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ABSTRACT 
 

Entamoeba histolytica is a food- and water-borne intestinal parasite responsible for 

amoebic dysentery and amoebic liver abscess.  The life cycle of E. histolytica alternates 

between the host-restricted trophozoite form and the highly infective latent cyst stage that 

is able to persist in the environment.  Throughout its life cycle, which may include 

invasion of tissues in the human host, the parasite is subjected to a variety of stressful 

conditions.  In other systems, stress can trigger the activation of kinases that 

phosphorylate a serine residue on eukaryotic translation initiation factor-2α (eIF2α).  This 

modification inhibits the activity of eIF2 resulting in a general decline in protein 

synthesis, and, paradoxically, an up-regulation of the expression of certain genes that 

permit the cell to counter the stress.  Genomic data reveal that E. histolytica possesses 

eIF2α with a conserved phosphorylatable serine at position 59.  Thus, this pathogen may 

have the machinery for stress-induced translational control.  To test this, we exposed E. 

histolytica trophozoites to six different stress conditions and assessed viability, as well as 

the level of total and phospho-EheIF2α via Western blot of cell lysates.  Long term serum 

starvation induced an increase in the level of phospho-EheIF2α, but no other stress 

condition caused a significant change.  Long term serum starvation also showed a 

decrease in polyribosome abundance as observed through sucrose gradient 

ultracentrifugation; this is consistent with the observation that this condition also induces 

phosphorylation of EheIF2α.  This suggests that the eIF2α-dependent stress response 

system is operational in E. histolytica and that the system may be activated only by 

certain stresses.  To further examine the role of phosphorylation of EheIF2α during stress, 
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three transgenic cell lines were created.  EheIF2α-S59 over-expresses wild type eIF2α 

protein.  EheIF2α-S59A expresses eIF2α with the serine-59 residue mutated to an 

alanine, creating a non-phosphorylatable subunit.  EheIF2α-S59D expresses eIF2α with 

the serine-59 residue mutated to an aspartic acid to mimic a phosphorylated residue.  

EheIF2α-S59 exhibited a high level of phosphorylation of the exogenous protein, leading 

to a decreased growth and polyribosome abundance when compared to the control cell 

line.  EheIF2α-S59A had the highest growth rate and retained a high abundance of 

polyribosome.  EheIF2α-S59D exhibited the slowest growth rate and had a decrease in 

polyribosome when compared to control; however, EheIF2α-S59D did exhibit the highest 

survival rate in over half the stress conditions tested.  This may indicate the protective 

nature of phosphorylation of EheIF2α during times of stress.  
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CHAPTER ONE 

LITERATURE REVIEW 

 

I. Introduction 

Entamoeba histolytica is the protozoan parasite responsible for amoebic dysentery 

and liver abscess in humans and non-human primates.  The life cycle of E. histolytica does 

not require an intermediate host, as it is transmitted from human to human, often through 

fecally contaminated food or water (Fig 1).  This mode of transmission makes amoebic 

dysentery a disease of importance to underdeveloped areas with no water filtration or 

treatment systems.  In the late 1990s, the WHO estimated that 500 million people around 

the world were infected with Entamoeba, with 40,000-100,000 deaths annually [1].  

Because of the ease of transmission in water, Entamoeba histolytica is classified as a Class 

B bioterrorism agent, further highlighting the need for information about this parasite.  

E. histolytica cysts are formed in the large intestine and exit the host with the fecal 

matter.  Cysts are typically rounded, quadrinucleated and stable (desiccation-tolerant, acid-

tolerant, heat-tolerant; and detergent-resistant) [reviewed in 2].  These latent cysts readily 

survive the extreme conditions in the external environment.  To continue the life cycle, the 

cyst must be ingested where it can pass unharmed through the acidic condition of the 

stomach into the small intestine.  Once there, unknown triggers cause the cyst to undergo 

excystation, resulting in eight active trophozoites for every cyst.  These amoeboid 

trophozoites continue down the intestinal tract until reaching the large intestine.  This is 

the location of intraintestinal infections of E. histolytica, where cells replicate by binary 
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Figure 1.1: Life cycle of Entamobea histolytica 
 
The infective stage, a latent cyst, is engested, usually due to fecally contaiminated food or 
water.  This cyst can pass through the stomach unharmed and enter the small intestine.  
Here, unknown factors trigger an excystation event and 8 trophozoites emerge for every 
one cyst.  These active trophozoites migrate through the small intestine and into the large 
intestine, where E. histolytica interintestinal infections occur.  A small percentage of these 
trophozoites will encyst, though the molecular mechanism that triggers this process is 
unknown.  These cysts can survive outside the host and be passed to another individual.  
Intestinal disease can occur when the trophozoites begin degrading the intestinal cells.  If 
the trophozoites leave the large intestine and enter the bloodstream, extraintestinal 
complications can occur, often in the liver, lung, and brain [3].  Image modified from the 
Center of Disease Control [4].   



3 
 

fission and feed on bacteria and intestinal cells while replicating through binary fission.  

The parasite is able to internalize host cells through the process of phagocytosis or 

internalizing pieces of living cells through the process of trogocytosis.  Trophozoites can 

also invade through the intestinal wall to cause extraintestinal infections in the liver, lungs, 

or brain [3]. 

For E. histolytica to establish infection in the colon, adhesion to host mucosal layer 

and cells is necessary.  In the amoebae, one important cell surface adhesion complex is the 

Gal/GalNAc lectin.  This lectin complex is composed of a heavy (Hgl), intermediate, (Igl) 

and light (Lgl) subunit and is named for its affinity for galactose (Gal) and N-acetyl-D-

galactosamine (GalNAc) on host cells and mucin.  Along with a large family of 

transmembrane kinases (TMKs), the Gal/GalNAc lectin plays a role in phagocytosis, 

contact-dependent cytoxicity of host cells, and host cell death [reviewed in 5].  Secreted 

proteases and hydrolases assist the parasite in disruption of host cell layers, and are also 

involved in the proteolytic inactivation of host antibodies and complement.  E. histolytica 

also secretes pore forming proteins, known as amoebapores.  These also disrupts host cell 

membrane integrity which facilitates their uptake by phagocytosis and the invasion of the 

parasite into internal cell layers [reviewed in 6].   

Within the large intestine, some trophozoites will undergo encystation in order to 

exit the host and continue the life cycle.  To date, complete encystation of E. histolytica 

has never been achieved in in vitro culture.  Therefore, to examine the pathways that 

regulate encystation, another Entamobea species has been used: Entamobea invadens [2].  

E. invadens infects reptilian hosts in the same manner as Entamboea histolytica and is often 
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used as a model organism, as encystation can be induced in vitro by simultaneous 

application of osmotic stress, glucose starvation, and serum deprivation.   

The current treatment for Entamobea infection is metronidazole, a drug developed 

in the 1960s to treat bacterial infections as well as protozoan infections [7].  Metronidazole 

is absorbed very well in the upper gastrointestinal (GI) tract and can be found in most body 

fluids with few side effects [8].  However, given the site of infection (lower GI), higher 

doses of metronidazole are required to treat amoebiasis.  This can result in systemic 

toxicity.  However, clinical studies have shown less than 50% parasite clearance after 

treatment with metronidazole and reoccurrence of infection after an initial relief of 

symptoms [9].  In countries where infections are prevalent, dose compliance can also be 

problematic if the patient stops taking or cannot access the medication.  Given these 

toxicity, efficacy, and compliance issues, it is clear that novel drugs are necessary to reduce 

or even eliminate the risk of acquiring Entamoeba histolytica.   

 

II. The Stress Response in Entamobea histolytica 

At different points in the life cycle, E. histolytica must combat stress.  Local 

inflammatory responses can cause temperature increases, as well as oxidative and 

nitrosative stresses.  Nutrients can become scarce during periods of infection, and the 

overgrowth of enteric bacteria can overcome small populations of the parasite in the 

intestine.  E. histolytica must possess a cellular response to survive and overcome these 

extreme environmental conditions.  Since simultaneous application of osmotic stress, 

glucose starvation, and serum deprivation induces encystation in E. invadens, stage-
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conversion is also presumed to be a response to stress.  Considering that the stress response 

is so important to survival and encystation in Entamoeba, it is conceivable that the 

molecular components of the stress response system may serve as targets for new drugs.  

Such drugs could cause death of the trophozoites by hindering their ability to counter stress 

and/or to undergo encystation.  The importance of the stress response system is E. 

histolytca has provided the impetus for many in vitro studies, which are summarized in this 

section. 

 

Glucose Deprivation 

Entamoeba histolytica does not possess a functional tricarboxylic acid cycle or a 

mitochondrial electron transport chain, forcing the parasite to rely on glycolysis and 

fermentation for energy production [3].  Within the human host, E. histolytica will 

experiences different concentrations of extracellular glucose in a site-specific manner.  

During the initial invasion in the colon, glucose levels are severely reduced due to efficient 

glucose absorption in the small intestine.  However, within the liver, glucose levels are 

higher, allowing for glucose uptake by the parasite [reviewed in 10].  

E. histolytica is routinely cultured in vitro in TYI-S-33 media that contains a 

glucose concentration of 12 mM [11].  Reduction of glucose can induce phenotypic 

changes.  For example, short term glucose starvation (STGS; 12 hours) increases virulence 

by enhancing hemolytic activity, cytopathic activity, and adhesion to mammalian cells 

[12].  Although the mechanism by which STGS enhances virulence is unknown, proteomic 

analysis of these stressed cells by mass spectrometry revealed 49 proteins that exhibited at 
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least a two-fold change in expression.  While decreases in metabolic proteins and increases 

in protein synthesis enzymes were discovered, an unexpected result also showed a decrease 

in the proteins associated with virulence, such as amoebapore proteins and a cysteine 

proteinase, during STGS.  This is inconsistent with the observation the STGS increases 

virulence. 

Long term glucose starvation (LTGS; over 1 month) results in an overall reduction 

in ATP levels.  Microarray analysis revealed differential expression of 56 proteins in 

LTGS, with several virulence factors being upregulated, such as the Gal/GalNAc lectin, 

cysteine proteinase 4, and pore-forming peptides.  Recovery in a high glucose media 

resulted in further changes in expression, such as the upregulation of cysteine proteinases, 

tyrosine kinases, cyst-wall specific proteins, and a multitude of other proteins [13].  It is 

important to note that glucose starvation, both short and long term, does not stimulate the 

expression of heat shock proteins, known for assisting in overcoming stress and in protein 

folding. 

 

Iron Deprivation 

Iron is available to in vitro E. histolytica cultures by the addition of ferric 

ammonium citrate to the medium [11].  An iron chelator, such as 2,2’-dipyridyl, can be 

used to remove iron from the media [14].  This reduction in iron results in a growth defect 

that correlates with the amount of iron in the media.  Transcriptional analysis of iron-

deprived trophozoites revealed an increase in cysteine proteinases, ribosomal proteins, and 

elongation factor-1 alpha [14]. 
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With no functional mitochondria, the enzymes necessary for glycolysis are 

essential in parasite survival.  One enzyme in the glycolytic pathway is EhADH2, a duel 

function enzyme responsible for converting acetyl-CoA to an intermediate acetaldehyde, 

and then to the final product of ethanol.  This enzyme is iron-dependent and the activity of 

both enzymatic steps of EhADH2 can be enhanced with increasing amounts of Fe2+.  

However, the addition of zinc or phenanthroline into the reaction decreases enzyme 

activity, as these chemicals acts as chelators of iron.  Like 2,2’-pyridyl, when  zinc and 

phenanthroline are added into the culture medium, there is a reduction in trophozoite 

growth [15]. 

 

Serum Deprivation 

In the E. histolytica culture media, TYI-S-33, adult bovine serum is used as a lipid 

source and is usually supplied as a 10-15% v/v additive [11].  Growing trophozoites in 

reduced serum alters the cell division cycle and synchronizes approximately 95% of the 

trophozoites to the G0/G1 phase [16].  It has also been demonstrated that serum starvation 

alters the expression of transmembrane kinases (TMKs).  There are 90 putative TMKs in 

E. histolytica that have been grouped into six families, named A through F [17].  Serum 

starvation can affect the expression of EhTMKBs.  For example, during serum starvation 

(0.5% v/v), the expression of EhTMKB1-9 decreases and the expression of EhTMKB1-18 

increass.  The predominant EhTMKB1 gene expressed in proliferating cells is EhTMKB1-

9.  Downregulation of EhTMKB1-9 slows proliferation, and decreases adhesion and 

cytopathic activity.  Specifically, EhTMKB1-9 expression is reduced from 95% to 47% of 
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the total EhTMKB1 transcripts identified and sequenced after starvation.  Inversely, the 

transcript of EhTMKB1-18 exhibited an increase in expression during serum starvation, 

from 4% to 80% of the EhTMKB1 transcripts analyzed, even though this gene is predicted 

to have no protein product [18].  While individual proteins have been analyzed, no “omics” 

study has been performed on serum-deprived trophozoites, so global protein or mRNA 

changes have not been reported. 

 

Heat Shock 

Entamoeba histolytica trophozoites are found in the host’s colon, where 

temperatures are approximately 37°C.  Upon invasion into the intestinal lining and 

infection of the liver, the host’s inflammatory response may lead to an increase in 

temperatures, creating a stressful environment for the parasite.  The heat shock response is 

a highly conserved pathway in many systems [19].  This response includes the upregulation 

of heat shock proteins, which are used to solubilize, unfolded, and ubiquitinated proteins 

within the cell.  A microarray analysis of E. histolytica trophozoites exposed to 42°C for 4 

hours revealed a massive down regulation of gene expression, with a subset of proteins 

being up regulated [20].  These upregulated proteins included heat shock proteins and 

cysteine proteinases.   

Additional studies have examined individual proteins and their expression pattern 

before, during, and after heat shock.  One such protein examined was EhHsp100.  This 

protein is expressed during heat shock or the addition of the drugs 5-Azacytidine, an 

inhibitor of DNA methyltransferase, and Trichostatin A, an inhibitor of histone deacetylase 
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[21].  Heat shock proteins are not the only differentially expressed genes during heat shock.  

EhMLBP, E. histolytica methyl-binding protein, has heat shock protein-like features, 

including a heat shock element in its promoter region.  After 20 minutes of heat shock, the 

expression level of EhMLBP is significantly higher than that in control cultures.  Heat 

shock also changes the localization of EhMLBP from the perinuclear area to a uniform 

distribution in the nucleus [22] and to cytoplasmic granules [23].  Furthermore, EhMLBP 

interacted with polyubiquitinated proteins within stress granules, an mRNA-containing 

cytoplasmic granule that assembles during stress (see section III) [23]. 

The expression or activation of non-heat shock protein-like genes can also be 

altered during heat shock in E. histolytica.  Ehssp1, E. histolytica stress-sensitive protein, 

family one, is expressed by multiple genes in a polymorphic manner.  During normal 

growth conditions, a single copy of the Ehssp1 gene is produced; however, during heat 

shock, multiple polymorphic copies are expressed in as little as 20 minutes [24].  Another 

protein that is altered during heat shock is EhMAPK, a mitogen-activated protein kinase.  

While the mRNA levles of this kinase are unaltered during heat shock, an increase in kinase 

activation and activity, as measured by phosphorylation, was observed.  The activation of 

EhMAPK was measured by Western blot and showed a 2.6 fold increase in phosphorylated 

kinase when compared to that in control cells [25]. 

 

Oxidative and Nitrosative Stress 

One method a host may utilize to kill a pathogen is the release of reactive oxygen 

species (ROS) and reactive nitrogen species (RNS).  ROS and RNS disrupt the structure 
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and function of proteins, nucleic acids, and lipids, and can lead to cell death.  However, E. 

histolytica has adapted pathways and systems to combat the stress brought about by ROS 

and RNS. 

Proteins can be post-translationally modified during ROS or RNS.  In response to 

oxidative stress, a specific subset of proteins becomes oxidized to protect the majority of 

the cell from damage.  After incubation with hydrogen peroxide, 154 proteins in E. 

histolytica were identified through mass spectrometry to be oxidized.  Many different 

protein classes were represented in these 154 proteins, including transporters, chaperones, 

oxidoreductases, kinases, and cytoskeletal proteins, to name a few.  One protein group that 

was found to be significantly oxidized involved in translation such as ribosomal proteins 

and elongation factors.  Global protein synthesis was also decreased during oxidative 

stress, which may have been the results of changes in the expression of protein translation 

machinery [26].  Nitrosative stress has been used to investigate the role of S-nitrosylated 

proteins in E. histolytica.  Treatment with 500 µM S-nitrosocysteine resulted in 142 

proteins being S-nitrosylated.  These proteins were categorized into protein translation, 

protein transport, adhesion, and cell metabolism functions [27].   

As during heat shock, EhMAPK’s mRNA levels remained unchanged during 

oxidative stress.  However, different concentrations of hydrogen peroxide resulted in 

phosphorylation and activation of EhMAPK.  A low concentration of H2O2 (0.5 mM) 

resulted in a 1.8-fold increase in phosphorylated EhMAPK.  Conversely, treatment with a 

higher concentration of H2O2 (2 mM) resulted in a 4-fold decrease in phosphorylated 
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EhMAPK.   The viability of E. histolytica grown in 2 mM H2O2 was severely reduced [25].  

This suggests that there is a threshold of radical oxygen that results in a stress response; 

however, beyond that threshold, E. histolytica cannot overcome the stress and dies.   

Cells can also change gene expression in response to ROS or RNS stress.  As 

discussed earlier, Ehssp1 is a protein that exhibits polymorphic expression during heat 

shock.  A similar expression pattern was observed during exposure to excess oxygen [24].  

Microarray analysis of E. histolytica cells exposed to 1mM H2O2 for one hour displayed a 

total of 284 differentially expressed genes: 185 upregulated and 102 downregulated [28].  

In the same study, the authors used 200 µM DPTA-NONOate to induce RNS formation.  

This resulted in a greater number of genes (1,036 total) differentially expressed: 443 

upregulated and 593 downregulated.  Of the known proteins upregulated in both stress 

conditions, most were categorized as DNA, protein and lipid repair proteins as well as those 

involved in signaling and regulatory pathways [28]. 

An additional microarray analysis of adherent E. histolytica cells incubated with 

the nitric oxide donor sodium nitroprusside (SNP) showed that 365 genes were upregulated 

and 103 genes were downregulated.  Proteins involved in macromolecule binding, 

oxidoreduction, and glycolytic and hydrolytic reactions were the most differentially 

expressed genes.  During incubation with SNP, the unfolded protein response was not 

noted, but the endoplasmic reticulum became fragmented and appeared as a vesicle-like 

structure [29].  
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Several specific proteins have been analyzed further for their role in virulence 

during ROS and RNS exposure.  EhSIAF (E. histolytica stress-induced adhesion factor) 

and EhPTPA (E. histolytica phospholipid transporting P-type ATPase/flippase) were both 

upregulated during ROS and RNS stress conditions, as expression of these proteins was 

absent during normal growth conditions.  Overexpression of either of these two proteins 

results in an increased resistance to oxidative stress and an increase in adherence to Chinese 

hamster ovarian (CHO) cells [30].  

Oxidative stress, in combination with the addition of trace amounts of cations to 

the medium, induces the formation of cyst-like structures (CLS) in vitro.  These CLSs are 

phenotypically similar to clinical cysts.  For example, CLSs are resistance to detergents 

such as SDS, Sarkosyl and Triton.  They exhibit a rounded morphology and 55% of these 

structures display an increase in the number of nuclei compared to 10% of control cells not 

exposed to oxidative and cation stress [31].  This lends support to the notion that 

encystation is a stress response. 

 

III. Overview of translational control of stress 

During stress, it is important for cells to prioritize protein synthesis, so as to not 

waste energy needed to overcome the stress.  One response that leads to an overall decrease 

in protein synthesis is the phosphorylation of the alpha subunit of the eukaryotic translation 

initiation factor-2 (eIF2).  eIF2 is a multimeric protein composed of three subunits (alpha, 

beta, and gamma) and is responsible for delivering initiator methionyl-tRNA (Met-tRNAi) 
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to the 40S ribosomal complex for translation initiation.  In its inactive form, eIF2 is bound 

to GDP.  To activate eIF2, this GDP must be exchanged for GTP, a reaction catalyzed by 

eIF2B.  Once bound to GTP, eIF2 is able to bind Met-tRNAi and associate with the 40S 

ribosomal subunit.  This association stimulates eIF5 to bind to the complex.  eIF5 

stimultates an unknown GTPase which hydrosizes the eIF2-bound GTP [32].  This inactive 

eIF2 disassociates from the ribosomal complex due to a reduction in affinity, and is ready 

to begin the process again (Fig 2) [33]. 

To conserve energy during suboptimal growth conditions, the activity of eIF2α is 

downregulated by phosphorylation.  Stress activates eIF2α kinases, which phosphorylate a 

serine (Ser51 in mammalian systems) on eIF2α.  This phosphorylation changes eIF2 from 

a substrate for eIF2B to a competitive inhibitor, keeping eIF2-eIF2B in an inactive 

complex.  This decreases the active eIF2-GTP complexes in the cell, slowing down the 

initiation of protein translation [32].  The level of phospho-eIF2α required to halt 

translation can vary from as low as 15% to as high as 60% [34].  The ratio of eIF2α:eIF2B 

can also alter the overall effect of this phosphorylation of eIF2α, depending on the type of 

cell, with some cells expressing a 10:1 ratio of eIF2 to eIF2B, but some cells can express 

much higher levels of eIF2, resulting in a 2:1 ratio [34]. By balancing these ratios, cell can 

maintain a balance of protein translation and energy conservation. While phosphorylation 

of eIF2α halts protein translation, it does not directly alter transcription.  Newly transcribed 

mRNAs can become abundant in the cell.  If the mRNA is targeted for degradation, it can 

accumulate in a cytoplasmic granule, known as a P body.  Here, the 5’ cap structure on the  
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Figure 1.2: Phosphorylation of eIF2 blocks translation initiation 
 

In normal conditions, the trimer eIF2 has two forms: GDP bound (inactive) or GTP bound 
(active).  When bound to GTP, eIF2 binds to Met- tRNAi and delivers it to the 43S 
ribosomal complex for translation initiation.  Once Met- tRNAi is unbound to eIF2, the 
GTP is hydrolyzed by an unknown GTPase; this activity is stimulated by the binding of 
eIF5 to the complex.  To become active again, an exchange factor, eIF2B, must facilitate 
the exchange of GDP for GTP, beginning the cycle again.  During stress, eIF2α kinases 
become activation, phosphorylating a key serine residue on the eIF2α subunit.  This 
changes the binding properties of the eIF2-GDP complex and becomes a competitive 
inhibitor for eIF2B.  This sequesters the exchange factor, keeping active eIF2-GTP 
complex levels low.  In turn, overall protein synthesis slows as translation cannot be 
initiated [Reviewed in 32].  
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mRNA can be removed and the mRNA denatures.  Stress granules can also appear during 

times of low translation rates.  These cytoplasmic granules are made of untranslated 

mRNAs, as well as subset of translation initiation factors, including eIF2.  The appearance 

of stress granules is promoted by eIF2 phosphorylation, indicating their role in sequestering 

mRNAs during times of low translation rates [35]. 

To date, 4 families of eIF2α kinases (EIF2AK1-4) have been described: HRI 

(heme-regulated inhibitor), PKR (protein kinase double-stranded RNA-dependent), 

PERK/PEK (PKR-like ER kinase), and GCN2 (general control non-derepressible-2).  Each 

family is activated by different stress conditions (Fig 3).  While mammalian systems 

encode for all four families of kinases, other systems may only express a subset of these 

kinases.   

 

Heme-regulated Inhibitor (HRI) 

HRI is also known as EIF2AK1 and is expressed within erythrocyte precursors, liver cells, 

and macrophages.  Within the erythrocyte precursors, the kinase works to balance the 

production of ɑ and β globin to iron levels and inhibit toxic levels of these components.  

HRI is used to sense intracellular levels of heme through its heme-binding domain; when 

heme levels are high, this bound heme keeps HRI from forming a catalytically active dimer.  

During low iron levels, HRI can dimerize and become active, halting protein translation 

through the phosphorylation of eIF2α [36].  Within the liver, HRI is most notably involved  
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Figure 1.3: Activation of eIF2α kinases by specific stresses 
 
In mammalian systems, there are four eIF2α kinases: HRI (heme-regulated inhibitor), PKR 
(protein kinase double-stranded RNA-dependent), PERK/PEK (PKR-like ER kinase), and 
GCN2 (general control non-derepressible-2).  While some activation conditions overlap, 
some are specific to individual kinases.  Above, several of these activation conditions are 
highlighted [33].  
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in regulating liver cell translation during heme deficient periods.  Within macrophages, 

HRI assists in forming an inflammatory response, as well as macrophage maturation [33]. 

 

Protein Kinase Double-stranded RNA-Dependent (PKR) 

PKR is also known as EIF2AK2, and was found to be activated during viral 

infection.  By phosphorylating eIF2α, the cell inhibits the translation of viral mRNA, 

slowing viral infection and replication.  This is due to a double-stranded RNA binding 

domain found on the N-terminus of the kinase, which can bind to the nucleic acid of 

invading viruses.  PKR expression is induced by interferon, which is usually released by 

the host in response to a viral invasion. PKR can also become activated during oxidative 

and ER stress independently of viral infection [33].   

Found in the cytosol and the nucleus, PKR is activated after dimerization and 

autophosphorylation.  eIF2α is not the only target for PKR; it can also phosphorylate p53 

and activate STAT and NF-Kβ.  These additional substrates can change the final fate of the 

cell, due to their ability to promote apoptosis.  The loss or knockdown of PKR within mice 

does not result in a detectable phenotype during reproduction and normal growth 

conditions.  However, due to the impact viral infections can cause on a system, it’s 

important to note the possible redundancies in the anti-viral reaction [33].  
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PKR-like ER Kinase (PERK/PEK) 

PERK is also known as PEK or EIF2AK3 and is a transmembrane endoplasmic 

reticulum protein.  The N-terminus is localized to the ER lumen and the C-terminus is 

found in the cytoplasmic space.  During normal growth conditions, immunoglobulin 

binding protein (BiP) binds to PERK, keeping it in a monomer form within the ER lumen.  

However, when misfolded proteins begin accumulating within the ER, BiP disassociates 

from PERK.  PERK can then form a homodimer during this unfolded protein response 

(UPR) and become autophorphorylated to become an active kinase.  To halt the synthesis 

of new proteins during this buildup of non-functional proteins, PERK phosphorylates 

eIF2α to inhibit translation initiation.  While PERK activation allows time for the cell to 

battle ER stress, constitutive activity by PERK is a pro-death signal, suggesting that long-

term ER stress is fatal to a cell.  The loss of PERK in humans results in Wolcott-Rallison 

syndrome (WRS).  WRS is an extremely rare autosomal recessive disorder bought on by a 

mutation the catylatic domain of the PERK gene.  Though there are different types of 

mutations, all resulting PERK proteins are non-functional kinases.  General characteristiss 

of WRS is the development of insulin-dependent diabetes before birth or during infancy, 

bone dysplasia, and hepatic dysfunction [37].  The molecular mechanisms resulting in the 

anomalies are unknown [33]. 
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General Control Non-derepressible-2 (GCN2) 

GCN2 (or EIF2AK4) acts as a sensor for amino acid and glucose levels.  Activation 

is carried out through the binding of uncharged tRNA to a histidyl tRNA synthetase 

(HisRs) -related domain within the kinase.  Like previously described kinases, dimerization 

is also required for activation, and autophosphorylation helps stabilize and optimize the 

kinase’s activity. Currently, the only known substrate of GCN2 is eIF2α.  GCN2 can also 

be activated during viral infection and can bind viral genomic RNA directly through its 

HisRs domain [33].  In humans, this kinase is predominantly expressed within the brain, 

where it is hypothesized to protect neural tissue during periods of amino acid starvation.  

Through unknown feedback mechanisms, GNC2 activation can alter the diet of tested 

mice, resulting in a selective feeding behavior to alleviate the stress by ingesting more 

essential amino-acid rich foods [38]. 

 

IV. Stress-induced control of protein translation in eukaryotes 

Plasmodium spp.: 

Plasmodium is the apcomplexian responsible for the malaria.  As of 2015, there are 

an estimated 214 million cases of malaria worldwide, with the majority of cases occurring 

in Africa and Southeast Asia.  The annual death toll associated with malaria is currently 

estimated to be 438,000.  It is estimated the global cost of controlling malaria infections is 

roughly $2.5 billion, highlighting the economic burden of this parasite.  There are currently 
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5 species of Plasmodium that causes disease in humans: P. falciparium, P. vivax, P. 

malariae, P. ovale, and P. knowlesii.  The onset of symptoms, including chills and fevers, 

is usually associated with the lysis of host blood cell.  The interval of symptoms, as well 

as molecular diagnostic tests, can determine the species responsible for individual 

infections; however, co-infections with multiple species is possible.  In the past, 

chloroquine was used as a treatment for malaria infections; contemporary treatments 

include drugs from the artemisin class, often in combination with other medications [39].  

Plasmodium utilizes two hosts during its complex life cycle in order to reproduce and 

spread: the definitive female Anopheles mosquito host and the vertebrate intermediate host.  

Within the human host, Plasmodium cells have two different cycles: the exo-erythrocytic 

cycle within liver cells and the erythrocytic cycle within red blood cells (Fig 4).  In these 

two cycles, sporozoites will invade liver cells, or schizonts will invade erythroid cells.  

These stages grow as immature and mature trophozoites, then develop into mature 

schizonts, that can continue the erythrocytic cycle of cellular invasion.  However, in the 

mosquito host, the dormant stage of the sporozoites is also important in elimination of this 

parasite, as this stage is what initially enters the blood stream of the human host [40]. 

Plasmodium possesses three putative eIF2α kinases.  Several different species of 

Plasmodium were used to assess the functions of these kinases.  PfIK1 is a GCN2-like 

kinase found in the Plasmodium asexual human blood stage that becomes activated during 

amino acid starvation.  Plasmodium cell lines lacking PfIK1 showed no increase in 

phospho-eIF2α after amino acid starvation.  However, deletion of this kinase did not alter 



21 
 

Figure 1.4: Life cycle of Plasmodium and the life stage of known eIF2α kinases 

Within the human host, the cells have two different cycles: the exo-erythrocytic cycle 
within liver cells and the erythrocytic cycle within red blood cells.  During this blood stage, 
the cell can undergo asexual reproduction or develop into gametocytes for sexual 
reproduction.  These gametocytes are taken up by an Anopheles mosquito during a blood 
meal.  Sexual reproduction occurs within the gut of the mosquito to begin the sporogonic 
cycle.  This ends with the sporozoite stage entering the salivary glands.  Here, the parasite 
remains dormant until the mosquito takes a blood meal.  The sporozoites are injected into 
the human host and must survive in the blood stream until they can invade liver cells and 
continue the life cycle.  The dormant stage of the sporozoites allows the parasite to halt 
protein translation and store energy, as well as mRNA transcripts.  Once protein translation 
begins again within the schizonts in the liver cell, these stored mRNAs will be transcribed 
to assist with cell development and survival [40].  The eIF2α kinases, highlighted in green, 
are shown with the life cycle where they are most prominently expressed.  Figure is 
modified from the Center of Disease Control [42]  
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any developmental stages [41].  The second Plasmodium kinase, PK4, is required for 

completion of the erythrocytic cycle of the parasite, PK4- cell lines were less able to infect 

mouse models [40].   

PfIK2, the final eIF2 kinase, is expressed predominantly in sporozoites found in the 

mosquito’s salivary gland and is thought to be life cycle dependent, rather than stress 

dependent.  In PfIK2 knockout strains, eIF2α was not phosphorylated in the sporozoites 

and the infectivity of this life stage was significantly decreased.  Phosphorylation is thought 

to be necessary to keep transcribed mRNAs from being translated at the wrong life stage.  

By keeping these mRNAs in stress granules and decreasing global protein translation, 

Plasmodium is prepared for the next life stage while in the salivary gland of the mosquito 

[43].  This control of latency is key to Plasmodium’s initial infection of the human host, as 

it keeps energy stores high should the parasite have to remain in this life stage for longer 

periods of time.   

Taken together, these studies highlight the importance of eIF2α phosphorylation in 

Plasmodium during its multiple life stages and the unique conditions required for eIF2 

kinase activation.  

 

Toxoplasma gondii 

 Toxoplasma gondii is the protozoan parasite responsible for toxoplasmosis in 

humans.  Estimates of infected individuals have been as high as 25-30% of the world 
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population.  Most infections occur after the consumption of infected meat, but can also 

occur after the ingestion of any fecal oocysts (Fig 5).  Occasionally, blood transfusions or 

organ transplantation can introduce T. gondii into the human host.  The highest disease 

burden comes from transmission from a mother to a developing fetus.  Outcomes can be 

as severe as miscarriages and abnormalities occurring in fetuses infected during early 

developmental stages [44].  

T. gondii has three major life stages that have been studied: the active tachyzoites 

and the latent tissue bradyzoites, and the latent fecal oocysts (Fig 5).  It is the cycling of 

tachyzoites to bradyzoites in the human host that is of particular interest.  T. gondii 

possesses four authentic eIF kinases, named TgIF2K-A-D.  TgIF2K-A localizes to the 

parasite’s endoplasmc reticulum around the nucleus.  It is known that inducers of ER stress, 

such as sodium arsenite and calcium ionophore induce phosphorylation of eIF2α.  It is 

highly likely the kinase responsible for this phosphorylation is TgIF2K-A [47] because of 

the kinase’s location in the ER.  TgIF2K-B is expressed in the cytosol of the parasite; 

however, the conditions necessary to activate this kinase remains unknown [47]. 

Two of the T. gondii kinases are characterizes as being GCN2-like.  TgIF2K-C is 

expressed in the cytosol of tachyzoites.  TgIF2K-C knockout lines were not deficient in 

progressing through the lytic cycle and had similar virulence as wildtype cells.  However, 

if grown in glutamine-free media, knockout lines had decreased levels of phospho-eIF2α 

[48].  This is consistent with the known function of GCN2 kinases in amino acid sensing.   
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Figure 1.5: Life cycle of Toxoplasma gondii and the life stages of known eIF2α kinases 
 

While the normal life cycle of T. gondii includes the definitive feline host and an 
intermediate rodent or bird host, humans can become infected when the latent oocyst is 
ingested.  These oocyst further develop into tachyzoites inside the host, and can transition 
into a latent tissue cyst form, called bradyzoites, during stress.  Bradyzoties can excyst after 
the stress has subsided.  Tachyzoites can invade macrophages and subsequently lyse the 
cell, forming the lytic cycle of the parasite.  This constant cycling can continue until the 
death of the host, or the clearance of the parasite by the immune system [45].  eIF2 kinases, 
in green, are shown with the life cycle where they are most prominently expressed; 
although, it is currently unknown if TgIF2K-A and TgIF2K-B have a life stage-specific 
expression pattern.  Figure is modified from the Center of Disease Control [46]  
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TgIFK2-D, also expressed in the cytosol, is involved in tachyzoite survival outside 

of host cells.  Once outside the macrophage, the cell must keep translation low to save 

energy until another macrophage can be invaded.  By phosphorylating eIF2α, translation 

decreases by 90%.  TgIF2K-D knockout lines could not compete against wildtype lines 

and were outgrown after extracellular co-incubation in vitro, as determined by PCR 

analysis using cell-line specific PCR primers [49].  

During the cycling between active tachyzoites and latent bradyzoites in the human 

host, protein synthesis must be altered to save any available energy.  Previous studies have 

shown that phosphorylation of eIF2α is important for controlling latency.  For example, 

latent bradyzoite formation is initiated when dephosphorylation of eIF2α is inhibited with 

the phosphatase inhibitor, salubrinol [47].  While the eIF2α kinase responsible for this 

phosphorylation of eIF2α during stage conversion is unknown, these findings indicate the 

importance of the eIF2α phosphorylation pathway in overall parasite development. 

 

Leishmania spp. 

Leishmania is the causative agent of leishmaniasis, which can occur in three forms: 

visceral, cutaneous, and mucocutaneous.  Roughly 1.3 million cases of leishmaniasis occur 

annually, with up to 50,000 deaths each year attributed to the visceral form.  There are 21 

morphologically identical species of Leishmania that infect mammals.  While the 

promastigote stage is initially injected into the human host by the sandfly vector, within 

the macrophages, promastigotes develop into amastigotes, where the only known 
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Leishmania eIF2α is activated.  Leishmania major and Leishmania infantum both have a 

PERK homologue with approximately 30% identity to the human PERK.  This kinase is 

expressed in both the promastigote and amastigote stages of the Leishmania life cycle, but 

is thought to be responsible for the increased phospho-eIF2α levels in the amastigote stage.  

Localized to the ER, Leishmania PERK has been shown to become activated during the 

unfolded protein response.  To study PERK further, a truncated form of PERK was 

expressed in cells cultured in vitro, acting as a dominant negative.  The lack of 

phosphorylation by PERK caused a significant decrease in differentiation to amastigotes.  

Amastigote-specific genes had a marked delay in expression, indicating a delay in stage 

transition.  These findings were the same in both axenic cultures and within human and 

mouse macrophage models.  While most eIF2α sequences have a key serine residue 

thatbecomes phosphorylated under stress, the eIF2α sequence of Leishmania has a 

threonine at the key phosphorylation residue at position 166.  This indicates the 

conservation of the eIF2α pathway and the kinases associated with it [51].   

Non-pathogenic eukaryotes 

 The eIF2-based stress pathway is found in other lower eukaryotic organisms.  In 

yeast, the only known eIF2 kinase is Gcn2.  In Saccharomyces cerevisiae, Gcn2 is used for 

sensing and responding to amino acid starvation, specifically tryptophan and arginine.  

Activation of Gcn2 occurs when uncharged tRNAbinds to the histidyl-tRNA synthetase-

like domain on Gcn2 [52].  Due to the single eIF2 kinase, S. cerevisiae is often used to 

authentice eIF2 kinase activity in proteins from other organisms.  For example, the Gcn2p  
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Figure 1.6: Life cycle of Leishmania major and the life stages of known eIF2α kinases 
 
Transmission of Leishmania occurs after the bite of a female sandfly, when promastigotes 
are injected into the blood stream.  This free-living stage is phagocytized by the host’s 
macrophages and allows for differentiation into amastigotes.  These amastiogtes divide 
within the cell and can infect other cells.  During a blood meal, the intermediate host, a 
sandfly, takes up macrophages infected with amastiogtes.  Within the sandfly’s gut, 
amastiogtes transition back to a promastigote stage that multiply and migrate to the salivary 
gland of the sandfly.  Here, the parasite is ready to be injected into a mammalian host to 
continue the cycle (Fig 6). The only known eIF2 kinase, PERK is activated during 
amistogote development and is indicated in green.  Figure is adapted from the Center of 
Disease Control [50].  
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gene can be disrupted and replaced with cDNAs that encode entire eIF2α kinases [53] or 

just active sites [40].  If the exogenous kinase is authentic, expression will induce 

phenotypic changes, such as reduced growth [53]. 

Dictyostelium discoideumis a free living amoeba that feeds on bacteria in the soil 

but can be grown axenically in the laboratory.  During times of starvation, these amoebae 

will aggregate and form mounds of approximately 100,000 cells.  The mounds eventually 

differentiate to form fruiting bodies consisting of dormant spores supported by stalk cells.   

Dictyostelium has two eIF2 kinases: IfkA and IfkB. During normal development, the level 

of phospho-eIF2α increase from a slight basal level slight for several hours, and then return 

back to the initial basal level.  IfkA null lines did not exhibit increased phospho-eIF2α 

during any stage of development.  IfkA knockout lines also had a slight growth defect in 

axenic conditions, but were able to complete the entire life cycle.  This suggests that this 

kinase, and phosphorylation of eIF2α are not essential to development in this system.  

Interestingly, IfkA knockout lines formed mounds earlier than the parental strain, with 

mound size much larger than the parental strain due to the misregulation of countin.  

Countin is a polypeptide secreted by Dictyostelium to regulate the number of cells within 

a particular mound.  All attempts to disrupt the IfkB gene were not successfully, indicating 

that IfkB, a gene found in all life stages, is essential to development and growth.  While 

these two kinases have domains similar to the mammalian GCN2 kinase, neither were 

found to be responsible for detecting amino acid starvation in the amoeba [54]. 
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V. Summary 

The ability to phosphorylation of eIF2α is utilized by many organisms during times 

of stress or development.  This phosphorylation is catalyzed by the eFI2 kinases in each 

organism.  To date, there has not been a study into the role of eIF2α in Entamoeba 

histolytica, despite the many studies on the effects of stress on the parasite (reviewed 

above).  E. histolytica and E. invadens each possess eIF2α (EHI_005100 and EIN_242170, 

respectively) and two presumptive eIF2α kinases (eIF2K) (Entamoeba histolytica- 

EHI_109700, EHI_035950; Entamoeba invadens- EIN_059080, EIN_0333330) [55, 56].  

The phosphorylated serine of eIF2α (see chapter 2) and critical active site lysines of the 

kinases (data not shown) are conserved. In E. invadens expression of one of the kinases is 

developmentally regulated (EIN_0333330) [55].  Thus, we hypothesize that this genus 

uses eIF2α-based machinery to control translation during stage conversion.  This 

hypothesis is supported by the pioneering work of Dr. Gordon Bailey showing that 

encystation was accompanied by the aggregation of ribosomes into structures known as a 

chromatoid bodies and by a decrease in the incorporation of exogenous amino acids [57, 

58].  Chromatoid bodies are an RNA- and ribosome-containing cytoplasmic structure that 

assembles during encystation.  They are reminiscent of stress granules or P bodies, but the 

fate of RNAs within chromatoid bodies is unknown.  Currently, these Entamoeba eIF2α 

kinases have not been authenticated, nor have the conditions that lead to their activation 

been discerned.     
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The percent identity of the catalytic domains of the two E. histolytica kinases to the 

human host orthologs is considerably low at approximately 32% for each [56].  Because of 

this low identity, it may be possible to use these kinases as potential drug targets.  This 

would prove to be especially useful if either kinase was shown to be necessary for parasite 

growth or cyst development.  If cyst production could be halted, spread of infection could 

be halted, leading to the decline in E. histolytica infections. Toward this end, a better 

understanding of the eIF2-based stress response system in E. histolytica is necessary.  

Therefore, the aims of this study were to:  

1. To define the role of the phosphorylation of the alpha subunit of the eukaryotic 

initiation factor-2 (eIF2α) in Entamobea histolytica 

2. To determine if phosphorylation of eIF2α is necessary to counter stress in the E. 

histolytica system 
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I. Abstract 

Entamoeba histolytica is a food- and water-borne intestinal parasite responsible for 

amoebic dysentery and amoebic liver abscess.  The life cycle of E. histolytica alternates 

between the host-restricted trophozoite form and the highly infective latent cyst stage that 

is able to persist in the environment.  Throughout its life cycle, which may include invasion 

of tissues in the human host, the parasite is subjected to a variety of stressful conditions.  

In other systems, stress can trigger the activation of kinases that phosphorylate a serine 

residue on eukaryotic translation initiation factor-2α (eIF2α).  This modification inhibits 

the activity of eIF2 resulting in a general decline in protein synthesis, and, paradoxically, 

an up-regulation of the expression of certain genes that permit the cell to counter the stress.  

Genomic data reveal that E. histolytica possesses eIF2α with a conserved phosphorylatable 

serine at position 59.  Thus, this pathogen may have the machinery for stress-induced 

translational control.  To test this, we exposed E. histolytica trophozoites to six different 

stress conditions and assessed viability, as well as the level of total and phospho-EheIF2α 

via Western blot of cell lysates.  Long term serum starvation induced an increase in the 

level of phospho-EheIF2α, but no other stress condition caused a significant change.  Long 

term serum starvation also showed a decrease in polyribosome abundance as observed 

through sucrose gradient ultracentrifugation; this is consistent with the observation that this 

condition also induces phosphorylation of EheIF2α.  This suggests that the eIF2α-

dependent stress response system is operational in E. histolytica and that the system may 

be activated only by certain stresses.  To further examine the role of phosphorylation of 

EheIF2α during stress, three transgenic cell lines were created.  EheIF2α-S59 over-
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expresses wild type eIF2α protein.  EheIF2α-S59A expresses eIF2α with the serine-59 

residue mutated to an alanine, creating a non-phosphorylatable subunit.  EheIF2α-S59D 

expresses eIF2α with the serine-59 residue mutated to an aspartic acid to mimic a 

phosphorylated residue.  EheIF2α-S59 exhibited a high level of phosphorylation of the 

exogenous protein, leading to a decreased growth and polyribosome abundance when 

compared to the control cell line.  EheIF2α-S59A had the highest growth rate and retained 

a high abundance of polyribosome.  EheIF2α-S59D exhibited the slowest growth rate and 

had a decrease in polyribosome when compared to control; however, EheIF2α-S59D did 

exhibit the highest survival rate in over half the stress conditions tested.  This may indicate 

the protective nature of phosphorylation of EheIF2α during times of stress.  

II. Author Summary 

Entamoeba histolytica is a parasitic pathogen usually found in underdeveloped countries 

that lack proper water filtration and treatment plants.  During the E. histoltycia life cycle, 

active trophozoites can reside in the large intestine, or invade the intestinal wall to cause 

extraintestinal infection.  The parasite encounters demanding growth conditions in the host 

and must overcome these to survive.  In other organisms, stress induces phosphorylation 

of the alpha subunit of the eukaryotic translation initiation factor 2 (eIF2α). This, in turn, 

inhibits protein translation allowing the cell to conserve energy. To determine the role of a 

putative eIF2α in E. histolytica, we have applied 6 different stress conditions to active 

trophozoites.  One of these stress conditions, long term serum starvation, causes a 

significant increase in phosho-EheIF2α levels.  Consistent with this observation, long term 

serum starvation also reduces the abundance of polyribosomes, and important component 
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of the translational machinery.  We have also created three transgenic cell lines to test 

mutant forms of EheIF2α: EheIF2α-S59, EheIF2α-S59A, and EheIF2α-S59D.  These cell 

lines overexpress the wildtype protein, a non-phosphorylatable protein, and a 

phosphomimetic protein, respectively.  Due to the phosphorylation/dephosphroyation 

nature of the exogenous protein in EheIF2α-S59, both an increase in protein synthesis and 

a decrease in growth was observed.  EheIF2α-S59A exhibited the highest growth, but 

additional studies are required to fully assess the translation machinery for this cell line.  

EheIF2α-S59D had the slowest growth and a decreased level of translation.  However, 

EheIF2α-S59D had the highest survival in the majority of test stress conditins, indicating 

that phosphorylation of EheIF2α can be used to alleviate the cellular pressures attributed 

to stress.   
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III. Introduction 

Entamoeba histolytica is an intestinal parasite that is the causative agent of amebic 

dysentery and amoebic liver abscesses.  It is transmitted by the cyst form of the pathogen 

in fecally-contaminated food and water, making it prevalent in the developing world where 

sanitation practices are substandard.  There are 173 million people living in regions with 

untreated water sources and one billion people carry out open defecation practices [1].  

Thus, there is considerable risk for transmission of E. histolytica.  E. histolytica is also 

considered a Class B bioterrorism agent as a water safety threat. These factors make the 

pursuit of knowledge regarding this parasite significant. 

E. histolytica is passed from human to human without the utilization of an 

intermediate host during its life cycle. The parasite’s latent stage, a cyst, is able to withstand 

the extreme conditions in the external environment as well as the acidic pH of the host 

stomach.  The cyst exits the stomach and enters the small intestine, where unknown triggers 

cause excystation.  The emerging active trophozoites continue down the digestive system 

until they reach the large intestine, where the parasites divide by binary fission.  

Trophozoites are also responsible for extraintestinal complications of E. histolytica 

infections, including liver abscess.  During infection, which includes invasion of the host 

intestinal tissue, the parasite may experience stress, in part due to immune pressure from 

the host.  This stress can include heat shock, osmotic shock, nutrient deprivation, and/or 

exposure to reactive oxygen or nitrogen species, and high oxygen levels.  The parasite must 

elicit a cellular response to counter these stresses and survive.  
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In many systems, stress is controlled, in part, by the phosphorylation of the alpha 

subunit of the eukaryotic initiation factor (eIF2α) [2].  Under normal conditions, eIF2α 

forms a protein complex that, when bound to GTP, delivers Met-tRNAi to the ribosome to 

initiate translation.  Once Met-tRNAi is delivered, the bound GTP is hydrolyzed to GDP.  

To become reactivated, eIF2-GDP binds to the guanine exchange factor, eIF2B, and the 

GDP is released, allowing for the binding of GTP to start the cycle again.  This is 

considered the rate-limiting step of translation initiation [reviewed in 2].  During stress, 

eIF2 kinases become activated and phosphorylate a key serine residue on the eIF2α subunit 

to generate a phosphorylated form of the protein (phospho-eIF2α). This phosphorylation 

induces a conformational change in eIF2, causing it to become the competitive inhibitor of 

eIF2B.  This leads to a general decrease in protein translation; however, paradoxically, the 

expression of a subset of genes is up-regulated. This subset of genes assists the cell in 

surviving the affront. 

In other eukaryotic pathogens, one possible outcome of stress is stage conversion 

to a latent form. For example, under stress, Toxoplasma gondii will convert from an active 

tachyzoites form to a latent bradyzoite form.  Phosphorylation of eIF2α is necessary for 

this stage transition [3]. Phospho-eIF2α also regulates the formation of latent sporozoites 

in Plasmodium spp. [4] and the transition of promastigotes to amastigotes in Leishmania 

[5].  In non-parasitic organisms, such as yeast [6] and Dictyostelium [7], phosphorylation 

of eIF2α stimulates the formation of latent spores. Genomic data suggest that E. histolytica 

and E. invadens, a related reptilian intestinal parasite that can undergo encystation in vitro, 
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possess the components of this stress-response system [8].  However, the role of eIF2α 

phosphorylation in the E. histolytica stress response has never been characterized.   

In this study, we show that phosphorylation of EheIF2α occurs in E. histolytica in 

response to one stress condition, namely long term serum-starvation.  This is accompanied 

by a reduction in global protein translation.  We also demonstrate that expression of non-

phosphorylatable or phosphomimetic forms of EheIF2α influences growth, protein 

translation, and the ability to counter stress.  Together, these data support the hypothesis 

that E. histolytica possesses an eIF2α-based stress response system that controls protein 

translation.   

 

IV. Results 

eIF2α possesses conserved amino acid residues around the key phosphorylated serine 

residue 

An alignment of the E. histolytica eIF2α (EheIF2α) amino acid sequence with that 

of six different organisms showed that it shared low sequence identity and moderate 

sequence similarity across the entire protein, even when compared to the factor from other 

eukaryotic pathogens (Fig 1A and B).  The eIF2α with the highest homology to the EheIF2α 

was that from E. invadens.  Though overall shared homology was low, there was strong 

sequence identity surrounding the key phosphorylated serine residue, which occurs at 

amino acid position 59 in E. histolytica, (Fig 1C).  Thus, this serine residue is likely to be  
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Figure 2.1: Alignment of the eukaryotic translation initiation factor 2, alpha subunit 

 

Protein identity (A) and similarity (B) matrices were generated using BLOSUM 62 
algorithm and Protein Blast.  (C) The amino acids around the key serine residue, occurring 
at position 59 in E. histolytica were aligned using a Standard Protein BLAST.  The key 
serine residue that becomes phosphorylated is indicated by shading.  Fully conserved 
resides are noted by an asterisk (*) below the residues.  Residues showing strongly similar 
properties are indicated by a colon (:). Aminio acid sequences were identified using 
UniProtKB; UniProtKB accession number identified. Eh, Entamoeba histolytica 
(accession no. C4M0A4); Ei, E. invadens (accession no. S0AZW3); Tg, Toxoplasma 
gondii (accession no. S8GC56); Pf, Plasmodium falciparum (accession no. Q8IBH7); Sc, 
Saccharomyces cerevisiae (accession no. P20459); Dm, Drosophila melanogaster 
(accession no. P41374); Hs, Homo sapiens (accession no. P05198)  
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the residue phosphorylated during stress.  Conservation around this residue also suggests 

that the machinery for an eIF2α-based stress-response system is present in E. histolytica.   

 

Serum-starvation elicits an increase in the level of phospho-eIF2α 

To determine if the level of phospho-eIF2α changes during stress, cells were 

exposed to a variety of stress conditions: short and long term serum starvation [9], short 

and long term heat shock [10], glucose deprivation [11], and oxidative stress [12].  Viability 

was assessed and the level of total and phospho-eIF2α was tracked using Western blotting.  

Long term serum starvation and oxidative stress resulted in significant cell death (Fig 2).  

While the ratio of total eIF2α to actin showed some changes, none were singinficant (Fig 

3A).  There was a basal level of phosphorylated EheIF2α in control unstressed 

trophozoites; however, only trophozoites that were serum-starved for 24 h exhibited 

enhanced phosphorylation of EheIF2α compared to unstressed control cells (Fig 3B).  This 

was not simply due to cell death, as oxidative stress, which was accompanied by a similar 

reduction in viability, did not result in a significant increase in phospho-EheIF2α.  

Although cells that experienced long-term heat shock also exhibited an increase in 

phospho-EheIF2α, the increase was not statistically significant.  These data suggest that an 

eIF2α-based stress-specific response system exists in E. histolytica and is activated in a 

stress-specific manner. 
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Figure 2.2: Viability of trophozoites during stress 

 

Log-phase trophozoites were incubated in a variety of stress conditions as described in the 
text.  Cells were collected by centrifugation and live/dead cells were enumerated via 
microscopy and Trypan blue exclusion.  Percent viability was determined using the ratio 
of live cells to the total cell population counted.  The data represent the mean (± standard 
error) for at least three separate trials.  *** indicates a highly significant result (P<0.001) 
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Figure 2.3: Western blot analysis of phospho-eIF2α and total eIF2α levels in control and 
stressed cells 

Control or stressed cells were subjected to Western blot analysis using antibodies specific 
for actin, total eIF2α, phospho-eIF2α.  The proportion of (A) total eIF2α to actin or (B) 
phospho-eIF2α to total eIF2α was determined by scanning densitometry and image analysis 
(Image J, NCBI). The data represent the mean (± standard error) for at least three separate 
trials.  * indicates a significant result (P < 0.05). Only long term serum starvation induced 
a statistically significant (>2-fold) increase in the level of phospho-eIF2α. 
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Reduced protein translation accompanies phosphorylation of eIF2α 

In other systems, eIF2α-based control of stress is accompanied by a reduction in 

global protein translation [3].  Therefore, we examined global protein translation by 

characterizing the abundance of polyribosomes using sucrose gradient ultracentrifugation 

after long term serum-starvation, or after glucose starvation.  Serum-starvation, which 

induces phosphorylation of EheIF2α, resulted in a significant reduction in dense 

polyribosomes and an increase in free ribosomes and monosomes (Fig 4A and B).  On the 

other hand, parasites subjected to glucose starvation, which does not induce 

phosphorylation of EheIF2α, did not exhibit a decrease in dense polyribosome-bound 

transcripts (Fig 4C).  These results support the premise that E. histolytica possesses an 

eIF2α-based stress response system that reduces protein translation. 

 

Expression of mutant eIF2α alters global protein translation and growth 

To further examine the function of phospho-EheIF2α, we generated cell lines that 

conditionally overexpress non-phosphorylatable or phosphomimetic forms of EheIF2α.  

The cDNA encoding EheIF2α was mutagenized in two ways using PCR.  The codon for 

serine (S) at position 59 was changed to that of alanine (A) or aspartic acid (D) to produce 

non-phosphorylatable (EheIF2α-S59A) or phosphomimetic (EheIF2α-S59D) forms of 

EheIF2α, respectively [13].  To distinguish exogenous EheIF2α from the endogenous form, 

the PCR product was modified to include a FLAG epitope peptide sequence 

(DYKDDDDK) [14] followed by a 5-glycine flexible region at the N-terminus.   



48 
 

 

 

Figure 2.4: Polyribosome abundance in control and stressed cells    

Total RNA from control (A), serum-starved (B), or glucose-starved (C) cells were resolved 
by sucrose gradient (15-45%) ultracentrifugation, separating free ribosomes and 
monosomes into the lightest of fractions, from the polysomes in the densest fractions.  
Fractions were taken and analyzed by UV spectrometry (254 nm).  Representative profiles 
of at least 3 separate trials are shown.  Only long term serum starvation led to a decrease 
in large polysome abundance. 
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Modified PCR products were inserted into the E. histolytica expression vector 

pGIR209, which confers G418 (neomycin) resistance and allows for tetracycline-inducible 

expression of exogenous genes when introduced into trophozoites [15].  A standard 

electroporation protocol [16] was utilized to introduce the expression vector into 

trophozoites which had been previously transfected with an additional plasmid, pGIR308.  

This partner plasmid encodes the tetracycline repressor protein, which is necessary for 

tetracycline inducibility.  Authentic transfection was confirmed by purification and 

sequencing of the episomal expression plasmids from stably transfected cell lines [17]. 

A previously established cell line that conditionally expresses an irrelevant protein, 

luciferase, was used as a control [15].  Expression of exogenous proteins was induced by 

the addition of 5 µg mL-1 tetracycline to the culture medium for a minimum of 24 h.  

Western blot analysis using anti-FLAG and anti-EheIF2α showed successful induction of 

the protein with little to no expression of the exogenous proteins prior to the addition of 

tetracycline (Fig 5).  Interestingly, the EheIF2α-S59 exhibited a high level of 

phosphorylation of the exogenous protein.  This result suggests that the FLAG-tagged 

variant is functional.   

To confirm that the exogenously expressed EheIF2α variants were functional, we 

monitored polyribosome abundance in the transgenic cell lines after 24 or 72 h of 

tetracycline induction.  After 24 h of induction, there was no change in polyribosome 

abundance (Fig S1).  However, after 72 h of induction, polyribosome abundance remained 

high in the control 209-Luc cell line (Fig 6A).  While high density polysomes were present  
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Figure 2.5: Western blot analysis confirming exogenous protein expression in mutant cell 
lines 

 

Trophozoites were transfected with plasmids encoding luciferase (209-Luc), wildtype 
eIF2α (EheIF2α-S59), the non-phosphorylatable variant (EheIF2α-S59A), and the 
phosphomimetic variant (EheIF2α-S59D).  Protein expression was induced using 5 µg mL-

1 tetracycline for 24 hours.  Western blots of cell lysates were performed using antibodies 
specific for total, phospho-EheIF2α, the FLAG tag, or luciferase. 
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Figure 2.6: Polyribosome profiles for control and mutant eIF2α cell lines after 72 h of 
protein induction 

 

RNA was isolated from the four transgenetic cell line after incubation in 5µg/mL 
tetracycline for 72 h: the control cell line 209-Luc (A), the cell line overexpressing EheIF2α 
(B), the cell expressing the non-phosphorylable form of EheIF2α (C), and the cell line 
expressing the phosphomimetic form of EheIF2α (D).  The RNA was resolved by sucrose 
gradient (15-45%) ultracentrifugation, separating free ribosomes and monosomes into the 
lightest of fractions, with the polysomes in the densest fractions.  Fractions were taken and 
analyzed by UV spectrometry (254 nm). Representative profiles that show the general data 
trend of at least 3 separate trials are shown for 209-Luc, EheIF2α-S59, and EheIF2α-S59D.  
n=1 for EheIF2α-S59A     
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in the cells expression EheIF2α-S59, the peks were not as well defined as those in the 

control cell line (Fig 6B).  This may indicate a reduction in the abundance of polysomes, 

or a greater variety of different messages in the process of being translated.  The former 

would be consistent with the higher level of phosphorylation of this cell line.  This would 

be consistent with the high level of phosphorylation of the exogenous protein (Fig 5).  

EheIF2α-S59A retained a high level of polysomes after 72 h of induction.  However, this 

result requires verification, due to the low sample number (n=1; Fig 6C).  EheIF2α-S59D 

did not have any defined polysome peaks after 72 h induction (Fig 6D).  Given that the 

phosphorylation of eIF2α down-regulates translation, it was not surprising to see a decrease 

in polyribosome abundance in the EheIF2α-S59D cell line.  Together, these data suggest 

that the exogenous proteins are functional.  Interestingly, the data also show that although 

expression of exogenous protein is detectible at 24 h, it takes longer to detect any protein 

translation phenotype.   

Since polyribosome profiling provides a snapshot of protein translation at the 

mRNA level, we wanted to confirm the alterations in translation in the mutants at the 

protein level. Therefore, we used a second method known as SUrface SEnsing of 

Translation (SUnSET). This non-isotopic technique uses anti-puromycin antibody for the 

immunological detection of puromycin-labelled proteins [18, 19, 20].  When added to live 

cell cultures, puromycin, a tyrosoyl-tRNA analog, becomes incorporated into actively 

translating proteins.  Subsequent Western blot analysis of whole cell lysates with anti-

puromycin antibody reveals the extent of active protein translation in the cell.   
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To determine if SUnSET could be used to assess protein translation in E. histolytica 

in our hands, wildtype cells were incubated with puromycin before or after incubation with  

cycloheximide, a protein translation inhibitor.  Western blotting using anti-puromycin 

antibody revealed that puromycin was readily incorporated into proteins in E. histolytica 

(Fig 7A).  The incorporation was specific since there was minimal background staining of 

lysates from cells that were not treated with puromycin or from cells that were first treated 

with cycloheximide (Fig 7A).  

Protein expression was induced in the transgenic cell lines and then they were 

subjected to SUnSET analysis.  The overexpressing EheIF2α-S59 cell line exhibited the 

highest incorporation of puromycin among the tested cell lines (Fig 7B).  Since the 

EheIF2α variant expressed in this cell line is wildtype in nature and can be phosphorylated 

or dephosphorylated, the increased translation may indicate a decreased pressure on the 

rate limiting step of protein translation.  An increase in this initiation factor could, in theory, 

enhance protein translation.  Consistent with the polyribosome profile (Fig 6), the 

incorporation of puromycin into the cell line expressing EheIF2α-S59A was similar to that 

of the control cell line.  Transgenic cells expressing EheIF2α-S59D exhibited the lowest 

incorporation of puromycin.  This supports the predicted function of the EheIF2α-S59D as 

a phosphomimetic form of EheIF2α, as both the polysome profile and the SUnSET analysis 

show a low level of protein translation.   

 To assess growth and viability in the transgenic cell lines, we generated a growth 

curve after inducing protein synthesis.  Cells expressing luciferase (control) and EheIF2α-

S59A exhibited a similar rate of growth (Fig 8).  This was not surprising since protein  
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Figure 2.7: SUnSET analysis of active protein translation in control and mutant cell lines 

 

(A) Wildtype cells were incubated in normal growth medium with 100 µg mL-1 
cycloheximide (Cyclo), 10 µg mL-1 puromycin (Puro), or both (Cyclo + Puro).  Cell lysates 
were subjected to SDS-PAGE and Western blotting using antibody specific for puromycin.  
Trophozoites readily incorporated puromycin into proteins (Puro).  The incorporation was 
authentic given that it was blocked by cycloheximide treatment (Cyclo + Puro). This 
suggests that SUnSET can be used to assess protein translation in E. histolytica.  (B) Protein 
expression was induced in the four transgenic cell lines by tetracycline for 72 h and 
SUnSET was performed. Cell overexpressing the wildtype EheIF2α showed the highest 
level of protein translaton over the incubation period.  As expected, cells expressing the 
phosphomimetic protein (EheIF2α-S59D) had the lowest amount of proteins synthesized, 
corresponding to the proposed shutdown in translation machinery.  Data represent at least 
3 separate trials.  Protein loads were verified by total protein staining samples with 
Coomassie Blue (lower panels).    
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Figure 2.8: Growth curves of control and mutant cell lines 

 

Exogenous proteins expression was induced by 24 hour incubation with 5µg ml-1 prior.  An 
original inoculum of 5x104 cells was seeded into T-75 flasks in the presence of 5 µg ml-1 
tetracycline.  Cells were counted every 24 hours until the experiment was terminated after 
72 hours.  (A) Average cell count for each cell line, showing general trends. (B) Average 
cell counts and standard error bars for each individual cell line.  Data represents the mean 
(± standard error) for at least three separate trials.    
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translation was seemingly unchanged in the EheIF2α-S59A-expressing cell line.  Cells 

expressing the phosphomimetic form of eIF2α, EheIF2α-S59D exhibited a dramatic 

decrease in doubling time compared to the other cell lines (Fig 8).  Cells overexpressing 

wildtype eIF2α, EheIF2α-S59, also grew more slowly compared to control (Fig 8).  

Increased protein translation could account for this slower growth due to the depletion of 

ATP and oxidative stress.  Indeed, this is the case in mammalian cells that have increased 

protein translation [21].   

 

Expression of mutant eIF2α alters viability during stress 

The mutant cell lines were then assessed for their ability to survive the various 

stress conditions applied previously. After 24 h of induction, there was no statistical 

difference in survivability among the cell lines (Fig 9A).  This is not surprising given that 

there was no protein translation phenotype at 24 hours (Fig S1).  However, when serum 

starvation was carried out to 48 h, a distinct difference in viability was observed (Fig 9B).  

Cells expressing EheIF2α-S59D were better than the other cell lines at surviving this stress 

condition.  Given that this variant is the phosphomimetic, it is possible that this cell line 

was pre-conditioned to handle stress. 
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Figure 2.9:  Control and mutant eIF2α cell line viabilities during stress conditions 

Cell lines were exposed to various stress condition for the determined time (see methods).  
(A) Cell viability after an initial 24 hours of induction with 5 µg ml-1 tetracycline, 
followed by the incubation in the control or stress condition (see Materials and Methods). 
The cell line expressing EheIF2αS59D exhibited slightly higher viability after serum 
starvation, short term heat shock, and long term heat shock but these increases in viability 
were not statistically significant.    (B) Protein expression was induced in the transgenic 
cells for 24 hours and then the cells were exposed to hour serum starvation for 48 hours.  
The cell line expressing EheIF2αS59D exhibited the highest viability.   Data represents 
the mean (± standard error) for at least three separate trials.  While no condition resulted 
in a significant difference, in four of the seven total tested conditions, the cell line 
expressing the phosphomimetic form of EheIF2α had the highest survival rate (EheIF2α-
S59D). 
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V. Discussion 

This study is the first to demonstrate that stress can induce phosphorylation of 

eIF2α in E. histolytica.  Specifically, eIF2α was phosphorylated and protein translation was 

down-regulated as a result of long-term serum starvation.  Transgenic cell lines expressing 

a phosphomimetic form of eIF2α exhibited higher viability during long-term serum-

starvation than cell lines expressing wildtype eIF2α, a non-phosphorylatable mutant of 

eIF2α, or an irrelevant control protein, luciferase.  This suggests that phosphorylation of 

eIF2α is beneficial to E. histolytica survival during stress. 

The eIF2α response to stress appears to be specific to the condition applied since 

phospho-eIF2α did not increase in other presumptive states of stress including short-term 

serum starvation, heat shock, glucose deprivation or oxidative stress.  We also cannot rule 

out the possibility that combinations of stresses could fully activate the eIF2α kinases as in 

other systems; for example, Leishmania requires the application of both heat shock and 

alkaline stress to significantly phosphorylate eIF2α [5].   

Analysis of E. histolytica genome data suggests that this pathogen possess other 

components of this stress response system.  There are putative homologs for eIF2β 

(EHI_153480) and eIF2γ (EHI_132880). Furthermore, E. histolytica possesses two 

presumptive eIF2α kinases (eIF2K) (EHI_109700, EHI_035950) [8].  Currently, these E. 

histolyltica eIF2α kinases have not been authenticated, nor have the conditions that lead to 

their activation been discerned.  Nonetheless, the occurrence of each of the three subunits 

of eIF2 as well as kinases in genome sequences indicates that this translation factor has a 
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conserved role in this pathogen in delivering Met-tRNAis to the translation machinery.  In 

support of this, cells expressing the phosphomimetic variant of EheIF2α exhibited reduced 

polyribosme abundance.  Furthermore, long-term serum starvation, a condition that 

induces phosphorylation of eIF2α, also reduced polyribosome abundance.  To date, there 

have been no proteomic or microarray analyses in serum-starved E. histolytica cells.  

Therefore, the types of proteins that are down regulated during the stress remain to be seen. 

We did not observe an increase in the level of phospho-eIF2α as a result of oxidative 

stress.  However, others have shown that protein translation is inhibited in this condition 

in E. histolytica.  Using SUnSET, Shahi et al. (2016) demonstrated that exposure to 2.5 

mM H2O2 for 15 minutes was sufficient to strongly inhibit incorporation of puromycin.  

This observations suggests that down-regulation of protein synthesis during oxidative 

stress must occur in an eIF2α-independent fashion.  Interestingly, Shahi et al. also observed 

that the components of the parasite’s translation machinery, such as ribosomal proteins and 

elongation factors, were oxidized as a result of H2O2 exposure [19].  Although, this could 

have contributed to the stress-induced inhibition of protein synthesis, a recent report 

suggests that a more likely mechanism is global, enzymatic down-regulation of almost all 

tRNA species [22].  Importantly, the concentration of H2O2 use by Shahi et al. was 5-fold 

higher than the concentration used in the current study.  Thus, we cannot rule out the 

possibility that eIF2α could become phosphorylated in higher concentrations of H2O2.   

In the current study, the expression of wild-type and mutant forms of eIF2α was 

exogenous.  Due to polyploidy, methods for homologous recombination and gene 

replacement are not yet available for E. histolytica.  As such, endogenous eIF2α was 
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present.  Despite this limitation, we observed phenotypes in the transgenic cell lines.  For 

example, in cells expressing the phosphomimetic version of eIF2α, we observed a 

reduction in polyribosome abundance.  This phenotype is expected given the known 

function of phospho-eIF2α in reduction of translation initiation.  This suggests that the 

exogenous proteins are functional and studies of these transgenic cell lines are valuable.   

Currently, it is unknown if the level of phospho-eIF2α increases during encystation 

of E. histolytica.  It is also unknown if phosphorylation of eIF2α is sufficient to induce 

stage conversion to the cyst form.  However, eIF2-based systems are widely used in 

eukaryotes for the conversion to latent or dormant forms. Phosphorylation of eIF2α is 

responsible, in part, for stage conversion in Toxoplasma gondii [3], Plasmodium spp. [4] 

Leishmania spp. [23], yeast [6], and Dictyostelium discoideum [7]. 

Several lines of evidence suggest that an eIF2-based system may play a role in stage 

conversion in E. histolytica. First, encystation is believed to be a stress-response.  Second, 

encystation is accompanied by the aggregation of ribosomes into structures known as a 

chromatoid bodies and by a decrease in the incorporation of exogenous amino acids [24, 

25].  Chromotoid bodies are RNA- and ribosomal-containing cytoplasmic granules that 

arise during stress. They are reminiscent of stress granules which accumulate in an eIF2-

dependent manner in other systems [26].  Third, E. invadens, the encystation model, 

possesses a single eIF2α (EIN_242170) and two kinases (EIN_059080, EIN_0333330).  

One of the kinases (EIN_0333330) is developmentally regulated [27].  Specifically, there 

is a statistically significant increase in transcript at 24 h of encystation making it a candidate 

for regulating the levels of phospho-eIF2α during stage conversion. Further studies with 
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the model organism may shed light on the role of eIF2-based control of protein translation 

during encystation in E. histolytica. 

In summary, this study demonstrates that an eIF2-based stress response pathway of 

phospho-eIF2α is functional in E. histolytica.  E. histolytica continues to infect thousands 

of individuals worldwide every year and there is a desperate need for new drugs.  Given 

the importance of the stress response system in E. histolytca survival, components of this 

pathway may one day serve as targets for novel therapies. 

 

VI. Materials and Methods 

Alignment of eIF2a protein sequences 

 Amino acid sequences of eIF2α for 7 model species were aligned individually to 

the Entamoeba histolytica eIF2α to examine sequences surrounding the key serine reside.   

The sequences were also analyzed using a Standard Protein BLAST v 2.3.1 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins) and the BIOSUM 62 algorithm 

for a “positive” or similarity score, as well as an identity score to form a similarity and an 

identity matrix.  

 

Cell culture and stress  

Entamoeba histolytica (strain HM-1:IMSS) was cultured axenically in TYI-S-33 

medium in 15 mL glass screw cap tubes at 37°C [28].  Cells were passaged into fresh media 

every 72 to 96 h.  
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Log-growth trophozoites were incubated on ice for 10 min to release the cells from 

the glass surface.  Centrifugation was performed at 500 x g for 5 min to pellet cells.  The 

cell pellet was resuspended in the appropriate stress medium as follows and incubated at 

37°C unless otherwise noted.  To induce short term serum starvation, cells were cultured 

in TYI-S-33 medium without the addition of adult bovine serum, penicillin-streptomycin, 

and Diamond’s Vitamins for 1 h prior to analysis.  To induce long term serum starvation, 

cells were incubated in the same medium for 24 h prior to analysis [9].  Short term heat 

shock was induced by incubating trophozoites in complete growth medium in a 42°C water 

bath for 4 h [10].  To assess long term heat shock, cells were incubated at 39°C for 24 h. 

To induce glucose deprivation, trophozoites were incubated for 12 h in TYI-S-33 medium 

without glucose [11].  To induce oxidative stress, 500 µM hydrogen peroxide (Fisher 

Scientific) was added to the normal TYI-S-33 medium and incubated for 45 min [12].  

Viability was determined with microscopy using Trypan Blue exclusion (VWR). 

 

Antibody development 

   Antibodies were developed in rabbits against the synthetic phosphorylated 

polypeptide- ILMSEL(pS)KRRFRS and against the unphosphorylated polypeptide 

EMGTYVALKEYDDIQGMIP targeting the phosphorylated and total eIF2α levels, 

respectively (Pierce Biotechnology, Inc., Rockford, IL, USA).  These antibodies purified 

by ELISA and confirmed against the synthetic polypeptide used in the initial immunization. 
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Western Blot of total and phospho-eIF2α 

SDS-PAGE and Western blot analysis were performed as described previously 

[29].  Stressed and unstressed trophozoites (5x104) were collected by centrifugation and 

resuspended in NuPage LDS buffer (Life Technologies, Carlsbad, CA, USA) according to 

the manufacturer's instructions.  Samples were then heated for 10 minutes at 70°C and 

loaded onto a precast 12% Bis-Tris polyacrylamide gel (Life Technologies, Carlsbad, CA, 

USA).  The gel was electophoresed at 200V and the separated proteins were transferred to 

a polyvinylidene difluoride membrane (PVDF; Invitrogen, CA, USA) for 1.5 hours at 12V 

in Towbin buffer.  The membrane was then blotted with 5% w/v powdered milk in 

TBS/0.5% Tween 20 solution (50mM Tris, 150mM NaCl) for 30 minutes at 37°C.  Total 

and phospho-eIF2α antibodies were used at a dilution of 1:1000.  To control for loading, 

mouse anti-actin commercial antibodies were used at a dilution of 1:5000 (Abcam, 

Cambridge, MA, USA).  The membrane was incubated in primary antibody overnight at 

4°C, followed by extensive washes in TBS/0.5% Tween 20.  The blots were then incubated 

for 1 hour at 20-22°C with commercially available secondary antibody: peroxidase-

conjugated goat anti-rabbit (dilution factor 1:10,000) or anti-mouse (1:5000) (Fisher 

Scientific, Fair Lawn, NJ, USA).  After washing with a TS/0.05% Tween 20 the membrane 

was developed using the Enhanced ChemiLuminescence Western blotting detection 

system (Thermo Scientific, Hercules, CA, USA) according to the manufacturer's 

instructions.  Protein was quantified by scanning densitometry (ImageJ, version 1.47, 

National Institute of Health, USA) and normalized to the actin load control. 
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Polyribosome analysis of stress conditions 

 To halt protein translation, stressed and unstressed E. histolytica trophozoites were 

treated with cycloheximide (100 µg mL-1) for 10 min at 37°C.  Cells were collected by 

centrifugation (500 x g for 5 min at 4°C).  The cell pellet was suspended with cold 1X PBS 

buffer, washed and resuspended in Breaking/Polysome Buffer (BPB) (10mM Tris-HCl (pH 

7.4), 300 mM KCl, 10 mM MgCl2, 1% (v/v) Triton-X-100, 2 mM DTT, 1 mg/ml heparin, 

50 μg/ml cycloheximide, and 0.04 units/μl RNase Out) in the presence of protease 

inhibitors. Lysis was achieved by passing cells twice through a 27 gauge syringe needle.  

Lysates were clarified by centrifugation at 14,000 × g for 5 min. Samples were loaded onto 

a 15–45% sucrose gradient in BPB without RNase Out, heparin, DTT or Triton as 

described previously [30, 31].  Ultracentrifugation was performed at 230,000 x g for 2 h. 

Gradients were fractionated and the fractions were analyzed for polyribosome abundance 

by spectrophotometry (254 nm) and the absorbance was corrected for cell count.  

 

Mutagenesis of eIF2α and transfection of E. histolytica trophozoites 

The E. histolytica eIF2α gene is predicted to be intron-less.  Therefore, genomic 

DNA was purified (Wizard Genomic DNA Purification Kit, Promega) and the EheIF2α 

gene was isolated by PCR.  During PCR, nucleotides encoding a BglII restriction site, a 

FLAG tag [14], and a 5-glycine flexible region were added to the 5’ end of the gene and 

nucleotides encoding SalI were added to the 3’ end of the gene.   

Site-directed mutagenesis of the codon for serine (S) (TCA; amino acid position 

59) to the codon for alanine (A) (GCA) or aspartic acid (D) (GAT) was carried out using a 
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PCR-based protocol using the QuikChange Kit (Stratagene) according to manufacturer’s 

instructions.  Successful mutagenesis was confirmed by sequencing.  Wildtype and mutated 

EheIF2α coding sequences were digested with BglII and SalI and ligated into the 

Entamoeba histolytica expression vector, pGIR209 [15] (gift of Dr. W. A. Petri, University 

of Virginia, Charlottesville, VA), which had been digested with BglII and SalI.  This vector 

allows for the inducible expression of exogenous proteins via the addition of tetracycline 

to the medium and is co-transfected with a second vector, pGIR308, which encodes the 

tetracycline repressor.   

Exponentially growing trophozoites of E. histolytica, harboring pGIR308, were 

transfected with the engineered pGIR209 vector as described [16].  As a control, amoebae 

were also transfected with pGIR209 containing the gene encoding luciferase [15].  

Transfected amoebae were maintained by adding 6 µg mL-1 G418 (pGIR209) and 15 µg 

mL-1 hygromycin (pGIR308) selection agents to the medium. 

Mutant eIF2α expression was induced by the addition of 5 µg mL-1 tetracycline to 

the culture medium for 24 to 72 h prior to all studies and confirmed by Western blotting 

was performed as described [29] with rabbit anti-luciferase (Invitrogen), anti-FLAG 

(Sigma), anti-eIF2α and anti-phospho-eIF2α at dilutions of 1:2500, 1:5000, 1:1000, or 

1:1000, respectively.   

Polyribosome analysis, as described above was used to assess the polysome profile 

of the mutant cell lines after 24 h or 72 h post induction of exogenous protein translation.  
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SUnSET 

SUnSET analysis has been previously used to assess translational machinery in E. 

histolytica [19, 20].  To determine if SUnSET could be used to assess protein translation 

in E. histolytica in our hands, we assessed the incorporation of puromycin into wildtype 

trophozoites.   Cells (2x106) were incubated with 10 µg mL-1 puromycin (Sigma-Aldrich) 

for 15 min before or after incubation with 100 µg mL-1 cycloheximide for 10 min.  All 

incubations were held at 37°C.  Cells were then pelleted and proteins were precipitated 

using 20% (v/v) TCA and incubating on ice for 10 min.  Proteins were isolated via 

centrifugation at 2200 x g for 5 min and washed with 5% (v/v) TCA.  The protein pellet 

was resuspended in 2X SDS running buffer and incubated in boiling water for 10 min (Ref 

Works 118).  The lysate was frozen at -80°C until analyzed via Western blot as described 

above.  Mouse anti-puromycin monoclonal antibodies (Sigma-Aldrich) were used at a 

1:2500 dilution.  As a loadinng control, samples were stained with Bio-safe Coomassie 

(Bio-Rad Laboratories).  The protocol was repeated in the transgenic cell lines after a 72 h 

induction period.  

 

Growth assays and viability studies of mutant cell lines 

Cells (5x104) expressing luciferase, EheIF2α-S59, EheIF2α-S59A, or EheIF2α-

S59D were seeded into 15 mL glass screw cap tubes with TYI-S-33 media with selection 

agents and tetracycline. At 24 hour intervals, cells were enumerated by microscopy with 

Trypan exclusion.   
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The viability of the four mutant cell lines was also assessed as described above.  An 

additional stress of 48 h incubation without Diamond’s Vitamins, PenStrep, or adult bovine 

serum, was also used to assess any viability differences.   

 

Statistical analysis   

All values are given as means ± standard error of at least 3 trials. To compare 

means, statistical analyses were performed using GraphPad Prism v.6.05 software with a 

one-way analysis of variance (ANOVA) and a Tukey-Kramer multiple-comparison test. In 

all cases, P values of less than 0.001 were considered highly statistically significant, while 

P values of less than 0.01 or 0.05 were considered statistically significant. 
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VII. Supplemental Figure 

 

Supplemental Fig 2.S1: Polyribosome profiles for mutant eIF2α cell lines after 24 h 
induction 

Ribosomes were isolated from four different cell line after incubating with 5µg/mL 
tetracycline for 24 h: the control cell line 209-Luc (A), the cell line overexpressing EheIF2α 
(B), the cell expressing the non-phosphorylable form of EheIF2α (C), and the cell line 
expressing the phosphomimetic form of EheIF2α (D).  These isolates were purified using 
sucrose gradient (15-45%) ultracentrifugation, separating free ribosomes and monosomes 
into the lightest of fractions, with the polysomes in the densest fractions.  Fractions were 
taken and analyzed by spectrometry (254 nm).  Representative profiles of at least 3 separate 
trials are shown.  All cell lines exhibited a high level of free ribosomes and monosomes.  
However, all cells still had multiple ribosomes attached to mRNAs, as indicated by the 
increased absorbance in higher sucrose fractions.  As no growth phenotype was observed 
after a 24 h induction, the induction time was increased to 72 h (see Fig 6).  
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