user also must be able to specify which IP 

addresses are allowed to access the actual cluster instances which can drastically help 

reduce the risk of attack.  The Dynamic AWS HPC Cluster Project should also only allow 

authorized users to access the cluster resources; this includes data access permissions so 

that the data on the cluster is not visible to any other entity within AWS.  This ensures 

that the researcher’s data is protected inside AWS in the same ways that it is protected on 

their “on premise” clusters 
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Developer Requirements 

In addition to the user requirements, there are also some developer requirements 

that must be taken into consideration during this project.  In order to ensure that the 

project can be continued and supported for years to come, many of the developer 

requirements center on the areas of interoperability, maintainability, and simplicity.  

These areas are the main concepts that shaped the way that the project was coded.  In 

order to provide more context on these requirements, this section outlines each of the 

requirements and how they fit in the overall design of the project. 

Scheduler Independent 

In the HPC space, there are many different options available when it comes to 

HPC job schedulers.  Each one provides different features and often times have 

completely different syntax for commands and for the structure of the job scripts that are 

submitted to them.  Researchers each have a particular HPC job scheduler that they are 

used to and their job scripts are specifically formulated for this particular scheduler.  

Hence it is of the upmost importance that the user is able to choose which type of HPC 

job scheduler they want when they are launching the cluster.  Therefore the Dynamic 

AWS HPC Cluster Project needs to be developed in a scheduler independent manner.  In 

order for this to be accomplished, the code needs to be structured in a way that lends 

itself to the easy addition of the different HPC job schedulers.  It is also of vital 

importance to the developers that the Dynamic AWS HPC Cluster Project operates and 

performs the same general functionality regardless of which scheduler is chosen and 

created during the cluster launching.  By crafting the code to allow for the easy addition 



6 
 

of HPC job schedulers later on, the code gains some extra flexibility as well as increasing 

the overall maintainability of the project. 

Scale Out Filesystem 

 Traditional HPC clusters have a lot of shared storage between the different cluster 

instances that allow the user’s a central repository for data that will allow the data to be 

accessed on each of the other cluster instances.  The users assume this to happen 

automatically, but there are a few developmental considerations that must be taken into 

account to ensure that this storage performs like the end user anticipates.  The filesystem 

must be able to scale to large capacities in order to accommodate the data that is 

produced by the researchers.  This scale that is being referred to is on the order of 

terabytes and sometimes even on the orders of petabytes depending on the type of 

research being conducted and the data being stored.  The filesystem must also be 

redundant and configured in a high-availability configuration to ensure that the filesystem 

is always available when the researcher needs it.  It also needs to be dynamically and 

automatically mounted to each of the cluster instances after a cluster has initially 

launched, paused, or resumed.  This process should be transparent to the user and the user 

should notice minimal performance differences between the scale out/shared filesystem 

and the local filesystem that is found on the AWS cluster instances themselves. 

Web User Interface (UI) Driven 

Although many researchers utilize the command line in order to submit their HPC 

jobs currently, many of them are not completely comfortable with using the command 

line and prefer to be able to utilize a graphical user interface (GUI) instead.  So for these 
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reasons, the Dynamic AWS HPC Cluster Project needs to be written in such a way that 

the creation of these AWS HPC clusters is driven through a simple and user friendly web 

user interface.  This will allow many researchers who may not exactly have a lot of 

command line experience to be able to quickly get started with an AWS HPC cluster and 

provide them with a complete visual representation of the different resources that are 

being created for them automatically.  The visuals will also help them to gain a better 

rudimentary understanding of just what it takes to create a fully functional AWS HPC 

cluster. 

Cluster Creation Wizard 

The Web UI must have a simple and intuitive way for researchers to be able to 

create AWS HPC Clusters.  The cluster Creation Wizard must provide the users multiple 

options from which to choose ranging from advanced options for technical researchers all 

the way to simple “templates” for the non-technical user who is just getting started with 

HPC.  It must also keep the AWS terminology usage to a minimum while still obtaining 

all of the information required in order to create a cluster.  It has to provide a simple 

“One-Click” cluster launching solution, and the cluster created must be data-driven by 

the information that was entered by the user as they stepped through the Wizard. 

Graphical View of Cluster 

Another major feature that the Web UI must contain is the ability to show a 

graphical overview of the cluster during creation, while the cluster is running, and while 

the cluster is deleting.  It must contain an up-to-date representation of a cluster and the 

resources associated with it while providing the user enough information about the 
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resources that they do not have to go look through the AWS Console in order to find 

certain pieces of information.  It must also contain a way to start, stop, resume, and delete 

the cluster that is being displayed in order to allow the user to easily manage and control 

the state of the cluster.  Color coded states should show the different statuses of the 

cluster resources and should change if the state of a resource changes so that the user can 

be made aware of what is happening. 

Web Browser Terminal Access 

One of the major advantages of AWS and the cloud is that the resources are 

available everywhere.  This is one aspect that the Dynamic AWS HPC Cluster Project 

really wanted to capture and embrace because mobility and easy access are features that 

users want.  So in order to facilitate these wants, the Dynamic AWS HPC Cluster Project 

needs to provide a mobile terminal that can provide SSH access to all the cluster 

instances straight from any web browser.  It must support user authentication via an AWS 

key pair file or simple username and password combination.  The terminal must also be 

compatible with mobile devices and allow for researchers to be able to have access to 

their cluster on the go so that they can manage their jobs and check their results from 

anywhere. 

Federated Login 

 Today everyone has many different accounts for different websites and services 

that they are trying to manage that it becomes nearly impossible to remember them all.  

Rather than becoming just another service that requires a username/password 

combination, the Dynamic AWS HPC Cluster Project utilizes federated login with some 
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of the major websites and identity providers in order to allow the user to take advantage 

of the accounts that they may already have.  The initial list of federated login providers 

that the Dynamic AWS HPC Cluster Project should support is: InCommon, Google, 

Twitter, and Facebook.  While the other services are self-explanatory, InCommon is a 

service that many have not heard of.  InCommon is an identity provider that is used by 

many Universities throughout the country for user access management [1].  By enabling 

federated login though InCommon, many researchers can use their university credentials 

just like they would on their local campus, thus eliminating the need to remember extra 

passwords. 
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CHAPTER II 

SIMILAR WORK 

CycleCloud 

 Cycle Computing is a company that provides software that leverages cloud 

resources to make computation in the cloud productive at any sale [2].  Cycle Computing 

has a piece of software called CycleCloud that helps users create HPC clusters within the 

AWS Cloud, which is the very same functionality as the Dynamic AWS HPC Cluster 

Project aims to provide to users as well.  However, even though the end goal is the same 

for both pieces of software and there are some similarities between the two, the methods 

used by the two pieces of software are also very different.  These similarities and 

differences between the two pieces of software will be explained in the following 

paragraphs in order to show just how the Dynamic AWS HPC Cluster Project and 

CycleCloud accomplish these similar goals while retaining their individuality. 

Similarly to the Dynamic AWS HPC Cluster Project CycleCloud utilizes the 

AWS Virtual Private Cloud (VPC) construct for the launching and security of the cluster.  

CycleCloud also allows for the integration with a number of different HPC Job 

Schedulers such as Open Grid Scheduler, HTCondor, Torque, and Cycle Computing’s 

own Jupiter Scheduler that can be created on demand [3] just like schedulers can be 

created on demand by the Dynamic AWS HPC Cluster project.  Both CycleCloud and the 

Dynamic AWS HPC Cluster Project also each support a wide variety of AWS services 

ranging from Networking to Storage to Compute and Database services.  Both 

CycleCloud and the Dynamic AWS HPC Cluster Project have a Web UI that can be used 
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to launch and view the current clusters that have been created.  While the Web UIs are 

vastly different, the overall purpose is the same, they exist simply to allow users to be 

able to start, terminate, and manage their resources from a centralized location. 

The first major difference between the Dynamic AWS HPC Cluster Project and 

CycleCloud is that much of the CycleCloud Cluster specific information is contained 

within a template file that needs to be modified depending upon the type of cluster that 

the user is trying to create.  This leads to users having to constantly modify the template 

file each time they want to change the type, number of instances, or AWS features that 

they want utilize in the cluster [4].  This is the opposite approach taken by the Dynamic 

AWS HPC Cluster Project where there is no template file that needs to be edited and the 

user does not need to add entries to the template in order to take advantages of different 

AWS features such as Enhanced Networking, Placement Groups, and others.  Instead of 

having to modify a template to change the parameters of the cluster all that is needed in 

order to modify the type of cluster created using the Dynamic AWS HPC Cluster Project 

is simply just selecting a different option in the Wizard when the user goes to launch a 

new cluster.  Also, many of the more advanced AWS features can be enabled, or are even 

automatically enabled through the Dynamic AWS HPC Cluster Project without having to 

do any other configuration.  For example, Placement Groups and Enhanced Networking 

features do not cost anything to use in AWS so if the instances being launched support 

these features, the Dynamic AWS HPC Cluster Project automatically creates a Placement 

Group and enables Enhanced Networking on the instances.  In contrast in order to utilize 

Placement Groups in CycleCloud, the user must manually create the Placement Group 
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and then add the resource id of the placement group to the template file for the cluster in 

order to be able to utilize the Placement Group [5]. 

Another major difference between CycleCloud and the Dynamic AWS HPC 

Cluster Project is that CycleCloud requires a license to be bought from Cycle Computing 

which does not come as an offering on the AWS Marketplace.  CycleCloud also requires 

a special “CycleCloud Server” that does the heavy lifting for the cluster creation [6].  

This is similar yet slightly different to the approach taken by the Dynamic AWS HPC 

Cluster Project.  The Dynamic AWS HPC Cluster Project does have a central “Control 

Instance” that does most of the heavy lifting during the cluster creation; however, it will 

not require the purchase of an external license or the installation of any extra software to 

use out of the box. 

There are also a few different things that CycleCloud can do that are not yet 

features of the Dynamic AWS HPC Cluster Project, such as the ability to support 

multiple cloud providers such as Google Cloud Platform and Microsoft Azure [7].  Also, 

CycleCloud has the ability to import “Cluster definitions” from Star Cluster, which is 

another software product that is similar to the Dynamic AWS HPC Cluster Project and 

will be discussed later on in this section. 

CfnCluster 

CfnCluster is a framework to deploy and maintain HPC clusters on AWS that was 

developed by AWS [8].  CfnCluster is an open source project that creates and manages 

the different parts of the HPC cluster.  It is a command line and configuration file based 

software utility that requires the user to input all the information into a configuration file 
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or into the command line utilities in order to create a cluster. This end goal is yet again 

the exact same as the Dynamic AWS HPC Cluster Project, but yet again it is the 

difference in implementation and execution that sets the two pieces of software apart. 

CfnCluster and the Dynamic AWS HPC Cluster Project do share some 

similarities however, both launch the cluster within an AWS VPC, both support multiple 

schedulers, and both utilize many different AWS Services.  Another similarity that 

CfnCluster and the Dynamic AWS HPC Cluster Project share is the programming 

languages and libraries that were used to create them.  Both CfnCluster and the Dynamic 

AWS HPC Cluster Project utilize the Python programming language along with the Boto 

APIs [9].  In both projects, Python is the main glue of the application that relates the 

different Boto API calls to each other and makes sure that the information from one Boto 

API call is passed to the other Boto API calls that need to reference the information 

returned by the previous calls.  However, recently the Dynamic AWS HPC Cluster 

Project has started to move away from Boto and instead has started to utilize Botocore, 

which leads us to the discussion of the differences between CfnCluster and the Dynamic 

AWS HPC Cluster Project. 

One of the largest differences between CfnCluster and the Dyanmic AWS HPC 

Cluster Project is the underlying API calls that are used in order to create the actual 

cluster.  CfnCluster utilizes the AWS Cloud Formation Template (CFT) construct in 

order to create the cluster, while the Dynamic AWS HPC Cluster Project does not utilize 

these templates but instead uses many different AWS API calls instead.  The reason that 

this is important is because with a CFT, there is limited flexibility available after the 
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template has been created.  Once the template has been created there is no way to add 

new resources to the same “stack” that the other resources were created in, existing 

resources can be updated but nothing new added  [10].  This creates an issue for users 

who need the ability to add new groups of instances or even another filesystem after the 

initial creation of the cluster.  This brittleness and static nature of these templates is the 

reason that the Dynamic AWS HPC Cluster Project utilizes APIs directly instead of the 

CFTs.  The Dynamic AWS HPC Cluster Project wants to allow the user to be able to 

dynamically change the cluster even after creation and this just was not feasible with the 

CFTs, although during the initial system design stages of the Dynamic AWS HPC Cluster 

Project, CFTs were considered. 

Another major difference that separates CfnCluster and the Dynamic AWS HPC 

Cluster Project is that CfnCluster is completely command line and configuration file 

driven.  This is similar to the way that CycleCloud operates but instead of having separate 

template files for each cluster, you can define multiple clusters within the CfnCluster 

configuration file.  This is yet again where a user would have to go in order to enable 

some of the more complex AWS features as well as to change the makeup of their 

cluster.  This is in contrast to the dynamic and free flowing nature of the Dynamic AWS 

HPC Cluster Project interface that allows these features to automatically be enabled 

without the user having to do anything special or set any configuration values in a file.  

This helps to eliminate some of the learning curve for users who may not be as familiar 

with AWS as others. 
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CfnCluster does add a nice and convenient feature that is currently not available 

in the Dynamic AWS HPC Cluster Project.  The support of primitive job scaling features.  

Basically this means that CfnCluster will create or remove compute instances based upon 

the number of jobs that have been submitted to the scheduler.  This is accomplished 

through the monitoring of the number of submitted jobs via AWS CloudWatch which call 

different scaling policies associated with an AWS Autoscaling Group in order to create or 

remove compute instances based upon the number of jobs in the job queue [11].  This is a 

feature that is planned to be added into the Dynamic AWS HPC Cluster Project and is 

described further in Chapter VI.  

Star Cluster 

Star Cluster is an open source cluster-computing toolkit for AWS EC2 that was 

developed at the Massachusetts Institute of Technology (MIT) [12].  Star Cluster similar 

to CfnCluster, is a command line based tool that operates off of a configuration file that is 

used in order to determine the cluster’s features.  This means that tweaking the 

configuration file is an important part of customizing the cluster that you want to create.  

Yet again the goal of Star Cluster is quite similar to the Dynamic AWS HPC Cluster 

Project and although the two projects do share some goals, the differences between the 

two are the things that stick out the most. 

Both Star Cluster and the Dynamic AWS HPC Cluster Project aim to help an end 

user be able to generate an HPC cluster with AWS and do so by utilizing the Python 

programming language [12].  Both projects support the starting, stopping, and resuming 

of clusters as well as the ability to view the running clusters and the different instances 
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that make up each of the clusters from a central location.  But besides these few 

similarities, the implementation of the clusters is drastically different between the two 

projects. 

One of the main differences that users of the two systems will notice right away is 

the fact that the Dynamic AWS HPC Cluster Project utilizes a Web UI while Star Cluster 

is a command line utility.  Star Cluster does help a little bit more with making the 

command line user friendly then does CfnCluster, as it provides simple user-readable 

host names for SSH and also provides simple commands for viewing running clusters and 

for managing them [13].  However the interface can still be intimidating if you are not 

used to the terminology or how AWS works in general.  Whereas the main goal of the 

Dynamic AWS HPC Cluster Project is to provide an interface that is much less 

intimidating for new users who are just trying to get started using an HPC cluster or the 

command line. 

Another difference between the two is that the Dynamic AWS HPC Cluster 

Project utilizes OrangeFS for shared storage across all of the cluster instances where Star 

Cluster utilizes the more traditional Network File System (NFS) for its implementation of 

shared storage [13].  NFS is pretty standard across the HPC industry but the one 

advantage that OrangeFS has over NFS is the fact that OrangeFS supports parallel I/O 

operations that can drastically cut down on the time that I/O operations take which can 

drastically decrease the runtime of I/O intensive jobs. 

Another difference between the two is that Star Cluster is a software utility that is 

installed on a user’s local machine.  This means that the user’s local machine is the one 



17 
 

doing all the heavy lifting in order to create all of the AWS resources and means that the 

utility must be installed in order for the user to be able to use it to access the cluster.  This 

can cause issues for users who have multiple machines and move back and forth between 

them.  It can be extremely difficult to keep the configuration files consistent between 

machines which can make cluster management difficult.  In contrast, the Dynamic AWS 

HPC Cluster Project Web UI runs on AWS and is accessible from any device that has a 

web browser on it.  This makes cluster administration and access on the go much easier 

than having to install and configure a separate software package on each of the machines. 

Star Cluster also supports many extra functions that are currently not supported by 

the Dynamic AWS HPC Cluster Project.  One of these features is that Star Cluster 

supports a Python based plug-in system where users can create their own Python based 

plug-ins that can then be integrated into the Star Cluster utility in order to allow them to 

perform customized actions [14].  Another one of these features is that Star Cluster 

provides some command line based wrappers for performing particular AWS tasks that 

are required in order to be able to use Star Cluster.  Another added feature that Star 

Cluster has is extremely similar to the job autoscaling provided by CfnCluster.  Star 

Cluster supports the expanding and shrinking of the cluster based upon the number of 

jobs that are in the job queue [15].  This helps to minimize costs while also maximizing 

productivity. 
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CHAPTER III 

SUPPORTING ENVIRONMENT 

Operating Systems 

The most critical supporting tool that needs to be considered for any HPC cluster 

is the operating system that the cluster will run.  There are many factors to be considered 

when choosing an operating system: the package manager, available software, licensing 

costs, and also the frequency of security patches just to name a few.  For the Dynamic 

AWS HPC Cluster Project two different operating system options were chosen: Red Hat 

Enterprise Linux and CentOS 7. 

Red Hat Enterprise Linux 

Red Hat Enterprise Linux (RHEL) is a commercial version of Linux that is based 

off of Fedora but is highly tuned for stability, security, and performance [16].  Unlike 

many distributions of Linux, RHEL is not freely available for download and requires a 

subscription in order to use many of the core features.  Usually this would be a large issue 

when utilizing it on an HPC cluster, but AWS has taken care of this issue for the end user 

by including the cost of the subscription in the instance cost of the AWS instance.  RHEL 

utilizes the yum package manager and many of the tools that are used by the research 

community are available for install via yum.  This coupled with the large amount of detail 

paid to security makes RHEL a great distribution of choice for researchers who need a 

stable and secure operating system and don’t mind the small added cost. 
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CentOS 

CentOS is the other operating system that is fully integrated into the Dynamic 

AWS HPC Cluster Project.  CentOS is based off of RHEL but it is free to modify and 

does not require a subscription to use.  It also utilizes the yum package manager and has a 

large suite of scientific applications that are available for use.  Since there is no additional 

subscription cost, CentOS is actually cheaper to run on AWS and it also supports an 

AWS concept of Spot Instances which RHEL does not at this time. Spot Instances are 

AWS instances that a user can purchase at a lower price than usual with the caveat that 

the AWS instance can disappear at any time if another user offers to pay more for a Spot 

Instance.  The compatibility with Spot Instances makes CentOS an appealing option for 

researchers who are looking to try and get the most for their money. 

OrangeFS 

HPC clusters typically are configured with a large shared filesystem that is quick 

and is great for storing large data sets and other user data.  The Dynamic AWS HPC 

Cluster Project utilizes the OrangeFS filesystem to achieve this purpose.  OrangeFS is a 

parallel distributed network filesystem that has native support for parallel I/O operations 

that can be utilized by MPI applications in order to drastically speed up filesystem reads 

and writes.  The Dynamic AWS HPC Cluster Project allows a user to specify exactly 

what size of a filesystem that they want and then dynamically creates and configures the 

requested filesystem.  How this takes place is described in a later section of this paper. 

  Once created, the filesystem is automatically mounted on each instance of the 

cluster so that all the cluster instances have access to the files.  The OrangeFS filesystem 
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also supports WebDAV for quick and convenient access to the cluster’s filesystem 

through either a WebDAV client on the user’s local machine or through the Web via an 

authenticated web page located on the Login Instance within the cluster. 

Globus 

Data transfer into and out of AWS has always been a manual process, usually 

involving SCP commands or the manual configuration of a data transfer tool on the AWS 

instance.  In order to help facilitate easier and faster transfer of data into and out of AWS, 

Globus has been integrated into the Dynamic AWS HPC Cluster Project.  Globus is a 

data transfer tool set that utilizes GridFTP to quickly and efficiently transfer data between 

two Globus endpoints [17].  Globus is widely used both at universities and other 

corporations around the globe.  This means that many of the researchers that the Dynamic 

AWS HPC Cluster Project targets are used to using Globus to transfer their data to and 

from their local clusters.  This means that by integrating Globus capability into the 

Dynamic AWS HPC Cluster Project, researchers can utilize the tools that they are already 

used to using which limits the learning curve required to start moving data in and out of 

an AWS HPC cluster. 

The creation of Globus endpoints within AWS is not a trivial process, especially 

for a non-technical researcher, so the Dynamic AWS HPC Cluster Project automates the 

process and dynamically generates Globus endpoints automatically for the user.  The 

knowledge needed by the user is minimal as they only need to enter their Globus account 

credentials and a name for the Globus endpoint and the Dynamic AWS HPC Cluster 

Project takes care of the rest.  The Globus endpoint is generated within the users account 



21 
 

and can easily be activated through a simple OAuth process that utilizes the local cluster 

account credentials so that no local usernames or passwords are ever sent to Globus’s 

servers. 

Schedulers 

Schedulers are by far the most critical piece of software on an HPC Cluster.  The 

scheduler takes user submitted jobs and then allocates the resources required to the job, 

monitors the status of the job, and makes sure that the output of the job ends up where it 

is supposed to be.  There are many different HPC schedulers out currently however most 

of them work very differently from each other which leads many researchers to prefer 

one scheduler over another.  This is why the Dynamic AWS HPC Cluster Project is 

coded to support and dynamically configure multiple HPC schedulers based upon the 

user’s personal preference.  The user simply selects the type of scheduler they want 

during the initial cluster creation and then the Dynamic AWS HPC Cluster Project will 

dynamically configure the scheduler of choice with the cluster.  This includes the 

automatic and dynamic configuration of passwordless SSH to and from the compute 

instances as well as the dynamic addition of new compute instances to the scheduler if 

they are created after the initial cluster creation.  Currently the only fully supported 

scheduler is Torque/Maui, but there are many others that are currently being worked on 

such as Sun Grid Engine (SGE), Slum, and Condor.   

Base HPC Software 

Another major area of concern for researchers when determining whether or not 

to use a certain HPC cluster is the number of pre-installed software packages that are 
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available to them.  If an HPC cluster is lacking many of the basic scientific software 

packages and the researcher is not proficient on how to install these packages it will end 

with the researcher not using that particular HPC cluster and moving to a different one.  

In order to help mitigate this problem, the Dynamic AWS HPC Cluster Project comes 

with many of these basic scientific software packages, such as Docker, R, SciPy, NumPy, 

and many others, pre-installed and configured so that the researcher has many tools at 

their fingertips as soon as the AWS HPC Cluster spins up.  The Dynamic AWS HPC 

Cluster Project also utilizes the common Module file method of adding software to the 

user’s environment.  This is a standard feature on most HPC clusters today that basically 

allows the user to pick and choose exactly what software and what software version they 

want in their environment.  This allows the researcher to spend less time installing basic 

packages and more time actually doing their research. 
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CHAPTER IV 

 
DESIGN AND IMPLEMENTATION 

 
 

Mapping of Normal HPC Subsystems to Amazon Web Services (AWS) 

Traditional High Performance Computing (HPC) clusters typically consist of four 

different subsystems.  These four subsystems are the basic services that are required for 

the successful operation of a basic HPC cluster: Compute, Networking, Storage, and 

Access Management. By mapping AWS Services to each of these four core subsystems 

of HPC the process of deciding which AWS services to use to create the HPC cluster on 

the AWS cloud begin to take shape. 

Compute 

The first subsystem of traditional HPC clusters that needed to be mapped to its 

AWS service counterpart is the subsystem of compute resources.  This is the subsystem 

that is equivalent to all the “racks” of computers/servers within a local campus data 

center where they are all communicating and working together to perform most of the 

grunt work that the typical HPC jobs require.  This concept maps perfectly to AWS’s 

Elastic Compute Cloud (EC2) service.  The EC2 service allows AWS users to “create” 

many different types of virtual computers/servers all from the same location and utilizing 

the same protocols and process.  The type of virtual hardware inside of these 

computers/servers varies from an instance with just one or two cores to instances that 

contain up to thirty six cores [30], this is a great advantage over traditional HPC clusters 
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because usually the compute resources found within a traditional HPC cluster are more 

static and have only a certain number of hardware options to choose from. 

Another advantage that utilizing AWS EC2 resources for use within an HPC 

cluster is the cost and maintenance factors associated with running a traditional HPC 

cluster.  This issue is discussed more in depth later on in this paper, but one point that 

needs to be mentioned here is that AWS is a “pay for what you use” service and has ways 

that you can “pause” the resources in your cluster so that you are no longer paying for the 

run time of the instances.  This is extraordinarily useful due to the fact that the use of an 

HPC cluster for a researcher tends to be extremely bursty to where they really only need a 

cluster for a certain period of time and then they will not need it again for a while.  EC2 

is perfect for this type of scenario as it has all the cost saving functionality needed built 

right in. 

Networking 

Without the network infrastructure neither traditional HPC clusters nor an AWS 

HPC cluster would be possible.  Unfortunately unlike the subsystem of compute 

resources, there is not just a single AWS service that can encompass all the functionality 

of the traditional HPC cluster networking subsystem.  Instead the AWS equivalent is spilt 

between four different AWS Services: Virtual Private Cloud (VPC), Route53, Placement 

Groups, and Enhanced Networking.  Each of these services provides a different key piece 

of the overall network functionality that is required by an AWS HPC cluster. 

Virtual Private Cloud (VPC) is the biggest piece of the Network subsystem puzzle 

and can be thought of as basically the equivalent to a campus network.  The VPC is 
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where all of the previously mentioned EC2 resources will reside and is effectively what 

allows the different EC2 resources to be able to talk to each other.  This is accomplished 

through the use of different VPC constructs such as Network ACLs, Routing Tables, 

VPC Peering Connections, Elastic Network Interfaces (ENIs), Subnets, Network Address 

Translation (NAT), and Security Groups.  Many of these constructs should sound familiar 

to anyone who has administered a traditional HPC cluster as many of the concepts 

unsurprisingly map directly to traditional networking concepts. 

However the VPC service does not quite cover everything that is needed in the 

Networking subsystem.  One major advantage that a traditional HPC cluster has over an 

AWS HPC cluster is the ability to have compute resources placed in the same racks to 

minimize latency between the instances by limiting the number of networking devices the 

traffic must travel through to reach its destination.  This is somewhat of a wildcard in 

AWS as there is no way to know where the resources will be launched within the AWS 

datacenters.  This is where the Placement Group construct becomes useful as it allows the 

user to specify that certain instances be “grouped” together within the AWS datacenter to 

allow for lower latency and for the instances to be able to take full advantage of the 

underlying 10GB network within AWS [18].  This combined with the Enhanced 

Networking capabilities, which utilizes the SR-IOV kernel module to increase network 

throughput and performance on an EC2 instance, can lead to substantial networking 

performance increases that allow the AWS network to perform at speeds that are closer to 

what users are used to seeing on a traditional HPC cluster backed by 10GB Ethernet. 
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Lastly in the Networking subsystem within AWS we have Route53. Route53 is 

basically AWS’s Domain Name System (DNS) solution.  Route53 allows the user to 

create domain name(s) for certain EC2 instances that will allow users to not have to 

memorize the EC2 resource’s IP address but instead they can use a name that is more 

meaningful. 

Storage 

The third subsystem of a traditional HPC cluster that needs mapping is the 

subsystem of Storage.  Storage is a critical part of any HPC cluster since many of the 

HPC jobs require very large data sets as input and sometimes can generate even larger 

data sets as output.  Traditionally all of these data sets have been stored on a fixed size 

shared or distributed filesystem that each of the compute resources can access.  However 

by utilizing three different AWS services, an AWS HPC cluster provides multiple options 

for storing and retrieving these data sets. These three services are: Elastic File System 

(EFS), Elastic Block Storage (EBS), and S3. 

Elastic File System (EFS) is the closest AWS equivalent to a local shared 

filesystem such as NFS.  However EFS is much more flexible than just the standard 

implementation of NFS.  NFS is limited to a set size that has to be maintained all the time 

even if most of the storage space is unused, whereas with EFS the filesystem size grows 

and shrinks dynamically according to the amount of data that resides on it.  This way the 

user only pays for the storage when they need it and only for exactly as much storage as 

they need at the time. 
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Elastic Block Storage Volumes (EBS) are typically referred to as “EBS volumes” 

and are basically the AWS equivalent of a physical hard drive.  An EBS volume is the 

type of storage that all EC2 compute resources utilize as their boot volumes as well as 

any other data disks.  EBS volumes can be attached and detached from a running EC2 

compute resource at will and are utilized for backing implementations of parallel 

filesystems, such as OrangeFS, on the AWS HPC cluster. 

The last Storage service that is utilized by the AWS HPC cluster is S3. S3 is 

basically AWS’s online accessible object store and is utilized more for longer term 

storage or to make certain data easily accessible from outside of the AWS Cloud.  S3 

allows for the creation of a storage “bucket” that is used to store the file objects in.  Each 

object within the S3 bucket is given a certain set of configurable permissions and a 

unique URL that can be used to download the object from the S3 bucket given that the 

permissions allow it.  Like EFS, the user only pays for the storage space that they are 

actually using and the storage space dynamically grows and shrinks when a user creates 

or deletes an object from an S3 bucket. 

Access Management 

The last of the four subsystems that comprise a traditional HPC cluster is the 

subsystem of Access Management.  This is a vastly important subsystem as this is the 

subsystem that determines exactly who can and who cannot have access to the HPC 

cluster resources at any given time. Traditional HPC clusters have some form of 

authentication for users; usually it corresponds to their own internal authentication 

system such as Shibboleth, Active Directory, etc. The mapping of the subsystem of 
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Access Management on an AWS HPC cluster boils down to two AWS services the 

Identity and Access Management (IAM) and DynamoDB. 

The Identity and Access Management (IAM) service is used to control access to 

the AWS API calls that are used in order to dynamically generate the AWS HPC cluster.  

IAM makes sure that the users of the AWS HPC cluster cannot escalate privileges on the 

compute resources of the cluster in order to take over the underlying AWS Account.  

IAM also limits exactly which API calls certain cluster resources can perform 

successfully which also helps to reduce the damage that could be done by a rouge user. 

DynamoDB is AWS’s NoSQL database solution and it is used extensively during 

the entire process of creating and maintaining an AWS HPC cluster.  DynamoDB is 

where all the user accounts and passwords are encrypted and stored.  This allows each of 

the cluster resources to be able to validate user credentials via DynamoDB if needed.  

DynamoDB is also used extensively for the tracking of cluster meta-data and other 

settings that are associated with a particular cluster.  This ensures that each compute 

resource is able to pull all the information it may need about other compute resources 

directly from DynamoDB at any time. 

Design of a Cluster 

Now that the mappings of the traditional HPC subsystems to certain AWS 

services have been discussed, the actual design and implementation of the AWS HPC 

cluster produced by the Dynamic AWS HPC Project will now be discussed.  Within a 

traditional HPC cluster, there are numerous different types of resources that all have 

different roles within the cluster.  The same is true with an AWS HPC cluster; there are a 
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number of different resources that each play a certain role within the cluster.  Some of 

these resources that are required for an AWS HPC cluster are not required for a 

traditional HPC cluster while other resources are extremely similar to their traditional 

counterparts. There are even optional resources for the AWS HPC cluster that a user can 

pick and choose to customize the cluster to their own liking.  Figure 4.1 shows a visual 

diagram of the architecture and pieces behind the AWS HPC cluster. There are nine 

different main pieces to an AWS HPC cluster: the Control Instance, the Login Instance, 

the Scheduler Instance, the Compute Instance(s), the Filesystem Instance(s), the Standby 

Instance(s), Additional Storage, the Network Components, and the DynamoDB database.   

 

Figure 4.1: Dynamic AWS HPC Cluster Architecture 



30 
 

Control Instance 

The Control Instance is the “brain” of an AWS HPC cluster and does not really 

have an equivalent within the confines of a traditional HPC cluster.  The closest thing in 

regards to a traditional HPC cluster that a Control Instance could be related to is a system 

administrator.  This is due to the fact that the main purpose of the Control Instance is to 

perform administrative tasks and manage all the other cluster resources.  It is the very 

first resource that is created when launching an AWS HPC cluster and it performs some 

vital tasks.  Through API calls, the Control Instance creates the DynamoDB tables that 

will store all the information about the AWS HPC cluster and its resources.  It also runs 

the Web UI that allows the easy customization of the AWS HPC cluster being created as 

well as actually performing the API calls to create all the other resources needed by the 

user specified cluster configuration.  The Control Instance also utilizes the previously 

mentioned Route53 service in order to obtain a human readable domain name that users 

can use to access the Web UI instead of having to always go to the IP address.  The 

Control Instance is also the instance that pushes out all of the users and passwords to all 

of the other cluster resources which allows SSH access and job submission to the cluster. 

Login Instance 

The Login Instance can be thought of as the equivalent to the head node of a 

traditional HPC cluster.  The head node of a traditional HPC cluster is used as the 

instance which users generally will login to in order to submit their HPC jobs for 

processing.  The same is true for the Login Instance in an AWS HPC cluster; it is the 

publicly facing instance that users must login to in order to obtain access into the internal 
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AWS HPC cluster.  This means that it does have a public IP address and it also has a 

domain name just like the Control Instance so there is no need to memorize IP addresses.  

The users simply SSH into the Login instance using their username/password 

combination that is created during the initial Dynamic AWS HPC Cluster Project set up.  

Once the user has logged into the Login instance, they will be able to access any of the 

other internal cluster instances, access the shared filesystem(s) if they have configured 

any, as well as being able to submit jobs to the Scheduler Instance as well. 

Scheduler Instance 

The Scheduler Instance is a key component to any HPC cluster and is basically 

the same concept for an AWS HPC cluster as it is for a traditional HPC cluster.  There is 

a little more configuration that has to happen for an AWS HPC cluster scheduler verses 

the configuration of a traditional HPC scheduler but fortunately the extra configuration is 

done behind the scenes and the user does not have to worry about it.  The Scheduler 

Instance dynamically configures passwordless SSH between itself and all of the Compute 

Instances, and even adds the Compute Instances into its scheduling pool as they spin up 

and their meta-data is added into the DynamoDB database.  Since the Scheduler Instance 

is an internal instance, it is not publically accessible from the Internet; however it can talk 

out to the Internet to pull down security patches as well as any other files that may be 

needed for an HPC job.  But of course, its main job is to schedule out the HPC jobs that 

are submitted to it to the Compute Instances so that the results can be delivered in a 

timely manner.  If necessary AWS HPC clusters support multiple Scheduler Instances per 
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cluster, however each Scheduler Instance has to have its own set of Compute Instance(s) 

they cannot share the same set due to scheduling conflicts and other issues. 

Compute Instance(s) 

Compute Instance(s) are in both the traditional and AWS HPC clusters the 

workhorse of the cluster.  These are the instances that actually do the grunt work for the 

HPC jobs and perform all of the calculations and data processing steps required to 

produce the job output.  These Compute Instance(s) get their job assignments from the 

previously discussed Scheduler Instance and then work on the job until it is completed or 

otherwise interrupted.  These instances automatically and dynamically mount the shared 

filesystem(s) that were created with the AWS HPC cluster so that they can all access the 

files stored on the shared filesystem(s).  They are also configured to have passwordless 

SSH between themselves as well as between the Scheduler Instance since this is a 

requirement of most HPC job schedulers. This is automatically configured during the 

launching of the instances and there is no user intervention needed in order for it to work.  

If it is found that after launch more Compute Instance(s) are needed in order to 

successfully complete all of the HPC jobs, more Compute Instance(s) can be added to the 

AWS HPC cluster after the initial creation and they will be dynamically configured and 

added to the Scheduler Instance in the same fashion as the original Compute Instance(s) 

were added. 

Filesystem Instance(s) 

The Filesystem Instance(s) are a feature that is most closely equivalent to the 

shared filesystem on a traditional HPC cluster.  Traditionally there is some type of shared 
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storage across all the HPC cluster resources that allows each cluster resource to access 

the same files.  The AWS HPC cluster utilizes the OrangeFS Parallel filesystem running 

across multiple AWS EC2 instances in order to provide a high-availability, scalable, and 

fast shared storage solution.  The entire process is accomplished through the use of EC2 

Compute Instances, EBS Volumes, and Elastic Network Interfaces (ENIs).  The entire 

storage piece of the filesystem is striped across multiple EBS volumes attached to a 

specified number of EC2 Compute Instances that have an attached ENI with a particular 

static IP address associated with it.  This ensures that even if the EC2 Compute Instance 

was to die, the EBS volumes and ENI would still remain which means that the data on the 

filesystem is safe.  This failure protection process will be discussed more in depth in the 

Standby Instance(s) subsection.   

This filesystem is also dynamically mounted on all of the internal AWS HPC 

cluster instances and is even accessible through any web browser by going to the domain 

name of the Login_Instance/filesystem_name and logging in using your username and 

password (standard UNIX permissions still apply).  Utilizing the OrangeFS set up also 

allows for the easy upload and download of data into the AWS HPC cluster via a 

WebDAV Client which allows a user to mount the AWS HPC cluster OrangeFS 

filesystem on their local machine and transfer data to and from it at will. 

Standby Instance(s) 

The Standby Instance(s) are the instance(s) that allow the Filesystem Instance(s) 

to operate in a high-availability configuration.  These Standby Instance(s) are similar to 

having a “hot spare” in a traditional HPC cluster that is ready to go online at any time 
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should one of the computers fail.  These Standby Instance(s) are launched with the 

Filesystem Instances and their job is to monitor the OrangeFS service on each of the 

running Filesystem Instances and if it is ever determined that one of the Filesystem 

Instances has failed, the Standby Instance will then “take over” the failed Filesystem 

Instance’s identity and allow the OrangeFS filesystem to keep operating like nothing 

happened.  This entire process is accomplished through the use of EBS volumes and 

ENIs. When it is determined that a Filesystem Instance has failed, the Standby Instance 

that detected the failure will issue API calls that will detach the EBS volumes and the 

ENI from the failed Filesystem Instance.  Then after the ENI and EBS volumes have been 

detached from the failed instance, the Standby Instance will then re-attach the ENI and 

EBS volumes to itself through API calls and then start the OrangeFS service on itself thus 

assuming the identity of the old Filesystem Instance since the IP address and data on the 

EBS volumes will not have changed.  This allows the filesystem to keep operating like 

nothing has happened since all the information the other Filesystem Instances care about 

has not changed.  Once this process has completed the Standby Instance terminates the 

old failed Filesystem Instance and spawns a new Standby Instance to take its place.   

This process works since the ENI is assigned a static IP address and all the data 

that was contained on the old Filesystem Instance is contained on the EBS volumes that 

are now attached to the Standby Instance, the other Filesystem Instances do not know that 

anything has changed since they are still communicating with the same IP address.  This 

prevents having to reconfigure the OrangeFS filesystem if a Filesystem Instance dies and 

also provides a way to mitigate the damage caused by an inaccessible filesystem. 
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Additional Storage 

An AWS HPC cluster also has a few other additional storage options that can 

complement or replace the previously discussed Filesystem and Standby Instance(s).  

These additional storage solutions are Elastic File System (EFS) and S3.  These two 

AWS services have already been briefly discussed before, and at the basic level are just 

more places to store data.  In the case of EFS, during the initial creation of an AWS HPC 

cluster the user has the option to create an instance of EFS and have it dynamically and 

automatically mounted across the entire cluster.  This then allows shared files and a 

shared filesystem for the cluster while not having the overhead of running Filesystem and 

Standby Instance(s).  During the initial creation, the user is also presented with an option 

to create an S3 Bucket that can be used for data storage. However this S3 Bucket is not 

dynamically mounted on all the cluster instances due to performance issues.  S3 is meant 

more for infrequent data access as opposed to frequent reads and writes [19] and hence 

has some issues when trying to mount it as a native filesystem. 

Adding Additional Software 

The software that is installed upon an HPC cluster can make or break how useful 

the HPC cluster is for certain types of research.  Typically HPC clusters allow users to 

add different software into their environment by utilizing the module add command 

which then loads the software that is installed in a different location to be added to the 

users environment and used like it was installed locally.  The Dynamic AWS HPC 

Cluster Project enables this same concept from traditional HPC clusters by utilizing 

AWS’s EFS.  An EFS instance is created and software can be installed onto the 
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filesystem and then it can be loaded via the module add command onto all of the 

instances within the cluster.  This allows for the software to seem “locally” installed but 

without the hassle of having to go install the software one each individual machine which 

can quickly become a pain with hundreds of instances. 

Network Components 

A functioning and correctly configured network is a key piece of any HPC cluster, 

traditional or AWS based since without a network there is no cluster at all.  The 

networking aspect of a traditional HPC cluster is usually all handled by a network 

administrator who configures and sets up the network. However for an AWS HPC 

cluster, it is actually the Control Instance that sets up all the networking components and 

configures the network.  The Control Instance first creates a Virtual Private Cloud (VPC) 

which is a “private internal network” for the AWS HPC cluster to operate within.  This 

makes sure that all the AWS HPC cluster instances are on the same internal network and 

are sectioned off from the rest of the user’s AWS account for security reasons.  

Once this VPC has been created, the Control Instance then performs dynamic 

subnet calculation in order to divide the VPC’s address space into different subnets that 

are generally split across the type of instance.  For example the Compute Instance(s), 

Filesystem and Standby Instance(s), and Scheduler(s) each have their own dynamically 

generated subnet created for them when they are first launched.  This comes with the 

exception of the public subnet.  The public subnet is reserved for the AWS HPC cluster 

resources that have public IP addresses such as the previously mentioned Login 

Instance(s) and the NAT Instance.  The NAT instance is an instance created by the 
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Control Node that performs Network Address Translation (NAT) for each of the EC2 

instances running within the VPC.  This allows the internal instances to talk out to the 

Internet in order to pull down security patches and to talk with DynamoDB but does not 

allow for connections originating from the Internet for security purposes. 

One of the other critical networking features configured by the AWS HPC cluster 

Control Node is VPC Peering.  This is required due to the fact that the Control Instance 

has to be launched in a different VPC then the AWS HPC cluster will be launched into.  

This means that the Control Instance inherently cannot talk to any of the instances within 

the VPC that it creates.  This is where VPC Peering comes in; it allows two VPCs to act 

like they are part of a larger network so that all of the instances can talk to each other just 

like they could if they were in the same VPC. 

DynamoDB 

The last of the major core subsystems of an AWS HPC cluster that will be 

discussed is DynamoDB.  This has the equivalent of the user database and the system 

admin’s brain in a traditional HPC cluster as this is where all the information regarding 

the configuration, users, passwords, and cluster meta-data is stored.  DynamoDB is 

absolutely critical to the proper functioning of an AWS HPC cluster as each of the cluster 

resources depend on it for information about the rest of the cluster. 

In order to help with the indexing and faster lookups of the different objects that 

are stored, two DynamoDB tables are used.  One table is a lookup table that contains an 

index and then a pointer to the real object in the second table.  The other table is an object 

table that actually stores the objects associated with the cluster and is referenced by the 
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lookup table.  This provides flexibility in creating quick and simple indexes that can then 

be used for faster lookups. 

Each of the previously mentioned instances write their own entries to DynamoDB 

during their boot process in order to inform the rest of the cluster that they have 

successfully launched and are configured correctly.  This allows flexibility and better 

tracking of the instance states along with a much simpler way of actually determining if 

an instance started up successfully or not. 

The DynamoDB tables also have the ability to store multiple AWS HPC clusters 

at a time.  This reduces the charges that come with having many DynamoDB tables as 

well as provides a convenient place to query to find all the information regarding all the 

AWS HPC clusters that a particular user has created. 

Programming Languages 

Each programming language has different strengths and weaknesses which need 

to be carefully analyzed in order to determine which language is the best fit for a 

particular project.  However most of the time there is not just one programming language 

that can effectively achieve all of the goals associated with a project.  This was the case 

with the Dynamic AWS HPC Cluster Project.  After doing an analysis of many different 

programming languages it was determined that more than one programming language 

would be required in order to achieve the end goal of the project.  So after much analysis 

three different languages were chosen for use in the project: Python, JavaScript, and C. 
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Python 

Amazon Web Services has a very wide range of SDKs available ranging from 

Java, JavaScript, Go, PHP, .NET, Ruby, and Python.  During the initial stages of the 

project many of the available SDKs were investigated and eventually it was determined 

that the Python SDK was the best SDK that was currently available. Utilizing Python as 

the main programming language for the project also allowed for the use of Bottle for 

interfacing the server and Web UI code.  Each of the different instances/groups that were 

described in the previous sections accomplishes their dynamic configuration and creation 

through the use of a Python script that is run during the launch of the AWS Instance.  

Each instance contains all of the different configuration scripts for each type of instance 

that the Dynamic AWS HPC Cluster Project supports.  The type of instance that will be 

created all depends upon which script the Control Instance specifies in the launch 

instance command as an AWS concept called “User Data”.  This is custom data that can 

be passed to an instance at launch and can even run scripts, such as the instance 

configuration python scripts.  The instance specific script then runs, does all the heavy 

lifting and dynamically creates any of the extra AWS resources that may be required for 

the instance to fulfil its role within the cluster.   

Bottle 

Bottle is a lightweight WSGI micro web-framework for the Python programming 

languages [20].  Bottle allows for HTTP requests to be mapped to server side Python 

functions through the use of clean and simple directives within the Python code itself.  

This is the “glue” that joins the Web UI code to the server side Python code that actually 
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does all the heavy lifting with the AWS APIs.  When a user chooses their options from 

the Web UI and clicks “Create”, a Bottle route is then called that references a server side 

Python function that actually goes and calls the AWS APIs in order to create all of the 

resources that were requested by the user. 

Boto 

Boto was the initial AWS Python API set chosen to be incorporated into the 

Dynamic AWS HPC Cluster Project.  This was due to mainly in part to the excellent 

documentation, constant updates, and the majority coverage of the AWS API set.  Boto 

was used extensively throughout the server code to do all the communication between 

AWS and the server.  There were originally some AWS API calls that were needed that 

could not be done with Boto so instead the equivalent AWS CLI commands were utilized 

for those specific instances. 

Botocore 

Botocore is a newer and vastly improved version of Boto that is much faster and 

cleaner to use.  In fact Amazon’s own CLI interface that they provide and the newer 

version of Boto, Boto3, are both built off of the Botocore library.  So instead of 

continuing to use Boto, it was decided that it was time to start converting the AWS API 

calls from Boto to Botocore since there was no reason to continue to use Boto, which is 

built off of Botocore, when instead Botocore itself can be used.  Since it is the basis of 

the AWS CLI tools, Botocore is updated and maintained much more than the current 

Boto3 project and Botocore also gets many of the new updated features much quicker 

than Boto3.  This means that by utilizing Botocore for the AWS API calls instead of 
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Boto3 it is easier and faster to integrate newer AWS services into the Dynamic AWS 

HPC Cluster Project. 

 

JavaScript 

JavaScript is used within this project in order to create a simple, lightweight, and 

responsive UI that could be used to make AWS HPC cluster creation easier than simply 

just leaving it as a command line only tool.  The main JavaScript frameworks that were 

utilized for the UI were Dojo and Dojo Mama.  The advantages for utilizing the Dojo and 

Dojo Mama frameworks are that they provide templates for navigation and provide extra 

widgets and specialized objects that build upon the objects that are normally available 

through JavaScript [21].  This allows the UI to be simple yet sophisticated and allows for 

easy and quick navigation between the different parts of the UI.  JavaScript was also 

chosen due to the ease at which it could be integrated with the Python backend, through 

Bottle, that handled all of the AWS API calls and did much of the heavy lifting for the 

Dynamic AWS HPC Cluster Project. 

C 

Since Python is an un-compiled language it makes it much easier for attackers to 

go through the source code and compromise the security of the encryption and decryption 

that is being done to sensitive data.  While Python does allow for the compilation of 

source files, the process is easily reversible and not very secure especially when dealing 

with passwords and other sensitive user data.  This means that in order to make the AWS 

HPC cluster authentication and user data storage more secure, all of the functions that 
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deal with sensitive data, encryption, and decryption are coded and compiled in the C 

programming language.  While it is not impossible to reverse engineer a compiled C 

binary, it is a little more difficult and requires more time and effort by the attacker.  The 

goal is to make the path that the project takes in order to encrypt and decrypt data more 

complex and harder to follow for anyone looking to reverse engineer the system. 
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CHAPTER V 

TESTING AND VALIDATION 

Correctness 

 For the Dynamic AWS HPC Cluster Project, there are two different types of 

correctness that must be measured in order to assure researchers that the Dynamic AWS 

HPC Cluster Project generated clusters can keep pace with traditional HPC clusters.  One 

type of correctness is that the Dynamic AWS HPC Cluster Project has to create the actual 

cluster that the user has specified and the other type of correctness deals with the actual 

floating point precision of the cluster’s CPUs.  Both of these types of correctness have 

been thoroughly tested and the results of each different test are discussed below. 

Floating Point Accuracy 

 Many of the jobs that are run on an HPC cluster are scientific in nature and rely 

on a certain level of floating point accuracy from the cluster’s CPUs.  This is because the 

computations are dealing with very small and precise numbers where any rounding errors 

could cause false results and lead to other issues with the research.  This is one area 

where the Dynamic AWS HPC Cluster Project must be the same or better than an “on 

premise” cluster because otherwise the results calculated using the clusters generated by 

the Dynamic AWS HPC Cluster Project would be invalid. 

 There are many different benchmarks out there for testing the floating point 

accuracy of a CPU; however there are only a couple, such as Linpack and the HPC 

Challenge Benchmark suite, which are designed for use with HPC clusters.  For this test, 

the HPC Challenge Benchmark suite was run on two different clusters and then 
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compared.  The first cluster was an 8 node “on premise” cluster where each node had a 

2.0Ghz Intel Xeon E5-2660v2 CPU with 128GB of RAM.  The second cluster was also 

an 8 node cluster but was generated the Dynamic AWS HPC Cluster Project and used the 

r3.4xlarge AWS instance type which utilizes a 2.5Ghz Intel Xeon E5-2670v2 CPU and 

had 122GB of RAM.  Since AWS only has certain configurations for their instance types 

it is very hard to find an instance type that is an exact match to the “on premise” 

resources and this was the configuration that was most similar to the “on premise” 

cluster.   

The HPC Challenge Benchmark suite was run on each of these clusters utilizing 

the Torque/Maui HPC scheduler along with the MPICH 3.0.4, BLAS, and Atlas SSE3 

libraries.  The HPC Challenge Benchmarking suite was run a total of ten times on each 

cluster and the results from each run were averaged together to get the average 

performance of each cluster.  The HPC Challenge Benchmark suite contains many 

different tools, but the one that is utilized in checking the floating point accuracy is the 

HPL benchmark.  The HPL benchmark is software that solves a random dense linear 

system in double precision and provides a testing and timing program to quantify the 

accuracy for the obtained solution [22].  HPL first generates a random dense linear 

system and then proceeds to solve the generated system and perform a residual check in 

order to make sure that the solution is within the acceptable error range.  This is 

accomplished by utilizing relative machine precision which for all benchmark runs was 

taken by HPL to be 1.110223e-16 on both clusters.  This value is then utilized by a 

residual check that HPL runs and the value is compared to the inputs to ensure its 
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accuracy.  Both clusters passed the tests for all ten runs of the HPL benchmark showing 

that the floating point accuracy between the two clusters is similar. 

Cluster Creation Correctness 

 The other critical area of correctness for the Dynamic AWS HPC Cluster Project 

is the correctness of the cluster that it creates.  If the user requests a certain cluster, they 

expect to get what they requested and if the Dynamic AWS HPC Cluster Project 

produces a different cluster than expected it would be unacceptable.  This is a type of 

correctness that only really only applies to clusters created by the Dynamic AWS HPC 

Cluster Project as “on premise” clusters are pre-provisioned and are not dynamically 

generated.  In order to test the correctness of the Dynamic AWS HPC Cluster Project, ten 

different cluster configurations were created and launched through the project and then 

the resulting clusters were compared to the original requested clusters.  Table 5.1 shows 

the different cluster configurations that were launched and then deleted, and the pass/fail 

rating for both creation and deletion.   

If the requested cluster was the same as the generated cluster the create test passed 

but if it differed just a little bit the test failed.  Same for the delete test, if the generated 

cluster deleted all the created resources it originally created then the test passed, if it 

didn’t delete all the resources then the test failed.  For each of the requested cluster 

configurations tested with the Dynamic AWS HPC Cluster Project, all of the created 

clusters exactly matched the requested cluster configuration and all the generated clusters 

successfully deleted after being created.  These tests show that the Dynamic AWS HPC 

Cluster Project is reliable in spinning up and deleting the requested clusters and will 
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produce the exact cluster that is requested.  This is critical as each time instances are 

launched within AWS the user is charged for the full hour even if the AWS instance is 

only used for a minute.  This means that if the Dynamic AWS HPC Cluster Project 

launches the wrong instances or number of instances the user will be charged for the full 

hour of use which can be expensive if they are using large AWS instance types. 

Requested Cluster Configuration Resulting Cluster Create and Delete 
Pass/Fail 

4 Compute Instances, 4 Filesystem 
Instances, 1 Login Instance, 1 Scheduler, 1 
NAT Instance 

Create: Pass 
Delete: Pass 

4 Compute Instances, 4 Filesystem 
Instances, 1 Login Instance, 2 Schedulers, 
1 NAT Instance 

Create: Pass 
Delete: Pass 

4 Compute Instances, 8 Filesystem 
Instances, 2 Login Instances, 1 Scheduler, 
1 NAT Instance 

Create: Pass 
Delete: Pass 

8 Compute Instances, 4 Filesystem 
Instances, 2 Login Instances, 1 Scheduler, 
1 NAT Instance 

Create: Pass 
Delete: Pass 

2 Compute Instances, 1 Scheduler, 1 NAT 
Instance 

Create: Pass 
Delete: Pass 

8 Compute Instances, 8 Filesystem 
Instances, 2 Login Instance, 2 Scheduler, 1 
NAT Instance 

Create: Pass 
Delete: Pass 

8 Compute Instances, 8 Filesystem 
Instances, 1 Login Instance, 1 NAT 
Instance 

Create: Pass 
Delete: Pass 

1 Compute Instances, 1 Filesystem 
Instances, 1 NAT Instance 

Create: Pass 
Delete: Pass 

1 Login Instance, 1 Scheduler, 1 NAT 
Instance 

Create: Pass 
Delete: Pass 

4 Filesystem Instances, 1 Login Instance, 1 
Scheduler, 1 NAT Instance 

Create: Pass 
Delete: Pass 

Table 5.1 Cluster Creation and Deletion Correctness Testing 
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Performance 

 Just having the cluster spin up correctly and have a certain level of floating point 

accuracy does not mean anything if the cluster’s performance is not very good.  

Performance when running HPC jobs is something that many HPC cluster users take very 

seriously.  Many users have to constantly walk the fine line of performance and cost in 

order to ensure that they stay under budget while still obtaining as many and as accurate 

results as possible.  In this section, the performance of the clusters generated by the 

Dynamic AWS HPC Cluster Project and the performance of a local “on premise” cluster 

will be compared and contrasted to show the advantages and disadvantages of utilizing 

AWS based HPC clusters. 

Network Performance 

 Network speed is critical for many HPC applications and even the slightest 

slowdown of the network can be the difference in an HPC job running for a few hours 

versus the same HPC job running for a period of days.  Unfortunately the network 

performance of AWS is not a simple issue; Amazon is very secretive about the backbone 

network that AWS utilizes for the EC2 instances which makes it hard to figure out 

exactly what network performance certain instances will have.  Therefore in order to 

fairly cover the different types of network performance in AWS two separate benchmarks 

have been performed to showcase some of the differences between the upper levels of 

network performance within AWS. 

The four levels of network performance for an AWS EC2 instance are: low, low 

to moderate, moderate, high, and 10GB.  With each increase in the level of network 
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performance the EC2 instance cost per hour also increases.  Since AWS EC2 instances 

are preconfigured the user cannot choose the type of network performance that a certain 

instance type has, which means that the user is limited in their options if network 

performance is a top concern.  This was an issue that was encountered when trying to 

compare the “on premise” cluster and the cluster created by the Dynamic AWS HPC 

Cluster Project.  In order to most closely match the number of CPUs and RAM that the 

“on premise” cluster had, an instance type with only a “High” level of networking had to 

be chosen.  All of the other instances that had the “10GB” level of networking contained 

either too few CPUs, to many CPUs, not enough RAM, or too much RAM.  This caused 

the choice to be made to go with the instance type most closely matching the amount 

RAM and number of CPUs which handicapped the network performance of the cluster 

created by the Dynamic AWS HPC Cluster Project that the HPC Challenge Benchmarks 

were ran on.   

In order to show the difference between the “High” level and “10GB” level of 

networking, network data transfer benchmarks were ran on two instances that had the 

“10GB” level of networking performance and compared against a standard 10GB 

Ethernet network. These benchmarks were also done utilizing some of the advanced 

networking features that the Dynamic AWS HPC Cluster Project utilizes that similar 

projects do not.  The benchmarks also show how the network compares to a “bare metal” 

network with and without these special features enabled. 
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AWS 10GB Network Benchmarks 

Many “on premise” HPC clusters have a finely tuned network backbone that is 

specially formulated for low latency and high throughput between the instances of the 

cluster.  However, AWS is a more generalized computing environment that supports 

many applications and is highly virtualized so there are fewer optimizations that can take 

place in the network itself and instead more optimizations that have to be made to the 

virtualization software [23].   

Two of these optimizations that AWS introduces to attempt to minimize latency 

and jitter in the network traffic are the concepts of Placement Groups and Enhanced 

Networking.  Placement Groups are a way to “logically group instances within AWS that 

enables applications to participate in a low-latency 10Gbps network” [18].  While 

Enhanced networking utilizes single root I/O virtualization (SR-IOV) in order to provide 

higher performance (in packets per second), lower latency, and lower jitter [24].  Unlike 

CycleCloud, CfnCluster, and Star Cluster, the Dynamic AWS HPC Cluster Project 

enables Enhanced Networking, creates Placement Groups, and places compatible 

instances inside these Placement Groups without the user having to do anything.  As the 

benchmarks show, this greatly increases the network performance between the cluster 

instances which can drastically reduce errors and long run times for certain applications. 

The backbone network of AWS utilizes the Ethernet protocol and more 

specifically for instances that support the use of Placement Groups and Enhanced 

Networking, a “10GB” level of network performance based upon the 10Gbps Ethernet 

standard.  Benchmarks were performed on both the AWS network with Placement 
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Groups and Enhanced Networking enabled as well as without Placement Groups and 

Enhanced Networking enabled. These results were then compared to the exact same 

benchmarks that were performed between two local “bare-metal” machines that were also 

connected by a 10Gbps Ethernet network backbone.   The main goal in performing these 

benchmarks was to determine if the network speeds offered by AWS were comparable to 

the “bare-metal” speeds that one would get if running the instances locally. 

The benchmarks were obtained through the use of the iPerf network benchmark 

tool, which simply sends massive amounts of data for a set time period and records 

certain statistics about the speed and jitter found within the data transfer window [25].  

Since internally, AWS instances can utilize Jumbo Frames, which are simply Ethernet 

Frames that have a maximum transmission unit (MTU) of 9000 instead of the normal 

1500 MTU, the benchmarks were performed with both 9000 MTU and 1500 MTU to get 

a better feel for how the networks compared.  Both the UDP bandwidth and TCP 

bandwidth were tested in order to see just how much the numbers fluctuated between the 

two different protocol types. 
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Figure 5.1: AWS HPC Cluster project 
EC2 Instances no Placement Groups or 
Enhanced Networking vs Lab Machines 
(MTU 9000) 

 
Figure 5.2: AWS HPC Cluster project 
EC2 Instances no Placement Groups or 
Enhanced Networking vs Lab Machines 
(MTU 1500) 

Figures 5.1 and 5.2 show the output of benchmarking two standalone Dynamic 

AWS HPC Cluster Project c3.8xlarge type instances with a network performance level of 

“10GB” and that are not within a Placement Group nor have Enhanced Networking 

enabled against the benchmarking results of the Clemson Networking Lab machines with 

the MTUs of 9000 and 1500 respectively.  Without the Placement Group feature, the 

Clemson Networking Lab Machines outperformed the AWS machines by 2.84 Gbits/sec 

with an MTU of 9000 and by 2.60 Gbits/sec with an MTU of 1500. However the same 

was not true for the UDP benchmarks, as the AWS network outperformed the local 

machines by 0.97 Gbits/sec with an MTU of 9000 and by 0.83 Gbits/sec with an MTU of 

1500.  This is along the lines of what was anticipated for TCP due to the increased 

overhead that virtualization puts on the network.  However, for the UDP benchmarks to 

be higher in AWS was an unexpected surprise.
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Figure 5.3: AWS HPC Cluster project 
EC2 Instances with Enhanced 
Networking and Placement Groups vs 
Lab Machines (MTU 9000) 

 
Figure 5.4: AWS HPC Cluster project 
EC2 Instances with Enhanced 
Networking and inside Placement Group 
vs Lab Machines (MTU 1500) 

Figures 5.3 and 5.4 show the output of the iPerf benchmarks on the two 

standalone Dynamic AWS HPC Cluster project c3.8xlarge instances within Placement 

Groups and with Enhanced Networking enabled versus the Clemson Networking Lab 

Machines with an MTU of 9000 and 1500 respectively.  The AWS network performance 

averaged out to only be 0.29 Gbits/sec less than the Clemson Networking Lab Machines 

with an MTU of 9000 and a measly 0.30 Gbits/sec less than the Clemson Networking 

Lab Machines with an MTU of 1500.  However, the AWS UDP benchmarks were far 

greater than the local UDP benchmarks averaging about and 2.50 Gbits/sec more 

bandwidth available for UDP with an MTU of 9000 and 2.85 Gbits/sec more bandwidth 

available for UDP with an MTU of 1500.  Simply by enabling Placement Groups and 

Enhanced Networking by default, the network performance provided by the instances that 

support these features is much greater than the defaults of the other similar products that 

do not enable these features automatically. 
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HPC Challenge Network Benchmarks 

 The last section focused mainly on the bulk transfer of data from point to point 

within the AWS network which is a useful benchmark when transferring very large files 

over the network but it is not exactly indicative of how Message Passing Interface (MPI) 

and other network heavy applications will perform on the network.  Since MPI and other 

network heavy applications utilize many simultaneous connections and many times have 

large numbers of packets that are destined for the same place, the performance tends to be 

significantly lower than the pure traffic based network performance.  

 The performance benchmarks that were used to determine the network 

performance for MPI applications was the HPC Challenge Benchmark suite.  However, 

instead of utilizing the HPL part of the benchmark suite, this time the focus was on the 

Latency-Bandwidth-Benchmark.  For this round of benchmarks, the HPC Challenge 

Benchmark suite was ran a total of ten times and the results from each run were averaged 

together in order to get an overall picture of the underlying network performance..  The 

results of these network tests were greatly different from the “10GB” network level 

benchmarks that were performed in the previous section.  This is due to the instances 

used to create the cluster generated by the Dynamic AWS HPC Cluster Project had a 

level lower network performance, “High” versus “10GB”, than the instances used for the 

“10GB” benchmarks in the previous section.  This was the only way to “fairly” obtain the 

benchmarks because any other AWS instance type that had a “10GB” level of network 

performance would not have met, or exceeded, the CPU and RAM requirements needed 

to compare to the “on premise” cluster. 
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 The “on premise” cluster is comprised of 8 nodes where each node had a 2.0 GHz 

Intel Xeon E5-2620 CPU with 128GB of RAM.  While the cluster generated by the 

Dynamic AWS HPC Cluster Project was comprised of 8 nodes and used the r3.4xlarge 

AWS instance type which utilizes a 2.5 GHz Intel Xeon E5-2670v2 CPU, had 122GB of 

RAM, and a “High” level of network performance.  Since AWS only has certain 

configurations for their instance types it is very hard to find an instance type that is an 

exact match to the “on premise” system and this was the configuration that was most 

similar to the “on premise” cluster that was available to utilize.   

The key outputs of the Latency-Bandwidth-Benchmark are the Randomly 

Ordered Ring Latency and the RandomRing Bandwidth.  These parameters report both 

the available bandwidth and the latency per process that are randomly ordered in a ring.  

The available bandwidth per process is defined to be the total amount of message data 

divided by the number of processes and the maximal time needed in all processes. The 

latency per process is defined as the maximum time needed in all processes divided by 

the number of calls to the MPI_Sendrecv or MPI_Isend in each process [26].  The 

average results of the RandomRing Bandwidth and the Randomly Ordered Ring Latency 

are shown in Figures 5.5 and 5.6.  The “on premise” cluster achieved an average 

RandomRing Bandwidth value of 0.0753 gigabits per second while the Dynamic AWS 

HPC Cluster Project cluster only achieved an average score of 0.0187 gigabits per 

second.  That is a dramatic 75.1% decrease in bandwidth between the two clusters.  The 

results of the Randomly Ordered Ring Latency benchmark are not much better; the “on 

premise” cluster averaged a Randomly Ordered Ring Latency value of 63.422 
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microseconds while the Dynamic AWS HPC Cluster Project measured an average value 

of 186.44 microseconds.  Here having a higher number is not desirable as it means that 

there is a 194% increase in latency from the “on premise” cluster to the AWS cluster. 

 
Figure 5.5: Randomly Ordered Ring 
Latency 

 
Figure 5.6: RandomRing Available 
Bandwidth 

There were two other benchmarks within the HPC Challenge Benchmarking suite 

that were run that measured Fast Frontier Transform (FFT) and Random Access utilizing 

MPI.  The FFT benchmark measures the floating point rate of execution of double 

precision complex one-dimensional Discrete Fourier Transform in gigaflops per second 

while the Random Access benchmark measures the rate of integer random updates of 

memory in gigaupdates (GUPs) per second [21].  These benchmarks were run in order to 

get an idea of the MPI performance that could be obtained by the two different clusters.  

The results of these benchmarks are shown in Figures 5.7 and 5.8. 
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Figure 5.7: MPIFFT Benchmarks 

 
Figure 5.8: MPI Random Access 
Benchmarks

These numbers show that by far the “on premise” cluster outperforms the cluster 

that was generated by the Dynamic AWS HPC Cluster Project.  However, there is a 

reason that this is the case that was briefly stated earlier, the AWS level of network 

performance.  An “on premise” cluster does not have any throttling on the amount of the 

available network that it can utilize when performing the benchmarks, however this is not 

the case on AWS.  As previously mentioned, AWS has certain levels of network 

performance that are assigned to each different AWS instance type.  This means that 

certain instance types are limited in the amount of the underlying AWS network that they 

can use at any given time.  This explains the drastic differences between the two cluster’s 

performances on the network section of the benchmarks.  The AWS instance type that 

was used in the AWS HPC cluster had a network performance level of “High” which is 

the second highest level of network performance available within AWS.  However, the 

difference between “High” and the highest level of network performance “10GB” is not 

well documented and appears to be relatively large as the average available bandwidth 
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calculated for the “10GB” instances in the previous section averaged right around 9.61 

GB/s while the “High” instances averaged only 2.03 Gb/s.  This is because since AWS 

instances are “multi-tenant”; meaning that there are multiple AWS instances sharing the 

same physical connection, the level of network performance is what specifies the 

“priority” of the AWS instance in terms of how much network bandwidth it is allocated.  

If the other AWS instances that are sharing the same connection are all of a lower 

network performance level then there will be more network bandwidth allocated to the 

AWS instance with the higher network performance level.  However, the converse of that 

is true as well if the AWS instances that the user is using are of a lower network 

performance level than that of all the other AWS instances in the same “rack” than the 

network performance of those instances will be degraded. 

All of this is in stark contrast to the “on premise” cluster which has full and 

complete access to its underlying network.  Since the “on premise” cluster nodes are not 

sharing their physical connections with each other, the amount of available bandwidth for 

those nodes is much greater than that of an AWS instance that does not have the top 

network priority.  Thus this explains the drastic differences between the two cluster’s 

HPC Challenge benchmarks and the benchmarks between the two AWS instances that 

utilized the “10GB” network performance level in the previous section. 

Job Completion Time Benchmarks 

 Another major area of concern for HPC users is the time taken for a job to 

complete as usually the researchers are sitting around waiting for the job to complete 

before they can continue onto the next phase of their research.  In order to show the 
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differences between the job completion times on an “on premise” HPC cluster versus a 

cluster that was generated by the Dynamic AWS HPC Cluster Project, an MPI job that 

finds the largest prime number within a given set of numbers was ran through the HPC 

scheduler Torque/Maui on both clusters that utilized 8 nodes and 16 processors per node 

for a total of 128 processes across all the nodes on each cluster.  The MPI job was ran a 

total of ten times on each of the clusters in order to achieve an average job completion 

time.  All the parameters and executables used for this test were the same on each of the 

clusters.  The only differences between the two clusters were the total number of 

“processes” available on the instances.  The “on premise” cluster had twenty total 

available processes while the AWS instances had only sixteen.  This is due to the 

differences in the processors and the rigidity of the AWS instance types.  

 
Figure 5.9: MPI Prime Number Job Completion Times 

Figure 5.9 shows the average results of the ten MPI job runs.  The job completion 

times were about seventy seconds faster on the “on premise” cluster than the job 
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completion times on the cluster generated by the Dynamic AWS HPC Cluster Project.  

This is about a 24.5% increase in completion time for the job which is a significant 

increase in the time that it takes the job to complete.  However, there is a feasible 

explanation for why this happens and it has to do with the MPI network benchmarks that 

were run on the same two clusters and discussed in the previous section.   

Since the job utilized MPI for doing all of its computation, the limiting factor on 

how fast the job can complete is again the network performance of each individual node 

in the cluster.  This yet again points back to the differences in the network performance 

levels for each AWS instance type.  Since there is a drastic drop off in network 

performance and cost for each descending level of network performance theoretically 

researchers could see much better performance results by paying a little more and 

choosing an AWS instance type that utilized the “10GB” level of network performance 

instead of trying to match the number of CPUs and amount of RAM that their “on 

premise” cluster has.  However, even with choosing an instance that has the “10GB” 

network performance level they will probably still see some slightly slower job 

completion times due to the shared nature of the AWS network and the AWS instances. 

Computational Performance 

 Computational performance is another major area that can affect a researcher’s 

results.  If the researcher’s job is very computational heavy, than the computational 

performance of the CPU on the individual nodes is extremely important.  If the 

computational performance of the AWS instance CPU is not good enough then it will 

take computational heavy jobs much longer to complete on the clusters generated by the 
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Dynamic AWS HPC Cluster Project then it would take the same job to complete on an 

“on premise” cluster. 

 For these benchmarks, the HPC Challenge Benchmark suite was used with the 

focus being on the SingleSTREAM, StarSTREAM, HPL Calculated Teraflops, and the 

PTRANS benchmarks.  The STREAM benchmarks measure the sustained memory 

bandwidth to and from memory.  The SingleSTREAM benchmarks test the memory 

bandwidth on a single processor on one of the nodes chosen at random from within the 

cluster and then the STREAM benchmark is performed ten times and averaged.  While 

the StarSTREAM benchmarks performs the same benchmark for memory bandwidth but 

instead of just running on one processor on a random node, concurrent copies of the 

benchmark are run on each processor on each node in the cluster ten times and averaged 

[21].  The HPL Calculated Teraflops benchmark measures something completely 

different, the rate of execution for solving a randomly generated dense linear system of 

equations in double floating-point precision (IEEE 64-bit) arithmetic using MPI.  While 

the PTRANS benchmark measures the rate at which the system can transpose a large 

array [21].
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Figure 5.10: SingleSTREAM Benchmark 

 
Figure 5.11: StarSTREAM Benchmark 

 Figures 5.10 and 5.11 show the results of the two STREAM benchmarks for both 

of the clusters.  For the SingleSTREAM, the cluster generated by the Dynamic AWS 

HPC Cluster Project outperformed the “on premise” cluster by 7.5% on the Scale tasks, 

7.0% on the Triad tasks, 8.8% on the Add tasks, and 5.9% on the Copy tasks.  These are 

marginal increases compared to the “on premise” cluster but for a CPU intensive job, 

these marginal increases per CPU could add up to decrease the time needed for certain 

computations to complete which could speed up the job run time if used in conjunction 

with the “10GB” networking level of performance.   

However, the StartSTREAM benchmark seems to show otherwise.  These results 

show that the “on premise” cluster marginally outperformed the cluster generated by the 

Dynamic AWS HPC Cluster Project by 15.7% on the Scale tasks, 14.5% on the Triad 

tasks, 14.3% on Add tasks, and 15.7% on the Copy tasks when the STREAM benchmark 

is ran on all of the processes simultaneously.  This shows that while the AWS instance’s 

CPUs may be marginally faster than the “on premise” cluster’s CPUs when all the CPUs 
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are running simultaneously the AWS instance’s CPUs actually run slower than the “on 

premise” cluster.   

The hypothesis on why has to do with the shared “multi-tenant” nature of the 

AWS instances.  Since there can be multiple AWS instances running on the same 

hypervisor and hardware, if all of the AWS instances on that particular hardware or 

hypervisor happen to all be using the CPU at the same time, there will be a slight 

decrease in performance to do the available hardware constraints.  When AWS instances 

are launched by the Dynamic AWS HPC Cluster Project, they are placed within 

Placement Groups which helps to improve the network performance of the instances but 

also can place the instances on the same hypervisor or hardware.  This means that when 

running the STREAM benchmark on all the cluster instances simultaneously the 

hypervisor and hardware supporting these AWS instances will be taxed more than if the 

benchmark was only running on a single one of the AWS instances.  This taxing of the 

hardware can lead to the decrease in performance from running the STREAM benchmark 

on one instance to running it on many instances simultaneously. 

 
Figure 5.12: PTRANS Benchmarks 

 
Figure 5.13: HPL Calculated Teraflops 
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Figures 5.12 and 5.13 show the results of the PTRANS and HPL Calculated 

Teraflops benchmarks respectively.  The PTRANS benchmark performed on the “on 

premise” cluster heavily outperformed the same benchmark performed on the cluster 

generated by the Dynamic AWS HPC Cluster Project.  The “on premise” cluster actually 

performed 71.4% better than the cluster generated by the Dynamic AWS HPC Cluster 

Project. This is due largely to the fact that the PTRANS benchmark relies heavily on 

pairs of processors communicating with each other simultaneously through MPI which as 

stated in the previous sections is known to perform better on the “on premise” cluster due 

to the AWS network performance limits on the AWS instance types that were used in the 

generation of the cluster from the Dynamic AWS HPC Cluster Project. 

The HPL Calculated Teraflops benchmark told a different story though, as this 

benchmark showed that the two clusters were very close in their performance.  Although 

in the end, the “on premise” cluster still outperformed the cluster generated by the 

Dynamic AWS HPC Cluster Project, it was only by 2.1%.  This is in stark contrast to the 

PTRANS benchmarks and the bandwidth and latency benchmarks that have previously 

been discussed.  This number becomes even more interesting when looking at the fact 

that the HPL Calculated Teraflops benchmark does utilize MPI in order to solve the 

problem.  However, the use of MPI in the benchmark itself is much less than that of the 

other benchmarks that utilize MPI so there is not as much congestion or strain put on the 

AWS network and hence the AWS network performance level does not matter as much 

as it does with other benchmarks. 
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Cost Tradeoffs 

 One of the major draws to cloud based resources is the allure of the potential cost 

saving options that are offered by the pay-per-use model instead of having to pay to keep 

resources running all the time locally.  This allure actually is somewhat of an illusion 

however and there have been studies that have studied the cost differences between the 

use of AWS instances and the use of local hardware.  One such study Cost-effective 

HPC: The Community or the Cloud? comes from Purdue University and analyzes the 

cost effectiveness of AWS verse the “on premise” clusters found at Purdue University 

[27].  This study goes to point out that a highly utilized HPC cluster is actually cheaper to 

run locally instead of running it within AWS.  However, the actual rate that quantifies 

“highly utilized” drastically varies from institution to institution and is a hard metric to 

successfully capture due to its many dependencies.  These dependencies include the 

amount of IT staff available to support and maintain the cluster, the number of users, size 

of the cluster, and the amount of available up front capitol to invest into the cluster.  All 

of these factors contribute to the analysis and at a certain variable point; the cost of 

running the cluster within the confines of AWS or other cloud providers becomes greater 

than the initial up front cost to create a local HPC cluster. 

 This also works in the other direction also, if the user does not have a large pool 

of available capital to invest, the IT support to maintain the cluster, or simply will not 

utilize the cluster enough to warrant running it continuously then they are a prime 

candidate to move their HPC cluster to the AWS or other cloud.  By utilizing the AWS 

cloud, the user can leverage the ability to be able to only pay for and operate the cluster 
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as they need it.  This can save them valuable money if their budget is tight and can save 

them the time and hassle of having to set everything up themselves. 

 Another aspect to consider in terms of the cost of operating an HPC cluster within 

the AWS cloud is the acute awareness of exactly how much money that each job costs the 

user to run.  With a local cluster the user has to upfront the money in order to obtain the 

resources needed to run their jobs and therefore the money is already spent. Hence they 

can run their jobs and anything else as little or as much as they want but either way the 

money is already spent.  This is a completely different mindset when using AWS as the 

user is charged per hour that the AWS instances are running. This means that the user 

may, even subconsciously, restrict the usage of the AWS cluster because they are 

conscious of the fact that they are spending more money each time they start up the AWS 

based cluster.  This can be a tough mindset to adjust to as it is programmed in most users’ 

brains to conserve as much money as they can.  

Security Tradeoffs 

Security is something that is beginning to take center stage as more and more 

companies start to think about moving more of their critical and sensitive services into 

the cloud.  There are many people who hesitate to migrate sensitive data into the cloud 

because they are no longer in physical control of the data and there is always the 

possibility that the cloud service provider could be hacked and their sensitive data could 

be compromised.  This risk is not likely to go away any time soon, but AWS and other 

cloud providers have started to strengthen their security by working to achieve many 

Security Compliance Certificates in order to assure their customers that they are taking 
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the protection of their data very seriously.  This along with other cloud service provider 

security tools allow users to stay on top of the virtual part of securing their machines but 

still does not provide a way to physically ensure the safety of the machines like having 

the cluster on premise does.  In order to explain this concept in more depth, a brief 

comparison of security advantages and disadvantages for both the AWS cloud based 

cluster and an “on premise” cluster will be given below. 

AWS Security 

 One of the first things that people think about when they think cloud security is 

the fact that their sensitive data is being stored in some datacenter of which they have no 

control over.  While this is true and is a disadvantage in the sense that the user does not 

have physical access to the machines or even control over who has physical access to the 

machines, it is also a security advantage in a way as well.  This advantage comes from 

the fact that if there is a natural or manmade disaster at the location of the user, there is a 

good chance that the data center where the data is stored is fine and that the data will 

survive unharmed. Another area that fits into this category is the fact that AWS has 15 

Certifications from different agencies such as the DoD CSM, FedRAMP, IRAP and FIPS 

along with compliance procedures for many privacy laws and regulations such as HIPPA 

[28].  This allows the users to feel more at ease that their data will be secure within the 

confines of the AWS network and services since AWS has undergone the rigorous testing 

process required for many of these certifications. 

 Another area that users can utilize in order to gain better control over their AWS 

security is the use of different AWS Services such as Security Groups and routing rules 
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that allow the user to specify exactly what IP addresses can have access to certain ports 

and services on the AWS instances based off of IP CIDRs.  This combined with the 

added security of all the AWS instances being managed by the user’s own AWS account 

so they have full control over what resources are being created/deleted/running/paused at 

any given time means that the user does have options when it comes to securing virtual 

access to the cluster resources.  AWS also provides a service called Cloud Watch that 

enables a detailed log to be kept about what services were used by which account user so 

that any suspicious activity can be tracked [29]. 

Local Security 

 Local cluster security allows the user to have control over exactly who has access 

to the physical machines and the data since all of the data is stored locally in the on 

premise datacenter.  This means that all of the machines and data are managed by people 

that are usually within the same organization as the user and these same people are 

responsible for monitoring the network as well.  This can be a security advantage as there 

is a stronger trust built if the user knows the people managing the infrastructure, but it 

can also be quite a disadvantage as well as if there is a security breach at the organization. 

In this situation, both the data and possibly even physical access could potentially be 

compromised at the same time.  One disgruntled employee with the right credentials and 

a motive can take down the entire company especially with physical access to the 

machines. 

 With local machines and data storage the user also can have more control over the 

network and who has access into and out of the network as they have control over the 
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networking devices and all of the configurations of these devices.  The user also has the 

ability to obtain whichever security credentials/certificates that they deem necessary to 

their work flow and are not limited to just the security certificates obtained by AWS.  

This can be particularly useful when the user needs a more obscure security certificate as 

it can be painful and even impossible to get certification for AWS resources that the user 

wants to use. 
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CHAPTER VI 

FUTURE WORK 

Meta-Scheduler Utility Set 

HPC schedulers have mainly focused on the allocation of resources across a large 

fixed number of dedicated HPC systems.  However, these systems have certain limits 

such as the number of instances, types of instances, general hardware available, and the 

cost of operating these systems all the time whether they are being fully utilized or not.  

However, public clouds like AWS have the ability to bring a new dimension to these 

HPC schedulers by allowing for the dynamic creation of resources for which the user can 

choose the number of instances, type of instance, hardware, and even control the general 

cost of the instances as well.  This means that the role of these traditional HPC schedulers 

needs to be re-evaluated in order to better utilize the resources that public clouds make 

available while at the same time staying consistent, compatible, and even interoperable 

with the current HPC schedulers of today.  In order for this to happen a meta-scheduler 

utility set needs to be not only created but tightly integrated with the Dynamic AWS HPC 

Cluster Project in order to help users take even more control over their clusters. 

This proposed meta-scheduler needs to be able to interoperate and interact with 

many of the current HPC schedulers such as Torque, PBS Pro, Slurm, Sun Grid Engine, 

and HTCondor without requiring any modification to the underlying scheduler.  It will 

provide wrapper functionality in order to take advantage of certain AWS features that are 

not currently integrated into any of the previously mentioned HPC schedulers. 
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The proposed meta-scheduler utility set will at its core consist of three basic 

utilities that are fundamental to all current HPC schedulers: submit, status, and delete.  

These three utilities will provide the functionality that will enable a user to utilize a 

common interface in order to submit, monitor, or delete a job from any of the current 

generation HPC schedulers.  But the biggest feature that the meta-scheduler utility set 

will add to these HPC schedulers is the ability to dynamically parse a job script and 

deploy the correct number and type of instances to AWS before actually launching the 

job.  Then once the job is finished running, it will continue to monitor the launched 

instances and if they are no longer being used, they will be shut down.  This saves the 

user money by only requiring them only to pay for the computing resources that they 

actually need. 

Another area that the meta-scheduler should be able to handle is the area of data 

staging.  This can be utilized within the current generation of HPC schedulers as well, as 

the ability to dynamically perform data staging before the instances are launched could 

save the user a good deal of money since the instances will not have to be sitting idle 

while the data is being transferred up to the cluster. 

The last area that the meta-scheduler utility set should focus on is making the 

current generation of HPC schedulers easier to use.  The current generation of HPC 

schedulers require the user to learn a completely different command set for each different 

HPC scheduler that they want to use.  The meta-scheduler utility set would provide a 

common interface into all of these different HPC schedulers to where the user would just 

have to submit their job script for any of the HPC schedulers and if they happen to have 
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that type of Scheduler running in their cluster, the meta-scheduler utility set would then 

parse the job and submit it to the correct scheduler without the user having to do anything 

else.  This can be tightly integrated into the Dynamic AWS HPC Cluster Project and 

could even become the standard submission tool set used by the Dynamic AWS HPC 

Cluster Project.  
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