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ABSTRACT 

In film boiling, a layer of vapor completely blankets the heated surface and prevents 

liquid contact with the surface. Film boiling is usually considered undesirable because it is 

an inefficient mode of heat transfer and can lead to temperatures in excess of those 

allowed for many materials. Because film boiling may inhibit desired heat transfer in 

several processes including metals manufacturing, cryogenic engineering, and electronic 

cooling, it is useful to consider how the film boiling vapor layer may be destabilized or 

altered such that time-averaged heat transfer is improved. 

The purpose of this investigation is to develop a mathematical model of the nonlinear 

dynamics of a liquid-vapor interface in film boiling arising in the vicinity of a planar 

stagnation flow. The model applies to stagnation regions beneath jets, to stagnation 

regions within internal flows where the flow is incident on a wall, and to frontal stagnation 

regions on cylinders in cross-flows. The influences of flow pulsation, interfacial tension, 

radiation heat transfer, and surface motion are included in the for111ulation. 

Time-dependent conservation equations for mass, momentum, and energy are solved 

by the integral method for film boiling in forced convection boundary layer flow in the 

vicinity of a stagnation region on a flat isother111al plate in motion perpendicular to the 

incident flow. Conservation of mass, momentum, and energy are applied to the boundary 

layers in the liquid and the vapor as well as across the liquid-vapor interface in order to 

model the coupled heat and momentum transfer which arise in film boiling. The result is a 

system of nonlinear partial differential equations which govern transient and spatial 
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boundary layer response. Symmetry in the dividing flow about the stagnation streamline is 

invoked to produce a set of nonlinear, first-order, ordinary differential equations which 

governs the temporal boundary layer response in the vicinity of the stagnation line. 

Chaotic behavior is a possibility in the system under consideration. The set of differential 

equations may be characterized with recently established methods developed for chaotic 

dynamics in discrete mechanical systems. 

Numerical solutions to the resulting system of differential equations are obtained by 

fourth- and fifth-order Runge-Kutta integration techniques for a sinusoidal variation in the 

flow velocity. Instantaneous boundary layer thicknesses and Nusselt numbers are 

computed. The boundary layers undergo non-sinusoidal oscillations due to the nonlinear 

content of the governing equations. Sinusoidal flow pulsation tends to increase the 

boundary layers above their initial starting values much more than it causes them to fall 

below their initial starting values. The influence of flow pulsation and interfacial tension 

as a means to destabilize the vapor layer is considered. The curvature of the liquid-vapor 

interface in the vicinity of the stagnation line is shown to vary temporally due to flow 

pulsations. Results suggest that flow pulsation may be a means to destabilize the vapor 

layer under high radiation conditions in film boiling. Similarly, reducing interfacial tension 

is shown to increase boundary layer oscillation which may lead to vapor layer instability. 

For the specific parametric condition considered, flow pulsation is shown to decrease 

time-averaged heat transfer. 
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NOMENCLATURE 

C - steady state free stream velocity gradient 

-C - dimensionless steady state free stream velocity gradient = Cw/vj 

- specific heat at constant pressure 

f = pulsation frequency 

-
f = dimensionless pulsation frequency = f't 

g - acceleration due to gravity (g = 9. 81 ml s2
) 

g = dimensionless acceleration due to gravity = wg/vj 2 -

H = fluid depth 

H = dimensionless fluid depth= H/w (H = 0.5) 

h1v - latent heat of vaporization 

= radiation heat transfer coefficient 

Ja = Jakob number= c;,v(Tp - Ts)lh1v 

k = ther 111al conductivity 

n = nor 111al to the interface 

= Nusselt number = hwlkv 

= normalized Nusselt number = Nuv/ Nuv0 

p = pressure 

- = dimensionless liquid pressure= (p1 - Poo)/(1/2 P1Vj2
) 

Pv = dimensionless vapor pressure= (Pv - Poo)/(1/2 PvVj2
) 

Pr = Prandtl number = µc;/k 



q, = heat tlu. · ( q, - -k ~T le~; 

re = rad1u ot' uf\.ature ot'liquid-\ap r interface 

Re,.,1 = Re\ no Ids number tor l1qu1d = Pt\'J \\.'/~t 1 

Re,,, = Re nolds number tor vapor = p, v1 \v/~L, 

Sr.... = Strauhal number = v /r:vJ 

• t = t1me 

-t = dimensionless time = t/r. 

T = temperature 

"I:1 

T· 

u 

-

-uo:c 

-

v 

Vj 

dimensionless interface temperature used in liquid layer equations = 
(Tn - T'°)/(Ts - T<()) 

dimensionless interface temperature used in vapor layer equations = 

(T,1 - Tp)/(Tp - Ts) 

- constant saturation temperature 

reference temperature 

x component of velocity 

dimensionless x component of velocity in the liquid at the interface = u11/vJ 

- dimensionless x component of velocity in the vapor at the interface = u,1/vj 

- dimensionless freestream velocity = u,dvj 

= x component of velocity for liquid-vapor interface 

dimensionless x component of velocity for liquid-vapor interface = u1/vJ 

= y component of velocity 

= incident flow velocity 

- time a eraged Jet impingement velocity along jet centerline 
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Xll 

vP - plate velocity 

vu - dimensionJess y component of velocity in the liquid at the interface = vulvj 

v vr - dirr.~ ensionless y component of velocity in the vapor at the interface = vv1/vj 

v P - dimensionJess plate velocity= vp/vj 

V = velocity 

-V = velocity vector 

w - incident jet width 

w1 = mass vaporization rate of liquid per unit plate width 

x - streamwise coordinate (Figure 2.1) 

x = dimensionless streamwise coordinate = x/w 

X• = value for x where p1 = 0 (equation 2.45) 

y = vertical position above plate (Figure 2. 1) 

y = dimensionless vertical position above plate = y/w 

Y1 = vertical position above vapor layer (y1 = y - &,) 

= velocity boundary layer thickness in the liquid 

-() = dimensionless velocity boundary layer thickness in the liquid = ()/w 

- -
().. = nor111alized velocity boundary layer thickness in the liquid = ()I() 0 

= vapor layer thickness 
' 

-
()v = dimensionless vapor layer thickness= &,/w 

- -
&,. = nor111alized vapor layer thickness= ()v/()vo 

= ther1nal boundary layer thickness in liquid 
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Xlll 

• 

~ - dimensionless ther1nal boundary layer thickness in liquid = 11/w 

- -
~. - normalized thermal boundary layer thickness in liquid = ~ / ~ o 

E - dimensionless peak to mean amplitude 

E - emissivity 

µ - dynamic viscosity 

p - mass density 

- Stefan-Holtzman constant (cr = 5.670 x 10-8 W/m2K4
) 

O's = interfacial tension 

as - dimensionless interfacial tension = aJ( Vj 2wp1) 

= pulsation period 

'tyx = shear stress ( 'tyx = µ Ou/ 0y) 

Subscripts: 

I = liquid-vapor interface 

l = liquid 

p = plate 

ss = steady state 

v = vapor 

oo = liquid free stream 

0 = initial value ' 

( n) - nor1nal 

( s) = tangential 



• CHAPTER I 

INTRODUCTION 

Film boiling occurs when a surface is hot enough to sustain a vapor film. A heated 

surface may be blanketed with a nearly continuous film of vapor that separates the surface 

from the liquid. In general, heat is transported across the vapor film from the wall to the 

interface between the liquid and vapor phases by convection, conduction, and radiation. 
' 

However, film boiling is an inefficient mode of heat transfer and is therefore often 

considered a very undesirable boiling regime. 

Instability associated with liquid-vapor interfaces, such as in film boiling, have a strong 

impact on the heat and mass transfer at the interface (Carey, 1992). Kelvin-Helmholtz and 

Rayleigh-Taylor instabilities have been identified in some commonly encountered 

vaporization processes. Kelvin-Helmholtz instability refers to interface instability which 

occurs due to an arbitrary perturbation of the interface between a moving vapor phase 
. 

overlaying a moving liquid phase in a gravitational field that exerts a downward body 

force on the fluids . Rayleigh-Taylor instability refers to the interface instability of a 
• 

motionless liquid overlaying a motionless vapor region in a gravitational field . It is 

conventional to refer to interface instabilities occurring without relative velocity effects as 

Taylor instability. When relative velocity is important, the phenomenon is called a · 

llelmholtz instability (Berenson, 1961 ). An investigation of means to activate interface 

instabilities will be useful in several processes in which film boiling may potentially occur. 



2 

Rationale 

In metals manufacturing, forced convection film boiling has been observed in several 

cooling methods, such as those involving metallic strips or plates cooled by water jet 

impingement. A good example is the hot rolling process in which a series of rollers 

reduces a steel strip to its final thickness (Mc Gannon, 1971). After rolling, the strip is 

typically cooled along a runout table by jets of water. Temperatures in this process are 

high enough for film boiling to occur (Collier, 1981). Although film boiling is very 

undesirable in metals cooling, it is currently an unfortunate reality of the process. The 

vapor layer acts to inhibit heat transfer and poses difficulty for accurately predicting the 

ther111al response of materials to cooling methods used in their manufacture. 

The ability to destabilize film boiling could potentially improve cooling methods used in 

metals manufacturing. For example, it may be possible to destabilize the vapor layer by 

pulsing the flow from impinging water jets used in cooling. The pulsing flow may induce 

waviness at the liquid-vapor interface which may cause the vapor film to eventually 

become unstable and collapse. It is also possible that surface motion, which significantly 

influences heat transfer in film boiling, may affect vapor layer stability. Radiative heat 
. 

transfer may also influence vapor layer stability. High radiation heat transfer may tend to 

stabilize the vapor layer in film boiling because liquid is vaporized as it approaches the 

heated surface. 

In the event of loss of cooling accidents, stable film boiling may also occur in certain 

types of water cooled nuclear reactors. Ifthe coolant flow to the core of these reactors is 
• 

interrupted due to some malfunction, the fuel elements will overheat. When emergency 

• 

• 
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cooling water is incident on the surfaces of hot fuel elements, stable film boiling may 

occur. In some locations, stagnation flow pa~ems can develop where the cooling water is 

directed no11nally to a surface. Film boiling is very undesirable in such instances since heat 

generation may continue due to fission or the decay of radionuclides. Therefore, there 

exists a need to know how to destabilize the vapor film as efficiently as possible. In this 

application, techniques to destabilize the vapor film, such as by pulsing the flow of 

emergency cooling water which may forrn local stagnation flows, are critical for quickly 

establishing a stable quenching front . 

Forced convection film boiling also arises in the field of cryogenic engineering. 

Although film boiling is not desired, it must be dealt with as superconductors are initially 

cooled from environmental temperatures to norrnal operating temperatures. Efficiently 
-

destabilizing the vapor layer during this process, such as by pulsing the flow of the 

cryogenic fluid used in cooling, would allow superconductors to be brought down to 

no1n1al operating temperatures more quickly. Similarly, destabilization methods could be 

used to restore the desired heat transfer condition if film boiling happens to occur or is at 

risk of occurring during operation due to some fault in the system. Therefore, being able 

to consistently destabilize the vapor film which occurs in film boiling would allow 

superconductors to be used more reliably. 

Film boiling can also be encountered in electronic cooling where circuits are immersed 

in refrigerants which can easily flash to vapor. Therefore, when using refrigerants 

susceptible to film boiling, methods to destabilize the vapor film are important for 

maintaining adequate cooling. Methods of destabilization in this application may include 

• 
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pulsing the flow of refrigerant as well as altering the interfacial tension between the liquid 

and the vapor by means of surfactants. The model of this study can be used to assess the 

influence of interfacial tension on stability. 

Film boiling may potentially occur when metallic parts are solidified. When molten 

metals are cooled rapidly by water jets, such as in the manufacture of some alloys, the high 

temperatures involved result in stable film boiling. Film boiling and the associated poor 

heat transfer condition are very undesirable since it facilitates the for111ation of undesirably 

large grain structures. Methods to efficiently destabilize the vapor film could significantly 

accelerate solidification processes. 

Resulting model e_quations for the dynamical response of the vapor layer and the 

boundary layers in the liquid are nonlinear and chaotic responses are possible. Chaos 

(Moon, 1992) is a te11n assigned to that class of motions in deterministic physical and 

mathematical systems whose time history has a sensitive dependence on initial conditions. 
-

For chaotic behavior to occur, a governing system of coupled ordinary differential 

equations must consist of at least two equations for the nonautonomous case (i.e., 
• 

behavior influenced by applied forcing functions) and of at least three equations for the 

autonomous case (i.e., no external forcing). In addition, the system of equations must 

include nonlinear terrns in at least one dependent variable (Parker and Chua, 1989). 

Because the system under consideration meets these criteria, it is a candidate for chaotic 

behavior. The possibility of chaotic behavior points out a need to fo1111ulate a model · 

which is consistent with approaches used in recent studies of nonlinear dynamics and 
• 

chaos ofthe11nal systems. Most prior models are based on linearizations, so the nonlinear 
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dynamical responses cannot be predicted. The model which has been developed in this 

study retains nonlinear terms allowing the nonlinear dynamical responses to be 

investigated. 

Literature Review 

Numerous studies of forced convection film boiling have been performed. Stevens and 

Witte ( 1973) studied energy transfer and vapor destabilization processes experimentally by 

quenching a sphere traveling with constant velocity in distilled water. Data were obtained 

for the instantaneous heat flux and the transient vapor film behavior over a range of sphere 

temperatures and water subcoolings. Very thick, smooth vapor films were established at 
• 

higher water temperatures with a correspondingly large decrease in instantaneous heat 

transfer rate. However, the destabilization mechanism for the thick vapor film was not 

deter1nined in this study. Thin smooth vapor films and films with bubble-like irregularities 

were observed at lower water temperatures and were subject to two types of vapor film 

destabilization mechanisms. In the first mechanism, the vapor shell around the sphere 

suddenly appeared to ''explode'' causing the spherical vapor shell to become unstable in 

less than 0.25 ms. This appeared to be a function of heat flux rather than the surface 

temperature of the sphere. The second method of vapor film destabilization was a 

comparatively gradual phenomenon, requiring on the order of from 50 to 100 ms, in which 

bubble-like irregularities triggered oscillations in the vapor shell. This study suggests a 

need to investigate the influence of heat flux on vapor film stability. 

Ruch and Holman (1975) experimentally measured heat transfer and heat flux for ajet 

impinging upward on a flat heated test surface in the nucleate and film boiling regimes . 

• 
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Test variables were jet nozzle inside diameter, test surface orientation, and test surface 

temperature. All of the stable film boiling runs had the same characteristic flow pattern on 

the surface, with the liquid leaving the surface as a conical spray. As jet velocity was 

increased, the angle that the conical spray forrned with the test surface decreased, as did 

the size of the droplets in the spray. Nozzle diameter, test surface temperature, and test 

surface orientation did not influence the angle. Increasing jet velocity, nozzle diameter, · 

and test surface temperature each served to increase the heat transfer, while increasing the 

test surface orientation angle served to decrease the heat transfer. The film boiling heat 

flux was independent of nozzle diameter and test surface orientation, although the heat 

transfer and contact area were dependent on these variables. The jet velocity had only a 
• 

minor effect on the contact area during film boiling for the range of velocities studied. 

Dimensional correlations of the heat transfer and heat flux data for stable film boiling were 

obtained for Freon-113 . The dimensional film boiling heat transfer correlation 

represented the test data within 24%. The film boiling heat flux correlation represented 

test data within 35%. 

Piggott et al. (1976) experimentally investigated the wetting delay due to film boiling 

by impinging a jet of water onto electrically heated circular rods in air. Constant power 
• 

was supplied to the rods to maintain the initial steady temperature in air as the jet was 

applied. A stable region of film boiling, in which the surface was unwetted due to a 

blanket of vapor, was observed visually when a jet of hot water was applied to a heated 

rod. The stable film boiling was maintained, with the liquid forming a sheet, for times 

ranging from less than a second to several minutes, depending on test conditions. The 
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time to achieve wetting was found to be strong functions of water subcooling, jet velocity, 

therrnal conductivity of the rod material, heat generation rate, jet impact angle, and surface 
. 

temperature. At high water subcooling, wetting delay was negligible, tending to infinity at 

low subcooling. As wall temperature was increased, the delay time increased for a given 

subcooling. As ther111al conductivity was increased, the delay time increased for a given 

subcooling. For delay times of less than 10 seconds the heat generation rate had no effect, 

but for longer delays increasing heat generation rate increased delay time. As the no11nal 

component of jet velocity was increased, film boiling heat transfer coefficient was 

increased for a given subcooling. A theoretical model was developed which treats the rate 

of cooling of the region under the liquid sheet by considering forced ·convection film 

boiling, heat generation rate, and heat conduction from the surrounding regions. The 

model showed good agreement with experimental results. 

Orozco and Dix (1988) studied the effects of liquid subcooling, velocity, and wall 

superheat on the waviness of the liquid-vapor interface in film boiling from a sphere in 

Freon-113. Photographs taken in the film boiling regime showed that the wavy nature of 

the liquid-vapor interface is a function of the above-mentioned parameters. For low liquid 

subcooling, ripples were present on the liquid-vapor interface. At greater subcooling, 

ripples disappeared. For very large wall superheat and liquid velocity, ripples were always 

present on the liquid-vapor interface. A smooth interface was observed to become wavy 

with increasing wall superheat for a given velocity and liquid subcooling. The study 

proposed that the increase in wall superheat, which must be accompanied by an increase in 

vapor production, could possibly lead to an early transition to turbulent flow in the vapor 
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layer. The study concluded, that during stable film boiling, the wavy nature of the liquid-

vapor interface should be attributed to the transition to turbulent vapor flow in the vapor 
• 

film. 

Chang and Witte (1990) experimentally investigated the nature of the vapor layer in 

film boiling from a 6.35 mm diameter cylindrical heater in cross-flow. Experiments were 

perfor111ed with liquid R-11 flowing upward in the regime of film and transition boiling. 

Photographs revealed the details of wake formation and behavior near the minimum heat 

flux condition. For film boiling just above the minimum point on the boiling curve, the 

vapor film over the front of the heater was smooth. A separation line could be clearly 

seen that indicated where a wake was for111ed on the cylinder. The wake collected the 

vapor produced by the smooth thin film that existed over the forward portion of the 

heater. The wake was characterized as a vapor region with condensation occurring at its 

liquid-vapor interface when the liquid was subcooled. Vapor was torn away inter1nittently 
• 

from the wake along the separation line. Kelvin-Helmholtz instability was investigated in 

a linear analysis. The Kelvin-Helmholtz analysis predicted that the growth rate of an 

interfacial wave increases with liquid subcooling and velocity. This suggests that 

increased velocity and subcooling cause the breakdown of the vapor film at angles closer 
• 

to the 90-degree point. If separation angle is interpreted as an indicator of vapor film 

stability, then the experimentally observed movement of the separation point toward 90-

degrees as subcooling and velocity were increased supports the Kelvin-Helmholtz analysis. 

Cess and Sparrow ( 1961) used a boundary layer similarity transfo1111ation to analyze 

the heat transfer and friction characteristics in forced convection film boiling on a flat 
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plate. It was shown that the resulting two-phase flow problem can be formulated exactly 

within the framework of laminar boundary layer theory. Relative to the case of single 

phase, liquid flow, skin friction was substantially reduced due to film boiling. Results also 

showed that the heat transfer coefficient decreased as the temperature difference between 

wall temperature and free stream temperature increased. This decrease was related to the 

increased thickness of the vapor film. However, the investigation omitted interfacial 

waviness and film instability which are likely to occur in film boiling. Based on the 

experimental observations of Orozco and Dix ( 1988), the liquid-vapor interface may 

remain smooth under certain parametric conditions. For example, a wavy interface was 

observed to become smooth as average surface temperature dropped. However, at high 

wall superheat and high liquid velocity, interfacial waviness was likely to occur. 

Therefore, the applicability of Cess and Sparrow's ( 1961) model may be limited to the 

parametric range where instabilities at the interface are small. 

Berenson ( 1961) analyzed film pool boiling heat transfer from a horizontal surface 

considering Taylor-Helmholtz hydrodynamic instability. A physical model was used in the · 

analysis to approximate the actual shape of the liquid-vapor interface. The physical model 

consisted of a semicircular vapor bubble on top of a vapor film of constant thickness. A 

first-order perturbation analysis assuming potential flow was used to apply Taylor-

Helmholtz instability to film boiling from a horizontal surface. The effects of relative 

velocity parallel to the interface and surface tension were included in the analysis. Near 

the minimum film boiling heat flux, bubble spacing and growth rate were determined by 

Taylor instability, upon neglecting the effect of fluid depth and viscosity. In other words, 
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bubble spacing and growth rate were dete11nined, independent of heat transfer effects, by 

hydrodynamic considerations above. The study concluded that it is quantitatively 
• 

reasonable to neglect the effect of vapor velocity and film thickness on the liquid-vapor 

interface behavior in film pool boiling near the minimum temperature difference. 

Analytical expressions were derived to predict the heat transfer coefficient and minimum 

temperature difference for film pool boiling from a horizontal surface and these 

expressions agreed with experimental results to within about ten percent. 

Walsh and Wilson (1979) theoretically investigated forced convection film boiling on a 

wedge by perfor11ling a similarity transfor1nation within the framework of two-phase 

boundary layer theory. The boundary layer equations were developed for a smooth liquid-

vapor interface and neglected surface tension and radiation. The study showed that the 

effect of pressure gradient in the liquid dominates the dynamics of the flow in the vapor 

layer. This is in contrast to flow past a flat plate where no appreciable pressure gradient 

exists. The study showed that within the two regimes of small and large subcooling, 

values for the skin friction and heat transfer coefficients may be obtained by an analytical 

procedure using similarity transformations. The analytical solutions for these two limiting 

cases were found to compare with numerical solutions to within a few percent over the 

greater portion of the parametric range for a water-steam system. The study concluded 

that to a good approximation potential flow may be assumed in the liquid phase since for 

small subcooling it is not necessary to dete111line the liquid boundary flow and for large 

subcooling the tangential stress exerted on the liquid at the interface by the vapor is small. 
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Epstein and Hauser (1980) theoretically analyzed subcooled forced convection film 

boiling in the forward stagnation region of a sphere. A similarity solution to boundary 

layer momentum and energy conservation equations was implemented. Their analysis 

assumed that the vapor flow is laminar around the sphere with a smooth liquid-vapor 

interface. A continuous vapor film of unifor111 thickness equal to that in the forward 

stagnation region was assumed over the lower surface of the sphere and radiation heat 

transfer was neglected. The heat transfer relation derived for the stagnation region was 

assumed to approximate heat transfer over most of the surface of the sphere not covered 

by the thick vapor wake. Therefore, the heat transfer coefficient was averaged over the 

total surface area of the sphere. A semi-theoretical correlation for subcooled forced 

convection film boiling heat transfer was obtained by modifying the analytical solution to 

provide a reasonable correlation of experimental data for forced convection film boiling 

from spheres or cylinders. Experimental data was based on forced convection film boiling 

with water from a sphere and with ethyl alcohol, hexane, carbon tetrachloride, and 

benzene from cylinders of 0.983, 1.26, and 1.62 cm diameter. The resulting correlating 

expression based on the notion of a uniforn1 vapor film for forced convection film boiling 

heat transfer incorporates the effects of both wall superheat and liquid subcooling for 

cylinders and spheres. 

Fodemski (1985) theoretically modeled forced convection film boiling in the stagnation 

region of sphere based on a dimensionless fluid flow stream function. The analysis treated 

a steady flow problem with a smooth liquid-vapor interface. The effect of vapor velocity, 

which includes a component directed from the interface towards the hot surface, and the 
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influence of system pressure were taken into account by the model. Although the 

influence of system pressure was taken into account by the model, the difference in 

pressure gradient between the liquid and vapor layers was ignored. Therefore, the analysis 

is limited to cases in which the effect of interfacial tension is small. The model was used to 

calculate vapor layer thickness at the stagnation point of the sphere as well as heat fluxes 

at the interface and at the hot surface. The results of the analysis gave values of heat flux 

and vapor thickness for water which differed from experimental data for atmospheric 

pressure by about 25-30%. 

Orozco et al. (1987) presented a boundary layer analysis of the vapor film in stagnation 
• 

point flow film boiling on a sphere immersed in a subcooled liquid. The analysis included 

the effects of liquid subcooling, liquid velocity, and vapor superheat on the wavy nature of 

the liquid-vapor interface but assumed surface tension effects were negligible. A viscous 

dominant equation of motion for the liquid-vapor interface was derived based on a balance 

of forces in the vicinity of the lower stagnation point of the sphere. The effect of system 

parameters on the dynamic behavior of the liquid-vapor interface as well as the response 

to step changes in the temperature and velocity fields were investigated. Results showed 

that changes in the liquid velocity or the vapor superheat initiated large oscillations in the 

vapor film thickness and the heat transfer coefficient. This provides good evidence that 

vapor film destabilization may result from flow pulsations. 

Orozco and Stellman (1988) theoretically studied stagnation point flow film boiling on 

a sphere and on a cylinder immersed in a subcooled liquid. The analysis treated stagnation 

point flow film boiling under the assumption that the behavior of the vapor film is inertially 
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dominant. Comparisons were made to the viscous dominant solution for the oscillation of 

the vapor film presented by Orozco et al. ( 198 7). The effects of system parameters on the 

dynamic behavior as well as the response of a liquid-vapor interface to changes in the 

temperature and velocity fields were investigated. Large changes in free stream velocity 

produced unsymmetric oscillations of the interface. The study showed that interface 

oscillations become very small as the liquid subcooling increases. However, Piggott et al. 

(1976) experimentally observed a negligible wetting delay for high liquid subcooling. In 

order to produce liquid contact with the surface as experimentally observed for high 

subcooling, interface oscillations are expected to become large as liquid subcooling 

increases. This contradicts the model prediction. Comparison to Orozco et al. (1987) 

showed that the viscous solution gives a higher frequency of oscillation than the inertial 

solution. The study concluded that the inertial dominated solution better predicts the 

motion of the liquid-vapor interface in forced convection film boiling. 

Zumbrunnen et al. (1989) examined the effect of plate motion and radiative heat 

transfer across the vapor on heat transfer in the film boiling regime. Conservation 

equations for mass, momentum, and energy were solved by the integral method for film 

boiling in forced convection boundary layer flow on a flat isothe11nal plate in motion 
. 

parallel to the flow direction. Heat transfer was shown to depend on plate velocity as well 

as plate and liquid temperatures. Radiation heat transfer across the vapor layer was shown 

to increase with vapor thickness, decrease convective heat transfer, and decrease in 

importance with increasing plate velocity. However, the analysis neglected the waviness 

of the liquid-vapor interface, which was modeled as a smooth boundary. 
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Chappidi et al . (1990) proposed a simple approach to analyze steady laminar forced 
• 

convection film boiling flow over a horizontal flat plate. Analytical results for a moving 

surface in a flowing single-phased fluid are used to describe the liquid boundary layer 

characteristics at the liquid-vapor interface. The vapor flow was decoupled from the 

liquid flow by using expressions of skin friction and heat transfer for a moving surface in a 

flowing fluid . Approximate closed-forrn expressions to estimate the wall heat transfer and 

skin friction for the corresponding wall superheat were obtained. Comparisons with other 

numerical simulations indicated that the model was accurate for subcooled conditions. 

However, the relative accuracy of the model degenerated as wall temperature was 
• 

increased and as the liquid approached saturation temperature. 

Chappidi et al . (1991) analyzed stable laminar film boiling flow along a vertical flat 

plate theoretically for a water-steam system at atmospheric pressure. A local similarity 

concept was applied to the governing partial differential equations developed within the 

framework of boundary layer theory to reduce them to ordinary differential form. This 

steady state study neglected radiation and modeled the liquid-vapor interface as smooth. 

Surface tension effects were assumed negligible. Numerical results indicated that skin 

friction drag on the plate in a film-boiling flow may increase or decrease relative to single-

phase all liquid flow level and that the wall heat transfer coefficient always deteriorates in 

film boiling flow. Changes in skin friction drag were found to be dependent on the surface 

temperature, liquid subcooling, velocity, and local- streamwise position. Subcooling was 

deter 11rined to promote wall heat transfer but could increase or decrease the wall skin 

friction beyond the single-phase flow level. Cess and Sparrow (1961) demonstrated that a 
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stable film boiling flow along a horizontal flat surface can reduce skin friction drag on the 

plate to a very low value, beyond the single-phase liquid flow level. Chappidi et al . ( 1991) 

showed that such drag reduction results when the streamwise component of buoyancy 

force driving the vapor film in film boiling is negligible. 

Liu et al. (1992) developed a correlation for forced convection film boiling heat 

transfer from a cylinder under subcooled conditions. Forced convection film boiling heat 

transfer from a horizontal cylinder in water or Freon-113 flowing upward perpendicular to 

the cylinder under saturated and subcooled conditions was measured for the flow rates 

ranging from 0 to 1 mis at system pressures ranging from 100 to 500 kPa. The cylinders 

made of platinum with diameters ranging from 0. 7 to 5 mm were used as the test heaters 

and the cylinder surface superheats in film boiling were raised up to 800 K for water and 

400 K for Freon-113. The film boiling heat transfer coefficients obtained show marked 

improvement with the increase in flow rate and in liquid subcooling, and they are higher 

for higher system pressures and for smaller cylinder diameters. It was confi11ned that the 

correlation can express the forced convection film boiling heat transfer coefficients from a 

horizontal cylinder including the effects of radiation in various kinds of subcooled liquids 

for wide ranges of cylinder surface superheats, system pressures, and cylinder diameters. 

The correlation was confi1·1ned to describe the experimental data obtained in this work 

within ±20o/o for the flow rates below 0. 7 mis, and within -30% to +20% for the higher 

' flow rates. 

Many of the prior studies on film boiling have considered the effects of surface 

temperature (wall superheat), liquid subcooling, and liquid velocities. The consideration 

-
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of transient effects has primarily focused on experimentally observing the wetting delay 
• 

caused by the vapor film. Several studies neglect the waviness of the liquid-vapor 

interface while earlier studies impose an assumed shape on the interface. There are also 

possible contradictions between theoretical and experimental findings regarding the 

behavior of the liquid-vapor interface. Although Orozco and Stellman (1988) theoretically 

showed that interface oscillations become very small as the liquid subcooling increases, 

Piggott et al. (1976) experimentally observed a negligible wetting delay for high 

subcooling. A contradiction arises because interface oscillations are expected to become 

large for high subcooling in order to produce liquid contact with the surface as observed 
• • 

experimentally. Because the ability to effectively destabilize the vapor film arising in film 

boiling could potentially enhance heat transfer in many processes, a theoretical model for 

the actual behavior of the vapor film is potentially very useful. Prior studies also point to a 

need to further investigate the effects of heat flux and incident liquid velocity changes on 

vapor film stability. 

Objectives 

The purpose of this study is to develop a nonlinear dynamical model of a liquid-vapor 

interface in film boiling arising in the vicinity of a planar stagnation flow. Of particular 

interest is a realistic coupling between heat and momentum transfers. Motivation is 

derived from the possibility that flow pulsations may induce oscillations in the interface 

which will destabilize the vapor layer. High heat transfer rates suggest that waves in the 

liquid interface may be preferentially vaporized as they approach the hot surface and a 

stable vapor film will be promoted as a consequence. The effect of interfacial tension on 
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interface instability will also be considered. It is possible that altering interfacial tension, 

such as by using surfactants, in combination with flow pulsations could induce vapor film 

destabilization. 

The objectives of this study are to: 

1. Develop a mathematical model of the nonlinear dynamics of a liquid-vapor interface 
and heat transfer in film boiling in the vicinity of a planar stagnation flow on 
an isother 111al moving surface. The mathematical model will consist 
of transient heat transfer and momentum conservation models coupled with 
equations governing force and energy balances at the liquid-vapor interface. 

2. Propose a methodology for solving the model equations to dete111rine local, 
instantaneous convective heat transfer rates. 

3. Utilize the model in selected cases to assess the influence of flow pulsations and 
interfacial tension on vapor and liquid layer dynamics and on instantaneous heat 
transfer. 

4 . Compare model predictions with those of other theoretical models and to available 
experimental data where possible. 
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CHAPTER II 

ANALYSIS 

The stagnation region which is considered in this study is depicted in Figure 2. 1. Such 

flows may arise beneath impinging planar jets, on a cylinder in cross-flow, or in the front 

stagnation region of any bluff body where the frontal surface can be effectively 

represented by a tangent plane. Due to film boiling, a thin layer of vapor insulates the 

surface from the impinging liquid flow. The vapor layer&, is thin enough to be modeled 

as a boundary layer. Ther 111al and velocity boundary layers, ~ and o, develop in the liquid 

layer. The goal of this study is to develop a model to investigate the boundary layer 

dynamics and heat transfer characteristics which arise in stagnation regions represented by 

Figure 2.1. 

Description of Analytical Method and Assumptions 

An analytical method was chosen which would allow characteristics due to 

nonlinearities in the equations governing the transient responses to be revealed. Unlike 

many earlier studies, the method accounts for interfacial waviness without imposing an 

assumed shape on the interface. Although prior studies have also decoupled the vapor 

flow from the liquid flow, coupling of the vapor flow to the liquid flow is an important 

aspect in realistically modeling the liquid-vapor interface in film boiling because the 

velocity of the liquid-vapor interface depends on the vaporization rate. The vapor flow is 

coupled to the liquid flow in this study . 
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Figure 2.1 . Boundary layer development for forced convection film boiling in the vicinity 
of a planar jet impinging on a moving plate. (Boundary layer waviness and 
thicknesses are exaggerated for clarity.) 

• 
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Because calculations in this study must be perfor111ed over large time intervals to reveal 

important characteristics due to nonlinearities, direct numerical models based on finite 

difference expressions to the transient, two-dimensional, two phase problem considered 

here would be extremely time-consuming computationally. The integral method has been 

used to analyze steady laminar boundary layer flow film boiling (Zumbrunnen et al., 1989) 

and was recently extended to transient boundary layers (Mladin and Zumbrunnen, 1994; 

Zumbrunnen, 1992). An advantage of this method is that it results in a system of ordinary 

· differential equations which are more amenable to standard analyses for detecting chaotic 

behavior. In the related technique implemented here, equations for momentum and energy 

conservation in their integral and differential forms are used with physically correct 

profiles for fluid velocity and temperature to obtain governing equations for the vapor 

layer, velocity boundary layer, and thermal boundary layer responses. The governing 

equations enforce momentum and energy conservation in the liquid and vapor layers as 

well as across the liquid-vapor interface. 

The integral method applied in this study is a generalization of one described by . 

Arpaci and Larsen (1984) and Zumbrunnen et al. (1989). The analysis is applied to 

boundary layers in the vapor and liquid adjacent to a jet impinging on a moving plate 

(Figure 2.1). The stagnation line or plane of symmetry, which is fixed, serves as the origin 

to the coordinate system. In case 1, the plate velocity is opposite to that of the liquid, 
' 

while in case 2, the plate and liquid travel in the same direction. The bulk of the vapor and 

liquid flows can be oppositely directed in case 1 if the plate speed approaches or exceeds 

the jet impingement velocity. The model that follows pertains to case 1 only when the 
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plate speed is sufficiently small to preclude reversal of the bulk vapor flow . Under these 

conditions the boundary layer equations are applicable. 

In order to simplify the analysis, only the case where vapor and liquid flows are laminar 

is considered and a constant plate temperature is prescribed. Thus the analysis applies to 

locations prior to the point where turbulence begins in either the vapor or the liquid. 

Laminar flow is assumed in order to simplify the model and also in recognition that the 

favorable pressure gradient in the stagnation zone tends to larninarize turbulent flows 

(Schlichting, 1979). The analysis assumes that the plate temperature exceeds the 

saturation temperature of the liquid by an amount sufficient to establish a continuous 

vapor film. 

The specific assumptions of the analysis are: 

(i) incompressible, laminar boundary layer flow, 

(ii) constant the11nophysical properties, 

(iii) negligible viscous heating, 

(iv) constant free stream temperature Too in the liquid layer, 

(v) Pr12: 1, 

(vi) negligible vapor loss from the vapor layer, 

(vii) a radiatively nonparticipating vapor layer, 

(viii) opaque, diffuse/gray interface and plate surface. 

Conservation Equations and Boundary Conditions 

Conservation equations for mass, momentum, and energy conservation are presented 

by Arpaci and Larsen (1984) . The transient boundary layer equation for conservation of 
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mass in differential for1n for the vapor layer, which corresponds to the aforementioned 

assumptions and the stagnation flow in Figure 2.1, is 

(2.1) 

The integral fo1111 of conservation of mass for the vapor layer relates the mass vaporization 

rate of liquid per unit plate width w1 to the mass flow in the vapor by the expression 

(2.2) 

Transient boundary layer equations for momentum conservation in differential and 

integral fo1ms for the vapor layer are given by equations 2.3 and 2.4. 

(2.3) 

(2.4) 

The associated transient boundary layer equations for energy conservation, in differential 

and integral for1ns, for the vapor layer are 

(2.5) 

and 

(2.6) 
' 

Transient boundary layer equations for momentum conservation, in differential and 

integral fo1 ms, for the liquid layer in Figure 2. 1 are 

• 



23 

au au au i ~ µ a1 
---'-1 + U I + V I - vpl I UI I I -- +~--'-at ax ay P1 ax P1 ay2 (2 .7) 

and 

(2 .8) 

The associated transient boundary layer equations for energy conservation, in differential 

and integral forms, for the liquid layer are 

(2.9) 

• 

and 

(2.10) 

With reference to the unsteady stagnation flow film boiling in Figure 2.1, ov = ov (x, t), 

Tv =Tv(x,y,t), and T1 =T1(x,y,t) inequations2.l through2.10. 

The conservation equations are subject to conditions at the plate surface, the liquid-
, 

vapor interface, and the extremities of the thermal and velocity boundary layers in the 

liquid. At the plate surface (y = 0), • 

(2.1 la) 

• 
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and 

(2 .1.lb) 

At the liquid-vapor interface (y = &. , y1 = 0), 

(2 . l 2a) 

(2 .12b) 

and 

(2 .13a) 

(2 .13b) 

Wit_h increasing distance y from the interface, the temperature of the liquid decreases until 

it approaches the liquid free stream value as indicated by equation 2. l 4a. Therefore, the 

large temperature gradients which exist in the therrnal boundary layer in the liquid become 

negligible as the outer reaches of the thermal boundary layer are approached. This 

physical observation is expressed by equation 2. 14 which pertains near the edge of the 

ther111al boundary layer in the liquid (y1 = i'.l). 

and 

Oft = 0. 
Oyl 

(2.14a) 

(2.14b) 

With increasing distance y from the interface, the x component of liquid velocity increases 

until it approaches the liquid free stream value as indicated by equation 2. l 5a. Therefore, 

the large velocity gradients which exist within the velocity boundary layer become 

negligible as the outer reaches of the boundary layer are approached. This physical 

• 
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observation is reflected by equation 2.15 which pertains near the edge of the velocity 

boundary layer in the liquid (y1 = o). 

u, = uoo (x,t). (2. l 5a) 

(2.15b) 

Beyond the velocity boundary layer (y > o), u1 (x, t) = u
00 

(x, t) and the flow is 

governed by the time-dependent Euler equation below: 

(2. 16) 

Since ap,; 8y < < ap,; 8x across the velocity boundary layer in the liquid, equation 2. 16 
" 

relates pressure gradient ap,; 8x to the free stream velocity Uoo. The pressure distribution 

p1(x,t) in the liquid is considered known and will be adapted from distributions for steady 

and pulsating planar jets given by Zumbrunnen et al. (1992) and Mladin and Zumbrunnen 
• 

(1994). 

As in the liquid and vapor layers, conservation of mass, momentum, and energy must 

be satisfied at the liquid-vapor interface. These relationships are obtained by considering a 

differential control volume in Figure 2.2 surrounding the phase boundary at the liquid-

vapor interface (Arpaci and Larsen, 1984). The differential control volume moves with 

the interface and is assumed to be so thin that it accumulates negligible mass. 

Conservation of mass at the liquid-vapor interface is given by ' 

Pt ( vl(n) - VI(n) )- Pv ( v v(n) - VI(n)) = 0 (2.17) 

• 
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PI(Vt(n) - Vr(n))dS --------- Control Volume 

Phase boundary 
n 

Liquid Phase ----- -------------1 
I 

- ---
s ----- -------------------

Vapor Phase 
• 

8v(t) 
Vv(n) 

Figure 2.2. Differential control volume about a moving interface for the forrnulation of 
conservation of mass. 

• 
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where Vl(n) and Vv(n) denote velocities in the direction DOI Illal to the interface and V is I(n) 

the interface velocity in the norI11al direction. In the vapor region, mass moves toward the 

interface with a velocity Vv(n)' with respect to a stationary observer. However, the 

interface is also moving with a velocity V1(n), so that the vapor mass flow rate toward the 

control volume moving with the interface is Pv ( Vv(n) - V 1(nl ) . By a similar argument, the 

liquid mass flow rate out of the control volume moving with the interface is 

P1 Vt(n) - VI(n) . Since the control volume represents an interface, there can be no 

accumulation of mass so these two mass flow rates must be equal as given by equation 

2.17. 

Because the interface can contain no mass, it is also without momentum and energy 

except for free surface energy which is related to the interfacial tension. Ignoring nor Inal 

viscous stress, the momentum balance in the direction of the norinal to the interface can be 
• 

depicted as in Figure 2.3. Because of the motion of the interface, momentum in the 

direction of the unit noI·I11al vector ii is convected into the control volume moving with 

the interface at the relative velocity of the fluid with respect to the interface. Therefore, 

the momentum balance in the direction of the no I 111al to the interface is given by 
• 

(2.18) 

where the radius of curvature re of the interface is measured from the vapor phase and 

detet tnines the effects of interfacial tension cr. . Radius of curvature is given by 
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s 

Figure 2.3. Differential control volume about a moving interface for the forn1ulation of 
balance of momentum normal and tangent to the interface. 

' 

' 
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3 
2 -aov 2 

l+ 
Ox 

r = (2.19) c a aov • 

-
Ox Ox 

This expression was determined from simple geometric considerations by modeling the 

liquid-vapor interface shown in Figure 2. 1 as a plane curve. A derivation of this 

expression is provided in the Appendix. Equation 2.19 agrees with the expression given 

by Carey ( 1992). 

Velocity fields are assumed to vary continuously in each fluid. Therefore, tangential 

velocity is continuous at the interface (Figure 2.4). The no-slip condition which applies to 

the tangential velocity components at the interface is given by (Arpaci and Larsen, 1984) 

v -v v(s) - l(s) (2.20) 

where v v(s) and vl(s) are components of velocity in the direction of the tangent to the 

interface. 

For constant interfacial tension, the force and momentum balance in the direction of the 

unit tangent vector s at the interface (Figure 2.3) reduces to an equality of the shear stress 

in the liquid and vapor on either side of the interface as the control volume thickness 

approaches zero. 

• 
(2.21) 

I I 

In equation 2. 21, n is the coordinate no1111al to the interface and the in dice I denotes an 

interfacial location. 
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V1(x,y,t) 
/ - Phase boundary 

u1(x,y,t) 
Vien> n -

v1 /to. Liquid Phase 
\ 
\ Vies> I \ 

- s vv ~ Vv(n) - ":JI - Vv(s) 

Vv(X,y,t) 
Vapor Phase 

Uv(x,y,t) 

Figure 2.4. Not 111al and tangential velocity components at the liquid-vapor interface 
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The balance of ther111al energy at the liquid-vapor interface is depicted in Figure 2.5. 

As in the transport of mass and momentum, thermal energy is convected into the control 

volume moving with the interface at the velocity of the fluid relative to the interface. 

Phase change at the interface is accounted for by the latent heat of vaporization given by 

htv = (hv - h1). Local therrnodynamic equilibrium is assumed to exist at the liquid-vapor 

interface. Therrnal energy can also be transported to or from the interface by conduction 

and, across the vapor, by radiative transport. The heat flux te1n1s q1 and qv in Figure 2 .5 

include the transport due to these mechanisms. The balance of therrnal energy at the 

liquid-vapor interface can be expressed as 

or1 
• 

On I 

(2.22) 
I 

The terms - kV ( orv I On) I and -kl (or. I On) I in equation 2.22 are heat flux tern1s due to 

Fourier conduction. In accordance with assumption (viii), the radiation heat flux across 

the vapor layer is given by (Sparrow, 1964) 

(2.23) 

where 

• 
(2.24) 

The conservation equations for energy and momentum in the vapor and liquid layers 

are coupled even when constant the1111ophysical properties are assumed. This coupling is 

due to the fact that the velocity of the liquid-vapor interface depends on the vaporization 

rate. 
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Pi(Vl{n) - Vr(nJ) h1dS 
------- Control Volume 

n 
Phase boundary 

----- --- -- ---- ---- -I 
I 

Liquid Phase 
I I s 
- - --- ------ ------ -

Vapor Phase 

Figure 2. 5. Differential control volume about a moving interface for the fo1111ulation of 
ther111al energy conservation. 
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Model Forn1ulation 
• 

In order to apply the integral method to a transient problem, physically correct 

polynomial profiles are assumed for flow velocity and temperature in the vapor layer and 

in the liquid layer. Cess and Sparrow (1961) showed that the temperature and velocity 

profiles in the vapor are nearly linear for stationary plates when Ja!Prv << 30 and Ja << 

12, respectively. Since most vapors (and notably water vapor) have Prv ~ 1 and Ja ~ 1 for 

most applications, both conditions are frequently satisfied. The validity of this assumption 

is enhanced by conditions for which the velocity difference across the vapor layer is large 

and the vapor layer thickness is small. Assuming linear profiles in the vapor layer, the 
• 

boundary conditions given by equations 2.11 and 2.12 give 

(2.25) 

and 

T -T 
v p () 

v 

(2 .26) 

Transient effects are incorporated in the vapor layer velocity profile by equation 2. l 2a and 

by temporal changes in the thickness of the vapor layer. Similarly, transient effects are 

incorporated in the vapor layer temperature profile by equation 2.12b and by temporal 

changes in the thickness of the vapor layer. 

Second-degree polynomials are prescribed for the velocity and temperature profiles in 
'-" 

the liquid subject to conditions given by equations 2.13, 2.14, and 2.15. 

(2 .27) 
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(2.28) 

Transient effects are incorporated in the liquid layer velocity profile by equations 2.13a 

and 2.15a and by temporal changes in the thickness of the liquid velocity boundary layer. 

Similarly, transient effects are incorporated in the liquid layer temperature profile by 

equation 2.13b and by temporal changes in the thickness of the liquid therrnal boundary 

layer. 

By substituting the appropriate profiles into equations 2.4, 2.6, 2.8, and 2.10, and 

carefully observing functional dependencies, partial differential equations for 8v(x,t), 

o(x,t), and L1(x,t) can be obtained. The functional dependencies observed in the 

fo11nulation are given by Dv = &,(x,t), 0 = o(x,t), Li= Li(x,t), Uv = Uv(x,y,t), Ut = U1(x,y,t), UCXJ 

= lloo(X,t), Vv = Vv(x,y,t), V1 = V1(x,y,t), Tv = Tv(x,y,t), and T1 = T1(x,y,t). In addition, Pv = 

Pv(X,t), Pt= p1(x,t), UvI = Uvi{x,t), Uu = uu(x,t), Ur= ur(x,t), VvI = Vvr(x,t), Vu= vu(x,t), Tvr = 

Tvi(x,t), and T11 = Tu(x,t) . The te1111s Vp, Tp, and TCX) are constants. With the vapor layer 

velocity profile given by equation 2.25 and 'tyx = µv Ouv!Oy evaluated at y = 0 and y = 8v, 

equations 2.2 and 2.4 give the following expression for momentum conservation in the 

vapor layer. 

1 (- - ) -- Uvl +VP - U1 
2 

1 (-2 _ _ -2) 1 - (- - ) - Uvl + VP Uvl + VP - - Uy Uvl + VP + 
3 2 

-

l_ 2_ l_ 
- v +-u --u 3 p 3 vi 2 I 

(2.29) 
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With the vapor layer velocity and temperature profiles given by equations 2.25 and 2.26, 
• 

respectively, and qy = -kv Of v/Oy evaluated at y = 0 and y =&,,equation 2.6 gives the 

following equation for energy conservation in the vapor layer. 

1---T 
2 vi 

1-__ T 
3 ~I 

l_ -
-uvl +VP 
2 

l_ --v +u 
2 p vi 

+ 

(2.30) 

Substituting the liquid layer velocity profile given by equation 2.27 into equation 2.8 with 
• 

w1 given by equation 2.2 and 'tyx = µ1 8u1/0y evaluated at Y1 = 0 gives the following 

relationship for momentum conservation in the liquid layer. 

1 (- - ) - u -u 3 II "' 

-ao +-ox 
l _ 2 1 _ _ 2 _ 2 - ulI - ulI u"' - u"' + 
5 15 15 

1 S oulI 2 S ati"' atilI - r +- r +--
3 Wat 3 Wat ox. 

2_ l_ 
-u - u + 
5 II 15 "' 

4 - 2_ 
-ulI +-u"' 15 5 

1 8P1 ~ + +--u 
2 ox 

(2.31) 

With the liquid layer velocity and temperature profiles given by equations 2.27 and 2.28, 

respectively, equation 2.10 and equation 2.2 yield the following expression for energy 

conservation for the liquid layer. 

( ,, ' U1 IVE1 ITY. LJBf~ARY. 



-
1--T. 3 II 

--,---, 1 -
I'.'.\" T. 30 II 

~ 1-
1'.'.\z --T. 

6 II 

-
1 "K.2 1 "K. 

+ -- -
10 8 2 3 8 

1 + -2 T. i'.'.\-1 + II Rew1 Pr1 
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+ 

-
+ 

(2 .32) 

In order to evaluate the additional relationships which must be satisfied at the liquid-

vapor interface, the unit vectors in the nor 111al and tangent directions to the interface, ii 

and s in Figure 2.4, are related to the vapor layer thickness 8v along the plate and are 

thereby defined as (Burelbach et al., 1988) 

and 

88v ~ ~ 
- 1 + J ,.. ax n = --=-=---1 

2 -2 

(2 .33) 

' 

(2.34) 

• 

• 
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Liquid velocity, vapor velocity, and interface velocity can be expressed in vector form as 
_ A A 

vl = uli +vlj • (2.35a) 
- A A 

vv = uvi +vvj (2.35b) 

(2.35c) 

respectively. In interfacial equations 2.17, 2.18, 2.20, 2.21, and 2.22, the velocity 

components directed norrnally and tangentially to the interface are obtained from the 

appropriate dot products involving the unit vectors defined in equations 2.33 and 2.34 and 

the velocity vectors defined in equation 2.35. In equations 2.21 and 2.22, the gradients in 

the direction nor rnal to the interface are determined by evaluating the appropriate 

directional derivative (Thomas and Finney, 1988). The resulting interfacial relationships 

are expressed in dimensionless fo11ns in equations 2.36 through 2.40. Upon using 

equations 2.33 and 2.35 to obtain velocity components directed normally to the interface, 

equation 2. 17 yields the following expression for conservation of mass at the liquid-vapor 

interface . 
• 

(2.36) 

Similarly, equations 2.33 and 2.35 can be used with equation 2.18 to get the following 

expression for the momentum balance in the direction of the nor rnal to the interface. 
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/ - -- / 

aov - aov - ' / - ' -
Srw Pv - aov aov - - Ur vvl - UV[ - -- Vu - Uu + ox a t , ~ P1 ox ox ' , ' ' -

/ - ' 2 / 2 -
- - aov Pv - aov Vu-U1r vvl - uvl - --ox ox P1 ' , , 

• 

- -

(2.37) 

Upon using equations 2.34, 2.35a, and 2.35b to obtain velocity components directed 

tangentially to the interface, equation 2.20 yields the following relationship for the no slip 

condition at the interface. 

(2.38) 

In equation 2.21 , the gradients directed normally to the interface can be deter1nined using 

equations 2.33 and 2.34 with equations 2.35a and 2.35b. The resulting expression for the 

shear stress balance at the interface is given by 
• 
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ovvl 
oy + 

2 - 1 a 20 v ox.2 

-

(2 .39) 

The gradients directed normally to the interface in equation 2.22 can be determined by 

using equation 2.33 with the temperature profiles given by equations 2.26 and 2.28. Upon 

using equations 2.33, 2.35b, and 2.35c to obtain velocity components directed norrnally to 

the interface, equation 2.22 yields the folloWing expression for the balance of thermal 

energy at the liquid-vapor interface. 

' 
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(2 .40) 

The terrns ovv1/oy and ovu/oy which appear in equation 2 .39 are replaced by using 

. 
the differential form of continuity applied at the interface. For the vapor layer, equation 

2 .1 applied at the interface gives 

ovv1/oy = -auvr/ox. (2.41) 

Similarly, for the liquid layer 

(2 .42) 

Another useful equation is obtained by taking the derivative with respect to x of the 

no-slip condition given by equation 2.37. This relationship represents the interface 

curvature a2"'5v / ox2 in ter rns of the interfacial velocity components. 

(2 .43) 

The local convective heat transfer coefficient h at the plate surface is obtained from 

Newton's law of cooling and equation 2.26 and is given by 

• 
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• (2.44a) 

With h given by equation 2.44a, the local Nusselt number is defined as 

(2.44b) 

If the simplifying assumption of constant interface temperature Tvr =Ts is invoked, 

equation 2 .44a gives 

(2 .44c) 

Forcing Functions for Incident Flow 

An important advantage of the present model is that boundary layer behavior can be 

predicted for any specified temporal variation in the free stream velocity u 00 ( x, t) in 

equation 2. l 5a, as long as the variations are piecewise smooth. Since the precise 

characteristics of temporal flow variations are dependent on specific physical 

circumstances, the general features of a steady stagnation flow are assumed to apply so as 

to obtain forcing functions which converge on the steady flow case as forcing frequencies 

approach zero (Mladin and Zumbrunnen, 1994). The transient velocity flow field is 

assumed to resemble a steady state flow field at each instant in time where the velocity 

gradient at the stagnation line corresponds to the instantaneous incident velocity. 

The steady state dimensionless pressure distribution in the liquid p1 ( x) can be 

accurately expressed for x < x. by (Zumbrunnen et al., 1992) 

• 
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2 - -
- x 

2 x -3 + 1. (2.45) P1,ss = x. x. 

This general pressure distribution reflects the essential features of the dimensionless 

pressure distributions for a variety of jet velocity discharge profiles. Applicable values of 

X• depend on the specific jet velocity profile of interest. Notably, for x = 0, Pt = 1 and 

dpt/dx = 0 and for x;::: x., Pt= 0 and dpt/dx = 0. This pressure distribution was used 

with Euler's equation, given by equation 2. 16, to develop the steady state expressions for 

du00 / dx and u 00 • With u 00 = 0 at the stagnation line ( x = O ), the resulting expressions for 

1 
3 -2 • 2 - -

3 
x -2 x (2.46a) -u --oo,ss O< x:>x. x. x. 

u =1 
a::>,ss X> X• 

(2.46b) 

2 
du<X> SS 3 - -x x (2.47a) ' - --

dx -
O< x <x. u00 ssx• x. x. 

' 

= 0. (2.47b) 
dx _ 

X > X. • 

• 
The steady state dimensionless free stream velocity gradient at the stagnation line was 

found from equations 2.46 and 2.47. In the limit as x ~ 0, it is given by 

- du<X> SS J3 C= , =-
dx x =O X. 

·(2.48) 

where C = 0.7854 and x. = 2.2053 for a planar jet with a unifo1111 discharge vel9city. 
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Sinusoidal forcing functions are specified about the initial, steady state values given by 

equations 2.46 and 2.47 and are given for O < E < 1 by 

-
UCO 0 - = <x<x. 

a u ao 
ax. 

O<x <x. 

2 -
3 x 

x. 

3 -- -uao,ss x. 

x. 

-x -2 
x. 

-x -
x. 

I 
3 -

2 

-x 
x. 

1 + E COS ( 2 7t f t) 

2 

1 + E COS ( 2 7t f t) 

Taking the derivative of equation 2.49 with respect to f gives 
• 

I 
2 3 -a u ao 2 - -- x x 

(27t ft). =-27t fE 3 -2 • sin a t x. x. 
O<x <x. 

(2.49) 

(2.50a) 

(2.50b) 

(2.51) 

The time varying dimensionless pressure distribution in the liquid p1 (x, t) is deter111ined 

by using equations 2.49, 2.50, and 2.51 in the time-dependent Euler equation given by 

equation 2.16 which may be expressed in dimensionless fo11n as 

a u ao _ a u ao 1 a P1 
Sr + u = -- . wat 00 ax 2ax. (2.52) 

The resulting dimensionless pressure gradient is given by 

2 
-

= 47t f eSrw sin (27t f t)uaoss - 6 1 +ECOS (27t ft) 
2 x - x 

, x. x. x. 
O<x<x. 

(2.53) 
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The time-dependent dimensionless pressure distribution is obtained by integrating equation 

2.53 with respect to x. The term f( t) is an unknown integration function off . 

3 

-P1 0 - = 47t f ESrw sin -s x <x. 
2 - 3 

- 3 x + 2 
x.. x .. 

2 2 2_ 3 2 
- - 3 x+ 2 - 2 + 
5 x.. x.. x .. 

6 2 I x2 I - 3 

- l+Ecos(27tft) - __ x +f(t) . x.. 2 x.. 3 x; 

(2.54) 

The function f(i) is determined by considering the pressure distribution along the 

stagnation streamline. The steady state local velocity component perpendicular to the 

surface in the free stream is given by (Schlichting, 1979) 
-

-
V 00 SS - = - cy . 

' x= O 
(2.55) 

A sinusoidal forcing function consistent with equations 2.49 and 2.50 is specified about 

the initial steady state value defined in equation 2.55 and is given for 0 < E < I by 

V00 x=o =-Cy l+Ecos (27t ft) . (2.56) 

Taking the derivative of equation 2.56 with respect to f gives 

fJV_00 = 2 7t f EC}' sin ( 2 7t f t) . 
at x=O 

(2.57) 

-Similarly, taking the derivative of equation 2.56 with respect to Y gives 

av - ( - -) - "'-1 = -C I+ E cos 27t ft . 
Gy x= O 

(2 .58) 

The time varying dimensionless pressure distribution in the liquid p1 (y, t) is deter111ined by 

using equations 2.56, 2.57, and 2.58 in the dimensionless for111 of the time-dependent 

Euler equation given by 
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- 1 av. s av 00 - av -g-- = r +v 00 2ay Wat oo ay • (2.59) 

The resulting dimensionless pressure gradient is given by 

y-2g. (2 .60) 

The time-dependent dimensionless pressure distribution along the stagnation line is 

obtained by integrating equation 2.60 using the condition p1 = 0 at y = H to deterr1line the 

resulting integration function oft . 

- -
1 + E COS ( 2 7t f t) 2 

-2g(y-H). 
• 

(2 .61) 

By evaluating equation 2.61 at y = 0 , the condition for determirung the unknown function 

f( t) in equation 2.54 can be obtained. At x = 0, 

(2 .62) 

The time-dependent dimensionless pressure distribution of equation 2.54 becomes 

3 
• _ . ( - -) x~ 2 _ 3 2 2 2 _ 3 2 

p1 _ = 47t f ESrw sin 2 7t f t - 3 x + 2 - - 3 x + 2 - 2 + 
O< x <x . 4 X X 5 X X X • • • • • 

6 ( - -) 2 1 x 2 1 - 3 

- l+Ecos 27t ft - -- x 2 +2Srw7t f EC sin 
x. 2 x. 3 x. 

(2 .63) 
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·CHAPTER III 

SOLUTION METHODOLOGY AND MODEL VERIFICATION 

The set of nonlinear partial differential equations 2.29-2.32, 2.36-2.40, and 2.43 

govern the transient and spatial boundary layer responses of 8v, 8, and~. This set of 

equations consists of momentum and energy conservation in the vapor and liquid layers 

coupled with the following conditions at the liquid-vapor interface: conservation of mass, 

balance of force and momentum, balance of shear stress, balance of th er rnal energy, and 

the no-slip relationship . The governing parameters for this set of equations include 

Strouhal number Srw, which defines the forcing frequency for the incident flow, Jakob 

number Ja, which is a measure of vapor superheat, and subcooling parameter p, which is a 

measure of the relative temperature differences across the vapor and liquid. Other 

parameters include the ratios of liquid density to vapor density and liquid viscosity to 

vapor viscosity. Reynolds numbers Rt!wi and Rewv, and Prandtl numbers Pr1 and Prv, for 

the liquid and the vapor are also governing parameters. The effects of interfacial tension 

and radiation heat transfer are taken into account by the dimensionless interfacial tension 

parameter a, and the dimensionless parameter whRlkv. The free stream velocity 

distribution and the pressure distribution in the liquid and the vapor must also be specified 

for the governing equations. 

The governing equations have the potential to extend previous steady state studies of 

forced convection boundary layer flow in the film boiling regime on a flat isothern1al plate. 

The current model retains transient ter1ns that were omitted from the steady state studies 

• 
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in which spatial boundary layer variation was investigated. Therefore, the current model is 

capable of investigating boundary layer behavior in the vicinity of a stagnation flow as the 

boundary layers vary spatially and temporally. However, only the equations pertaining to 

the stagnation line temporal response will be solved within the scope of this study. 

Solution Methodology for Stagnation Line Temporal Response 

The equations governing the boundary layer responses can be simplified at the 

stagnation line by recognizing the symmetry in the dividing flow about the stagnation 

streamline as shown in Figure 2.1. Based on this symmetry, o8v/ox = 0, 08/ox = 0, and 

o!J../ox = 0 at x = 0. The validity of this assumption of boundary layer symmetry is 

obvious for a stationary plate but must be carefully considered for vP -=t= 0. Boundary layer 

symmetry about the stagnation streamline on a moving plate was applied by Zumbrunnen 

et al. (1992) in an integral formulation for single-phase flow with resulting model 

predictions agreeing with an exact analysis (Zumbrunnen, 1991) where symmetry was not 

assumed to within 2%. Thus, the conditions a8/ox = O and a7S/ox =Oat the stagnation 

line (x = O) were concluded to provide results within the accuracy of the integral 

formulation. Therefore, these conditions were applied in the present model and were 

extended to include oov /ox= 0 at x = 0 . 

Similarly, symmetry in the pressure distribution about the stagnation streamline gives 
' 

8p
1
/0x = 0 and oPv/ox = 0 at x = 0 . The assumption of local the1·modynamic 

equilibrium at the interface between vapor and liquid phases of a pure substance implies a 

unique relationship between the temperature and the vapor pressure at the interface. 
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Therefore, the temperature gradients at the stagnation line are afll I ox = 0 and 

afvl I ox = o as a result of the symmetry in the pressure distribution at the stagnation line. 

Because li00 has a constant zero value (u00 = 0) at x = 0 even in a time-varying flow, it 

follows that the time derivative 0000 /at is zero along the stagnation streamline. The 

temperature of the interface may vary with time and position along the interface as long as 

local ther1nodynamic equilibrium is maintained between saturation temperature and 
. 

saturation pressure. Therefore, equations 2.30, 2.32, and 2.40 were developed assuming 

the temperature of the interface is not a constant. However, for the sample cases 

presented in this study, it is assumed that the interface temperature is constant and the 

solution methodology is presented based on this simplifying assumption. Although pulsing 

the flow induces pressure oscillations which are accompanied by oscillations in saturation 

temperature, the assumption of constant interface temperature is appropriate for small 

oscillations in saturation temperature. If the dependence of interface temperature on time 

and position were retained, the same solution methodology would apply. Invoking the 

simplifying conditions which arise at the stagnation line along with the assumption that 

interface temperature is a constant in equations 2.29-2.32, 2.36-2.40, and 2.43 results in a 

set of nonlinear ordinary differential equations with respect to time which governs the 

transient responses in the vicinity of the stagnation line. Momentum conservation for the 

vapor layer given by equation 2.29 simplifies at the stagnation line to give 

-
1 (- _ ) _ IS ouv1 ouv1 

- U 1 + V - U 1 + - rw _ + 2 v p 2 at ox 
I_ 2_ I_ 
-v +-u --u J P 3 vi 2 I 

-
s: = 0 UV . 

(3 .1) 
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Energy conservation for the vapor layer, equation 2.30, becomes 

-
IS I ouvr --- r -- cS = 0 2 w 6 ox v . (3.2) 

Similarly, equations 2.31 and 2.32 for momentum and energy conservation in the liquid 

layer can be simplified at the stagnation line to give equations 3. 3 and 3. 4, respectively. 

-
811 1 -Sr at 3 w 

l_ 
-u + 3 II 

1 
30 

1 s aulI 2 _ aulI 4 _ au"' - r +-u + u 
3 w at 5 II OX 15 II OX 

2 -- s:: - 1 0 u 1 ---u1Iu = . 
Rew1 

6 

+ -2--1 __ 11-1 + Pv 
Rewt Pr, P1 

-() + 

(3 .3) 

= 0. 

(3 .4) 

At the stagnation line, equation 2.36 for conservation of mass at the liquid-vapor interface 

becomes 

(3.5) 

while the force and momentum balance in the direction of the nor111al to the interface, 

equation 2.37, simplifies to 

Pv - --pv - P1 · (3.6) 
P1 

• 



• 
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Upon invoking the symmetry conditions at the stagnation line, the no-slip relationship at 

the liquid-vapor interface given by equation 2.38 reduces to 

- -
(3 .7) 

and the interfacial shear stress balance given by equation 2.39 becomes 

(- -)~ -I 2µ1-~-l 
llv1 - v P ov + Uuo = 0 . 

µv (3 .8) 

Equation 2.40 for the balance of thermal energy at the liquid-vapor interface simplifies to 

I 
- Prv Rewv 

Ja 
= _ T ~ - 1 - whR T - 2a µ, T. LS-1 

'-vi v k '-vI P 1I · v µv 

(3 .9) 

At the stagnation line, equation 2.43 gives 

1 
(3 .10) 

Equations 3.1-3 .10 can be combined to produce a set of three nonlinear ordinary 

- -
differential equations which govern the transient response of the boundary layers 8v, 8 , 

-and ~ in the vicinity of the stagnation line. The differential control volumes used to 

develop the relationships for conservation of mass, momentum and energy at the liquid-

vapor interface (Figures 2.2, 2.3, and 2.5) indicate that the velocity of the liquid at the 

interface, the velocity of the vapor at the interface, and the velocity of the liquid-vapor 

interface itself are separate quantities. Because the x-components of liquid and vapor 

v'Clocity at the interface are equal at the stagnation line according to equation 3. 7, and the 

liquid-vapor interface lies between the liquid and vapor layers, equation 3. 7 may be 

generalized to also include the x-component of interface velocity u1 . 
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- - -
(3 . 11) 

Because ull, Ur, and uvr are always equal at the stagnation line, their time derivatives are 

also equal at the stagnation line. 

aull - aur - auvr - -
Ot at at' (3.12) 

However, ull and uvr are constrained to be equal only at the stagnation line where there is 

symmetry in the flow. Away from the stagnation line, ull and uvr may vary independently. 

Therefore, the gradients aull /OX. and ouvr /ox at the stagnation line are not assumed to be 

equal. Upon invoking equations 3. 11 and 3. 12, there is no need to distinguish between the 

ter111s ull, ur, and uvr· Therefore, the x-components of velocity in the vapor and the 

liquid layers at the liquid-vapor interface as well as the x-component of the velocity of the 

liquid-vapor interface itself can be denoted as Ur . Similarly, the time derivatives of ull, 

ur, and u v1 are all equal and can be denoted as 001/at. 
In order to develop a resulting set of three nonlinear ordinary differential equations 

- - -
which depend only on the dependent variables ov, o, and ~,all other dependent variables 

which appear in equations 3. 1-3 . 10 must be expressed in te1 lt1s of these four variables. 

For example, the nonlinear ordinary differential equation for 88 v /at will be developed 

from equation 3 .1 and the variables U1, OUr I at, and auvl I ox which appear in equation 3 .1 

will be expressed in tel lllS of the variables ov, 8, I, and r . Observing the equalities 

established by equations 3. 11 and 3. 12, equations 3. 1 and 3 .2 can be combined and 

rearranged to develop expressions for aov I at and OUvr I ox.. 
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-
8ov 1 ou1 --- = ,.----.....- s:: at ~ UV. vp + 2u1 uL 

(3.13) 

(3.14) 

The nonlinear ordinary differential equations for 88/at and a"E/at will be developed from 

equations 3 .3 and 3.4, respectively. Equations 3.5, 3.9, and 3.10 can be used to eliminate 

the variables v 11 , vv1, and 828v/OX..2
, respectively, as necessary. Using equations 3.5, 3.9, 

and 3.10 in equation 3.6 results in an expression for the gradient ou11 /ox . 

• 

-
Ja T 1 wh - µ __ 

_ v + R T + 2 A I T, ,1.- 1 O k vi I-' II v v µv 

1 Pv - _ 
-
2 

Pv -pi -
P1 

2 - 2 

~1 + whR T +2A µ1 T. --s._-1 
O k vi I-' II v v µv 

• 

(3 .15) 

The expression for u1 is obtained by using equation 3. 11 in equation 3. 8 which gives 

-
- VP (3.16) U1= - • 

1+2 µI 0~ 
µv 0 

It is evident from equations 3. 13 and 3 .14 that an expression for au I I at is needed. This 

expression can be obtained by differentiating with respect to time the shear stress balance 
' 

at the interface given by equation 2 .39. Invoking the symmetry conditions which apply at 

the stagnation line, the derivative with respect to time of equation 2.39 gives 
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- I 

• (3 .17) 

The set of three nonlinear ordinary differential equations which depend only on the 

- -
dependent variables 8v, 8, and X are given by equations 3.13, 3.3, and 3.4 upon 

substituting for the terms auvr I ox.' ffiu I ox.' Ur' and aur I Ot with the expressions above. 

Observing the equalities established by equations 3. 11 and 3. 12, equations 3. 3 and 3. 4 can 

be expressed as 

-
88 --at (3. 18) 

and 

- 1X3 1X2 
_ - - +- - - ~ 

10 8 2 2 8 
1 X3 1X2 

--
10 8 2 2 8 

+ 
a~ 1 ffiu = ___ __:;:_ 
Ot Srw OX. 

(3 .19) 

respectively. Upon substituting for auvr I ox.' ffiu I ox.' Ur' and aur I Ot from equations 

3.14, 3.15, 3.16, and 3.17, respectively, equations 3.13, 3.18, and 3.19 for111 the set of 

three nonlinear ordinary differential equations which govern the transient response of the 

vapor layer and the velocity and the1111al boundary layers in the liquid in the vicinity of the 

- - -
stagnation line in terms of the dimensionless variables 8v , 8, and ~. Because the · 

governing equations were developed to include the influence of surface motion, the model 

depends on the surface motion parameter v P . As a consequence, the condition v P * 0 

must be observed or a singularity will result upon using equation 3. 16. If subsequent 

-
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studies investigate boundary layer behavior away from the stagnation line using the 
• 

governing equations which include spatial dependency, another singularity point may arise. 

This singularity may be encountered as the interface velocity approaches the velocity of 

the plate at locations away from the stagnation line. 

An automatic step size Runge-Kutta-Fehlberg integration method was implemented 

within the commercial software package MATLAB (Natick, Massachusetts) to obtain 

numerical solutions to the three ordinary, nonlinear differential equations 3. 13, 3. 18, and 

- - -
3. 19 for ov, o, and Li. An automatic step size was used where larger steps are taken 

when the solution is changing more slowly. A fourth- and fifth-order pair of for1nulas was 

used for higher accuracy. In obtaining numerical results for model verification, a tolerance 

of I 0-6 was specified for the differential equation solver. This tolerance means that time 

steps are successively halved until the absolute error between successive computations is 

within I 0-6. At this tolerance and lower, the boundary layers converged to the same 

steady state response for the case of no external forcing. The boundary layer thicknesses 

approached steady state values in an asymptotic fashion with steady state being established 

when 8 v, 8, and ~ were no longer changing within an absolute error of Io-<>. In obtaining 

numerical solutions for forced response cases, a tolerance of I 0·9 was specified for the 

differential equation solver. This tolerance means that time steps are successively halved 

until the absolute error between successive computations is within 10·9_ At this tolerance 

and lower, the boundary layers converged to the same forced response as dete111tined by 

visual comparison of the output plots. Initial values for the forced response cases were 

-
given by the steady state values of ov, o, and Li for the condition of no flow pulsation. 
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These initial values were deterniined by allowing the transient model to run to steady state 

with steady state being established when 8v, 8, and L1 were no longer changing within an 

absolute error of 1 o-9 . 

Liquid-Vapor Interface Shape in the Vicinity of the Stagnation Line 

Upon solving the governing equations for the dimensionless boundary layer 

- - -
thicknesses ov, o, and L1 at the stagnation line (x = 0), it is possible to construct the 

shape of the liquid-vapor interface in the vicinity of the stagnation line. A second order 

polynomial y(x) is assumed to model the liquid-vapor interface at an instant in time. The 

interface profile is governed by the symmetry in the dividing flow about the stagnation 

streamline. At the stagnation line (x = 0), 

y = Ov (3 .20a) 

and 

dy/dx = d&,/dx = 0. (3 .20b) 

In addition, the curvature of the interface d2y/dx2 = d2&,/dx2 is known at x = 0 from 

equation 3. I 0. Based on these three conditions, the resulting dimensionless liquid-vapor 

interface in the vicinity of the stagnation line at an instant in time is given by 

-
- i d 2o o (x)- - v 

v - 2 dx2 
x=O 

-x:z+ 0 v - 0 x= 

Liquid Layer Model Verification 

(3 .21) 

• 

The liquid boundary layer response without flow pulsation was verified by comparison 

under steady state conditions to a known similarity solution for a two-dimensional 
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stagnation flow. The ratio Nu/Re112 for a single-phase stagnation flow with constant free 

stream and wall temperature is tabulated by Evans (1962). This data was used as the basis 

to verify the current model. In order to solve equations 3 .13, 3 .18, and 3 .19 to 

approximate a single-phase flow, several assumptions had to be made in specifying the 

input parameters. First, each vapor property was assigned the same valtie as the 

corresponding liquid property. Dimensionless interfacial tension was made very small 

such that the interface was passive. Radiation across the vapor layer was set to zero by 

specifying whRlkv = 0. The influence of the vapor layer can be diminished by modeling it 

as having a low ther111al resistance. Therefore, the difference between plate and interface 

temperatures was decreased to 0 .1 °C. The comparison was run for a liquid free stream 

temperature of 20 °C, an interface temperature of 100 °C, and a plate temperature of 

100.1 °C. 

Equations 3 . 13, 3. 18, and 3. 19 model the transient boundary layer response of o v, o, 

and X. These transient equations are used to determine a steady state response by 

specifying approximate initial conditions and then allowing the model to run to steady 

state. To approximate the single-phase case, the initial vapor layer thickness was made 

sufficiently small such that it had negligible influence on the response of the liquid 

boundary layers. The initial values for the liquid thermal and velocity boundary layer 

thicknesses were dete111tined from the steady stagnation flow solution for Hiemenz flow 

given by (Schlichting, 1979) 

µ/p 
0 = 2.4 c • 

' 

(3 .22) 



Given 8 from equation 3 .22, ~ can be determined from equation 3 .23 . 

8 = Pr1/3. 
~ 

The heat transfer coefficient for the single-phase case can be calculated by 

The calculated values ofNu/Re112
, where Nu= hx/k and Re= (Cx2p/~L) 112 , were 
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(3 .23) 

(3 .24) 

determined to be within 0.9-3 .8% of those obtained from the similarity solutions tabulated 

by Evans ( 1962) for a two-dimensional stagnation flow for 1. 0 < Pr < 10. 0. These values 

are listed in Table 3. 1. 

Table 3. 1. Comparison of model predictions of Nu!Re 112 to those of a similarity 
solution for two-dimensional stagnation flow. 

Evans (1962) 

Current 
Model 

Pr 
1.0 5.0 10.0 

0.570 1.043 1.344 

0.565 1.014 1.293 

Vapor Layer Model Verification 

The vapor layer response without flow pulsation was verified by comparison unde'r 

steady state conditions to a known theoretical correlation for experimental data for forced 

convection film boiling heat transfer from a horizontal cylinder in a subcooled cross-flow. 
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Liu et al . (1992) compare their experimental data with the correlation of Epstein and 
• 

Hauser ( 1980) for subcooled forced convection film boiling heat transfer from a cylinder. 

Epstein and Hauser's semi-theoretical correlation for flow rates U > (gD)112 is given by 

1 1 

P.Nuv/(Re1)2 = 2.5Z 4 (3 .25) 

where Nuv = heJ)lkv, Rei is the liquid flow Reynolds number given by Re1 = UDPJ/µ1 , and 

Z is the nondimensional parameter given by 

The nondimensional parameters p., Ai, and B1 in the expression for Z are defined as: 

I 

Pv 2 µv/ Pv 
Pt µI / P1 

A1 = Cpv~ T satf(PrvL ). 

1 
2 

B1 = p.(k1fkv)[Cpv~TsuJ(PrvL)]Pr1 1 12 . 

• 

(3 .26) 

(3 .27) 

(3 .28) 

(3 .29) 

The heat transfer coefficient heo is the area-averaged film boiling heat transfer coefficient if 

there were no radiation heat transfer, Dis the diameter of the cylinder heater, g is the 

acceleration due to gravity, and U is the liquid flow rate. The heater surface superheat is 

given by ~ T sat = T w - T sat, where T w is the cylinder wall temperature and T sat is saturation 

temperature. The liquid subcooling below saturation temperature is given by ~ T sub = T sat -

T1, and Lis the latent heat of vaporization. 

Although the current model solution returns the local heat transfer coefficient in the 

vicinity of the stagnation line, available experimental data and equation 3.25 pertain to a 

heat transfer coefficient averaged over the entire cylinder surface. Therefore, the local 
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Figure 3. 1. Comparison of predicted Nusselt numbers for film boiling with water with 
those given by Epstein and Hauser's correlation (equation 3 .25) with 
Rewt = 1742, Rewv = 8.4, Pr1 = 1.9, Prv = 1.0, µ,/µv = 13.5, p1IPv = 2789, 
CT = 0.6, P = 0.03, Ja = 0 .5, and WhRfkv = 0. s 

-
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the vicinity of the stagnation line correlates well with the average heat transfer coefficient 

based on the entire surface of the cylinder as given by· equation 3. 25 . The accuracy of the 

correlation given by equation 3 .25 was investigated by Liu et al . (1992). The experimental 

data of Liu et al. (1992) has nearly the same slope as the correlation of equation 3 .25 , but 

the correlation consistently predicts values that are higher than the experimental data. The 

maximum difference is 32o/o for a 3mm diameter cylinder in water. Thus, the model of this 

study returns Nusselt numbers that are in good agreement with experimental data. 

-



CHAPTER IV 

RESULTS AND DISCUSSION 

Equations 3. 13, 3. 18, and 3. 19 constitute a system of three, coupled, nonlinear, 

ordinary differential equations that govern the dynamical responses of the vapor boundary 

layer, in te11ns of the variable 8v, and the the1·1nal and velocity boundary layers in the 

liquid, in te1111s of the variables 8 and X. When taken together with the forcing functions 

for incident flow velocity and the corresponding liquid pressure variation given by 

equations 2.50 and 2.63, solutions in terms of dimensionless time t are dependent on the 

Nonlinearities appearing in the governing differential equations include te1111s in which the 

- - -
dependent variables 8v, 8, and ~ are raised to powers other than one and te11ns in which 

dependent variables for 111 products with their derivatives. Examples of such nonlinearities 

appear in equation 3. 19 in terrns such as X 3 I 82 and in equation 3. 17 where 8v and 8 fo1·111 

products with their time derivatives. 

Because this model retains nonlinear ter111s, it is capable of investigating distinctive 

phenomena associated with the complex responses of nonlinear systems (Moon, 1992). 

For example, nonlinear behavior implies the potential for multiple equilibrium states and 
• 

the possibility of periodic solutions with subharmonic and superharmonic frequency 

components. Other nonlinear phenomena which may be discovered in the present model 

include quasi periodic oscillations in response to periodic inputs. The possibility of self-

excited oscillations can also be investigated. Frequency locking in response to a periodic 
• 
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driving force, another well known phenomena in nonlinear oscillations could also be 
' 

investigated. Retaining nonlinear tertns in the current model allows many aspects of 

boundary layer response to be investigated which would not be possible in a study based 

on linearizations. 

The purpose of the results presented in this study is to demonstrate the model's 

performance and to suggest how it may be used in subsequent studies. A parametric study 

is not perforrned. The effect of flow pulsations, interfacial tension, and radiation on the 

stability of the vapor layer will be briefly investigated for one specific condition that 

roughly pertains to metals cooling. 

The responses of equations 3. 13, 3. 18, and 3. 19 with no external forcing can be used 

- - -
to establish a set of steady state boundary layer thicknesses, 8v, 8, and d, for a given set 

of parameters. These steady state values are dete11nined by allowing the model to pass 

through an initial transient beginning with prescribed estimates and then achieve steady 

state. However, the model does not predict a unique set of steady state boundary layer 

- - -
thicknesses, 8v, 8, and d, based on a given set of parameters alone. Rather, the steady 

• 

- -
state response also depends on the initial values specified for 8v, 8, and d. For example, 

- -
given the same set of parameters, two different sets of initial values for 8v , 8, and d 

would result in two different steady states being achieved. 

The occurrence of multiple steady states can be explained physically by considering the 
• 

balance ofthe1111al energy at the liquid-vapor interface (equation 2.22). In stable film 

boiling for a given parametric range, several different vapor layer thicknesses which satisfy 

the balance of thermal energy at the interface may be possible. Vapor layer thickness is 



64 

influenced by vaporization rate. A high rate of vaporization resulting in a relatively large 

vapor layer thickness is supported by a high rate of energy transfer to the interface by 

conduction and radiation. Likewise, a low vaporization rate resulting in a relatively 

thinner vapor layer is produced by the transfer of less energy to the interface. The 

interaction of all three boundary layers results in multiple combinations of boundary layer 

thicknesses which maintain the balance of thermal energy at the liquid-vapor interface. 

However, there seems to be a certain range of initial conditions within which the 

model achieves a steady state response and outside that range, the model becomes 

unstable. Therefore, the model results are very dependent on the initial values specified 

- - - -
for 8v, 8 , and ~ . Physically plausible initial values for 8 and ~ which are consistent 

with a given parametric range can be determined from the Hiemenz flow solution given by 

-
equations 3. 22 and 3. 23 . Similarly, an initial value for 8 v which is consistent with a given 

parametric range can be deterr11ined from Epstein and Hauser' s correlation given by 

equation 3. 25 . Because the data available for deter rruning initial values of 8v is based on 

the stagnation flow of a cylinder in cross-flow, it was decided to present results of this 

• study for this geometry . 

The governing equations and boundary conditions of the current model were 
• 

developed with the potential to investigate film boiling boundary layer behavior both 

spatially and temporally on a moving plate. Surface motion can significantly influence heat 

transfer in film boiling at regions away from the stagnation line, especially when surface 

speed greatly exceeds the liquid velocity. Thus, the model was developed to include the 

influence of the surface motion at regions away from the stagnation line. As a 
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con equence, the model depend on the urfa emotion param ter - P . In equation 3 16 

-P -:t:. 0 r a ingulanty \; ·11 re ult HO\\e\ r, a 'rltnd r 1n r -fl \V ma · n t p nain t 

surface motion Although urface motion an 1gn1ficantl · intlu nc h at tran fer 1n film 

boiling at regions a""ay from the tagnation line, urface m t1 n ha l1ttl 1nflu n eon heat 

transfer near the stagnation line when urface temperature i on tant Z n1brunnen et al , 

1989 Zumbrunnen et al 1992) The current tagnat1 n !in m de! a um a n tant 

surface temperature Therefore, heat tran fer in thi model i not e pe t d t b 

significantly influenced by surface motion This was in estigated in the urrent mod 

varying v P from a value of I to vP = 5 for one specific condition The ame tead tate 

-
response was predicted. On this basis, the initial value of 8, dete111uned from Ep tein and 

Hauser's correlation for a stationary surface is assumed to be a good approximation 

The present model assumes constant the1111ophysical propenies Film temperature Tr 

( = (T 1 + T 2)/2, where T 1 and T 2 are the temperatures across the boundary la er in the 

liquid or vapor) was used to estimate the values of ther111ophysical propenie for the 

evaluation of parameters and the selection of parametric ranges. Boundary la er re pan e 

was investigated for water with properties based on a free stream temperature of T 'I: - 7 

°C, an interface saturation temperature ofT = 102 °C, and a plate temperature ofTP = 

352 °C Results were dete111uned for a cylinder diameter of 3mm and a flow el 1t f 

O 18 mis In order to move into a possibly more interesting parametric range, th Prandtl 

number of the liquid was taken to be Pr1 = 4.0 in order to empha 1ze the differen 

between the ther 111al and velocit bo11ndary la ers in the liquid The actual liquid Prandtl 

number for the film temperature pec1fied is about 2 0, which give vel cit and th rmal 
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boundary layers in the liquid close to the same value. The value of v is taken to be 1 
p ' 

whereby surface speed is equal to flow velocity. For a constant value of the interface 

temperature Ts, 1,,1 = -1 and Tu= 1. Other input parameters are given by Rem= 1700, 

R~ = 15, Prv = 1.0, µ1/µv = 20, PtlPv = 2200, as= 0.6, p = 0.03, and Ja = 0.2. Although 

property values were based on film temperature in this study, it may be rnore appropriate 

to evaluate interfacial properties such as interfacial tension at the temperature of the 

interface. 

The pressure imposed on the vapor boundary layer is an input parameter which must be 

deter 111ined. It is directly related to the pressure in the liquid boundary layer given by 

equation 2.63 . A simplified version of equation 2.18 is used to approximate the pressure 

in the vapor boundary layer. For some phase change processes, the motion of the 

interface is limited by the heat transfer to or from it and the interface motion is usually 

relatively slow (Carey, 1992). For these conditions, the liquid and vapor momentum terms 

in equation 2. 18 are very small. Therefore, pressure differences across the liquid-vapor 

interface arise principally from the curvature of the interface. This is used as a basis to 

approximate the value of pressure in the vapor boundary layer. 

The pressure in the vapor layer is estimated by Pv = p1 + crslrc. In using this expression, 
. 

radius of curvature is estimated equal to cylinder diameter and liquid pressure is specified 

at the time-averaged value. This expression is used in the current study only as a means to 

approximate a constant value for vapor pressure. In a physical system, Pv could change as 

re and p1 change accordi~g to equations 2.63 and 2.19, respectively. However, the limiting 

assumption of a constant value of Pv is necessary in the current study in order to obtain 

• 
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closure in the system of equations under consideration. Physically, this restricts the model 

to smaller pulse amplitudes. The influence of interfacial tension on vapor pressure is 

included in the current model unlike the studies of Walsh and Wilson ( 1979) and Chappidi 

et al. (1991) which assumed Pv = p1. Note that equation 2.18 without any simplification 

was used in developing the set of nonlinear partial differential equations which governs 

transient and spatial boundary layer response. 

For the specified parametric condition, initial estimates of liquid layer velocity and 

-
ther111al boundary layer thicknesses, o and ~, were deternlined from the Hiemenz flow 

solution given by equations 3. 22 and 3. 23. Similarly, the initial estimate of vapor 

-
boundary layer thickness ov was dete11runed from Epstein & Hauser' s correlation given by 

equation 3 .25 for the specified parametric condition. These estimates were used in the 

present model as initial conditions to deter1rune steady state values for the condition of no 

external forcing . These steady state values for the condition of no external forcing were 

used as initial conditions for the forced response cases which investigate the effects of 

flow pulsation. Two sets of initial values based on no external forcing were deter rruned 

for the given parametric conditions for radiation parameter values of whRlkv = 0 and 

- -
whRlkv = 10. The initial values of Ovo = 0.006500068, 00 = 0.057726632, and ~0 = 

0.051433868 correspond to the given parametric conditions for whRikv = 0. Likewise, for 

- - -
whR/kv = 10, initial values are given by Ovo = 0.006561428, 00 = 0.063421017, and ~0 = 

-
0.057488483. With no external forcing, the steady state vapor layer thickness ov with 

radiation is greater than the steady state vapor layer thickness with zero radiation as 

expected. The increased heat transfer due to radiation increases the thickness of the vapor 
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boundary layer because more liquid is vaporized. A thicker vapor layer and corresponding 

thertnal resistance are required to establish thermal equilibrium. 

Forced responses are presented for cases both with and without radiation for a forcing 

frequency of 10 Hz (Srw = 0.1667) with pulse amplitudes of 0.1, 0.2, and 0.3 . The results 

are presented in ter111s of the instantaneous boundary layer thicknesses -gv, 8 , and ..1 
. . 

nor1nalized by their initial values 8vo, 80 , and ~o. No1111alized Nu., defined as Nu. = 

Nuv I Nuv0, is also presented to show the influence of the boundary layer dynamics on heat 

transfer. 

First, the forced response without radiation will be considered. The boundary layer 

response for a pulse amplitude E = 0. I is shown in Figure 4. I a. Although flow pulsations 

are induced by sinusoidal forcing functions given by equations 2.50 and 2.63, the three 

boundary layers undergo non-sinusoidal oscillations due to the nonlinear content of 
• 

equations 3. 13, 3 .18, and 3. 19 as expected. The sinusoidal forcing functions specified by 

equations 2.50 and 2.63 begin pulsation with a zero slope. This zero slope facilitates a 

smooth transition from the initial condition as flow pulsation is imposed. As a result, a 

steady periodic boundary layer response is obtained after a small starting transient. When 

-
subject to flow pulsation for E = 0. 1, the oscillation of the liquid boundary layers 8 and ..1 

reaches peaks of approximately 3 times their initial values. The response of the thern1al 

boundary layer ..1 tends to lag behind the response of the velocity boundary layer 8 . 
• 

Physically, this behavior is expected because the velocity boundary layer responds directly 

to flow pulsation. Changes in the velocity boundary layer influence energy advection and 

these effects are reflected in the ther1nal boundary layer. In contrast, the minimum values 

• 



a) 

+ ::s z 

b) 

3.5 

3 -

2.5 .... 

2 f-

1.5 .... 

1 

0.5 
0 

• 

' 

/ 

v 

01 
' 

0.5 

' ' 
~. 

O·~ 

0.. v """ . 

' 
• ' 

1 1.5 

' ' ' ' ' ' 

1~ -

-

-

-

/ v v ""\\._ 

II , 
'C/ ' 

• ' ' • • . 

2 2.5 3 3.5 4 4.5 5 

1.06r----r. --,,---.,,--,-, -,, ----r,--.-,-.-, ---.-,-~ 

1 .04~1'\ (\ -

1.02 

1 .... -

0.98- -

0. 96~ -

0.94f- -

0.92>- -

0.9-

v 
0. .__ _ _.__ _ _.__ _ __.__-'---'-----'--___J--J__--'-__J 88 

I I I ' f I I l I 

0 0.5 1 1. 5 2 2.5 3 3.5 4 4.5 5 

-
t 

69 

Figure 4 .1. Response for sinusoidal flow pulsations: (a) no11nalized boundary layer 
thicknesses, (b) nor111alized Nusselt number with Srw = 0 .1667, E = 0 .1, v P = 
1, R~ = 1700, Rewv = 15, Pr1=4.0, Prv = 1.0, µ1/µv = 20, PJ/Pv = 2200, cr, = 

- -
0 .6, ~ = 0.03, Ja = 0 .2, whR!'kv = 0, <>vo = 0.006500068, <>o = 0.057726632, 

-and Li 0 = 0.051433868. 
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of the liquid boundary layers 8 and ~ are maintained around 60% of their initial values. It 

is obvious from Figure 4. 1 a that the oscillation of 8 and ~ is not symmetric about the 

initial position. Flow pulsation tends to increase the boundary layers above their initial 

positions much more than it causes them to fall below the initial position. This trend was 

also observed in pulsating stagnation flows by Mladin and Zumbrunnen ( 1995). The trend 

-
is apparent in the oscillation of vapor boundary layer thickness ov as well. However, the 

vapor boundary layer responds to flow pulsations with smaller excursions from its initial 

-
position than the liquid boundary layers 8 and ~ . As shown in Figure 4. la, 8v oscillates 

between a maximum value which is 12% greater than the initial position and a minimum 
• 

value which is 4% less than the initial position. The calculated boundary layer responses 

have the same frequency of oscillation as the imposed sinusoidal forcing functions. 

As the boundary layers oscillate due to flow pulsation, heat transfer is affected. The 

effect of flow pulsation on heat transfer is presented in Figure 4. lb in terms ofNu •. 

Again, the oscillation is non-sinusoidal due to the nonlinear content of the governing 

equations. Time-averaged convective heat transfer decreases as Nu. oscillates between a 

maximum value which is 4% greater than the initial condition and a minimum value which 

is 12% less than the initial condition, Increases in Nu., which is based on the local heat 

transfer coefficient defined in equation 2.44, are directly in response to the oscillation of 

-
8v below its initial position. As expected, decreasing the vapor layer thickness 8v ' 

-
improves heat transfer. Likewise, Nu• falls below the initial value when 8v increases due 

to flow pulsation. An increase in vapor layer thickness hampers heat transfer as expected. 
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In order to investigate the influence of interfacial tension on boundary layer response, 

the interfacial tension parameter crs used to produce Figure 4.1 was reduced by 20% from 

crs = 0 .6 to crs = 0 .48 . With all other parameters held constant, initial values for this case 

-
are given by <>vo = 0.006776778, ~o = 0.086052238, and 'X0 = 0 .081337101. Note that 

the decrease in interfacial tension for the case of no flow pulsation results in larger steady 

- - -
state values for ov, o, and d. The boundary layer response for the decreased interfacial 

tension case is characterized by the same asymmetric oscillation observed in Figure 4. 1 a 

but with greater magnitudes of oscillation as shown in Figure 4.2. The maximum 

- -
oscillation of the liquid boundary layers o and d increased from values 3 times the initial 

• 

value to peaks of approximately 6 times the initial value. Similarly, minimum values of the 

-
liquid boundary layers o and d decreased from 60% of the initial value to 50% of the 

-
initial value. The oscillation of the vapor layer ov also increases with maximum values 

which are 18% greater than the initial position and minimum values which are 8% less 

than the initial position. Thus, a 20 % decrease in cr s significantly influences the boundary 

layer response. Notably, the vapor layer oscillates to smaller minimum values. Time-

averaged convective heat transfer decreases as Nu• oscillates between a maximum value 

which is 8o/o greater than the initial condition and a minimum value which is 18% less than 

the initial condition. 

Similar trends are observed at the higher pulse amplitudes of E = 0.2 and E = 0 .3 in 

Figures 4 . 3 and 4 . 4, respectively. A pulse amplitude of E = 0. 2 results in liquid therrnal 

and velocity boundary layer peaks about 16 times the initial value. The minimum values of 

~ and 'X are maintained around 50% of their corresponding initial values. Although the 
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' 

Figure 4.2. Response for sinusoidal flow pulsations: (a) no11nalized boundary layer 
thicknesses, (b) nor111alized Nusselt number with Srw = 0.1667, E = 0.1, vP = 
1, Rewi = 1700, Rewv = 15, Pr1 = 4.0, Prv = 1.0, µ1/µv = 20, Ptf Pv = 2200, crs = 

- -
0.48, J3 = 0.03, Ja = 0.2, whR/kv = 0, Ovo = 0.006776778, Oo = 0.086052238, 

-and ~0 = 0. 081337101. 

• 
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Figure 4 .3. Response for sinusoidal flow pulsations: (a) nor111alized boundary layer 
thicknesses, (b) no1·malized Nusselt number with Srw = 0.1667, E = 0.2, vP = 
1, Rewi = 1700, R~ = 15, Pr1=4.0, Prv = 1.0, µ,lµv = 20, PJ/Pv = 2200, as= 

- -
0.6, ~ = 0.03, Ja = 0.2, whRfkv = 0, <>vo = 0.006500068, 80 = 0.057726632, 

-and ~0 = 0.051433868. 
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Figure 4.4. Response for sinusoidal flow pulsations: (a) nor111alized boundary layer 
thicknesses, (b) no1111alized Nusselt number with Srw = 0.1667, E = 0.3, vP = 
1, Rewt = 1700, Rewv = 15, Pr1 = 4 .0, Prv = 1.0, µ1/~tv = 20, PJ/Pv = 2200, cr. = 

- -
0 .6, ~ = 0.03 , Ja = 0.2, whFfkv = 0, 8vo = 0.006500068, 80 = 0.057726632, 
and ~o = 0.051433868 . 
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- -
oscillation of o and Li is significantly increased by increasing E from 0.1 to 0.2, the 

increase of the vapor boundary layer oscillation is much smaller. As shown in Figure 4.3a, 

-
ov oscillates between a maximum value which is 26% greater than the initial state and a 

minimum value which is 6% less than the initial state. The effect of vapor layer oscillation 

can be seen in terr11s ofNusselt number variation in Figure 4.3b. Time-averaged 

convective heat transfer is reduced as Nu. oscillates between a maximum which is 6o/o 

greater than the initial value and a minimum which is 26o/o less than the initial value. 

- -
As pulse amplitude E is increased to 0 . 3, o and Li reach peak amplitudes of 85 and 98 

times the initial value, respectively, as shown in Figure 4.4a. At this pulse amplitude, the 

- -
maximum values reached by o and Li are significantly different . Again, ov responds to 

-
flow pulsation to a much lesser extent than o and Li . As shown in Figure 4.4a, ov 

oscillates between a maximum which is 32% greater than the initial value and a minimum 

which is 7% less than the initial value. The effect of vapor layer oscillation can be seen in 

terrns ofNusselt number variation in Figure 4.4b. Maximum Nu. reaches peaks 7% 

greater than the initial value. Minimum Nu. falls 32% lower than the initial value. 

-
Although the oscillation of ov increases for the higher pulse amplitude of E = 0.3, the 

maximum decrease in vapor layer thickness is only 7%. The reason for subjecting the film 

boiling boundary layers to flow pulsation is ideally to break down the vapor layer or 

decrease its time-averaged thickness and, therefore, increase heat transfer. The small 7% 

decrease and the 3 2% increase in vapor layer thickness do not imply a vapor layer 

breakdown for the parametric condition investigated. Moreover, convective heat transfer 

is less effective at higher pulse amplitudes. 



• 
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To explore the influence of radiation on boundary layer response, the cases presented in 

Figures 4.1, 4 .3, and 4.4 were repeated for a radiation parameter of whiJkv = 10. Thus, 

radiative transport is activated in the balance of thermal energy at the liquid-vapor 

interface given by equation 2.22. The instantaneous boundary layer response is 

normalized by the initial values of 8vo = 0.006561428, 8 0 = 0.0634210 17, and ~o = 

0.057488483 . Responses for a pulse amplitude of E = 0.1 are shown in Figure 4.5a. A 

comparison of Figure 4. la, without radiation, and Figure 4.5a reveals that the amplitude 

of the boundary layer oscillation is greater for the case with radiation. The liquid thermal 

- -
and velocity boundary layers, b and ~ , reach maximums at approximately 3. 7 5 times their 

-
initial value. The minimum values of b and ~ are maintained around 60% of their initial 

-
value. The vapor boundary layer bv responds to a smaller extent with maximum peaks 

15% greater than the initial value and minimum peaks dropping no lower than 5% below 

the original value. The effect of vapor layer oscillation on heat transfer is presented in 

terrns of Nu .. in Figure 4.5b. Although Nu .. reaches maximum peaks 5% greater than the 

original value, minimum peaks are 15% below the initial value and time-averaged heat 

transfer decreases. The slight increase in the amplitude of oscillation of the vapor layer for 

the case with radiation as compared to the case with no radiation can be explained by 

looking at the initial boundary layer thicknesses. The increased heat transfer due to 

radiation results in more energy being transported to the liquid layer. Therefore, more 

liquid is vaporized and the vapor layer becomes thicker. A thicker vapor layer is expected 

to be more unstable than a thinner layer due to the inherent instability of a dense liquid 

layer overriding a less dense vapor layer. Therefore, the vapor layer becomes more 
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Figure 4 .5. Response for sinusoidal flow pulsations: (a) normalized boundary layer 
thicknesses, (b) nor1nalized Nusselt number with Srw = 0.1667, E = 0.1, vP = 
1, Rem= 1700, R~ = 15, Pr1=4.0, Prv = 1.0, µ1/µv = 20, PJ/Pv = 2200, crs = 

- -
0.6, B = 0.03 , Ja = 0.2, whR/kv = 10, Ovo = 0.006561428, 00 = 0.063421017, 

-
and Li0 = 0.057488483 . 
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sensitive to external forcing as it becomes thicker and less stable. In addition, vapor layer 
• 

oscillation induces oscillation of 8 and ~ . 

Similar trends are observed for E = 0.2 and E = 0.3 with non-zero radiation as shown in 

Figures 4 . 6 and 4. 7, respectively. With E = 0. 2, liquid ther1nal and velocity boundary 

layers reach maximum values about 25 times their initial state as shown i11 Figure 4. 6a. 

- -
The minimum values of 8 and ~ are maintained about 50% of their corresponding initial 

values. Although the amplitude of the response of the liquid the11nal and velocity 

boundary layers changes significantly when pulse amplitude is increased from 0.1 to 0.2, 

the response of the vapor boundary layer increases only slightly. As shown in Figure 4.6a, 

-
<>v oscillates between a maximum value which is 27% greater than the initial state and a 

minimum value which is 7% less than the initial state. The effect of vapor layer oscillation 

can be seen in ter111s ofNusselt number variation in Figure 4.6b. Maximum Nu. reaches 

peaks of 7% greater than the original value while minimum values are as low as 27% 

below the original value. 

As pulse amplitude is increased to 0. 3, the liquid thermal and velocity boundary layers 

reach peak amplitudes of 155 and 190 times their initial values, respectively, as shown in 

-
Figure 4.7a. Vapor boundary layer thickness, <>v, oscillates between a maximum value 

which is 32% greater than its initial value and a minimum value which is 8% less than its 

initial value. The effect on heat transfer for this vapor layer oscillation can be seen in 
' 

ter111s ofNusselt number variation in Figure 4.7b. Maximum Nu. reaches peaks of 8% 

greater than the original starting value while minimum Nu• falls to values 32% below the 

original starting value. 
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Figure 4.6. Response for sinusoidal flow pulsations: (a) nor111alized boundary layer 
thicknesses, (b) normalized Nusselt number with Srw = 0.1667, £ = 0.2, v P = 
1, Rewi = 1700, Rewv = 15, Pr1 = 4.0, Prv = 1.0, µ1/µv = 20, PIIPv = 2200, a,= 

- -
0.6, B = 0.03, Ja = 0.2, whR/kv = 10, Ovo = 0.006561428, Oo = 0.063421017, 
and ~0 = 0.057488483 . 
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Figure 4.7. Response for sinusoidal flow pulsations: (a) no1111alized boundary layer 
thicknesses, (b) nor1nalized Nusselt number with Srw = 0.1667, E = 0.3, vP = 
1, Rem= 1700, R~ = 15, Pr1 = 4.0, Prv = 1.0, µ1/µv = 20, PIIPv = 2200, as= 

- -
0.6, j3 = 0.03, Ja = 0.2, whiJkv = 10, 8vo = 0.006561428, 80 = 0.063421017, 

-and ~o = 0.057488483 . 
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In all of the cases presented in Figures 4. 1 through 4. 7, ov, o, and ~ undergo non-

sinusoidal oscillations due to the nonlinear content of the governing equations. At each 

amplitude, the vapor layer boundary layer thickness ov oscillates to its smallest minimum 

values for the cases with radiation presented in Figures 4. 5 through 4 . 7. This is attributed 

to the fact that the initial starting value of vapor layer thickness ov with radiation is greater 

than the corresponding vapor layer thickness with zero radiation. As more liquid is 

vaporized, the vapor layer becomes thicker and also more unstable. As the vapor layer 

becomes more unstable, it also becomes more sensitive to external forcing. These results 

suggest there is potential to use pulsation as a means to destabilize the vapor layer in film 

boiling under conditions of high radiative heat transfer. However, the maximum reduction 

-
in vapor layer thickness ov is only 8% below the initial starting condition for the cases 

considered. This small reduction suggests that a vapor layer breakdown would not occur 

due to flow pulsations for the cases considered. However, this limited study should not be 

used as a basis to make a generalized assumption about the possibility of flow pulsations 

as a means to break down the vapor layer in film boiling. 

-
The large oscillation of o and ~ as shown in Figure 4. 7 a for whR/kv = 10 and E = 0. 3 

was further investigated by varying Jakob number for otherwise identical parameters. 

Jakob number was varied from its original value of Ja = 0.2 used to produce Figure 4. 7 to 

-
a smaller value of Ja = 0.02 . The initial values of Ovo = 0.006206590, 00 = 0.034341779, 

and ~o = 0.027005552 correspond to these parametric conditions. Jakob number is the 

ratio of maximum sensible energy absorbed by the vapor to the latent energy absorbed by 

the vapor during boiling. In many applications, the sensible energy is much less than the 

• 
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latent energy and Ja has a small value. Therefore, smaller Ja correspond to larger energy 

absorption by change of phase and smaller temperature changes across the vapor. In 

response to a smaller Jakob number, the oscillation of the liquid ther111al and velocity 

boundary layers is dramatically reduced as shown in Figure 4.8a. Physically, the liquid 

the11nal boundary layer becomes smaller in response to less energy being conducted across 

the liquid-vapor interface as more energy is absorbed by phase change in the vapor layer . 
• 

Peak amplitudes which had reached values of 15 5 and 190 times initial values were 

-reduced to values only 30% greater than the initial condition. The minimum values of 8 

-
and d are maintained around 85% of the initial value. Oscillations are less asymmetrical 

for this case which suggests that nonlinearities are less influential. As shown in Figure 

- . 
4.8a, ov oscillates between a maximum value which is about 2% greater than its initial 

value and a minimum value which is about 2% less than its initial value. The 

corresponding Nusselt number variation is shown in Figure 4.8b with Nu .. varying within 

2% above and below its original value. 

Orozco et al. (1987) showed that step changes in liquid velocity or vapor superheat 

initiate large oscillations in vapor film thickness as it converges on a new steady state 

value. This trend was not observed in the current study. Rather, steady state values for 

the case of no external forcing were approached asymptotically without oscillations in 

boundary layer thickness. A possible explanation for this behavior is that the study of 
' 

Orozco et al. ( 1987) neglects the effects of interfacial tension. Interfacial tension tends to 

stabilize the interface (Berenson, 1961) and would therefore dampen the oscillations 

observed by Orozco et al . ( 1987). 
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Figure 4.8. Response for sinusoidal flow pulsations: (a) norr11alized boundary layer 
thicknesses, (b) norrnalized Nusselt number with Srw = 0.1667, E = 0.3, vP = 
1, Rew1=1700, Rewv = 15, Pr1=4.0, Prv = 1.0, µ1/µv = 20, PIIPv = 2200, crs = 

- -
0.6, B = 0.03, Ja = 0.02, whRlkv = 10, ovo = 0.006206590, 00 = 0.034341779, 

-and <'.\ 0 = 0.027005552. 
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The shape of the dimensionless liquid-vapor interface in the vicinity of the stagnation 

line can be plotted using equation 3 .21 . It is very interesting that spatial boundary layer 

behavior in the vicinity of the stagnation line can be deter11rined from results pertaining 

only to the stagnation line itself. As an example of this capability, the dimensionless 

84 

liquid-vapor interface profile in the vicinity of the stagnation line for the case of Figure 4.1 

is presented in Figure 4. 9. Interface shape is plotted at different instants in time during 

one cycle of the response shown in Figure 4 . 1. With initial vapor layer thickness given by 

the steady state response with no external forcing, a sinusoidal flow pulsation is imposed 

at time t = 0. A starting transient is evident from the shift in interface position between 

times t = 0 and t = 1 in Figure 4 . 9. The curvature of the interface is at a minimum for 

t = 0 and t = 1 and is at a maximum fort= 0.4 and t = 0.6. The temporal changes in 

interface shape shown in Figure 4 .9 are produced as the radius of curvature of the liquid-

vapor interface changes. This influence is incorporated into the model by the balance of 

momentum nor1nal to the interface given by equation 2.18. Temporal changes in the 

shape of the interface in the vicinity of the stagnation line are suggestive of the wavy 

nature of the interface which may be revealed in future studies by investigating the 

nonlinear dynamics of the liquid-vapor interface in film boiling away from the stagnation 

line. The general conservation equations presented in Chapter 2 include effects due spatial 

variation of the boundary layers and may be implemented to investigate the nonlinear 
' 

dynamics of the liquid-vapor interface away from the stagnation line. Therefore, these 

equations have the potential to extend the curves presented in Figure 4. 9. 
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Figure 4 .9. Dimensionless liquid-vapor interface shape in the vicinity of the stagnation 
line for sinusoidal flow pulsations with Srw = 0 .1667, E = 0 .1, vP =1, 
R~ = 1700, Rev.v = 15, Pr1=4.0, Prv = 1.0, µJµv = 20, p./Pv = 2200, - -a.= 0.6, f3 = 0 .03, Ja = 0.2? whRlkv = 0, 8~·o = 0.006500068, Do = 

-
0.057726632, and ~0 = 0 .051433868. 
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CHAPTER V 
• 

CONCLUSIONS AND RECOMMENDATIONS 

A theoretical dynamical model of the coupled heat and momentum transfer in film 

boiling arising in the vicinity of a planar stagnation region on a moving isothermal surface 

was developed. The influences of flow pulsations, radiation heat transfer across the vapor 

layer, interfacial tension, and surface motion on the heat transfer and nonlinear dynamics 

of a liquid-vapor interface in film boiling were included in the model. Time-dependent 

equations for mass, momentum, and energy were applied to the boundary layers in the 

liquid and the vapor as well as across the liquid-vapor interface and were solved by the 

integral method using physically correct temperature and velocity profiles of second-order 

in the liquid layer and first-order in the vapor layer. The result was a system of nonlinear, 

partial differential equations which governs the transient and spatial responses of the 

thermal and velocity boundary layers in the liquid and the liquid-vapor interface. This 

system was simplified to a set of nonlinear, first-order, ordinary differential equations 

governing boundary layer response in the vicinity of the stagnation line with time as the 

sole dependent variable by recognizing symmetry in the dividing flow about the stagnation 

streamline. 

Numerical solutions to the resulting system of ordinary differential equations were 

obtained by fourth- and fifth-order Runge-Kutta integration techniques for a sinusoidal 

variation in the flow velocity. Instantaneous boundary layer thicknesses and Nusselt 

numbers were calculated at the stagnation line. As expected, sinusoidal flow pulsations 
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were shown to produce non-sinusoidal oscillations in the boundary layer thicknesses due 

to the nonlinear content of the governing equations. Flow pulsations tended to increase 

boundary layers above their initial starting values much more than it caused them to fall 

below their initial starting values. The effect of flow pulsations and interfacial tension on 

vapor layer stability was considered. Decreasing interfacial tension was shown to increase 

the magnitude of boundary layer oscillation. Therefore, reducing interfacial tension may 

be a means to induce vapor layer instability. Several cases were compared both with and 

without radiation. The vapor boundary layer thickness was shown to oscillate to its 

smallest value with radiation present at each pulse amplitude. These results suggest there 

is potential to use flow pulsation as a means to destabilize the vapor layer in film boiling 

under conditions of high radiative heat transfer. However, the maximum reduction in 

vapor layer thickness was only 8% below its initial starting value for the cases considered. 

This small reduction suggests that a vapor layer breakdown would not occur for the cases 
• 

considered. In addition, for all of the cases considered, time-averaged heat transfer 

decreased in response to flow pulsations. However, this limited study should not be used 

as a basis to make a generalized assumption about the possibility of using flow pulsations 
• 

or altering interfacial tension as a means to break down the vapor layer or enhance heat 
• 

transfer in film boiling. The results presented do suggest the need for further investigation 

by means of a full parametric study of the influences of flow pulsation, interfacial tension, 

and radiation on the temporal boundary layer response at the stagnation line. 

Each case investigated in this study showed greater oscillations in the liquid boundary 
• 

layers in response to flow pulsations than in the vapor boundary layer. This behavior may 
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result from the limiting assumption of a constant pressure in the vapor layer. In a physical 

system, the pressure in the vapor changes in response to changes in the pressure in the 

liquid. The assumption of a constant pressure in the vapor layer limits the applicability of 

the current model to. lower pulse amplitudes. The vapor layer in this study cannot fully 

respond to higher pulse amplitudes because pressure variations in the vapor layer are not 

modeled. The current study could be improved and extended to include higher pulse 

amplitudes by incorporating the effects of pressure variations in the vapor layer in 

response to pressure fluctuations in the liquid layer. Allowing interfacial saturation 

temperature to vary in response vapor pressure variations through a simple 

• 

the11nodynamic relationship could also improve the model. In addition, property value 

estimates could be improved by referring interfacial properties such as interfacial tension 

to the temperature of the interface rather than to film temperature. 

The shape of the liquid-vapor interface in the vicinity of the stagnation line was 

deter111ined from results pertaining to the stagnation line. The curvature of the liquid-

vapor interface in the vicinity of the stagnation line was shown to change temporally in 

response to flow pulsations. These temporal changes are suggestive of the wavy nature of 

the interface which may be revealed in future studies by investigating the nonlinear 

dynamics of the liquid vapor interface in film boiling away from the stagnation line. The 

conservation equations presented in this study before invoking the symmetry condition at 

the stagnation line include the effects of spatial variation away from the stagnation line. 

The results obtained for interface shape in the vicinity of the stagnation line may be 

extended away from the stagnation line by implementing these equations. It is 
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recommended that future studies extend the present model for boundary layer response 

and heat transfer in the vicinity of the stagnation line by implementing the conservation 

equations without invoking the symmetry condition at the stagnation line. Therefore, both 

spatial and temporal boundary layer responses away from the stagnation line could be 

investigated. 

• 

• 

• 



APPENDIX 

RADIUS OF CURVATURE 

In this two-dimensional study, the radius of curvature of the liquid-vapor interface at a 

point is deter111ined by modeling the interface as a plane curve. As discussed by Thomas 

and Finney (1988), when moving along a differentiable curve in the plane, the urut tangent 

vector T to the curve turns as the curve bends. The rate at which T turns is measured by 

the change in the angle <I> that T makes with the urut vector i (Figure A-1 ). At each point 
• 

P, the absolute value of d<j>/ds, stated in radians per urut length along the curve, is called 

the curvature Kat P. If d<j>/dsl is large, T turns sharply as it passes through P and the 

curvature at P is large. If d<j>/dsl is close to zero, T turns more slowly and the curvature at 

P is small. The circle of curvature at a point P on a plane curve where K =t 0 is the circle in 

the plane of the curve that 

1. is tangent to the curve at P (has the same tangent that the curve has); 

2. has the same curvature that the curve has at P; and 

3. lies toward the concave or inner side of the curve (as in Figure A-2). 

The radius of curvature p of the curve at P is the radius of the circle of curvature and is 

given by 

p = 1 I K. (A. l) 

By first calculating curvature and then taking its reciprocal, radius of curvature can be 

dete1111.ined. 
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Figure A-1 . Unit tangent vector T and angle cl> for the determination of curvature K 

at point P. 
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Figure A-2 . Circle of curvature at P(x,y) for dete11nination of radius of curvature. 
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Curvature is measured in radians per unit of length along the curve. From the 

differential fo1·1nula for arc length, ds can be expressed as (Figure A-3) 

ds = ~ dx 2 + dy 2 
. (A.2) 

Equation A.2 may be rearranged to give 

d d ' 2 
_s_ 1+ y 
dx , dx . 

(A.3) 

From the geometry in Figure A-1 , the tangent of the angle <I> that T makes with the unit 

• • vector 1 is 

tan <I> = dy/dx. (A.4) 

To deter111ine the radius of curvature of the liquid-vapor interface at an instant of time, 

the interface is modeled as the plane curve &.(x) as shown in Figure A-4. Along the 

interface, dy is equivalent to d&.. Making this substitution in equation A.3 gives 

I - - -
d / d& ' 2 2 

s 1 v -= + • 

dx , dx 
~ -

Similarly, equation A .4 may be expressed as 

tan <I> = d&. I dx. 

Solving for <I>, equation A. 6 gives 

<I>= tan-1 (d&. /dx) . 

Taking the derivative of equation A. 7 with respect to x gives 

d<I> --
dx 

' d db v 
dx " dx , 

d& ' 2 . 
1 + v 

dx 

. ~-- -

(A.5) 

(A.6) 

(A.7) 

(A.8) 
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Figure A-3 . A differential of arc length ds for the formulation of the relationship 
between ds, dx, and dy. 
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x 

Figure A-4. The liquid-vapor interface modeled as the plane curve 8v(x) at an instant in 
• time. 



Recall that 

Therefore, 

p = ds/d<I> . 

Note that ds/d<I> can be expressed as 

ds/d<I> = (ds/dx)/(d<j>/dx). 

Substituting equations A. 5 and A. 8 into equation A. 11 gives 

3 - - -
dov ' 2 2 

l+ 
ds dx / 

- ---
d<I> / do , • 

d v 
dx , dx 

Therefore, radius of curvature is related to the vapor layer thickness &,(x,t) by 

3 - - -/ do ~ 2 2 
1 + v 

dx 
I -·'-----=-----1 r = .-

c d / do , · 
v 

dx , dx , 
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(A.9) 

(A.10) 

(A.11) 

(A.12) 

(A. 13) 

The balance of momentum in the direction of the norn1al to the interface given by 

equation 2. 18 requires re measured from the vapor phase. The interface is concave down 

on any interval where d2&,/dx2 < 0 and the radius of curvature extends from the vapor 

phase (Figure A-4). The interface is concave up on any interval where d28v/dx2 > 0 and 
' 

the radius of curvature extends from the liquid phase. Measuring re from the vapor phase 

suggests the following sign convention: 

--
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• re extending from the vapor phase is positive, 

• re extending from the liquid phase is negative. 

Applying this sign convention to equation A. 13 results in the expre.:;sion which was used 

to determine radius of curvature at an instant of time. 

3 

d8 2 2 
1 + v 

dx 
r = =---------=-
c d d() v (A.14) 

dx dx 
• 

' 
• 
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