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ABSTRACT 

Complacency refers to a type of automation use expressed as insufficient 

monitoring and verification of automated functions. Previous studies have attempted to 

identify the age-related factors that influence complacency during interaction with 

automation. However, little is known about the role of age-related differences in working 

memory capacity and its connection to complacent behaviors. The current study 

examined whether working memory demand of an automated task and age-related 

differences in cognitive ability influence complacency. Working memory demand was 

manipulated in the task with two degrees of automation (i.e., information and decision). 

A younger and older age group was included to observe the effects of differences in 

working memory capacity on performance in a targeting task using an automated aid. The 

results of the study show that younger and older adults did not significantly differ in 

complacent behavior for information or decision automation. Also, individual differences 

in working memory capacity did not predict complacency in the automated task. 

However, these findings do not disprove the role of working memory in automation-

induced complacency. Both age groups were more complacent with automation that had 

less working memory demand. Our findings suggest systems that utilize both higher and 

lower degrees of automation could limit overdependence. These results provide 

implications for the design of automated interfaces.  
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INTRODUCTION 

People depend on a wide variety of automated technologies to support accurate 

and effective decision-making; for example, these technologies are used in domains such 

as aviation, healthcare, and transportation. When automation is highly reliable, users will 

tend to increasingly depend on the system. This high level of dependence, or automation-

induced complacency, can lead the user to make incorrect assumptions that automation is 

more reliable than it is (Billings, Lauber, Funkhouser, Lyman, & Huff, 1976). One 

consequence is that users are less likely to notice when the automation does fail. Thus, 

complacency is a state of dependence where a user fails to notice imperfect automation. 

When the user poorly monitors the system and does not detect a fault, performance 

consequences can result (Parasuraman & Manzey, 2010). Users may have a delayed 

reaction to the presence of an automation failure or might miss the failure altogether.  

There are a limited number of known system and human-related factors that are 

connected to complacency (Parasuraman & Manzey, 2010). Complacency effects are 

most likely to emerge when the automated system is designed in a particular way. 

System-related factors include automation reliability and task complexity (Parasuraman, 

Molloy, & Singh, 1993; Parasuraman & Riley, 1997). Individuals have difficulty 

detecting automation failures when the system is highly reliable and the task is more 

demanding (Bailey & Scerbo, 2007). In addition to system-related factors, there are 

individual differences that can induce greater dependence on the automation. The human-

related factors that are known to impact complacent behavior include system experience 

(Molloy & Parasuraman, 1996), trust in automation (Muir & Moray, 1996), and 
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complacency potential (Singh, Molloy, & Parasuraman, 1993b). Positive attitudes and 

experiences from automation use limit an individual’s ability to detect automation 

failures (Bailey & Scerbo, 2007). Aside from individual differences, there has been a lack 

of research examining group differences in automation-induced complacency. 

One main source of group differences in automation complacency is age, such 

that older adults are more complacent with automation than younger adults (Ho, 

Wheatley, & Scialfa, 2005). Ho, Wheatley, and Scialfa (2005) examined the effects of 

age on complacency using a decision aid in a medication management task. The 

researchers found that older adults depended on imperfect automation more than younger 

adults, yet were unable to determine the reason for this age disparity. Older adults might 

be more prone to complacent behavior because they have greater trust in automation and 

experience greater mental workload compared to younger adults (Ho, Wheatley, & 

Scialfa, 2005). However, most research on age differences in automation use requires 

multi-tasking to operate complex automation. Since older adults have age-related 

decrements in cognition, they have fewer resources to perform complex mental tasks 

(Verhaeghen & Cerella, 2002). Therefore, the high cognitive demands necessary to detect 

system failures over a long duration may influence older adults to over-depend on 

automation. 

A potential explanation suggested for the divide between age groups’ 

complacency behavior has been age-related reductions in working memory (Ho, Kiff, 

Plocher, & Haigh, 2005). Working memory is a cognitive system that provides temporary 

storage and manipulation of information that is used in many complex tasks (Baddeley, 
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1992). Due to age-related changes in cognition, working memory capacity significantly 

declines after the age of 60 (Morris, Gick, & Craik, 1988). Since complacent behavior 

requires fewer cognitive resources, older adults might be more susceptible to depend on 

automation when it has greater working memory demand. 

Researchers have recently explored the role of working memory on automation 

use and found that individual differences in working memory capacity predicted 

performance in an automated UAV task (de Visser, Shaw, Mohamed-Ameen & 

Parasuraman, 2010). Individuals with greater working memory capacity had higher 

performance. High working memory capacity has also been shown to minimize the 

negative effects associated with increasingly supportive, but faulty automation (Rovira, 

Pak, & McLaughlin, accepted with revisions). Even though these studies were limited to 

younger adults, the results indicate that age decrements in working memory capacity 

should decrease older adults’ performance in automated tasks.  

There are two main aspects of working memory that contribute to older adults’ 

complacent behavior with automated technologies (Ho, Kiff, Plocher, & Haigh, 2005). 

The first is that older adults form inaccurate decision making when using automation and 

struggle to determine the correct choice. When older adults have an insufficient 

understanding of the automated aid, they might believe the aid is reliable and not verify 

its recommendation. If older adults are not able to adequately compare their own decision 

to the automation’s advice, they should fail to notice the presence of system failures. The 

second is that due to their reduced working memory capacity, older adults are unable to 

judge the accuracy of automation (Ho, Kiff, Plocher, & Haigh, 2005; Olson, Fisk, & 
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Rogers, 2009). Working memory is needed to activate and maintain useful information 

(e.g., relevant task goals) for later use. Diminished working memory may prevent users 

from keeping track of previous automation failures. When older adults need to retain 

several task goals at once, their working memory becomes limited by distractions from 

multitasking (Park, Smith, Dudley, & Lafronza, 1989). If older adults’ reduced working 

memory makes it harder to detect or remember automation failures, they will have a 

distorted view of the system. 

We assume older adults’ relative complacency with automation is due to a 

mismatch between the working memory demands of the task and working memory 

capacity of the person (Ho, Kiff, Plocher, & Haigh, 2005). If working memory capacity 

plays such a central role in automation complacency, we should observe the opposite 

relationship as well: reduced complacency in older adults when the automation has been 

designed to demand relatively fewer working memory resources. The design of Ho, 

Wheatley, & Scialfa’s (2005) study precludes this determination because the working 

memory demand of the tasks was not manipulated to vary during the experiment. Thus, it 

is unclear whether the high working memory demand of those tasks contributed to the 

difference in complacency between younger and older adults.  

Current Study 

The goal of the experiment was to examine the role of age-related differences in 

working memory on automation-induced complacency. If complacency is related to 

working memory, then altering the working memory demands of the task should affect 

complacency. Fortunately, the working memory demands of automation are related to the 
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quantity of information presented to the user through the amount of support provided by 

automation (i.e., degrees of automation (DOA)) (Parasuraman, Sheridan, & Wickens, 

2000; Sheridan & Verplank, 1978). Therefore, we can change the working memory 

demands of the task by altering the DOA presented to the user.  

Higher DOAs are associated with greater performance in addition to diminished 

cognitive demand (Wickens, Li, Santamaria, Sebok, & Sarter, 2010). Since the 

automation is taking on more of the task for the user, cognitive demand is reduced under 

a higher DOA. This leaves the user with more cognitive resources at higher DOAs. Thus, 

working memory demands should lessen and detection of automation failures (i.e., 

verification behaviors) should increase as older adults move from a lower DOA towards a 

higher DOA.  

We expected to find greater age-related differences in complacency as working 

memory demands increased. Ho, Wheatley, and Scialfa (2005) only used a high DOA 

(with concomitantly high working memory demands) to examine differences in 

complacency between younger and older adults. Therefore, we used two DOAs that 

should vary in working memory demand in order to investigate the effects of lower (i.e., 

information automation) and higher (i.e., decision automation) DOAs on complacency.  

We tested that information automation had greater working memory demand than 

decision automation by examining the relationship between working memory capacity 

and task accuracy. We expected that younger adults would experience less working 

memory demand than older adults and their higher working memory capacity would be 

less predictive of task accuracy. Since older adults should have lower working memory 
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capacity, and lower DOAs have shown greater working memory demand, we 

hypothesized that working memory capacity of older adults would be more predictive of 

task accuracy for information automation than decision automation. 

This study utilized a low-fidelity targeting simulation to analyze the accuracy and 

speed of user selections. Since higher DOAs have been linked with reduced cognitive 

demand (Onnasch, Wickens, Li, & Manzey, 2014), we hypothesized that participants 

would perform better under decision automation than information automation. Older 

adults were predicted to have lower working memory capacity than younger adults 

because of changes in fluid intelligence. Based on these age-related changes in cognitive 

abilities, we predicted a main effect of age group on task accuracy and completion time, 

where younger adults would outperform older adults.  

We can infer the extent to which participants are complacent by analyzing their 

pattern of performance when the automation succeeds (i.e., reliable automation) and fails 

(i.e., unreliable automation). Low task accuracy for unreliable automation and high task 

accuracy for reliable automation indicates higher complacency because the user is relying 

heavily on the system without monitoring for failures. Therefore, we examined task 

accuracy for reliable and unreliable automation trials across two DOAs and age groups. 

We hypothesized that information automation would result in a greater difference in 

complacency between the age groups than at decision automation. We anticipated this 

result because the high working memory demand of information automation should limit 

only older adults’ performance. Thus, lower working memory capacity should affect 

older adults’ ability to verify information provided by the automated system. 
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METHODS 

Participants 

Forty-six undergraduate students were recruited through the Clemson University 

Sona Systems Participant Pool website and were given course credit for their 

participation. We recruited 44 older adults (ages 65-75) from the local area and 

compensated them $25 for their time. Both age groups were tested separately; however, 

up to 6 participants of the same age group were tested at one time. All participants 

worked independently at individual workstations.  

Tasks 

Targeting Task 

The tasks for this study were adapted from prior research that used an automated 

system in the context of a low-fidelity unmanned aerial vehicle (UAV) simulation 

(Rovira, McGarry, & Parasuraman, 2007). The primary task for this study was to quickly 

find the closest combination of friendly (green) and enemy (red) units in terms of 

distance apart on the grid (Figure 1). The headquarters (orange) unit was used to 

determine the best answer when more than one friendly and enemy unit pairing had the 

shortest distance. Battalion (yellow) units were included in the grid as distractor targets. 

The grid always displayed 3 friendly units, 3 enemy units, 3 battalion units, and 1 

headquarters unit. Automation was presented in the form of a table, which showed 

distances and unit combinations needed by participants to complete the primary task.  

Communications Task 
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The secondary task consisted of checking for a specific call sign and clicking a 

corresponding button when it appeared on screen (Figure 1). The call sign was comprised 

of a single word and number combination (e.g., Hunter-6). The program randomly 

switched to a different call sign (14 total) every 5 seconds as the participant completed 

the primary task.  

Figure 1. Screenshot of targeting and communications tasks. Features communications 

panel (top-left), targeting input panel (middle-left), automation table (bottom-left), and 

grid (right). 

Design 

The experiment was a 2 (age group: young, old) x 2 (DOA: information, decision) 

x 2 (trial reliability: unreliable, reliable) mixed-subjects design. Age group was a 



 9 

between-subjects independent variable. DOA and trial reliability were within-subjects 

independent variables.  

Participants completed eight blocks of 160 total trials (20 trials per block), where 

each block displayed either information or decision automation (Appendix A). A 

randomized block design was utilized within each age group. Thus, participants were first 

presented with either four information automation blocks or four decision automation 

blocks before continuing to the other DOA. The assignment of presentation order was 

randomized for every participant prior to recruitment.  

The working memory demand of the targeting task was manipulated by using two 

DOAs (i.e., information and decision) in the automation table. Information automation 

displayed all possible friendly and enemy unit combinations in the grid (9 total) and 

sorted the order of enemy units (e.g., E1-E3) (Appendix A). This DOA placed greater 

demand on working memory to locate the best answer because of the increased amount of 

information shown and the lack of useful organization within the automation table. 

Decision automation presented the top three friendly and enemy unit combinations 

(Appendix A). This DOA sorted the information based on importance, so that the shortest 

distance for a unit combination was shown at the top. Decision automation placed less 

demand on working memory to locate the best answer because of the reduced amount of 

information presented and the improved organization within the automation table. 

The overall automation reliability was set at 80% because operators will depend 

upon imperfect automation above an approximate level of performance (70%) (Wickens 

& Dixon, 2007). In each block of 20 trials, 16 trials were reliable and the remaining 4 
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trials were unreliable. An unreliable trial contained inaccurate distance values between 

friendly and enemy units within the automation table (Appendix A). The first automation 

failure did not occur until the 10th trial, so that users could rebuild trust after each block. 

Subsequent automation failures were distributed randomly throughout the remaining 

trials.  

The dependent variables were targeting accuracy, targeting time, complacency 

potential, and working memory capacity. Targeting accuracy was measured by the mean 

rate of optimal responses for each automation block. An optimal response is the correct 

identification of the closest pair of friendly and enemy units in the targeting task. 

Targeting time was measured by the average duration (in seconds) it took participants to 

complete each trial. Complacency potential was comprised of subjective ratings on the 

Complacency Potential Rating Scale (CPRS). Working memory capacity measured the 

sum of perfectly recalled sets of letters on the Automated Operation Span (AOSPAN) 

task. 

Materials 

Equipment 

The tasks were programmed in Xojo for Windows and presented (maximized with 

no visible user interface) on a 19-inch LCD monitor set at a resolution of 1024 x 1280. 

Participants sat approximately 18 inches away from the computer screen and interacted 

primarily with a mouse and a keyboard. Participants were told to adjust equipment as 

necessary. Six-foot tall cubicle dividers separated each computer station. 

Surveys & Abilities 
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Demographic and health information were collected from each participant. The 

following cognitive abilities were assessed: perceptual speed (Digit-Symbol Substitution; 

Wechsler, 1997), vocabulary (Shipley Vocabulary; Shipley, 1986), and working memory 

(Automated Operation Span (AOSPAN); Unsworth, Heitz, Schrock, & Engle, 2005). 

Instructions for the AOSPAN can be found in Appendix B. These measures were chosen 

because they are reliable indicators of their respective abilities (e.g., Czaja et al., 2006).  

In the AOSPAN, participants were instructed to complete simple math problems 

while remembering the order of individual letters that were presented after solving each 

problem. Younger adults needed to correctly answer at least 85% of the math problems 

and recall as many letters as possible. Consistent with other aging literature (Zeintl & 

Kliegel, 2007), older adults needed to correctly answer at least 80% of the math 

problems. The AOSPAN score consisted of the sum of all perfectly recalled letter sets, 

where higher scores indicated greater working memory capacity. AOSPAN scores under 

two standard deviations away from the mean were established as additional exclusion 

criteria because a score that low indicates that participants were not performing both 

tasks. 

A blocked design for the UAV simulation allowed us to administer a history-

based trust measure using a survey adapted from Lee and Moray (1992) (Appendix C) 

and the NASA-TLX (Hart & Staveland, 1988) at the end of each block of trials. 

Measures of dispositional trust (Merritt & Ilgen, 2008) using a survey developed by Jian, 

Bisantz, and Drury (2000) (Appendix D) and automation complacency potential using the 



 12 

CPRS (Singh, Molloy, & Parasuraman, 1993a) (Appendix E) were used to assess age 

differences. 

Procedure 

Participants were seated at individual computers and provided with informed 

consent. After giving verbal consent, participants were instructed to complete the 

AOSPAN task. The participants then filled out the demographics form and finished the 

remaining cognitive ability measures (i.e., Digit Symbol Substitution and Shipley 

Vocabulary). The experimenter told participants to open and observe the instructions 

screen for the UAV simulation. Participants were told the following: “In this experiment, 

you will have two tasks. Please keep in mind that you will perform both tasks 

simultaneously. The first task will be to monitor the communications panel for the call 

sign Hunter-6. When you see Hunter-6, you should click the answer button. The second 

task will be to target enemy units with the closest friendly unit as quickly as you can. You 

will do this by first selecting a friendly unit from the list of buttons in the targeting input 

and then select an enemy target from the list of buttons and click OK. The computer aid 

will sometimes help you with this task by showing you the distances between friendly 

and enemy units. Sometimes, two sets of targets will have the same distance. In this case, 

you will pick the friendly unit with the shortest distance to the headquarters. Sometimes 

the computer aid will give you lots of information, other times it will give you much less 

information. The computer aid can be very reliable but it is not perfect all the time.” After 

these instructions, the experimenter had participants attempt 8 practice trials (all reliable 

automation with no feedback). The first half of the practice trials featured information 
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automation and the latter half featured decision automation. After the practice trials, the 

experimenter answered any questions before the participants started the actual task.  

Participants then proceeded through each block of real trials. As participants 

completed the tasks, the units inside the grid (i.e., friendly, enemy, battalion, and 

headquarters) and the information within automation table (i.e., distance values and unit 

pairings) changed after each trial. During the experiment, a screen appeared to indicate 

when participants lingered too long on a particular trial. If participants did not input an 

answer within the set time limit, the program would automatically continue to the next 

trial. Younger adults had 10 seconds to complete each trial, while older adults had 20 

seconds. Older adults had more time for the task because of normative age-related 

differences in psychomotor speed (Salthouse, 1985). Time limits were based on an 

analysis of “timed out” trials (i.e., the participant did not answer quickly enough) from 

pilot testing the task with each age group. Between each block of trials, participants filled 

out the NASA-TLX survey and a brief history-based trust measure. When participants 

completed the automation program, the computer presented them with the dispositional 

trust and CPRS surveys. At the conclusion of the experiment, the experimenter debriefed 

participants and provided them compensation for their time. 

RESULTS 

Eight participants that met the exclusion criteria on the AOSPAN measure were 

eliminated. From that total, 5 participants (3 younger and 2 older adults) were removed 

because they performed below a set value (i.e. less than 80% for older adults and 85% for 

younger adults) on the math portion of the task. Two younger adults were eliminated due 
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to obtaining a low working memory capacity score (i.e., scores under 2 standard 

deviations away from the mean). Only 1 younger adult was removed because of data loss 

from a computer shutting down during testing. The remaining 40 younger adults (M = 

18.30, SD = 0.79) and 42 older adults (M = 70.00, SD = 3.19) were used in the analysis of 

all dependent variables. Participant demographics can be found in Table 1.  

Table 1 
Participant Demographic Frequencies by Age Group 
Category Younger Adults Older Adults 
Gender 

Female 23 24 
Male 17 18 

Race/Ethnicity 
Asian 2 1 
Black/African-American 2 0 
White 33 41 
Hispanic/Latino 2 0 
Other 1 0 

Health 
Fair 0 4 
Good 7 10 
Very Good 26 21 
Excellent 7 7 

Highest Education 
High school graduate/GED 33 0 
Vocational training 0 1 
Some college/Associate's degree 7 9 
College graduate 0 11 
Master's degree (or other post-grad) 0 18 
Doctoral degree (PhD, MD, EdD, etc.) 0 3 

Before starting the analyses, trials that “timed out” (i.e., the participant did not 

answer quickly enough) were removed. The remaining results are structured to discuss 

each hypothesis and the accompanying analyses. We examined age-related differences in 
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the AOSPAN task, the amount of working memory demand for each automated aid, 

differences in complacency potential between age groups, performance (completion time 

and accuracy) in the targeting task, and the role of working memory capacity in 

complacency. For the following analyses, significance is defined as an alpha level of .05. 

Cognitive Abilities  

Working memory capacity was examined as part of a larger set of measures to 

check for age-related differences in cognitive abilities (see Table 2). Working memory 

capacity on the AOSPAN task was calculated by summing the length of each correctly 

recalled letter set (between 3 and 7 letters long). For example, if the individual correctly 

remembered three 5 letter strings, their total score would be 15. The possible scores 

ranged from 0 to 75. There was a significant effect for age, t(80) = 4.61, p < .001, ηp
2 = 

.21, with younger adults (M = 38.05, SD = 13.99) scoring higher for working memory 

capacity than older adults (M = 23.29, SD = 14.94).  

Consistent with prior aging research (Wechsler, 1981; Shipley, 1986) older adults 

scored significantly higher than younger adults on the Shipley Vocabulary test and older 

adults scored significantly higher than younger adults on the Digit-Symbol Substitution 

task (both p < .001) (Table 2). Only the Digit-Symbol Substitution task violated of 

homogeneity of variance as assessed by Levene's Test for Equality of Variances. After 

we used the Welch-Satterthwaite method to make adjustments for this cognitive ability 

test, we still observed significant differences between age groups (p < .001). The 

differences on these cognitive ability measures confirm the expected age-related changes 

in cognition between the groups.  
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Table 2 
Summary of Means and Standard Deviations for Scores on Cognitive Ability Measures 

Younger Adults Older Adults 
Measure M SD M SD 

Automated Operation Spana 38.05 13.99 23.29 14.94 
Digit Symbol Substitutionb 1090.81 113.25 1773.19 422.10 
Shipley Vocabularyc 29.38 3.03 36.02 2.31 
Note. aTotal number of correctly recalled letter sets. Scores are out of a possible 75. 
bTime to identify an incorrect trial in milliseconds. cTotal correct. Scores are out of a 
possible 40. 

Working Memory Capacity and Targeting Accuracy 

We examined the relationship between working memory capacity and targeting 

accuracy to confirm differences in working memory demand for information and decision 

automation. Targeting accuracy was the mean proportion of selecting correct pairs of 

friendly and enemy units. High accuracy can imply complacent behavior because 

individuals lacking in working memory capacity should have greater dependence on the 

automated aid when experiencing greater demand. Information automation was expected 

to demand more working memory because it provided less automated support in the task. 

Thus, we hypothesized that working memory capacity scores would predict participants’ 

targeting accuracy more for information automation than decision automation. We also 

anticipated that older adults’ lower working memory capacity scores would predict 

targeting accuracy more than younger adults’ higher working memory capacity scores. 

Simple linear regressions were calculated to regress targeting accuracy on working 

memory capacity scores. In the following regression analyses, we separated by age group 

and DOA to assess both hypotheses.  
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For older adults using information automation, working memory capacity scores 

accounted for 18.2% of the variance in targeting accuracy (F (1, 41) = 8.88, p < .01,

R2
adjusted = .16). Working memory capacity scores positively correlated with targeting 

accuracy (β = .004, t(41) = 2.98, p < .01) (Figure 2). For older adults using decision 

automation, working memory capacity scores accounted for 11.3% of the variance in 

targeting accuracy (F (1, 41) = 5.10, p < .05, R2
adjusted = .09). Working memory capacity 

scores again positively correlated with targeting accuracy (β = .004, t(41) = 2.26, p < .05) 

(Figure 3). The results confirmed that information automation had relatively higher 

working memory demand than decision automation for older adults.  

Figure 2. Older adult working memory capacity scores predicting targeting accuracy for 

information automation. 
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We regressed targeting accuracy on younger adults’ working memory capacity 

scores similar to the older adult analyses discussed above. As expected, younger adults’ 

high working memory capacity scores did not significantly predict targeting accuracy for 

information or decision automation. Thus, older adults experienced greater working 

memory demand in the targeting task than younger adults. Unlike older adults, younger 

adults experienced equivalent working memory demand for information and decision 

automation. The result indicates that younger adults were not as affected by the 

differences in working memory demand for information and decision automation because 

of their high working memory capacity. 

Figure 3. Older adult working memory capacity scores predicting targeting accuracy for 

decision automation. 
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We analyzed a measure of complacency potential to confirm that older adults 

exhibited greater complacency potential compared to younger adults. An independent 

samples t-test compared age groups on complacency potential. There was a violation of 

homogeneity of variance as assessed by Levene's Test for Equality of Variances. Thus, 

we made adjustments to the degrees of freedom using the Welch-Satterthwaite method. 

As expected, older adults (M = 46.83, SD = 3.66) had higher complacency potential than 

younger adults (M = 43.05, SD = 5.34), t(68.55) = -3.72, p < .001, ηp
2 = .15. The result 

indicates the influence of age on attitudes towards automation. 

Targeting Task  

Task Time 

Next, we hypothesized a main effect of DOA with faster task times with decision 

automation (a higher DOA with more of the task automated) than information automation 

(a lower DOA). We expected a main effect of age group, such that younger adults would 

make faster selections than older adults. Average task time was the number of seconds it 

took participants to match a friendly and enemy unit. A 2 (age group: young, old) x 2 

(DOA: information, decision) x 2 (trial reliability: reliable, unreliable) repeated measures 

ANOVA for targeting task time revealed significant main effects for DOA (F (1, 80) = 

31.71, p < .001, ηp
2 = .28) and age (F (1, 80) = 227.67, p < .001, ηp

2 = .74) (see Table 3). 

There were no significant main effects for trial reliability or any significant 2 or 3-way 

interactions. Participants were faster with decision automation (M = 7.31, SD = 2.93) than 

information automation (M = 8.32, SD = 2.90). Younger adults were faster (M = 5.34, SD 

= .95) than older adults (M = 10.17, SD = 2.16). The results confirm the expected main 
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effects for age group and DOA. The lack of an interaction between age, DOA, and trial 

reliability indicates that both age groups might have similar dependence on automation.  

Table 3             
Summary of Means and Standard Deviations for Task Time 
    Younger Adults 

 
Older Adults 

Trial Reliability and DOA M SD   M SD 
Unreliable Information Automation 5.69 0.86   10.67 2.06 
Reliable Information Automation 5.79 0.77   10.78 1.93 
Unreliable Decision Automation 4.92 1.00  9.65 2.50 
Reliable Decision Automation 4.91 0.93   9.58 2.24 
 
Task Accuracy 

In addition to targeting task time, the next measure used to infer complacent 

behavior was targeting task accuracy. We expected a significant interaction between age, 

DOA, and trial reliability. Additionally, we hypothesized that participants would be more 

accurate with decision automation than information automation and younger adults would 

have greater accuracy than older adults. A 2 (age group: young, old) x 2 (DOA: 

information, decision) x 2 (trial reliability: reliable, unreliable) repeated measures 

ANOVA for targeting task accuracy revealed significant main effects for DOA (F (1, 80) 

= 44.95, p < .001, ηp
2 = .36) and trial reliability (F (1, 80) = 47.76, p < .001, ηp

2 = .37) 

(Table 4). Participants were more accurate with decision automation (M = .69, SD = .16) 

than information automation (M = .58, SD = .15). Participants were more accurate with 

reliable (M = .69, SD = .19) than unreliable automation (M = .42, SD = .26). The results 

confirm the expected main effects for trial reliability and DOA. There were no significant 

main effects for age or any significant 3-way interactions. However, there was one 
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significant 2-way interaction between DOA and trial reliability, F (1, 80) = 8.82, p < .01, 

ηp
2 = .10 (see Figure 4).  

Table 4 
Summary of Means and Standard Deviations for Task Accuracy 

Younger Adults Older Adults 
Trial Reliability and DOA M SD M SD 

Unreliable Information Automation 0.40 0.26 0.39 0.27 
Reliable Information Automation 0.63 0.18 0.62 0.20 
Unreliable Decision Automation 0.44 0.32 0.44 0.31 
Reliable Decision Automation 0.80 0.20 0.73 0.21 

The source of the significant 2-way interaction between DOA and trial reliability 

was a greater difference in accuracy between DOA for reliable automation, F (1, 80) = 

83.63, p < .001, ηp
2 = .51, than for unreliable automation, F (1, 80) = 3.46, p = .07, ηp

2 = 

.04 (Figure 2). We also examined accuracy for reliability simple main effects, that is, the 

differences between reliable and unreliable trials for each DOA separately. There was a 

significant difference in accuracy between reliable and unreliable trials for information 

automation, F (1, 80) = 34.66, p < .001, ηp
2 = .30, and for decision automation, F (1, 80) 

= 48.47, p < .001, ηp
2 = .38.  
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Figure 4. Targeting accuracy shown by trial reliability type for information and decision 

automation. Error bars represent standard error of the mean. 
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trials (i.e., low accuracy when dependent). Additionally, we can observe complacent 

behavior through targeting time because faster selections with unreliable trials compared 

to reliable trials suggest less time spent verifying faulty automation. We created an 

‘objective’ measure of complacency by subtracting unreliable trial performance from 

reliable trial performance (i.e., separate for time and accuracy). Higher difference scores 

indicated greater dependence on automation. The difference scores for time and accuracy 

were standardized, so that both variables were on the same scale. Then, we added the 

scores together to create a combined complacency value. Participants in our study were 

more complacent with a higher DOA, so we investigated the role of working memory on 

complacency only for decision automation.  

Separate regressions were conducted for decision automation complacency and 

complacency potential (Table 5 & 6). Each step in the model tested the extent to which a 

variable accounted for significant variance in subjective and objective measures of 

complacency after another variable was controlled for. Total variance accounted for is 

shown at R2 and the new variance accounted for after adding another variable is indicated 

by ∆R2. In Step 1, age was entered as a control variable. Age accounted for only 0.9% of 

the variance in complacency for decision automation. However, age predicted 

complacency potential by accounting for 15.5% of the variance in the subjective ratings. 

This finding was expected because of the significant age difference in complacency 

potential between younger and older adults. 

Table 5             
Summary of Hierarchical Regression Analysis Predicting Decision 
Automation Complacency   
Variable   R2 ∆R2 β ∆F p 
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Step 1 .009 .009 0.75 .39 
Age -.096 

Step 2 .022 .013 1.06 .41 
Age -.036 
Working Memory Capacity  .130 

Note. Bolded items indicate significant increments/predictors. The R2 indicates the total 
variance accounted for with the inclusion of each step. The ∆R2 indicates the change in 
total R2 attributable to the inclusion of a step. The ∆F statistic indicates the change in F 
associated with the inclusion of each block of variables. 

After we controlled for age, working memory capacity scores failed to account for 

significant unique variance in subjective or objective measures of complacency. The 

overall model for complacency potential was significant after including working 

memory, but the amount of unique variance was low (2.2%). Working memory was 

expected to predict complacency for decision automation, but our analyses suggest that 

participants had limited complacency in the automated task. 

Table 6 
Summary of Hierarchical Regression Analysis Predicting 
Complacency Potential 
Variable R2 ∆R2 β ∆F p 
Step 1 .155 .155 14.64 .00 

Age .393 
Step 2 .177 .022 2.14 .00 

Age .472 
Working Memory Capacity .169 

Note. Bolded items indicate significant increments/predictors. The R2 indicates the total 
variance accounted for with the inclusion of each step. The ∆R2 indicates the change in 
total R2 attributable to the inclusion of a step. The ∆F statistic indicates the change in F 
associated with the inclusion of each block of variables. 

DISCUSSION 

The purpose of this study was to examine the effect of age and DOA on 

complacent behavior in an automated task. Based on previous research, we hypothesized 
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that older adults would depend more on automation with greater working memory 

demand than younger adults. Several interesting findings emerged from this study, many 

of which were contrary to our hypotheses: 

1) Older adults experienced greater working memory demand for information

automation. Younger adults experienced the same working memory

demand for information and decision automation.

2) Task accuracy was the same for younger and older adults at each DOA.

However, younger adults completed the targeting task quicker than older

adults.

3) Participants’ working memory capacity scores did not predict greater

dependence on automation.

These findings are now discussed in more detail along with theoretical proposition for 

why these results may have occurred. 

The two DOAs used in the study did vary in working memory demand, but only 

for older adults. We confirmed that decision automation required fewer cognitive 

resources than information automation. This finding supports the suggestion that higher 

forms of automation reduce cognitive demand (Onnasch et al., 2014). However, younger 

adults did not experience differences in working memory demand between information 

and decision automation. Researchers previously found that younger adults’ working 

memory capacity does not predict performance in automated tasks (Saqer, de Visser, 

Emfield, Shaw, & Parasuraman, 2011). Since younger adults have greater working 
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memory capacity, they have more resources to deal with varying levels of working 

memory demand. 

In the automated targeting task, participants were expected to make more accurate 

and faster responses when using decision automation compared to information 

automation. This hypothesis was supported for targeting accuracy and response times. 

Our findings conform to a previous meta-analysis that showed performance increases for 

higher DOAs (Onnasch et al., 2014). Additionally, we hypothesized that younger adults 

would outperform older adults on targeting task accuracy and time. There were age 

differences in targeting time; older adults were significantly slower at making selections 

compared to younger adults. These differences in completion time were due to age-

related changes in perceptual speed (Salthouse, 1985) and the additional time given to 

older adults to attempt each trial (i.e., 10 more seconds than younger adults).  

The anticipated age difference in targeting accuracy was not found in the study. 

Participants of either age group did not significantly differ in selecting the correct choice 

when presented with information or decision automation. One potential explanation of 

this finding was that the lack of age differences in targeting accuracy could have been 

due to a speed-accuracy tradeoff. Each age group experienced a different amount of time 

pressure, which can influence decision-making (Payne, Bettman, & Johnson, 1993). 

Since older adults had 10 additional seconds for each trial than younger adults, they could 

have prioritized accuracy over speed to identify the correct answer for each trial. 

However, we found that there were no significant positive relationships between task 

accuracy and time for older adults except with unreliable decision automation. Even 
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though older adults’ accuracy and response times were positively related for those 

unreliable trials (r = .37), we observed the same positive relationship among younger 

adults as well (r = .26). Additionally, older adults on average completed all trials of the 

targeting task approximately 10 or more seconds before the time limit (i.e., 20 seconds). 

Older adults did not use all of the time allotted and failed to outperform younger adults 

(Tables 3 & 4). Based on our observed findings, it appears that a speed-accuracy tradeoff 

is not a suitable explanation. 

The study tested the hypothesis that older adults would have greater complacency 

than younger adults for information automation and no differences in complacency for 

decision automation. Ho, Wheatley, and Scialfa (2005) suggested that age differences in 

working memory capacity increased automation dependence for older adults. Our results 

suggest that there were no age-related differences in complacency when the task varied in 

working memory demand. Overall, working memory capacity failed to predict 

complacency in the automated task. Similar to age differences in working memory, older 

adults had significantly higher complacency potential than younger adults. However, 

these attitudes did not translate to differences in automation dependence. Interestingly, 

Ho, Wheatley, and Scialfa (2005) found no age differences in complacency potential 

using the CPRS, but detected greater automation dependence among older adults. Even 

though the CPRS has high internal consistency and test-retest reliability, researchers only 

found a modest relationship (r = .42) between performance measures of complacency and 

individual differences in complacency potential (Singh et al., 1993a; Singh et al., 1993b). 
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Due to the mixed results observed across studies, the CPRS may not be a consistent 

indicator of actual complacency.  

Our findings do not disprove the role of working memory in automation-induced 

complacency. Researchers have attributed lower working memory capacity to greater 

automation dependence (Ho, Kiff, Plocher, & Haigh, 2005; Ho, Wheatley, & Scialfa, 

2005; Rovira, Pak, & McLaughlin, accepted with revisions). However, the simulation 

tasks used in our research failed to replicate the age-related differences in automation use 

found within the literature (Mouloua, Smither, Vincenzi, & Smith, 2002; Parasuraman & 

Manzey, 2010).  

One major limitation of our study was the low task load (i.e., difficulty) in the 

targeting task, which kept constant the number of units within the grid. When researchers 

manipulated task load, younger and older adults differed in automation use (McBride, 

Rodgers, & Fisk, 2011). Even though the UAV simulation divided attention across two 

different tasks, participants could perform the targeting task without the automation. The 

grid was present at all times, so that participants could verify the automation. Older adults 

were as complacent as younger adults with automation that had greater working memory 

demand. Research that used the same UAV simulation tasks found higher complacency 

as task load increased, especially for participants with lower working memory (Rovira, 

Pak, & McLaughlin, accepted with revisions). This result supports the suggestion that 

complacency is only expected to appear under conditions of high task load (Parasuraman, 

Molloy, & Singh, 1993). Since we did not manipulate the task load of the targeting task, 

we failed to observe any age-related differences in automation use. Future research 



 29 

should examine the relationship between age and task load on human-automation 

interaction. 

Participants engaged with only two forms of automation multiple times in our 

repeated measures design. Since performance was averaged across several blocks of 

trials, younger and older adults may have adjusted their behavior to the automation 

throughout the study. Recent aging literature found that older adults take longer to alter 

their dependence on automation, but these age-related differences in dependence are 

eventually mitigated (Sanchez, Rogers, Fisk, & Rovira, 2014). In our study, we had 

participants complete all trials using one DOA before presenting the other DOA. Future 

research may consider alternating between different forms of automation to vary working 

memory demand throughout the entire task. 

Another possible limitation of our study is that participants did not perform the 

tasks without the use of automation (i.e., manual control). Researchers have used manual 

control as a way to investigate the benefits and costs of automation (Onnasch et al., 

2014). The lack of automation support can demonstrate differences in task performance 

between automation conditions. Manual control represents a baseline to compare against 

low and high DOAs. Future research should include a manual control condition to 

examine age differences in automation use. 

For our study, we attempted to create an objective measure of complacency that 

could explain the relationship between working memory and automation dependence. In 

the automation literature, researchers observed complacency as poor monitoring ability 

(i.e., accuracy) and the speed of responses to automation failures (i.e., response time) 
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(Parasuraman & Manzey, 2010). Thus, we combined response time and accuracy into a 

single measure. However, we failed to observe large differences between reliable and 

unreliable trial performance in our sample. In particular, targeting accuracy for unreliable 

trials did not decrease when participants used decision automation. Researchers observed 

a consistent connection between higher DOAs and poorer performance with unreliable 

automation (Onnasch et al., 2014). In our study, participants’ improved accuracy for both 

reliable and unreliable trials with decision automation suggests little evidence for 

complacent behavior. Therefore, the lack of complacency in the automated task explains 

the small amount of explained variability from working memory capacity scores. Future 

research on automation dependence should assess and determine the conditions that 

increase the amount of measurable complacent behavior. 

The simulation tasks used in the study were not entirely representative of real life 

situations. Similar to military scenarios, the tasks were designed to have time pressure 

that forced participants to make quick decisions. However, there were no penalties for 

making mistakes in the targeting or communication tasks. The penalty for taking a long 

time to respond or answering incorrectly could be deadly in actual military situations. 

Higher costs or values associated with making an error can reduce dependence on 

automation (Ezer, Fisk, & Rogers, 2008). Since the simulation tasks did not penalize 

participants for mistakes, younger and older adults were more complacent with our 

automation than other real world systems.  

Our study differed from most automation studies in that we had participants 

perform a task where automation was always present. We decided to use automation that 
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was visible at all times because we thought it would allow us to judge the effects of 

varying amounts of computerized support on complacency. In comparison, alarm-based 

systems are primarily high forms of automation (i.e., display a single automation 

recommendation). Also, alarm-based studies compare performance when the automation 

is present or not (i.e., reliance and compliance). The automation in our study allowed us 

to examine user dependence on reliable and unreliable systems that were always present. 

Conclusions 

The results of the study show that younger and older adults did not significantly 

differ in complacent behavior across two separate DOAs. Working memory capacity was 

not found to predict complacency even after controlling for differences in age. Thus, 

individual differences in working memory capacity did not affect dependence on 

automation when the aid varied in working memory demand. Low task load in the UAV 

simulation may have reduced age-related differences in complacent behavior. Further 

research is needed to examine the age-related effects of complacency for automation that 

varies in cognitive demand. 

Practical Implications 

Examining the factors that affect automation dependence with novel interfaces 

can provide information about existing theories on automation use. Automation that is 

imperfect can influence how operators perform under varying amounts of computerized 

assistance. Our results indicated that younger and older adults did not differ in their 

dependence on automated aids that varied in working memory demand. However, both 

age groups were more complacent with greater automated support that had less working 
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memory demand. Many automated devices and interfaces are designed to alleviate 

cognitive demand by providing fewer decision-making options for users (e.g., GPS, 

ATM). Since complacent behavior is more likely to occur with these types of technology, 

systems that utilize both higher and lower DOAs (i.e., adaptive automation; Corso & 

Moloney, 1996) could limit overdependence. Automation could occasionally provide less 

support to keep the user engaged in the task and cognizant of possible system failures. 

Therefore, our results suggest that designers should create interfaces that vary in working 

memory demand. Future research should examine the effect of adaptive automation that 

switches between differing levels of working memory demand on complacent behavior. 
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Appendix A 

Examples of DOA and Reliability Manipulations 

Reliable Information Automation Trial Example: 

Unreliable Information Automation Trial Example: 
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Reliable Decision Automation Trial Example: 

Unreliable Decision Automation Trial Example: 
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Appendix B 

Automated Operation Span Task (Adapted from Unsworth et al., 2005) 

Phase 1: Directions for Letter Memorization Practice Phase  

• In this experiment, you will try to memorize letters you see on the screen while

you also solve simple math problems.

• You will begin by practicing the letter part of the experiment.

• For the practice set, letters will appear on the screen one at a time. Try to

remember each letter in the order presented.

• After 2-3 letters have been shown, you will see a screen listing 12 possible letters.

• Your job is to select each letter in the order presented. To do this, use the mouse

to select each letter. The letters you select will appear at the top of the screen.

• When you have selected all of the letters, and they are in the correct order, hit the

DONE box at the bottom right of the screen.

• If you make a mistake, hit the CLEAR button to start over.

• If you forget one of the letters, click the ? (question mark) button to mark the spot

for the missing letter.

• Remember, it is very important to get the letters in the same order as you see

them. If you forget one, use the ? button to mark the position.

• Do you have any questions so far? When you’re ready, click the button below to

start the letter practice.

Phase 2: Directions for Mental Math Practice Phase 
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• Now you will practice doing the math part of the experiment. A math problem

will appear on the screen like this: (2 * 1) + 1 = ?

• As soon as you see the math problem, you should compute the correct answer. In

the above problem, the answer 3 is correct.

• When you know the correct answer, you will click the OK button with your

mouse.

• You will see a number displayed on the next screen, along with a button marked

TRUE and a button marked FALSE.

• If the number on the screen is the correct answer to the math problem, click on the

TRUE box with the mouse. If the number is not the correct answer, click on the

FALSE box. For example, if you see the problem: (2 * 2) + 1 = ? and the number

on the following screen is 5 click the TRUE box, because the answer is correct. If

you see the problem: (2 * 2) + 1 = ? and the number on the next screen is 6 click

the FALSE box, because the correct answer is 5, not 6. After you click on one of

the boxes, the computer will tell you if you made the right choice,

• It is VERY important that you get the math problems correct.

• It is also important that you try and solve the problem as quickly as you can.

• Do you have any questions? When you’re ready, click the mouse to try some

practice problems.

Phase 3: Directions for Combined Letter Memorization and Mental Math Phase 

• Now you will practice doing both parts of the experiment at the same time. In the

next practice set, you will be given one of the math problems.
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• Once you make your decision about the math problem, a letter will appear on the

screen. Try and remember the letter.

• In the previous section where you only solved math problems, the computer

computed your average time to solve the problems.

• If you take longer than your average time, the computer will automatically move

you onto the next letter part, thus skipping the True or False part and will count

that problem as a math error.

• Therefore, it is VERY important to solve the problems as quickly and as

accurately as possible.

• After the letter goes away, another math problem will appear, and then another

letter.

• At the end of each set of letters and math problems, a recall screen will appear.

Use the mouse to select the letters you just saw.

• Try your best to get the letters in the correct order. It is important to work

QUICKLY and ACCURATELY on the math. Make sure you know the answer to

the math problem before clicking to the next screen.

• You will not be told if your answer to the math problem is correct. After the recall

screen, you will be given feedback about your performance regarding both the

number of letters recalled and the percent correct on the math problems.

• During the feedback, you will also see your percent correct for the math problems

for the entire experiment.

• It is VERY important for you to keep this at least at 85%.
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• For our purposes, we can only use data where the participant was at least 85%

accurate on the math.

• Therefore, you must perform at least at 85% on the math problems WHILE doing

your best to recall as many letters as possible.
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Appendix C 

Subjective Trust in the Automated Aid (Adapted from Lee & Moray, 1992) 
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Appendix D 

General Rating of Trust in Automation (Adapted from Jian et al., 2000) 



 42 

Appendix E 

Complacency Potential Rating Scale (Adapted from Singh, Molloy, & Parasuraman, 

1993a) 
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