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Abstract External and internal morphological characters of extant and fossil organisms are

crucial to establishing their systematic position, ecological role and evolutionary trends. The lack of

internal characters and soft-tissue preservation in many arthropod fossils, however, impedes

comprehensive phylogenetic analyses and species descriptions according to taxonomic standards

for Recent organisms. We found well-preserved three-dimensional anatomy in mineralized

arthropods from Paleogene fissure fillings and demonstrate the value of these fossils by utilizing

digitally reconstructed anatomical structure of a hister beetle. The new anatomical data facilitate a

refinement of the species diagnosis and allowed us to reject a previous hypothesis of close

phylogenetic relationship to an extant congeneric species. Our findings suggest that mineralized

fossils, even those of macroscopically poor preservation, constitute a rich but yet largely

unexploited source of anatomical data for fossil arthropods.

DOI: 10.7554/eLife.12129.001

Introduction
An organism’s morphology represents a complex solution to myriad ecological and environmental

challenges it and its ancestors have confronted over evolutionary time. Inferring a comprehensive

evolutionary history of a lineage requires consideration of a wide range of morphological features,

and how they may have been shaped by selection, drift, and developmental constraints. While exter-

nal characters predominate in ecomorphological and systematic studies, internal characters also play

critical roles (Perreau and Tafforeau, 2011). In fossil specimens, however, these characters are usu-

ally not preserved or difficult to access (Siveter et al., 2007). While combined phylogenetic analyses

of extant species frequently utilize internal anatomy, analyses including fossil taxa are generally lim-

ited to external characters. Moreover, it is often difficult to distinguish whether unobserved morpho-

logical characters were originally absent or lost due to taphonomic processes, potentially leading to

misinterpretations of character evolution and erroneous phylogenetic placements (Sansom, 2015).

Several types of preservation or certain combinations of them are known for arthropod fossils.

These are adpressions (compressions or impressions) (Wedmann et al., 2007; 2011), casts, voids,
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embeddings, mineral replications, charcoalified remains, or inclusions in amber (Grimaldi et al.,

1994; Martı�nez-Delclòs et al., 2004; Grimaldi and Engel, 2005; Dunlop and Garwood 2014;

Penney and Jepson, 2014). Amber inclusions are famous for exquisitely preserving three-dimen-

sional external shape and sometimes internal characters (Perreau and Tafforeau, 2011). Three-

dimensional arthropods may also be preserved within concretions (e.g. in siderite nodules

[Nitecki, 1979; Garwood et al., 2009]), calcareous incrustations (e.g. in travertine [Rosendahl et al.,

2013]), encapsulations in minerals (e.g. in onyx-marble [Pierce, 1951], chert [Anderson and Trewin,

2003], or gypsum crystals [Schlüter et al., 2003]), and mineral replications (e.g. as calcite

[McCobb et al., 1998], silica [Miller and Lubkin, 2001], goethite [Grimaldi, 2009; Barling et al.,

2014], pyrite [Grimaldi and Engel, 2005], or phosphate [Duncan and Briggs, 1996; Hellmund and

Hellmund, 1996; Waloszek, 2003]). Some of these preservation types have revealed surprisingly

detailed insights into the internal and soft tissue anatomy of several arthropods, for instance from

several Paleozoic marine deposits (e.g. Siveter et al., 2007; 2013; 2014; Ma et al., 2014;

Cong et al., 2014; Edgecombe et al., 2015). For insects, e.g. eyes (Duncan and Briggs, 1996) and

muscle fibers (Grimaldi, 2009) have been reported.

Abundant arthropod fossils preserved by mineralization of calcium phosphate are known from

the Oligocene fissure fillings of Ronheim (Hellmund and Hellmund, 1996), the Late Oligocene/Early

Miocene limestones of Riversleigh (QLD, Australia) (Duncan and Briggs, 1996) and from Paleogene

deposits at Quercy (south-central France) (Filhol, 1877; Gervais, 1877; Flach, 1890; Théve-

nin, 1903; Handschin, 1944). These localities have long been famous for their rich vertebrate fossils

as well (e.g. Legendre et al., 1997; Laloy et al., 2013). The arthropod fossils of Quercy were docu-

mented by Swiss entomologist Eduard Handschin (1944). He described the hister beetle Onthophi-

lus intermedius (Coleoptera: Histeridae) from eight specimens, and considered it distinct but closely

related to the extant European species O. striatus (Forster, 1771). The description, however, was

vague and based mainly on the external morphology of the two best-preserved specimens

(Handschin, 1944).

eLife digest Fossils are the preserved remains of animals, plants or other organisms. The most

highly prized fossils are those that retain their original three-dimensional shape and provide details

needed to identify what species it represents, and what its closest living relatives might be.

However, even fossils with the most beautifully preserved external anatomy can lack the internal

structures that also help to identify its evolutionary history. “Mineralized” fossils are particularly

useful for researchers as they form in a process that helps to preserve the internal anatomy of the

organism. This type of fossil forms when mineral-laden water surrounds an organism’s body so that

the minerals are deposited in its cells and turn soft tissues to stone.

In the 1940s, Swiss scientist Eduard Handschin used eight mineralized fossil specimens to

describe a 25-40 million-year-old beetle species called Onthophilus intermedius. On the basis of the

external anatomy of the two best-preserved specimens, Handschin claimed this species was distinct

from, but closely related to a beetle species called O. striatus that is found in Europe today.

Since then, fossil examination methods have greatly advanced and include three-dimensional X-

ray based imaging techniques that reveal the internal structures of a fossil while leaving it intact.

One such technique is called X-ray computed tomography, in which numerous X-ray images of a

solid object are taken from different angles. These images are then reassembled using computer

software to create a virtual three-dimensional model of the object.

Here, Schwermann et al. used this X-ray technique to re-examine the beetle fossils originally

reported by Handschin. This analysis revealed many new details of these specimens’ external and

internal anatomies, including their gut, genitals and airways. These new insights place Onthophilus

intermedius into a different evolutionary lineage to O. striatus. They also suggest that mineralized

fossils could provide a rich source of data for studies on fossil insects and other arthropods, even if

they appear to be poorly preserved on the outside.

DOI: 10.7554/eLife.12129.002
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X-ray microtomography has become established for the detailed examination of both extant (e.g.

Betz et al., 2007; Bosselaers et al., 2010; van de Kamp et al., 2011; 2014; 2015; Brehm et al.,

2015; Sombke et al., 2015) and extinct (Sutton, 2008; Sutton et al., 2014) arthropods, including

fossils preserved in amber (Lak et al., 2009; Pohl et al., 2010; Soriano et al., 2010; Perreau and

Tafforeau, 2011; Riedel et al., 2012). We explored the application of this technique to mineralized

fossils by re-examination of Handschin’s specimens of Onthophilus intermedius. To ensure a direct

morphological comparison, we performed tomographic scans (Figure 1) of ethanol-fixed and air-

dried O. striatus using the same experimental setup. Furthermore we tested the hypothesis that the

two are closely related with a global phylogenetic analysis of Onthophilus Leach, 1817.

Figure 1. Comparison between the fossil Onthophilus intermedius (A, D, G) and EtOH-fixed (B, E, H) and air-dried

(C, F , I) specimens of O. striatus. Slices of tomographic volumes showing head region (A–C), thorax (D–F) and

abdomen (G–I). ae = aedeagus; ag = accessory gland; bpae = basal part of aedeagus; hg = hindgut;

m = musculature; ml = median lobe; mr = muscles remnants; mscx = mesocoxa; msf = mesofemur;

mst = mesotibia; mt = muscle tissue; mtcx = metacoxa; mtf = metafemur; mtt = metatibia; pcx = procoxa;

sph = spherical particle; sm = stony matrix; t8 = 8th abdominal tergite; t9 = 9th abdominal tergite; t10 = 10th

abdominal tergite; te = tentorium; tr = trachea.

DOI: 10.7554/eLife.12129.003
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Results and discussion
We found internal characters in all fossils (Table 1). Three specimens show remains of inner organs,

especially of the sclerotized genitalia, allowing their identification as two males and one female. The

outer surfaces of most specimens appear smooth (Figure 2); the distinct punctuation found in extant

Onthophilus species (Kovarik and Caterino, 2005) is faint.

The specimen F1994 (Figures 1A,D,G, 2, 3, Supplementary file 1) differs from all other samples

by the presence of a stony matrix, covering the ventral part of the beetle. Its dorsal part and head

are exposed; the elytra are missing and were probably detached before embedding. The exposed

surface is partly eroded, especially in the anterior region of the head, and no appendages are visible

from the outside. The matrix, however, concealed the best-preserved fossil from the collection,

which we examine here in detail.

The ventral portion of the beetle covered by the matrix reveals an extraordinary preservation of

exoskeletal fine structures and internal anatomy (Figures 3, 4 and 5; Supplementary file 1). While

some fractions of the cuticle appear to be mineralized, the latter is mostly represented by air-filled

spaces in the fossil (Figure 1A,D,G). The surface of the exoskeleton is preserved as a three-dimen-

sional imprint of remarkable detail; the body sclerites show characteristic punctuation of the genus.

The right foreleg is not preserved; the left one is truncated from the trochanter; distal parts of the

leg were lost prior to fossilization. The right mid and hind legs are eroded at the edge of the matrix,

but their encrusted left counterparts appear complete except for the most distal part of the metafe-

mur of the hind leg that would protrude from the matrix. Moreover, many anatomical characters can

be recognized inside the fossil (Figure 3D). Apart from internal invaginations of the exoskeleton

(e.g. tentorium, furcal arms and metendosternite), large parts of the alimentary canal and tracheal

system are visible. The oesophagus appears to be shrunken and is connected to the crop, which is

truncated posteriorly. The anterior part of the hindgut is hollow, while the middle part is apparently

filled with mineral matrix but well-defined. Conspicuous spherical particles may constitute remnants

of gut content (Figure 1G). The hindmost part of the gut can be roughly retraced by aggregations

of tiny holes inside the mineral matrix. Like in the alimentary canal, some large tracheae appear to

be filled with matrix, while others are hollow. Except for the musculature connecting the right pro-

and mesofurcal arms (Figure 1D), most muscles can only be recognized by remnants at the insertion

areas (Figure 1G). The genitals are extraordinary well-preserved (Figure 3F). While testes and Duc-

tus ejaculatorius could not be recognized, other soft tissues such as the spiral accessory glands and

parts of the gland ducts are conspicuous. The genital sclerites, including aedeagus, median lobe,

gonopore, tergites 8-10 and sternites 8 & 9 are almost perfectly preserved as imprints.

The remarkable preservation state of the fossil is emphasized when its morphological characters

are compared to those of an extant ethanol-fixed specimen of the same genus (Figures 1, 3E,F and

4). The new anatomical data from this specimen facilitated an extended description of the species

according to modern taxonomic standards (Appendix 1).

Handschin (1944) hypothesized a close relationship (‘particularly striking similarity’) between

Onthophilus intermedius and O. striatus based on then-observable external morphology. However,

Table 1. Notes on the fossil Onthophilus intermedius specimens from Quercy and their preservation.

ID Internal structures preserved Notes

F1951 some sclerites (incl. coxa-trochanteral joints) and tracheae the only specimen depicted by Handschin (1944); but not explicitly
designated as holotype

F1992 some sclerites and small tracheae head, prothorax missing

F1993 some sclerites (incl. coxa-trochanteral joints) head, pygidia missing; elytra partly abraded

F1994 most sclerites, muscle parts, tracheae, parts of alimentary system, large
parts of male genitals

the only specimen of the collection that is ventrally encrusted by a
stone matrix

F1995 some sclerites, parts of male genitals head present; abdomen deeply abraded dorsally

F1996 some sclerites head, prothorax missing

F1997 some sclerites, remains of muscles below the elytra head, prothorax partly abraded

F1998 some sclerites (incl. coxa-trochanteral joints), parts of female genitalia head, prothorax partly abraded

DOI: 10.7554/eLife.12129.004
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phylogenetic analysis (Material and methods) of the more diverse character set now accessible places

these species in distinct clades. The analysis resulted in 72 most parsimonious trees of length 185 (CI

0.27, RI 0.61). The strict consensus of these trees (Figure 6) is well resolved apart from a few rearrange-

ments of someoutgroup taxa andwithin a relatively derived group related toO. niponensis Lewis, 1907.

O. intermedius is part of a trichotomy involving O. silvae Lewis, 1884 and a large group of species

descended from the common ancestor of O. giganteus Heleva, 1978 and O. niponensis, though in

reweighted trees it is resolved as sister toO. silvae alone. In all analysesO. striatus is nestedwithin a line-

age of Nearctic and far-eastern Palaearctic species, includingO. flavicornis Lewis, 1884,O. flohri Lewis,

1888 and others.

Inclusion of diverse characters revealed by microtomography of Onthophilus intermedius yields a

well-supported topology and a more comprehensive picture of the biogeographic and morphologi-

cal history of the group. Of the characters scored for both O. intermedius and O. striatus, there are

seven by which their states differ, three external and four internal. Of these, two external (chars. 29

& 30) and one internal (char. 36) are reconstructed as autapomorphies (Figure 6). Only one external

synapomorphy (char. 22) separates them, while three of the four genitalic differences (chars. 35, 40,

and 41) represent synapomorphies of their respective lineages. Exclusion of internal characters for

O. intermedius did not affect the topology, but did prevent genitalic characters from supporting its

larger containing clade. Critical diagnostic differences in external morphology, such as mesoventral

proportions and pygidial sculpturing, were also revealed by visualization of features previously

obscured by matrix.

Based on our examinations we can reconstruct the probable fossilization process of the Quercy

Onthophilus specimens, which culminates in a partial mineralization of inner organs in combination

with the cuticle preserved as voids. An accurate three-dimensional conservation of soft tissues does

not occur if the specimens are dried in air (Figure 1C,F,I). Therefore, the fixation process must have

occurred fast, possibly due to the animal being immediately penetrated and enclosed by phosphate

rich water. In arthropods, this type of fossilization is only known from a handful of localities, which

are better known for a rich vertebrate fauna (Riversleigh: Duncan and Briggs, 1996; Ronheim:

Figure 2. Surface renderings of the eight Onthophilus intermedius specimens. Note the unique encrustation of

F1994.

DOI: 10.7554/eLife.12129.005
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Hellmund and Hellmund, 1996; Quercy: Handschin, 1944). Replication of soft tissues by phosphati-

zation may be accomplished over a period of weeks (Martı�nez-Delclòs et al., 2004). Possible sour-

ces for high phosphorous concentrations in water circulating through the fissure fill are rocks or

abundant phosphate-rich vertebrate bones, which may have been deposited along with them

(Handschin, 1944; Hellmund and Hellmund, 1996). After encrustation and internal mineralization,

the cuticle largely decayed, leaving air-filled spaces. Erosion processes probably removed the outer

stony matrix of most specimens, including fragile appendages and the imprint of the outer surface

Figure 3. Digital reconstruction of the fossil. (A) Photograph of Onthophilus intermedius (F1994) ventrally

embedded in a stony matrix. (B) Digital reconstruction showing fossilized beetle (green) and matrix (brown).

(C) Beetle digitally isolated from the stone, revealing well-preserved morphology hidden by the matrix.

(D) Perspective view of the fossil showing parts of exoskeleton, tracheal network, alimentary canal and genitals.

(E, F) Comparison of the male genitals of the extant O. striatus (E) and the fossil O. intermedius (F); outer sclerites

cut to reveal internal anatomy. See Supplementary file 1 for an interactive version of the 3D reconstruction.

DOI: 10.7554/eLife.12129.006
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of the exoskeleton, leaving a mineralized endocast. Thus, the exterior of the fossils merely repre-

sents the inner surface of the exoskeleton – the deep grooves (Figure 2) actually being inner folds

or apophyses. While the smooth dorsal part of F1994 resembles the other fossils in appearance, its

ventral surface covered by the mineral matrix shows a distinct surface sculpturing as present in

extant species of the genus. In contrast, an artificial ‘digital endocast’ created from the tomographic

data of F1994 (Material and methods) bears a striking resemblance to the other fossils (Figure 5), on

which Handschin based his original description. Summing up, the Quercy hister beetles represent

three-dimensional ‘hybrid’ fossils, comprising cuticle imprints and mineralized soft tissue, combining

to preserve both exoskeletal fine structure and internal anatomical characters.

Fissure filling fossils preserving three-dimensional internal anatomy will help to overcome tapho-

nomic biases in available fossil data (Allison and Bottjer, 2011). To date, fossilized insect internal char-

acter information has mainly been obtained from well-preserved amber inclusions (e.g. Pohl, et al.,

2010; Perreau and Tafforeau, 2011). However, the origination of amber as tree resin causes a repre-

sentational bias toward generally arboreal taxa (Martı�nez-Delclòs et al., 2004). The fossil arthropods

of Quercy represent an assemblage of taxa more typically associated with forest floor communities

(Handschin, 1944), as exemplified by Onthophilus, typically a predator in various decaying organic

materials (Kovarik and Caterino, 2005; Bajerlein et al., 2011). Such communities are less commonly

preserved than those of many other environments (Kidwell and Flessa, 1996). Beyond anatomical

data on these species, clearer interpretations of evolutionary relationships of these fossils will improve

inferences about the evolution of these ecological communities. Thus, reexamination of the Quercy

fossils, and likely also of similar mineralized fossils from other localities (which may represent different

ecosystems and/or time periods), may provide a highly complementary source of information on the

evolutionary history of arthropods.

With regard to the methods employed here, we can offer some guidance on improving future

imaging attempts on similar materials. Based on our experience, a fast tomography setup combining

filtered polychromatic radiation and an optimized detector system (dos Santos Rolo et al., 2014) is

well-suited to achieve sufficient image quality in most fossil specimens. Thus, scan duration per

tomogram may be reduced to a couple of seconds (Material and methods), facilitating high-through-

put screening of large sample numbers in short time.

Our results demonstrate that mineralized arthropod fossils from a sedimentary context may

three-dimensionally preserve soft tissue and other internal anatomical characters in remarkable

detail, which allows determinations and phylogenetic analyses according to the standards for Recent

organisms. Reevaluation of relationships with modern taxa in this extended morphological context

will substantially improve estimates of rates and modes of arthropod evolution. This exceptionally

detailed preservation may be aided by the presence of a surrounding stony matrix, hinting that

encrusted specimens, which therefore were originally considered to be of poor quality, could contain

particularly well-preserved external and internal characters. Our findings may trigger the reinvestiga-

tion of numerous similar fossils from various localities.

Figure 4. Coxa-trochanteral joints. Comparison of the joints (cut) of the left mid- (A, B) and hind leg (C, D) of

Onthophilus striatus (A, C) and O. intermedius (B, D), showing coxae (green) and trochanters (yellow).

DOI: 10.7554/eLife.12129.007
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Materials and methods

Synchrotron X-ray microtomography
3D X-ray micro-computed tomography scans with synchrotron radiation (mCT) were performed at

the TOPO-TOMO beamline (Rack et al., 2009) of the ANKA Synchrotron Radiation Facility at Karls-

ruhe Institute of Technology (KIT). The measurements consisted of the acquisition of 2500 equiangu-

larly spaced radiographic projections of the sample in a range of 180˚. The frame rate was set to 150

images per second, resulting in an overall scan duration of 16.67 seconds per sample. The parallel

polychromatic X-ray beam produced by a 1.5 T bending magnet was spectrally filtered by 0.2 mm

aluminum to obtain a peak at about 15 keV. The sample was placed 20 cm upstream of the detector,

which in turn was located about 33 m from the source. The detector consists of a thin, plan-parallel

lutetium aluminum garnet single crystal scintillator doped with cerium (LuAG:Ce), optically coupled

via a Nikon Nikkor 85/1.4 photo-lens to a pco.dimax camera with a pixel matrix of 2008x2008 pixels.

The lens was stopped down to F/4 to remove optical aberrations and to increase its depth of focus,

permitting the use of a thicker scintillator to collect a higher fraction of the incident X-ray photons.

The magnification of the optical system was adjusted to 3X, yielding an effective X-ray pixel size of

3.66 mm (dos Santos Rolo et al., 2014). Tomographic reconstruction was performed with the GPU-

accelerated filtered back projection algorithm implemented in the software framework UFO

(Vogelgesang et al., 2012). Microtomographic image data are deposited in Morph�D�Base (www.

morphdbase.de; accession numbers T_vandeKamp_20151216-M-12.1 to T_vandeKamp_20151216-

M-22.1).

3D reconstructions
3D reconstruction followed the protocol described by Ruthensteiner and Heß (2008) and van de

Kamp et al., (2014); using Amira (versions 5.5, 6, FEI) and Avizo (version 8.1, FEI) for segmentation

of the tomographic volumes and CINEMA 4D R15 (Maxon Computer GmbH) for assembly of com-

ponents and rendering of figures. The ‘digital endocast’ (Figure 5) was created from the

Figure 5. Digital endocast of Onthophilus intermedius (specimen F1994). A digital endocast (A, B) artificially

created from tomography data resembles the shape of the other fossils (Figure 2) much closer than the original

surface of the beetle (C, D) hidden by the stony matrix.

DOI: 10.7554/eLife.12129.008
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tomographic stack of specimen F1994 by segmenting solely the dorsal stony matrix, ventrally con-

fined by the inner impression of the beetle’s cuticle.

The number of surface polygons was reduced to 10% of its original value in CINEMA 4D: the raw

mesh of F1994 contains approx. 30 million polygons, the reduced version (Figure 3D) ca. 3 million.

Segmentation artifacts were carefully removed using the sculpting tools of the software. For the

interactive 3D model (Supplementary file 1), the polygon count was further reduced to 800,000

(without the stony matrix); the digital mesh was imported into Deep Exploration (version 6; Right

Hemisphere), saved as Universal 3D file (U3D) and embedded into a PDF document with

AdobeÒ AcrobatÒ 9 Pro Extended.

Figure 6. Strict consensus tree. The analysis places Onthophilus striatus within a lineage of Nearctic and far-

eastern Palaearctic species (red), while O. intermedius is a member of a separate Holarctic lineage (blue). Four

internal (purple) and three external (orange) unambiguous synapomorphies supporting their respective

placements are mapped onto the cladogram - Onthophilus striatus group: Character 22:2, mesoventrite wide and

short; 30:1, pygidial median carina absent; 35:2, tegmen of aedeagus abruptly downturned apically.

O. intermedius group: 29:2, pygidium laterally impunctate; 36:2, tegmen of aedeagus abruptly narrowing apically;

40:2, lateral halves of eighth sternite large and nearly meeting at midline; 41:2, stem of spiculum gastrale broad

throughout its length.

DOI: 10.7554/eLife.12129.009
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Phylogenetic analysis of Onthophilus intermedius
Our phylogenetic analysis was performed to test Handschin’s (1944) hypothesis of a close relation-

ship of Onthophilus intermedius to the extant and sympatric O. striatus. Although his hypothesis

was not presented in strictly phylogenetic terms (‘particularly striking similarity’; our translation), the

suggestion is of a direct lineal relationship between these heterochronic species. This would be

revealed in a cladistic analysis as a sister group relationship between them. Thus, the hypothesis

would be rejected by any resolution in which O. intermedius and O. striatus were not found to be

sister species. We compiled a character set comprising 41 characters (Source code 1) of internal and

external morphology visible in one or more specimens of O. intermedius, as visualized following X-

ray microtomography. We scored these characters for a set of 29 of the 39 currently described spe-

cies in the genus Onthophilus (Mazur, 2011), as well as seven outgroup Onthophilinae (including

the recently described Cretaceous Cretonthophilus tuberculatus (Caterino et al., 2015). Most were

scored from direct examination of specimens. However, some taxa were scored from illustrations

and descriptions in the literature (Reichardt, 1941; Helava and Howden, 1977; Helava, 1978;

Ôhara and Nakane, 1986; Ôhara, 1989; Howden and Laplante, 2003).

Characters and states

1. Sutures separating antennomeres of antennal club: 1, distinct; 2, indistinct.
2. Position of antennal insertion: 1, at upper edge of eye; 2, in front of middle of eye.
3. Proximity of antennal fovea and eye: 1, antennal fovea in contact with inner edge of eye; 2,

separated by cuticular ridge from eye.
4. Median frontal carina: 1, absent; 2, present.
5. V-shaped lateral frontal carinae: 1, absent; 2, present.
6. Labral setae: 1, bisetose; 2, plurisetose (due to secondary setae).
7. Number of pronotal carinae: 1, zero; 2, two; 3. four; 4, six.
8. Form of outer pronotal carina: 1, absent; 2, excavate along inner edge; 3, raised to form a

simple carina.
9. Completeness of outer pronotal carinae: 1, complete; 2, anteriorly abbreviated; 3, inter-

rupted; 4, absent.
10. Completeness of median pronotal carinae: 1, complete; 2, abbreviated; 3, interrupted; 4,

absent.
11. Consistency of strength of pronotal carinae: 1. all pronotal carinae equal strength; 2, prono-

tal carinae alternating in strength
12. Pronotal sculpturing: 1, ground punctation absent; 2, simply punctate (finely or deeply); 3,

surface reticulo-strigose (punctures elongated and dense).
13. Lateral margin of pronotum: 1, without dense border of punctures along margin; 2, deeply

punctate along inner edge of lateral margin.
14. Longitudinal elytral carinae: 1, absent; 2, present.
15. Evenness of elytral carinae: 1, elytral carinae similar in height; 2, alternating in height.
16. Completeness of elytral carinae: 1, All complete; 2, One or more carinae interrupted along

its length.
17. Basal elytral foveae (between costae 2 & 4, sensu Helava (1978)): 1, without deep basal

foveae; 2, with deep basal foveae.
18. Foveae of elytral interstriae: 1, absent; 2, weak; 3, strong.
19. Basal emargination of prosternal keel: 1, not emarginate, truncate or projecting; 2, nar-

rowly, subacutely emarginate; 3, broadly, more obtusely emarginate.
20. Lateral notch of prosternal lobe: 1, without lateral notch; 2, with lateral notch.
21. Spination of protibia: 1, not densely spinose; 2, densely spinose.
22. Proportions of mesoventrite: 1, nearly half as long as wide (ie. length/width ratio ~0.5); 2,

wide and short (length/width ratio >0.5).
23. Postmesocoxal stria of metaventrite: 1, absent (or totally obscured by punctures); 2,

present.
24. Punctation of metaventral disk: 1, uniform; 2, with discrete impunctate areas on either side

of midline.
25. Spination of outer margin of mesotibia: 1, absent; 2, present.
26. Apical lateral spine of mesotibia: 1, absent or weakly produced, not disrupting outer margin

of tibia; 2, Well developed, tibial apex produced.
27. Median carina of propygidium: 1, absent; 2, present.
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28. Lateral carinae of propygidium: 1, absent; 2, present.
29. Punctation of pygidium: 1, uniform; 2, with discrete impunctate areas on either side of

midline.
30. Median longitudinal carina of pygidium: 1, absent; 2, present, single; 3, present, doubled.
31. Transverse carina of pygidium: 1, absent; 2, present.
32. Basal piece, closure: 1, open, not forming a closed cylinder; 2, forming a complete, closed

cylinder; 3, fused with tegmen (some Epiechinus only).
33. Basal piece, length relative to tegmen: 1, long, nearly half length of tegmen; 2, much less

than half length of tegmen.
34. Tegmen midline division: 1, divided along entire midline to base; 2, fused along >1/4 of its

length.
35. Tegmen, apical curvature: 1, evenly curved to tip; 2, abruptly downturned at apex.
36. Tegmen, height (as seen in lateral aspect): 1, evenly narrowing; 2, abruptly narrowing near

midpoint.
37. Tegmen, relative widths along length: 1, widest in basal half; 2, parallel-sided or widest in

apical half.
38. Point of median lobe extrusion (following Helava (1978)): 1, near dorsal apex; 2, ventrally,

subapical.
39. Tegmen, apices: 1, apices convergent; 2, apices parallel (approximate or separate); 3, api-

ces divergent
40. Development of 8th sternite: 1. lateral halves reduced, broadly separated; 2. halves more

substantial, approaching or meeting at midline.
41. Stem of 9th sternite (spiculum gastrale): 1, stem narrow, abruptly widened to apex; 2, stem

broad, weakly widened to apex.

Data were analyzed under parsimony using PAUP* 4.0a144 (Swofford, 2002), using a heuristic

search with 1000 random addition sequence replicates. Characters were all treated as unordered.

We examined the effects of character reweighting (by rescaled consistency indices), and exclusion of

various character subsets (internal vs. external). Character transitions were mapped using Mesquite

v. 3.03 (Maddison and Maddison, 2015). The tree was rooted with either Anapleus (Dendrophilinae:

Anapleini), considered to exhibit plesiomorphic states in many higher level histerid characters

(Caterino and Vogler, 2002), or Cretonthophilus, a recently described taxon from Cretaceous Bur-

mese amber representing the oldest known Onthophiline histerid (Caterino et al.,

2015) (Source code 1).
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Grimaldi D. 2009. Fossil record. In: Resh VH, Cardé RT eds. Encyclopedia of Insects. 2nd ed. San Diego:
Elsevier. 396–403. doi: 10.1016/B978-0-12-374144-8.00114-4

Handschin E. 1944. Insekten aus den Phosphoriten des Quercy. Schweizerische Paläontologische Abhandlungen
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Ôhara M, Nakane TK. 1986. On the genus Onthophilus from Japan (Coleoptera: Histeridae). Insecta
matsumurana. Series entomology 35:1–15.
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Appendix 1

Redescription of Onthophilus intermedius Handschin,
1944
Figures 2–5, Appendix figure 1 and Supplementary file 1

Appendix figure 1. Morphological characters visible in specimens other than F1994.

(A) Dorsal view of F1951, showing elytral carinae and foveae. (B) Posterolateral view of F1997,

showing propygidial and pygidial carinae. (C) Posterior view of F1951. (D) Anterior view of

F1995. (E) Valvifer and coxite of female ovipositor.

DOI: 10.7554/eLife.12129.012

Type locality
"Larnagol (Quercy) 1902. Coll. Rossignol" (Handschin, 1944). Fissure fillings from Larnagol are

not known. It seems, then, that this is a general reference to the fossils that were collected by

Rossignol, residing in Larnagol.

Type material
Lectotype male, here designated (housed in Natural History Museum of Basel): Specimen

F1994, though largely encased in stone matrix, uniquely preserves external and internal

morphology suitable for species diagnosis. Handschin (1944) explicitly based his description

on the two best preserved specimens out of eight, without identifying them or selecting any

one as a primary type. We here specify a lectotype due to the highly variable state of

preservation of the material available, and considerable possibility of misinterpretation of what

are mostly endocasts.
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Other material
Paralectotypes: male (F1995); female (F1998); undetermined sex (F1951, F1992, F1993, F1996,

F1997).

Description
Length: 4.6 mm, width: 2.8 mm; body elongate oval, distinctly costate on dorsal surfaces; head

with convergent frontal carinae (Appendix figure 1). Pronotum with six uninterrupted costae;

outer and lateral costae (PC1 & PC2 sensu Helava (1978) slightly abbreviated, obsolete in

anterior one-third; median costae (PC3) complete (Appendix figure 1D); lateral pronotal

margin slightly elevated, strongly arcuately narrowed from base to apex. Elytra each with

three strong, complete dorsal costae (ISC, EC2, & EC4 sensu Helava (1978)), EC1, EC3, and

EC5 only weakly developed (Appendix figure 1A); striae deeply punctured along their

lengths. Propygidium about twice as wide as midline length, depressed along anterior margin;

disk with distinct median and lateral carinae (PMC and PLC sensu Helava (1978)), median

carina most strongly produced just behind middle, rapidly diminshing anteriorly and

posteriorly; lateral carinae weaker and short, little more than lateral tubercles

(Appendix figure 1B,C); Pygidium slightly longer than wide, with distinct longitudinal and

transverse carinae (LC and TC sensu Helava (1978)), the longitudinal carina varied in strength,

appearing more complete in endocasts; transverse carina complete, slightly expanded at

lateral extremes; pygidial disk conspicuously punctate, with punctures slightly smaller distad,

with two small impunctate areas on either side of midline. Prosternal keel emarginate at base

(Appendix figure 1D); prosternal lobe short; antennal cavities present in anterior corners of

hypomera. Mesoventrite approximately 1.25x as wide as midline length, subacutely projecting

at anterior midpoint, uniformly punctate. Metaventrite rather deeply depressed along midline,

rather shallowly and sparsely punctate medially, with larger and coarser punctures posterad

and laterad, becoming densely and coarsely punctate at sides; metepisternum and

metepimeron similarly coarsely and uniformly punctate. First visible abdominal ventrite weakly

punctate at middle, more coarsely punctate near metacoxae; visible ventrites 2-4 with single

series of rather small punctures, plus all abdominal ventrites crenulately punctate along

posterior margins. Meso- and metatrochanters produced at apices; meso- and metafemora

punctate on outer surfaces, metafemur more distinctly elongate; mesotibia weakly curved

inward, with weak longitudinal carina on outer surface, stronger carina along posterior margin,

apex oblique, weakly hooked at inner apex, not obviously produced at outer apex; metatibia

more elongate, more weakly curved, and more distinctly produced at outer apex. Tarsi with

basal tarsomeres about 1.5x as long as tarsomeres 2-4, apicalmost tarsomeres about twice as

long as tarsomeres 2-4.

Male genitalia (Figure 3F): T8 basally deeply emarginate, widened slightly from base to middle,

apical margin weakly emarginate; S8 divided medially, sides slightly separated, subtriangular,

articulating at basal corners with ventrolateral process of T8; T9 deeply emarginate dorsally, with

broad basal apodemes; S9 (spiculum gastrale) with base about one-half width of apex, evenly

widened along its length; T10 not subdivided, about twice as broad as long, widest at midpoint,

more strongly narrowed to base than to apex, apex shallowly emarginate; basal piece of

aedeagus slightly bulbous, about half as long as tegmen, open on left side (not a continuous

cylinder), basal foramen opening left; tegmen narrow, subparallel sided in basal half, narrowed

slightly toward apex, divided along midline in apical third, apices separate, parallel to tips, apical

half curving gradually downward with apices ultimately perpendicular to main tegmen axis;

median lobe nearly as long as tegmen, with basal apodemes constituting about half its length,

probably extruded dorsally (followingHelava (1978)).

Female (Appendix figure 1E): Valvifers broad basally, narrowing slightly beyond midpoint,

then expanded to articulation with coxites; coxites rather short, scoop-shaped, quadridentate,

with second inner tooth most strongly produced, coarsely punctured on outer and inner

surfaces; gonostyle present on inner surface between second and third apical teeth.
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Remarks
In the description above, we denote characters based only on endocast specimens in italics,

because it is not possible to know exactly how these manifested on the external surface. Given

the characters available, this species can be distinguished from other Onthophilus externally

by the impunctate lateral areas on the pygidium, and internally by a tegmen that curves rather

gradually from the midpoint to the apex, with its apices parallel but slightly separated over

about the apical one-third. Phylogenetic analyses place it in a rather isolated position in the

genus, without close relatives among extant species.
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