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ABSTRACT 

 

 

Approximately 92,000 ureteral stents are implanted every year to maintain urine 

flow after treatment of kidney stones, kidney transplants, and urinary incontinence. 

However, current ureteral stents have several downsides that include encrustation, 

urgency due to the proximal curl pressing on the bladder, patient pain from inflexible 

stents, and most importantly, the need for a follow up removal surgery.  To address many 

of these current issues, a novel biodegradable stent was designed, fabricated, and 

characterized in the present studies.  The innovative stent design features the use of 

biodegradable, FDA approved polydioxanone polymer material that was aimed to reduce 

encrustation and eliminate the need for a removal surgery.  Additionally, the stent’s novel 

coiled shape is intended to provide flexibility and anchor into the ureter.  By eliminating 

the clinically conventional “double J” anchors, this could prevent the issue of the 

proximal anchor pressing on the bladder, remove the risk of encrustation on the distal 

anchor, and provide for better patient comfort by creating a more axially flexible stent. 

The novel stent was fabricated by winding a PDO suture around a mandrel and annealing 

at 100 °C.  This annealing step increased the stiffness of the polymer as determined by 

cantilever bend testing.  The source of this stiffness increase was determined to be due to 

an increase in crystallinity as verified by Differential Scanning Calorimetry and Wide 

Angle X-Ray Scattering.  The results of custom testing in the present study also provided 

evidence that the stent exhibits adequate anchor strength and radial strength to maintain 

patency, which would allow standard ureteral flow conditions.  Finally, an in vitro 

experiment demonstrated that the stent degrades in four weeks under normal 
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physiological conditions, which is believed to be the ideal degradation time for the 

majority of ureteral stent applications.  The results of this thesis provide strong 

supporting evidence that the proposed stent design has the ability to improve patient 

outcomes by addressing the drawbacks of current stent technology.  However, further 

characterization efforts using animal models will be necessary to assure the safety and 

efficacy of this technology before it is ready for clinical use.   
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1. LITERATURE REVIEW 

 

1.1 Clinical Motivation 

To maintain patency to sustain a steady flow of urine from the kidney to the 

bladder, ureteral stents are implanted after nearly every nephrological procedure 

including treatment for urinary incontinence, kidney stones, and renal transplants. [1], 

[2], [3]  Ureteral stents have had a significant impact in the field of urology, turning many 

procedures that would have required overnight stays in the hospital into outpatient 

procedures [4].  Despite their popularity, several downsides to using current ureteral stent 

technology exist.  First, when a stent is implanted for any length of time, encrustation of 

the device can occur.[5], [6], [7]  Most significantly, ureteral stents always require a 

second procedure to be removed.  Though time varies based on the procedure, it is rare 

for a stent to be implanted longer than 90 days. [8], [9], [10]  This removal procedure is 

both a loss of time for the urologist and an additional expense for the patient.   To date, 

however, these problems are yet to be solved by existing stent technologies. 

 

1.2 Anatomy of the Urinary System 

 The urinary system consists of the kidneys, ureters, bladder, and urethra and  its 

main function is to remove waste (e.g., uric acid, creatinine, ammonium, ions, sulphates, 

phosphates, and oxalates)  [11] from the blood stream and convert it into urine.  The urine 

travels down the ureters into the bladder where it is stored.  Voiding of the urine through 
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the urethra takes place by coordinated relaxation of the external urethral sphincter and 

contraction of the bladder smooth muscle forcing the urine out of the body.  [12] 

 

Figure 1-1 Urinary System 

[13] 

 

1.2.1 Kidney 

 

 The kidneys (Fig. 1-1) are bean shaped organs that filter waste out of the blood by 

1 million tiny units called nephrons. [14] Within each nephron is the glomerulus with 

specialized structures called fenestrae that selectively allow small molecules to pass 

through and retain larger substances like red blood cells in the blood.  This filtrate is 

combined with water secreted by the kidney to produce urine. The urine is transported 

through a tubule through the inner part of the kidney into the collecting duct.  Urine is 

then transported by the ureter to the bladder.  [12] 
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Figure 1-2 Nephron 

[15] 

 

1.2.2 Ureters 

 

 The ureters are roughly 25 cm in length and allow transport of urine from the 

kidney to the bladder via peristalsis.  The wall of the ureter is composed of three layers, 

the mucosa, muscularis, and adventitia.  Unlike other transport tubules such as the GI 

tract, the ureter lacks the connective tissue layer known as the submucosa.   

 The innermost, mucosa layer is further divided into transitional epithelium, which 

prevents urine absorption, and the lamina propria, a relatively thick layer of connective 

tissue.  The mucosa typically exhibits a folded morphology.  However, as peristaltic 
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waves travel the ureter, the folds can stretch which increases the diameter of the ureter 

dramatically. [12] The muscularis responsible for peristaltic motion is composed of two 

bands of smooth muscle orthogonally oriented in longitudinal and circular directions.  

This muscle contracts in a wave like motion to form boluses of urine that move along the 

ureter in the inferior direction.  It has been reported that the pressure generated by the 

peristalsis can be as high as 1.9 kgf/cm2  [16]  The outermost adventitia layer is 

composed of aereolar connective tissue and its primary purpose is to anchor the ureter to 

the posterior abdominal wall.  

 

 

 

Figure 1-3 Histology of the Ureter 

(Adapted from [17]) 

Blood supply to the ureter is provided from the branch of the nearest artery (e.g., renal 

arteries, aorta, common iliac, or internal iliac arteries) and drainage is from companion 

veins. 

Mucosa 

Adventitia 

Muscularis 
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Figure 1-4 Vascularization of the ureter 

[18] 

 The superior region of the ureter is innervated by parasympathetic fibers from the 

Central Nervous System (CNX) via the dorsal vagus nerve, while the inferior region is 

innervated by the pelvic splanchnic nerves.  While not known definitively, it is believed 

that this modulates intrinsic pacemaker cells, which cause the regular peristaltic action. 

[19] 

 It has been observed that the ureter has three physiologic narrowings.  First, 

where the ureter connects to the kidney, is called the ureteropelvic junction.  Second, 

where it crosses over the iliac vessel.  Finally, where it connects to the bladder called the 

ureterovesical junction.  The ureteropelvic junction and ureterovesical junction are the 

location where stones are most likely to be trapped. [20]  These three narrowings also 

limit retrograde instrumentation such as placement of a ureteral stent.   
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1.2.3 Urinary Bladder 

 The bladder is an organ whose purpose is storage and periodic voiding of urine.  

The bladder can contain on average 350 mL of urine before urgency to urinate is felt, but 

as much as 700 mL can be retained in adult humans.  [21] Due to its folded rugae and 

high elastin content the bladder is highly distendable. [22], [23], [24]  During storage of 

urine, continence is maintained by the external uretheral sphincter. [12] 

Backflow into the ureter is prevented by the special anatomical structure of the 

vesicoureteral junction.  Instead of connecting perpendicular to the bladder wall, the 

ureter enters the bladder diagonally and runs 1.2-2.5 centimeters along the bladder wall 

(Figure 1-5). [17]  When the bladder is filled this segment flattens, thus preventing 

backflow of the urine into the ureter.   

 

 

Figure 1-5 Vesicoureteral Junction 

(Adapted from [25]) 

Vesicoureteral 

Junction 
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1.3 Ureteral Stents 

 Ureteral stents are devices that are implanted to physically hold open the ureter 

allowing urine to flow.  Indications that determine when to use a ureteral stent can be 

broadly organized under five main classifications are: 1)  Relief of a cancerous 

obstruction; 2) Adjunct to stone therapy; 3) Perioperative placement; 4) Management of 

urine leak; and 5) Relief of ureteral stricture.  The most typical indication for stent use is 

as part of kidney stone treatment.  [26], [27], [28] 

 It is worth noting that the terminology for ureteral stents has changed over the 

years.  Until the 1950s the terms tube, catheter, and retention catheter were adequate to 

describe procedures in urology. [29]  The first publications on ureteral stents used the 

term “splint” perhaps because it was used to immobilize the ureter in a fashion similar to 

a leg splint.  Researchers often retroactively refer to what was called “splints” as “stents”. 

[29], [30]  Additionally, there is some confusion between the term “ureteric” and 

“ureteral”.  The author has found no differentiation between these two terms, though it 

appears that “ureteral” is the most common usage.  For the purpose of this paper all 

descriptions will classified as “ureteral stents”. 

The first stent described in literature in 1952 was little more than a silicone tube. 

[30]  While it provided adequate drainage, it frequently migrated into the bladder.  [31]  

In 1967, ureter specific stent was designed by Gibbons, who successfully created an 

anchor to hold the stent in place in the ureter.  The Gibbons stent was barbed on the 

exterior to keep it from moving down the ureter and had a “C” shaped bend at the 
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proximal end to prevent the stent from moving up the ureter.  While initially popular the 

Gibbons stent is no longer on the market due to difficulty with insertion.  [32], [33] 

 

Figure 1-6 Gibbons Stent 

[32] 

  It wasn’t until the introduction of the double-pigtail and double-J stent 

configuration in 1978, that stents were regularly used without experiencing major 

problems. [34]  Today, numerous materials, coatings, and stent designs have proven to be 

more effective in restoring regular flow of urine into the bladder. The two most common 

materials used in stent production today are silicone and polyurethane. 
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Figure 1-7 (a) Ureteral Stent with double pig tail anchor (b) Cross-section with drainage 

hole 

[7] 

  

1.3.2 Complications of Ureteral Stents 

 

 As ureteral stents usage increases, so too has the incidence of related complications.  

While stents are generally considered safe they are not without risk. Complications 

pertaining to ureteral stents can be broadly separated into seven categories.   

 

1.3.2.1 Irritative Bladder Symptoms 

 By far the most common side effect of ureteral stenting is irritative bladder 

symptoms, which occurs in up to 80% of patients. [35]  Irritative bladder syndrome is an 

inclusive term for voiding symptoms, flank and suprapubic pain, incontinence and 

hematuria.  It is viewed as a manageable side effect and is typically treated with pain 

prescription.  [3] 

 

1.3.2.2 Urinary Tract Infection 

 When a stent is introduced to the normally sterile ureter, the risk of infection in the 
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urinary tract increases.  After implantation, proteins rapidly adsorb to the stent surface, 

which enable deposition of minerals and other urine components as well as attachment of 

bacteria.  The most common bacteria seen in urinary tract infections (UTIs) are 

Escherichia coli (E coli), Staphylococcus and Pseudomona. [10]  In most patients, 

antibiotic prophylaxis is performed, typically in a single dose immediately before the 

stenting procedure.   

 

 1.3.2.3 Inadequate Relief of Obstruction 

 Under various situations a stent may not restore urine flow as intended.  For 

example, loss of flow within hours of insertion may be a result of blood clotting or debris 

from a severe infection, both of which are extremely dangerous and require immediate 

care.  [36]  Occlusion can also be a result of extrinsic pressure.  Stents of smaller 

diameter can be collapsed by pressure from a tumor or stricture.  [13] 

 

1.3.2.4 Ureteral Erosion or Fistulization 

 Ureteral erosion is the most dangerous of all the complications associated with 

stents.  Although the etiologies are complex and difficult to diagnose, the dominant 

symptom of erosion is gross Hematuria.  However, by that point erosion has already 

taken place. [38]  Factors that increase the likelihood of erosion are prolonged stent use, 

prior pelvic surgery, cancer and extensive irradiation.  The presence of a pulsating 

vascular structure, (normal vessel, graft, or aneurysm) to a rigid stent has also been 

associated with erosion. [38], [32] 
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1.3.2.5 Malposition and Migration  

 Malposition of the stent may result from human errors during placement although 

urologists are recommended to use fluoroscopy.  Stents made of stiffer material may 

accidentally pierce through the ureter wall resulting in an urinoma or hematoma [32].  

The stent that is not pushed all the way to the kidney may cause the anchor to stay 

straightened in the ureter instead of curled in the kidney.  The force of self-curling can 

bury the stent anchor into the wall of the ureter making removal difficult.   

  Migration of the stent from its placement origin can happen both superiorly into 

the kidney and inferiorly into the bladder.  Most commonly the stent migrates into the 

bladder due to peristaltic motion from the ureter and pressure from urine creation in the 

kidney.  Instances of this complication have increased recently, likely due to the new 

hydrophilic coatings that reduce the friction of the stent.  [32] 

 

1.3.2.6 Encrustation 

  All stents elicit different forms and degrees of encrustation after insertion.  The 

presence of the stent provides a substrate for the deposition of minerals including calcium 

oxalate, struvite, apatite, and uric acid along with organic macromolecules.  While all 

these can be present, calcium oxalate typically makes up the largest portion of 

encrustation.  [5]  Risk factors for encrustation include stone disease, urinary sepsis, 

chemotherapy, pregnancy, chronic renal failure, metabolic or hormonal abnormalities, 

and the most important being the indwelling time.  [27]  The most common location of 

encrustation is the proximal end at the anchor that sits in the kidney.  This location is 
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more prone because the concentration of solutes is higher in the kidney.  It has also been 

suggested that peristalsis may have a cleaning effect on the body of the stent, and, thus, 

encrustation is rare.  [6], [27] 

 

1.3.2.7 Urine Reflux During Voiding 

 Due to the proximal anchor of the ureteral stent sitting in the bladder, the 

vesicoureteral valve is forced open by the stent body.  During voiding, this forces urine 

up the ureter and into the kidney.  This can cause pain and increases the risk of infection. 

[4][7]  

  

 

1.3.2.8 Stent Fracture 

 Stent fracture is becoming increasingly less frequent as materials for stents have 

improved over time.  However, there is still a risk of fracture.  Fracture typically occurs 

at the drainage holes (also called fenestrations).  [36] 

 

1.3.3 Materials for Ureteral Stents 

 

 Many materials have been proposed for use in ureteral stents.  The first-generation 

of stents were made of silicone.  [39]  While still considered the gold standard, silicone is 

rarely used in ureteral stents without a coating due to its high coefficient of friction.  [40]  

After silicone, polyethylene was introduced as the material for ureteral stents.  Due to the 

high risk of fracturing, however, polyethylene is not as widely used today.  Finally, 
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polyurethane was introduced onto the market.  While rarely used alone it has been prized 

for its ease of coating and modification.  [39], [41]  Metal stents also exist in a small 

niche for extremely long indwelling times and for very tight strictures.   

 

1.3.3.1 Polymers for Ureteral Stents 

 Many different polymers have been proposed for use in ureteral stents.  While 

much research has been done, the two main stent materials remain silicone and 

polyurethane.  However, within the context of these two materials many modifications 

have been performed.   Coatings have been added to reduce friction for ease of 

implantation and reduce encrustation.  [42]  Substrate modifications have been performed 

to improve material properties such as stiffness and hydrophilicity.  [39]  

 

1.3.3.1.1 Polyurethanes 

 Polyurethane (PU) is a polymer composed of an organic group attached via 

carbamate groups (-NHCO2-).  Although, it has long been used a stent material with 

many different kinds currently on the market, polyurethane has been shown to be more 

prone to encrustation than silicone.  [43] 

 

1.3.3.1.2 Tecoflex 

 Tecoflex is an aliphatic PU blended with barium sulfate to provide a high 

radiopacity.  Tecoflex is a thermoset PU and is used in stents because of its ability to 

soften when warmed by the body after stenting.  This allows it to be rigid for insertion 



 

14 

but more flexible after insertion for better patient comfort.  Tecoflex stents are produced 

by Gyrus ACMI.  [44] 

 

1.3.3.1.3 Hydrothane 

 Hydrothane is a polytetramethylene glycol based alphatic PU produced by 

Cardiotech International.  The addition of the glycol subunits increases the polymers’ 

hydrophilicity.  When used for stents, hydrothane can be processed without aromatic 

groups.  This lack of aromatic groups increases biological inertness by reducing 

generation of dispersion (van der Waals) forces between the polymer and the proteins 

found in urine.  [45], [46] 

 

1.3.3.1.4 ChronoFlex 

 Also produced by Cardiotech International, Chronoflex was developed to be a more 

durable PU and studies have shown that it exhibits less environmental stress cracking 

than other PUs.  [47] This polymer had more hydrophobic properties which suggests it 

forms a stable conditioning layer, thus preventing encrustation.  [48] 

 

1.3.3.1.5 Percuflex 

 Produced by Boston Scientific, this polymer is a proprietary olefinic block 

copolymer and is another thermosetting PU.  Percuflex softens in the body and has better 

physical properties than PU.  However, encrustation is similar to standard PU.  Because 



 

15 

of the softening affect, these stents are not used in cases of stricture due to extrinsic 

obstruction because they are easily compressed.  [43] 

 

1.3.3.1.6 Aquavene 

 Aquavene is produced by Menlo Care Inc. and is a polyurethane blended with 

polyethylene oxide. When placed in water, it swells increasing in size, but maintaining 

strength.  Aquavene is harder in dry conditions and softens rapidly when hydrated which 

aids in implantion and patient comfort.  [49] 

 

1.3.3.1.7 Sof-flex 

 Sof-flex is a proprietary polymer developed by Cook Medical that lists 

polyurethane as its primary ingredient.  It has been used extensively in ureteral stents.  It 

boasts a very small coefficient of friction because its hydrophilic properties hold water to 

its surface.  Studies have shown low biofilm formation but increased encrustation of 

calcium carbonate.  [39] 

 

1.3.3.1.8 Silicone  

 Silicone is the “gold standard” material for ureteral stents and is composed of 

alternating silicone and oxygen atoms.  Due to its uniform surface, it is less prone to 

encrustation than PU and hydrogel-coated PU.  Because of its inertness, it is ideal for 

long implantation times.  However, silicone is almost never used without some sort of 

surface coating because its high-coefficient of friction makes implantation difficult.  [43] 
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1.3.3.1.9 Silitek 

 Silitek, produced by ACMI, is a proprietary polyester copolymer made to replace 

silicone.  It is firm and has a high radial stiffness to resist compression.  Studies have 

shown that it has an encrustation profile similar to silicone.  It has relatively weak coil 

retention strength which may make it more likely to migrate.  [50] 

 

1.3.3.1.10 C-Flex 

 C-flex, produced by is a polymer made up of styrene/ethylene-butylene/styrene 

block copolymers.  It has thermoplastic properties and has been clinically used in stents.  

It is comparatively weak when compared to other stent types but is adequate for typical 

stenting.  [50]  Uncoated C-flex stents are sold by Cook medical while Boston Scientific 

sells a hydrogel coated stent that lowers its coefficient of friction.  However, it has been 

shown that the hydrogel coated stents are more prone to encrustation.  [43]  

 

1.3.3.2 Coatings of Ureteral Stents  

 Various stent coatings have been explored for prevention of encrustation and 

bacterial adhesion or for easier implantation by decreasing surface friction.  In addition, 

many studies have investigated the release of antibiotics and other chemicals from 

hydrogel coating on stent surface.    
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1.3.3.2.1 Hyaluronic Acid (HA) 

 HA is a glycosaminoglycan that inhibits the nucleation, growth, and aggregation of 

salts.  [51]  For this reason, it has been explored as an anti-encrustation coating.  Plasma 

treatment has been used to covalently bond HA to polyurethane stents.  An in vitro study 

showed that HA coated stents have a lower rate of encrustation than silicone stents.  [52] 

 

1.3.3.2.2 Heparin 

 Heparin is a highly sulfated glycosaminoglycan that is known most as an 

anticoagulant.  Heparin has the highest negative charge density of all known biological 

molecules.  [53]   Heparin coated stents have been shown to prevent biofilm formation in 

human pilot studies over a 6-8 week time period.  This is attributed to heparin’s 

electronegativity repelling proteins and microorganisms.  [54] 

 Heparin can be adsorbed to the stent surface, incorporated into the stent material, or 

covalently bonded to the surface.  Because of the risk of leaching and limited 

effectiveness with the first two approaches, covalent bonding is considered to be the most 

effective method.  [55] 

 

1.3.3.2.3 Polyvinylpyrrolidone (PVP) 

 PVP is a water absorbing polymer used as a coating for ureteral stents because of 

its excellent wetting properties.  PVP provides a smooth, soft, water coating that 

minimizes difficulties during insertion.  Adherence of bacteria and encrustation were 
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found to be less on PVP coated PU than uncoated PU because the water layer prevented 

bacterial adhesion.  [56] 

 

1.3.3.3 Metal 

 Metal stents are not used for routine stenting.  However, metallic stents are used for 

instances when longer indwelling times are required.  [57] Metallic stents are also much 

cheaper to manufacture.  A 2010 study was performed in which 15 metal stents were 

placed in 13 patients to manage obstruction.  Their health care costs were tracked for 

almost two years and then compared to national averages.  It was found that the annual 

cost of metallic stenting was $11,183 while the average yearly costs for polymeric stents 

were $23,999.  From this small sample it appears that metallic stents are an excellent cost 

saving measure.  [58] 

 There have been a variety of metals explored in the context of ureteral stents.  A 

self-expandable polytetrafluoroethylene-covered nitinol stent has been successfully used 

to manage strictures.  In 2003 29 PTFE covered nitinol stents were implanted.  The stent 

did not encrust and the PTFE covering greatly prevented hyperplasia.  However, it had 

about a 22% migration rate which may explain why it has not seen clinical use since then.  

[59] 

 

1.3.3.4 Biodegradable Polymers for Ureteral Stent Applications 

 

 Although no ureteral stents made entirely of biodegradable polymers are currently 

available on the market these polymers have gained interest due to their resistance to 

encrustation and the elimination of a stent removal procedure.  [60] Following are 
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examples of the polymers that have been studied within this scope.    

 

1.3.3.4.1 Polylactic Acid (PLA) 

 PLA (or polylactide) is a thermoplastic biodegradable aliphatic polyester, which 

can be processed into a fiber or into a film.  [61]  Due to the chiral nature of lactic acid, 

PLA can be further subdivided based on the D or L isomer, changing the naming 

convention to PLLA or PDLA.  [62]   

 Lumiaho et al. explored self-expanding Poly-L-D-lactide as a material to fabricate a 

ureteral stent in a 2009 study.  [63]  Briefly, PLA was mixed with 20 wt% barium sulfide 

and extruded to create a fiber with 0.35mm in diameter.  The fiber was then wrapped 

around a mandrel to create what the author calls a double helix structure with final inner 

and outer diameters of 1.3mm and 0.6mm, respectively.  Following gamma sterilization, 

the PLA stents and control, 3.8F Double-J C-Flex® stents, were implanted in 6 dogs 

each. Although the PLA stent provided adequate renal output, fragments of the stent 

remained imbedded in the ureter after 12 weeks.  [63]  For this reason, in the subsequent 

studies the author switched from PLA to Poly Glycolic Acid.  [64] 

 In a separate study, Gang et al. also explored the use of PLA as a ureteral stent 

material, with a special emphasis on relieving hydronephrosis caused by war injury.  [65]   

Briefly, 50mm long stent segments were constructed by forming 50:50 PLLA/PDLA into 

a fiber and winding into a helical shape with 0.8mm and 1.4 mm inner and outer 

diameters, respectively.  In vitro testing demonstrated that the stent took 10 weeks to 

degrade in synthetic urine.  An in vivo canine model study demonstrated that the material 
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did not start degrading until day 80, and by day 120 only a few fragments were retained 

in the ureter. When injured unstented ureters, and injured stented ureters with the novel 

PLA stent were compared, it was found that the stents did improve urine flow.  [65]   

 

1.3.3.4.2 Polyglycolide (PGA) 

 PGA (Polyglycolide) has been shown degrade slowly into irregular sized 

fragments.  Since PGA is brittle and mechanically inadequate, it has been used as a block 

copolymer with other biodegradable polymers for ureteral stent applications. 

 In a 2011 study, Lumiaho et al. would PLGA wire over a mandrel to fabricate a 

40mm long stent with 4mm outer diameter.  [63]  Owing to its viscoelastic memory, the 

stent could expand in diameter up to 40% when heated from room temperature to body 

temperature.   

 An animal study on 8 pigs was performed to compare PLGA stents to the common 

double J stent.  A small cystotomy was performed on both ureters and the left ureter was 

stented with PLGA stent segments while the right ureter was stented with double J stents.  

The type of double J stent material was not reported.  After 4 weeks, 6 of the 8 PLGA 

stents showed no reflux, while 2 showed minor reflux.  All double J stents showed some 

type of reflux.  [63] 

 

1.3.3.4.3 Temporary Ureteral Drainage Stent by Boston Scientific 

 In 2002, Boston Scientific began trial of a biodegradable stent with a product name, 

Temporary Ureteral Drainage Stent (TUDS).  It was made of a proprietary alginate based 
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polymeric material that was designed to last 48 hours before being fully degraded in the 

body.  It was successfully tested on 18 patients in a phase I clinical trial.  All material had 

been degraded by 4 weeks and the only adverse effect was one stent that migrated into 

the bladder. 

 Because of the success of the phase I trial, a phase II trial on 88 patients was 

performed.  The stents were eliminated from the ureter at a median of 8 days and from 

the body at a median of 15 days.  For the majority of patients (78.2%) the stent provided 

effective stenting of the ureter for 48 hours.  Unfortunately, after 3 months stent 

fragments remained in 3 patients and surgical intervention was required.  Due to concern 

about the fragments, the TUDS never made it to market.  [66] 

 

1.3.3.4.4 Uriprene Ureteral Stent by Poly-Med, Inc. 

 The most recent development in biodegradable technology is a substance called 

UripreneTM.  Uriprene is a biodegradable polymer composed of L-lactide, glycolide, and 

copolyester components.  The material was tested in a porcine model in 2008 and was 

found to degrade in 7-10 weeks.  Though the stent provided excellent drainage, it lacked 

axial rigidity making it difficult to advance up the ureter.   

 The Uriprene stent was improved to degrade faster and provide better axial rigidity.  

In 2009, the stent was again tested in a porcine model.  The degradation time was 

decreased so that 80% of the stents degraded within 2-3 weeks and 100% of stents were 

eliminated by week 4.  The stent was also very biocompatible in histology and provided 

adequate drainage.  The Uriprene stent currently awaits clinical trials.  [67] 
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2. RATIONALE 

 

 Approximately 92,000 ureteral stents are implanted every year in US for the 

treatment of kidney stones, kidney transplants, and urinary incontinence.  [68]  Although 

many new materials have been studied for use in ureteral stents, the majority are still 

made of polyurethane and silicone.  While incremental improvements have been made to 

the design of stents to make implantation easier and reduce encrustation, the basic 

ureteral stent design has not changed since 1978 when the double J stent debuted. [34], 

[67]  The two main issues continuously facing ureteral stents are encrustation and the 

need for a removal surgery.  Encrustation occurs on all stents at varying degrees and is 

especially problematic in longer-term use stents.  [27], [52]  Removal surgery is a large 

cost additive ($1,131.27 in hospital fees and $149.36 in service fees. [69]) and also 

requires patient compliance.  Occasionally, patients do not return for the removal surgery 

and the stent that remains in the body for longer than intended can cause renal failure and 

even death.  [70]–[72]  A biodegradable stent could solve both these problems as it has 

been shown that biodegradable materials reduce encrustation and can safely be removed 

from the body.  [73], [74]  In addition, a biodegradable stent could reduce the cost of 

stenting procedure by as much as 37%.   

 The goal of this master’s thesis project is to develop a biodegradable ureteral stent 

that is equivalent in effectiveness to stents on the market. The main design / performance 

criteria included: 1) variable length/diameter; 2) easily implantable using existing 

techniques; 3) provide adequate flow of urine; 4) biocompatible and reduced 

encrustation; 5) flexible for patient comfort; and 6) degrade in a controlled manner within 
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6 weeks to encompass most uses. 

 Following preliminary screening of various biodegradable polymers, 

polydioxanone (PDO) was selected as a material of choice to fabricate our biodegradable 

ureteral stent.  PDO was chosen because it was easily processed to gain the desired 

mechanical properties.  Additionally, PDO has exhibited lower inflammation rates when 

compared to sutures made of Polylactic Acid and Polyglycolic Acid. [75], [76]  PDO is 

most commonly used in sutures (PDS, Ethicon), though it has been studied for use in 

vascular stents, tracheal stents, and other applications.   [77], [78]  It is a monofilament 

homopolymer with consistent morphology and high purity.[79], [80]  In the present 

study, commercially available PDO sutures were obtained and fabricated into a tubular 

structure to meet the functional requirements of ureteral stents. The project was divided 

into the following specific aims. 

 

Aim 1:  Establish a reproducible process to alter the characteristics of polydioxanone for 

use as a stent.   

 

Aim 2: Characterize the stent by quantifying its degradation time, flow rate, flexibility, 

and radial strength and verify that these parameters are adequate for physiological 

conditions. 
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Aim 3:  Compare the chemical and physical characteristics of processed and unprocessed 

PDO to determine the mechanism that changes the material properties of the polymer  
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3. MATERIALS AND METHODS 

 

3.1 Fabrication of Novel Stent 

The spiral-shape stent was created by tightly winding a commercially available PDO 

suture (PDS, size 3-0 (0.2 mm diameter) Ethicon) around a brass rod (diameter = 3.15 

mm, Ace Hardware) by hand.  Approximately 1m of suture is required to make a 6cm 

sample segment.  When necessary, a custom rod extension with curls at either end was 

used to create J-shape anchors modeled after stents currently on the market (Figure 3-2). 

The ends of the suture were secured onto the rod using stainless steel clips before 

annealing in an oven (Fisher Scientific) at 100 °C for 24 hours.  The stents were then 

quenched in a deep freezer (Isotemp Base) at -80 °C for 30 minutes.    Following removal 

from the rod, the stents were trimmed of the excess suture and placed in a desiccator 

immediately to prevent degradation from moisture.   All tests were performed within one 

week of stent creation to prevent any partial degradation of the material.  Test specimens 

that have been annealed and then quenched are referred to as “processed” and all 

untreated PDO suture is referred to as “unprocessed” in the balance of this document. 

 

Figure 3-1 Detail of Coil Design Demonstrating Tube Flexibility 
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Figure 3-2 Initial Design with Double J anchor 

 

3.2 Designing of Stent Sheath for Novel Anchoring Method 

 Initial attempts to fabricate a biodegradable ureteral stent were modeled current 

stents on the market and utilized a standard double J anchor (Figure 3-2).   However, 

implantation using the standard guide wire and push catheter method was very difficult 

due to the spiral structure creating a high surface roughness.  Additionally, initial 

experiments (in accordance with ASTM standard F1828) found that the anchor strength 

with the J-anchor design (Figure 3-2) was very low, (<0.03N). 

To improve on these limitations, a novel stent implantation and anchoring 

method, was designed.  Specifically, the new anchoring method relied on radial 

expansion of the stent (I.D  3.15mm and O.D.  3.55mm) during implantation upon release 

from a silicone sheath (C Flex L/SO.D. 7mm and I.D. 3.1mm).  To place the stent inside 

the sheath, one end of the stent coil was glued to a steel wire and the free end was twisted 
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until the diameter was less than the inner diameter of the sheath.  The stent was fully 

placed within the sheath by feeding the wire through and the glued end was snipped to 

allow the stent to uncoil in the sheath (Figure 3-3). 

 

 

Figure 3-3 Sheath and Stent Implantation Scheme 

 

3.3 Characterization of the Novel Degradable Stent 

3.3.1 Degradation of PDO 

 The mass loss due to degradation was determined by measuring the stent weight 

change after subjecting the stent to near physiological conditions using a custom-

designed ureteral flow simulator.  The ureteral flow simulator was kept in a climate 

controlled room at 37°C to imitate human body temperature.  Deionized water circulated 

through the simulator at 4 mL/min to match the standard flow rate of a ureter.  The water 

resevoir was changed each week to prevent accumulation of degradation byproducts.  

The flow circuit (Figure 3-4) consisted of silicone tubing, a peristaltic pump 

(Fisher Scientific Mini-pump), a 1 L water reservoir, and clear polyethylene tubes. After 

recording the initial weight, stent samples (6cm long, O.D. 4.15 cm) were placed in 
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polyurethane tubes (inner diameter of 1.905 cm) to mimic implantation in a ureter. Each 

week the water in the reservoir was changed to limit the build up of solute concentrations.  

The stent samples were then removed from the flow circuit and dried in a desiccator 

under vacuum for 24 hours before weighing to determine mass loss. 

 

Figure 3-4 Flow Degradation Experimental Setup 

 

3.4 Characterization of Processed PDO 

3.4.1 Thermogravimetric Analysis 

Thermogravimetric Analysis (TGA) was used to determine the effect of the 

annealing process on change in mass of the stent.  Briefly,  after purging with nitrogen, a 

4.22 mg sample was subjected to temperature increases at a rate of 20 °C per minute 
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starting at at 23 °C (room temperature) until the sample reached 600 °C using TA 

Instruments Model 2950.   

 

3.4.2 Differential Scanning Calorimetry 

 First heat, Differential Scanning Calorimetry (DSC - TA Instruments DSC model 

2920) was used to determine the effects of the annealing process on the melting point and 

crystal structure of PDO.    Small (roughly 5mg) samples of both unprocessed and 

processed sutures were subjected to an increasing temperature sweep from -75 °C to 150 

°C at a heat rate of 20 °C per minute. 

 

3.4.3 Flexure Testing 

 Flexural rigidity of unprocessed and processed PDO suture samples was 

quantified using a cantilever deflection test adapted from ASTM D747-10.  Straight 

samples (6 cm in length) were clamped on one end so that 5 cm of sample extended 

horizontally and a known weight of 1.025g was hung on the free end.  The angle of 

deflection in radians was measured and the stiffness was calculated using the following 

equation. 

  𝜃 =
𝐹𝐿2

2𝐸𝐽
.   (Eq.# 1), 

where F is the force exerted due to gravity,  L is the length of the sample,  E is the 

modulus of elasticity,  J is the polar second moment of area.   

For a rod with circular cross sectional area such as the suture, J can be given  as 

 𝐽 =
𝜋

2
𝑟4  (Eq.# 2),  
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where r the radius of the circular corss section.  For this test, r was measured as 0.305 

mm. 

 

3.4.4 Fourier Transform Infrared Spectroscopy 

To determine chemical composition, Fourier Transform Infrared Spectroscopy 

(FTIR) was performed on uprocessed and processed PDO suture samples. A small 

shaving (≈1 g)  of each material was made with a stainless steel razor blade to create a 

flat surface for adequate contact with the focusing crystal.  The samples were tested using 

a Thermo-Nicolet Magna 550 FTIR Spectrometer with a Thermo-SpectraTrech 

Endurance Foundation Series Diamond ATR.  The resulting absorbance curves were then 

analyzed using standard absorbance tables [4] to verify the chemical purity of the initial 

PDO samples and to verify that there was no chemical change during processing. 

 

3.4.5 Wide Angle X-Ray Scattering 

Wide angle X-ray scattering with Cu Kα1 radiation at λ = 1.54060 Å was 

performed on both unprocessed and processed PDO suture samples using a Rigaku 

Ultima IV X-ray diffractometer to compare the degree of crystallinity.  To allow 

consistent absorption of X-rays, suture was cut into pieces of varying length and arranged 

in parallel on the circular aluminum sample pan to create a solid, consistent sample layer.  

Likewise, processed PDO samples were created in a straight orientation instead of the 

normal “coiled” orientation and arranged into a solid layer. After initial scanning at an 
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angle from 5°-60° for 3 hours, the peaks of interest were identified and a second scan was 

run from 5°-35° for 3 hours. 

 

3.4.6 Inherent Viscosity 

To determine the molecular weights of the processed and unprocessed PDO 

suture samples, the inherent viscosities were determined.  Processed and unprocessed 

PDO （0.25m g each） was dissolved in 15 mL of hexafluoroisoproponal (Oakwood 

Chemicals) with agitation at room temperature for 24 hours.  The PDO solutions in 

hexafluoroisoproponal were then decanted into size I Ubbelholde capillary viscometers 

(Cannon Instruments) and allowed to equilibrate in a water bath at 25 °C for 10 minutes.  

The inherent viscosity was measured by viscometric analysis according to ISO 1628-

1:2009.   

Briefly, before testing the PDO samples, the viscometer was rinsed with HFIP to 

remove any potential contamination.  Ten mL of HFIP was then decanted into the 

viscometer and nitrogen was used to force the HFIP up the viscometer capillary.  A 

stopwatch was used to measure the time it took for the HFIP to flow through the 

viscometer capillary while recording the time it took.  This process was repeated 5 times 

and the average time was calculated to establish a “Sample Efflux Time”.  After the HFIP 

was removed and the viscometer was dried by flushing with nitrogen, the PDO solution 

was tested in the same manner to determine a “Solvent Efflux Time”.  Using the Sample 

Efflux Time and the Solvent Efflux Time, the Relative Viscosity (Rel, Eq. #3)  and the 

inherent viscosity were calculated (Eq. # 4). 
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Rel = Sample Efflux Time  Solvent Efflux Time (Eq.# 3),  

Inh = ln(Rel)  Solution concentration (in g/dl) (Eq. # 4.) 

   

3.5 Validation of Implantation Method 

 Fresh porcine ureters were harvested on site at Snow Creek Meat Processing  

(Seneca, SC) and stored in 500mL of saline solution on ice and transported to the 

laboratory for use on the same day. After a 6 cm long stent was packaged in the silicone 

sheath (as described in 3.2) the entire structure was placed on the guide wire.  The guide 

wire was threaded through a 6 cm long ureter segment and the sheath was slowly pushed 

into the ureter using a push catheter.  Simultaneously, the sheath was retracted to force 

the stent out of the sheath.  Upon leaving the sheath, the stent uncoiled to its original 

diameter and anchored itself in the ureter (Figure 3-5).  Upon implantation the stent was 

used for anchor strength and flow testing.   

 

Figure 3-5 Two Implanted Stents with Unimplanted Stent for Comparison 
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3.5.1 Anchor Strength Testing 

 Initial anchor strength testing was attempted via an adaptation of ASTM F1828-

97 using MTS Synergie 100 with 10N load cell. The stent was implanted into a ureter 

segment as described in section 3.5  The specimen was submersed in a reservoir with 0.5 

L of DI water at 37 °C during the test.  The top of the stent was grasped by the top grip 

and the ureteral segment was attached to the bottom grip.  The stent was pulled out of the 

ureter at  rate of 20mm/min.  The maximum force detected was given to be the anchor 

strength.  However, during the test, it was observed that the stent uncoiled and elongated.  

Additionally, a very large extension was required for the stent to pull out of the ureter and 

the results varied greatly. 

To provide a more repeatable and physiologically relevent test, the method of 

attaching the stent to the grip was modified.  All experimental conditions were the same 

except a 12-gauge steel wire was threaded through the stent and glued with epoxy to the 

bottom end of the stent. (Figure 3-6)  The “push wire” was then attached to the top grip 

of the MTS machine and the ureter segment attached to the bottom grip.  The wire was 

pulled at a rate on 20 mm/min, applying force to the bottom of the stent, until the stent 

became dislodged from the ureter.   
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Figure 3-6 Stent Anchor Strength Experimental Setup 

 

3.5.2 Flow Rate in a Stented Ureter 

 The maximum flow rate of water through a stented ureter was measured to verify 

that the stent would not impede drainage of the kidney.  To test this, a 3.9 cm long stent 

segment was placed in a 4 cm long ureter (as described in section 3.6) and a fixed volume 

(50 mL) of DI water was flowed through the ureter while the time was recorded. This 

process was repeated 10 times to obtain statistically meaningful data.   

 

3.6 Radial Strength Testing 

To determine the radial strength of the stent, a novel testing device was designed, 

assembled, and calibrated.  A 6 cm long flexible polyethylene sleeve with a closed end, 

was attached to a 500 mL rigid polyethylene canister such that the inside of the sleeve 

was exposed to atmospheric conditions while the outside of the sleeve was exposed only 
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to the interior of the chamber.  A 6cm stent segment was placed in the flexible sleeve. A 

12V air pump (Airpo D028B) was connected to pressurize the chamber and to apply a 

radial force uniformly across the stent encased in the sleeve (Figure 3-7).   

 

Figure 3-7 Diagram of Radial Strength Testing Device 

 

 To monitor the pressure in the chamber, an Arduino Blue Tooth Microcontroller 

(Smart Projects, Italy) with a custom program (appendices) and an attached Adafruit 

BMP085 pressure sensor (Sparkfun, Boulder, CO) were used (Figure 3-8).  During 

testing, the pressure was recorded in realtime via a bluetooth connection to a computer 

(Apple, Macbook pro) and deformation of the stent was monitored visually.  The pressure 

data were converted to radial force by multiplying the pressure by the area of the sheath.  

The maximum force exerted on the stent was determined and reported as the radial 

strength of the stent.   
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Figure 3-8 Completed Radial Strength Testing Device 

 

3.7 Statistical Analysis 

 All results are expressed as the mean ± standard deviation of the mean .  All 

statistical analysis was performed using single factor analysis of variance (ANOVA).  

Differences between the means were determined using least-significant difference with a 

significance level of α=0.05.  Error bars shown are the standard deviation of the mean.   
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4. RESULTS 

 

4.1 Characterization of Stent Degradation 

4.1.1 Mass Loss of Stent due to Hydrolytic Degradation 

The mass of all the stents remained nearly constant (0.14g ± 0.01g p= 0.14) during the 

three week flow circuit degradation test.  (Figure 4-1)  After four weeks, however, the 

stent had crumbled and small stent fragments (<1g) had been flushed into the water 

reservoir.  The degradation test was then terminated at that time point. 

 

Figure 4-1 Average Mass Loss of Stent Over Time 
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4.2 Physical Characterization of Stent 

 4.2.1 Thermogravimetric Analysis of Processed Stent and Unprocessed Suture 

 To determine the thermal stability of the processed and unprocessed PDO suture, 

TGA was performed.  (Figure 4-2)  The results of TGA indicated that both samples 

started losing mass at 200 °C and reached 0% mass at approximately 350 °C. However, 

the processed stent started losing mass at a faster rate than the unprocessed suture.  This 

indicates that stent is degraded and has lower molecular weight polymer chains which are 

more easily volatilized.  Holding the stent at 100 °C kept the stent showed no change in 

mass. 
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Figure 4-2 Plot of Thermogravimetric Analysis of Annealing Process Over 6 Hour 

Period 
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4.2.2 Differential Scanning Calorimetry  

 Differential scanning calorimetry (DSC) was used to determine the potential 

change in crystallinity of the polymers due to annealing by calculating the enthalpy of 

melting.   First, the DSC established that each sample was a single material and phase 

(semi-crystalline) as shown by the single peak (Figure 4-3). The melting temperature 

(Figure 4-4) was determined as the temperature at which maximum heat flow was present 

represented as the lowest point on the curve.  The enthalpy of melting for each material 

(Figure 4-5) was determined by integrating the area of each melting peak in DSC plots. 

 

Figure 4-3 Representative Differential Scanning Calorimetry Curve of Processed Stent 

and Unprocessed Suture 
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Figure 4-4 Melting Temperature of Processed and Unprocessed Suture (Data are mean ± 

standard deviation *p= 0.001 analyzed by ANOVA, n=4) 

 

 The processed stent exhibited a significantly (p=0.001) greater average melting 

temperature (111.89±2.01 °C) compared to that of unprocessed suture (102.32±0.50 °C) 

(Figure 4-4). The enthalpy of melting of the processed stent (105.19±16.10 J/g) appeared 

greater than the unprocessed suture (92.68±9.30 J/g) (Figure 4-5).  However, the variance 

of the enthalpy of melting values was high enough such that they cannot be considered 

statistically different.  The increase in melting point indicates that the material is gaining 

crystallinity post processing. 

 

* 
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Figure 4-5 Enthalpy of Melting of Processed and Unprocessed Suture (Data are mean ± 

standard deviation p= 0.308, analyzed by ANOVA n=4) 

  

4.2.3 Fourier Transform Infrared Spectroscopy 

 Fourier transform infrared spectroscopy (FTIR) was used to determine the 

potential chemical change of PDO underwent any chemical change during the 24 hour 

annealing process. 
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Figure 4-6 Chemical Structure of Polydioxanone 

 

 The results of FT-IR revealed the presence of the single ketone peak at 1700 cm-1 

for both unprocessed and processed suture samples which matches the expected structure 

(Figure 4-7). The multiple peaks in the 1000-1200 region verify the presence of multiple 

ether groups (Figure 4-7) and their identical locations indicated that chemical structures 

were not influenced by the heat processing. 
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Figure 4-7 Representative FTIR Curve of Processed Stent and Unprocessed Suture 

 

FT-IR results for processed stent and unprocessed suture showed similar peaks after 6 

months of storage indicating that no chemical change in polymer took place over this 

time period.  The lack of additional peaks shows that there was no contamination with 

other materials during storage.   

 

4.2.4 Wide Angle X-Ray Scattering 

 Wide Angle X-Ray Scattering was used to determine the relative amount of 

crystallinity in unprocessed and processed sutures.  The initial “scan” between 5 and 60 

degrees revealed peaks at roughly 23 degrees, 38 degrees, and 45 degrees. (Figure 4-8)  
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The peaks at 38 degrees and 45 degrees were known historically to be a result of 

diffraction from the aluminum sample pan and were not studied.  The peak at 23 degrees 

was deemed the intensity peak of PDO.   

 

 

Figure 4-8 Initial “Scanning” for Peaks Using WAXS 

 

 The peak of interest was scanned with a greater intensity (Figure 4-9).  While 

unprocessed suture exhibited a major peak of 4512 at 21.62 deg and a lesser peak at 

21.88 deg, the processed stent exhibited a peak of 4953 at 21.88 deg and 23.60 deg. 

(Figure 4-10), this corresponds to 9% increase in intensity from the suture to the stent.   
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Figure 4-9 Representative Wide Angle X-ray Scattering Curve of Processed and 

Unprocessed Material 

 

4.2.5 Viscometry 

To determine the relative change in molecular weight of PDO sutures due to 

heating at 100 °C for 24 hours to fabricate stents, viscosity measurements of the 

unprocessed and processed polymers were compared and the results are shown in Figure 

4-10.  The average kinematic viscosity of the unprocessed suture, 1.58±0.07 dL/g, was 

significantly higher (p=0.002) compared to that for processed stent, 1.38±0.07 dL/g. This 

indicates that the molecular weight of the suture is higher than that of the stent.  
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Figure 4-10 Comparison of Kinematic Viscosity of Processed and Unprocessed Material 

(Data are mean ± standard deviation p=0.002, analyzed by ANOVA n=5) 

 

4.3 Mechanical Characteristics 

4.3.1 Flexural Stiffness 

Flexural stiffness of processed and unprocessed suture was quantified by 

deflection testing 6, 12, and 24 hours after processing of the material.  The flexural 

stiffness of the original suture material determined from the deflection test was 47.9±5.8 

MPa with no processing time, 50.3±4.0 MPa after 6 hours, 58.74±4.57 MPa after 12 

hours and 65.5±3.8 MPa after 24 hours of processing.  This represents an increase in the 

stiffness by 27%, during the standard stent processing time.   

* 
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Figure 4-11 Flexural Stiffness of PDO at Increasing Processing Times (Data are mean ± 

standard deviation p=0.011, analyzed by ANOVA n=5) 

  

* 
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4.3.2 Flow Rate of Stent 

The average flow rate of deionized water through a 3.9 cm stent segment placed 

in a porcine ureter was 1.74±0.55 mL/s under the test conditions of the present study 

(Table 4-1).   

 

  Trial 1 [mL/s] Trial 2 [mL/s] Trial 3 [mL/s] 

Average (+/- 

SD) [mL/s] 

Run 1 1.57 1.66 1.00 1.41±0.36 

Run 2 2.12 2.62 2.43 2.39±0.25 

Run 3 2.26 1.24 1.39 1.63±0.55 

Average (+/- 

SD) 1.98±0.29 1.84±0.58 1.61±0.60 1.74±0.55 

Table 4-1 Flow Rate through Explanted Porcine Ureter with 3.9 cm Long Stent Segment 

 

4.3.3 Radial Strength 

In testing with the custom device that applied increasing radial compression, the 

stent withstood a pressure of 30 KPa without breaking or buckling.  (Figure 4-12).   
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Figure 4-12 Radial Pressure Over Time 

 

4.3.4 Anchor Strength 

Initial testing where the stent was “pulled” from the top was found to be inconsistent 

with an average force of 0.06±0.06 N for a 3.0 cm segment. (n=3).  A representative 

curve is shown in Figure 4-13. The average anchor strength of a stent in a porcine ureter 

using the method where the stent was “pushed” from the bottom was found to be 

1.09±0.26 N for a 3.9 cm segment (n=3).   (Figure 4-14) This anchor strength would be 

substantially larger for a full length stent, and estimated at 7.82 N for a standard 28 cm 

long stent. 
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Figure 4-13 Representative Curve of Force vs Extension of an Implanted Ureter with 

“Pull” Anchor Method 
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Figure 4-14 Representative Curve of Force vs Extension with “Push” Anchor Method 
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5. DISCUSSION 

 

 Approximately 92,000 ureteral stents are implanted every year in US for the 

treatment of kidney stones, kidney transplants, and urinary incontinence.  [68]  Although 

many new materials have been studied for use in ureteral stents, the majority are still 

made of standard plastics such as polyurethane and silicone.  While incremental 

improvements have been made to the design of stents to make implantation easier and 

reduce encrustation, the basic ureteral stent design has not changed since 1978 when the 

double J stent debuted. [34], [67]   

 The two main issues continuously facing ureteral stents are encrustation and the 

need for a removal surgery.  Encrustation occurs on all stents at varying degrees and is 

especially problematic in longer-term use stents.  [27], [52]  Removal surgery is a large 

cost and also requires patient compliance.  Occasionally, patients do not return for the 

removal surgery and the stent that remains in the body for longer than intended can cause 

renal failure and even death.  [70]–[72]  A biodegradable stent could solve both these 

problems as it has been shown that biodegradable materials reduce encrustation and can 

safely be removed from the body.  [73], [74] 

 The goal of this thesis project was to design a stent that solves many of the 

difficulties presented by the current stents on the market.   In pursuit of this goal, a novel 

stent was fabricated by heat-treating a commercially available PDO surgical suture and 

shaping it into a coiled tube.  To test its performance, the present study characterized the 

stent’s degradation profile, chemical composition, and mechanical properties.  
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5.1 Design Criteria and Innovative Features 

5.1.1 Spiral Structure 

 Standard biodegradable polymers such as, PDO, PGA, and PLA are too stiff to be 

used in a solid walled stent.   The spiral design was created in an attempt to utilize these 

polymers to create a structure that is both radially stiff and has sufficient axial flexibility.   

The stent needs to be radially stiff to hold open a lumen that would otherwise be closed 

due, for example, to inflammation, structure, pressure from a tumor, or a naturally 

occurring stricture. The axial flexibility is required for the stent to accommodate the 

sharp angle from the urethra into the ureter and to improve the patient comfort as 

movement at the waist, such as sitting causes the ureter to bend.     

 

5.1.2 Polydioxanone as Material Choice 

 In the present study the polydioxanone (PDO) suture was annealed and then 

quenched to create a stiff material that holds the coiled structure with the desired 

flexibility and provides radial strength. The annealing temperature 100 °C was chosen 

based on the melt point at roughly 110 °C and the quenching at -40 °C greatly controlled 

the process and polymer’s crystallinity.  PDO was chosen as the ideal material because its 

shape setting allows the polymer to maintain the stent in coiled shape.  Additionally, 

PDO was ideal for this application because it has a degradation profile in line with that 

desired in the ureteral stent application.  It has been shown to exhibit a strength loss after 

about 15 days with full degradation occurring by 80 days.  [81]  This was confirmed by 

the degradation data obtained in the present study.   
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5.1.3 Implantation Method 

 The standard ureteral stent implantation begins with the urologist guiding a wire 

into the urethra, though the bladder, and into the ureter.  A ureteral stent is placed on the 

guide wire and is pushed into the ureter with a push catheter.  The guide wire and push 

catheter are then removed allowing the j-shape anchors to curl in both the kidneys and the 

bladder to keep the stent in place.  However, because of the spiral structure of the stent, 

this implantation method could not be used.  Pushing on the end of the stent would cause 

it to expand and increase its diameter prior to entering the ureter.  To this end, a sheath to 

hold the stent in place during implantation was developed. A stent segment would be 

twisted to reduce its diameter and packaged inside the sheath.  Once implanted in the 

ureter, the stent could be pushed out of the sheath with a push catheter and recoiling 

action would ensure anchoring in position.  In the present study, a 3.9 mm stent segment 

was successfully implanted in vitro in a porcine ureter with this method. However, it was 

discovered that removal of the stent, via the push catheter, from the sheath into the ureter 

was very difficult by hand.  This is because the stent was anchored in the silicone due to 

its tighter coil.  A sheath made of a smoother material would allow the stent to more 

easily be forced out.  While the inclusion of the sheath in the implantation procedure does 

add some complexity, it does provide some benefits.  

 

5.1.4 Benefits of Novel Anchor Method 

 The entirety of the coiled stent comes in contact with the ureteral wall as means of 

preventing stent migration instead of the conventional J-shape anchors on the distal 
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(kidney) and proximal (bladder) ends. This provides benefits over the standard design.  

First, a standard double J stent requires the stent to be long enough for the ureter to 

extend and not contact the anchors.  The downside to this is that with the ureter at a 

shortened position, the stent extends well past the end of the ureter into both the kidney 

and bladder.  Typically, an implanted stent is at its longest in the supine position and 

compresses and shortens by approximately 2.1 cm (1.8 to 3.9 cm) between standing, 

bending, and sitting positions.  [82]  During these periods the stent can press against the 

top of the kidney or the base of the bladder, which causes severe pain or feelings of 

urgency.  The proposed coiled stent design allows the stent to expand and contract as 

needed, like a spring, without going into the bladder or into the kidney.   

 Additionally, the removal of the proximal anchor should allow the stent to sit 

above the vesicoureteral junction.  This should prevent the  

Finally, it has been demonstrated that the distal anchor that sits in the kidney is 

most prone to encrustation.  [71] Thus, it is believed that the omission of distal anchor 

will provide less opportunity for degradation as there will no longer be material present in 

the more solute concentrated environment of the kidney. 

 

5.2 Mechanical Characterization 

5.2.1 Effects of Annealing on Flexural Stiffness of PDO Suture 

 Flexural stiffness was determined via cantilever bend test adapted from ASTM 

D747-10 and used as an indicator of the changes in the stent material due to annealing.  

The material was found to increase in stiffness by 27% (Section 4.3.1, Figure 4-11), 



 

57 

which is believed to be due to the increase in crystallinity.  This is because the polymer 

chains are more ordered and thus share dispersion forces (also known as Vander Waals) 

more than an amorphous material.  This increase in dispersion forces causes the chains to 

resist movement which equates, on a macro scale, to an increase in stiffness.  [83]  The 

increase in the stent stiffness was a desired feature to withstand ureteral force and to 

allow the stent to maintain its shape.  

 

5.2.2 Radial Strength 

The ASTM standard test for ureteral stent radial strength requires compression 

between two parallel platens and not applicable for our helical stent design because of its 

geometry.  To reflect physiological loading condition the where the peristaltic contraction 

forces of the ureter would be placed from all sides, a new test method was developed.  

Our stent withstood pressure up to 30,000 Pa without any buckling or fracture.  This is 

much higher than the reported maximum peristaltic pressure of 5000 pa from the ureter, 

indicating that the stent has adequate radial strength.  This would be analogous to the 

result of ASTM F 1828-97 Standard Specification for Ureteral Stents.  [84], [16] 

 Ureteral stents currently on the market are typically made of silicone or 

polyurethane.  These polymers can be molded into a continuous tube and provide enough 

radial stiffness to maintain patency.  However, because they are composed of a single 

polymer, ensuring the stiffness in the radial directions also causes high stiffness of the 

stent in the axial direction.  While the stents are flexible enough to be implanted, patient 

discomfort is frequently reported.  [85]   In addition, a soft material is more likely to 
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accidently kink when bent such as when the implanted stent shifts from patient 

movement. Thus, it is believed that the combination of stiff, annealed PDO with the 

spiral design will provide better patient comfort. 

 

5.2.3 Flow Rate 

 The fluid flow rate through the biodegradable stent was measured using water and 

a stent segment implanted vertically in a straight porcine ureter.  This would correspond 

with stent implanted while a patient is sitting or standing.  The results demonstrated that 

the average flow rate of urine through the ureter with the implanted stent segment was 

1.74±0.55 mL/s (Section 4.3.2, Table 4.1). 

 The standard flow rate of urine through a ureter varies drastically depending on 

hydration and patient anatomy but it is typically derived from the standard production 

rate of urine.  In the urinary system, urine is produced in the kidney at a gradual rate 

where it is stored in the bladder for voiding.  Thus, an average value for the flow rate is 

typically found by averaging the total measured urine output of the body over a given 

time. This yields a flow rate of 0.008-0.167 mL/s for the average flow rate of urine 

through the ureter.  [7], [86]  Because our stent is capable of allowing urine to flow at a 

rate approximately 10 times that the reported values, it is believed there will be adequate 

draining post implantation. 
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5.2.4 Anchor Strength 

 Our initial attempt to test the anchor strength of an implanted stent was 

unsuccessful as the stent exhibited a very low anchor strength with high variability 

0.06±0.06 N.  Additionally, instead of the expected behavior of the stent pulling out of 

the ureter, the stent elongated to over twice the normal length and slipped out of the 

ureter slowly. This resulted in an inconsistent force vs deflection curve (Figure 4-13), 

with each ring slipping out and creating sharp increases and decreases in measured force.  

Finally, after pulling free from the ureter, the stent sprang back into shape, providing the 

negative force seen at the end of the curve. This is not believed to accurately represent 

the mode in which an anchored stent would become dislodged in the body.  Stent 

migration is predominantly toward the bladder and is a primarily due to backpressure 

from urine and peristaltic forces.[32]  This necessitated a change in design of the stent to 

include a radial expansion anchor method and a sheath for implantation.  However, due to 

the sheath design, the ASTM F 1828-97 anchor strength test was not applicable as there 

was not a curl to pull against.  Thus, a novel test methodology was implemented.  

It was desired to update the anchor strength test to better simulate this physiologic 

condition by applying a “push” similar to peristaltic forces instead of the “pull” of the 

standard test.  This was accomplished by threading a wire through the stent and fastening 

it to the bottom of the stent, so that the top grip of the MTS machine can apply force to 

the bottom of the implanted ureter.  In this test, explanted porcine ureters were used to 

provide a surface for the stent to anchor to.  The force vs deflection curve (Figure 4-14) 

exhibited an initial elastic region of the graph which is attributed to the ureter itself 
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elongating and resisting the applied force.  After roughly 1 cm of extension, a sharp 

decrease in detected force is observed, this is believed to be the point at which the stent 

moves within the ureter.  There then follows a region of, low uneven force which 

corresponds with the individual rings of the stent slipping from the ureter.  The anchor 

strength of a stent in a porcine ureter using this was on average 1.09±0.26N for a 3.9 cm 

segment, which may be extrapolated to 7.82 N for a standard 28 cm full-length stent.  

This is substantially higher compared to the strongest reported anchor strength values of 

0.73 N and 0.62 N for the 6 french Cook Black Silicone and the Cook C- Flex stents 

respectively. [87] Thus, it is believed that the proposed stent design will have adequate 

anchor strength to operate in a clinical setting. 

 

5.3 Characterization of Stent Degradation 

 To determine the rate of mass loss, an ex-vivo study was performed in a manner 

similar to physiological conditions.  Four stents were subjected to water at 37 °C at 

typical ureteral flow rate and their mass was monitored weekly.  After four weeks, data 

could no longer be collected in the present study as the stent fractured and dissipated into 

the flow apparatus.  In this application, it is believed that this represents the time at which 

the stent will break apart, flush into the bladder and then be expelled via urine.  It should 

be noted that this degradation time for the stent is much less than the typically reported 

time of 6 months for PDO.  [88], [89]  This is because, in this application, the time of 

strength loss of the PDO polymer equates to the time of stent fracture and migration into 
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the bladder.  It has been reported that PDO suture typically suffers a drop in tensile 

strength of 65-90% after 4 weeks which aligns with our empirical data.  

 The mass of the stent was near consistent during the degradation study which 

provides evidence that the PDO stent was undergoing bulk degradation. In general, 

degrading polymers can erode in two ways.  In surface erosion, the polymer degrades 

from the surface while in bulk erosion, degradation occurs throughout the whole material 

equally. As with nearly all polyesters, it has been shown that PDO undergoes bulk 

degradation. [90]  This is due to the water diffusing into the polymer and then cleaving 

the ester bonds via hydrolysis.  Hydrolytic degradation of ureteral stents in vivo would 

occur via an acid catalyzed process as the urinary tract is typically under acidic 

conditions (pH of 5.5-6.5 depending on diet).  [84] This acid catalyzed degradation is 

essentially the reverse of Fischer Esterification where an acidic molecule penetrates the 

lamellar structure and cleaves the ester linkage. Degradation will depend on crystallinity 

and morphology.  [91].  In the present study, degradation experiments were conducted in 

neutral deionized water (initial pH =7) with a regularly replaced reservoir used to dilute 

the acidic dioxanone polymer degradation products in the system.  The main concern 

when conducting this study was if the stent would last too long, as in the majority of 

clinical cases, the stent is removed within 4 weeks.  By performing the test under near 

neutral pH conditions, it is believed that the presented data represents an upper bound of 

stent degradation time and thus a worst case for stent implantation time. 

 The solution viscosity of a polymer is intrinsically tied to the molecular weight of 

a polymer.  Essentially, the longer polymer chains are more prone to tangle in solution 
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and thus resist the fluid flow.  The results of the solution viscosity testing provided 

evidence of a 12.7% decrease in viscosity after processing (Figure 4-10).  Compared to 

the unprocessed suture (1.58±0.07 dL/g), the viscosity of the processed stent was 

1.38±0.07 dL/g.  The decrease in viscosity indicates that there is degradation occurring in 

the polymer during processing.  The three primary methods of polymer degradation are 

chemical, thermal, and ultraviolet.  Based on the DSC results (Figure 4.3), and the 

annealing process conditions, it is unlikely that the polymer experienced thermal or 

ultraviolet degradation.  The most plausible explanation is that ambient moisture in the 

air provided enough initiator to start hydrolysis within the polymer.  [92]  Even though 

some degradation occurred in the stent during the annealing process, this may aid the 

final stent function as the stent will degrade in a shorter time which is more clinically 

relevant.  

 

5.4 Physical Characterization of Stent 

 The presence of an ether peak (1320-1000), an ester peak (1750-1735), and the 

aldehyde group (2830-2695), indicated the expected structure of the PDO.  The FTIR 

results verified that the polymer utilized to manufacture the stent was only PDO and was 

not contaminated by foreign substances during synthesis or sample preparation (Figure 

4-7).  The results of thermogravimetric analysis (TGA) revealed that both the processed 

and unprocessed stent reached 0% mass at 350 °C indicating the maximum molecular 

weight of both processed and unprocessed stents were the same.  However, the graph also 

showed that processed stent started decreasing in mass at a lower temperature (Figure 
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4-2). This can be explained when molecular weight is viewed as a distribution of polymer 

chains.  The data suggest that the unprocessed PDO polymer chains are uniform in length 

and, once temperature reached the sublimation temperature, they into the vapor phase 

simultaneously.  In contrast, the processed stent exhibited an earlier deflection of the 

TGA curve at 200 °C compared to the unprocessed stent at 250 °C.  This earlier sign of 

mass loss indicates that presence of smaller molecules that are easier to vaporize and 

removed from the polymer.  This indicates degradation of the longer polymer chains into 

shorter ones during processing.   

 The primary aim in DSC testing was to determine the percent crystallinity of the 

polymers before and after processing.  The enthalpy of fusion of a 100% crystalline 

polymer has been reported to be equal to 14400 J/mol. [93]  Given a molar mass of 102 

g/mol for PDO, this yields an enthalpy of melting of 141.12 J/g.   The experimentally 

determined average enthalpy of fusion for the processed stent was 105.19 J/g while the 

unprocessed stent was measured to be 92.68 J/g.  Dividing these values by the enthalpy 

of melting of 100% crystalline PDO yields a 74.50% crystallinity for processed stent 

samples and a 65.64% crystallinity for unprocessed suture. This gives an 8.86% increase 

in crystallinity due to processing.   

This increase in crystallinity was further confirmed by the results of wide angle x-ray 

scattering (Figure 4-9).  The intensity of the x-ray scatter showed a bimodal curve with an 

8.9% increase in intensity in processed stents. Additionally, there is a slight shift of 0.26 

degree in both the peaks toward a larger angle after processing the PDO suture into the 

stent. (Figure 4-9) 
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From the Bragg equation, ( 2𝑑𝑠𝑖𝑛𝜃 = 𝜆) given a 0.154 nm radiation wavelength, the 

lattice spacing of the suture was calculated to be 0.209 nm and 0.194 nm while the 

spacing for the stent was 0.207 nm and 0.192 nm.  This decrease in lattice spacing is 

attributed to degradation of the polymer which was confirmed by IV testing.  The cleaved 

polymer chains of the stent are shorter than the undegraded polymer chains of the suture.  

This allows the polymers to rest more closely to each other and slightly decreases the 

spacing between polymer chains. 

The results of the DSC and WAXS data indicate there is an 8.9% increase in 

crystallinity during processing.  PDO polymer typically exhibits a higher crystallinity 

than other degradable polymers such as PLA, one of the main reasons being lack of steric 

hindrance.  This is also why PDO has a very low glass transition temperature of around -

10 °C.  [94]  It can be speculated that this 8.9% increase in crystallinity is due to the 

added energy placed in the polymer from the 24 hours heat at 100 °C.  This thermal 

energy allowed the amorphous polymer chains to move until they were in a more 

thermodynamically favorable position when the polymer is more crystalline.  It is 

believed this crystallinity increase is the reason the annealed PDO is stiffer than the 

unannealed PDO.  Thus, it is has  been demonstrated that flexible, amorphous PDO can 

be formed into a spiral shape and “locked” into shape by annealing the material to 

increase its crystallinity.   
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6. CONCLUSION 

 In the present study, a biodegradable stent was designed and fabricated to solve 

many of the issues with current ureteral stents.  These include, encrustation, urgency, 

pain, and most importantly the need for a follow up removal surgery.  The proposed 

design features the use of biodegradable, FDA approved polydioxanone polymer material 

that was aimed to reduce encrustation and eliminate the need for a removal surgery.  

Additionally, the stent uses a coiled shape to anchor into the ureter, which will prevent 

the issue of the proximal anchor pressing on the bladder, remove the risk of encrustation 

on the distal anchor, and provide for better patient comfort by creating a more axially 

flexible stent.  The results of the present study provided evidence that the stent exhibits 

adequate radial strength to maintain patency and can meet ureteral flow rate 

requirements.  It was concluded that annealing PDO suture led to an increase in the 

polymer crystallinity and stiffness of the material.  Moreover, an in vitro experiment 

demonstrated that the stent degrades in four weeks under physiological conditions, which 

is believed to be the ideal degradation time for the majority of ureteral stent applications.   
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7. FUTURE WORK  

 

 Future work should address the gaps in the stent characterization to ensure patient 

safety after implantation.   

1. To determine the stent degradation profile, animal trials should be conducted to 

verify safety.   

 

Rationale:  While stent degradation was studied in near physiological conditions 

in vitro, the degradation profile was not explored in vivo. 

 

Approach: A porcine animal model is typically used for a urinary system the stent 

should be monitored over the course of implantation using ultrasound or 

fluoroscopic techniques to track the stent degradation. Following implantation 

excretory urogram and blood tests would verify that adequate urine flow is 

occurring.  After 5 weeks, all pigs should undergo necroscopy and undergo 

histological evaluation to verify no damage was done to the urinary tract during 

degradation. 

 

2. A full sized stent and full sized sheath should be manufactured to verify efficacy 

of the implantation procedure. 
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Rationale: While implantation was proven feasible with approximately 4 cm stent 

segments, implantation was not attempted with a full sized stent. 

 

Approach: Replacement of the tested silicone sheath with a material with a lower 

coefficient of friction will likely aid in implantation.  One potential sheath 

material is Polytetrafluoroethylene (PTFE).  This full sized stent should be 

implanted during the proposed animal study using standard urological techniques 

to verify implantation method. 

 

3. An encrustation experiment using artificial urine should be conducted.   

 

Rationale: it has been hypothesized that one of the benefits of utilizing a 

biodegradable stent is that it will reduce stent encrustation when compared to 

current stents on the market. 

 

Approach: Encrustation could be quantified by measuring mass gain over time of 

a stent submersed in solution.  Ideally, the typical stent materials of silicone and 

polyurethane would be tested under the same experimental conditions to compare 

the biodegradable material with current standards. 

  



 

68 

APPENDIX 

Code for Pressure Vessel Used in Radial Strength Testing 

 

#include <Wire.h> 

#include <Adafruit_BMP085.h> 

 

// Connect VCC of the BMP085 sensor to 3.3V (NOT 5.0V!) 

// Connect GND to Ground 

// Connect SCL to i2c clock - on '168/'328 Arduino Uno/Duemilanove/etc thats Analog 5 

// Connect SDA to i2c data - on '168/'328 Arduino Uno/Duemilanove/etc thats Analog 4 

// EOC is not used, it signifies an end of conversion 

// XCLR is a reset pin, also not used here 

 

Adafruit_BMP085 bmp; 

   

void setup() { 

  Serial.begin(115200); 

  if (!bmp.begin()) { 

 Serial.println("Could not find a valid BMP085 sensor, check wiring!"); 

 while (1) {} 

  } 

} 

   

void loop() { 

 

     

    //Serial.print("Pressure = "); 

    Serial.print(bmp.readPressure()); 

    //Serial.println(" Pa"); 

     

        

    Serial.println(); 

    delay(100); //sampling every 100ms 

} 
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