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ABSTRACT 
 
 

Series compensated lines are protected from overvoltage by metal-oxide-varistors 

(MOVs) connected in parallel with the capacitor bank. The nonlinear characteristics of 

MOV devices add complexity to fault analysis and distance protection operation. During 

faults, the impedance of the line is modified by an equivalent impedance of the parallel 

MOV/capacitor circuit, which affects the distance protection. The intermittent wind 

generation introduces additional complexity to the system performance and distance 

protection. Wind variation affects the fault current level and equivalent MOV/capacitor 

impedance during a fault, and hence the distance relay operation.  

This thesis studies the impact of the intermittent wind power generation on the 

operation of MOV during faults. For the purpose of simulation, an equivalent wind farm 

model is proposed to generate a wind generation profile using wind farm generation from 

California independent system operator (ISO) as a guide for wind power variation to 

perform the study. The IEEE 12-bus test system is modified to include MOV-protected 

series capacitor and the equivalent wind farm model. The modified test system is 

simulated in the MATLAB/Simulink environment. The study has been achieved 

considering three phase and single line to ground (SLG) faults on the series compensated 

line to show the effect of wind variation on the MOV operation.  

This thesis proposes an adaptive setting method for the mho relay distance 

protection of series compensated line considering effects of wind power variation and 

MOV operation. The distributed parameters of a transmission line are taken into account 

to avoid overreaching and underreaching of distance relays. 
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The study shows that variable wind power affects system power flow and fault 

current in the compensated line during a fault which affects the operation of MOVs for 

different fault conditions. The equivalent per-phase impedance of the MOV/capacitor 

circuit has an effect on the system operation and line protection. Distance protection 

study is also performed with variable wind power, different line compensation levels, and 

other system conditions. Results show that variable wind power affects apparent 

impedance calculation of distance relay through the variable equivalent MOV/capacitor 

impedance. Underreaching and overreaching issues of the distance relay are discussed. 

Based on the results, a variable distance relay setting is proposed to mitigate the negative 

impact. Both fixed and variable distance relay settings are presented and compared to 

each other. The results demonstrate the ability of the proposed adaptive setting method to 

resetting the distance relays to adapt to various system conditions, including three wind 

generation and different compensation levels. 
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CHAPTER ONE 
 

INTRODUCTION 
 

1.1 Wind Energy 

Due to the global energy prices, supply uncertainties, and environmental concerns 

wind energy is one of the best sources of alternative energy [1]-[2]. Wind energy is the 

world’s fastest growing renewable energy source with the advancement in the related 

technology. According to Global Wind Energy Outlook 2014, wind power could provide 

25-30% of global electricity supply by 2050 [3]. The attractiveness of wind energy 

include no CO2 emission, lower dependency on foreign oil and gas, creation of new jobs 

and numerous other benefits. Utilities give a great consideration to wind power 

integration [4]-[5]. The penetration of wind energy introduces challenges on the operation 

and protection of power systems. These challenges must be thoroughly studied and new 

measures and techniques must be adapted to ensure the reliability of the grid. 

1.2 Series Compensation 

The series compensation has been used to increase power transfer capability of 

transmission lines and to improve system stability [6]-[7]. During system faults, high 

fault currents through the series capacitor cause voltage to rise across the series capacitor 

bank, which in turn causes overvoltage that may damage the compensation device [8]. 

Metal-oxide-varistor (MOV) devices, connected in parallel, have been used to protect the 

series compensation against overvoltage during faults. The MOV-protected series 

compensation increase complexity of fault analysis and distance protection. Applying the 

MOV for series compensator protection has been considered in [8]-[16].  
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1.3 Distance Protection 

Protection of transmission lines is vital to the overall system stability of the power 

system. Distance relays are widely used to protect the transmission line from any type of 

fault. There are different types of distance relays such as mho, offset mho, reactance, 

admittance and quadrilateral [17], [18]. A distance relay operates on local voltages and 

currents present to the relay, and the relay decision is made based on the calculated 

apparent impedance and the relay settings [18],[19]. 

The high intermittent wind generation connected to the grid introduce an 

additional complexity to the fault analysis and distance protection of MOV-protected 

series compensated lines. The effects of wind power’s fluctuation on power system’s 

operation has been considered in [20], and distance protection in [21]-[22]. 

1.4 Adaptive Settings and Literature Review 

Several adaptive distance relaying methods have been proposed in recent 

publications to correct the relay operation for MOV-protected series compensated lines 

[13]-[14] and [21]-[24].  With the current adaptive methods not being comprehensive 

including the effects of wind energy there is still room to develop new adaptive 

techniques.  

In [13] and [14], the method used phasor-measurement units (PMUs) at both ends 

of the line with a dedicated communication channel to compute the compensation level 

during a fault and adapt relay setting accordingly. The compensation level was 

determined by subtracting the measured impedance between PMUs from a known line 

impedance without series compensation. This method considered both cases with the 
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capacitor placed at the end and in the middle of a transmission line. However, for the 

second case, the method’s approach did not address overreaching issues for faults 

occurring between the relay location and the series capacitor. Also, this method used a 

medium length transmission line model and neglected the effects of the distributed 

parameters.  

In [23], the Goldsworthy’s equivalent impedance model for MOV-protected series 

capacitor was used. The equivalent MOV/capacitor per phase impedances were used to 

compute the new sequence impedances of the transmission line impedance matrix. This 

method ultimately set the trip boundaries of a quadrilateral-type distance relay. The 

adaptive distance relaying method, however, works only for the case where the series 

capacitor placed at the line terminal directly following the distance relay. If the capacitor 

was placed elsewhere in the line, the method would risk significant 

overreaching/underreaching issues. This method was also developed for a medium length 

transmission line neglecting the line’s distributed parameters.  

In [24], the presented method attempted to adapt relay reach setting to three 

different cases of line percent compensation, 0%, 40%, and 60%. This method made a 

number of assumptions including the information about the presence or absence of the 

capacitor and amount of compensation provided to the relay a priori, and neglecting the 

effects of MOV action on the equivalent MOV/capacitor impedance. Also the method 

was applied for a series capacitor at a terminal of a medium length transmission line.  

In [21]-[22], analysis of the effects of wind power fluctuation on the distance 

relay was performed for a radial medium length transmission line with lumped 
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parameters. In [21], the relay considered the impact of wind farm’s power fluctuation on 

distance relay alone without considering line compensation and MOV action. In [22], the 

relay analysed the impact of simultaneous operation of off-shore wind penetration and 

flexible AC transmission system (FACTS) devices on distance relay characteristics. The 

FACTS device was a unified power flow controller (UPFC) device. Therefore, these 

references [21]-[22] did not consider the simultaneous effects of MOV action with wind 

farm variation on the distance relay setting. 

This thesis considers the distributed parameters of a long transmission line with 

series compensation that would result in underreach or overreach operation. It also 

considers the effects of intermittent wind generation on the distance relay setting of 

compensated line. In summary, this thesis proposes an adaptive setting method for a 

distance relay of a long transmission compensated line connected to an equivalent wind 

farm. The proposed algorithm considers distributed line parameters, MOV operation, and 

wind power variation. The results are presented for a single-line-to-ground bolted fault 

and mho-type relay is used in this study. 
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CHAPTER TWO 
 

BACKGROUND 

2.1 MOV-Protected Series Capacitor 

The MOV scheme consists of a capacitor bank, metal-oxide-varistor bank, a 

triggered bypass air gap, a damping reactor, and a bypass switch [8] as shown in Figure 

2.1(a). The significant part of the protection system is the MOV device which has 

nonlinear voltage-current characteristics as shown in Figure 2.1(b). This figure shows 

that for the voltage across the MOV device below the overload voltage (threshold 

voltage, or protective voltage, Vprot), the MOV acts as an open circuit. For voltages above 

the Vprot, the MOV acts as a resistor. The higher the overload voltage, the lower is the 

MOV resistance. MOV devices have nonlinear characteristic and are used for overvoltage 

surge protection. During high transient voltages, the MOV clamps the voltage to a safe 

level and dissipates the potentially destructive energy as heat, thus protecting the circuit 

elements from overvoltage and preventing system from damage. The MOV consists of 

series and parallel arrangement of zinc-oxide disks to achieve the required protective 

voltage level and energy requirements. The series capacitor bank on each phase typically 

consists of a number of capacitor units connected in a series-parallel arrangement to 

make up for the required voltage, current, and MVar rating. 

The triggered air gap in the protection scheme is controlled to spark over in an 

event when the energy absorbed by MOVs exceeds its nominal power rating. It is 

typically used as an intermediate bypass device since it is faster than the bypass circuit 

switch but not as instantaneous as the MOV. In the case of prolonged gap conduction 
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(such as delayed fault clearing), the bypass switch automatically closes to limit the excess 

energy for both MOV and the triggered air gap. The damping reactor limits the 

magnitude of the capacitor discharge current during the spark over of the triggered gap or 

the bypass breaker switching. 

Series Capacitor  

Metal Oxide Varistor

Triggered Gap

Bypass Switch

VOLTAGE (kV)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

CU
RR

EN
T 

(k
A)

Overload Voltage

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

_ 
_ 

_ 
_ 

_ 
_ 

_ 
_ 

_ 
_ 

_ 
_ 

_ 
_ 

_

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Overload Voltage Vprot

Peak Capacitor
Protective Voltage

Iprot

Peak System 
Current

 

(a)   (b) 
 

Figure 2.1 MOV [8]: (a) typical overvoltage protection scheme, and (b) V-I 

characteristics 
 

During normal system operation, the equivalent impedance of the MOV 

connected in parallel with the capacitor is purely capacitive reactance since MOV does 

not conduct any current. During faults, the MOV action modifies the per phase line 

impedance by partially bypassing the capacitor on the faulted phase. The MOV action 

also introduces a resistive component to the line impedance. The parallel MOV/capacitor 

connection can be modeled as a series equivalent impedance during the faults [8], as 

shown in Figure 2.2.  

The Goldsworthy’s linearized model in [8] shows an important result that even 

though the capacitor is connected in parallel with a highly non-linear device, the resulting 
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total current through the combination remains sinusoidal and the MOV/capacitor circuit 

under fault can be approximated by a reduced single phase circuit of Figure 2. This result 

is important for determining total line impedance and for distance protection. 

 

 

Figure 2.2 Modeling MOV/capacitor as equivalent impedance Zeq = Req + Xeq during 
system faults [6]  

 

The linearized model was developed by varying the capacitive reactance, 

capacitor protective voltage level, system voltage, system impedance, MOV v-i 

characteristics, and other test system’s parameters. The computer simulation and field 

tests involving MOV-protected series capacitors with various system parameters gave 

many data points for equivalent reactance and resistance values of MOV/capacitor 

circuit. The eqR  and eqX  were normalized by the capacitor impedance coX , and the fault 

current capI  was normalized by the capacitor protective level current protI  as 

'
eq eq coR R X= , '

eq eq coX X X= , and pu cap protI I I= . 

The generated data points were plotted as in Figure 2.3.  
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Figure 2.3 Goldsworthy’s normalized equivalent MOV/capacitor resistance and reactance 
vs. normalized fault current levels [6] 

 

The plot brings another important result showing the relationship between the 

fault current puI  and the equivalent MOV/capacitor impedance. It suggests that for any 

system and fault current the equivalent impedance can be determined from Goldworthy’s 

relationship Eqs. (2-1) and (2-2) which were obtained via least-squares curve fits as 

0.243 5 1.4' (0.0745 0.49 35 0.6 )pu pu puI I I
eq coR X e e e− − −= + − − , and               (2-1) 

0.8566' (0.101 0.005749 2,088 )puI
eq co puX X I e−= − + .    (2-2) 

Note that as the fault current puI  increases the equivalent reactance eqX  exponentially 

approaches zero. The equivalent resistance eqR , on the other hand, increases from zero 

and then slowly approaches zero as well for increasing puI . 
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2.2 Distance Relay Operation 

2.2.1 Distance relay zone coordination 

A transmission line is normally divided into several protection zones, such as 

zone 1, zone 2, and zone 3 as shown in Figure 2.4(a). A distance relay (at substation A) is 

typically set to act as main protection for faults taking place within zone 1, and as backup 

protection for faults occurring within zones 2 and 3. The reach for zone 1 is defined as 

80% of the protected line, based on the impedance of the line (ZLine in ohms). Zone 1 is 

not set to cover the full 100% of the line to prevent overreaching due to transient voltage 

or current measurement errors. The reach for zone 2 is typically set to 120% of the 

protected line. Zone 2 ensures full coverage of the protected line. Finally, the reach for 

zone 3 is typically set as 100% of the primary line plus 120% of the adjacent line as a 

backup protection for the entire adjacent line [25]. 

If a fault occurs within the primary protection zone 1, the distance relay would 

instantaneously send a trip signal to open the circuit breaker. If a fault occurs within 

backup zone 2 or 3, the relay tripping signal would be delayed by some predefined 

number of cycles to give time for other protective system to respond. The relay would 

send a trip signal if the fault is still present after the delay.  

Figure 2.4(b) shows mho type distance relay characteristics where the Z1, Z2, and 

Z3 are the reach settings for the protection zone 1, zone 2, and zone 3 respectively. In this 

thesis, only zones 1 and 2 are considered. 
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BA C

zone 1 (Z1)
zone 2 (Z2)

zone 3 (Z3)

Distance 
Relay - A

iL V

                

(a)                                                                    (b) 

Figure 2.4 Mho distance relay: (a) zones of protection for distance relay-A, and                  

(b) characteristics with reach setting for the zones 

 

2.2.2 Distance relay main functions 

The main operation steps of the distance relay include the fault type detection, 

apparent impedance calculation, and zone protection coordination [26]. The general 

distance relay operation is summarized in Figure 2.5. 

 

Step 1. Voltage and current signals 

The continuous inputs of three phase voltages and currents at relay location are 

fed into the relay. The signals are passed through a low-pass filter to filter out any 

harmonics. The magnitudes and phase angles are obtained from Fast Fourier Transform 

(FFT). Sequence components are obtained using a symmetrical component 

transformation matrix.  
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Step 2. Fault detection 

The fault detection algorithms, such as the ‘Delta’ algorithm technique [27], can 

be used to determine the type of fault from eleven possible fault types to avoid 

overreaching or underreaching. 

Step 3. Apparent impedance calculation 

The apparent impedance at the relay location [28], for the given fault type, can be 

calculated using Table 2.1 for medium length transmission lines. Section 2.3 describes 

the calculation of apparent impedance for long transmission lines including effects of 

shunt capacitance. 

 

Step 4. Zone protection coordination 

Finally, zones coordination is applied as described in section 2.2.1. 

 

Start

Acquire three phase voltages and currents at relay location

Lowpass filter and fast fourier transform stage

Fault detection stage

Apparent impedance calculation

Trip decision based on zone protection coordination

End
 

 

Figure 2.5 Flow chart for general distance relay algorithm 
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Table 2.1 Apparent impedance calculation for various fault types 
 

Fault Type Impedance 

AG VA / (IA + 3 k0 I0) 

BG VB / (IB + 3 k0 I0) 

CG VC / (IC + 3 k0 I0) 

AB or ABG (VA - VB) / (IA - IB) 

AC or ACG (VA - VC) / (IA - IC) 

BC or BCG (VB - VC) / (IB - IC) 

ABC or ABCG (VA / IA) or (VB / IB) or (VC / IC) 

 

where: 
 

A, B, and C indicate faulty phase 

G indicate ground fault 

VA, VB, and VC, indicate voltage phasors 

IA, IB, and IC, indicate current phasors 

Z0 = line zero-sequence impedance 

Z1 = line positive-sequence impedance 

0k = residual compensation factor, where 

0 0 1 1( )k Z Z Z= −  
 

0 0 1( 2 )phI V Z Z= +  

phV  is phase voltage during phase to ground fault. 
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2.3 Distributed Parameter-Based Distance Relay 

2.3.1 Protection Zones Impedance 

For long transmission lines (typically longer than 250km), the distributed 

parameters have been considered [17], [29] to avoid serious distance relay underreaching 

or overreaching. The apparent impedance of relay considering distributed parameters is 

given by 

1 1tanh( )app cZ z xγ= ∗ ∗                    (2-3) 

where:   1
1

1

T
c

T

Zz
Y

= ,  1 1 1T TZ Yγ = ∗ ,  1 1 1T T TZ R j Lω= +  , and  1 1 1T T TY G j Cω= + . 

Note that x in equation (2-3) is the distance between the relay and the fault location, 1TR  

and 1TL  are distributed resistance and inductance respectively, and 1TG  and 1TC  are 

distributed conductance and distributed capacitance, respectively. The subscript 1 

indicates positive sequence. 

Since the relationship of the apparent impedance in (2-3) is consistent with the 

fault location x, the expression in (2-4) is used to set protection zones of distance relay by 

replacing x with Lset as 

1 1tanh( )set c setZ z Lγ= ∗ ∗                        (2-4) 

for zone 1, Lset1 = 0.8 × length of the protected line. For zone 2, Lset2 = 1.2 × length of the 

protected line. 
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2.3.2 Apparent Impedance Trajectory 

The case of SLG fault is considered in this thesis. The apparent impedance 

trajectory is expressed as 

1 1
0 0

tanh( )
( )

A
A c

A

VZ z x
I k I

γ= = ∗ ∗
+ ∗

                  (2-5) 

where 0k  is the zero-sequence current compensation factor expressed as [17], 

          0 0 0 1 1 0 0 1
1 1

1 ( sinh( ) sinh( ) (cosh( ) cosh( ))
( sinh( )) c c

c
k z x z x Z x x

z x
γ γ γ γ

γ
= − + −         (2-6) 

where:  0
0

0

T
c

T

Z
z

Y
= , 0 0 0T TZ Yγ = ∗ , 0 0 0T T TZ R j Lω= +  , and 0 0 0T T TY G j Cω= + . 

The zero-sequence impedance of the equivalent system behind the relay is 0 0 0Z V I= −  

[17]. The 0k  factor can be implemented by specifying the fault at x. 0TR   and 0TL  are 

distributed resistance and inductance respectively, 0TG  and 0TC  are distributed 

conductance and distributed capacitance, respectively. The subscript 0 indicates zero 

sequence. The Simulink block diagram of 0k  calculation is shown in Figure B.4 in 

Appendix B. 
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CHAPTER THREE 
 

TEST SYSTEM MODELING 

3.1 Test System Description  

The IEEE 12-bus test system is selected to perform the study and is simulated in 

MATLAB/Simulink (Mathworks, 2014Ra) and PowerWorld (PowerWorld Simulator 

17). PowerWorld Simulator is used here only to verify the power flow results of the 

Simulink simulation. Schematic of the system for both software programs are shown in 

Figures B.1 through B.6 Appendix B. The original system data is taken from [30] given 

in Tables A.1 - A.4 Appendix A. The test system is modified to include MOV-protected 

series capacitor on the longest transmission line (600 km, 345 kV) between buses 7 and 8 

as shown in Figure 3.1. Also, the synchronous generator at bus 11 (in the original test 

system) is replaced by an equivalent wind farm model. The required sequence parameters 

of the compensated line are given in Table A.1 in Appendix A. 
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G2

Bus 1 Bus 2
Bus 5 Bus 4

Bus 3

Bus 8
Bus 11

Wind Farm
Equivalent

Bus 7

Bus 6Bus 9
(infinite bus)

MOV

Series Capacitor

Bus 10

Bus 12
G3G1

CB1 CB2

 

Figure 3.1 The modified IEEE 12-bus test system 
 

3.2 Series Capacitor 

Four compensation cases are studied in this thesis (0%, 20%, 40%, and 60%). For 

the 600 km line with inductive reactance of 226.45 Ω, the 40% compensation, for 

example, is calculated to be Xc = 90.58 Ω, or equivalently C = 29.3µF of capacitance per 

phase. 

3.3 Distance Relays and Fault Locations 

The compensated line is selected to be protected by mho distance relays with 

relay-A placed at the left terminal of the line and relay-B at the right terminal as shown in 

Figure 3.2 The SLG fault is tested in the simulation with the fault locations at 0km, 
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100km, 200km, 300Lkm (left capacitor terminal), 300Rkm (right capacitor terminal), 

400km, 500km, and 600km. 

        

Bus 3
Bus 8

Bus 11

Equivalent Wind Farm

Bus 7

MOV

Series Capacitor

CB1 CB2
0

km
300L
km

300R
km

600
km

Relay - BRelay - A

 
 

Figure 3.2 Illustration for different fault locations in the compensated line  

3.4 MOV Setting 

The MOV protective voltage level is commonly designed to be a multiple 

(typically 2 to 2.5) of the capacitor rated voltage level [8]. The MOV protective voltage 

level is calculated as [8], [31] 

     2 2prot prot cV I X=                      (3-1) 

where protI  is the rated capacitor current as seen in Fig 2.1(b). The nominal capacitor 

current is taken as 760 A rms line current. Thus, the capacitor protective voltage level 

protV  = 194.7 kV for a 40% compensation. From GE and Eaton datasheets [32], [33], the 

MOV device which can handle maximum continuous operating voltage (MCOV) of at 

least 194.7kV, was found to have a nominal discharge current rating of 10 kA per column 

and a rated discharge energy of 5.6kJ/kV of maximum continuous operating voltage. 

Taking the MCOV to be 194.7 kV during a fault, a single arrester column is rated to 

absorb 1.09 MJ of energy. From the simulation, it was found that for a 10 cycle fault 

duration, the maximum absorbed energy by MOVs on one phase is 12.933 MJ. Based on 
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this, at least 12 columns per phase are necessary to withstand worst fault current for a 

fault duration of 10 cycles without damaging the MOVs. To be safe, fifteen columns 

were used in this study with a reference current per column set as 10kA, and total per 

phase MOV energy threshold set as 16.36 MJ. As a result, the trigger gap and bypass 

switch were not actuated during the simulation studies. 

3.5 Equivalent Wind Farm 

An equivalent wind farm model is proposed to generate the wind generation 

profile using the total wind farm generation data from California independent system 

operator (ISO) [4], [5]. This equivalent wind farm model is connected to bus 11 as shown 

in Figure 3.1. The base power is considered as 300 MW (average wind power).  

The wind profile represents an actual wind farm generation for a windy winter 

day on Jan 7, 2005. The wind generation data was retrieved from [4] using DigitizeIt and 

Inkscape software programs as shown in Figure 3.3. This data was then reduced and used 

in the test system’s Simulink model. 
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Figure 3.3 California ISO wind farm generation profile, Jan 7, 2005  

 

Due to high wind speeds, a number of wind turbines trip near 12 pm and 2 pm to 

prevent equipment failure. At around 4 to 5 pm, the wind farms reach a maximum 

generation level of about 450 MW (peak wind power). Just about 6 pm, an even larger 

number of wind turbines go offline again due to excessive wind speeds, causing a 

significant wind generation loss down to about 90 MW (minimum wind power). The 

effects of this intermittent wind generation on the distance protection of series 

compensated line is evaluated and is presented in sections 6.3 and 8.1-8.3. 
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CHAPTER FOUR 
 

OPERATION OF MOV-PROTECTED SERIES CAPACITOR WITH WIND POWER 

DURING FAULTS 

 

This chapter presents a study of the effect of wind power variation on the MOV 

operation with the setting for 40% line compensation level. The wind farm generation 

data from California ISO for the period of 24 hours is reduced for simulation purposes 

due to long simulation times as shown in Figure 4.1. The first 10 seconds of the 

simulation represents the period of fixed power generated at bus 11 with generation of 

1.0 pu. The time from 10 sec to 58 seconds in the x-axis represents the wind variation 

period.  
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Figure 4.1 Simulated total wind generated power 
 

 
Three simulation cases are performed. For the first case, three phase and SLG 

faults are performed near the terminals of the series compensator with 1.0 per unit 
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constant generated power at bus 11. For the second case, three phase and SLG faults are 

performed with the total wind power at the peak of wind generation level. For the third 

case, three phase and SLG faults are performed with the total wind power at the 

minimum wind farm generation level. As a worst condition, all of the faults have a 10 

cycle fault duration in this study. 

4.1 With Constant Generated Power at Bus 11 

For the first case, the fault occurs at the instant of 5.0 seconds and is cleared at 

5.1667 seconds. 

For the three phase fault the results show that all MOVs (for each of the three 

phases) have approximately the same conducting currents and absorbed energy. Figure 

4.2 shows the phase “a” MOV voltage, current and energy consumption during the fault. 

Figure 4.3 shows the V-I characteristics for phase “a”. Phases “b” and “c” have similar 

results as phase “a”. 

For the SLG fault, the MOV voltage, current and energy consumption for phase 

“a” are shown in Figure 4.4. The voltages for phases “b” and “c” are shown in Figures 

4.5 and 4.6, respectively. Note that only the MOV on phase “a” conducts fault current, 

while the MOVs on phases “b” and “c” do not conduct fault current. The corresponding 

V-I characteristic for phase “a” is shown in Fig 4.7. The MOV V-I characteristics and the 

absorbed energy for phases “b” and “c” are not shown since there are no fault currents  

observed on these phases and hence no consumed  energy by the corresponding MOVs. 

The maximum and minimum fault currents bypassed by the MOVs along with the 

absorbed energy during the SLG fault are summarized in Table 4.1. 
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Figure 4.2 MOV characteristics of phase “a” for three phase fault at the terminal of the series 
capacitor 
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Figure 4.3 MOV V-I characteristics for phases a, b and c, during a three-phase-fault at 
the terminal of the series capacitor 
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Figure 4.4 Phase a - MOV characteristics with SLG fault at capacitor terminal 
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Figure 4.5 Phase b - MOV characteristics with SLG fault at capacitor terminal 
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Figure 4.6 Phase c - MOV characteristics with SLG fault at capacitor terminal 
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Figure 4.7 MOV V-I characteristics for phases a, b and c, during a SLG fault at the 

capacitor terminal (constant wind power) 
 

4.2 With Peak Wind Power Level 

For the second case, the three phase short circuit results are found to be similar to 

the previous case but are different in the case of SLG fault. Figure 4.8 shows the wind 

power profile with a SLG fault occurs at the peak of wind generation. The MOV 

characteristics for phase “a” are shown in Figures 4.9 and 4.10. The V-I characteristics 

plots for phases “b” and “c” are not shown because MOVs on these phases do not 

conduct any fault current. The results for the SLG fault are shown in Table 4.1 which 

indicates that for SLG fault during peak wind power level, the energy absorbed by the 

MOV on phase a is smaller than that for the previous case. This can be explained from 

power flow results. As the wind generation increases at bus 11 due to high wind 

penetration, the power generation from other generators required to meet the load 

demand decreases. As a result, the current flowing from the slack generator at bus 9 to 

the load at bus 8 is smaller than during the first case. Thus, during the 10 cycle fault at 

the terminals of the compensator, the current passing through the MOV is smaller. The 

energy absorbed by the MOV is smaller as well. Note that the general behavior of the 

MOVs are not significantly affected by the intermittency of the wind farm (based on the 
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setting in sections 3.2 and 3.4) if the ratings and settings for the MOV-protected 

capacitors are designed to be able to handle high fault currents during the maximum 

and/or minimum amount of wind penetration. 
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Figure 4.8 Wind farm total generated power with SLG fault at the peak of wind farm 
generation level 
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Figure 4.9 Phase a - MOV characteristics with SLG fault at capacitor terminal 
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Figure 4.10 MOV V-I characteristics for phase “a” during a SLG fault at the capacitor 

terminal (peak wind power). Phases “b” and “c” have zero current. 
 

4.3 With Minimum Wind Power Level 

For the third case, the three phase fault results are found to be similar to the 

previous two cases. The wind power profile with SLG fault at the minimum of wind 

generation level is shown in Figure 4.11. The MOV characteristics for phase “a” are 

shown in Figures 4.12 and 4.13. The V-I characteristics plots for phases “b” and “c” are 

not shown because MOVs do not conduct any current. The comparison with the previous 

two cases is summarized in Table 4.1 which shows that for SLG fault during minimum 

wind power level, the energy absorbed by MOV on phase “a” is greater compared to the 

previous two cases. This consequence can also be explained from power flow results. As 

the wind farm generation reduces due to low wind speed, the other system generators 

increase the generation to cover the load demands including the load at bus 8. During the 

low wind power level, the power supplying load demands at bus 8 is coming mainly from 

the slack generator at bus 9. This power is absorbed by the MOV during the fault near the 

terminal of the series compensator. From the simulation, the energy absorbed by the 

MOV during the SLG fault is larger compared to the previous cases as illustrated in 
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Table 4.1. Thus, the intermittency of wind penetration levels varies the MOV fault 

current and energy absorption, but does not vary the basic operation of the MOV 

protection of the series compensator (based on the setting in sections 3.2 and 3.4). 
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Figure 4.11 Total wind farm power output with SLG fault at the minimum wind farm 
generation level 

 
 
 

Table 4.1 Unbalanced fault results 
 

Case 
MOV 

of 
phase 

SLG fault at phase a 

|Irms| 
(A) 

Energy 
absorbed 

(MJ) 

With wind at peak  
a 1442 7.296 
b 0 0 
c 0 0 

With average wind 
a 2749 7.408 
b 0 0 
c 0 0 

With wind at 
minimum 

a 2908 7.747 
b 0 0 
c 0 0 
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Figure 4.12 Phase a - MOV characteristics with SLG fault at capacitor terminal 
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Figure 4.13 MOV V-I characteristics for phase “a” during a SLG fault (minimum wind 
power). Phases “b” and “c” have zero current. 

 

This chapter analyzed the effect of wind energy variability on the operation of the 

MOV during faults. The unbalanced fault results showed that the intermittency of wind 

farm generation affects the current magnitudes and amount of energy absorbed by the 

MOV during fault conditions. MOV setting and rating analysis must be performed if the 
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wind farms are to be added to the power system to ensure reliability of MOV protection. 

Malfunction operation of MOV due to wind energy variation during the unbalanced fault 

may be avoided using coordinated control that can monitor wind power variation and 

adjust number of active MOV columns to keep the level of energy consumption 

irrespective of the wind energy variation. 
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CHAPTER FIVE 
 

FIXED SETTING MHO RELAY RESULTS 

 
First, as a base case, the simulation is run for 0% of series compensation and 

average wind power. Second, the average wind power condition at different 

compensation levels is compared to the 0% compensation base case. Lastly, the three 

wind power levels at 60% compensation are presented and compared to the base case. 

5.1 Base Case: 0% Compensation with Average Wind Power 

The apparent impedance of the base case is shown in Figures 5.5-5.7. From these 

figures, it can be observed that the final value of the impedance trajectory falls right on 

the line impedance and represents the impedance from the relay to the fault location. 

For example, Figure 5.1 shows that at a 0 km fault, relay-A measures apparent 

impedance to be 0 Ω. For the same fault location relay-B measures the apparent 

impedance to be 40.26+286.26j Ω. Relay B sees a fault at 603 km, which is quite 

accurate with a small percent error of 0.5%. 

Another example, as seen in Figure 5.7, shows that for a 600km fault, relay-A 

measures apparent impedance to be 34.4+289.3j Ω, which is 598km from the relay 

location, and relay-B measures 0 Ω, or equivalently 0 km fault. This shows accurate 

readings of distance relays A and B with a percent error of 0.33%. A similar analysis can 

be done for other fault locations. From the simulation results, it is noticed that 0 km to 

400 km faults fall into the primary protection zone 1, whereas 500 km and 600 km faults 

fall into the backup protection zone 2. Therefore, the base case verifies that the mho 
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distance relays accurately measure the apparent impedance and fault location on the 

transmission line without series compensation. 
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Figure 5.1 Relays setting (at 0% compensation) and faults trajectory with average wind: 
SLG fault at 0 km from bus 7 
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Figure 5.2 Relays setting (at 0% compensation) and faults trajectory with average wind: 
SLG fault at 100 km from bus 7 
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Figure 5.3 Relays setting (at 0% compensation) and faults trajectory with average wind: 
SLG fault at 200 km from bus 7 
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Figure 5.4 Relays setting (at 0% compensation) and faults trajectory with average wind: 
SLG fault at 300 km from bus 7 
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Figure 5.5 Relays setting (at 0% compensation) and faults trajectory with average wind: 
SLG fault at 400 km from bus 7 
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Figure 5.6 Relays setting (at 0% compensation) and faults trajectory with average wind: 
SLG fault at 500 km from bus 7 
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Figure 5.7 Relays setting (at 0% compensation) and faults trajectory with average wind: 
SLG fault at 600 km from bus 7 

 

5.2 A Case without Distributed Parameters (0% Compensation and Average Wind) 

The apparent impedance for the case where transmission line shunt capacitance is 

neglected is shown in Figures 5.8-5.11. From these figures, it can be observed that both 

mho relay reach setting and apparent impedance final values are affected and differ from 

the base case of section 5.1. The relay reach setting underreaches for faults farther away 

from the relay location. Figures 5.8 and 5.11 show that the apparent impedances fall 

outside of relay protection zones 1 and 2, but should really fall inside the backup 

protection zone. For a 600 km fault in Figure 5.11, for example, relay-A measures 

apparent impedance to be 53.98+293.57j Ω, which is 787 km away from relay location. 

The distance relay reading shows a percent error of 31%, which definitely cannot be 

neglected. Figures 5.10 and 5.11 also show that the apparent impedance trajectory of 

Relay-A shifts from the impedance line for faults farther away from relay. Therefore, the 
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relay risks to misoperate and affects the reliability of transmission network without 

considering distributed parameters in the relay setting and apparent impedance 

calculation. 
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Figure 5.8 Relays setting without distributed parameters: SLG fault at 0 km from bus 7 
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Figure 5.9 Relays setting without distributed parameters: SLG fault at 100 km from bus 7 
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Figure 5.10 Relays setting without distributed parameters: SLG fault at 500 km from bus 7 
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Figure 5.11 Relays setting without distributed parameters: SLG fault at 600 km from bus 7 
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5.3 A Case Study of Different Compensation Levels (Considering MOV Action) with 
Average Wind Power 

 

The apparent impedances for this case are shown in Figures 5.12-5.19, where the 

purple (star), red (circle), and blue (square) trajectories are the 20%, 40%, and 60% 

compensation levels, respectively. These figures, shows that different series 

compensation levels significantly change the apparent impedance seen by the relays A 

and B. The apparent impedance for the same fault location may fall in a different 

protection zone as shown by relay B in Figures 5.12, 5.13. The apparent impedance falls 

into the primary protection zone 1 for a 600km and 500km faults, due to the 

compensation. An apparent impedance for 600km or 500km fault would normally fall 

into protection zone 2. The relay reach settings must be able to adapt to changes in line 

compensation. Without accurate estimation of compensation levels (or equivalent 

MOV/capacitor impedance), the relays may misoperate and have a great effect on the 

stability of the entire power system. Compensation levels may change due to partial 

bypassing of the capacitor as a result of MOV action during faults with intermittent wind 

generation. For very high fault currents, the MOVs may completely bypass the capacitor 

bank, reducing the compensation to nearly zero reactive impedance. 
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Figure 5.12 Relays setting (at 0% compensation) and faults trajectories for different 

compensations with average wind power: SLG fault at 0 km from bus 7 
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Figure 5.13 Relays setting (at 0% compensation) and faults trajectories for different 

compensations with average wind power: SLG fault at 100 km from bus 7 
 

 



 39 

-200 -100 0 100 200
0

100

200

300

400

Resistance (R)

R
ea

ct
an

ce
 (X

)

 

 

0%
20%
40%
60%

   
-200 -100 0 100 200

0

100

200

300

400

Resistance (R)

R
ea

ct
an

ce
 (X

)

 

 

0%
20%
40%
60%

  
 

        Relay A                         Relay B    

Figure 5.14 Relays setting (at 0% compensation) and faults trajectories for different 

compensations with average wind power: SLG fault at 200 km from bus 7 
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Figure 5.15 Relays setting (at 0% compensation) and faults trajectories for different 

compensations with average wind power: SLG fault at 300 km from bus 7 (LHS of capacitor) 
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Figure 5.16 Relays setting (at 0% compensation) and faults trajectories for different 

compensations with average wind power: SLG fault at 300 km from bus 7 (RHS of capacitor) 
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Figure 5.17 Relays setting (at 0% compensation) and faults trajectories for different 

compensations with average wind power: SLG fault at 400 km from bus 7 
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Figure 5.18 Relays setting (at 0% compensation) and faults trajectories for different 

compensations with average wind power: SLG fault at 500 km from bus 7 
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Figure 5.19 Relays setting (at 0% compensation) and faults trajectories for different 

compensations with average wind power: SLG fault at 600 km from bus 7 
 

 
It can be seen that for faults on the left side of the series capacitor in Figures 5.12-

5.15, the relay-B final values of apparent impedance trajectories fall directly on the 



 42 

impedance line.  For faults on the right side of the series capacitor in Figures 5.16-5.19, 

the relay-A final values of apparent impedances are shifted to the right. This is because of 

the equivalent impedance of MOV/capacitor, and it can be reasoned by looking at Figure 

5.20 and Table 5.1. For faults on the left side of the capacitor, as seen in Figure 5.20(a), 

the fault current passing through the MOV/capacitor is only due to the wind farm 

generation. For faults on the right side of the capacitor, as seen in Figure 5.20(b), the fault 

current passing through the MOV/capacitor is due a large source connected at bus 9. The 

strong source on the left side of the capacitor can supply larger fault current than the wind 

farm, and has a greater effect on the equivalent impedance of MOV/capacitor parallel 

circuit. 

 

Equivalent Wind FarmRelay - BRelay - A

Bus 9
(infinite bus)

G1

I_fault1 I_fault2

 

(a) 

Equivalent Wind FarmRelay - BRelay - A

Bus 9
(infinite bus)

G1

I_fault1 I_fault2

 

(b) 

Figure 5.20 Illustration for the fault currents due to SLG fault on: (a) LHS, and (b) RHS 

of the series capacitor 
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The equivalent impedances of MOV/capacitor for different fault locations and 

compensation levels are summarized in Table 5.1. This table shows that faults from 0km 

to 300Lkm, the equivalent MOV/Capacitor impedances have small resistive components 

due to relatively small fault current levels passing through the capacitor bank from the 

wind farm. For faults from 300Rkm to 600km, the resistive component of equivalent 

MOV/capacitor impedance is more significant. The values highlighted, in bold, in Table 

5.1 identify the equivalent MOV/capacitor impedances with significant resistive 

components which cause the shift in Figures 5.16-5.19 can be further explained by Figure 

5.20. This figure also clarifies the discrepancy between relay-A measurements for 

300Rkm to 600km faults and relay-B measurements for 0km to 300Lkm in Figures 5.12-

5.19. 

Figures 5.21 and 5.22 show an example of the effects of MOV action on the 

MOV/capacitor equivalent impedance for a 300km fault on the 60% compensated line 

with the average wind. The MOV partially bypasses the capacitor on phase-A, as seen in 

Figure 5.21, and modifies phase-A equivalent MOV/capacitor impedance as seen in 

Figure 5.22. Due to MOV action, the series capacitor impedance on phase-A is modified 

from -136jΩ (60% compensation) to equivalent MOV/capacitor impedance of 42.4-

93.653j Ω. Larger fault current has a greater effect on equivalent impedance. For very 

high fault current, the compensation is reduced to nearly zero percent which would have 

a similar effect of apparent impedances (black trajectory) in Figures 5.1-5.7. Without 

adjusting distance relay settings, overreaching or underreaching may occur and will cause 

relay to misoperate. 
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Table 5.1 Measured equivalent MOV/capacitor impedances during average wind level 

0% Compen 20% Compen 40% Compen 60% Compen
0 0.0001 0.876-45.279i 1.906-90.252i 1.09-135.745i

100 0.0001 0.659-45.217i 1.968-91.023i 5.571-134.268i
200 0.0001 0.043-45.278i 1.783-91.13i 7.075-134.817i

300L 0.0001 3.906-44.392i 4.136-90.063i 18.8-128.913i
300R 0.0001 13.74-32.284i 26.582-66.947i 42.426-93.653i
400 0.0001 10.64-38.431i 19.787-78.844i 36.208-108.578i
500 0.0001 5.761-43.3i 8.73-88.204i 25.555-123.238i
600 0.0001 0.18-45.251i 0.027-90.47i 8.252-134.563i

Equivalent MOV/Capacitor Impedance (Ω) for a SLGF on phase A
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Figure 5.21 Operation of MOV and series capacitor for a 300Rkm fault, with average 
wind and 60% compensation 
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Figure 5.22 Simulink GUI shows unbalanced equivalent MOV/Cap equivalent per phase 

impedances for a SLGF at 300km from bus 7. 
 

5.4 60% Compensation with Three Wind Power Levels 

In this section, the effects of intermittent wind generation on the distance 

protection of series compensated line are analyzed. The results are shown in Figures 

5.23-5.26 for four fault locations on the 60% series compensated line. 

For comparison, the black trajectories in Figures 5.23-5.26 represent the apparent 

impedance measured by relays-A and B for zero compensation as in the base case results. 

For the case of zero compensation, a wind farm connected at bus 11 has no impact on the 

distance protection of the line. The black trajectories represent the identically three wind 
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levels. The trajectories in purple (circle), blue (square), and red (star) denote the apparent 

impedances for average, maximum, and minimum wind generation levels, respectively. 

The variable wind power changes the measured apparent impedance seen by the 

distance relays. The different generation levels of the wind farm appear to change power 

flows on the compensated line, which during a fault affect fault current level and 

MOV/capacitor equivalent impedance. For example, for maximum (or average) wind 

generation levels, the power flow in the compensated line appears to be at its minimum 

level as the majority of the large load demand at bus 3 is met by the local wind generation 

at bus 11. However, for minimum wind generation level, the bulk generation at bus 11 is 

no longer available. The majority of the power delivered to bus 3 comes from the strong 

source at bus 9 through the low impedance compensated line. Thus, loss of wind 

generation results in higher currents through the compensated line which affect 

equivalent MOV/capacitor impedance during a fault. Therefore, a variation of wind farm 

generation affects distance protection of the line through the equivalent impedance of the 

MOV/capacitor. Four examples of the effects of different wind generation level on the 

apparent impedances of relays A and B are shown in Figures 5.23-5.26. 
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Figure 5.23 Relays setting (at 0% compensation) and faults trajectories for 60% 

compensation with three wind power levels: SLG fault at 200 km from bus 7 
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Figure 5.24 Relays setting (at 0% compensation) and faults trajectories for 60% 

compensation with three wind power levels: SLG fault at 300 km from bus 7 (LHS of 

capacitor) 
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Figure 5.25 Relays setting (at 0% compensation) and faults trajectories for 60% 

compensation with three wind power levels: SLG fault at 300 km from bus 7 (RHS of 

capacitor) 
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 Figure 5.26 Relays setting (at 0% compensation) and faults trajectories for 60% 

compensation with three wind power levels: SLG fault at 400 km from bus 7 
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CHAPTER SIX 
 

PROPOSED ADAPTIVE SETTING 

 
Figures 6.1 and 6.2 show a schematic and a flow chart algorithm for the proposed 

method, respectively. In Figure 6.1, relays A and B are located at each terminal of the 

line where local bus voltages and currents are measured and serve as inputs to the relays. 

Additional current measurement and voltage measurements are required at both terminals 

of the series capacitor. Also, a dedicated communication channel is required between 

relay A, series capacitor, and relay B. In addition, PMU measurements can be used to get 

remote signals. 

The flowchart in Figure 6.2 summarizes the proposed algorithm for adaptive 

setting of distance mho relay with MOV-protected series compensation. The distance 

relays A and B are initially set for an uncompensated line with zones 1 and 2 reach 

settings. Voltages and currents are measured at the relay locations A and B. Each 

measured signal is passed through a low-pass filter and an FFT to obtain magnitude and 

phase of the signal’s fundamental component. The resulting three phase voltages and 

currents are passed through the relay’s fault detection algorithm. The apparent trajectory 

impedance is calculated as described in section 2.3. From the measured signals at the 

series capacitor location, the per phase equivalent impedance is calculated for the parallel 

connection of MOV and capacitor as given in (6-1). 
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/ ( ) /MOV Cap Left Right LZ V V I= −         (6-1) 

where VLeft and VRight  are the series capacitor terminal phase voltages, and IL is the line current 

at the capacitor location. 

The fault location with respect to the capacitor bank can be determined through 

either directional relay, the direction of active power flow, or other directional 

discrimination methods. For a fault on the left side of the capacitor bank, the calculated 

equivalent impedance ZMOV/CAP is seen by relay B to adjust the settings of the relay, 

but a value of zero is seen by relay A since the impedance between the relay and the fault 

will include only line impedance with no compensation. Similarly, for a fault on the right 

side of the capacitor bank the calculated impedance ZMOV/CAP is seen by relay A, but a 

value of zero is seen by relay B. Once the relay’s setting is adjusted the relay makes a 

decision based on the zone coordination described in sections 2.2 and 2.3. 
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Settings
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Relay - BRelay - A

VLEFT VRIGHT

 
 

Figure 6.1 Schematic diagram of the proposed adaptive settings of mho relay for series 
compensated line 
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Figure 6.2 Flow chart of the proposed adaptive settings algorithm of mho relay for series 
compensated line 
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Tables 7.1-7.3 summarize the end point values of the apparent impedance 

trajectories for relays A and B corresponding to the three wind levels. The red values in 

Tables 7.1-7.3 show the variation in apparent impedances due to different 

MOV/capacitor equivalent impedance values for different compensation cases and wind 

power levels. The values that are not highlighted in red are the same for all compensation 

levels due the faults occurring before the series capacitor with MOV protection, which is 

not seen by the relays. 

As shown in Table 7.1-7.3, for the same fault location and compensation level, 

the apparent impedance values corresponding to the maximum wind level case are 

sometimes close to the average wind level case, whereas the minimum wind level case 

values are different. In some cases, such as for faults far away from the series capacitor, 

all three wind level show similar apparent impedance values. In general, the apparent 

impedance values are changed due to different fault current levels, which are affected by 

different wind power levels and percent line compensation through the MOV/capacitor 

equivalent impedance. In contrast, the relays corresponding to the red values are 

adaptively reset. 
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CHAPTER SEVEN 
 

ADAPTIVE SETTING RESULTS 

 

The adaptive setting algorithm in chapter 6 is applied on the modified test system. 

The relays’ settings automatically adapt for different system conditions. The simulation is 

run for the 60% compensation case at different fault locations and three wind power 

levels. Figures 7.1-7.18 show the relay setting and fault trajectory for the average, 

maximum, and minimum wind level cases. In these figures, the relays’ settings are 

changed for different fault locations and wind power levels according to measured 

MOV/capacitor equivalent impedance during the fault.  In Figures 7.1-7.6, for example, it 

can be seen that the relays zones 1 and 2, and the impedance lines are adaptively set with 

the change in fault location. For a fault on the LHS of the capacitor Figures 7.1-7.3, the 

setting of relay A is the same as in chapter 5, whereas that of relay B is changed with 

respect to the MOV/capacitor equivalent impedance. For the RHS fault cases in Figures 

7.4-7.6, the relay A setting is adjusted by the equivalent MOV/capacitor impedance, 

whereas relay B setting is the same as in chapter 5. From the plots, relay A has different 

adaptive settings as compared to Relay B, which is due to the reason demonstrated in 

Figure 5.15. The cases of maximum and minimum wind levels gave similar concept and 

are shown in Figures 7.7-7.12 and Figures 7.13-7.18 respectively.   
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7.1 Average Wind  
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Figure 7.1 Adapted relay settings for average wind and 60% compensation: SLG fault at   

0 km from bus 7 
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Figure 7.2 Adapted relay settings for average wind and 60% compensation: SLG fault at 

200 km from bus 7 
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Figure 7.3 Adapted relay settings for average wind and 60% compensation: SLG fault at 

300 km from bus 7 (LHS of capacitor bank) 
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Figure 7.4 Adapted relay settings for average wind and 60% compensation: SLG fault at 

 300 km from bus 7 (RHS of capacitor bank) 
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Figure 7.5 Adapted relay settings for average wind and 60% compensation: SLG fault at 

 400 km from bus 7 

 

-100 0 100
0

50

100

150

200

250

Resistance (R)

R
ea

ct
an

ce
 (X

)

 

 
AveWind

   
-200 -100 0 100 200

0

100

200

300

400

Resistance (R)

R
ea

ct
an

ce
 (X

)

 

 
AveWind

 
 

         Relay A                         Relay B    

Figure 7.6 Adapted relay settings for average wind and 60% compensation: SLG fault at 

 600 km from bus 7 
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7.2 Maximum Wind  
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Figure 7.7 Adapted relay settings for maximum wind and 60% compensation: SLG fault at 

0 km from bus 7 
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Figure 7.8 Adapted relay settings for maximum wind and 60% compensation: SLG fault at 

200 km from bus 7 
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Figure 7.9 Adapted relay settings for maximum wind and 60% compensation: SLG fault at 

 300 km from bus 7 (LHS of capacitor bank) 
 

 

-100 0 100 200
0

100

200

300

Resistance (R)

R
ea

ct
an

ce
 (X

)

 

 
MaxWind

   
-200 -100 0 100 200

0

100

200

300

400

Resistance (R)

R
ea

ct
an

ce
 (X

)

 

 
MaxWind

 
 

         Relay A                         Relay B    

Figure 7.10 Adapted relay settings for maximum wind and 60% compensation: SLG fault 

at 300 km from bus 7 (RHS of capacitor bank) 
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Figure 7.11 Adapted relay settings for maximum wind and 60% compensation: SLG fault 

at 400 km from bus 7 
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Figure 7.12 Adapted relay settings for maximum wind and 60% compensation: SLG fault 

at 600 km from bus 7 
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7.3 Minimum Wind  
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Figure 7.13 Adapted relay settings for minimum wind and 60% compensation: SLG fault 

at 0 km from bus 7 
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Figure 7.14 Adapted relay settings for minimum wind and 60% compensation: SLG fault 

at 200 km from bus 7 
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Figure 7.15 Adapted relay settings for minimum wind and 60% compensation: SLG fault 

at 300 km from bus 7 (LHS of capacitor bank) 
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Figure 7.16 Adapted relay settings for minimum wind and 60% compensation: SLG fault 

at 300 km from bus 7 (RHS of capacitor bank) 
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Figure 7.17 Adapted relay settings for minimum wind and 60% compensation: SLG fault 

at 400 km from bus 7 
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Figure 7.18 Adapted relay settings for minimum wind and 60% compensation: SLG fault 

at 600 km from bus 7 
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Table 7.1 Apparent trajectory impedance end point for 20% compensation and three wind 

power levels 

 

Relay- A Relay-B
Zero Comp 0 40.26+286.26i
Min Wind 0 24.04+219.53i
Ave Wind 0 29.46+223.88i
Max Wind 0 30.36+224.34i
Zero Comp 4.24+37.97i 29.01+216.72i
Min Wind 4.22+37.94i 16.43+160.23i
Ave Wind 4.25+37.97i 19.33+164.63i
Max Wind 4.24+37.98i 19.57+164.96i
Zero Comp 8.84+77.49i 21.81+174.54i
Min Wind 8.82+77.33i 11.68+112.83i
Ave Wind 8.85+77.49i 12.73+115.86i
Max Wind 8.84+77.52i 12.9+116.05i
Zero Comp 14.62+120.18i 15.22+123.56i
Min Wind 14.7+119.64i 9.54+77.13i
Ave Wind 14.69+120.22i 11.32+80.17i
Max Wind 14.64+120.31i 12.47+80.32i
Zero Comp 14.62+120.18i 15.22+123.56i
Min Wind 30.38+90.08i 12.52+123.6i
Ave Wind 28.64+91.56i 15.04+123.7i
Max Wind 28.28+91.73i 15.18+123.43i
Zero Comp 22.5+168.21i 9.54+78.97i
Min Wind 33.36+124.43i 8.45+79.22i
Ave Wind 30.74+125.07i 9.51+79.03i
Max Wind 30.22+125.13i 9.49+78.87i
Zero Comp 25.88+215.84i 4.6+38.4i
Min Wind 39.49+166.48i 4.28+38.59i
Ave Wind 34.66+168.45i 4.61+38.42i
Max Wind 33.66+168.82i 4.56+38.35i
Zero Comp 39.41+282.3i 0
Min Wind 48.76+219.14i 0
Ave Wind 47.8+226.79i 0
Max Wind 47.05+228.14i 0

50
0 

km
60

0 
km

40
0 

km

Apparent Impedances for 20% Compensation

0 
km

10
0 

km
20

0 
km

30
0L

 k
m

30
0R

 k
m

 

 



 64 

Table 7.2 Apparent trajectory impedance end point for 40% compensation and three wind 

power levels 

 

Relay- A Relay-B
Zero Comp 0 40.26+286.26i
Min Wind 0 11.83+151.46i
Ave Wind 0 15.2+165.85i
Max Wind 0 12.13+166.95i
Zero Comp 4.24+37.97i 29.01+216.72i
Min Wind 4.2+37.93i 9.41+105.82i
Ave Wind 4.25+37.97i 11.56+115.79i
Max Wind 4.24+37.98i 11.19+114.88i
Zero Comp 8.84+77.49i 21.81+174.54i
Min Wind 8.84+77.32i 4.86+73.08i
Ave Wind 8.88+77.51i 9+79.98i
Max Wind 8.86+77.53i 10.5+79.55i
Zero Comp 14.62+120.18i 15.22+123.56i
Min Wind 14.86+119.67i 4.26+36.3i
Ave Wind 14.79+120.29i 5.28+41.24i
Max Wind 14.73+120.39i 6.87+41.34i
Zero Comp 14.62+120.18i 15.22+123.56i
Min Wind 42.6+59.53i 12.19+123.68i
Ave Wind 39.92+61.93i 14.73+123.87i
Max Wind 39.35+62.25i 14.89+123.61i
Zero Comp 22.5+168.21i 9.54+78.97i
Min Wind 47.97+87.61i 8.37+79.3i
Ave Wind 43.44+91.21i 9.43+79.11i
Max Wind 42.45+91.74i 9.41+78.95i
Zero Comp 25.88+215.84i 4.6+38.4i
Min Wind 46.78+119.57i 4.28+38.61i
Ave Wind 38.16+124.18i 4.6+38.43i
Max Wind 36.4+125.11i 4.55+38.36i
Zero Comp 39.41+282.3i 0
Min Wind 54.62+164.96i 0
Ave Wind 51.39+175.56i 0
Max Wind 50.1+177.3i 0
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Table 7.3 Apparent trajectory impedance end point for 60% compensation and three wind 

power levels 

 

Relay- A Relay-B
Zero Comp 0 40.26+286.26i
Min Wind 0 2.29+104.41i
Ave Wind 0 10.27+117.23i
Max Wind 0 5.94+123.86i
Zero Comp 4.24+37.97i 29.01+216.72i
Min Wind 4.25+37.93i 2.3+64.63i
Ave Wind 4.27+37.97i 7.3+74.16i
Max Wind 4.25+37.98i 5.7+75.46i
Zero Comp 8.84+77.49i 21.81+174.54i
Min Wind 8.96+77.34i 5.67+31.91i
Ave Wind 8.92+77.53i 4.81+38.28i
Max Wind 8.89+77.56i 6.4+38.68i
Zero Comp 14.62+120.18i 15.22+123.56i
Min Wind 15.07+119.74i 11.67+3.97i
Ave Wind 14.86+120.38i 12.18+8.17i
Max Wind 14.76+120.5i 14.37+8.8i
Zero Comp 14.62+120.18i 15.22+123.56i
Min Wind 55.79+37.66i 11.73+123.43i
Ave Wind 52.78+40.69i 14.3+123.97i
Max Wind 52.14+41.1i 14.56+123.76i
Zero Comp 22.5+168.21i 9.54+78.97i
Min Wind 59.6+60.14i 8.18+79.21i
Ave Wind 54.47+63.24i 9.3+79.18i
Max Wind 53.46+63.65i 9.33+79.04i
Zero Comp 25.88+215.84i 4.6+38.4i
Min Wind 63.98+86.07i 4.24+38.59i
Ave Wind 55.35+90.61i 4.59+38.45i
Max Wind 53.58+91.31i 4.56+38.39i
Zero Comp 39.41+282.3i 0
Min Wind 65.75+118.54i 0
Ave Wind 53.47+129.97i 0
Max Wind 52.07+132.08i 0
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CHAPTER EIGHT 
 

CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

Throughout this research, broad areas have been joined together to perform the 

study. System modeling, wind energy integration, protection systems, fault analysis, 

nonlinear MOV-protection and other aspects were considered. A transmission system 

was modeled in MATLAB/Simulink environment and used to analyze effects of 

inclusion of intermittent wind farm generation on the operation and protection of MOV-

protected compensated lines.  

In Chapter one, the background of the motivation for the study was presented 

along with the literature review of the current state of research. It was discussed that the 

integration of wind energy into the power grid introduces challenges on system operation 

and protection which must be studied to ensure the reliability of the grid. The operation 

and protection of MOV-protected series compensated line connected to the intermittent 

wind farm was brought up. The current state of research for distance protection methods 

and adaptive settings were discussed in the literature review and an adaptive distance 

relay algorithm method was proposed. 

In Chapter two, the MOV-protected series compensated line was introduced. The 

Goldsworthy’s linear model was discussed which showed that the nonlinear MOV device 

connected in parallel with the capacitor bank on each phase can be modeled as a reduced 

single phase equivalent impedance. The distance relay basics for primary and backup 

protection of transmission lines were given for medium length transmission line. The 
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distributed parameter-based distance relay for long transmission lines was included as 

well. 

In Chapter three, the development of the modified IEEE 12-bus test system model 

with MOV-protected series capacitor and a wind farm was given. The MOV-protected 

series capacitor was connected at the middle of the longest transmission line. The 

commercially available MOVs were used to determine the MOV’s rated discharge 

energy, maximum continuous operating voltage, and number of columns required for 

simulation purposes. An equivalent wind energy model using the real-world data was 

proposed in order to simulate the effects of intermittent wind generation on the system 

operation and protection. 

In Chapter four, a study on effects of wind energy variation on the operation of 

MOV-protected compensated line was performed. Three wind generation levels were 

considered: minimum, average, and maximum. It was shown that the intermittency of 

wind power affects power flow in the compensated line, which in turn affects the fault 

current level and the equivalent MOV/capacitor impedance. The unbalanced fault results 

also showed that the intermittency of wind farm generation affects the current magnitudes 

and amount of energy absorbed by the MOV during fault conditions. The settings and 

ratings for the MOV and series capacitor may need to be designed for higher ratings with 

wind farms added to the power system. With increasing the integration of wind power at 

different locations, setting analysis of MOVs will be needed to guarantee their correct 

operation. 
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In Chapter five, four distance protection study cases were performed and 

analyzed. The first case was used as the base case with mho relay setting and apparent 

impedance trajectories for zero percent compensation and average wind power level 

using distributed line parameters. The second case compares the base case to the mho 

relay setting and apparent impedance trajectories with neglecting the distributed 

parameters. Significant error in relay setting and apparent impedance calculation were 

observed and demonstrated the importance of implementing distributed parameter-based 

distance relay for long transmission lines. The third case compared effects of different 

compensation levels on the distance protection of series compensated line. It showed the 

importance of distance relay to determine amount of compensation during the fault for 

correct relay operation. Finally, case four analyzed the effect of wind power variation on 

the distance protection for a fixed 60% compensated line. 

In Chapter six, an adaptive setting algorithm for distance mho relay was proposed. 

The proposed algorithm considers the distributed parameters of transmission lines and 

takes into account the MOV-protected series capacitor operation, wind power variation, 

and variable compensation levels. The proposed adaptive algorithm monitors voltages 

and current at the capacitor location and calculates an equivalent MOV/capacitor 

impedance during a system fault. The impedance value is sent to relay A or B via 

dedicated communication channel to correct relay setting.  

In Chapter seven, adaptive setting results were presented for 60% compensation 

and different cases of wind power levels. The simulations were also performed for 20% 

and 40% compensation and are summarized. The adaptive algorithm demonstrated 
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correct relay A and B operation to different system conditions including different 

compensation and wind power levels. 

In summary, the study showed that the intermittency of wind power affects power 

flow in the compensated line and the equivalent MOV/capacitor impedance. This 

equivalent impedance modifies the total line impedance and affects distance protection. 

The simulation results demonstrated the proposed method’s ability to adaptively set relay 

reach setting for various system conditions, including fluctuation of wind power and 

different compensation levels. 

8.2 Future Work 

For multiple MOV protected lines and multiple wind farms, malfunction 

operation of distance relay due to wind energy variation during the unbalanced fault may 

be avoided using coordinated adaptive setting that can monitor wind power variation and 

reset the relays. In this case, PMU measurements are necessary for coordinated adaptive 

setting. 

Study of different types of faults with arc resistance should also be considered. 

For this purpose another type of relay, such as quadrilateral type, maybe used. Finally, 

integration of solar and a combination of both solar and wind may also be considered for 

future studies. 
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Appendix A 

Test System Data 

 

The following tables were used to build the IEEE 12-bus test system in PowerWorld and 

MATLAB/Simulink simulation. The system data was taken from reference [30]. 

 

 
Table A.1. Distributed parameters of the transmission line 7-8 

Parameter Positive (negative) sequence Zero sequence 
R (Ω/km) 0.038806 0.1055 

L (mH/km) 1.0011 1.19599 
C (μF/km) 0.01159 0.003 

 

 

Table A.2. Branch Data (System Base: 100MVA) 

Line  Voltage 
(kV) 

Length 
(km) R (pu) X (pu) B (pu) Rating 

(MVA) 
1-2 230 100 0.01144 0.09111 0.18261 250 
1-6 230 300 0.03356 0.26656 0.55477 250 
2-5 230 300 0.03356 0.26656 0.55477 250 

3-4(1) 230 100 0.01144 0.09111 0.18261 250 
3-4(2) 230 100 0.01144 0.09111 0.18261 250 

4-5 230 300 0.03356 0.26656 0.55477 250 
4-6 230 300 0.03356 0.26656 0.55477 250 
7-8 345 600 0.01595 0.17214 3.2853 500 
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Table A.3. Transformer Data (System Base: 100MVA) 

From-To Voltage (kV) Leakage reactance (pu) Rating (MVA) 
1-7 230-345 0.0100 1000 
1-9 230-22 0.0100 1000 

2-10 230-23 0.0100 1000 
3-8 230-345 0.0100 1000 

3-11 230-25 0.0100 1000 
6-12 230-26 0.0200 500 

 

 

 

Table A.4. Bus Data (System Base: 100MVA) 

Bus 
Nominal 
Voltage 

(kV) 

Specified 
Voltage 

(kV) 

Load 
 

(MVA) 

Shunt 
 

(MVar) 

Generation 
 

(MW) 
1 230     
2 230  280 + j200   
3 230  320 + j240   
4 230  320 + j240 160  
5 230  100 + j60 80  
6 230  440 + j300 180  
7 345     
8 345     
9 22 1.04    
10 22 1.02   500 
11 22 1.01   200 
12 22 1.02     300 
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Appendix B 

Simulation Diagrams in PowerWorld and MATLAB/Simulink 
 
 

This appendix contains test system diagrams in PowerWorld and Simulink including the subsystems for Simulink’s block 

diagrams. 

 
 

Figure B.1 Test system in PowerWorld  
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Figure B.2 Test system in MATLAB/SIMULINK 
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Figure B.3 Apparent Impedance for single-line-to ground fault for relay A. Similar block diagram was used for relay B.  

(See Figures B.4 & B5 for Apparent Impedance block)   
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Figure B.4 Apparent Impedance with Fixed Zero Sequence Compensation Factor “m” for phase-A SLGF 

(See Appendix D.5 for code of MATLAB Function block) 
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Figure B.5 Apparent Impedance with Variable Zero Sequence Compensation Factor “k0” for phase-A SLGF  

(See Appendix D.6 for code of MATLAB Function block) 
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Figure B.6 Apparent Impedance for Three-Phase (A-B-C-G) fault and Line-to-Line-to-Ground (A-B-G) fault for relay A. 
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Figure B.7 Equivalent MOV/capacitor impedances for phases A, B, and C. 
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Appendix C 

MATLAB Functions for Figures B.4 and B.5 
 
 

This appendix presents the MATLAB codes of the functions used in the Simulink 

simulation in appendix B. 

C.1 Function for Fig B.4 

 
function [Zabs,Zang,R5,X5] = fcn(Ia_complex,Va_complex,Io_complex) 
  
freq=60;                      %Hz 
length=600;                   %km 
Roo=0.1055*length;            %zero-sequence resistance 
R11=0.038806*length;          %pos-sequence resistance 
Loo=(0.7389/377)*length;      %zero-sequence inductance   
L11=(0.377416/377)*length;    %pos-sequence inductance 
  
Z00=Roo+1i*2*pi*freq*Loo;     %zero-sequence impedance  
Z11=R11+1i*2*pi*freq*L11;     %pos-sequence impedance  
  
m=(Z00-Z11)/Z11;            %fixed zero-sequence comp. factor "m" 
 
%Apparent impedance with fixed zero-sequence compensation factor "m"  
Ztotal=(Va_complex)/(Ia_complex+m*Io_complex); 
Zabs=abs(Ztotal); 
Zang=angle(Ztotal)*180/pi; 
R5=real(Ztotal); 
X5=imag(Ztotal); 
 
 

C.2 Function for Fig B.5 

function [Zabs,Zang,R6,X6] = fcn(Ia_complex,Va_complex,Io_complex,k0) 
  
%Apparent Impedance With Variable Zero-Sequence Compensation Factor 
"Ko" 
Ztotal=(Va_complex)/(Ia_complex+k0*Io_complex);   
  
Zabs=abs(Ztotal); 
Zang=angle(Ztotal)*180/pi; 
R6=real(Ztotal); 
X6=imag(Ztotal); 
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Appendix D 

MATLAB Codes (GUI) 
 

This appendix presents the MATLAB codes of the graphical user interphase (GUI) that 

enables the user to change between different fault locations, wind power levels, and 

percent compensation. 

D.1 Creating GUI 

function myGUI = myGUI(position) 
myGUI=[];   
  
%% Create figure 
h.f = figure('units','pixels','position',position,... 
             'toolbar','none','menu','none');          
          
%% Create checkboxes: 
%Fault type                                             
h.ls = uicontrol('style','text','unit','pix','position',[5 440 150 
29],... 
                'min',0,'max',2,'fontsize',17,'string',... 

    'Type of Fault:','ForegroundColor','r'); 
 
h.c(1) = uicontrol('style','checkbox','units','pixels','position',...      
                [10,408,100,25],'string','SLGF','fontsize',14); 
h.c(2) = uicontrol('style','checkbox','units','pixels','position',...  

    [130,408,100,25],'string','LLGF','fontsize',14); 
h.c(3) = uicontrol('style','checkbox','units','pixels','position',...  

    [250,408,100,25],'string','3phGF','fontsize',14);             
                
%Fault location             
h.ls = uicontrol('style','text','unit','pix','position',...  

   [5 355 150 8],'min',0,'max',2,'fontsize',17,'string',... 
    'Fault Location:','ForegroundColor','r');             

h.c(4) = uicontrol('style','checkbox','units','pixels','position',...  
   [10,320,100,25],'string','0 km','fontsize',14);             

h.c(5) = uicontrol('style','checkbox','units','pixels','position',...  
   [125,320,100,25],'string','100 km','fontsize',14);        

h.c(6) = uicontrol('style','checkbox','units','pixels','position',...  
   [240,320,100,25],'string','200 km','fontsize',14);                   

h.c(7) = uicontrol('style','checkbox','units','pixels','position',...  
   [355,320,100,25],'string','300L km','fontsize',14);       

h.c(8) = uicontrol('style','checkbox','units','pixels','position',...  
   [10,287,100,25],'string','300R km','fontsize',14);             

h.c(9) = uicontrol('style','checkbox','units','pixels','position',...  
   [125,287,100,25],'string','400 km','fontsize',14);        
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h.c(10) = uicontrol('style','checkbox','units','pixels','position',...  
   [240,287,100,25],'string','500 km','fontsize',14);                    

h.c(11) = uicontrol('style','checkbox','units','pixels','position',...  
   [355,287,100,25],'string','600 km','fontsize',14);                    

          
%Wind levels             
h.ls = uicontrol('style','text','unit','pix','position',...  

   [5 232 170 28],'min',0,'max',2,'fontsize',17,... 
   'string','Wind Variation:','ForegroundColor','r');       

       
h.c(12) = uicontrol('style','checkbox','units','pixels','position',...  

   [10,195,100,25],'string','Average','fontsize',14); 
h.c(13) = uicontrol('style','checkbox','units','pixels', 'position',...  

   [130,195,80,25],'string','MAX','fontsize',14);              
h.c(14) = uicontrol('style','checkbox','units','pixels','position',...  

   [230,195,80,25],'string','MIN','fontsize',14);                      
             
%Compensation level 
h.ls = uicontrol('style','text','unit','pix','position',...  

   [5 137 220 28],'min',0,'max',2,'fontsize',17,... 
   'string','Compensation Level:','ForegroundColor','r');   

h.c(15) = uicontrol('style','checkbox','units','pixels','position',...  
   [10,102,65,25],'string','0%','fontsize',14); 

h.c(16) = uicontrol('style','checkbox','units','pixels','position',...  
   [85,102,65,25],'string','20%','fontsize',14); 

h.c(17) = uicontrol('style','checkbox','units','pixels','position',...  
   [160,102,65,25],'string','40%','fontsize',14); 

h.c(18) = uicontrol('style','checkbox','units','pixels','position',...  
   [235,102,65,25],'string','60%','fontsize',14);             

                    
%% Create pushbuttons 
h.p = uicontrol('style','pushbutton','units','pixels','position',...  

   [30,20,120,40],'string','Mho-relay A','callback',... 
   @p_call3,'fontsize',14); 

h.p = uicontrol('style','pushbutton','units','pixels','position',...  
[160,20,120,40],'string','Mho-relay B','callback',... 
@p_call4,'fontsize',14); 

h.p = uicontrol('style','pushbutton','units','pixels','position',...  
   [500,418,130,40],'string','Adapt Relay A','callback',... 
   @p_call5,'fontsize',14); 

h.p = uicontrol('style','pushbutton','units','pixels','position',...  
   [642,418,130,40],'string','Adapt Relay B','callback',... 
   @p_call7,'fontsize',14);             

h.p = uicontrol('style','pushbutton','units','pixels','position',...  
   [320,20,100,40],'string','OK','callback',@p_call,... 
   'fontsize',14); 

h.p = uicontrol('style','pushbutton','units','pixels','position',...  
   [430,20,100,40],'string','Close','callback',@p_call2,... 
   'fontsize',14); 

h.p = uicontrol('style','pushbutton','units','pixels','position',...  
   [620,20,150,40],'string','MOV/Cap V-I','callback',... 
   @p_call6,'fontsize',14); 
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%% Create Labels             
h.ls = uicontrol('style','text','unit','pix','position',...  

   [500 380 215 22],'min',0,'max',2,'fontsize',13,... 
   'string','MOV/Cap Equiv Impedance:',... 
   'ForegroundColor','k'); 

h.ls = uicontrol('style','text','unit','pix','position',...  
   [535 350 65 22],'min',0,'max',2,'fontsize',12,... 
   'string','Phase A:','ForegroundColor','k'); 

h.ls = uicontrol('style','text','unit','pix','position',...  
   [535 320 65 22],'min',0,'max',2,'fontsize',12,... 
   'string','Phase B:','ForegroundColor','k'); 

 
h.ls = uicontrol('style','text','unit','pix','position',...  

   [535 290 65 22],'min',0,'max',2,'fontsize',12,... 
   'string','Phase C:','ForegroundColor','k');             

                        
%Read MOV/capacitor equivalent impedance from base workspace 
try 
    Rcap1=evalin('base','Rcap_phA');                %Phase A 
    Vexists=1; 
catch 
    Vexists=0; 
end 
if Vexists==1 
    %Phase A 
    Rcap1=evalin('base','Rcap_phA'); 
    RcapMOVa=round(Rcap1(end)*1000)/1000; 
    Xcap1=evalin('base','Xcap_phA'); 
    XcapMOVa=round(Xcap1(end)*1000)/1000; 
    ZcapMOVa=num2str(RcapMOVa+XcapMOVa*1i); 
  
    %Phase B 
    Rcap2=evalin('base','Rcap_phB'); 
    RcapMOVb=round(Rcap2(end)*1000)/1000; 
    Xcap2=evalin('base','Xcap_phB'); 
    XcapMOVb=round(Xcap2(end)*1000)/1000; 
    ZcapMOVb=num2str(RcapMOVb+XcapMOVb*1i); 
  
    %Phase C 
    Rcap3=evalin('base','Rcap_phC'); 
    RcapMOVc=round(Rcap3(end)*1000)/1000; 
    Xcap3=evalin('base','Xcap_phC'); 
    XcapMOVc=round(Xcap3(end)*1000)/1000; 
    ZcapMOVc=num2str(RcapMOVc+XcapMOVc*1i);         
else 
    ZcapMOVa=num2str(0.00+0.00*1i); 
    ZcapMOVb=num2str(0.00+0.00*1i); 
    ZcapMOVc=num2str(0.00+0.00*1i); 
End 
 
%% Create textboxes 
h.ed = uicontrol('style','edit','unit','pix','position',...  

   [605 350 170 24],'fontsize',13,'string',ZcapMOVa);     
h.ed = uicontrol('style','edit','unit','pix','position',...  
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   [605 320 170 24],'fontsize',13,'string',ZcapMOVb); 
h.ed = uicontrol('style','edit','unit','pix','position',...  

      [605 290 170 24],'fontsize',13,'string',ZcapMOVc); 
 
%Line parameters to calculate distance to fault from apparent impedance 
line_length = 600; 
R1 = 0.038806; 
X1 = 0.377416;             %Xl1=2*pi*f*L 
Xc = 1.15922e-8*377;       %Xc1=2*pi*f*C 
  
%Distributed Parameters 
Zt = R1+1i*X1;             %line impedance 
Yt = 1i*Xc;                %admittance 
zc = sqrt(Zt/Yt);          %characteristic impedance 
gam = sqrt(Zt*Yt);         %propagation constant 
 
try 
    R6=evalin('base','R6'); 
    Zexists=1; 
catch 
    Zexists=0; 
end 
try 
    Fault_Under300Lkm=evalin('base','Fault_Under300Lkm'); 
catch 
    Fault_Under300Lkm=0; 
end 
 
%Calculate distance to fault from Relay A&B 
if Zexists==1   
       %Relay A 
        R6=evalin('base','R6'); 
        Rapp6=round(R6(end)*1000)/1000; 
        X6=evalin('base','X6'); 
        Xapp6=round(X6(end)*1000)/1000; 
        Zapp6=Rapp6+Xapp6*1i; 
        Zapp_A=num2str(Zapp6); 
        FaultDistA=num2str(round(abs(atanh((Zapp6)/zc)/gam))); 
     %Relay B 
        R8=evalin('base','R8'); 
        Rapp8=round(R8(end)*1000)/1000; 
        X8=evalin('base','X8'); 
        Xapp8=round(X8(end)*1000)/1000; 
        Zapp8=Rapp8+Xapp8*1i; 
        Zapp_B=num2str(Zapp8); 
        FaultDistB=num2str(round(abs(atanh((Zapp8)/zc)/gam)));         
    else 
        Zapp_A=num2str(0+0*1i); 
        Zapp_B=num2str(0+0*1i); 
        FaultDistA=num2str(0); 
        FaultDistB=num2str(0); 
    end 
end 
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%% Create labels and textboxes              
h.ls = uicontrol('style','text','unit','pix','position',...  
       [500 225 205 22],'min',0,'max',2,'fontsize',13,... 

     'string','Fault Apparent Impedance:','ForegroundColor','k'); 
h.ls = uicontrol('style','text','unit','pix','position',...  

      [530 192 70 22],'min',0,'max',2,'fontsize',12,... 
      'string','Relay A:','ForegroundColor','k'); 

h.ls = uicontrol('style','text','unit','pix','position',...  
      [530 162 70 22],'min',0,'max',2,'fontsize',12,... 

'string','Relay B:','ForegroundColor','k');             
h.ed = uicontrol('style','edit','unit','pix','position',...  

      [605 192 170 24],'fontsize',13,'string',Zapp_A); 
h.ed = uicontrol('style','edit','unit','pix','position',...  

[605 162 170 24],'fontsize',13,'string',Zapp_B); 
              
h.ls = uicontrol('style','text','unit','pix','position',...  

[530 125 90 22],'min',0,'max',2,'fontsize',12,... 
'string','Fault Dist A:','ForegroundColor','k'); 

h.ls = uicontrol('style','text','unit','pix','position',...  
[530 95 90 22],'min',0,'max',2,'fontsize',12,... 
'string','Fault Dist B:','ForegroundColor','k');              

h.ed = uicontrol('style','edit','unit','pix','position',...  
[625 125 100 24],'fontsize',13,'string',FaultDistA); 

h.ed = uicontrol('style','edit','unit','pix','position',...  
[625 95 100 24],'fontsize',13,'string',FaultDistB); 

h.ls = uicontrol('style','text','unit','pix','position',...  
[728 125 33 19],'min',0,'max',2,'fontsize',11,... 
'string','(km)','ForegroundColor','k'); 

h.ls = uicontrol('style','text','unit','pix','position',...  
[728 95 33 19],'min',0,'max',2,'fontsize',11,... 
'string','(km)','ForegroundColor','k');              

             
%% Pushbutton callbacks             
%OKAY - pushbutton callback 
function m=p_call(varargin) 
    vals = get(h.c,'Value'); 
    checked = find([vals{:}]); 
     
 if isempty(checked) 
    checked = 'none'; 
    fprintf('You did not select the settings for your test. Please use  

checkboxes to select your test and click Okay.'); 
 end 
  
    [n m]=size(checked);                                                    
    if m~=0 
       for i=1:1:m 
           %Fault type 
           if checked(i) == 1 
               assignin('base', 'FaultType', 1); 
           elseif checked(i)==2 
               assignin('base', 'FaultType', 2); 
           elseif  checked(i)==3 
               assignin('base', 'FaultType', 3);    
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           %Fault location 
           elseif checked(i)==4 
               assignin('base', 'FaultLocation', 4);        %0 km 
           elseif checked(i)==5 
               assignin('base', 'FaultLocation', 5);        %100 km 
           elseif checked(i)==6 
               assignin('base', 'FaultLocation', 6);        %200 km 
           elseif checked(i)==7 
               assignin('base', 'FaultLocation', 7);        %300L km 
           elseif checked(i)==8 
               assignin('base', 'FaultLocation', 8);        %300R km 
           elseif checked(i)==9 
               assignin('base', 'FaultLocation', 9);        %400 km 
           elseif checked(i)==10 
               assignin('base', 'FaultLocation', 10);       %500 km 
           elseif checked(i)==11 
               assignin('base', 'FaultLocation', 11);       %600 km    
  
           %Wind variation 
           elseif checked(i)==12 
               assignin('base', 'WindVariation', 12);       %Ave 
           elseif checked(i)==13 
               assignin('base', 'WindVariation', 13);       %Max 
           elseif checked(i)==14 
               assignin('base', 'WindVariation', 14);       %Min 
                
           %Percent compensation 
           elseif  checked(i)==15 
               assignin('base', 'CompensationLevel', 15);     % 0% 
           elseif  checked(i)==16 
               assignin('base', 'CompensationLevel', 16);     % 20% 
           elseif  checked(i)==17 
               assignin('base', 'CompensationLevel', 17);     % 40% 
           elseif  checked(i)==18 
               assignin('base', 'CompensationLevel', 18);     % 60%   
           end     
       end 
    end 
    close(h.f); 
end 
  
%CANCEL - pushbutton callback 
function p_call2(varargin) 
    assignin('base', 'Cancelbutton', 1); 
    close(h.f); 
end 
  
%Plot mho relay A - pushbutton callback 
function p_call3(varargin) 
    vals = get(h.c,'Value'); 
    checked = find([vals{:}]); 
     
    [n m]=size(checked); 
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    if m~=0 
       for i=1:1:m 
           %Extra features to change relay setting and re-plot 
           if checked(i) == 15                                              
               assignin('base', 'Capacitor_bypass', 0); 
           elseif checked(i)>=16 && checked(i)<=18                          
               assignin('base', 'Capacitor_bypass', 1); 
           end 
           %Extra features to change relay setting and re-plot         
           if checked(i)>=4 && checked(i)<=8 
               assignin('base', 'Fault_Under300Lkm', 1); 
           elseif checked(i)>=9 && checked(i) <=11 
               assignin('base', 'Fault_Under300Lkm', 0); 
           end 
       end 
    end 
    R6=evalin('base','R6'); 
    X6=evalin('base','X6'); 
    Capacitor_bypass=evalin('base','Capacitor_bypass'); 
    Fault_Under300Lkm=evalin('base','Fault_Under300Lkm'); 
    Plot_ApparentImpedance(R6,X6); 
end 
  
%Plot mho relay B - pushbutton callback 
function p_call4(varargin) 
    vals = get(h.c,'Value'); 
    checked = find([vals{:}]); 
     
    [n m]=size(checked);  
    if m~=0 
       for i=1:1:m 
           %Bypass capacitor in relay setting 
           if checked(i) == 15                                             
               assignin('base', 'Capacitor_bypass', 0); 
           elseif checked(i)>=16 && checked(i)<=18                          
               assignin('base', 'Capacitor_bypass', 1); 
           end 
           if checked(i)>=7 && checked(i)<=11         
               assignin('base', 'Fault_Under300Rkm', 1); 
           elseif checked(i)>=4 && checked(i) <=6 
               assignin('base', 'Fault_Under300Rkm', 0); 
           end 
       end 
    end 
    R8=evalin('base','R8'); 
    X8=evalin('base','X8'); 
    Capacitor_bypass=evalin('base','Capacitor_bypass'); 
    Fault_Under300Rkm=evalin('base','Fault_Under300Rkm'); 
    Plot_ApparentImpedance(R8,X8); 
end 
  
%Plot adaptive mho relay A (using equivalent MOV/cap impedance) 
function p_call5(varargin) 
    vals = get(h.c,'Value'); 
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    checked = find([vals{:}]); 
    [n m]=size(checked); 
    if m~=0 
       for i=1:1:m 
           if checked(i)>=4 && checked(i)<=8 
               assignin('base', 'Fault_Under300Lkm', 1); 
           elseif checked(i)>=9 && checked(i) <=11 
               assignin('base', 'Fault_Under300Lkm', 0); 
           end 
       end 
    end     
    R6=evalin('base','R6'); 
    X6=evalin('base','X6'); 
    Fault_Under300Lkm=evalin('base','Fault_Under300Lkm'); 
    Plot_AdaptiveImpedance(R6,X6,Rcap1,Xcap1,Fault_Under300Lkm); 
end 
  
%Plot adaptive mho relay B (using equivalent MOV/cap impedance) 
function p_call7(varargin) 
    vals = get(h.c,'Value'); 
    checked = find([vals{:}]); 
    [n m]=size(checked); 
    if m~=0 
       for i=1:1:m 
           if checked(i)>=7 && checked(i) <=11 
               assignin('base', 'Fault_Under300Rkm', 1); 
           elseif checked(i)>=4 && checked(i)<=6 
               assignin('base', 'Fault_Under300Rkm', 0); 
           end 
       end 
    end     
    R8=evalin('base','R8'); 
    X8=evalin('base','X8'); 
    Fault_Under300Rkm=evalin('base','Fault_Under300Rkm'); 
    Plot_AdaptiveImpedance(R8,X8,Rcap1,Xcap1,Fault_Under300Rkm); 
end 
  
%Plot MOV/cap voltage, current, absorbed energy, and V-I curves 
function p_call6(varargin)  
    try 
        F_start=evalin('base','F_start'); 
        exists=1; 
    catch 
        exists=0; 
    end 
    if  exists==1 
        Plot_MOVCap_VI_slgf(F_start); 
    end 
end 
 
uiwait(h.f);     
end 
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D.2 GUI: Simulink Model Initialization 

filename='TestSystem_ver81'; 
simfile=strcat(filename,'.slx'); 
faultblock1=strcat(filename,'/FaultBlock1'); 
faultblock2=strcat(filename,'/FaultBlock2'); 
faultblock3=strcat(filename,'/FaultBlock3'); 
faultblock4=strcat(filename,'/FaultBlock4'); 
Cancelbutton=0; 
Fault_Under300Lkm=0; 
Fault_Under300Rkm=0; 
Tline_L=1;                      %1=line segment present    0=bypassed 
Tline_R=1;                      %1=line segment present    0=bypassed 
  
f=myGUI([50,240,790,480]);      %GUI position = [x, y, width, height] 
  
if Cancelbutton~=1 
    %Fault Type 
    if FaultType == 1           %SLGF 
  set_param(faultblock1, 'FaultA','on', 'FaultB','off',    
'FaultC','off','GroundFault','on'); 
        set_param(faultblock2, 'FaultA','on', 'FaultB','off', 
'FaultC','off','GroundFault','on'); 
        set_param(faultblock3, 'FaultA','on', 'FaultB','off', 
'FaultC','off','GroundFault','on'); 
        set_param(faultblock4, 'FaultA','on', 'FaultB','off', 
'FaultC','off','GroundFault','on'); 
    elseif FaultType==2         %LLGF 
        set_param(faultblock1, 'FaultA','on', 'FaultB','on', 
'FaultC','off','GroundFault','on'); 
        set_param(faultblock2, 'FaultA','on', 'FaultB','on', 
'FaultC','off','GroundFault','on'); 
        set_param(faultblock3, 'FaultA','on', 'FaultB','on', 
'FaultC','off','GroundFault','on'); 
        set_param(faultblock4, 'FaultA','on', 'FaultB','on', 
'FaultC','off','GroundFault','on');         
    elseif FaultType==3         %3phGF 
        set_param(faultblock1, 'FaultA','on', 'FaultB','on', 
'FaultC','on','GroundFault','on'); 
        set_param(faultblock2, 'FaultA','on', 'FaultB','on', 
'FaultC','on','GroundFault','on'); 
        set_param(faultblock3, 'FaultA','on', 'FaultB','on', 
'FaultC','on','GroundFault','on'); 
        set_param(faultblock4, 'FaultA','on', 'FaultB','on', 
'FaultC','on','GroundFault','on');         
    end 
  
    %Fault Location 
    if FaultLocation == 4            %Fault at 0 km 
        Dist1=0;                        
        Dist2=300; 
        Dist3=150; 
        Dist4=150; 
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        set_param(faultblock2, 'FaultA','off', 'FaultB','off', 
'FaultC','off','GroundFault','off'); 
        set_param(faultblock3, 'FaultA','off', 'FaultB','off', 
'FaultC','off','GroundFault','off'); 
        set_param(faultblock4, 'FaultA','off', 'FaultB','off', 
'FaultC','off','GroundFault','off');         
        Fault_Under300Lkm=1; 
        Fault_Under300Rkm=0; 
        Tline_L=0;                   %1=Present 0=bypassed 
        Tline_R=1;                   %1=Present 0=bypassed 
    elseif FaultLocation==5          %Fault at 100 km 
        Dist1=100; 
        Dist2=200;                           
        Dist3=150; 
        Dist4=150; 
        set_param(faultblock2, 'FaultA','off', 'FaultB','off', 
'FaultC','off','GroundFault','off'); 
        set_param(faultblock3, 'FaultA','off', 'FaultB','off', 
'FaultC','off','GroundFault','off'); 
        set_param(faultblock4, 'FaultA','off', 'FaultB','off', 
'FaultC','off','GroundFault','off'); 
        Fault_Under300Lkm=1; 
        Fault_Under300Rkm=0; 
        Tline_L=1;                      
        Tline_R=1;                       
    elseif FaultLocation==6          %Fault at 200 km 
        Dist1=200; 
        Dist2=100;                           
        Dist3=150; 
        Dist4=150; 
        set_param(faultblock2, 'FaultA','off', 'FaultB','off', 
'FaultC','off','GroundFault','off'); 
        set_param(faultblock3, 'FaultA','off', 'FaultB','off', 
'FaultC','off','GroundFault','off'); 
        set_param(faultblock4, 'FaultA','off', 'FaultB','off', 
'FaultC','off','GroundFault','off'); 
        Fault_Under300Lkm=1; 
        Fault_Under300Rkm=0; 
        Tline_L=1;                       
        Tline_R=1;                           
    elseif FaultLocation==7          %Fault at 300L km 
        Dist1=150; 
        Dist2=150;                           
        Dist3=150; 
        Dist4=150; 
        set_param(faultblock1, 'FaultA','off', 'FaultB','off', 
'FaultC','off','GroundFault','off'); 
        set_param(faultblock3, 'FaultA','off', 'FaultB','off', 
'FaultC','off','GroundFault','off'); 
        set_param(faultblock4, 'FaultA','off', 'FaultB','off', 
'FaultC','off','GroundFault','off'); 
        Fault_Under300Lkm=1; 
        Fault_Under300Rkm=0; 
        Tline_L=1;                       
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        Tline_R=1;                              
    elseif FaultLocation==8          %Fault at 300R km 
        Dist1=150; 
        Dist2=150;                           
        Dist3=150; 
        Dist4=150; 
        set_param(faultblock1, 'FaultA','off', 'FaultB','off', 
'FaultC','off','GroundFault','off'); 
        set_param(faultblock2, 'FaultA','off', 'FaultB','off', 
'FaultC','off','GroundFault','off'); 
        set_param(faultblock4, 'FaultA','off', 'FaultB','off', 
'FaultC','off','GroundFault','off'); 
        Fault_Under300Lkm=0; 
        Fault_Under300Rkm=1; 
        Tline_L=1;                       
        Tline_R=1;                               
    elseif FaultLocation==9          %Fault at 400 km 
        Dist1=150; 
        Dist2=150;                           
        Dist3=100; 
        Dist4=200; 
        set_param(faultblock1, 'FaultA','off', 'FaultB','off', 
'FaultC','off','GroundFault','off'); 
        set_param(faultblock2, 'FaultA','off', 'FaultB','off', 
'FaultC','off','GroundFault','off'); 
        set_param(faultblock3, 'FaultA','off', 'FaultB','off', 
'FaultC','off','GroundFault','off'); 
        Fault_Under300Lkm=0; 
        Fault_Under300Rkm=1; 
        Tline_L=1;                        
        Tline_R=1;                          
    elseif FaultLocation==10          %Fault at 500 km 
        Dist1=150; 
        Dist2=150;                           
        Dist3=200; 
        Dist4=100; 
        set_param(faultblock1, 'FaultA','off', 'FaultB','off', 
'FaultC','off','GroundFault','off'); 
        set_param(faultblock2, 'FaultA','off', 'FaultB','off', 
'FaultC','off','GroundFault','off'); 
        set_param(faultblock3, 'FaultA','off', 'FaultB','off', 
'FaultC','off','GroundFault','off'); 
        Fault_Under300Lkm=0; 
        Fault_Under300Rkm=1; 
        Tline_L=1;                        
        Tline_R=1;                                
    elseif FaultLocation==11          %Fault at 600 km 
        Dist1=150; 
        Dist2=150;                           
        Dist3=300; 
        Dist4=0;                       
        set_param(faultblock1, 'FaultA','off', 'FaultB','off', 
'FaultC','off','GroundFault','off'); 
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        set_param(faultblock2, 'FaultA','off', 'FaultB','off', 
'FaultC','off','GroundFault','off'); 
        set_param(faultblock3, 'FaultA','off', 'FaultB','off', 
'FaultC','off','GroundFault','off'); 
        Fault_Under300Lkm=0; 
        Fault_Under300Rkm=1; 
        Tline_L=1;                       
        Tline_R=0;                               
    end         
     
    %WindVariation 
    if WindVariation == 12 
        SimTime=5.1666; 
        F_start=5; 
        F_stop=5.16667; 
    elseif WindVariation==13 
        SimTime=43.1666; 
        F_start=43; 
        F_stop=43.16667; 
    elseif WindVariation==14 
        SimTime=50.1666; 
        F_start=50; 
        F_stop=50.16667; 
    end 
  
    %Compensation Level 
         NumofCol=20; 
         Iref=10e3; 
         Vprot=150e3; 
    if CompensationLevel==15           % 0% 
        Cap_Farads=1; 
        Capacitor_bypass=0;                
    elseif CompensationLevel==16       % 20% 
        Cap_Farads=58.57e-6; 
        Capacitor_bypass=1;                      
          Vprot=62e3;  
    elseif CompensationLevel==17       % 40% 
        Cap_Farads=29.3e-6; 
        Capacitor_bypass=1;                     
    elseif CompensationLevel==18       % 60% 
        Cap_Farads=19.52e-6; 
        Capacitor_bypass=1;                
          NumofCol=60; 
          Iref=500;        
          Vprot=222e3; 
    end 
   
    RunSimulation=menu('Run Simulation?','Yes','No'); 
    UIControl_FontSize_bak = get(0, 'DefaultUIControlFontSize'); 
    set(0, 'DefaultUIControlFontSize', 18); 
    UserInput=0; 
    while RunSimulation<1  
        RunSimulation=menu('Run Simulation?','Yes','No'); 
    end  
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    if RunSimulation == 1 
        InputDialogBox('SaveAs Workspace:','SLGF',[200 400 260 100]) 
    if UserInput ~= 0                                                  
        SaveWorkspaceAs=strcat(UserInput,'.mat');     
        sim(simfile); 
        save(SaveWorkspaceAs); 
        Plot_ApparentImpedance(R6,X6);   %Plot mho relay A     
        Plot_ApparentImpedance(R8,X8);   %Plot mho relay B 
    elseif UserInput == 0 
        sim(simfile); 
        Plot_ApparentImpedance(R6,X6);   %Plot mho relay A       
        Plot_ApparentImpedance(R8,X8);   %Plot mho relay B     
    end 
    elseif RunSimulation==2 
        %exit GUI 
    end 
end 
 

D.3 GUI: SaveAs workspace 

function InputDialogBox(Title,filename,position) 
%Input dialogbox - Save Workspace As  
%User may hit return after entering filename. 
  
if nargin<3                    %default values if called without args. 
    position = [200 400 260 100]; 
elseif nargin<2 
    filename = 'test1'; 
elseif nargin<1 
    Title = 'Save Workspace:'; 
end 
  
S.fh = figure('units','pixels','position',position,'menubar','none',... 
               'numbertitle','off','name',Title,'resize','off'); 
S.ed = uicontrol('style','edit','units','pix','position',... 
               [10 60 240 30],'string',filename); 
S.pb = uicontrol('style','pushbutton','units','pix','position',... 
               [30 10 80 35],'string','Ok','callback',{@pb_call}); 
S.pb = uicontrol('style','pushbutton','units','pix','position',... 
               [150 10 80 35],'string','No','callback',{@pb_call2});            
set(S.ed,'call',@ed_call) 
uicontrol(S.ed)          %make the edit box active. 
uiwait(S.fh)             %prevent all other processes from  

%starting until closed. 
  
 %Okay button 
 function [] = pb_call(varargin) 
     assignin('base', 'UserInput', get(S.ed,'string')); 
     close(S.fh);      %closes GUI, allows the new R to be returned. 
 end 
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 %Cancel button 
 function [] = pb_call2(varargin) 
     assignin('base', 'UserInput', 0); 
     close(S.fh);         %closes GUI, allows the new R to be returned. 
 end 
  
 %Save file with default filename if no input 
 function [] = ed_call(varargin) 
     uicontrol(S.pb) 
     drawnow 
     assignin('base', 'UserInput', get(S.ed,'string')); 
     close(gcbf) 
 end 
end  
 
 
 
 

D.4 GUI: MOV/Capacitor Voltage, Current, Absorbed Energy, and V-I curves 

function Plot_MOVCap_VI_slgf(F_start) 
back=0.05; 
if F_start==5            %Ave Wind 
    xmin=5-back; 
    xmax=5.16667; 
elseif F_start==43       %Max Wind 
    xmin=43-back; 
    xmax=43.16667; 
elseif F_start==50       %Min Wind 
    xmin=50-back; 
    xmax=50.16667; 
end 
  
%Load values from base workspace 
MOV_Va=evalin('base','MOV_Va'); 
MOV_Vb=evalin('base','MOV_Vb'); 
MOV_Vc=evalin('base','MOV_Vc'); 
Cap_Ia=evalin('base','Cap_Ia'); 
Cap_Ib=evalin('base','Cap_Ib'); 
Cap_Ic=evalin('base','Cap_Ic'); 
MOV_Ia=evalin('base','MOV_Ia'); 
MOV_Ib=evalin('base','MOV_Ib'); 
MOV_Ic=evalin('base','MOV_Ic'); 
Total_Ia=evalin('base','Total_Ia'); 
Total_Ib=evalin('base','Total_Ib'); 
Total_Ic=evalin('base','Total_Ic'); 
Wa_MOV=evalin('base','Wa_MOV'); 
Wb_MOV=evalin('base','Wb_MOV'); 
Wc_MOV=evalin('base','Wc_MOV'); 
  
 
%Adjust plot axes for given fault 
MOV_Va_ymax1=1.4*Vmax(1); 
MOV_Va_ymin1=-MOV_Va_ymax1; 
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MOV_Va_ymax2=1.15*Vmax(1); 
MOV_Va_ymin2=-MOV_Va_ymax2; 
  
MOV_Ia_ymax=1.1*Imax(1);                                 
MOV_Ia_ymin=1.1*Imin(1); 
Wa_MOV_ymax=1.2*Energy(1); 
Wa_MOV_ymin=0; 
if Imax(1) > abs(Imin(1)) 
  MOV_VI_xmax=1.06*Imax(1); 
  MOV_VI_xmin=Imin(1)-0.06*Imax(1); 
else 
  MOV_VI_xmax=Imax(1)-0.1*Imin(1); 
  MOV_VI_xmin=1.1*Imin(1);     
end 
  
Cap_Ia_ymax=1.1*Icap_max(1); 
Cap_Ia_ymin=-1.1*Icap_max(1); 
Total_Ia_ymax=1.2*Total_max(1);                     
Total_Ia_ymin=1.2*Total_min(1); 
  
%% Plots 
fsize=9; 
figure1 = figure('Color',[1 1 1]); 
set(figure1, 'Position', [100 100 350 510]) 
  
%MOV/capacitor voltage (phase A) 
subplot(5,1,1) 
plot(MOV_Va.time,MOV_Va.signals.values,'k','LineWidth',1.5) 
axis([xmin xmax MOV_Va_ymin1 MOV_Va_ymax1]) 
ylabel('MOV_a / Cap_a (V)','FontSize',fsize) 
set(gca,'FontSize',fsize) 
  
%Capacitor current (phase A) 
subplot(5,1,2) 
plot(Cap_Ia.time,Cap_Ia.signals.values,'k','LineWidth',1.5) 
axis([xmin xmax Cap_Ia_ymin Cap_Ia_ymax]) 
ylabel('Cap_a (A)','FontSize',fsize) 
set(gca,'FontSize',fsize) 
  
%MOV current (phase A) 
subplot(5,1,3) 
plot(MOV_Ia.time,MOV_Ia.signals.values,'k','LineWidth',1.5) 
axis([xmin xmax MOV_Ia_ymin MOV_Ia_ymax]) 
ylabel('MOV_a (A)','FontSize',fsize) 
set(gca,'FontSize',fsize) 
  
%Total combined current through MOV/capacitor (phase A) 
subplot(5,1,4) 
plot(Total_Ia.time,Total_Ia.signals.values,'k','LineWidth',1.5) 
axis([xmin xmax Total_Ia_ymin Total_Ia_ymax]) 
ylabel('Total_a (A)','FontSize',fsize) 
set(gca,'FontSize',fsize) 
  
%Energy absorbed by MOV (phase A) 
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subplot(5,1,5) 
plot(Wa_MOV.time,Wa_MOV.signals.values,'k','LineWidth',1.5) 
axis([xmin xmax 0 Wa_MOV_ymax]) 
xlabel('Time (sec)','FontSize',fsize) 
ylabel('MOV_a Energy (J)','FontSize',fsize) 
set(gca,'FontSize',fsize)  
     
%% MOV/capacitor V-I plots: 
figure2 = figure('Color',[1 1 1]); 
set(figure2, 'Position', [460 300 350 170]) 
  
%V-I curve for MOV/cap (phase A)   
subplot(3,1,1) 
plot(MOV_Ia.signals.values,MOV_Va.signals.values,'k','LineWidth',1.5) 
axis([MOV_VI_xmin MOV_VI_xmax MOV_Va_ymin2 MOV_Va_ymax2]) 
ylabel('MOV_a Voltage (V)','FontSize',fsize) 
xlabel('MOV_a Current (A)','FontSize',fsize) 
set(gca,'FontSize',fsize) 
  
%V-I curve for MOV/cap (phase B)  
subplot(3,1,2) 
plot(ans.MOV_Ib.signals.values,ans.MOV_Vb.signals.values,'k','LineWidth
',1.5) 
ylabel('MOV_b Voltage (V)','FontSize',fsize) 
xlabel('MOV_b Current (A)','FontSize',fsize) 
set(gca,'FontSize',fsize) 
  
%V-I curve for MOV/cap (phase C)  
subplot(3,1,3) 
plot(ans.MOV_Ic.signals.values,ans.MOV_Vc.signals.values,'k','LineWidth
',1.5) 
ylabel('MOV_c Voltage (V)','FontSize',fsize) 
xlabel('MOV_c Current (A)','FontSize',fsize) 
set(gca,'FontSize',fsize) 
end 
  
 

D.5 GUI: Mho Relay A&B Apparent Impedance Plots 

function Plot_ApparentImpedance(R6,X6) 
theta = 0:.01:(2*pi); 
p=0; 
q=-100:0.6:550; 
r=-300:0.3:300; 
s=0; 
%-------------------- Transmission Line Impedance ---------------- 
line_length = 600; 
R1 = 0.038806; 
X1 = 0.377416;                       %Xl1=2*pi*f*L 
Xc = 1.15922e-8*377;                 %Xc1=2*pi*f*C 
%-----------Distributed Parameters Compensation------------------- 
Zt = R1+1i*X1;                       %line impedance 
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Yt = 1i*Xc;                          %admittance 
zc = sqrt(Zt/Yt);                    %characteristic impedance 
gam = sqrt(Zt*Yt);                   %propagation constant 
Lset = 600;                          %relay reach  
%----------------------------------------------------------------- 
Zset1 = zc*tanh(gam*Lset*0.8);       %protection zone 1 80% reach 
Zset2 = zc*tanh(gam*Lset*1.2);       %protection zone 2 120% reach 
%----------------------------------------------------------------- 
 
%Zone 1 
Req1=real(Zset1); 
Xeq1=imag(Zset1); 
Zangle1=atan(Xeq1/Req1); 
%Zone 2 
Req2=real(Zset2); 
Xeq2=imag(Zset2); 
Zangle2=atan(Xeq2/Req2); 
 
% radius of zone 1 circle 
R_zone1 = sqrt((Req1)^2+(Xeq1)^2)/2;    
%center of zone 1 circle (a,b) 
a=R_zone1*(cos(Zangle1)); 
b=R_zone1*(sin(Zangle1)); 
%circle of radius Zone 1 centred at (a,b) 
c = R_zone1*cos(theta)+a; 
d = R_zone1*sin(theta)+b; 
% radius of Zone 2 circle 
R_zone2 = sqrt((Req2)^2+(Xeq2)^2)/2;     
%center of zone 2 circle (f,e) 
f=R_zone2*(cos(Zangle2)); 
e=R_zone2*(sin(Zangle2)); 
%circle of radius zone 2 centred at (f,e) 
g = R_zone2*cos(theta)+f; 
h = R_zone2*sin(theta)+e; 
%impedance line 
t=0:0.1:250; 
u=t*(b/a); 
  
plot1 = figure('position',[455 200 350 300]);   
set(gca,'fontsize',13)  
plot2=plot(t,u,'b',c,d,'g',g,h,'m','LineWidth',2); 
hold on 
plot3=plot(p,q,'k--',r,s,'k--','LineWidth',0.4); 
plot4=plot(R6,X6,'r+'); 
ymax=1.11*max(h);         
ymin=-22; 
xmax=1.15*max(g); 
xmin=1.34*min(g); 
axis([xmin xmax ymin ymax]);  
xlabel('Resistance (R)'); 
ylabel('Reactance (X)'); 
hold off 
grid off 
end 
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D.6 GUI: Adaptive Mho Relay A & B Plots with Equivalent MOV/Capacitor Impedance 

function 
Plot_AdaptiveImpedance_RelayAB(R6,X6,Rcap1,Xcap1,Fault_Under300km) 
theta = 0:.01:(2*pi); 
p=0; 
q=-100:0.6:550; 
r=-300:0.3:300; 
s=0; 
%Transmission Line Impedance 
line_length = 600; 
R1 = 0.038806; 
X1 = 0.377416;                   %Xl1=2*pi*f*L 
Xc = 1.15922e-8*377;             %Xc1=2*pi*f*C 
%Distributed Parameters 
Zt = R1+1i*X1;                   %line impedance 
Yt = 1i*Xc;                      %admittance 
zc = sqrt(Zt/Yt);                %characteristic impedance 
gam = sqrt(Zt*Yt);               %propagation constant 
Lset = 600;                      %relay reach  
Zset1 = zc*tanh(gam*Lset*0.8);   %zone 1 80% reach 
Zset2 = zc*tanh(gam*Lset*1.2);   %zone 2 120% reach 
%Zone 1 
Req1=real(Zset1); 
Xeq1=imag(Zset1); 
Zangle1=atan(Xeq1/Req1); 
%Zone 2 
Req2=real(Zset2); 
Xeq2=imag(Zset2); 
Zangle2=atan(Xeq2/Req2); 
  
%---1. Equivalent MOV/capacitor impedance Dynamics --- 
% radius of zone 1 circle 
R_zone1 = sqrt((Req1)^2+(Xeq1)^2)/2;    %radius zone 1 80% reach 
%center of zone 1 circle (a,b) 
a=R_zone1*(cos(Zangle1)); 
b=R_zone1*(sin(Zangle1)); 
%circle of radius Zone 1 centred at (a,b) 
c = R_zone1*cos(theta)+a; 
d = R_zone1*sin(theta)+b; 
% radius of Zone 2 circle 
R_zone2 = sqrt((Req2)^2+(Xeq2)^2)/2;    %radius zone 1 80% reach 
%center of zone 2 circle (f,e) 
f=R_zone2*(cos(Zangle2)); 
e=R_zone2*(sin(Zangle2)); 
%circle of radius zone 2 centred at (f,e) 
g = R_zone2*cos(theta)+f; 
h = R_zone2*sin(theta)+e; 
%impedance line 
t=0:0.1:250; 
u=t*(b/a); 
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plot4 = figure('position',[100 200 350 300]);     %[x,y,width,height] 
plot4=plot(p,q,'k--',r,s,'k--',t,u,'r',c,d,'g',g,h,'m',Rcap,Xcap,'b+');  
%axis([-175 225 -2 375]); 
xlabel('Resistance (R)'); 
ylabel('Reactance (X)'); 
grid off 
 
%--- 2. Relay A&B - Adaptive Setting --- 
Rcap=Rcap1(end); 
Xcap=Xcap1(end); 
if Fault_Under300km==1 
    Zcap=0;                                  %*** Fault on LHS of 
capacitor 
    Zset1 = zc*tanh(gam*Lset*0.8)+Zcap;      %zone 1 80% reach 
    Zset2 = zc*tanh(gam*Lset*1.2)+Zcap;      %zone 2 120% reach 
else 
    Zcap=Rcap+1i*Xcap+1i;                    %*** Fault on RHS of 
capacitor 
    Zset1 = zc*tanh(gam*Lset*0.8)+Zcap;      %zone 1 80% reach 
    Zset2 = zc*tanh(gam*Lset*1.2)+Zcap;      %zone 2 120% reach 
End 
 
%Zone 1 
Req1=real(Zset1); 
Xeq1=imag(Zset1); 
Zangle1=atan(Xeq1/Req1); 
%Zone 2 
Req2=real(Zset2); 
Xeq2=imag(Zset2); 
Zangle2=atan(Xeq2/Req2); 
%radius of zone 1 circle 
R_zone1 = sqrt((Req1)^2+(Xeq1)^2)/2;     
%center of Zone 1 circle (a,b) 
a=R_zone1*(cos(Zangle1)); 
b=R_zone1*(sin(Zangle1)); 
%circle of radius Zone 1 centred at (a,b) 
c = R_zone1*cos(theta)+a; 
d = R_zone1*sin(theta)+b; 
%radius of zone 2 circle 
R_zone2 = sqrt((Req2)^2+(Xeq2)^2)/2;     
%center of Zone 2 circle (f,e) 
f=R_zone2*(cos(Zangle2)); 
e=R_zone2*(sin(Zangle2)); 
%circle of radius Zone 2 centred at (f,e) 
g = R_zone2*cos(theta)+f; 
h = R_zone2*sin(theta)+e; 
%impedance line 
t=0:0.1:250; 
u=t*(b/a); 
  
p1 = figure('position',[455 200 350 300]); 
set(gca,'fontsize',13)  
p2=plot(t,u,'b',c,d,'g',g,h,'m','LineWidth',2); 
hold on 
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p3=plot(p,q,'k--',r,s,'k--','LineWidth',0.4); 
p4=plot(R6,X6,'b+'); 
hold off 
legend([p4],{'SLGF'},'Location','northwest','FontSize',10); 
  
if Fault_Under300km==1  %*** Fault on LHS of capacitor 
    ymax=1.11*max(h);         
    ymin=-22; 
    xmax=1.15*max(g); 
    xmin=1.34*min(g); 
else 
    ymax=1.3*max(h);        %*** Fault on RHS of capacitor  
    ymin=-15; 
    xmax=1.22*max(g); 
    xmin=1.8*min(g); 
end 
axis([xmin xmax ymin ymax]);  
xlabel('Resistance (R)'); 
ylabel('Reactance (X)'); 
grid off 
end 
 
 

Appendix E 

Additional MATLAB Codes 
 

This appendix presents extra MATLAB codes that compares different study cases 

presented throughout the thesis. 

 
 

E.1 Base Case 1 - Apparent Impedance Trajectories 

%Apparent Impedance Trajectories for 0% compensation and Average Wind 
%Level 
 
theta = 0:.01:(2*pi); 
p=0; 
q=-100:0.6:450; 
r=-250:0.3:350; 
s=0; 
%Transmission Line Impedance 
line_length = 600; 
R1 = 0.038806; 
X1 = 0.377416;                   %Xl1=2*pi*f*L 
Xc = 1.15922e-8*377;             %Xc1=2*pi*f*C 
%Distributed Parameters 
Zt = R1+1i*X1;                   %line impedance 
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Yt = 1i*Xc;                      %admittance 
zc = sqrt(Zt/Yt);                %characteristic impedance 
gam = sqrt(Zt*Yt);               %propagation constant 
Lset = 600;                      %relay reach  
Zset1 = zc*tanh(gam*Lset*0.8);   %zone 1 80% reach 
Zset2 = zc*tanh(gam*Lset*1.2);   %zone 2 120% reach 
%Zone 1 
Req1=real(Zset1); 
Xeq1=imag(Zset1); 
Zangle1=atan(Xeq1/Req1); 
%Zone 2 
Req2=real(Zset2); 
Xeq2=imag(Zset2); 
Zangle2=atan(Xeq2/Req2); 
  
filename=['C:\matlab_dot_mat_files\00_SLGF_000km_NoCapac_AveWind.mat'; 
'C:\matlab_dot_mat_files\00_SLGF_100km_NoCapac_AveWind.mat'; 
'C:\matlab_dot_mat_files\00_SLGF_200km_NoCapac_AveWind.mat'; 
'C:\matlab_dot_mat_files\00_SLGF_300km_NoCapac_AveWind.mat'; 
'C:\matlab_dot_mat_files\00_SLGF_400km_NoCapac_AveWind.mat'; 
'C:\matlab_dot_mat_files\00_SLGF_500km_NoCapac_AveWind.mat'; 
'C:\matlab_dot_mat_files\00_SLGF_600km_NoCapac_AveWind.mat']; 
[n,m]=size(filename);            
  
for i=1:1:n 
C = strsplit(filename(i,:),'\');                        
fileName=char(C(3))      
  
S=load(filename(i,:)) 
    Rave00_l=S.R6;   %apparent impedance seen by relay A 
    Xave00_l=S.X6; 
    Rave00_r=S.R8;   %apparent impedance seen by relay B 
    Xave00_r=S.X8; 
 
%---Mho relay zone 1 and 2 setting (0% compensation)--- 
%radius of zone 1 circle 
R_zone1 = sqrt((Req1)^2+(Xeq1)^2)/2;    %circle radius zone 1 
%center of zone 1 circle (a,b) 
a=R_zone1*(cos(Zangle1)); 
b=R_zone1*(sin(Zangle1)); 
%circle of radius Zone 1 centred at (a,b) 
c = R_zone1*cos(theta)+a; 
d = R_zone1*sin(theta)+b; 
  
%radius of zone 2 circle 
R_zone2 = sqrt((Req2)^2+(Xeq2)^2)/2;    %circle radius zone 2 
%center of zone 2 circle (f,e) 
f=R_zone2*(cos(Zangle2)); 
e=R_zone2*(sin(Zangle2)); 
%circle of radius Zone 2 centred at (f,e) 
g = R_zone2*cos(theta)+f; 
h = R_zone2*sin(theta)+e; 
  
%impedance line 
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t=0:0.1:150; 
u=t*(b/a); 
  
%%Plots: 
%Mho relay A                    
ha(1) = figure('position',[100 200 380 330]);        
p1=plot(t,u,'b',c,d,'g',g,h,'m','LineWidth',2); 
hold on 
p3=plot(p,q,'k--',r,s,'k--','LineWidth',1); 
p2=plot(Rave00_l,Xave00_l,':k+'); 
hold off 
legend([p2],{'0% Comp'},'Location','northwest','FontSize',13); 
set(gca,'fontsize',13)                                                      
ymax=1.11*max(h); 
ymin=-22; 
xmax=1.16*max(g); 
xmin=1.25*min(g); 
%axis([-190 240 -10 400]); 
axis([xmin xmax ymin ymax]);  
xlabel('Resistance (R)'); 
ylabel('Reactance (X)'); 
  
%Mho relay B 
ha(2) = figure('position',[550 200 380 330]);        
p1=plot(t,u,'b',c,d,'g',g,h,'m','LineWidth',2); 
hold on 
p3=plot(p,q,'k--',r,s,'k--','LineWidth',1); 
p2=plot(Rave00_r,Xave00_r,':k+'); 
hold off 
legend([p2],{'0% Comp'},'Location','northwest','FontSize',13); 
set(gca,'fontsize',13)                                                     
ymax=1.11*max(h); 
ymin=-22; 
xmax=1.16*max(g); 
xmin=1.25*min(g); 
axis([xmin xmax ymin ymax]);  
xlabel('Resistance (R)'); 
ylabel('Reactance (X)'); 
  
%Save figures                 
FigName=strcat(fileName(1,9:29),'_BaseCase.fig');    
%0km_NoCapac_AveWind_BaseCase.fig 
  
savefig(ha, FigName);                             
%close(ha); 
end 
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E.2 Case 2 -  Apparent Impedance Trajectories for 0%, 20%, 40%, and 60% 

Compensation Levels Plots 

%Effects of Compensation Levels on Apparent Impedances of Relays A&B 
theta = 0:.01:(2*pi); 
p=0; 
q=-100:0.6:450; 
r=-250:0.3:350; 
s=0; 
%Transmission Line Impedance 
line_length = 600; 
R1 = 0.038806; 
X1 = 0.377416;                        
Xc = 1.15922e-8*377;                  
%Distributed Parameters Compensation 
Zt = R1+1i*X1;                        
Yt = 1i*Xc;                           
zc = sqrt(Zt/Yt);                     
gam = sqrt(Zt*Yt);                    
Lset = 600;                           
Zset1 = zc*tanh(gam*Lset*0.8);        
Zset2 = zc*tanh(gam*Lset*1.2);        
  
filename=['SLGF_000km_WithCap_AveWind.mat'; 
'SLGF_100km_WithCap_AveWind.mat'; 
'SLGF_200km_WithCap_AveWind.mat'; 
'SLGF_300LkmWithCap_AveWind.mat'; 
'SLGF_300RkmWithCap_AveWind.mat'; 
'SLGF_400km_WithCap_AveWind.mat'; 
'SLGF_500km_WithCap_AveWind.mat'; 
'SLGF_600km_WithCap_AveWind.mat']; 
[n,m]=size(filename); 
  
for i=1:1:n 
  
if i==4 || i==5     
  
C00=strcat('C:\matlab_dot_mat_files\00_SLGF_300km_NoCapac_AveWind.mat')
; 
else 
  
C00=strcat('C:\matlab_dot_mat_files\00_',filename(i,1:10),'_NoCapac_Ave
Wind.mat'); 
end 
C20=strcat('C:\matlab_dot_mat_files\20_',filename(i,1:m)); 
C40=strcat('C:\matlab_dot_mat_files\40_',filename(i,1:m)); 
C60=strcat('C:\matlab_dot_mat_files\60_',filename(i,1:m)); 
C = strsplit(C60,'\');                  
  
WindType=filename(i,20:26)              
if strcmp(WindType,'AveWind') 
    WindType = 'Average Wind'; 
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elseif strcmp(WindType,'MaxWind') 
    WindType = 'Maximum Wind'; 
elseif strcmp(WindType,'MinWind') 
    WindType = 'Minimum Wind'; 
end 
  
S=load(C00)        % 0% compensation 
    Rave00_l=S.R6;      %apparent impedance seen by relay A 
    Xave00_l=S.X6; 
    Rave00_r=S.R8;      %apparent impedance seen by relay A 
    Xave00_r=S.X8; 
  
S=load(C20)        % 20% compensation 
    Rave20_l=S.R6;      %apparent impedance seen by relay A 
    Xave20_l=S.X6; 
    Rave20_r=S.R8;      %apparent impedance seen by relay A 
    Xave20_r=S.X8; 
  
S=load(C40)        % 40% compensation 
    Rave40_l=S.R6;      %apparent impedance seen by relay A 
    Xave40_l=S.X6; 
    Rave40_r=S.R8;      %apparent impedance seen by relay A 
    Xave40_r=S.X8; 
  
S=load(C60)        % 60% compensation 
    Rave60_l=S.R6;      %apparent impedance seen by relay A 
    Xave60_l=S.X6; 
    Rave60_r=S.R8;      %apparent impedance seen by relay A 
    Xave60_r=S.X8; 
  
fileName=char(C(6)); 
Zcap=0; 
Req1=real(Zset1); 
Xeq1=imag(Zset1); 
Zangle1=atan(Xeq1/Req1); 
Req2=real(Zset2); 
Xeq2=imag(Zset2); 
Zangle2=atan(Xeq2/Req2); 
% radius of Zone 1 circle 
R_zone1 = sqrt((Req1)^2+(Xeq1)^2)/2;     
%center of Zone 1 circle (a,b) 
a=R_zone1*(cos(Zangle1)); 
b=R_zone1*(sin(Zangle1)); 
%circle of radius Zone 1 centred at (a,b) 
c = R_zone1*cos(theta)+a; 
d = R_zone1*sin(theta)+b; 
% radius of Zone 2 circle 
R_zone2 = sqrt((Req2)^2+(Xeq2)^2)/2;     
%center of Zone 2 circle (f,e) 
f=R_zone2*(cos(Zangle2)); 
e=R_zone2*(sin(Zangle2)); 
%circle of radius Zone 2 centred at (f,e) 
g = R_zone2*cos(theta)+f; 
h = R_zone2*sin(theta)+e; 
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%impedance line 
t=0:0.1:150; 
u=t*(b/a); 
 
%% Plots: 
%Mho relay A     
ha(1) = figure('position',[100 200 380 330]);        
p1=plot(t,u,'b',c,d,'g',g,h,'m','LineWidth',2); 
hold on 
p6=plot(p,q,'k--',r,s,'k--','LineWidth',0.4); 
p2=plot(Rave00_l,Xave00_l,':k+'); 
p3=plot(Rave20_l,Xave20_l,':m*'); 
p4=plot(Rave40_l,Xave40_l,':ro'); 
p5=plot(Rave60_l,Xave60_l,':bs'); 
hold off 
legend([p2,p3,p4,p5],{'0%','20%','40%','60%'},'Location','northwest','F
ontSize',13); 
set(gca,'fontsize',13)                                                     
ymax=1.11*max(h); 
ymin=-22; 
xmax=1.15*max(g); 
xmin=1.34*min(g); 
axis([xmin xmax ymin ymax]);  
xlabel('Resistance (R)'); 
ylabel('Reactance (X)'); 
  
%Mho relay B 
ha(2) = figure('position',[550 200 380 330]);       
p1b=plot(t,u,'b',c,d,'g',g,h,'m','LineWidth',2); 
hold on; 
p6b=plot(p,q,'k--',r,s,'k--','LineWidth',0.4); 
p2b=plot(Rave00_r,Xave00_r,':k+'); 
p3b=plot(Rave20_r,Xave20_r,':m*'); 
p4b=plot(Rave40_r,Xave40_r,':ro'); 
p5b=plot(Rave60_r,Xave60_r,':bs'); 
hold off 
legend([p2b,p3b,p4b,p5b],{'0%','20%','40%','60%'},'Location','northwest
','FontSize',13); 
set(gca,'fontsize',13)                                                     
ymax=1.11*max(h); 
ymin=-22; 
xmax=1.15*max(g); 
xmin=1.34*min(g); 
axis([xmin xmax ymin ymax]);  
xlabel('Resistance (R)'); 
ylabel('Reactance (X)'); 
  
%Save figures 
D = strsplit(filename(i,1:m),'.');       
FigName=strcat(D(1),'_0_20_40_60.fig'); 
  
savefig(ha, FigName{1});                                     
end 
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E.3 Case 3 - Relays A&B’s Apparent Impedance Plots for Average, Maximum, and 

Minimum Wind Levels with the Base Case Plots 

%Case 2: Comparing Ave, Max, & Min Wind Levels with Base Case 
theta = 0:.01:(2*pi); 
p=0; 
q=-100:0.6:450; 
r=-250:0.3:350; 
s=0; 
%Transmission Line Impedance 
line_length = 600; 
R1 = 0.038806; 
X1 = 0.377416;                        
Xc = 1.15922e-8*377;                  
%Distributed Parameters Compensation 
Zt = R1+1i*X1;                        
Yt = 1i*Xc;                           
zc = sqrt(Zt/Yt);                     
gam = sqrt(Zt*Yt);                    
Lset = 600;                           
Zset1 = zc*tanh(gam*Lset*0.8);        
Zset2 = zc*tanh(gam*Lset*1.2);        
 
%Zone 1 
Req1=real(Zset1); 
Xeq1=imag(Zset1); 
Zangle1=atan(Xeq1/Req1); 
%Zone 2 
Req2=real(Zset2); 
Xeq2=imag(Zset2); 
Zangle2=atan(Xeq2/Req2); 
 
% radius of Zone 1 circle 
R_zone1 = sqrt((Req1)^2+(Xeq1)^2)/2;     
%center of Zone 1 circle (a,b) 
a=R_zone1*(cos(Zangle1)); 
b=R_zone1*(sin(Zangle1)); 
%circle of radius Zone 1 centred at (a,b) 
c = R_zone1*cos(theta)+a; 
d = R_zone1*sin(theta)+b; 
% radius of Zone 2 circle 
R_zone2 = sqrt((Req2)^2+(Xeq2)^2)/2;     
%center of Zone 2 circle (f,e) 
f=R_zone2*(cos(Zangle2)); 
e=R_zone2*(sin(Zangle2)); 
%circle of radius Zone 2 centred at (f,e) 
g = R_zone2*cos(theta)+f; 
h = R_zone2*sin(theta)+e; 
%impedance line 
t=0:0.1:150; 
u=t*(b/a); 
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filename=[ 
'C:\matlab_dot_mat_files\60_SLGF_000km_WithCap'; 
'C:\matlab_dot_mat_files\60_SLGF_100km_WithCap'; 
'C:\matlab_dot_mat_files\60_SLGF_200km_WithCap'; 
'C:\matlab_dot_mat_files\60_SLGF_300LkmWithCap'; 
'C:\matlab_dot_mat_files\60_SLGF_300RkmWithCap'; 
'C:\matlab_dot_mat_files\60_SLGF_400km_WithCap'; 
'C:\matlab_dot_mat_files\60_SLGF_500km_WithCap'; 
'C:\matlab_dot_mat_files\60_SLGF_600km_WithCap']; 
 [n,m]=size(filename); 
  
for i=1:1:n   
Ave=strcat(filename(i,1:m),'_AveWind.mat'); 
Max=strcat(filename(i,1:m),'_MaxWind.mat'); 
Min=strcat(filename(i,1:m),'_MinWind.mat'); 
C = strsplit(filename(i,1:m),'\');    %ex: 60_SLGF_100km_WithCap 
A=C{3}; 
if A(9:11)=='000' 
 NoCap='C:\matlab_dot_mat_files\00_SLGF_000km_NoCapac_AveWind.mat';  
elseif A(9:11)=='100' 
 NoCap='C:\matlab_dot_mat_files\00_SLGF_100km_NoCapac_AveWind.mat'; 
elseif A(9:11)=='200'    
 NoCap='C:\matlab_dot_mat_files\00_SLGF_200km_NoCapac_AveWind.mat'; 
elseif A(9:11)=='300' 
 NoCap='C:\matlab_dot_mat_files\00_SLGF_300km_NoCapac_AveWind.mat'; 
elseif A(9:11)=='400' 
 NoCap='C:\matlab_dot_mat_files\00_SLGF_400km_NoCapac_AveWind.mat'; 
elseif A(9:11)=='500' 
 NoCap='C:\matlab_dot_mat_files\00_SLGF_500km_NoCapac_AveWind.mat'; 
elseif A(9:11)=='600' 
 NoCap='C:\matlab_dot_mat_files\00_SLGF_600km_NoCapac_AveWind.mat'; 
end 
  
S=load(NoCap) 
    Rzero_l=S.R6;      %apparent impedance seen by relay A 
    Xzero_l=S.X6; 
    Rzero_r=S.R8;      %apparent impedance seen by relay A 
    Xzero_r=S.X8; 
  
S=load(Ave) 
    Rave_l=S.R6;      %apparent impedance seen by relay A 
    Xave_l=S.X6; 
    Rave_r=S.R8;      %apparent impedance seen by relay A 
    Xave_r=S.X8; 
  
S=load(Max) 
    Rmax_l=S.R6;      %apparent impedance seen by relay A 
    Xmax_l=S.X6; 
    Rmax_r=S.R8;      %apparent impedance seen by relay A 
    Xmax_r=S.X8; 
S=load(Min) 
    Rmin_l=S.R6;      %apparent impedance seen by relay A 
    Xmin_l=S.X6; 
    Rmin_r=S.R8;      %apparent impedance seen by relay A 
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    Xmin_r=S.X8; 
  
fileName=char(C(3)); 
 
%%Plots: 
ha(1) = figure('position',[100 200 380 330]);        
p1=plot(t,u,'b',c,d,'g',g,h,'m','LineWidth',2); 
hold on 
p6=plot(p,q,'k--',r,s,'k--','LineWidth',1); 
p2=plot(Rzero_l,Xzero_l,':kx'); 
p3=plot(Rave_l,Xave_l,':mo'); 
p4=plot(Rmax_l,Xmax_l,':bs'); 
p5=plot(Rmin_l,Xmin_l,':r*'); 
hold off 
set(gca,'fontsize',13)                     
legend([p2,p3,p4,p5],{'0%Comp','AveWind','MaxWind','MinWind'},'Location
','northwest','FontSize',12); 
ymax=1.11*max(h); 
ymin=-22; 
xmax=1.1*max(g); 
xmin=1.34*min(g); 
axis([xmin xmax ymin ymax]);  
xlabel('Resistance (R)'); 
ylabel('Reactance (X)'); 
  
ha(2) = figure('position',[550 200 380 330]);        
p1b=plot(t,u,'b',c,d,'g',g,h,'m','LineWidth',2); 
hold on 
p6b=plot(p,q,'k--',r,s,'k--','LineWidth',1); 
p2b=plot(Rzero_r,Xzero_r,':kx'); 
p3b=plot(Rave_r,Xave_r,':mo'); 
p4b=plot(Rmax_r,Xmax_r,':bs'); 
p5b=plot(Rmin_r,Xmin_r,':r*'); 
hold off 
set(gca,'fontsize',13)                      
legend([p2b,p3b,p4b,p5b],{'0%Comp','AveWind','MaxWind','MinWind'},'Loca
tion','northwest','FontSize',12); 
ymax=1.11*max(h); 
ymin=-22; 
xmax=1.1*max(g); 
xmin=1.34*min(g); 
axis([xmin xmax ymin ymax]);  
xlabel('Resistance (R)'); 
ylabel('Reactance (X)'); 
  
%Save figures 
C = strsplit(filename(i,1:m),'\');               %ex: 
60_SLGF_200km_WithCap 
FigName=strcat(C(3),'_ave_max_min_wind.fig'); 
  
savefig(ha, FigName{1});                            
%close(ha); 
end 
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E.4 Case 4 - Adaptive Mho Relay Setting Plots for Average Wind with Equivalent 
MOV/Capacitor impedance Plots 

%-- Case 4: Adaptive Mho Relay Setting for Average Wind -- 
theta = 0:.01:(2*pi); 
p=0; 
q=-100:0.6:550; 
r=-300:0.3:300; 
s=0; 
%Transmission Line Impedance 
line_length = 600; 
R1 = 0.038806; 
X1 = 0.377416;                        
Xc = 1.15922e-8*377;                  
%Distributed Parameters Compensation 
Zt = R1+1i*X1;                        
Yt = 1i*Xc;                           
zc = sqrt(Zt/Yt);                     
gam = sqrt(Zt*Yt);                    
Lset = 600;                           
Zset1 = zc*tanh(gam*Lset*0.8);        
Zset2 = zc*tanh(gam*Lset*1.2);        
  
%Different Wind Levels can be changed (Ave, Max, or Min) 
filename=[                            
'SLGF_000km_WithCap_AveWind.mat'; 
'SLGF_100km_WithCap_AveWind.mat'; 
'SLGF_200km_WithCap_AveWind.mat'; 
'SLGF_300LkmWithCap_AveWind.mat'; 
'SLGF_300RkmWithCap_AveWind.mat'; 
'SLGF_400km_WithCap_AveWind.mat'; 
'SLGF_500km_WithCap_AveWind.mat'; 
'SLGF_600km_WithCap_AveWind.mat']; 
[n,m]=size(filename); 
  
for i=1:1:n 
fileName_=filename(i,1:end); 
C60=strcat('C:\matlab_dot_mat_files\60_',filename(i,1:m)); 
C = strsplit(C60,'\');                   
  
WindType=filename(i,20:26)               
if strcmp(WindType,'AveWind') 
    WindType = 'Average Wind'; 
elseif strcmp(WindType,'MaxWind') 
    WindType = 'Maximum Wind'; 
elseif strcmp(WindType,'MinWind') 
    WindType = 'Minimum Wind'; 
end 
 
S=load(C60) 
    Rave60_l=S.R6;      %apparent impedance seen by relay A 
    Xave60_l=S.X6; 
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    Rave60_r=S.R8;      %apparent impedance seen by relay A 
    Xave60_r=S.X8; 
  
Rcap=S.Rcap_phA(end); 
fprintf('\nRcap=%d\n',Rcap) 
Xcap=S.Xcap_phA(end); 
fprintf('\nXcap=%d\n',Xcap) 
  
%Adaptive Mho Relay A Setting with Equivalent MOV/capacitor impedance 
fileName=char(C(3)); 
if strcmp(fileName(9),'0') || strcmp(fileName(9),'1') || 
strcmp(fileName(9),'2') || strcmp(fileName(9:12),'300L') 
    Zcap=0;                             %Fault on LHS of capacitor bank 
    Zset1 = zc*tanh(gam*Lset*0.8)+Zcap;      %zone 1 80% reach 
    Zset2 = zc*tanh(gam*Lset*1.2)+Zcap;      %zone 2 120% reach 
else  
    Zcap=Rcap+1i*Xcap+1i;               %Fault on RHS of capacitor bank 
    Zset1 = zc*tanh(gam*Lset*0.8)+Zcap;      % zone 1 80% reach 
    Zset2 = zc*tanh(gam*Lset*1.15)+Zcap;     %zone 2 120% reach 
end 
%Zone 1 
Req1=real(Zset1); 
Xeq1=imag(Zset1); 
Zangle1=atan(Xeq1/Req1); 
%Zone 2 
Req2=real(Zset2); 
Xeq2=imag(Zset2); 
Zangle2=atan(Xeq2/Req2); 
 
% radius of Zone 1 circle 
R_zone1 = sqrt((Req1)^2+(Xeq1)^2)/2;     
%center of Zone 1 circle (a,b) 
a=R_zone1*(cos(Zangle1)); 
b=R_zone1*(sin(Zangle1)); 
%circle of radius Zone 1 centred at (a,b) 
c = R_zone1*cos(theta)+a; 
d = R_zone1*sin(theta)+b; 
% radius of Zone 2 circle 
R_zone2 = sqrt((Req2)^2+(Xeq2)^2)/2;     
%center of Zone 2 circle (f,e) 
f=R_zone2*(cos(Zangle2)); 
e=R_zone2*(sin(Zangle2)); 
%circle of radius Zone 2 centred at (f,e) 
g = R_zone2*cos(theta)+f; 
h = R_zone2*sin(theta)+e; 
%impedance line 
t=0:0.1:250; 
u=t*(b/a); 
  
%% Plots: 
%Mho relay A 
ha(1) = figure('position',[100 300 380 330]);        
set(gca,'fontsize',13)  
p1a=plot(t,u,'b',c,d,'g',g,h,'m','LineWidth',2); 
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hold on 
p2a=plot(p,q,'k--',r,s,'k--','LineWidth',0.4); 
p3a=plot(Rave60_l,Xave60_l,':mo'); 
hold off 
legend([p3a],{'0%','20%','40%','60%'},'Location','northwest','FontSize'
,12.5); 
if strcmp(fileName(9),'0') || strcmp(fileName(9),'1') || 
strcmp(fileName(9),'2') || strcmp(fileName(9:12),'300L') 
    ymax=1.11*max(h);             
    ymin=-22; 
    xmax=1.15*max(g); 
    xmin=1.34*min(g); 
else                                                
    ymax=1.3*max(h);              
    ymin=-15; 
    xmax=1.22*max(g); 
    xmin=1.8*min(g); 
end 
  
axis([xmin xmax ymin ymax]);  
xlabel('Resistance (R)'); 
ylabel('Reactance (X)'); 
  
%Adaptive Mho Relay B Setting with Equivalent MOV/capacitor impedance 
if strcmp(fileName(9:12),'300R') || strcmp(fileName(9),'4') || 
strcmp(fileName(9),'5') || strcmp(fileName(9),'6') 
    Zcap=0;                                  %Fault on RHS of capacitor 
    Zset1 = zc*tanh(gam*Lset*0.8)+Zcap;      %zone 1 80% reach 
    Zset2 = zc*tanh(gam*Lset*1.2)+Zcap;      %zone 2 120% reach 
else  
    Zcap=Rcap+1i*Xcap+1i;                    %Fault on LHS of capacitor 
    Zset1 = zc*tanh(gam*Lset*0.8)+Zcap;      %zone 1 80% reach 
    Zset2 = zc*tanh(gam*Lset*1.12)+Zcap;     %zone 2 120% reach 
end 
%zone 1 
Req1=real(Zset1); 
Xeq1=imag(Zset1); 
Zangle1=atan(Xeq1/Req1); 
%zone 2 
Req2=real(Zset2); 
Xeq2=imag(Zset2); 
Zangle2=atan(Xeq2/Req2); 
 
% radius of Zone 1 circle 
R_zone1 = sqrt((Req1)^2+(Xeq1)^2)/2;     
%center of Zone 1 circle (a,b) 
a=R_zone1*(cos(Zangle1)); 
b=R_zone1*(sin(Zangle1)); 
%circle of radius Zone 1 centred at (a,b) 
c = R_zone1*cos(theta)+a; 
d = R_zone1*sin(theta)+b; 
% radius of Zone 2 circle 
R_zone2 = sqrt((Req2)^2+(Xeq2)^2)/2;     
%center of Zone 2 circle (f,e) 
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f=R_zone2*(cos(Zangle2)); 
e=R_zone2*(sin(Zangle2)); 
%circle of radius Zone 2 centred at (f,e) 
g = R_zone2*cos(theta)+f; 
h = R_zone2*sin(theta)+e; 
%impedance line 
t=0:0.1:250; 
u=t*(b/a); 
 
%Mho relay B 
ha(2) = figure('position',[550 300 380 330]);  
set(gca,'fontsize',13)  
p1b=plot(t,u,'b',c,d,'g',g,h,'m','LineWidth',2); 
hold on; 
p2b=plot(p,q,'k--',r,s,'k--','LineWidth',0.4); 
p3b=plot(Rave60_r,Xave60_r,':mo'); 
hold off 
legend([p3b],{'0%','20%','40%','60%'},'Location','northwest','FontSize'
,12.5); 
if strcmp(fileName(9:12),'300R') || strcmp(fileName(9),'4') || 
strcmp(fileName(9),'5') || strcmp(fileName(9),'6') 
     ymax=1.11*max(h);         
     ymin=-22; 
     xmax=1.15*max(g); 
     xmin=1.34*min(g); 
else 
    ymax=1.3*max(h);            
    ymin=-15; 
    xmax=1.22*max(g); 
    xmin=1.5*min(g); 
end 
axis([xmin xmax ymin ymax]);  
xlabel('Resistance (R)'); 
ylabel('Reactance (X)'); 
  
%Save figures 
D = strsplit(filename(i,1:m),'.');            
FigName=strcat(D(1),'_AdaptSetting.fig'); 
  
savefig(ha, FigName{1});                      
%close(ha); 
end 
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