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Abstract

Software code metrics provide a quantitative and qualitative measurement of

a software component’s ability to perform under a specific set of objectives. Different

metrics have been developed for analyzing various aspects of the source code to gain

insight into the overall quality of the code under study. There are a variety of open

source tools available for computing metrics for applications coded in most of the

popular programming languages. However, there is no single tool that computes soft-

ware metrics for the popular programming languages in use today. To address this

problem, we describe an approach to software metric computation that can be ap-

plied to the popular programming languages currently in use, including both compiled

and interpreted languages. The approach entails leveraging existing parser tools to

produce a generalized abstract syntax tree that captures the important syntactic cat-

egories required for metric computation. To demonstrate the utility of our approach,

we exploit front-end parser tools for the Python and C++ programming languages

to produce a generalized abstract syntax tree and then compute software metrics as

a form of tree traversal. We describe our results for applying two commonly used

metrics to three open source software projects and various code samples written in

both Python and C++. The context of this process is then extended to computer

programming education, with the specific goal of helping students and programmers

improve the quality of their code.
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Chapter 1

Introduction

In the past four decades, research in the design of programming languages and

environments has focused on making computer programming accessible to a wider

range of users. Nevertheless, surveys show that programming remains a daunting

task and that little progress has been made in the fundamental area of computer

programming instruction [32, 39]. Numerous explanations for the difficulty of learning

to write correct programs have been proposed, including: rigid language syntax,

commands with seemingly arbitrary or confusing names, the challenge of identifying

structured solutions to match program specifications, and an inability to comprehend

how instructions are executed by a computer [4, 11, 15, 21, 28].

To address the problem of learning to program, a multitude of forums and

tools that facilitate computer programming instruction have become popular, includ-

ing Codecademy, Code Wars, and Project Euler [7, 9, 13]. These approaches foster

computer programming by proposing problems to be solved and then permitting users

to submit code solutions to be evaluated for correctness. These forums have been suc-

cessful in promoting computer programming but neither they, nor any other forum,

have developed techniques that promote automated evaluation of the quality of the
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submitted code in an effort to foster the development of programs that are easy to

extend and maintain.

The process of assessing software quality is well studied and the underlying

objective remains the same: to analyze relevant attributes for a particular software

component as a means to measure how well it meets certain requirements, while

also providing an indicator for the overall quality of the software product as a whole

[5, 31, 36]. The most commonly used approach toward measuring software quality is

through the use of software metrics, which tend to reflect non-functional requirements,

and their selection is largely influenced by the specific task or project at hand [6].

Often these quality attributes contradict each other, and so the emerging task of

prioritizing them becomes non-trivial. As a result, there is no universal software

metric that measures all of the desirable features of an application [10]. Since no

single metric can provide a complete evaluation of an application, most developers

employ a combination of many software metrics that together measure the quality of

the features that are important to the project under development. Thus, both the

selection and use of software metrics as a collection offers an important role in the

quantification and measurement of software quality.

In addition to the problem of metric selection, there is also the problem of

finding a metric tool that can accommodate the particular language that is used to

develop the application. A common problem occurs when a developer decides on the

specific set of metrics that are appropriate to evaluate the application but cannot find

metric tools that can be applied to the language used to code the application.

To address the problem of software evaluation for the popular languages used

in developing applications, we describe an approach to software metric computation

that can be applied to the popular programming languages currently in use, including

both compiled and interpreted languages. The approach entails leveraging existing
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parser tools to produce a generalized abstract syntax tree that captures the important

syntactic categories required for metric computation. In addition, we provide an

interoperable framework for metric computation such that additional metrics can

be performed on this generic program representation as validated by our schema

definition. We refer to this generalized program representation as a generic abstract

syntax tree (GAST), which introduces a further level of abstraction than the abstract

syntax tree (AST) that is also language-agnostic. To demonstrate the utility of our

approach, we exploit front-end parser tools for the Python and C++ programming

languages to produce a generalized abstract syntax tree and then compute software

metrics as a form of tree traversal. We describe our results for applying two commonly

used metrics to three open source software projects and various code samples written

in both Python and C++. The context of this process is then extended to computer

programming education, with the specific goal of helping students and programmers

improve the quality of their code.

The remainder of this thesis is organized as follows. In Chapter 2, we provide

background about the techniques and terminology that we use. In Chapter 3, we

describe our code evaluation strategy and its implementation. Chapter 4 provides

an evaluation of this approach and our prototype for assessing the quality of student

program submissions: Code� . We draw conclusions and describe future work in

Chapter 5.
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Chapter 2

Background and Related Work

In this chapter, we review the tools and terms used in this thesis. In Section

2.1, we discuss various software metrics and their uses. Next, we explain the funda-

mentals of abstract syntax trees and existing tools used to generate them in Section

2.2. Finally in Section 2.3, we provide an assessment of a select number of online

code instruction tools for the purpose of furthering computer science education.

2.1 Software Metrics

Software metrics play a significant role in the design, implementation, and

testing of software [10]. In essence, they provide a quantitative measurement of the

performance of a certain piece of software [31]. Effective use of software metrics can

provide important information for the management of software at all stages of its

life cycle. For example, certain metrics may help assess and predict cost, complexity,

and overall effort. Some analysts choose to classify these metrics by their role in

the development cycle, such as process, product, and resource metrics [5]. Another

intuitive way to classify these metrics are by programming paradigm, as some metrics
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may measure attributes like cohesion and coupling that may lend itself to an object-

oriented approach. The metrics that are relevant for evaluating code quality are

known as software code metrics, or those metrics that can be “directly countable from

source code” [5]. The discussion about the selection of metrics for different software

tasks and styles is thus important, yet it is beyond the scope of this thesis. The goal

of this paper is instead to explore a more general strategy for automatic evaluation of

code quality, that is language-agnostic and whose metrics can be interchanged. Next,

we describe a few standard metrics that we will later implement.

2.1.1 Source Lines of Code

Perhaps one of the oldest, most commonly used, yet somewhat denigrated

software metrics is the source lines of code (SLOC) metric. Its basic definition and

implementation are rather simple, as it is used to quantify the size of a program by

counting the number of lines in the source code. However, this method can become

increasingly complex as there exist many variations on what to consider a meaningful

line of code [5]. Although many agree that larger-sized functions are harder to main-

tain and thus considered more complex, it is often cited as a misconception for being

a useful predictor for software quality [20, 35]. Despite its controversy, it is commonly

used as an indicator of productivity or estimated effort [20]. Here, it is used primar-

ily to introduce the concept of software metrics with a more simple example. The

following code in Listing 2.1 shows a simple Python implementation of SLOC.

2.1.2 McCabe’s Cyclomatic Complexity

In 1976, Thomas McCabe attemted to address the issue of “how to modularize

a software system so the resulting modules are both testable and maintainable” [26].
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1 def SLOC(filename):
2 count = 0;
3 fd = open(filename, "r");
4 for line in fd:
5 count += 1;
6 return count;

Listing 2.1: SLOC Python Code

The result is a commonly used metric known as cyclomatic complexity that attempts

to quantify the complexity of a program module in a single numerical value. This is

accomplished by counting the number of linearly independent paths through a flow

graph of the program’s source. In theory then, the number of test cases needed to

sufficiently maintain a program will equal the cyclomatic complexity of the program.

Therefore, cyclomatic complexity plays a useful role as an indicator of required effort

in the maintainability of a software component.

McCabe’s cyclomatic complexity is formally defined using a control flow graph

of the given program [26]. A control flow graph is a type of directed graph, whose

edges indicate the possible flow of control between nodes, or the basic blocks of the

program. Then, let us denote E to be the number of edges, N the number of nodes,

and P the number of disconnected pieces1 of the graph. Following this representation

of a structured program, McCabe [26] defines the cyclomatic complexity as:

V (G) = E −N + 2P

As stated earlier, however, no metric can capture the entire meaning of com-

plexity in a single value [10]. In other words, the cyclomatic complexity might not

always match an individual’s interpretation of complexity. By design, McCabe’s cy-

1It is common for a program to be structured into a calling program and one or more subroutines.
Building a control graph, in this case, would result in having a disconnected graph for each subroutine
and calling procedure. Thus, we define P in this way.
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1 def foo(a, b):
2 distance = 0;
3 if (a[0] != b[0]):
4 distance += 1;
5 if (a[1] != b[1]):
6 distance += 1;
7 if (a[2] != b[2]):
8 distance += 1;
9 return distance;

Listing 2.2: Hamming Distance v1

clomatic complexity counts the number of control statements while ignoring the size

of the code under each node [19]. Thus, low complexity is not always translated to

high readability. Listings 2.2 and 2.3 show code segments written in Python that

compute the Hamming Distance of two binary numbers of length 3. Note that both

functions have equal cyclomatic complexity values, although their interpreted com-

plexity appears to differ substantially.

Another important consideration when calculating the cyclomatic complexity

of a function is how to construct the control flow graph. Unfortunately, McCabe does

not explicitly define what control statements establish a branch [40]. Because of these

ambiguities, there exist many variations of cyclomatic complexity [40]. For example,

the complexities for Listings 2.2 and 2.3 may differ depending on how each of the

control statements are managed in the formation of the control flow graph.

2.1.3 Halstead Formulas

Another well known set of complexity metrics is known as the Halstead com-

plexity measures, as introduced by Maurice Howard Halstead in 1977 [18]. This suite

of metrics includes several metrics marking different attributes of a program [18, 31].

First, we look at Halstead’s definition of program Volume. A list of variables and their
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1 def bar(a, b):
2 count = 2;
3 distance = 0;
4

5 while (count>-1):
6 distance = 0;
7 for i in range(count, 3):
8 if (int(a[i]) ˆ int(b[i]) != 0):
9 distance = distance + 1;

10 count = count - 1;
11 return distance;

Listing 2.3: Hamming Distance v2

Variable Meaning

η1 number of distinct operators
η2 number of distinct operands
η∗1 minimum number of distinct operators
η∗2 minimum number of distinct operands
N1 total number of operators
N2 total number of operands
N∗

1 minimum number of operators
N∗

2 minimum number of operands
V Volume
V ∗ Potential Volume
L Program Level

L̂ Estimated Program Level
D Program Difficulty

Table 2.1: Halstead Variables Defined
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corresponding meanings are listed in Table 2.1. A program’s Volume is a measure of

a program’s size in bits, defined by:

V = (N1 +N2) ∗ log2(η1 + η2)

Then the Potential Volume, or the volume of a procedure in its most succinct imple-

mentation, is defined as:

V ∗ = (N∗
1 +N∗

2 ) ∗ log2(η∗1 + η∗2)

Now, we can define the Program Level, L, as an indicator of a human’s ability to

understand the program. It is based on Volume, V , and Potential Volume, V ∗. Only

the most efficient implementation of the program can have a Program Level of 1. The

formula for Program Level is:

L = V ∗/V

This assumes that we are able to calculate the Potential Volume and thus able to

know the most efficient implementation of the code. Since this is usually not known,

we can calculate the Estimated Program Level as follows:

L̂ =
2

η1
∗ η2
N2

Finally, we can calculate the Program Difficulty as the inverse of Program Level:

D = 1/L

As a program’s Volume increases, the Difficulty increases. An increased number of

operators and operands will also increase the Volume and therefore Difficulty. For
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the sake of creating a general program representation, we refer to the operators and

operands in the program as equivalent to the arithmetic operators and operands

defined in the programming language. Much like complexity, a program’s difficulty

is often used as an indicator of software quality. In summary, by calculating the

number of operators and operands of a program as interpreted in Table 2.1, we refer

to a program’s difficulty with the following formula:

D =
η1
2

∗ N2

η2

2.2 Abstract Syntax Trees

The role of a compiler front-end can be viewed as the transformation from a

concrete representation of the source code to a more abstract structure [14]. It is this

language-specific, abstract form that is useful for the analysis and transformation of

programs.

More commonly, this abstract structure is viewed as a hierarchical data struc-

ture known as an abstract syntax tree (AST). The AST retains the overall structure

of a program, while ignoring the concrete details of syntactic information [14]. There-

fore, ASTs have an important role in semantic analysis, program correctness, and code

generation [3]. For our purposes, we are most concerned with utilizing the AST as

an analysis tool to facilitate comprehension and evaluation of software applications.

While our code evaluation strategy is detailed in the next chapter, the first step

in doing this analysis process is the AST generation. Generating an abstract syntax

tree from a program’s source code is non-trivial. Fortunately, there exist many tools

that support the analysis of programs in their native language. Two such libraries

are the Clang front-end parser for C-family languages and the Python ast module
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for Python programs. For most programming languages, there exist many tools for

the parsing and analysis of their respective programs. An exception to this is for

the C++ language [12, 25]. In order to address this problem and demonstrate our

method in a variety of programming languages, we have chosen Clang and Python’s

ast module to showcase the ability to generate ASTs for both C++ and Python

applications.

2.2.1 Clang

Clang is an open source, front-end for the LLVM compiler project [22]. It is

designed to work with the C family of programming languages, including C, C++,

Objective-C, and Objective-C++. Its modular design makes it easy to use and tap

into the internals of the compilation process. Clang provides several tools and APIs

that provide the user access to the syntax and semantics of a program. These in-

clude LibClang, Clang AST, and libTooling [25]. The most robust and stable tool is

LibClang, which is a C-language API that uncovers a large number of mechanisms

for the analysis of programs [22]. Most importantly, LibClang allows the user to gain

access to the AST, which is built by the Clang parser.

LibClang also offers a number of Python bindings that support the analysis of

code at the level of an AST [23]. However, the documentation for the LibClang tool

and Python bindings are largely lacking. Fortunately, there are resources which help

to uncover these APIs [12, 25].

Even though the number of parsing and analysis tools for applications in

C++ is dire [25], Clang provides a complete parse of C++ applications. This makes

Clang a powerful and mature tool, and is backed by major companies such as Apple

and Google [22]. For our purposes, we use LibClang and its Python wrappers only
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at the level of an AST to support the use of software metrics and further analysis of

our C++ applications.

2.2.2 Python ast Module

Python’s ast module provides an interface to Python’s internal parser program

[16]. This built-in Python library helps expose methods for visiting and analyzing

the AST of Python programs. It makes the task of creating a scanner and parser

simple with the single ast.parse() function. The user does not have to worry about

traversing the tree, and can instead focus on performing the code analysis by imple-

menting a class derived from the ast.NodeVisitor class. The user is then tasked

with overriding member functions essential to the analysis of the program.

2.3 Assessment of Online Code Instruction Tools

There is a shortage of students in science and engineering disciplines across

the world [37]. Although science and engineering have gained attention as an impor-

tant area of study, the U.S. has fallen behind in taking action to meet its demands,

especially in K-12 education [8]. According to the U.S. Bureau of Labor Statistics

and Code.org Computer Science Education Initiative, the number of computer science

jobs will soon far exceed the number of college graduates in this field [8, 29]. Even if

one does not go into a field of information technology, computer science courses are

still beneficial. The skills and knowledge earned in computer science courses are criti-

cal to understanding the underlying logic and science present in today’s fast-changing

technology. To meet these increasing demands, many universities and organizations

have turned to online education due to increased accessibility and reduced cost [2, 30].

Similarly, several web-based educational tools such as Codecademy, Code Wars, and
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Project Euler offer unique approaches to teach programming principles in addition to

making computer science education more accessible [7, 9, 13].

We look to improve the user experience of these online educational tools by

applying our code evaluation strategies. The comprehension and evaluation of code

quality has a broad range of applications, especially during the development and

maintenance of software. These applications also extend to the use of software code

metrics to assess the quality of code in an online, educational environment. We look

at several free, web-based problem solving tools in an attempt to further their efforts

in providing an accessible and effective learning environment for computer science.

2.3.1 Codecademy

Codecademy was started in 2011 as an online programming instruction tool

that has since grown in popularity and support [7]. It features free2 step-by-step

lessons and quizzes organized into lesson units. These modules are then grouped into

courses for learning a large number of programming languages, web developer skills,

and other programming goals. This makes it easily accessible for those who wish

to become familiar with the syntax and fundamentals behind an array of popular

programming languages, including HTML/CSS, JavaScript, jQuery, PHP, Python,

and Ruby. Individual lessons typically feature a few paragraphs of text introducing

a new concept, followed by a set of programming instructions that the user must

complete. On this page is also located a text editor where the user enters the code

necessary to complete the indicated objective. Upon submitting the user entered

code, the page then verifies whether the task was completed correctly. An incorrect

submission will cause the page to report the terminal’s error message along with

2Codecademy also offers a premium account for additional content and courses, including a sep-
arate course introducing the fundamentals of Java.

13



helpful hints and further guidance.

Many sites like Codecademy use a technique known as sandboxing to capture

and execute user code safely [33]. After doing this, the code must be checked for

accuracy. In order to verify the correctness and completeness of a solution, the user

must closely follow the naming conventions and attributes specified in the directions.

This approach does not allow for code clones and thus can be considered somewhat

limited as far as code comprehension.

2.3.2 Code Wars

Unlike Codecademy’s lesson based approach to teaching programming funda-

mentals, Code Wars presents several programming challenges in a competitive train-

ing environment to help users learn and improve their programming skills. Currently,

Code Wars supports several programming languages such as CoffeeScript, JavaScript,

Python, Ruby, Java, Clojure, Haskell, and C# [9]. The website also mentions their

effort to expand support to F#, Objective-C, PHP, C, and C++ in the future.

Once a Code Wars account is created, the user can choose between a list of

challenges, or kata. Alternatively, a random kata will be selected based on the chosen

language preferences using the “Train” button. Completing challenges will earn honor

points based on the kata ranking. Also, completing higher ranked kata will then match

the user with challenges based on relevant difficulty settings. In addition to many

available social features, the user can author their own kata challenges to present to

the online community.

To evaluate the correctness of the entered program, the site simply runs the

code through several test cases and matches the user output with the correct solution.

After the user submits the correct solution (or forfeits his or her ability to earn
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honor points by prematurely unlocking the solution), a page appears with the correct

solutions of other members. Users can then rate each solution by cleverness and

best practices, along with viewing similar variations for each solution. Thus, the site

implements a feature called “solutions grouping” where it attempts to “group similar

solutions together so that they may be voted on and discussed as a group” [9]. It is

unclear how exactly this analysis is performed, though they encourage feedback on

how this process can be improved.

Interestingly, Code Wars implements a code quality evaluation strategy that

is often overlooked as an effective technique. Instead of using software metrics or

formal analysis strategies, Code Wars relies on the community to provide user sub-

mitted feedback on the quality of others’ code. This, in combination with their

solutions grouping technique, offers a viable alternative to software quality evalua-

tion. However, the drawback of this approach is that it provides a non-uniform way

of evaluating quality that is in turn very subjective. In other words, new content does

not receive immediate feedback, and aspects of software quality are constrained to

cleverness and best practices, which may invoke different interpretations across dif-

ferent users. In addition, it may take several days or months before a “great answer”

is voted enough times where other users can see, or even unintentionally grouped as

a variant of somebody else’s answer.

2.3.3 Project Euler

Project Euler aims to “encourage, challenge, and develop the skills and enjoy-

ment of anyone with an interest in the fascinating world of mathematics” [13]. It is

an online collection of challenging problems with a focus in mathematics. Problems

range in difficulty from easy to challenging, though most can be solved using a suc-
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cinct algorithm. Creating a free account allows the user to track their progress and

receive achievement levels and awards depending on the number of problems solved.

It currently has over 500 problems, with only 51 members having solved all 500+

problems. Ever since its creation in 2001, Project Euler has increased in popularity,

with over 500,000 registered members that have solved at least one problem [13].

Compared to Codecademy and Code Wars, Project Euler is much more problem-

oriented and thus does not contain an online terminal or text editor. The problems

are generic enough such that they do not lend themselves to any one programming

language or solution strategy. Instead of displaying a unique answer, each question

has a designated forum page that can be accessed only after the user has entered a

correct solution. This forum specific approach provides a unique way of accessing

other members’ posted solutions and comments.

While the forum specific approach allows for user discussion and solution shar-

ing, it becomes difficult to evaluate the individual quality of a solution. In addition,

the awards for accomplishing various tasks could potentially be refined by awarding

solutions that score high code quality evaluations.

These limitations of Codecademy, Code Wars, and Project Euler lend them-

selves to an evaluation approach for software quality that is both automated and

customizable based on the intended focus of the website. For example, one web-

site might favor a quality assessment that considers complexity more heavily than

code styling for a beginner. In addition, the ability to easily support evaluation of

code quality across many languages allow for a potentially improved problem solving

environment that is independent of programming language or paradigm.
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Chapter 3

Methodology

In this chapter we describe our strategy for automated code quality evaluation

for a variety of popular languages. We first evaluate the program for syntactic and

functional correctness before we begin the process of evaluating the quality of the

code. In the next section, we provide an overview of our approach. In Section 3.2,

we describe the data structure that captures the information that we need for metric

computation. We review our approach in Section 3.3 for incorporating the information

from this data structure into a modified, language-independent representation. In

Section 3.4, we describe the process for validating the resulting data structure before

proceeding to the metric evaluation step. In Section 3.5, we review the languages and

metrics that we use for the evaluation of our methodology. Finally, we discuss the

implementation of our approach in the Code� prototype to explore how this code

evaluation technique can be applied in an online programming education environment.
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Figure 3.1: Overview of the GAST System

3.1 Overview of our Approach

Figure 3.1 contains an overview of the process that we use. First, the source

code that is under review, shown on the left side of the figure, is used as input to

a corresponding Parser Front-end, which builds a syntactic representation of the

program called an Abstract Syntax Tree (AST). An AST is a pruned parse tree, but

the AST might be decorated with semantic information to facilitate computation of

the desired metrics. An AST is a language-dependent data structure so we extract

the language specific attributes into a more generic representation that we refer to

as a Generic Abstract Syntax Tree (GAST), shown in the middle of Figure 3.1. The

GAST is expressed in the Extensible Markup Language (XML), as shown in the

figure. We have developed a schema, described in Section 3.4 and shown in Listing

3.1, that we then use to validate the correctness of the generated GAST according to

our definition of its structure. Finally, we compute the various software metrics on

the GAST representation using an ordered tree traversal. Of course a set of metrics

is required to provide a full evaluation and, in our final approach, we combine the

scores to provide an overall evaluation of the source code.
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3.2 Step 1: AST Construction

To build our AST representation, we leverage existing parser front-end APIs.

In our implementation, we chose to support the Python and C++ programming

languages using the Python ast module and Clang libraries, respectively [16, 23].

Python’s built-in ast module provides several methods to tap into the Python parser

internals, which we use to capture the program’s AST. With slight modifications to

the module’s ast.dump() method, we can gather and format a Python program’s

AST. Similarly, we can use the LibClang library and Python wrappers to access

the AST of a C++ program. Finally, we save the contents of the AST using the

Extensible Markup Language (XML) to provide a standard and well-known output

format.

Ultimately, this step allows us to gather the necessary syntactic and semantic

information we need from the source code to perform our analysis. Rather than

using the source code directly, we use an AST representation to provide us detailed

information about the program that many software metrics may require. In addition,

the existence of various parser front-end APIs for most languages makes this process

adaptable to other programming languages [25].

3.3 Step 2: Generic AST Construction

The goal of this step is to use the XML representation of the AST generated

in the previous step and remove all language-specific details to provide a common

language AST for analysis. We call this modified AST a generic AST, or GAST.

Once this step is completed, we have a new AST representation of the source code in

XML that provides a common basis for code quality evaluation. This step facilitates
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Figure 3.2: Code Evaluator Implementation

adaptation to a variety of programming languages.

3.4 Step 3: Validating Structural Correctness

Because the role of the GAST is to provide a common interface for evaluating

code quality, it is important to explicitly define its structure to promote extensibility

among other programming languages. In this way, researchers can apply our technique

to other programming languages simply by providing its AST representation and a

way to translate its entities according to the specification of the GAST. In Listing

3.1, we provide an XML Schema Definition to determine the validity of a generated

GAST structure. In addition to allowing support for languages other than Python

and C++, it is important that the output from Step 2 can be validated against our

schema before proceeding to the code evaluation process in Step 4.

3.5 Step 4: Code Evaluator

Now that we have built a common format for problem analysis, we compute

multiple software metrics using the GAST, and thereby measure the quality of the
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code. In order to capture the code quality, we simply output the values returned by

the cyclomatic complexity and Halstead difficulty metrics.

To investigate the practicality of our procedure, we computed the cyclomatic

complexity using the GAST approach for three open source projects, each written in

both C++ and Python. The three projects, PureMVC, ua-parser, and Apache Etch, are

open source projects with their source code and language ports available on GitHub

[1, 34, 41]. Figure 3.2 illustrates our code evaluator. Additionally, we aim to compare

the values reported by cyclomatic complexity using our method against the known

cyclomatic complexity measurement. The known cyclomatic complexity is obtained

using the open source metrics 0.2.6 software package written in 2010 to support

calculation of metrics such as McCabe’s cyclomatic complexity in C, C++, JavaScript,

and Python programs [27]. Note that the metrics package does not calculate its

included metrics using the approach proposed here, and instead relies on a more

direct, text-based analysis of the source code.

However, the McCabe’s cyclomatic complexity returned by the metrics pack-

age is defined differently than in our original implementation of the metric, which

we have in turn adapted to match the software package’s strategy. As mentioned in

Chapter 2, the details on how to derive the control flow graph is vague on some details,

and thus varies slightly from implementation to implementation [40]. Specifically, the

McCabe metric used in the metrics package considers keywords like assert, else,

break, and continue as branch statements, whereas our implementation does not.

In order to distinguish these two, we continue to refer to the method proposed by the

metrics package as McCabe’s extended cyclomatic complexity, and our original im-

plementation as simply McCabe’s cyclomatic complexity. As a result, we calculated

three different complexity measurements for each open source project: cyclomatic

complexity, extended cyclomatic complexity, and the metrics tool cyclomatic com-
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plexity.

After evaluating the accuracy of our approach, we aimed to determine its effec-

tiveness through applying the McCabe cyclomatic complexity and Halstead difficulty

metrics on several small-scale code exercises obtained from Project Euler. For each

of the first five problems listed on the Project Euler problem archive, we obtain all

user posted answers written in Python and C++, and then evaluate their quality

using our approach and the Halstead difficulty, McCabe’s cyclomatic complexity, and

McCabe’s extended cyclomatic complexity metrics. Finally, we again include the

reported cyclomatic complexity from the metrics software package for verification.

3.6 Application: Code� Online Evaluator

We apply the techniques described in this chapter to the Code� online pro-

totype [24]. Code� is an online programming tool where users complete various

programming tasks to learn the basics of either C++ or Python. Unlike other online

programming instruction tools, we focus on providing the user feedback indicating

the quality of his or her submitted code. Assuming they have answered the ques-

tion correctly, their submission is then scored based on the Halstead and cyclomatic

complexity metrics as mentioned earlier.

1 <?xml version="1.0"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
3

4 <!-- simple element definitions -->
5 <xs:element name="TranslationUnit" type="CursorKind"/>
6

7 <!-- attribute definitions -->
8 <xs:attribute name="filename" type="xs:string"/>
9 <xs:attribute name="lineno" type="xs:positiveInteger"/>

10 <xs:attribute name="col_offset" type="xs:nonNegativeInteger"/>
11 <xs:attribute name="mccabe" type="xs:nonNegativeInteger"/>
12

13 <!-- GAST Cursor Kinds -->
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14 <xs:complexType name="CursorKind">
15 <xs:choice minOccurs="0" maxOccurs="unbounded">
16 <xs:element ref="BinaryOperator" maxOccurs="unbounded"/>
17 <xs:element ref="UnaryOperator" maxOccurs="unbounded"/>
18 <xs:element ref="TernaryOperator" maxOccurs="unbounded"/>
19 <xs:element name="FunctionDefinition" type="CursorKind"
20 maxOccurs="unbounded"/>
21 <xs:element name="FunctionCallExpression" type="CursorKind"
22 maxOccurs="unbounded"/>
23 <xs:element name="ClassDefinition" type="CursorKind"
24 maxOccurs="unbounded"/>
25 <xs:element name="Constructor" type="CursorKind"
26 maxOccurs="unbounded"/>
27 <xs:element name="Assert" type="CursorKind" maxOccurs="unbounded"/>
28 <xs:element name="Num" type="CursorKind" maxOccurs="unbounded"/>
29 <xs:element name="Char" type="CursorKind" maxOccurs="unbounded"/>
30 <xs:element name="Str" type="CursorKind" maxOccurs="unbounded"/>
31 <xs:element name="Switch" type="CursorKind" maxOccurs="unbounded"/>
32 <xs:element name="While" type="CursorKind" maxOccurs="unbounded"/>
33 <xs:element name="For" type="CursorKind" maxOccurs="unbounded"/>
34 <xs:element name="If" type="CursorKind" maxOccurs="unbounded"/>
35 <xs:element name="Return" type="CursorKind" maxOccurs="unbounded"/>
36 <xs:element name="Case" type="CursorKind" maxOccurs="unbounded"/>
37 <xs:element name="Break" type="CursorKind" maxOccurs="unbounded"/>
38 <xs:element name="Continue" type="CursorKind" maxOccurs="unbounded"/>
39 <xs:element name="Try" type="CursorKind" maxOccurs="unbounded"/>
40 <xs:element name="Catch" type="CursorKind" maxOccurs="unbounded"/>
41 <xs:element name="Except" type="CursorKind" maxOccurs="unbounded"/>
42 <xs:element name="Unknown" type="CursorKind" maxOccurs="unbounded"/>
43 </xs:choice>
44 <xs:attribute ref="lineno"/>
45 <xs:attribute ref="col_offset"/>
46 <xs:attribute ref="mccabe" use="optional"/>
47 </xs:complexType>
48

49 <!-- complex element definitions -->
50 <xs:element name="BinaryOperatorMeta">
51 <xs:complexType>
52 <xs:choice minOccurs="0" maxOccurs="unbounded">
53 <xs:element name="rand" type="xs:string" maxOccurs="unbounded"/>
54 <xs:element name="tor" type="xs:string" maxOccurs="unbounded"/>
55 </xs:choice>
56 </xs:complexType>
57 </xs:element>
58

59 <xs:element name="BinaryOperator">
60 <xs:complexType>
61 <xs:complexContent>
62 <xs:extension base="CursorKind">
63 <xs:sequence>
64 <xs:element ref="BinaryOperatorMeta"/>
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65 </xs:sequence>
66 </xs:extension>
67 </xs:complexContent>
68 </xs:complexType>
69 </xs:element>
70

71 <xs:element name="UnaryOperatorMeta">
72 <xs:complexType>
73 <xs:choice minOccurs="0" maxOccurs="unbounded">
74 <xs:element name="rand" type="xs:string" maxOccurs="unbounded"/>
75 <xs:element name="tor" type="xs:string" maxOccurs="unbounded"/>
76 </xs:choice>
77 </xs:complexType>
78 </xs:element>
79

80 <xs:element name="UnaryOperator">
81 <xs:complexType>
82 <xs:complexContent>
83 <xs:extension base="CursorKind">
84 <xs:sequence>
85 <xs:element ref="UnaryOperatorMeta"/>
86 </xs:sequence>
87 </xs:extension>
88 </xs:complexContent>
89 </xs:complexType>
90 </xs:element>
91

92 <xs:element name="TernaryOperatorMeta">
93 <xs:complexType>
94 <xs:choice minOccurs="0" maxOccurs="unbounded">
95 <xs:element name="rand" type="xs:string" maxOccurs="unbounded"/>
96 <xs:element name="tor" type="xs:string" maxOccurs="unbounded"/>
97 </xs:choice>
98 </xs:complexType>
99 </xs:element>

100

101 <xs:element name="TernaryOperator">
102 <xs:complexType>
103 <xs:complexContent>
104 <xs:extension base="CursorKind">
105 <xs:sequence>
106 <xs:element ref="TernaryOperatorMeta"/>
107 </xs:sequence>
108 </xs:extension>
109 </xs:complexContent>
110 </xs:complexType>
111 </xs:element>
112

113 <!-- root definition -->
114 <xs:element name="gast">
115 <xs:complexType>
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116 <xs:sequence>
117 <xs:element ref="TranslationUnit"/>
118 </xs:sequence>
119 <xs:attribute ref="filename" use="required"/>
120 </xs:complexType>
121 </xs:element>
122

123 </xs:schema>

Listing 3.1: GAST XML Schema Definition

25



Chapter 4

Results

In previous chapters, we described our goal of developing a generic program

representation that can be used for evaluating programs written in a multitude of

popular programming languages. We have also described our approach for achiev-

ing this goal: the construction of a generic abstract syntax tree (GAST) that can

capture the required information for automated metrics computation for each of the

programming languages under study. In this chapter, we present some results from

the implementation of our approach in an effort to evaluate the feasibility and utility

of our goal.

In Section 4.1, we apply our approach to three medium sized, commonly used,

open source programs: PureMVC, ua-parser, and Apache Etch, and we compute metrics

for each of these applications [1, 34, 41]. The PureMVC framework facilitates writing

applications based on the Model-View-Controller architectural pattern [34]. PureMVC

implements several design patterns defined by Gamma et al. [17], including Facade,

Command, Mediator, Observer, and Proxy. Versions of the framework are available

for multiple languages, including Python and C++. In addition to its focus on design

patterns, PureMVC also makes liberal use of template features. We also applied
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our approach to ua-parser, a parser that can extract information about the platform,

operating system, and cpu architecture, from a user-agent string, with relatively

lightweight footprint [41]. The ua-parser is a commonly used application that has been

ported to multiple programming languages including Python and C++. In addition,

we applied our metrics to Apache Etch, an open source, cross-platform, language- and

transport-independent framework for building and consuming network services [1].

We chose these applications because they are medium sized, commonly used, open

source projects that include versions programmed in both Python and C++, the two

languages that we wish to target for our evaluation.

The goals of our work also include the development of automated techniques

to facilitate improvement of programming skills for students who major in both non

computer science and computer science areas. There are a plethora of projects that

either provide instruction in computer programming or test programs for validity,

including Project Euler, Codecademy, and Code Wars [13, 7, 9]. However, there are

no projects available that assess the quality of the student code and, in our experience,

the quality can vary greatly. Thus, in Section 4.2 we describe some results obtained

through our evaluation of the first five exercises found on the Project Euler web site.

We captured all of the solutions posted for these first five exercises and used our

metrics computation to evaluate the solutions. Finally, we have developed a web-

based program evaluator, Code�, described in Section 4.3, that permits users to

enter programs, written in either Python or C++, for evaluation using the metrics

that we have implemented. To illustrate the use of the web page in an online coding

environment, we provide screen captures of the Code� prototype.
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ua-parser C++ 681 94 102 102
ua-parser Python 542 91 106 106
PureMVC C++ 1991 154 162 162
PureMVC Python 413 34 35 35

Apache Etch C++ 21125 1106 1302 1302
Apache Etch Python 5023 377 422 422

Table 4.1: McCabe Metrics for PureMVC, ua-parser, and Apache Etch

4.1 Evaluation of Open Source Projects

To evaluate our generic metric computation for medium sized programs, we

now describe our results for the three open source applications: PureMVC, ua-parser,

and Apache Etch. Table 4.1 consists of of six columns and six rows of data. The first

column lists the name of the project under study, the second column lists the imple-

mentation language for the respective project, and the third column lists the total

lines of code required to implement the project, excluding comments and whitespace.

Columns four and five list results obtained using our generic approach for computing

McCabe’s cyclomatic complexity, and for computing the extended McCabe’s cyclo-

matic complexity. The sixth column of the table lists results obtained using an

open-source metrics computation tool to compute McCabe’s cyclomatic complexity.

The values listed for cyclomatic complexity reflect the sum of the complexities of all

of the functions in the application.

The fifth and sixth columns of Table 4.1 show that our generic computation

tool that computes the extended McCabe cyclomatic complexity and the open-source

metrics computation tool compute the exact same values, providing some confidence
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in the validity of our results. Also, for the ua-parser application we observe that

the C++ and Python versions consist of approximately the same number of SLOC,

listed as 681 and 542 in column three, rows three and four. Similarly, the McCabe

cyclomatic complexities of the ua-parser application are approximately the same for

the C++ and Python versions, listed as 94 and 91 respectively.

However, the values for the PureMVC and Apache Etch applications list diver-

gent results for the C++ and Python versions, where the values listed for the Python

version of the application are consistently lower than the C++ version. For example,

consider column three, rows three and four where the C++ and Python versions are

listed as 1991 and 413 SLOC respectively. This reduction in SLOC for the Python

version reflects the fact that the Python versions of PureMVC and Apache Etch are

written in a pythonic manner, which is typically more succinct than the usual C++

coding style, which tends to be more verbose with separate files for the interface and

implementation of classes. There are similar reductions in the results for McCabe’s

cyclomatic complexity where, for example, the McCabe values for C++ and Python

are listed for PureMVC in column four as 154 and 34 respectively, illustrating the

advantage of using Python for rapid prototyping.

4.2 Evaluation of Solutions for Project Euler

To further evaluate our generic metrics computation, we use our approach to

evaluate the user solutions, written in C++ and Python, posted on the Project Euler

website. Table 4.2 lists these first five exercises in two columns, where the first column

lists a tag that we will use to refer to the exercise, and the second column lists the

full description of the problem. For example, the second row of Table 4.2 lists the

Tag, Even Fibonacci, and the Full Description, which asks the user to find the sum
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Tag Full Description
1. Multiples of 3 and 5 If we list all the natural numbers below 10 that are multiples of 3 or 5, we

get 3, 5, 6 and 9. The sum of these multiples is 23. Find the sum of all the
multiples of 3 or 5 below 1000.

2. Even Fibonacci Each new term in the Fibonacci sequence is generated by adding the previous
two terms. By starting with 1 and 2, the first 10 terms will be: 1, 2, 3, 5, 8, 13,
21, 34, 55, 89, ... By considering the terms in the Fibonacci sequence whose
values do not exceed four million, find the sum of the even-valued terms.

3. Largest Prime Factor The prime factors of 13195 are 5, 7, 13 and 29. What is the largest prime factor
of the number 600851475143?

4. Largest Palindrome A palindromic number reads the same both ways. The largest palindrome
made from the product of two 2-digit numbers is 9009 = 9199. Find the
largest palindrome made from the product of two 3-digit numbers.

5. Smallest Multiple 2520 is the smallest number that can be divided by each of the numbers from
1 to 10 without any remainder. What is the smallest positive number that is
evenly divisible by all of the numbers from 1 to 20?

Table 4.2: Descriptions of the First Five Exercises for Project Euler

of the even Fibonacci numbers that are less than four million.

Tables 4.3 and 4.4 list the results of our metric evaluation for C++ and Python,

respectively. For example, Table 4.3 contains five rows of data, one row for each of

the five Euler exercises, and 11 columns. The first column lists the Tag, described

previously, and the second column lists the number of solutions that were posted in

C++ for each of the five Euler exercises. For example, the most solutions written in

C++ were posted for the Largest Palindrome exercise, where 19 solutions were posted

on the Euler website. The final nine columns list High, Low, and Avg values for each

of the three metrics: Halstead, McCabe, and Ext McCabe.

Tag
So
ln
s Halstead McCabe Ext McCabe

High Low Avg High Low Avg High Low Avg

1. Multiples of 3 and 5 14 9.00 3.00 5.57 4.00 0.00 2.21 4.00 0.00 2.36
2. Even Fibonacci 17 10.00 3.00 5.53 5.00 0.00 2.59 5.00 0.00 2.76
3. Largest Prime Factor 11 14.00 3.00 9.59 11.00 2.00 6.36 15.00 2.00 7.09
4. Largest Palindrome 19 30.00 4.00 13.03 10.00 3.00 5.68 11.00 3.00 5.89
5. Smallest Multiple 16 10.00 2.00 5.44 14.00 1.00 4.38 16.00 1.00 4.69

Table 4.3: Posted Solutions Written in C++
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Tag
So
ln
s Halstead McCabe Ext McCabe

High Low Avg High Low Avg High Low Avg

1. Multiples of 3 and 5 33 5.67 0.50 2.65 6.00 0.00 2.00 8.00 0.00 2.12
2. Even Fibonacci 34 5.71 1.00 2.72 6.00 1.00 2.26 6.00 1.00 2.41
3. Largest Prime Factor 46 8.40 1.00 4.44 10.00 2.00 4.30 12.00 2.00 5.00
4. Largest Palindrome 40 9.15 1.00 3.49 17.00 3.00 5.23 18.00 3.00 5.65
5. Smallest Multiple 26 7.80 1.80 4.26 20.00 1.00 5.92 16.00 1.00 6.85

Table 4.4: Posted Solutions Written in Python

For example, the values listed for the Halstead metric for the Multiples of 3

and 5 exercise are 9, 3, and 5.57 for the high, low, and average values. However,

the most widely divergent values are those listed for the Largest Palindrome exercise,

with values of 30, 4, and 13.03 for the high, low, and average values. These values

illustrate the widely divergent metrics computed for the posted solutions to the Euler

exercises. Even more interesting are the values listed for the McCabe metric for the

first two exercises, where the low values for Multiples of 3 and 5 and Even Fibonacci

are listed as zero for the low values. These zero values result from the fact that some

of the posted solutions used mathematic formulae to compute their results and did

not require loops or decision statements.

Recall that the extended McCabe complexity, Ext McCabe, extends the Mc-

Cabe keywords with assert, else, break, and continue. Thus, the values listed for

Ext McCabe are the same or higher than the values listed for McCabe. For example,

the average value listed for the McCabe metric for the Even Fibonacci exercise is 2.59,

while the average value listed for Ext McCabe metric for the Even Fibonacci exercise

is 2.76, even though the high and low values are the same: 5 and 0 respectively.

Table 4.4 lists the metrics computations for solutions written in Python for the

first five Euler exercises. Table 4.3 makes an interesting comparison with Table 4.4,

where the solutions are instead written in C++. For example, there are more posted

solutions in Python, with 179 solutions, than for C++, with 77 solutions. Also, the
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Halstead metrics listed for the Python solutions are consistently lower than the values

listed for the C++ solutions.

However, the results for the McCabe metrics list average values that are gen-

erally lower for the Python solutions, but the high values are generally higher for the

Python solutions. For example, the average McCabe values for the C++ solutions are

2.21, 2.59, 6.36, 5.68, and 4.38; however, the average McCabe values for the Python

solutions are 2.00, 2.26, 4.30, 5.23, and 5.92. These values illustrate that the Python

solutions generally have lower average values than the C++ solutions, except for the

Smallest Multiple exercise, where the average value for the C++ solution is 4.38, as

compared to 5.92. However, the high values listed for the McCabe metric are gen-

erally higher for the Python solutions. For example, the high value for the Smallest

Multiple exercise is 14.00 for the C++ solutions, but is 20.00 for the Python solutions.

One explanation for these larger High values is that some of the Python solutions

were submitted by beginning programmers, and this explanation is substantiated by

some of the comments posted on the Euler website.

The results for the McCabe and Halstead metrics are further illustrated in

Figures 4.1 and 4.2, respectively. Both figures attempt to highlight the differences in

metric evaluation scores for all C++ and Python user solutions among the first five

Project Euler problems. A similar boxplot visualization can be found in Appendix A

for the extended McCabe metric calculations.

In Figure 4.1, the McCabe metric calculations for both C++ and Python user

solutions depict similar patterns of high and low complexity values across the five

problem sets. This likely reflects the varying difficulty of the Project Euler challenge

problems, although they share a common user difficulty rating of 5% as listed on the

website’s Problem Archive [13]. Figure 4.1 also shows a large number of outliers,

which further demonstrates the wide variety of user programming experience and
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Figure 4.1: Cyclomatic Complexity for Euler Problems 1-5

posted solutions in both languages.

Figure 4.2 depicts a noticeable difference in Halstead difficulty measurements

between C++ and Python user solutions. When considering the calculation of the

McCabe cyclomatic complexity, the types of control statements share a similar struc-

ture in both C++ and Python programming languages. In comparison, the types

and use of operators and operands when computing the Halstead difficulty measure-

ment is largely influenced by the underlying grammar and intent of the programming

language. Therefore, the succinct nature of the Python programming language may

contribute to smaller Halstead Difficulty values as shown in Figure 4.2.

4.3 Code� Results

Figures 4.3 and 4.4 show screenshots of an online code instruction tool pro-

totype, Code�, which performs the metric evaluation that we describe in this paper
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Figure 4.2: Halstead Difficulty for Euler Problems 1-5

[24]. Users can create an account and select from a sequence of challenge problems,

including the first five Project Euler exercises. They can then write and execute code

in the text editor to submit their attempted solution in either Python or C++. The

submitted solution is evaluated for correctness by comparing the output of the sub-

mitted solution, which is shown in the console window, with the correct response

that is stored in our database. Clicking on the Evaluate key will first verify that

the submitted solution is valid, and then continue to give a detailed report on the

cyclomatic complexity and Halstead difficulty scores for the submitted solution. Also,

since students can better evaluate their performance by comparing their scores with

the scores of other submissions, Code� provides the user’s best attempted scores for

each exercise, as well as the average, minimum, and maximum scores of other students

[38].

For example, Figure 4.3 illustrates a Code� web page where a user has chosen

to solve the Multiples of 3 and 5 exercise in Python, and has submitted their solution in
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Figure 4.3: Coder� Prototype
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Figure 4.4: Coder� Results
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the Enter Code Here window. Also, the bottom of the figure illustrates the output from

the execution of the student submission, where the answer shown is 233168, which

is the correct answer. Since the answer is correct, Code� then provides comparison

scores in Figure 4.4, where first the Cyclomatic Complexity and Halstead Difficulty are

shown for the submitted solution as 2 and 0.5 respectively. The middle of the figure

shows the student’s best scores for this problem, also as 2 for Cyclomatic Complexity,

and 0.5 for Halstead Difficulty. Finally, Figure 4.4 compares the submitted score with

the scores of other students who have submitted solutions; these comparison scores

are shown at the bottom of the figure.
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Chapter 5

Conclusion and Future Work

In this thesis, we have described our strategy for developing a generic pro-

gram representation that can be used for evaluating programs written in a multitude

of popular programming languages. Our approach entails the use of existing parser

tools to build an AST and, in our evaluation, we used the LibClang and Python ast

front-end APIs. We described our use of the AST in the construction of a generic

abstract syntax tree (GAST) that captures the required information for automated

metrics computation for each of the programming languages under study. In our eval-

uation, we applied our approach to three medium sized, commonly used, open source

programs: PureMVC, ua-parser, and Apache Etch, and we computed metrics for each

of these applications [1, 34, 41]. We chose these applications because they are medium

sized, commonly used, open source projects that include versions programmed in both

Python and C++, the two languages that we target in our evaluation.

Since the goals of our work also include the development of automated tech-

niques to facilitate improvement of programming skills for students who major in both

non computer science and computer science areas, we also described results obtained

from our evaluation of the first five exercises found on the Project Euler web site. We
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captured all of the solutions written in Python and C++ posted for these first five

exercises and used our metrics computation to evaluate the solutions.

Finally, we have developed a web-based program evaluator, Code�, that per-

mits users to enter programs, written in either Python or C++, for evaluation using

the McCabe cyclomatic complexity and Halstead difficulty metrics. These metrics

together provide a general indication of the quality of a program’s code.

The contributions of our work include:

1. A generic representation of a program that is general and interoperable among

programming languages. The GAST that we have developed can be used by

other researchers to reproduce the metric results that we have computed, or

the researchers can use the GAST to compute metrics of their choosing. This

interoperability is facilitated by our representation of the GAST in XML, which

is human readable, platform independent, and frequently used, so that there

is likely to be an available XML parser coded in the same language used for

project development. This interoperability is facilitated further through the use

of the schema that we have developed, which captures the important constraints

needed for metrics computation using the GAST.

2. An implementation, using two popular programming languages, Python and

C++, which use the GAST to compute metrics on our test suite. We have

validated some of our results through a comparison of the McCabe cyclomatic

complexity values computed with an existing metric computation tool.

3. A web site, Code�, which supports evaluation of the quality of student program

submissions. The current implementation of the web page permits students to

submit any program written in Python or C++, and also allows students to solve

any of the first five Project Euler exercises, including a comparison of the quality
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of the student submission with the quality of previous student submissions.

5.1 Future Work

Currently, our framework allows for metric evaluation for the C++ and Python

programming languages. However, the GAST framework is designed to support any

programming language with access to an AST representation. In addition, only the

McCabe cyclomatic complexity and Halstead difficulty metrics were considered in

our quality evaluation scheme. In order to increase the utility of our tool across

many problem domains, the framework can be extended to cover a larger variety of

programming language and metrics to facilitate a more wide appeal and utility.

5.2 Future of Online Code Instruction Tools

In order to engage students in computer science education, it is important to

create a welcoming environment for educational innovation. To facilitate this wel-

coming environment, the web site might be extended to permit student programmers

to submit additional problems to be solved, and to permit students to submit their

solution for evaluation by other students and teachers.
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Figure 1: Extended Cyclomatic Complexity for Euler Problems 1-5

Appendix A Results for Extended McCabe Cyclo-

matic Complexity
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[37] A. Schäfer, J. Holz, T. Leonhardt, U. Schroeder, P. Brauner, and M. Ziefle.
From boring to scoring a collaborative serious game for learning and practicing
mathematical logic for computer science education. Computer Science Education,
23(2):87–111, 2013.

[38] P. Wesley Schultz1, Jessica M. Nolan2, Robert B. Cialdini3, Noah J. Goldstein3,
and Vladas Griskevicius3. The constructive, destructive, and reconstructive
power of social norms. In Psychological Science: A journal of the Association of
Psychological Science, May 2016.

[39] Judy Sheard, S. Simon, Margaret Hamilton, and Jan Lönnberg. Analysis of
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