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ABSTRACT 

Prosthetic vascular grafting is largely successful in patients undergoing surgical 

intervention for vascular diseases in medium and large caliber arteries (inner diameter >6 

mm). In small diameter arteries, however, prosthetic grafts are insufficiently non-

thrombogenic, and autologous vein grafting and endovascular stenting are considered to 

be standard treatments. However, up to one third of patients lack proper donor vessels due 

to donor site morbidities or severe vascular disease, and stenting fails to provide long-term 

patency. Further, patients with diabetes have not only increased risk for the development 

of cardiovascular diseases, but also have poorer outcomes following intervention. To meet 

this need, a small diameter tissue engineered vascular graft was developed to meet the 

needs of diabetic patients with vascular diseases. 

First, a biocompatible scaffold was created by decellularization of porcine renal arteries, 

then stabilizing the scaffolds using pentagalloyl glucose (PGG). PGG is a matrix-binding 

polyphenol previously shown to improve mechanical strength of decellularized tissues and 

to resist calcification and the accumulation of advanced glycation endproducts in STZ-

induced type I diabetic rats. Decellularization was assessed by histological analysis and 

isolation and quantification of DNA. 

Next, human adipose derived stem cells (hADSC) were differentiated in vitro to endothelial 

cells in media supplemented with vascular endothelial growth factor (VEGF) and insulin-

like growth factor (IGF-1). ADSC-derived endothelial cells and human aortic endothelial 
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cells (hAEC) were cultured in normal or high glucose for one week. Cells were assessed 

by immunofluorescence to confirm differentiation toward endothelial cells. Protein and 

RNA isolates were assessed for the expression of metabolic and inflammatory markers for 

diabetes to measure the resistance of differentiated hADSCs to a high glucose environment 

compared to hAEC. 

Finally, hAEC and human aortic adventitial fibroblasts (hAAFb) were drop-seeded onto 

the prepared scaffolds and conditioned in a custom-designed vascular bioreactor in normal 

or high glucose media for 4 weeks. Constructs explanted from the bioreactors were 

assessed for cell retention by Live/Dead Assay, scanning electron microscopy, and 

histology. Protein and RNA isolates were assessed for the same metabolic and 

inflammatory markers for diabetes. 

Histological analysis and DNA concentration showed complete decellularization of 

porcine renal arteries. A pilot study to assess the in vitro response of endothelial-

differentiated hADSCs to diabetic conditions was similar to that of hAEC. Decellularized 

arterial scaffolds seeded with fibroblasts and endothelial cells conditioned in a bioreactor 

retained some endothelial cells, but lacked fibroblasts after conditioning. 
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CHAPTER ONE: BACKGROUND AND REVIEW OF LITERATURE 

1.1 Cardiovascular Anatomy and Physiology 

1.1.1 Overview of the Cardiovascular System 

At its core, the cardiovascular system exists to conduct blood in a closed loop throughout 

the body. The center of this system is the heart, a four-chambered organ organized to create 

continuous, unidirectional flow of blood. In the pulmonary circuit, blood is pumped from 

the right ventricle through the pulmonary arteries to the lungs, wherein oxygen and carbon 

dioxide are exchanged with atmospheric gas, then the re-oxygenated blood returns through 

the left atrium. Once full, the atrium contracts to send blood into the left ventricle, which 

then pumps blood to the aorta, which has a series of branches coming off it to allow blood 

to travel throughout the body. At the periphery, nutrients, waste, gases, and hormones are 

exchanged in thin-walled capillaries. Blood then returns to through the venous system to 

the right atrium, and the cycle thus continues. 

1.1.2 The Vasculature 

Blood vessels are the conduits by which blood is conducted throughout the body. It is 

divided into three subtypes: arteries, veins, and capillaries. Additionally, smaller vessels 

called arterioles and venules to act as intermediate-sized vessels to connect capillaries to 

arteries and veins, respectively. The vessels are generally composed of endothelial and 

smooth muscle cells and extracellular matrix, primarily collagens, elastin, and 

glycosaminoglycans. Arteries and veins are multi-layered organs: the innermost, blood-

contacting layer is the tunica intima, also referred to as the endothelium, consists of a 

1
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monolayer of endothelial cells, a specialized type of epithelial cell, on top of a basement 

membrane. The tunica media is separated from the endothelium by an internal elastic 

lamina, forms the middle layer of blood vessels, and is composed of concentric layers of 

vascular smooth muscle cells (vSMC). The tunica externa is the outmost layer, and is 

separated from the media by external elastic lamina.26 It a loose connective tissue 

containing nerve endings and in larger vessels, a vasa vasorum26, a network of arterioles 

and capillaries that nourish the outermost parts of those vessels. Capillaries consist of a 

monolayer of endothelial cells on a basement membrane. 

Figure 1.1: The Cardiovascular System. The system is composed of the heart, the pulmonary circuit, which 

supplies the lungs, re-oxygenates blood, and removes waste carbon dioxide, the system circuit, which 

supplies blood to all other parts of the body besides the lungs. Oxygenated blood is depicted in red and 

deoxygenated blood is depicted in blue. [25] 
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Generally, arteries have thicker vessel walls and narrower lumens to compensate for greater 

mean pressure and flow rate. The largest arteries are those closest to the heart, and have 

inner diameters between 1 and 2.5 cm.25 These arteries have the highest elastin content, 

which allows for the arterial wall to stretch and recoil following a pulse of blood without 

permanent deformation while damping the pulsation generated by the cardiac rhythm; thus 

they are referred to as elastic arteries.31 Muscular arteries are slightly smaller than elastic 

arteries, with diameters between 3 mm and 1 cm.25 As the name suggests, these arteries 

have a proportionally thicker tunica media, which is stimulated by the endothelium or the 

nervous system to induce vasoconstriction or vasodilation in order to reduce to increase 

blood, respectively, to a given organ or tissue. Veins have much wider lumens and thinner 

walls than their companion arteries. This is because of the lower pressure experienced after 

flow through capillaries. This low pressure also means that blood flow is able to stop. To 

prevent blood from pooling in the peripheral veins, particularly in the limbs, veins have 

valves to prevent backflow, and deep veins lie next to skeletal muscles, which act to pump 

blood back toward the heart.25 

 

1.1.3 The Endothelium 

Endothelial cells are a specialized squamous epithelium form a 0.2-0.4 μm -thick 

monolayer of cells that line the luminal of surface of all vasculature and the heart10, and 

are key regulators of vascular wall homeostasis.38 With the exceptions of fenestrated 

endothelium in the hepatic and splenic vasculature, endothelial cells form a tight, 

selectively permeable barrier. Endothelial cells are highly dynamic and can change 
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phenotype based on homeostatic signaling. Under normal homeostatic conditions, 

endothelial cells form a barrier between the blood compartment and extravascular tissues, 

resist thrombogenesis, prevent immune cell extravasation, regulate vascular tone, and favor 

overturn of vascular extracellular matrix.26 

 

Figure 1.2: Activation of Endothelial Cells [26] 

 

Under various states of stress, including turbulent flow, hypertension, cytokines, 

complement activation, damage from hyperglycemia, hypoxia, acidosis and alkalosis, 

endothelial cells become activated.26 Activated endothelial cells become procoagulant, 

proinflammatory, and influence the underlying smooth muscle cells to contract and 

proliferate. These functions allow for hemostasis, inflammatory cell recruitment to combat 

infection, and intimal thickening to allow for vessel healing.26 This activated state is 

contrasted with endothelial dysfunction, a proinflammatory and procoagulant phenotype 

that forms the basis of various vascular disorders, including thrombosis, atherosclerosis, 
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and vascular lesions caused by hypertension and other disorder.24 Generally, endothelial 

dysfunction is a phenotypical alteration that leads to loss of homeostatic control and 

contributes to the pathogenesis of vascular diseases, including thrombosis, atherosclerosis, 

and vascular lesions seen in hypertensive patients.10,26,33 

 

1.1.3.1 Endothelial Regulation of Hemostasis 

Under normal conditions, endothelial cells express anti-platelet, anti-coagulation, and 

fibrinolytic factors that contribute to the total non-thrombogenicity of the tunica intima.38 

Endothelial cells constitutively express prostaglandin 2 (PGI2) and endothelial nitric oxide 

synthase (eNOS) to prevent adhesion of platelets to the vascular wall.10 PGI2 exerts a 

paracrine effect on platelets and nearby endothelial cells. In platelets, PGI2 inhibits 

thromboxane A2 (TXA2) synthesis, which is necessary for platelet activation and 

aggregation.10 eNOS catalyzes the reaction that produces nitric oxide (NO). NO inhibits P-

selectin expression and integrin glycoprotein IIb-IIIa activation in platelets, which are 

necessary for platelet aggregation and fibrinogen binding, respectively.10 Endothelial cells 

inhibit coagulation by releasing a variety of factors that inhibit the various parts of the 

coagulation cascade and fibrin clot formation. Finally, endothelial cells express tissue 

plasminogen factor (tPA), a fibrinolytic enzyme involved in clot dissolution.33 Upon 

activation, endothelial cells suppress their anti-thrombogenic phenotype and release tissue 

factor, an enzyme that catalyzes cleavage of Factors IX and X to aid in coagulation cascade 

progress.33 
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1.1.3.2 Endothelial Regulation of Immune Response 

In addition to inhibiting platelet adhesion, endothelial cells ensure that immune cells, 

especially leukocytes and monocytes, cannot bind to the vascular wall and enter the 

extravascular tissue. The endothelium does this by passively failing to produce the requisite 

chemoattractant and adhesive molecules necessary to mediate leukocyte recruitment.33 

Upon activation, endothelial cells produce cytokines that activate leukocytes, chemokines 

that recruit monocytes to the area of injury, and express surface adhesive molecules that 

allow immune cells to bind to the vascular wall. Early adhesion to the vascular wall is 

mediated by E-selectin, giving leukocytes low-affinity binding.6 Immune cells will then 

transiently “roll” along the vascular wall. Immune cells express integrins that bind to 

intracellular adhesion molecules (ICAMs) and vascular CAMs (VCAMs) expressed on the 

luminal surface of activated endothelial cells.6 Integrin-mediated binding allows for firm 

attachment to the vascular wall, and induces rapid cytoskeletal remodeling within the 

immune cells, which allows them to extravasate to the tissue bed by “squeezing” 

themselves through gaps between the endothelial cells in a process called diapedesis or 

transendothelial migration.6 

 

1.1.3.3 Endothelial Regulation of Vascular Tone 

Blood pressure is regulated by two key functions: cardiac output and peripheral 

resistance.26 Cardiac output is affected by stroke volume and heart rate. Peripheral 

resistance is primarily regulated by vascular tone at the arteriole level, and is balanced by 

levels of vasoconstrictors and vasodilators, many of which are produced by endothelial 
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cells.26 In addition to their roles as a platelet activation inhibitors, NO and PGI2 are potent 

vasodilators. Endothelial cells constitutively express eNOS, which continuously produced 

NO. Additional large levels of NO can be produced by and inducible nitric oxide synthase 

(iNOS), which is activated in macrophages, SMCs, and endothelial cells in response to 

cytokine signaling.33 PGI2 and TXA2 are vascular tone antagonists, inducing vasodilation 

and vasoconstriction, respectively.33 

 

During injury, the endothelium contributes to vasoconstriction to aid in prevention of blood 

loss. Endothelial cells are responsible for the production of endothelin-1 and angiotensin 

II by the actions of endothelin converting enzyme and angiotensin converting enzyme 

(ACE) on the cell membrane.33 Endothelin-1 is released abluminally to stimulate SMC 

contraction.10 Angiotensin II is the end product of the renin-angiotensin system that 

controls blood pressure by inducing vSMC contraction, stimulating aldosterone secretion 

by the adrenal glands to resorb filtered sodium, stimulating vasopressin secretion by the 

posterior pituitary gland to increase fluid retention in the kidneys, and inhibiting 

bradykinin, a vasodilator that induces NO and PGI2 release from endothelial cells.10,26,33 

 

1.2 Cardiovascular Disease and Current Treatments 

1.2.1 Incidence of Cardiovascular Disease 

Cardiovascular diseases are the leading cause of morbidity and mortality in the world, and 

in the United States in 2011, accounted for 31.3% of deaths.27
 These diseases include 

stroke, congenital heart disease, rhythm disorders, atherosclerosis, heart failure, valvular 
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disease, coronary artery disease, and peripheral artery disease.27 The focus of this review 

will be on macrovascular diseases, especially coronary, carotid, and peripheral artery 

diseases. Coronary artery disease (CAD) affects 6.2% (15 million) of the U.S. population, 

and is a significant risk factor in the development of heart failure and myocardial 

infarction.27 Peripheral artery disease (PAD) affects 3.5% (8.5 million) of the U.S. 

population27, and characterized by claudication, intermittent leg pain during physical 

activity. Left untreated, PAD can cause critical limb ischemia, which may require lower 

extremity amputation. 

 

1.2.2 Atherosclerosis 

Vascular pathologies are underpinned by two principle mechanisms, stenosis of the vessel 

that leads to obstruction of the vessel, and weakening of the vessel wall that can lead to 

dilation and eventual rupture.26 One of the mechanisms leading to vessel obstruction is 

arteriosclerosis, i.e. hardening of the arteries, which has three general manifestations: 1) 

arteriolosclerosis, which primarily affects small arteries and arterioles, 2) Mönckeberg 

medial sclerosis, dystrophic calcification in the tunica media of muscular arteries, and 3) 

atherosclerosis, deposition of a fatty plaque in the vessel wall.26 Atherosclerosis is the 

leading cause of morbidity and mortality in Western countries, and will be the focus of this 

review. 

 

The most common model for describing atherogenesis, the pathogenesis of atherosclerosis, 

is the response-to-injury hypothesis34, which “views atherosclerosis as a chronic 
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inflammatory and healing response of the arterial wall to endothelial injury.”26 First, 

endothelial cells experience chronic injury, particularly from hyperlipidemia and disturbed 

mechanical forces, leading to endothelial dysfunction that manifests in increased vascular 

permeability, leukocyte adhesion and extravasation, and thrombosis.34 Next, low density 

lipoprotein (LDL) and oxidized LDL begin to accumulate in the vascular wall. Monocytes 

then adhere, migrate into the vessel wall, and transform into macrophages. Smooth muscle 

cells also migrate into the intima in response to the vessel injury. Macrophages and SMCs 

begin accumulating deposited lipids, and macrophages transform into foam cells due to 

modified LDL ingested via scavenger receptors; this stage is referred to as a fatty 

streak.26,41 Macrophages are activated by uptaken cholesterol and free fatty acids (FFA) 

that interact with components of the inflammasome20 that enhances immune cell 

recruitment via cytokine release, increased lipid oxidation and oxidative stress via release 

of radical oxygen species (ROS), and SMC proliferation via growth factor release.26 

Activated T lymphocytes release interferon-γ (IFNγ), which activates macrophages, SMCs, 

and endothelial cells.20 Activated and proliferative intimal SMCs have a unique synthetic 

phenotype, in which they deposit ECM components, particularly collagen, which 

completes transformation of the fatty streak into a fibrofatty atheroma.26 This fibrofatty 

atheroma is commonly referred to as an atherosclerotic plaque. Cell necrosis within the 

plaque contributes to degeneration of the underlying intima, resulting in a vulnerable 

plaque that can lead to clinically relevant consequences.26 
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At the clinical stage, there are several important pathologic consequences. Acute changes 

in the surface of the plaque can lead to rupture, ulcerate, or erode, exposing the highly 

thrombotic interior of the plaque to the bloodstream and thus resulting in acute vessel 

occlusion.26,42 The plaque can weaken the surrounding vessel wall due to intimal ischemia 

and ECM degradation, which can induce aneurysm formation that may rupture. In small 

arteries, plaques can become large enough to occlude the vessel, resulting in downstream 

ischemia.4 At the clinical stage, there are several interventions, including pharmacotherapy, 

balloon angioplasty, stenting, and bypass graft surgery.7,36 

 

Table 1.1: Classification of atherosclerotic plaques based on morphology [42] 
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1.2.3 Endovascular Repair 

Since the introduction of balloon angioplasty in 197919, there have been several generations 

of technologies to improve the outcomes of percutaneous coronary interventions (PCI), 

including bare metal stents (BMS) and 1st and 2nd generations of drug-eluting stents (DES). 

Balloon angioplasty is now the first step in PCI, and involves catheterization in the 

coronary and expansion of a balloon that compresses the atherosclerotic plaque against the 

vascular wall. This immediately restores blood flow to the area of ischemia, but restenosis 

occurs in 50% of patients following balloon angioplasty.19 Restenosis is clinically defined 

as >50% vessel occlusion;19 due to the fourth power relation between tube diameter and 

conductance, this corresponds to a 94% reduction in flow rate. Endovascular surgeries 

cause localized trauma at the site of treatment and can lead to vessel wall spasm or 

thrombosis,27 and the vessel wall elastically recoils following balloon angioplasty.36 

 

To combat elastic recoil, bare metal stents were introduced in the late 1980s19, and stenting 

is now practiced in 90% of PCI surgeries.27 BMS improved restenosis rates to 20-30%19 at 

6-12 months27, but restenosis occurs due to a different pathology: intimal hyperplasia. 

Endothelial denudation and exposure of vSMCs due shear stress from blood flow causes 

SMCs to migrate to the intima, proliferate, and take on a synthetic phenotype similarly 

seen in atherosclerosis.19,27,36 Additionally, stenting requires exogenous administration of 

anti-thrombogenic and anti-platelets pharmaceuticals to address the presence of 

thrombogenic material exposed to the bloodstream.13 
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As an improvement to bare metal stents, manufacturers began coating stents in anti-

proliferative drugs, such as Sirolimus and Paclitaxel, to combat in-stent restenosis.13,19 

These stents improved restenosis rates to 5-15%19, but anti-proliferative therapies also slow 

healing of the endothelium, which is necessary to permanently halt SMC proliferation, and 

after the drug is fully released, DES resemble BMS and a “late catch-up phenomenon”19 is 

observed more than a year after initial revascularization. 

 

1.2.4 Vascular Replacement 

Synthetic grafts composed of hydrophobic polymers, such as poly (ethylene-terephthalate) 

(PET) and expanded polytetrafluoroethylene (ePTFE), affixed with metallic struts to resist 

kinking have largely been successful in large-diameter (>8 mm inner diameter) vascular 

grafting.8 Although these materials are not entirely non-thrombogenic, the shear forces in 

large-diameter arteries, such as the ascending and abdominal aorta, iliac, and femoral 

arteries, are great enough to inhibit thromboembolism formation; these grafts boast 90% 

patency rates 5 years after surgery.8 However, patency rates are as low as 39% at 5 years 

for the same materials in small-diameter vessels (<6 mm inner diameter), such as the 

coronary artery and arteries below the knee, compared to 74% in autografts.8 In addition 

to insufficient blood flow to overcome graft thrombogenicity, compliance mismatch 

between the graft and the native artery and flow disturbances contribute to intimal 

hyperplasia at the distal end of the graft.36 5-year patency rates are similar between 

synthetic and autologous grafts for medium-caliber arteries (6-8 mm inner diameter).8 
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The first successful attempt at vascular intervention was the use of an autologous 

saphenous vein graft for a femoropopliteal bypass in 1948.36 Autologous vessel grafting is 

now considered the gold standard in vascular intervention.8,36 The saphenous vein is the 

most commonly used autograft due to length and ease of access36, and the internal 

mammary and radial arteries are also commonly used.8 The saphenous vein, however, is 

considered an inferior choice, and has a 10-year patency rate of 50% due to the mechanical 

mismatch of a new high-flow environment that leads to aneurysm, intimal hyperplasia, and 

atherosclerosis in the graft.36 Internal mammary arteries, on the other hand, have 10-year 

patency rates greater than 90%. Unfortunately, one-third of patients lack sufficient donor 

grafts due donor site morbidity, prior vessel harvesting, or anatomical suitability.8 

 

1.2.5 The Need for a Tissue Engineered Vascular Graft 

Due to high rates of revision surgeries, insufficient long term patency, inadequate 

performance of synthetic grafts, and insufficient access to donor grafts, there is a need for 

an alternative solution for revascularization surgeries. With advances in material science 

and cell biology, tissue engineering has shown great promise to meet this need. The goal 

of developing a tissue engineered vascular graft is to mimic the properties and geometry of 

the native vessel being replaced. Ideally, such a graft would match mechanical strength and 

compliance, be non-toxic and non-immunogenic, be non-thrombogenic, be easy to handle 

and suture, have reasonable costs and batch consistency in manufacturing, and totally 

integrate with the host tissue, including the ability to grow when implanted in pediatric 

patients.8,27,36 
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1.3 Impact of Diabetes Mellitus in Cardiovascular Disease 

1.3.1 Characterization of Diabetes Mellitus 

Diabetes mellitus (DM) is a chronic metabolic disease characterized by dysregulation of 

blood glucose levels.29 DM generally falls into three categories. In type I diabetes, 

previously known as juvenile-onset diabetes because peak diagnosis age occurs in the mid-

teens, is the result of autoimmune attack on the β cells of the pancreatic islets, which are 

responsible for insulin secretion. This leads to the inability to mediate hyperglycemia, and 

thus patient survival requires regimented exogenous administration of insulin. Type I DM 

is the most severe form of diabetes and accounts for about 5% of diagnosed cases of 

diabetes.28 Type II DM, formerly known as adult-onset diabetes due to the later onset than 

type I DM, is typically brought on by progressive insulin resistance, insufficient production 

of insulin by the pancreatic islets, or both and represents 90 to 95% of diabetes cases.28 

Gestational diabetes is a form of glucose intolerance reported in 5 to 10% of pregnant 

women often diagnosed in the second or third trimester. Gestational diabetes has similar 

risk factors to those of type II DM, and can itself be a risk factor for gestational diabetes in 

future pregnancies or the development of type II diabetes.28 

 

Diagnosis of diabetes is based on four criteria: 1) fasting plasma glucose ≥126 mg/dL, 2) 

random plasma glucose ≥200 mg/dL in patients experiencing classic hyperglycemic signs, 

3) plasma glucose ≥200 mg/dL following an oral dose of 75 g glucose (oral glucose 

tolerance test, OGTT), and 4) glycated hemoglobin (HbA1C) ≥6.5%.23 The first, third, and 
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fourth tests are repeated to confirm diagnosis. Patients who do not exhibit outright diabetes 

can be identified as prediabetic, or having impaired glucose tolerance. The criteria for 

prediabetes are 1) fasting glucose between 100 and 125 mg/dL, 2) plasma glucose between 

140 and 199 mg/mL 2 hours after an OGTT, and 3) HbA1C between 5.7% and 6.4%.23 

 

1.3.2 Incidence and Impact of Diabetes Mellitus 

In 2014, 29.1 million people of all ages in the United States had diabetes, accounting for 

9.3% of the population.28 This includes 8.1 million people with undiagnosed diabetes. A 

further 86 million Americans aged 20 years or older may have prediabetes.28 There are 387 

million people ages 20 to 79 worldwide are estimated to have diabetes in 2014, at 8.3% of 

the world population.17 This epidemic is expected to grow to 582 million (10% of the world 

population) by 2030.17 Diabetes caused 245 billion USD in direct and indirect costs in the 

United States in 201228, and 612 billion USD worldwide in 2014.17 

 

DM is one of the major risk factors for the development of cardiovascular diseases (CVD) 

and stroke. Patients with diabetes are at a 2- to 4- fold greater risk for developing coronary 

artery disease (CAD)27 and a 100-fold greater risk for developing peripheral 

atherosclerosis-induced gangrene, which requires amputation.23 While 8.5% of adults in 

the U.S. in 2012 had diagnosed DM,2 DM patients represented 27 and 30% of patients 

undergoing surgical repair for CAD and peripheral vascular disease (PVD), respectively.27 

Cardiovascular diseases include microangiopathies, particularly nephropathy, retinopathy, 

neuropathy, and impaired wound healing, and macroangiopathies, such as coronary artery 
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disease, cerebrovascular disease, and peripheral vascular disease.30 The pathogenesis of 

CVD in diabetic patients is complex and not yet fully understood, but four distinct 

mechanisms or pathways have been implicated: advanced glycation endproduct formation, 

oxidative stress and alteration of the polyol pathway, activation of protein kinase C, and 

increased hexosamine pathway activity.18,23,29 

 

1.3.3 Biochemical Mechanisms of Hyperglycemic Damage 

1.3.3.1 Advanced Glycation Endproduct Formation 

Advanced glycation endproducts (AGEs) are a heterogeneous group of molecules formed 

by non-enzymatic reaction between reducing sugars and amino acids.29 AGEs accumulate 

naturally during aging, but this process is accelerated in diabetic patients. Glycation occurs 

via the Maillard reaction, which begins with the spontaneous formation of a Schiff base 

between the carbonyl groups of glucose or other reducing sugars and a free amino acid.39 

The Schiff base can rearrange to form an Amadori product or fragment as a result of 

glycoxidation to form reactive intermediates, such as glyoxal (GO), methylglyoxal (MGO), 

or 3-deoxyglucosone.39 These reactive dicarbonyl precursors can also be produced by other 

glycolytic pathways or during lipid peroxidation. Amadori products finally undergo further 

structural changes via oxidation and degradation to irreversibly form AGEs39, and 

dicarbonyl precursors can form AGEs directly.23 AGE precursors not only alter 

intracellular proteins, but easily diffuse across the cell membrane, where they can modify 

extracellular matrix proteins and circulating blood proteins.39 The glycation of biological 

molecules by glucose and other sugars alters their function, leading to a wide array of 
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consequences. 

 

 

Figure 1.3: The Maillard Reaction leads to the formation of AGE production first by reversible 

interaction between the carbonyl group of a reducing sugar with amino groups of proteins to form 

a Schiff base. This is followed by glycoxidation of the sugar side chain to form a dicarbonyl or 

further rearrangement to form an Amadori product. Amadori products can undergo irreversible 

oxidation, dehydration, or degradation to form an AGE. Dicarbonyls can form AGEs directly. [30] 

 

First, glycation of intracellular proteins leads to increased proteosomal degradation, altered 

cell signaling, and altered gene expression, all of which can lead to aberrant cell function 

or cell death. AGEs can directly cross-link ECM proteins23, especially collagens.39 Cross-

linking of collagens type I and type IV in the vascular bed causes a decrease in vessel 

elasticity, thereby increasing wall shear stress, and decreasing endothelial cells adhesion to 
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the basement membrane, respectively, and thus contributes to endothelial dysfunction.40 

Further, ECM protein cross-linking increases proteolytic degradation and impairs matrix-

cell signaling.23,39 Finally, glycated circulating blood proteins induce pro-inflammatory 

signaling and oxidative stress via interaction with receptors for AGEs (RAGE) expressed 

by endothelial cells, vascular smooth muscle cells, and inflammatory cells (macrophages 

and T lymphocytes).23,39 

 

The AGE-RAGE signaling axis results in a variety of effects. Most of these effects are 

thought to occur via NAPDH oxidase (NOX) -dependent activation of NF-κB, leads to an 

inflammatory response.23 Endothelial activation from AGE-RAGE signaling includes 

increased expression of adhesion molecules (selectins, VCAM-1, ICAM-1), which allows 

for increased recruitment of leukocytes and monocytes, and increased expression of 

endothelin-1 and decreased eNOS, causing increased vasoconstriction and impaired 

vasodilation, respectively, that contributes to hypertension.4,29 Signaling from glycated 

LDL and albumin stimulates expression of inflammatory cytokines (TNF-α, IL-1, IL-6) 

that increase activation of pro-inflammatory cells, MMPS-1, -2, -3, and -13, and 

chemokines that increase inflammatory cell recruitment.29 Further, RAGE is upregulated 

in the cells of DM, thus further accelerating the damaging effects of AGE formation.21 This 

milieu of events lead to increased inflammatory cell recruitment, extravasation to the 

vascular bed, uptake of glycated and glycoxidized LDLs, which have significantly 

increased levels in diabetic patients, via scavenger receptors, foam cell formation, and 

growth of fatty streaks.18,29 These factors contribute to the accelerated atherogenesis seen 
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in diabetic patients. 

 

Figure 1.4: The AGE-RAGE signaling axis induces an oxidative stress and pro-inflammatory environment 

which contributes to accelerated atherogenesis in diabetic patients [30] 

 

1.3.3.2 Oxidative Stress and the Polyol Pathway 

Oxidative stress in DM is induced by concomitant increased production of reactive oxygen 

species (ROS) and decreased activity of molecular antioxidants in concert with increased 

blood glucose. The most damaging effects of diabetic oxidative stress are seen in cells that 

are unable to regulate intracellular glucose levels and generate high levels of ROS during 

hyperglycemia, especially endothelial cells, mesangial cells of the kidney, neurons and 

neuroglia, and pancreatic β cells.29 ROS are produced as normal byproducts of cellular 
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metabolism by the mitochondrial respiratory chain and various oxidative enzymes by cells 

of the innate immune system as a defense against pathogens. Although the production of 

ROS is a natural process, their presence can lead to pathologic effects if unchecked. These 

include lipid peroxidation, leading to membrane degradation, protein modifications that 

lead to misfolding or impaired function and increased proteosomal breakdown, and single- 

and double-stranded breaks in DNA, which can result in mutations.23 These effects are 

collectively referred to as oxidative stress. To combat these effects, cells have numerous 

mechanisms to scavenge free radicals. These include antioxidant molecules that block free 

radical formation or scavenge free radicals, such as retinol, β-carotene, tocopherols, 

ascorbic acid, and glutathione, and scavenger enzymes, including superoxide dismutase, 

catalase, and glutathione peroxidase.23 Should an imbalance between ROS production and 

scavenging activity arise, oxidative stress ensues. 

 

During DM, excess glucose oxidized in the tricarboxylic acid cycle increases the amount 

of electron donors pushed through the electron transport chain of the mitochondrial 

membrane.4,29 This results in a “back-up” in electron transfer and subsequent donation of 

electrons to molecular oxygen and the formation of superoxide (O2°
-), a potent ROS 

normally degraded to peroxide by superoxide dismutases (SOD).23 Further, aldose 

reductase, an enzyme which has the normal function of reducing aldehydes to less toxic 

alcohols, metabolizes excess intracellular glucose to sorbitol, a polyol.23 This process 

requires consumption of NADPH, which is a critical cofactor for restoring reduced 

glutathione (GSH), a key intracellular antioxidant.10 These are keys examples of how DM 
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induces an imbalance between ROS production and scavenging.  

 

1.3.3.3 PKC Activation 

PKC activation due to increased intracellular glucose leads to a variety of altered signaling 

pathways, resulting in downregulation of endothelial nitric oxide synthase (eNOS), 

upregulation of endothelin-1, transforming growth factor β (TGF-β), and plasminogen 

activator inhibitor-1 (PAI-1), and activation of NF-κB and NADPH oxidase (NOX) by 

vascular endothelial growth factor (VEGF), among others.29 These lead to decreased 

vasodilation and hypertension (eNOS and endothelin-1, respectively), proinflammatory 

signaling (NF-κB), oxidative stress (NOX), increased recruitment of monocytes (VCAMs, 

ICAMs), and decreased fibrinolysis (PAI-1).4,29 This signaling cascade, leads to 

accelerated atherogenesis in diabetic patients, thus contributing to the increased rate of 

macroangiopathies in those patients. 

 

1.3.3.4 The Hexosamine Pathway 

In the first steps of glycolysis, glucose is converted to glucose-6-phosphate, and then into 

fructose-6-phosphate.24 From there, the glycolytic pathway can continue, or fructose-6-

phosphate can be diverted in the hexosamine signaling pathway, in which some fructose-

6-phosphate is enzymatically converted into N-acetylglucosamine, which participates in 

O-linked glycosylation of serine and threonine residues as a part of signal cascade 

propagation.4,29, In DM, excess glucosamine is produced and in particular, 

overmodification of the transcription factor Sp1 leads to upregulation of TGFβ-1 and PAI-
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1 expression.4,29 These exacerbate fibrosis in the vascular walls of diabetic patients. 

 

 

Figure 1.5: Summary of the effects of diabetes on atherogenesis [4] 

 

1.4 Strategies for Vascular Tissue Engineering 

In tissue engineering, there are two generalized approaches: top-down, in which a synthetic 

or biological material that acts as a template is seeded with cells that then reorganize 

themselves and the scaffold, and bottom-up, or self-assembly. The scaffold-based, top-

down approach to tissue engineering follows the schema of isolating cells from a patient, 
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expanding and possibly manipulating those cells in vitro, seeding those cells onto a 

scaffold, conditioning the scaffolds in a bioreactor, then implanting the new tissue 

engineered construct into the patient.36 

 

 

Figure 1.6: Scaffold-Based Approach to Tissue Engineering. [36] 

 

1.4.1 Decellularized Tissue as a Biological Scaffold 

The extracellular matrix (ECM) provides an ideal scaffold for tissue engineering.3 

Decellularized tissues maintain similar architecture, mechanical properties, and bioactivity 

to native tissues. This allows for cell in-growth, matched tissue compliance, and proper 

cell signaling, respectively.32 Further, the use of fully decellularized xenogeneic tissue 

takes advantage of the readily-available source of tissues from slaughtered animals while 
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providing a scaffold that is composed of only extracellular matrix proteins, which are 

highly conserved in evolution, and thus do not elicit and immune response.32 There is 

however, a careful balance to be achieved when using decellularized tissues as scaffolds: 

complete removal of immunogenic antigens and integrity of the ECM.3,32,36 

 

There are a variety of techniques to decellularize tissues. These techniques vary based on 

the decellularization agents employed, physical methods of decellularization, and the 

manner in which the decellularization agents are applied.10 Decellularization agents include 

hypertonic and hypotonic solutions, acid and bases, detergents, enzymes, and chelating 

agents.10 Physical parameters include temperature, force (such as agitation or sonication), 

pressure and pressure gradients across the tissue, electric current and electroporation, 

perfusion of tissues, and use of supercritical fluids.10 Decellularization techniques used in 

this project will be reviewed. 

 

Water is the most readily available method for inducing hypotonic shock in cells. The lack 

of salts outside of the cell causes a massive influx of water into the cell due to osmotic 

imbalance, causing cells to lyse. However, this technique poorly removes cell debris after 

lysis.10 Acidic and basic solutions increase solubility of cell cytoplasmic components, as 

well as aid in denaturation of proteins and degradation of nucleic acids; however acids and 

bases similarly catalyze the degradation of collagen and collagen crosslinks and 

glycosaminoglycans in the extracellular matrix.10 This leads to poorer mechanical strength 

in tissues decellularized by strong bases.10 Peracetic acid acts with a dual mechanism of 
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decellularization by removal of residual nucleic acids and sterilizing the decellularized 

tissue.10 

 

1.4.2 Polyphenol Stabilization of Decellularized Tissue Scaffolds 

Pentagalloyl glucose (PGG) is a polyphenol comprised of a central glucose moiety linked 

to five gallic acid units (Figure 1.7).9,44 PGG has been shown to exhibit a variety of 

beneficial effects. First, PGG has a high affinity for proline-rich proteins, and PGG-bound 

elastin and collagen have been shown to resist enzymatic degradation.14,38 PGG is an 

antioxidant and can act as a free radical sink.1 PGG has also been shown to be anti-

inflammatory by inhibiting cytokines such as TNFα and IL-6, possibly through inactivation 

of the transcription factor NFκB.44 

 

 

Figure 1.7: Steric Configurations and 3D structure of Pentagalloyl Glucose. [44] 
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Previously, PGG has been shown to mitigate the effects of diabetic damage on 

decellularized arterial and valvular scaffolds by reducing the accumulation of AGEs, 

reducing matrix calcification, and decreased inflammatory response of PGG-treated 

scaffolds when implanted in streptozotocin-induced type I diabetic rats compared to normal 

rats.9 

 

1.4.3 Cell Sources for Tissue Engineered Vascular Grafts 

Cells of the native vasculature consist of endothelial cells, smooth muscle cells, and 

fibroblasts. Efforts to seed decellularized grafts are centered on reconstituting these cell 

populations. While useful for research purposes, there are many drawbacks to using 

autologous primary vascular cells. Above all, isolation requires blood vessel biopsy, which 

adds additional complication, time, and possibly lack of availability in patients requiring 

revascularization surgery.32 As an alternative to vascular cells, progenitor, adult stem cells 

from bone marrow or adipose, embryonic stem cells, or induced pluripotent stem cells are 

all under exploration.32 

 

Of particular interest are adipose-derived stem cells (ADSCs), a multipotent cell population 

capable of differentiating into a variety of cell types, including each of the cell types in the 

blood vessel wall.6,12 Compared to other sources of adult stem cells, ADSCs are easily 

isolated in large quantities with minimally invasive biopsy.6 ADSCs and other 

mesenchymal stem cells (MSCs) have garnered attention for their immunomodulatory 
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phenotype.16 ADSCs and MSCs are able to suppress inflammation in part by suppressing 

activation and proliferation of immune cells.23 

 

1.4.4 Mechanical Conditioning 

One of the weaknesses of modern cell biology is the reliance on static cell culture on tissue 

culture plastic. While is provides a convenient way to expand and study cells, it is a wholly 

unrealistic method for replicating in vivo processes. To greater increase understanding of 

basic cell biology, and to bridge the gap between the bench and the bedside, improved cell 

culture techniques are needed, and bioreactors offer a method to do so. 

 

Native vasculature experiences circumferential stretch from blood pulsation and shear 

stresses from blood flow. It has been shown that those forces effect smooth muscle cell and 

endothelial cell biology, as well as the differentiation of adipose-derived stem cells toward 

those lineages.15,17 Further, bioreactors provide a method for even seeding of scaffolds, 

increase tissue oxygenation, and remove waste from cells more readily. 
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CHAPTER TWO: PROJECT MOTIVATION, SPECIFIC AIMS, AND 

SIGNIFICANCE 

 

Current therapeutic approaches for treatment of small-diameter vascular diseases, such as 

PCI and CABG, offer significant improvements in patient health and lifespan, but require 

continuous anti-coagulation therapies and present the risk of subsequent risk of restenosis 

or other cardiovascular events, particularly in diabetic patients. Tissue engineering 

promises to address these needs, but most approaches fail to address the most common co-

morbidities and pathologies in the patients in need of those technologies. To address both 

of these needs, a tissue engineered vascular graft is being developed that can withstand 

damage in a diabetic environment. 

 

The overall goal of this project is 1) assess the effect of hyperglycemia on adipose-derived 

stem cells differentiated toward an endothelial phenotype by measuring metabolic and 

inflammatory markers for diabetes and 2) perform a feasibility study for the conditioning 

of cell-seeded decellularized porcine renal arteries in a vascular bioreactor. In the long 

term, these seeded scaffolds will be implanted in situ in the abdominal aorta of healthy and 

diabetic rats, and this project will contribute to the in vitro develop of the grafts. 

 

Aim I: To develop a decellularized and polyphenol-stabilized porcine renal artery scaffold 

 

Porcine renal artery segments were isolated by dissection of kidneys sourced from a local 

abattoir, decellularized using a previously validated protocol13, then treated with 
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pentagalloyl glucose, a polyphenol previously shown to increase scaffold resistance to 

diabetic conditions9. Efficacy of decellularization was assessed by histological analysis and 

DNA content. 

 

Aim II: To assess the in vitro resistance of endothelial-differentiated adipose derived stem 

cells to diabetic conditions 

 

Human Adipose-Derived Stem Cells (hADSC) were differentiated for three weeks in an 

endothelial differentiation medium. hADSC and Human Aortic Endothelial Cells (hAEC) 

were cultured for one week in normal or high glucose media. Differentiation of hADSC 

was assessed by immunofluorescence, and protein expression of diabetic markers was 

assessed by Western Blot and Cytokine Array. 

 

Aim III: To reseed decellularized scaffolds, condition in a vascular bioreactor, and assess 

resistance to diabetic conditions 

 

Decellularized arterial scaffolds were dynamically seeded in a vascular seeding chamber 

or statically-seeded by pipetting with hAEC on the luminal surface and Human Aortic 

Adventitial Fibroblasts (hAAFb) on the adventitial surface, then conditioned in a vascular 

bioreactor in normal or high glucose media for four weeks. Cellularity of the TEVG was 

assessed by Live/Dead Cell Viability Assay and Scanning Electron Microscopy. 
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CHAPTER THREE: PREPARATION AND CHARACTERIZATION OF 

DECELLULARIZED AND PENTAGALLOYL GLUCOSE-STABILIZED 

PORCINE RENAL ARTERY SCAFFOLDS 

 

3.1 Approach and Rationale: 

Decellularized xenogeneic tissues offer a readily available source of highly biocompatible 

and bioactive scaffolds that match the native architecture, biochemistry, and mechanical 

properties as native arteries. Porcine renal arteries have previously been demonstrated to 

provide a consistent source of small diameter arteries that could be re-seeded and 

implantation in situ in rat abdominal aortas for in vivo testing of a TEVG14. That 

decellularization technique was replicated, and this chapter shows that technique and the 

verification done on every round of scaffold preparation to demonstrate complete 

decellularization. 

 

3.2 Materials and Methods: 

3.2.1 Scaffold Preparation 

Kidneys were collected from a local abbatoir (Snow Creek Meat Processing, Seneca, SC) 

and transported on ice until further processing. Excess adipose tissue was trimmed off and 

the renal artery of each kidney was identified. The arteries were clamped and adherent 

extravascular tissue was removed by blunt dissection until the tertiary branches of the renal 

artery were exposed. The arteries were then cut to select pieces that were 1-3 mm inner 

diameter, ≥1.5 cm in length, and free of holes or small branching arteries or arterioles. At 

this stage, some fresh artery pieces were collected and transferred to 10% phosphate-
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buffered formalin (Fisher Scientific) for histological analysis or frozen and stored at -80°C 

to await digestion and isolation of DNA. 

 

 
 
Figure 3.1: Dissection Process for Porcine Kidneys. Extrarenal connective tissue (A) was first removed. 

The primary renal artery is isolated (B), then non-vascular tissue is removed. This is done by grasping 

extravascular tissue, which is loosely attached to the artery adventitia, and pulling it away from the artery. 

Large pieces of extravascular tissue, kidney tissue, and adipose tissue are trimmed with scissors. Once renal 

artery branches too small for use (those with an inner diameter <1 mm or length <1 cm) are exposed, the 

entire hierarchical structure is trimmed off. Individual portions are measured to select for the most optimal 

scaffold pieces (C), those with inner diameter 1-2 mm and length >1.5 cm, and then cut away from the rest 

of the branches. 
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3.2.2 Decellularization of Porcine Renal Arteries 

The selected fresh arteries were then immersed in distilled and deionized water (ddH2O) 

overnight at 4°C. This and al subsequent steps were performed at a ratio of 3 arteries per 

100 mL of solution. Following overnight immersion in hypotonic solution, the artery pieces 

were transferred to 0.1 M NaOH (sodium hydroxide, Fisher Scientific) solution in ddH2O 

and agitated on a shake plate at 37°C for 3 hours. The arteries were washed for 30 min each 

in several changes of ddH2O at room temperature while shaking until the decanted wash 

solution reached pH<8. The arteries washed once with phosphate-buffered saline solution 

(PBS, Corning), then immersed in fresh PBS and stored again overnight at 4°C. 

 

3.2.3 Sterilization and Stabilization of Decellularized Arteries: 

Following overnight storage, the arteries were transferred to sterile containers and 

immersed in 0.22 μm-filtered 0.1 M peracetic acid (Sigma Aldrich) in PBS, pH =7.4, and 

shaken at room temperature for 2 hours in the dark. The arteries were then rinsed in 3 

changes of sterile PBS for 30 min each. 

 

The arteries were then washed in 0.22 μm-filtered 1M PGG (N.V. Ajinomoto OmniChem 

S.A.), 50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, Fisher 

Scientific), 8 mM sodium chloride (Fisher Scientific), 20% isopropanol (Acros Organics), 

in ddH2O, pH=5.5, shaking, overnight at room temperature in the dark. The arteries were 

then rinsed, shaking, in three changes of PBS for 15 min each, one change for 2 hours, then 
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three changes for 15 min each. The arteries were then stored in sterile PBS with 1% 

Pen/Strep (10,000 IU/mL Penicillin, 10,000 μg/mL Streptomycin, Mediatech, Inc.) at 4°C 

for up to two months. 

 

3.2.4 Histological Analysis  

Upon completion of decellularization, arteries were immersed in 10% phosphate-buffered 

formalin at a ratio of greater than 100 mL formalin per cm3 of tissue for 24 to 48 hours. 

Next, fresh and decellularized arteries were paraffin-embedded with a Tissue-Tek VIP 

Tissue Processor (Sakura Finetek USA, Inc.). Samples were embedded in paraffin blocks, 

cut into 5 μm-thickness sections, fixed onto histology slides (Premiere) and heated at 56°C 

overnight to fix the artery sections to the slides. 

 

Slides were de-paraffinized in xylenes (Fisher Scientific), dehydrated in progressive 

alcohols, and hydrated to distilled water, then stained with 1) 4',6-diamidino-2-

phenylindole (VectaShield Hard Set Mounting Medium with DAPI, Vector Labs, Inc.) for 

the presence of nuclei (figure), 2) hematoxylin and eosin for nuclei and extracellular matrix 

structure, or 3) Masson’s Trichrome (Poly Scientific R&D Corp) for collagen, muscle, and 

nuclei. 

 

3.2.5 Quantitative and Qualitative Assessment of DNA Content 

To assess DNA content, fresh and decellularized arteries were first frozen and stored at -

80°C, then lyophilized at -40°C and 0.01 mbar for 24 hours. Samples were weighed to 
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establish dry weight for DNA concentration comparison and to assure samples were <25 

mg. DNA was isolated using a DNeasy Blood and Tissue® Kit (Qiagen) following the 

manufacturer’s instructions for animal tissue extraction. DNA concentration was assessed 

by Quant-iT PicoGreen® dsDNA Assay Kit (Invitrogen) following the manufacturer’s 

instructions. Samples and standards were assayed in triplicate. 

 

A 1% agarose (BM Biomedicals, LLC) gel was prepared in 0.5X TBE Buffer (90 mM 

Tris(hydroxymethyl)aminomethane, EMD Chemicals, 90 mM Boric Acid, Fisher 

Scientific, and 1.6 mM Ethylenediaminetetracetic acid (EDTA), Sigma Aldrich, in ddH2O, 

pH=8.3 ), microwaved until the agarose melted, then 1.3 μm Ethidium Bromide (Bio-Rad 

Laboratories) was added when the gel solution cooled to <60°C. The gel was poured into 

a Gel Caster (Bio-Rad Laboratories) with a 20-well comb for 30 min. Sample and blank 

(nuclease-free water, Acros Organics) dilutions were prepared in a 1:5 dilution in 6X 

Blue/Orange Loading Dye (Promega)  and DNA standard (100 μg/mL 1kb DNA ladder, 

Promega) was prepared in a 1:6 dilution in loading dye. 20 μL ladder, blank, or sample 

were loaded per well. The gel was immersed in 1X TBE Buffer and run at 100V and 3 mA 

for 75 min. The gel was imaged in a ChemiDoc XRS+ Gel Imager (Bio-Rad Laboratories) 

according to the manufacturer’s instructions. 

 

3.3 Results and Discussion 

3.3.1 Gross Analysis 
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Color change in the scaffolds was notable between fresh and decellularized arteries. 

Immediately after dissection, arteries appeared a light red, but not quite pink. Following 

overnight immersion in water, the arteries were mostly white with a pink tinge. Following 

NaOH treatment, the arteries appeared pale white with a yellow tinge and are slightly 

translucent. Following peracetic acid treatment, the arteries appeared pale, opaque white. 

 

3.3.2 Histological Analysis 

Adequate decellularization of porcine renal arteries was first assessed by the absence of 

cells or cell nuclei and by the preservation of extracellular matrix proteins and morphology. 

DAPI binds strongly to nucleic acids, and thus can be used to visualize nuclei location and 

shape. It is often used as a counterstain against other fluorescent staining techniques. In 

this context, it provides a quick and simple method for visually detecting the presence of 

nuclei and their location. The use of this technique becomes particularly useful when 

examining tissues that appear decellularized by gross analysis, but histology or DNA 

extraction show that decellularization was not complete. In such tissues, nuclei may appear 

diffuse, indicating cells and nuclei have lysed but not adequately removed, or may only 

appear in the middle of a layer of tissue, indicating that decellularization agents 

insufficiently penetrated the tissue. Staining was compared against freshly dissected 

arteries that were rinsed lightly in PBS to remove adhering clots, then immediately fixed 

in formalin, then paraffin-embedded following 24 hours. 
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Figure 3.2: DAPI staining of fresh and decellularized arteries. Fresh arteries show abundant cellularity 

in the intimal, medial, and adventitial layers of the arteries (A and B). Decellularized arteries show a total 

lack of cellularity in all three layers. (C and D). Images were acquired under a blue filter (A and C). To show 

placement of cells with respect to tissue structure, bright light was added in addition to a blue filter (B and 

D). All images taken at 200X magnification. 

 

Histological analysis indicates full removal of cells in the decellularized arteries. DAPI 

staining (figure) demonstrates a total lack of cells in any layer of the tissue. In fact, it is not 

possible to see any tissue on the slide without white light (figure). Hematoxylin and Eosin 

staining demonstrate that 1) cells were removed and 2) the architecture of the extracellular 

matrix remained intact, as evidenced by the “holes” in which cells would have resided. 
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Figure 3.3: H&E and Masson’s Trichrome staining of fresh and decellularized tissue. Hematoxylin is a 

dark blue to violet basic stain that binds to negatively charged structures, such as nucleic acids, and eosin is 

a pink to red acidic stain that binds to positively charged structures, such as proteins. The more concentrated 

the protein concentration, the stronger eosin staining appears, and thus ECM proteins in isolation appear light 

pink and intact cells appear darker pink to red. Masson’s Trichrome is a three-colored stain that stains 

collagen blue, muscle red, and nuclei dark red to black. Fresh arteries (A and B) demonstrate intact 

endothelium, densely populated medial layers, and loose, collagen-heavy adventitia. Decellularized arteries 

show a lack of stained nuclei and white spaces where cell have been removed (C) and show removal of 

smooth muscle cells from all layers of the tunica media (D). Additionally, decellularized arteries demonstrate 

retention of the ultrastructure of the tissue. A, B, and C were taken at 200X magnification. D was imaged at 

100X magnification. 
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3.3.3 DNA Content 

Analysis of DNA content indicates sufficient removal of immunogenic cellular material. 

DNA content has become established in the use of decellularized organs as scaffolds for 

tissue engineering, as DNA itself is highly immunogenic and it can also serve as a proxy 

for the presence of other potentially immunogenic materials in the ECM (Badylak, 2011). 

Generally, a tissue can be considered to be non-immunogenic if the decellularized organ 

meets the following criteria: 1) contains less than 50 ng of DNA per mg of tissue (dry 

weight), 2) any residual DNA is less than 300 base pairs in length, and 3) lack visible 

nuclear material by conventional histological analysis, namely DAPI and hematoxylin and 

eosin (Badylak, 2011). In these scaffolds, a 94.3% reduction of DNA concentration was 

achieved, and the concentration was significantly level less than the threshold level of 50 

ng DNA/mg tissue dry weight. Further, gel electrophoresis with ethidium bromide staining 

failed to show any visible sign of DNA content in the decellularized tissue. 
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Figure 3.4: Quantification of DNA isolated from fresh and decellularized arteries. The concentration of 

DNA isolate from fresh and decellularized arteries was determined by Picogreen® Assay. The total mass of 

DNA in each sample was calculated from the assayed concentration and compared to the dry weight after 

lyophilization of the sample tissue. 

 

 

Figure 3.5: Agarose gel electrophoresis on DNA isolated from fresh and decellularized arteries. Lane 
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1 is a Promega 1 kb DNA Ladder. Lane 2 is a blank. Lanes 3-10 are DNA isolated from fresh porcine renal 

artery branches. Lanes 11 through 18 are DNA isolated from decellularized porcine renal arteries. The 

molecular weight guide is measured against the ladder and is units of base pairs. 

 

3.5 Conclusions: 

Previous use of this technique showed by immunostaining that α-galactosidase, a powerful 

porcine immunogen, was removed upon decellularization, subsequent cytocompatibility 

testing demonstrated safety of these grafts14]. Removal of cells was demonstrated in 

tandem by histological analysis that showed a total lack of cells and by 94.3% reduction in 

DNA content of the scaffolds. Taken with previous validation studies, these arteries should 

not elicit an immune response in in vitro re-seeding experiments (Chapter 5) or in animal 

model testing. 
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CHAPTER FOUR: ASSESSING DIFFERENTIATION AND IN VITRO 

DIABETES RESISTANCE OF ADIPOSE-DERIVED STEM CELL-DERIVED 

ENDOTHELIAL CELLS 

 

4.1 Approach and Rationale: 

Arguably the most important cell for generating a tissue engineered vascular graft because 

a confluent layer of endothelial cells is currently the only known truly non-thrombogenic 

surface.8 However, endothelial cells are particularly prone to diabetic complications 

because of their inability to control intracellular glucose flux during hyperglycemia30 and 

thus will likely be prone to contribute to failure of a TEVG if implanted in a diabetic 

patient. To control inflammation and modulate the immune response, adipose derived stem 

cells differentiated toward and endothelial fate offer a promising choice. To assess the 

resistance of differentiated ADSCs to diabetic conditions, ADSCs will be differentiated, 

then cultured in normal or high glucose media. Markers for endothelial differentiation, 

metabolic pathway markers (mTOR and PPARγ), oxidative stress (NOX1), and 

inflammation (NFκB, TNFα, IFNγ, and IL12) were analyzed to determine the diabetes 

resistance potential of differentiated ADSCs compared to endothelial cells. 

 

4.2 Materials and Methods: 

4.2.1 hADSC and hAEC Culture 

Human adipose-derived stem cells (hADSC p3, Invitrogen) were plated at 5,000 cells/cm2 

in MesenPRO RSTM Medium (Life Technologies) and cultured at 37°C and 5% CO2. 
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MesenPRO RSTM Medium was prepared from MesenPRO RSTM Basal Medium (Life 

Technologies) with 2% MesenPRO RSTM Growth Supplement (Life Technologies), 2 mM 

L-glutamine (Life Technologies), and 1% Pen/Strep. Media was changed 24 hours 

following plating and every 48 hours subsequently. hADSCs were subcultured at 80% sub-

confluence, approximately every 3 days. At passage 6, hADSCs were plated at 3,500 

cells/cm2 in endothelial differentiation medium and cultured for 21 days with media 

changes every 3 days. Endothelial differentiation medium was prepared as follows: 

Dulbecco’s Modified Eagle Medium (DMEM) with sodium pyruvate, L-glutamine, and 1 

g/L glucose (Corning) with 2% Fetal Bovine Serum (FBS, Atlanta Biologicals), 1% 

Pen/Strep, 0.5 ng/mL VEGF, and 20 ng/mL Insulin-like Growth Factor 1 IGF-1. 

 

Human Aortic Endothelial Cells (hAEC p4, Lonza) were plated at 5,000 cells/cm2 in 

Endothelial Growth Medium 2 (EGMTM-2, Lonza) and cultured at 37°C and 5% CO2. 

EGMTM-2 was prepared from Endothelial Basal Medium (EBMTM-2, Lonza) and EGMTM-

2 SingleQuots Kit (Lonza). Media was changed 24 hours following plating and hAEC were 

subcultured at 90% sub-confluence, approximately every 4 days. 

 

At passage 6, hADSC-derived endothelial cells (hADSC-EC) and hAEC were passaged 

and plated onto well plates in normal or high glucose media at 3,500 cells/cm2. Normal 

media was prepared from DMEM with 2% FBS and 1% Pen/Strep to yield 5.5 mM glucose 

and high glucose media was prepared from DMEM with 2% FBS, 1% Pen/Strep, and 4.5 
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g/L D-Glucose Monohydrate (EMD Chemicals) to yield 30 mM glucose. Cells were 

cultured for 1 week at 37°C with 5% CO2 and media was changed daily. 

 

4.2.2 Immunofluorescence 

To assess differentiation of adipose-derived stem cells to an endothelial cells, hADSC-EC 

were stained with markers for endothelial cells: CD31, Von Willebrand Factor (vWF), and 

VEGFR2. First, media was removed and cells were fixed in 4% paraformaldehyde in PBS, 

pH=6.9 for 20 min, permeabilized with 0.3% Triton X-100 (Alfa-Aesar) in PBS for 10 

min, then blocked with 5.0% Bovine Serum Albumin (BSA, Rockland, Inc.) and 0.5% 

Triton X-100 in PBS for 2 hours. Cells were incubated in primary antibody solution, diluted 

in diluted blocking solution (2.5% BSA, 0.25% Triton in PBS), overnight at 4°C slowly 

shaking: 10 μg/mL Rb Anti-CD31 IgG (Abcam ab28364), 20 μg/mL Rb Anti-vWF IgG 

(Abcam ab9378), or 1 μg/mL Rb Anti-VEGFR2 IgG (Abcam ab39638). Cells incubated in 

secondary antibody solution (4 μL/mL in diluted blocking solution, AlexaFluor 488 Do 

Anti-Rb IgG, Thermo Scientific) and counterstained for nuclei with 1.43 μM DAPI in PBS 

for 5 min at room temperature and in the dark. Cells were rinsed with PBS between each 

step. Cells were imaged using company. 

 

4.2.3 Assessment of Protein Expression - Western Blot and Cytokine Array Panel 

Cells were lysed by direct application of RIPA Buffer to the well plate and disruption with 

a cell scraper. RIPA Buffer was prepared from 50 mM Tris-HCl (EMD Chemicals), 150 

mM Sodium Chloride (Fisher Scientific), 1 mM EDTA (Sigma Aldrich), 1% Triton X-100 
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(Alfa Aesar), 1% Sodium Deoxycholate (Fisher Scientific), 0.1 Sodium Dodecyl Sulfate 

(Avantor Performance Materials), and 0.1% Protease Inhibitor Cocktail (Sigma Aldrich P-

8340) in ddH2O, pH=7.4. Cell lysates were centrifuged at 12,000 xG for 15 min at 4°C and 

the supernatant transferred and stored at -20°C until use. Protein concentrations were 

assessed by Bicinchoninic Acid Assay (BCA Assay, Thermo Scientific) according to the 

manufacturer’s directions using the plate method. Samples and standards were assayed in 

triplicate. 

 

4.2.3.1 Western Blot 

To prepare samples for electrophoresis, the volume of each sample necessary to yield 15 

μg/lane was calculated. Samples were diluted in 1X non-reducing buffer (company) with 

concentration β-Mercaptoethanol (β-ME, company) and boiled 5 minutes to denature the 

proteins. Electrophoresis and transfer were run for 90 min at 100V each. The membranes 

were blocked overnight at 4°C in 2% nonfat dry milk (NFDM, Bio-Rad Laboratories) in 

Tris buffer, then blotted overnight at 4°C with 2.00 μg/mL Rb anti-mTOR (Abcam 

ab51089), 1.00 μg/mL Mo anti-PPARγ (Abcam ab41928), 0.500 μg/mL Rb anti-NOX1 

(Abcam ab55831), or 0.621 μg/mL Rb anti-NFκB (Abcam ab32360) in diluted blocking 

solution. Primary antibody detection was achieved using a Mo/Rb secondary antibody and 

reagents from a BM Chemiluminescence Western Blotting Kit (Roche). The blots were 

imaged using a ChemiDoc XRS+ Gel Imager (Bio-Rad Laboratories) and analyzed by 

relative band intensity (densitometry) and molecular weight using the supplied software 

(ImageLab, Bio-Rad Laboratories). 
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4.2.3.2 Cytokine Array Panel 

The relative expression of the cytokines TNFα, IL12, and IFNγ were assessed using a 

Human Cytokine Panel Array A by R&D Systems (Bio-Techne) following the 

manufacturer’s directions with minor exceptions. Briefly, protein samples were obtained 

from cell lysates as described above. Four nitrocellulose membranes containing anti-

cytokine antibodies printed in duplicate were blocked for 1 hour at room temperature. 

Samples were diluted to 100 μg protein in 1.5 mL supplied buffer, mixed with 15 μL 

antibody cocktail, and incubated 1 hour at room temperature. The blocking buffer was 

aspirated and each membrane was incubated in sample-antibody solution overnight at 4°C. 

The membranes were washed with water and dried, then rinsed in wash buffer. The 

membranes were incubated in Streptavidin-HRP solution for 30 min at room temperature, 

washed in wash buffer, dried, and developed in Chemi Reagent Mix. The membranes were 

imaged the same as for Western Blotting. 

 

4.3 Results and Discussion 

4.3.1 Differentiation of Adipose Derived Stem Cells 

Differentiated hADSC showed positive immunofluorescence when stained with antibodies 

for CD31, VEGFR2, and vWF (Figure 4.1A, 4.1B, and 4.1C, respectively). The 

fluorescent brightness of differentiated hADSC was lower than that of hAEC stained for 

the same markers (Figure 4.1). Differentiated hADSC demonstrate a spindle-shaped 

A B C 
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morphology unchanged from undifferentiated hADSC, whereas endothelial cells display a 

round, flattened morphology. 

 

Figure 4.1: Immunofluorescent Staining of Differentiated hADSC and hAEC. Cells were stained for 

endothelial markers CD31 (A and D), VEGFR2 (B and E), and vWF (C and F). Images were taken at 200X 

magnification. 
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4.3.2 Analysis of Protein Expression 

Both hAEC and differentiated hADSC show a trend toward increased mTOR expression 

in diabetic conditions compared to normal. Similarly, hAEC and differentiated hADSC 

show a trend toward increased NFκB in diabetic versus normal conditions, but was much 

greater for endothelial cells. Additionally, blots for NOX1 and PPARγ did not yield 

identifiable bands (Figures A3 and A4). The experiment could not be performed again due 

to insufficient protein samples (see Table A1 for protein yields and use in experiments). 

 

Figure 4.2: Analysis of Protein Expression in Differentiated hADSC and hAEC in Normal or High 

Glucose by Western Blot. AN = hADSC in normal media; AD = hADSC in high glucose media (diabetic); 

EN = hAEC in normal media; ED = hAEC in diabetic media; ADSC had a higher baseline expression of 

mTOR over hAEC (3.3 v. 1.6 Relative Densitometry Units, RDU) and had a greater fold-increase in 

expression in diabetic conditions (2.6-fold greater v. 3.8-fold). ADSC had a greater baseline expression of 
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NFκB (4.6 v. 3.9 RDU), but had a smaller fold-increase in expression in diabetic conditions (1.4-fold v. 4.7-

fold). N=3, pooled, 15 μg protein per lane for all samples. 

 

Cytokine expression analysis yielded mixed results. Most of the markers on the panel 

yielded no expression in any of the samples. This may be due to insufficient protein levels 

(see Table A1) or insufficient exposure to high glucose conditions to cause an 

inflammatory response. The markers that did show expression are shown in Figure 4.3. 

CCL2, CXCL1, and CXCL10 are chemokines that recruit inflammatory cells, particularly 

neutrophils and macrophages, to the site of inflammation. These markers are by ADSCs in 

high glucose conditions, CCL2 is also expressed in normal conditions. CD40 and ICAM-

1 are a receptor for TNF and an adhesion molecule expressed on the cell surface for 

inflammatory cell attachment, respectively, and are expressed by differentiated ADSCs in 

high glucose. IL-18 and IL32α are activators of T cells and macrophages, respectively, and 

showed the greatest levels of expression in both differentiated ADSCs and hAECs in 

normal and high glucose. In differentiated ADSCs, the expression is increased in high 

glucose, but the trend is reversed in hAECs. Interleukins 4 and 10 are anti-inflammatory 

cytokines that promote M2 macrophage polarization and block the activation of NFκB, 

respectively. These are both expressed by differentiated ADSCs in both normal and high 

glucose conditions. 
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Figure 4.3: Analysis of Cytokine Expression in Differentiated sADSC and hAEC in Normal or High 

Glucose. CCL2 = Chemokine Ligand 2; CD40 = Tumor Necrosis Factor Receptor 5; CXCL1 = Chemokine 

Ligand 1; CXCL10 = Chemokine Ligand 10; ICAM-1 = Intracellular Adhesion Molecule 1; IL18 = 

Interleukin 18; IL32a = Interleukin 32a; IL4 = Interleukin 4; IL10 = Interleukin 10; N=3, pooled and 100 μg 

protein were used per membrane. 

 

4.4 Conclusions 

Endothelial-differentiated ADSCs showed differentiation toward an endothelial 

phenotype, but with some limitations. Immunofluorescence was weak in differentiated 

ADSCs, and cell morphology did not resemble endothelial cells. This confirms previous 

differentiation studies in ADSCs, which showed that full differentiation of ADSCs toward 

endothelium required shear conditioning in order for cells to uptake LDL or form tubules 

in hydrogels.15 ADSCs demonstrated a similar response in altered expression of metabolic 
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markers and certain inflammatory markers to endothelial cells, but showed strong 

resistance to NFκB upregulation in diabetic conditions. Promisingly, differentiated ADSCs 

showed expression of interleukins 4 and 10, which shows promise that even after 

differentiation, these cells can modulate the phenotype of immune cells. In all, 

differentiated ADSCs demonstrate similar or improved resistance to inflammation or 

metabolic distress, depending on the marker, to endothelial cells in high glucose conditions. 

Although this did not support the hypothesis that differentiated ADSCs could mitigate the 

inflammatory response induced by high glucose conditions, this does show that ADSCs 

are a viable alternative to endothelial cells in vascular tissue engineering. 
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CHAPTER FIVE: RECELLULARIZATION AND BIOREACTOR 

CONDITIONING TO ASSESS IN VITRO RESISTANCE OF TISSUE 

ENGINEERED VASCULAR GRAFTS TO HIGH GLUCOSE TO HIGH 

GLUCOSE CONDITIONS 

 

5.1 Approach and Rationale 

In addition to 2D culture, to assess the in vitro diabetes-resistance of differentiated ADSCs, 

cell need to be conditioned and tested in an environment that mimics the in vivo 

environment. Shear stress has been shown to alter endothelial cell phenotype8, and has been 

shown to be a requirement for full phenotypic differentiation of ADSCs15. This additional 

component should not only prepare TEVG for implantation, but should also provide data 

that corresponds more closely to eventual data from animal models. To accomplish this, a 

vascular bioreactor designed in the Biocompatibility and Tissue Regeneration Laboratory 

was used to condition the vessels. In addition, a vascular seeding chamber was used to 

dynamically seed cells onto decellularized and PGG-stabilized porcine renal artery 

scaffolds. 

 

5.2 Materials and Methods 

 5.2.1 hAEC and hAAFb Culture 

Human Aortic Endothelial Cells (hAEC p4, Lonza) were plated at 5,000 cells/cm2 in 

Endothelial Growth Medium 2 (EGMTM-2, Lonza) and cultured at 37°C and 5% CO2. 

EGMTM-2 was prepared from Endothelial Basal Medium (EBMTM-2, Lonza) and EGMTM-
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2 SingleQuot Kit (Lonza). Media was changed 24 hours following plating and hAEC were 

subcultured at 90% sub-confluence, approximately every 4 days. 

 

Human Aortic Adventitial Fibroblasts (hAAFb p2, Lonza) were plated at 3,500 cells/cm2 

in Stromal Cell Growth Medium (SCGMTM, Lonza) and cultured at 37°C and 5% CO2. 

SCGMTM was prepared from Stromal Cell Basal Medium (SCBMTM, Lonza) and SCGMTM 

SingleQuot Kit (Lonza). Media was changed 24 hours following plating and hAAFb were 

subcultured at 80% sub-confluence, approximately every 4 days. 

 

5.2.2 Dynamic Seeding of Decellularized Arterial Scaffolds 

To neutralize any remaining PGG resident in the decellularized and PGG-stabilized 

scaffolds, scaffolds were immersed in a neutralizing solution of 50% DMEM and 50% FBS 

and incubated for 24 hours at 37°C. Scaffolds were then rinsed once with PBS. Arterial 

scaffolds were then cannulated by affixing each end of the scaffold onto 1/16” barbed 

quick-turn couplings and secured to the coupling with 6-0 sutures. Cannulated scaffolds 

were then stored in PBS + 1% Pen/Strep at 4°C until use (<24 hours). 

 

Components of an in-house designed vascular seeding chamber (Figure 5.1) and parts to 

cannulate decellularized arterial scaffolds were individually cleaned, dried, packaged in 

sterilization pouches, and autoclaved. In a sterile environment set up in a laminar flow 

hood, the components were unpackaged and the chambers were partially assembled. 10/32” 
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x 1 1/2” bolts were fed through a rail, a silicone membrane, and the body of each seeding 

chamber. The Luer fitting were closed off using quick-turn plug caps. 

 

 

Figure 5.1: Solidworks Drawing of Vascular Seeding Chambers. Vascular scaffolds are fixed in the center 

of the chamber between the middle Luers. The left and right Luers can be used to seed the adventitia or to 

change media. All 6 ports are capped before removing the chamber from the sterile field. Silicone membranes 

on each side allow for gas exchange. 

 

A fibroblast seeding solution was prepared by passaging hAAFb p6 and re-suspending at 

50,000 cells/mL in DMEM + 10% FBS + 1% Pen/Strep. Two scaffolds were affixed to 

each seeding chamber and interconnected with 1/16” inner diameter tubing and quick-turn 
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barbed fittings. Seeding chamber assembly was then completed by addition of the bottom 

rail and nuts. To seed each pair of scaffolds with fibroblasts, one plug cap was removed 

from each side of a seeding chamber, and the chamber (on the adventitial side of the 

scaffolds) was flooded with ~50 mL fibroblast solution until air bubbles were removed. 

The plug caps were then placed back on the exposed Luer fittings on the seeding chambers. 

 

The chambers were affixed to a rotary seeder controlled by a LabView program. The 

seeding chambers were rotated in 10 s intervals at 2 rpm (a 1/3 turn) for 8 hours. An 

endothelial cells medium was prepared from hAEC p6 in the same fashion as was the 

fibroblast solution. The lumen of the scaffolds were flooded with ~ l mL of endothelial 

solution, and the scaffolds were placed back on the rotary seeder overnight. 

 

5.2.3 Bioreactor Setup 

Components of an in-house designed vascular bioreactor (Figure 5.2) were cleaned, dried, 

packaged in sterilization pouches, and autoclaved or ethylene oxide sterilized. In a sterile 

environment, the components were unpackaged and the bioreactor was partially assembled 

by assembling all of the components except for the lid. The rotary-seeded scaffolds were 

removed from the sterile seeding chambers, transferred to the bioreactor chamber, and 

fitted to the quick fittings via 1/16” tubing and barbed quick-turn couplings (Figure 5.3). 

Five seeded scaffolds were placed in each bioreactor. The chamber was filled with ~500 

mL normal or high glucose media (DMEM + 10% FBS + 1% Pen/Strep with 1 g/L glucose 

or DMEM + 10% FBS + 1% Pen/Strep with 5.5 g/L glucose, respectively) and the lid was 
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secured. The media reservoirs were filled with additional media (~1000 mL) and the caps 

were secured. The bioreactor was transferred to an incubator and affixed to a peristaltic 

pump. The pump was set to 50 mL/min and the incubator was at 37°C and 5% CO2 (Figure 

5.4). The flow rate was increased by 50 mL/min every 12 hours until the final flow rate 

was 250 mL/min. Seeded scaffolds were conditioned for 4 weeks, with one change media 

at 2 weeks. 

 

 

Figure 2.2: The Vascular Bioreactor. Flow originates from a pulsatile pump (A) that generates flow by 

rolling a metal bar across the tubing. The media flows through a media reservoir with a filter cap that allows 

for oxygen exchange (B). A manifold (C) splits the current evenly into 5 flow streams to flow through the 

lumen of each arterial scaffold (D), then re-converges them in a second manifold (E). The flow then passes 
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through the main chamber of the bioreactor to perfuse to the adventitia of the scaffolds and out the top. A 

second media reservoir (F, not shown) holds additional media and acts as a compliance chamber that dampens 

the pulsation generated by the pump. 

 

 

 

Figure 5.3: Cannulated Decellularized Arterial Scaffolds in the Vascular Bioreactor. The vascular 

bioreactor was first designed for the conditioning of re-seeded decellularized bovine carotid and mammary 

arteries, which have internal diameters of 5-6 mm and total length of ~9 cm. The vascular bioreactor was 

adapted using a smaller barbed quick-turn coupling and tubing to accommodate for the length. 
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Figure 5.4: Normal and High Glucose Vascular Bioreactors in an Incubator Just Prior to Removal 

 

5.2.4 Assessment of Dynamically-Seeded TEVG Cellularity Following Bioreactor 

Conditioning 

Upon removal from the bioreactor, two TEVG from each bioreactor were cut in half and 

each half was snap-frozen in liquid nitrogen and stored at -80°C. Three TEVG from each 

bioreactor had a 1 mm-long piece cut off for assessing cellularity via Lead/Dead Cell 

Viability Assay (Invitrogen). Briefly, TEVG pieces were immersed in Live/Dead working 

reagent prepared per the manufacturer’s instructions for 35 min at room temperature and 

imaged under red and green filters at 100X magnification. The remainder of the TEVGs 
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left were cut in half. One half from each was immersed in 10% formalin for histological 

analysis, prepared as in 3.2.4 and the other half was fixed in Karnovsky’s Fixative for 24 

hours for scanning electron microscopy (SEM). Karnovsky’s Fixative was prepared by 

dissolving 0.1M Cacodylic Acid (Omni Pur), adjusting the pH to 7.4, then adding 2.5% 

Glutaraldehyde (Polysciences) and 2.0% Formaldehyde (VWR). Samples were then 

dehydrated in one change each of 50%, 70%, 85%, and 95% Ethanol Solution (200 proof 

anhydrous Ethanol, Acros Organics, in ddH2O) for 20 min each, then two changes of 100% 

Ethanol (200 proof anhydrous Ethanol, Acros Organics) for 30 min, followed by critical 

point drying in Hexamethyldisilizane (HDMS. Electron Microscopy) for 20 min. Samples 

were allowed to air dry, then were stored in a desiccator until further processing. 

 

5.2.5 Static Seeding of Decellularized Arterial Scaffolds 

Arterial scaffolds were neutralized and cannulated as in 5.2.2. The cannulated scaffolds 

were then filled with ~400 μL endothelial cell solution, prepared as in 5.2.2, and the ends 

were plugged with plug caps. Fibroblast solution, prepared as in 5.2.2 was pipetted onto 

the scaffolds with a sterile transfer pipette, ~500 μL. The scaffolds were incubated at 37°C 

with 5% CO2 for 15 min. The scaffolds were rotated ~60°, seeded with more fibroblast 

solution, and incubated 15 more min. This was repeated a third time, then the scaffolds 

were incubated for 4 hours before being immersed in DMEM + 10% FBS + 1% Pen/Strep 

and incubated overnight. Normal and high glucose vascular bioreactors were set up as in 

5.2.3 and the samples were processed as in 5.2.4. 
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To analyze protein expression in the drop-seeded TEVGs, the snap-frozen samples were 

homogenized in 600 μL RIPA Buffer with a rotary-tip homogenizer for ~5 min. The 

homogenates were then centrifuged at 12,000 xg for 15 min at 4°C and the supernatants 

were transferred and stored at -20°C until further processing. Protein concentration was 

measured by BCA Assay and protein expression was measured by Western Blot using the 

method described in 4.2.3.1. 

 

To analyze cellularity, scaffold pieces were prepared for Live/Dead Cell Viability Assay 

for fixed and dehydrated for SEM. Dehydrated and desiccated samples were fixed to 

aluminum stubs using double-sided carbon tape. The stubs were sputter-coated with 

platinum at 10 V, 15 mA for 2 min on a Hummer® 6.2 Sputtering System (Anatech, Ltd.). 

Images were acquired on an S-4800 Scanning Electron Microscope (Kawasaki) at 5 kV 

and 1000X and 2500X magnification. 

 

5.3 Results and Discussion 

5.3.1 Analysis of Cellularity of Dynamically-Seeded Scaffolds 

The drop-seeded scaffolds had very few cells anywhere on the pieces imaged after 

Live/Dead Assay (Figure 5.5). Histology using DAPI and H&E (results not shown) 

showed similar results. Similarly protein and RNA concentrations were too low to perform 

protein and mRNA expression analysis by Western Blot and RT PCR, respectively (results 

not shown). It is for this reason that the bioreactor experiment was repeated using the 

simplified seeding technique. Complications with the rotary seeding chambers may have 
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contributed to a lack of cells on the scaffolds prior to subjecting them to flow in the 

bioreactor, but experimental complications prevented examination of the scaffolds prior to 

starting the bioreactor.  

 

 

Figure 5.5: Live/Dead Cell Viability Assay of Dynamically-Seeded TEVG after Bioreactor 

Conditioning. Rings of the seeded scaffolds were cut from three scaffolds each from each bioreactor (normal 

and high glucose), cut to lie flat, and immersed in Live-Dead solution for 35 min. The scaffold pieces were 

placed between two slides and imaged through the thickness of the arterial scaffold wall. A, B, and C are 

samples taken from three different scaffolds conditioned in normal media. D, E, and F are samples taken 

three different scaffolds conditioned in diabetic media. 

 

5.3.2 Analysis of Cellularity of Statically-Seeded Scaffolds 

Analysis of cell viability by Live/Dead Assay on seeded scaffolds prior to starting the 

bioreactor failed to produce images. Rings were cut from the middle of the scaffold, then 

those rings were cut to lie the piece flat so that the scaffold lumen was facing up. The 

seeded scaffold piece was then placed between two slides to keep the piece flat. However, 
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this method blurred any signal produced by fluorescing cells. Gross manipulation of the 

scaffold while under filtered fluorescent light showed cell attachment on the scaffold, but 

images could not be taken. Live/Dead imaging following bioreactor conditioning (Figure 

5.6) showed that cells were indeed retained, but coverage was inconsistent (Figure 5.7) 

and there was not a confluent layer of endothelial cells on the luminal surface, as would be 

required to create a totally non-thrombogenic surface. Further, retained fibroblasts were 

not observed on the statically-seeded scaffolds. 

 

 

Figure 5.6: Live/Dead Cell Viability Assay of Statically-Seeded TEVG after Bioreactor Conditioning. 

Rings of the seeded scaffolds were cut and immersed in Live-Dead solution for 35 min. The rings were 

removed from the solution and placed on their side on a glass histology slide. Images are taken from above 

the ring. The middle portion of the image shows the luminal side of the scaffold. The left (A, D, E, and F), 

upper (B), or upper right (C) shows the adventitial side of the scaffold from above. A, B, and C are samples 

taken from three different scaffolds conditioned in normal media. D, E, and F are samples taken three 

different scaffolds conditioned in diabetic media. 
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Figure 5.7: Scanning Electron Micrographs of Statically-Seeded TEVG after Bioreactor Conditioning 

 

5.3.3 Analysis of Protein Expression 

Tissue homogenates contained sufficient amounts of protein to assay by Western Blot; 

however, no identifiable bands were present on blots for PPARγ, NFκB, or NOX1 (Figures 

A2, A3, and A4). mTOR was upregulated in diabetic conditions (Figure 5.7, 1.3-fold 

greater expression), but not as much as in cultured hAEC for one week in diabetic 

conditions (3.8-fold greater expression). 
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Figure 5.8: Expression of mTOR in Statically-Seeded TEVG in Normal and High Glucose Media after 

Bioreactor Conditioning. Bands correspond to a Mw of 250 kDa, the expected mass of the detected protein. 

Exposure to diabetic conditions resulted in a 1.3-fold increase in mTOR expression. N=2 for each group and 

15 μg protein were used per lane 

 

5.4 Conclusions 

Achieving a confluent layer of endothelial cells has been one of the grand challenges in the 

field of vascular tissue engineering. Among these challenges is adherence of seeded cells 

to the scaffold. A vascular seeding chamber was used in these studies was used, but had 

some design flaws. First, the material was 3D-printed, a platform that offers low cost and 

easy of low-quantity manufacturing. However, the material has not held up with use and 

warping has caused the seal to be compromised. It can hold liquid, but it slowly leaks 

uncontrollably. It is the opinion of this author that enough media was lost during seeding 
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that cells may have starved and died before being placed in the bioreactor. Further, the 

design makes handling the chamber with sterile-gloved hands without compromising 

sterility technically challenging, and thus the opportunity to assess cell coverage on the 

scaffolds prior to bioreactor conditioning. 

 

Because of the lack of cells on TEVG seeded using the seeding chambers, a simplified 

method for seeding was used. While not sophisticated or well controlled, this method did 

achieve moderation endothelialization, but did not achieve a confluent layer. This however, 

did demonstrate the potential of cells to adhere to this scaffold, and to remain adhered and 

viable under shear stress for an extended period. The small amount of cells did cause 

difficulty in protein expression analysis, however. Only expression of mTOR was apparent 

via Western Blot. The scaffolds were a small enough size and the relatively small amount 

of cells meant that troubleshooting and repeat experiments were impossible without simply 

having more samples. Curiously though, mTOR expression was increased diabetic 

conditions, a result that confirms what was observed 2D culture of endothelial cells in 

Chapter 4.  
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

WORK 

 

6.1 Conclusions 

A decellularized and PGG-stabilized vascular grafts was successfully developed. This graft 

is free from cells, as assessed by histological analysis, and cellular debris, as assessed by 

DNA content of the scaffolds. Next, the potential for endothelial-differentiated adipose 

derived stem cells to resist diabetic conditions was assessed. Differentiated ADSCs showed 

weak, but noticeable expression of endothelial markers, and show similar trends in 

expression to endothelial cells in normal versus diabetic conditions. This pilot study 

demonstrates efficacy of the differentiation protocol and a promise that differentiated 

ADSCs can perform well in a diabetic environment. Control of inflammation is an 

important problem in cardiovascular tissue engineering, so results such as these merit 

further investigation. Lastly, scaffolds were successfully seeded and retained cells after 

exposure to shear force in a bioreactor. Insufficient endothelialization is a persistent 

problem and perhaps the most important parameter to overcome in the field of tissue 

engineering, and while there was insufficient cell coverage to consider the grafts non-

thrombogenic, this is a step in the right direction. 

 

6.2 Recommendations for Future Work 

Preliminary results suggest that differentiated ADSCs can mitigate transcription of 

inflammatory cytokines in diabetic conditions. Further cell studies should be conducted to 
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the degree of response in diabetic conditions. Although the glucose concentration was high, 

one week may be insufficient to see a wide array of effects from hyperglycemia. Cells 

should be cultured for 2 and 4 weeks with greater numbers of cells, then assayed to 

determine the longer term response of differentiated ADSCs to diabetic conditions. 

 

One of the key hindrances in the seeding methodology is in the use of seeding chambers. 

3-D printed materials have poor mechanical strength and fatigue quickly. Further, 

disassembly of chambers to transfer the seeded scaffolds to the bioreactor complicates an 

already delicate procedure. I would suggest developing a seeding chamber that can have 

duel functionality as a bioreactor. This could function as a mix in the design of the current 

bioreactor and other small bioreactors, such as the 3DKube® sold by Kiyatec, Inc. Such a 

seeding chamber could house a single (or multiple in the case of renal branches) arterial 

scaffold that could then be attached to the existing bioreactor setup without need to transfer 

the arteries from one chamber to another. Further, this would allow for easier upscale of 

studies, which is a limiting factor in the current bioreactor design. 

 

Finally, a subsequent bioreactor study should be performed using growth factor-

differentiated ADSCs. The scaffolds should be seeded in the same manner as endothelial 

cells and fibroblasts and conditioned for 4 weeks in normal or high glucose. The seeded 

scaffolds should then be assayed for the same metabolic and inflammatory markers as 

endothelial cell and fibroblast-seeded scaffolds to determine the 3D in vitro resistance of 

ADSC-seeded scaffolds to damage caused by diabetic inflammation. 
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APPENDICES 

Appendix A - Supplementary Figures 

 

Figure A1: Western Blot for mTOR. Lane 1 = Ladder; Lane 2 = Differentiated hADSC in normal glucose 

media; Lane 3 = Differentiated hADSC in high glucose media; Lane 4 = hAEC in high glucose media; Lane 

5 = hAEC in normal glucose media; Lane 6 and 7 = Statically-seeded scaffolds conditioned in normal glucose 

media in vascular bioreactor; Lane 8 and 9 = Statically-seeded scaffolds conditioned in high glucose media 

in vascular bioreactor; N=3, pooled for Lanes 2-5; N=1 for Lanes 6-9; 15 μg protein per lane 
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Figure A2: Western Blot for NFκB. Lane 1 = Ladder; Lane 2 = Differentiated hADSC in normal glucose 

media; Lane 3 = Differentiated hADSC in high glucose media; Lane 4 = hAEC in high glucose media; Lane 

5 = hAEC in normal glucose media; Lane 6 and 7 = Statically-seeded scaffolds conditioned in normal glucose 

media in vascular bioreactor; Lane 8 and 9 = Statically-seeded scaffolds conditioned in high glucose media 

in vascular bioreactor; N=3, pooled for Lanes 2-5; N=1 for Lanes 6-9; 15 μg protein per lane 
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Figure A3: Western Blot for NOX1. Lane 1 = Ladder; Lane 2 = Differentiated hADSC in normal glucose 

media; Lane 3 = Differentiated hADSC in high glucose media; Lane 4 = hAEC in high glucose media; Lane 

5 = hAEC in normal glucose media; Lane 6 and 7 = Statically-seeded scaffolds conditioned in normal glucose 

media in vascular bioreactor; Lane 8 and 9 = Statically-seeded scaffolds conditioned in high glucose media 

in vascular bioreactor; N=3, pooled for Lanes 2-5; N=1 for Lanes 6-9; 15 μg protein per lane 
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Figure A4: Western Blot for PPARγ. Lane 1 = Ladder; Lane 2 = Differentiated hADSC in normal glucose 

media; Lane 3 = Differentiated hADSC in high glucose media; Lane 4 = hAEC in high glucose media; Lane 

5 = hAEC in normal glucose media; Lane 6 and 7 = Statically-seeded scaffolds conditioned in normal glucose 

media in vascular bioreactor; Lane 8 and 9 = Statically-seeded scaffolds conditioned in high glucose media 

in vascular bioreactor; N=3, pooled for Lanes 2-5; N=1 for Lanes 6-9; 15 μg protein per lane 

 

 

 

 

 

 

 

 

 

 



74 

 

Appendix B - Supplementary Tables 

 

Table A1: Protein Concentration of Cell and Tissue Lysates. For Western Blots, 5 μg of each sample 

was pooled for each lane. 

 

 

Concentration
(μg/μL)

A1NP 1.319

A2NP 1.319

A3NP 1.395

A1DP 2.269

A2DP 1.877

A3DP 1.395

E1NP 1.299

E2NP 2.561

E3NP 1.683

E1DP 3.459

E2DP 3.701

E3DP 3.632

Sample Conditions Sample

Differentiated ADSC in 

Normal Glucose Media

Differentiated ADSC in 

High Glucose Media

Endothelial Cells in 

Normal Glucose Media

Endothelial Cells in 

High Glucose Media
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