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RESEARCH ARTICLE
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Clemson University, Clemson, South Carolina, United States of America, 4 Clemson University School of
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Materials Science and Engineering Technologies, Clemson University, Clemson, South Carolina, United
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Abstract
Meiosis depends on homologous recombination (HR) in most sexually reproducing organ-

isms. Efficient meiotic HR requires the activity of the meiosis-specific recombinase, Dmc1.

Previous work shows Dmc1 is expressed in Entamoeba histolytica, a eukaryotic parasite

responsible for amoebiasis throughout the world, suggesting this organism undergoes mei-

osis. Here, we demonstrate Dmc1 protein is expressed in E. histolytica. We show that puri-

fied ehDmc1 forms presynaptic filaments and catalyzes ATP-dependent homologous DNA

pairing and DNA strand exchange over at least several thousand base pairs. The DNA pair-

ing and strand exchange activities are enhanced by the presence of calcium and the meio-

sis-specific recombination accessory factor, Hop2-Mnd1. In combination, calcium and

Hop2-Mnd1 dramatically increase the rate of DNA strand exchange activity of ehDmc1. The

biochemical system described herein provides a basis on which to better understand the

role of ehDmc1 and other HR proteins in E. histolytica.

Introduction
In most eukaryotic organisms meiosis is essential for reproduction and comprises one round of
DNA replication followed by two rounds of cell division to produce haploid gametes. To initi-
ate meiosis, the Spo11 enzyme generates DNA double-strand breaks (DSBs) throughout the
genome [1]. The newly formed DSBs are repaired through a DNA repair pathway known as
homologous recombination (HR) [2], which forms physical connections between homologous
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chromosomes. The linkage between homologous chromosomes helps to ensure proper segre-
gation of paired chromosomes at meiotic prophase I. Once the DSB forms, both ends of the
DSB are processed to produce 3' ssDNA tails that, in turn, become the nucleation site for the
Rad51 and Dmc1 recombinases—two Escherichia coli RecA orthologs [3–7]. After binding the
ssDNA tail, Rad51 and Dmc1 form right-handed helical nucleoprotein filaments known as pre-
synaptic filaments [8–11]. The presynaptic filament searches for homology by invading the
homologous chromosome. When homology is located, Rad51 and Dmc1 catalyze homologous
DNA pairing and displace the complementary strand. The resulting structure is known as a
displacement loop, or D-loop. Formation of the D-loop is followed by DNA strand exchange.
Most organisms express Rad51 ubiquitously, while Dmc1 is expressed only during meiosis.
Normal meiosis relies on both Rad51 and Dmc1 [12]. During meiosis, Saccharomyces cerevisiae
Rad51 serves as an accessory cofactor promoting Dmc1-mediated recombination [13]. Dele-
tion of DMC1 in S. cerevisiae results in meiotic arrest in prophase I [14], while DMC1-/- knock-
out mice remain viable but sterile [15]. These results indicate a conserved role for Dmc1 in
meiotic recombination [14, 15].

The activity of Dmc1 is modulated by accessory factors such as Rad54B [9], Mei5-Sae3 [16,
17], Swi5-Sfr1 [18], Rad51AP1 [19], and Hop2-Mnd1 [20]. Hop2-Mnd1 is a meiosis-specific
heterodimeric protein complex that interacts with Dmc1 to promote the formation of D-loops.
Hop2-Mnd1 stabilizes the Dmc1 presynaptic filament that recruits the dsDNA to be searched
for homology [21]. Murine Hop2-Mnd1 (mHop2-Mnd1) has been shown to interact and func-
tion with human RAD51 [22] and human DMC1 [21]. Additionally, owing to sequence conser-
vation among recombinases, mHop2-Mnd1 was reported to interact with and promote
Schizosaccharomyces pombe Dmc1- and Rad51-mediated D-loop formation [23].

Entamoeba histolytica is a protozoan parasite that causes amoebiasis, which can manifest as
amebic dysentery and liver abscesses in more than 50 million humans a year—with approxi-
mately 70,000 annual deaths worldwide [24–26]. E. histolytica has a two-stage life cycle. In the
first stage, amoeboid trophozoites proliferate in the colon and may cause disease. As a result of
unknown cues, the trophozoite enters the second stage of the life cycle, encystation, which is
characterized by genome duplications and formation of tetra-nucleated, environmentally-sta-
ble cysts. The cyst-stage facilitates spread to new hosts in contaminated food and water. After
ingestion by the host, tetra-nucleated metacystic amoebae emerge in the small intestine (excys-
tation) and undergo several divisions to yield eight trophic amoebae [27–29]. Very little is
known about the encystation and excystation processes in E. histolytica as no axenic encysta-
tion condition exists [30]. Therefore, Entamoeba invadens, a reptilian parasite that encysts in
vitro, has been used as a model.

In many organisms, meiosis often results in transmission of gametes or zygotes in order to
locate new environments or in the case of parasites, a new host [31]. Several pathogens (Leish-
mania [32], Trypanosoma brucei [33–35], and Giardia lamblia [36]) undergo meiosis, while E.
histolytica is thought to be asexual. Several lines of evidence suggest that meiosis may occur in
E. histolytica. First, E. histolytica possesses most of the RAD52 epistasis group of DNA repair
genes (RAD50, RAD51, RAD52, RAD54/RDH54, RAD55, RAD57, RAD59, MRE11 AND
XRS2) involved with HR, which are highly conserved among eukaryotes [37, 38]. These genes
are differentially expressed in response to DNA damage [37]. Second, Singh et al. [39]
employed an in vivo PCR-based method, using inverted repeats, to demonstrate that HR occurs
in E. histolytica and E. invadens. Third, trophozoites of E. histolytica and E. invadens [40, 41]
have one nucleus, while cysts have four nuclei, which suggests meiosis occurs during encysta-
tion [42]. Fourth, genes known to be involved with meiotic HR, including Dmc1, were identi-
fied in E. histolytica [42]. Lastly, these meiotic genes were expressed [39, 42] during
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developmental transitions and the formation of the tetra-nucleated cysts, providing support for
the idea that meiosis occurs in E. histolytica.

In the current study, we report for the first time the purification of the ehDmc1 recombinase
and the biochemical characterization of its recombination activities. We demonstrate that
ehDmc1 forms presynaptic filaments. These filaments are competent to search for homology
in duplex DNA to promote ATP-dependent homologous DNA pairing and DNA strand
exchange over at least several thousand base pairs. We show that calcium and mHop2-Mnd1
separately enhance ehDmc1 D-loop formation and DNA strand exchange. Importantly, the
rate of these recombination activities was significantly increased when both calcium and
mHop2-Mnd1 were present. We present evidence that the small molecule, 4,40-diisothiocya-
nostilbene-2,20-disulfonic acid (DIDS), inhibits D-loop formation by ehDmc1. Taken together,
our data reveal that ehDmc1 is a functional recombinase providing support for the idea that
meiosis occurs in E. histolytica.

Materials and Methods

DNA Substrates
ϕX174 viral (+) strand (ssDNA) and ϕX174 replicative form I (dsDNA) were purchased from
New England Biolabs. The ϕX174 replicative form I was digested by ApaLI (New England Bio-
labs) to generate linearized dsDNA. The supercoiled pBluescript DNA was purified from E.
coli, according to manufacturer instructions using a commercially available Giga kit (Qiagen).
All oligonucleotides were purchased from Integrated DNA Technologies. The oligonucleotides
used in each assay were gel purified using denaturing polyacrylamide gel electrophoresis as
described [43]. For the DNA binding assay, the H3 oligonucleotide (ssDNA) was 5'-radiola-
beled with [32P-γ]-ATP using T4 polynucleotide kinase [43]. To obtain the double-stranded
substrate (dsDNA), 32P-H3 was annealed to the unlabeled complementary H3c oligonucleo-
tide. In the strand exchange assay, OL83-1 was used as the single-stranded substrate, and the
double-stranded duplex DNA was generated by radiolabeling OL83-1, as described above, and
annealing it with the unlabeled complementary oligonucleotide, OL83-2. The oligonucleotide
OL90 was radiolabeled as described above and was used in the D-loop assay and nuclease pro-
tection assay. All previously mentioned oligonucleotides sequences can be found in Table 1.

Strain and Culture Conditions
E. histolytica trophozoites (strain HM-1:1MSS) were cultured axenically in TYI-S-33 medium
[44] in 15-ml glass screw-cap tubes at 37°C.

Isolation and Modification of the Genes Encoding E. histolytica DMC1
and RAD51
Neither the E. histolytica DMC1 gene (XM_651488) nor the RAD51 (XM_648984) gene have
apparent introns. Thus, it was possible to isolate DMC1 and RAD51 cDNA directly from geno-
mic DNA by nested-PCR. Total genomic DNA was isolated from trophozoites using the Wiz-
ard Genomic DNA Purification Kit (Promega). The first round of PCR used genomic DNA as
a template, and Primers 1 and 3 (Table 1) for DMC1 and Primers 4 and 5 (Table 1) for RAD51
isolation. These primers allowed for the incorporation of nucleotides encoding three histidines,
a flexible linker of two glycine residues between the tag and the DMC1 or the RAD51 coding
sequence, and a 3' BamHI site. A second round of PCR using the first-round PCR products as
templates, and Primers 2 and 3 (Table 1) for DMC1 and Primers 2 and 5 (Table 1) for RAD51,
facilitated the integration of nucleotides encoding three additional N-terminal histidines (to
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form the final N-terminal 6 histidine tag) and a 5' NdeI restriction site. The resulting PCR
products for both DMC1 and RAD51 were digested with NdeI and BamHI and ligated sepa-
rately into pET-11a (Novagen). The fidelity of PCR and correctness of the DNA constructs
were confirmed by DNA sequencing.

Expression and Purification of ehDmc1 and ehRad51
The pET-ehDmc1-(HIS)6 expression plasmid was introduced into the BL21 DE3 Rosetta
(Novagen) strain of E. coli. The cells were grown at 37°C until an OD600 of ~1.0, and protein
expression was induced by the addition of 0.4 mM IPTG at 16°C for 20 hr. The cells were har-
vested by centrifugation. The cell paste (40 g) was resuspended in Buffer A (50 mM Tris-HCl
pH 7.5, 1 mM EDTA, 10% sucrose, 0.01% Igepal, 1 mM β-mercaptoethanol, 0.1 mg/ml lyso-
zyme, 1 mM benzamidine, 1 mM PMSF, and protease inhibitors at a final concentration of
5 μg/ml: aprotinin, chymostatin, leupeptin, and pepstatin A) containing 250 mM KCl. All sub-
sequent steps were performed at 4°C. The resuspended cells were lysed by sonication, and the
extract was clarified by ultracentrifugation at 40,000 rpm (Beckman Ti-45 rotor) for 90 min.
The clarified lysate was diluted 1:3 in Buffer B (20 mM KH2PO4 pH 7.5, 10% glycerol, 1 mM
EDTA, 1 mMDTT) and loaded onto a 40 ml Q Sepharose column (GE Healthcare). The col-
umn was washed with Buffer B containing 100 mM KCl followed by a linear gradient of Buffer
B containing 0–800 mM KCl. The peak fractions (~250 mM KCl) containing ehDmc1 were
pooled and incubated with 2 ml of Ni-NTA Sepharose (GE Healthcare). The bound protein
was eluted with 6 ml of Buffer B containing 500 mM imidazole and 300 mM KCl. The eluate
was diluted 1:4 in Buffer B and loaded onto a 1 ml Source 15S column (GE Healthcare). The
column was washed with Buffer B containing 100 mM KCl. A linear gradient of Buffer B con-
taining 0–800 mM KCl was applied to the column. The peak fractions containing ehDmc1
(~300 mM KCl) were pooled and loaded onto a 1 ml Source 15Q column (GE Healthcare).

Table 1. List of oligonucleotides.

Name Purpose Sequence (5'!3')

Primer
1

ehDmc1
Forward

CATCATCATGGAGGAACTGAGGTGAAAAGTAAAAC

Primer
2

His Tag
Forward

CATATGCATCATCATCATCATCATGGAGG

Primer
3

ehDmc1
Reverse

GGATCCTTAATCTTTAGCATCAATAATTCCACC

Primer
4

ehRad51
Forward

CATCATCATGGAGGAAGTGCCAAGCAAATAC

Primer
5

ehRad51
Reverse

GGATCCTTAATCATCTTTAACATCTTCAATCCC

H3 DNA binding TTGATAAGAGGTCATTTGAATTCATGGCTTAGAGCTTAATTGCTGAATCTGGTGCTGGGATCCAACATGTTTTAAATATG

H3c DNA binding CATATTTAAAACATGTTGGATCCCAGCACCAGATTCAGCAATTAAGCTCTAAGCCATGAATTCAAATGACCTCTTATCAA

OL83-1 Strand
exchange

AAATGAACATAAAGTAAATAAGTATAAGGATAATACAAAATAAGTAAATGAATAAACATAGAAAATAAAGTAAAGGATATAAA

OL83-2 Strand
exchange

TTTATATCCTTTACTTTATTTTCTATGTTTATTCATTTACTTATTTTGTATTATCCTTATACTTATTTACTTTATGTTCATTT

OL90 D-loop/ NPA AAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCT
GTCTATTT

Primers 1–5 were used to isolate and modify the cDNA encoding E. histolytica DMC1 and RAD51. H3, OL83-1, and OL90 were 32P-radiolabeled using

[32P-γ]-ATP and T4-PNK. 32P-H3 and 32P-OL83-1 were annealed with H3c and OL83-2 oligonucleotides, respectively, to form double-stranded DNA

substrates. 32P-OL90 was used in the D-loop and nuclease protection assay.

doi:10.1371/journal.pone.0139399.t001

ehDmc1 Catalyzes D-Loop Formation and DNA Strand Exchange

PLOS ONE | DOI:10.1371/journal.pone.0139399 September 30, 2015 4 / 27



Following a wash, the column was subjected to a linear gradient of Buffer B containing 0–700
mM KCl. Peak fractions (~350 mM KCl) containing ehDmc1 were pooled, concentrated, and
stored in small aliquots at -80°C. The yield of purified ehDmc1 was ~1 mg. Three independent
preparations yielded the same results in the biochemical experiments. ehRad51 was expressed
from pET-ehRad51-(HIS)6 and purified using the same protocol described for ehDmc1, except
that the Q Sepharose column was omitted.

Expression and Purification of mHop2-Mnd1
The mHop2-Mnd1 expression plasmid was a kind gift from Dr. Daniel Camerini-Otero
(National Institute of Health, Bethesda, MD). The mHop2-Mnd1 protein complex was purified
as described [20].

Expression and Purification of hRPA
The expression and purification of the human single strand DNA binding protein, replication
protein A (RPA) was performed as described [9, 45].

Western Analysis
E. histolytica cells (50 ml, ~4 x107 cells) were pelleted and re-suspended in 10 ml of Buffer A,
followed by two freeze-thaw cycles. Glass beads (1 ml; 0.5 mm, BioSpec Products) were added
to the resuspended cells followed by vortexing for 3 min. The lysate was centrifuged, and the
supernatant was transferred to a new tube. The clarified supernatant was then mixed with 0.25
ml of SP Sepharose (GE Healthcare) followed by gentle rocking at 4°C for 2 hr. The beads were
then washed with 0.5 ml of Buffer B containing 100 mM KCl. The bound proteins were eluted
with 1 ml of Buffer B containing 500 mM KCl. The eluate was TCA-DOC precipitated, and the
precipitation product (15 μl), along with purified ehDmc1 (1 μg) and ehRad51 (1 μg), was sub-
jected to 12% SDS-PAGE followed by transfer to nitrocellulose membrane (Whatman). Rabbit
antibody against scRad51 was a kind gift from Dr. Patrick Sung (Yale University, New Haven,
CT) and was used at 1:2000. For the secondary antibody, commercially available HRP-conju-
gated anti-rabbit IgG (Sigma Aldrich) was used (1:5000), and the membrane was developed
using SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific).

ATP Hydrolysis Assay
Purified ehDmc1 (1 μM) was incubated with increasing amounts of [32P-γ]-ATP in 10 μl reac-
tion mixture with Buffer C (20 mM Tris-HCl pH 7.5, 2.4 mMMgCl2, 50 mM KCl, 1 mMDTT)
at 37°C. After 60 min of incubation, 1.5 μl aliquots were removed, and the reactions were
stopped by the addition of an equal volume of 0.5 M EDTA. The products were then subjected
to thin-layer chromatography (TLC) using polyethyleneimine-cellulose (PEI) plates (Sigma
Aldrich). The amount of ATP hydrolysis was determined using a phosphorimager (Typhoon
FLA 7000, GE Healthcare). The ATP hydrolysis assay to determine saturating concentrations
of DNA was processed as described above, except ehDmc1 was incubated with the saturating
concentration of [32P-γ]-ATP at (1.5 μM) in the absence or presence of increasing concentra-
tions of ϕX174 (+) virion ssDNA (30 μM, 90 μM, and 120 μM nucleotides) or linearized
ϕX174 replicative form I dsDNA (15 μM, 45 μM, and 60 μM base pairs). The time course anal-
ysis was performed with a saturating concentration of [32P-γ]-ATP (1.5 μM) in the presence of
ssDNA (90 μM nucleotides) or dsDNA (45 μM base pairs). The DIDS (4,40-diisothiocyanostil-
bene-2,20-disulfonic acid) ATPase assay was processed the same as above, except the addition
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of DIDS (66.6 μM) with ehDmc1 (0.5 μM) in the presence and absence of ϕX174 ssDNA
(90 μM nucleotides). Reactions were processed after 60 min and analyzed as described above.

Oligonucleotide Electrophoretic Mobility Shift Assay
Increasing amounts of ehDmc1 (1.3 μM, 2.6 μM, 3.9 μM, and 5.2 μM) were incubated with
32P-radiolabeled H3 substrate (0.05 pmol) at 37°C in 10 μl of the reaction Buffer D (25 mM
Tris-HCl, 2.5 mM ATP, 3 mMMgCl2) containing 0.1 mg/ml BSA and 1 mMDTT for 20 min.
Increasing amounts of ehDmc1 (5.2 μM, 10.4 μM, 20.8 μM, 31.2 μM) were incubated with
dsDNA composed of 32P-H3 annealed to H3c using the same experimental conditions as
above. A control reaction for both substrates was deproteinized via treatment with SDS (0.5%)
and Proteinase K (0.5 μg/ml). The reaction products were subjected to 12% native polyacryl-
amide gel electrophoresis. The gels were dried on Whatman cellulose chromatography paper
(Sigma-Aldrich), and the results were analyzed using a phosphorimager. The DIDS electropho-
retic mobility shift assay (EMSA) was processed the same as above, except for the addition of
increasing amounts of DIDS (2.5 μM, 5 μM, 7.5 μM, 10 μM, 33.3 μM, 66.7 μM, and 100 μM)
with ehDmc1 (5.2 μM) and 32P-radiolabeled H3 substrate (0.05 pmol) at 37°C for 20 min. The
reaction products were analyzed as described above.

D-loop Assay
32P-radiolabeled OL90 oligonucleotide (3.5 μM nucleotides) was incubated in the presence or
absence of ehDmc1 (1.5 μM) in Buffer E (25 mM Tris-HCl, 2 mM ATP, 2.4 mMMgCl2) con-
taining 0.1 mg/ml BSA, 1 mMDTT, and the ATP regeneration system consisting of 16 mM
creatine phosphate and 36 μg/ml creatine kinase in a final reaction volume 12.5 μl for 10 min
at 37°C. The reaction was initiated by the addition of supercoiled pBluescript (35 μM base
pairs). At indicated time points, the reactions were deproteinized with the addition of SDS
(0.5%) and Proteinase K (0.5 μg/ml). The reaction products were separated using 0.9% agarose
gel electrophoresis, dried on DE81 anion exchange paper (GE Healthcare), and analyzed with a
phosphorimager. Where indicated, ADP and the ATP analogues, ATP-γ-S and AMP-PNP,
were used with ehDmc1 in lieu of ATP in the reaction. In the order of addition D-loop assay,
the order in which ssDNA and dsDNA were added to the reaction was altered for two reac-
tions. Specifically, (a) ehDmc1 was incubated at 37°C with dsDNA (pBluescript) for 10 min
prior to the addition of ssDNA (32P-OL90) and (b) ehDmc1 was incubated at 37°C with both
ssDNA (32P-OL90) and dsDNA (pBluescript) for 10 min. The time course D-loop reactions
with calcium and mHop2-Mnd1 were processed as described above except ssDNA (32P-OL90)
was incubated at 37°C in the presence or absence of ehDmc1 (1.5 μM) for 5 min prior to the
addition of CaCl2 (0.32 mM) and/or mHop2-Mnd1 (0.16 μM). After an additional 5 min incu-
bation at 37°C, the reaction was initiated by the addition of dsDNA (pBluescript). The reac-
tions were stopped at the indicated time points, as described above. The DIDS (4,40-
diisothiocyanostilbene-2,20-disulfonic acid) D-loop assay was processed the same as above,
except for the addition of increasing amounts of DIDS (2.5 μM, 5 μM, 7.5 μM, and 10 μM)
after 2 min of ehDmc1 incubation at 37°C with ssDNA (32P-OL90). After 8 min of incubating,
the reaction was initiated with the addition of pBluescript followed by a 12 min incubation.
The reactions were deproteinized and the products were analyzed as described above.

Nuclease Protection Assay
32P-radiolabeled OL90 (3 μM nucleotides) was incubated with ehDmc1 (1.5 μM) for 1, 2, 5,
and 10 min at 37°C in 10 μl total reaction volume in Buffer D. DNase I (2 units; Promega) was
added to the reaction followed by an additional 15 min incubation at 37°C. The reaction was
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deproteinized by treatment with SDS (0.5%) and Proteinase K (0.5 μg/ml) at 37°C for 15 min.
The products were subjected to 12% native polyacrylamide electrophoresis, and the gels were
analyzed with a phosphorimager. When different ATP analogues and ADP were used, the reac-
tions were performed under the same experimental conditions as above, except ATP-γ-S, ADP,
and AMP-PNP (all at 2.5 mM) were substituted for ATP. The DIDS nuclease protection assay
was processed the same as above, except for the incubation of increasing concentrations of
DIDS (10 μM, 33.3 μM, 66.7 μM, and 100 μM) with ehDmc1 (1.5 μM) and 32P-OL90. The reac-
tions were deproteinized, and the products were analyzed as described above.

Pull-down Assay
The mHop2-Mnd1 complex (3.5 mg) and BSA (5 mg) were immobilized on 0.5 ml of Affi-gel
15 matrix (BioRad) as per the manufacturer instructions. The mHop2-Mnd1-Affi-gel beads or
BSA-Affi-gel beads (17.5 μl) were incubated with ehDmc1 (7 μg) in Buffer B with 50 mM KCl.
The reactions were incubated at 4°C with mixing for 45 min. After incubating, the supernatant
was removed, and the beads were washed three times with Buffer B. An equal volume of SDS
loading dye (160 mM Tris-HCl pH 6.8, 60% glycerol, 4% SDS (w/v)) was added to the beads to
elute the bound protein. Aliquots of the supernatant, wash, and bead fractions were separated
using 12% SDS-PAGE. The gel was visualized by staining with Coomassie blue.

Oligonucleotide DNA Strand Exchange Assay
The unlabeled OL83-1 oligonucleotide (10 μM nucleotides) was incubated with ehDmc1
(6 μM) for 10 min at 37°C in a 10 μl reaction of Buffer D containing 0.1 mg/ml BSA, 1 mM
DTT, and the previously described ATP regeneration system, in the absence or presence of
CaCl2 (2 mM) and/or mHop2-Mnd1 (0.6 μM). This incubation was followed by the addition
of duplex DNA (32P-OL83-1/OL83-2; 5 μM base pairs) and spermidine (4 mM final). At the
indicated time points, the reactions were stopped by treatment with SDS (0.5% final) and Pro-
teinase K (0.5 μg/ml) at 37°C for 15 min. The products were subjected to 12% native polyacryl-
amide gel electrophoresis. The gels were analyzed using a phosphorimager.

Plasmid Length DNA Strand Exchange Assay
Purified ehDmc1 (12.5 μM) was mixed with ϕX174 virion ssDNA (30 μM nucleotides) in
Buffer E containing the ATP regeneration system, described above, for 10 min at 37°C followed
by the addition of RPA (3.8 μM) and KCl (150 mM final). After an additional incubation for
8 min at 37°C, the linearized double-stranded ϕX174 DNA (30 μM base pairs) and spermidine
(4 mM final) were added to the reaction. The reactions were stopped at the indicated time
points with the addition of SDS (0.5% final) and Proteinase K (0.5 μg/ml) followed by a 20 min
incubation at 37°C. The deproteinized samples were separated on 0.9% agarose gel and stained
with ethidium bromide. The gels were analyzed using Image Lab software (BioRad).

Sequence Alignment and Phylogenetic Classification
Reference Dmc1 amino acid sequences were downloaded from the reference protein database
at GenBank (http://www.ncbi.nlm.nih.gov/) and aligned using MUSCLE [46] with 20 maxi-
mum iterations. A neighbor-joining tree was prepared using the Jukes-Cantor [47] genetic dis-
tance model and edited in Geneious v6.1.6 (www.geneious.com).
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Statistical Analysis
For each assay described, at least three experiments were performed and the error bars repre-
sent standard error of the mean.

Results

Cloning, Expression, and Purification of ehDmc1
The presence of the DMC1meiotic recombinase gene in the genome of E. histolytica suggested
that E. histolyticamay undergo meiotic recombination. To determine if the putative ehDMC1
gene encoded a functional recombinase, the DMC1 gene encoding a 334 amino acid protein
was amplified from E. histolytica genomic DNA and a six-histidine epitope tag was fused to
the 5' end of the gene. The gene was sequenced to confirm the absence of any PCR-generated
mutations and inserted into the pET11 bacterial expression plasmid. The resultant pET11-
ehDmc1-(HIS)6 expression plasmid was introduced into bacteria and the cells were induced
to produce ehDmc1-(HIS)6 protein. We purified ehDmc1 to greater than 95% homogeneity
(Fig 1A) using a combination of nickel affinity chromatography and ion exchange
chromatography.

In most eukaryotic organisms, Dmc1 is expressed exclusively during meiosis. One exception
is the upregulation of Dmc1 in response to radiation-induced mitotic catastrophe (MC) in
human cell lines [48] creating a pseudomeiotic state. Considering E. histolytica is polyploid, we
asked whether ehDmc1 protein was expressed in E. histolytica. Unfortunately, antibodies spe-
cific to ehDmc1 are not available commercially. This led us to use a strategy previously
reported by Kant et al. (2005) that used heterologous antibodies raised against Saccharomyces
cerevisiae Dmc1 to confirm the identity of the Dmc1 protein from the rice plant, Oryza sativa
[49]. Previous experience with scRad51 antibodies revealed a cross-reaction with both hRAD51
and hDMC1, likely due to high sequence conservation (data not shown). Based on the cross-
reactivity of the scRad51 antibodies with hRAD51 and hDMC1, we reasoned the high sequence
conservation (61%) between ehDmc1 and hDMC1 may be sufficient for the scRad51 antibodies
to detect ehDmc1. To test this idea, we first asked whether the scRad51 antibodies recognized
highly purified recombinant ehRad51 and ehDmc1. As shown in Fig 1B, scRad51 antibodies
recognized purified recombinant ehRad51 (~40.3 kDa, lane 1) and ehDmc1 (~37.1 kDa, lane 2)
confirming that the scRad51 antibodies cross-reacted with the ehRad51 and ehDmc1 protein.
Using the scRad51 antibodies, we performedWestern analysis on partially purified lysate from
E. histolytica. Our results show two bands were detected in lysate from E. histolytica (Fig 1B,
lane 3) that correspond to the same molecular weights of the purified ehRad51 and ehDmc1
(Fig 1B). This suggested that E. histolytica expresses both recombinase proteins at the same
time. These results are in agreement with previous reports that ehRad51 and ehDmc1 mRNA
transcripts are present during normal cell culture [37, 42].

ehDmc1 Hydrolyzes ATP
Analysis of the primary sequence of ehDmc1 revealed conserved Walker A and B motifs (S1
Fig) [50] suggesting the potential for ATP hydrolysis activity. In support of this, both hDMC1
and scDmc1 proteins harbor a Walker A motif and possess ATP hydrolysis activity [9, 51–53].
To determine if ehDmc1 possessed ATP hydrolysis activity, we performed classic Michaelis-
Menten analysis of the ATP hydrolysis activity of ehDmc1. The ehDmc1 protein was incubated
with increasing concentrations of [32P-γ]-ATP followed by TLC. From three independent
experiments, a relatively weak ATP hydrolysis activity (kcat = 0.53 min-1, Km = 480 +/- 50 μM)
was detected (Fig 1C). Previous reports indicated the ATP hydrolysis activity of both hDMC1
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and scDmc1 is stimulated by the presence of DNA [9, 52, 53]. We first determined saturating
concentrations of ssDNA and dsDNA to be used in the ATP hydrolysis assay (Fig 1D, 90 μM
nucleotides and 45 μM base pairs, respectively). We asked if ehDmc1 ATP hydrolysis activity
was stimulated in the presence of DNA by incubating the ehDmc1 protein with saturating con-
centrations of [32P-γ]-ATP in the absence or presence of saturating amounts of ssDNA or
dsDNA prior to TLC. Similar to both hDMC1 and scDmc1, ehDmc1 ATPase activity was

Fig 1. The ehDmc1 and ehRad51 proteins are present in E. histolytica, and purified ehDmc1 hydrolyzes ATP. A. Purified ehDmc1 (~1 μg) on a 12%
SDS-polyacrylamide gel stained with Coomassie blue. B. Immunoblot of purified recombinant ehRad51 protein and ehDmc1 protein (~1 μg, lane 1 and 2,
respectively), and E. histolytica partially purified lysate (lane 3) on a 12% SDS-polyacrylamide gel. Anti-scRad51 primary antibodies were used. C. Purified
ehDmc1 was incubated with increasing concentrations of [32P-γ]-ATP. After 60 min, samples were withdrawn and the reaction products were separated
using TLC followed by analysis with a phosphorimager. D. Increasing concentrations of ϕX174 (+) virion single-stranded DNA (ssDNA) or linearized ϕX174
double-stranded DNA (dsDNA) were incubated with ehDmc1 and a saturating concentration of [32P-γ]-ATP. E. Time course analysis of ehDmc1 ATP
hydrolysis activity in the absence or presence of ϕX174 ssDNA or linearized ϕX174 dsDNA. Error bars represent SEM, (n = 3).

doi:10.1371/journal.pone.0139399.g001
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stimulated by both dsDNA and ssDNA, with the greatest stimulation occurring in the presence
of ssDNA (Fig 1E). The turnover rate (kcat) for ehDmc1 ATP hydrolysis was 0.53 min-1 which
is similar to that reported for hDMC1 (kcat = 0.6 min-1, [9, 43] and scDmc1 (kcat = 0.7 min-1,
[52]). It is interesting to note that the turnover rate for ehDmc1, hDMC1 and scDmc1 are all
over 7-fold greater than hRAD51 (kcat = 0.07 min-1, [54]) and 35-fold greater than ecRecA
(0.015 min-1, [55–57]). The catalytic efficiency (kcat/Km) for ehDmc1 (18 s-1 M-1) is 1.6 fold
greater than hRAD51 (11 s-1 M-1, [54]).

DNA Binding Activities of ehDmc1
The observation that the ATPase activity of ehDmc1 was stimulated by the presence of DNA
suggested that ehDmc1 binds DNA. To demonstrate that ehDmc1 bound DNA, an EMSA was
performed. A 32P-radiolabeled 80-mer oligonucleotide was used as a ssDNA substrate or was
annealed to an unlabeled complementary 80-mer oligonucleotide to create a dsDNA substrate.
Increasing concentrations of the ehDmc1 protein were incubated with ssDNA (Fig 2A and 2B)
or dsDNA (Fig 2C and 2D) substrates, and the reactions were resolved on a polyacrylamide
gel. Fig 2 shows ehDmc1 bound to ssDNA with approximately 5-fold greater affinity than to
dsDNA. These results show that ehDmc1 had a strong preference for ssDNA over dsDNA,
similar to hDMC1 [43].

Presynaptic Filament Formation by ehDmc1
Formation of a nucleoprotein filament is critical for the recombination activities of Dmc1 [9, 51,
58]. Dmc1 forms stacked octameric protein rings on ssDNA in the absence of ATP [9, 51, 59].

Fig 2. ehDmc1 binds DNA. A. Increasing concentrations of ehDmc1 (1.3 μM, lane 2; 2.6 μM, lane 3; 3.9 μM,
lane 4; and 5.2 μM, lane 5) were incubated with ssDNA (32P-labeled H3 ssDNA). B. The mean binding
percentages were graphed for three independent experiments from A. Error bars represent SEM. C.
Increasing concentrations of ehDmc1 (5.2 μM, lane 2; 10.4 μM, lane 3; 20.8 μM, lane 4; and 31.2 μM, lane 5)
were incubated with dsDNA (32P-labeled H3 annealed to H3c). D. The mean binding percentages were
graphed for three independent experiments from C. Error bars represent SEM. Lane 1 for A andC is devoid
of protein, and lane 6 for A andC was SDS/PK (S/P) treated containing the highest concentration of ehDmc1.

doi:10.1371/journal.pone.0139399.g002
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These protein rings are not the active form of Dmc1-ssDNA. In the presence of ATP, Dmc1
forms an active right-handed nucleoprotein filament on ssDNA [9]. The difference between the
Dmc1 nucleoprotein filament and stacked octameric rings of Dmc1 on ssDNA can be visualized
by using a nuclease protection assay [43, 60, 61]. To determine if ehDmc1 formed presynaptic fil-
aments on ssDNA, we used this nuclease protection assay [43, 60, 61]. In this assay, if ehDmc1
forms a nucleoprotein filament, the ssDNAwill be protected from nucleolytic digestion by
DNase I by the ehDmc1 nucleoprotein filament. hRAD51, scRad51, hDMC1 and scDmc1 require
ATP binding in order to form a presynaptic filament [8, 9, 62, 63]. Therefore, 32P-radiolabeled
ssDNAwas incubated with ehDmc1 in the presence of ATP to allow for presynaptic filament for-
mation. After a brief incubation, DNase I was added to the reaction. The time course of the
DNase I digestion showed that ehDmc1 formed a presynaptic filament that protected the ssDNA
fromDNase I digestion (Fig 3A) The filament formed within one minute and lasted throughout
the course of the assay, suggesting ehDmc1 is capable of forming a rapid and stable presynaptic
filament. Next, we wished to determine the nucleotide dependence of ehDmc1 presynaptic fila-
ment formation. Using the same nuclease protection assay as described above, we incubated
ehDmc1 with 32P-radiolabeled ssDNA in the absence of nucleotide or in the presence of ATP,
ADP, the slowly hydrolyzable analog ATP-γ-S, or the non-hydrolyzable ATP analog AMP-PNP.
DNase I was added to the reaction after a brief incubation. When either ATP or AMP-PNP, (Fig
3B, lanes 1 and 4, respectively) was incubated with ehDmc1, the ssDNA was strongly protected
fromDNase I digestion. Incubation of ehDmc1 with, ATP-γ-S, or ADP (Fig 3B, lanes 2 and 3,
respectively) resulted in greatly reduced protection of the ssDNA from DNase I digestion. In the
absence of ATP, ehDmc1 was unable to protect the ssDNA fromDNase I (Fig 3B, lane 6). Taken
together, the results suggest that ehDmc1 requires ATP binding but not hydrolysis to form pre-
synaptic filaments.

ehDmc1 Catalyzes DNA Homologous Pairing
The ability of ehDmc1 to form a stable presynaptic filament suggested that ehDmc1 may be
able to commence homologous DNA pairing. To determine if the ehDmc1 presynaptic fila-
ments mediated DNA homologous pairing, an assay was used that monitors the formation of a
D-loop [43]. In this assay, ehDmc1 was incubated with a 32P-radiolabeled oligonucleotide
(ssDNA) to allow presynaptic filament formation. Upon addition of this nucleoprotein com-
plex to supercoiled duplex DNA harboring a region of complementary sequence, the 32P-radio-
labeled oligonucleotide was assimilated into a supercoiled duplex DNA through base-pairing
with the complementary sequence within the duplex DNA. As a result, the homologous
sequence was displaced forming a D-loop (Fig 4A). Guided by previous work on hDMC1 [9],
we determined the preferred order of addition for the ssDNA and supercoiled dsDNA. Our
results show that ehDmc1 strongly prefers to form a presynaptic filament on ssDNA prior to
the addition of duplex DNA (Fig 4B, lane 2). Co-addition of ssDNA and dsDNA resulted in
greatly reduced D-loop formation (Fig 4B, lane 4). No D-loop was detected when ehDmc1 was
incubated on supercoiled dsDNA prior to the addition of ssDNA (Fig 4B, lane 3). This prefer-
ence of forming a presynaptic filament on ssDNA to form D-loop is in agreement with that of
hDMC1 [9]. To determine if ehDmc1 required ATP hydrolysis for D-loop formation, ATP was
substituted with AMP-PNP, ATP-γ-S, or ADP. D-loop formation by ehDmc1 was seen in the
presence of ATP (Fig 4C, lanes 2–4). In the presence of AMP-PNP, the D-loop formation by
ehDmc1 was significantly weaker than that seen in the presence of ATP (Fig 4C, compare lanes
4 and 7). This result is similar to that seen with hDMC1 [43]. Contrastingly, scDmc1-mediated
D-loop formation was reported to be greater in the presence of AMP-PNP than with ATP [52].
Neither ATP-γ-S nor ADP supported ehDmc1-mediated D-loop formation (Fig 4C, lanes 5
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Fig 3. The ehDmc1 nucleoprotein filament protects ssDNA in the presence of DNase I. A. 32P-
radiolabeled OL90 ssDNA was incubated with ehDmc1 prior to the addition of DNase I. At the indicated times,
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and 6, respectively). As expected, no D-loop formation was seen in the absence of ATP (Fig 4C,
lane 8). These results suggest ehDmc1, like scDmc1 and hDMC1, requires ATP binding but not
hydrolysis to form D-loop [9, 52].

ehDmc1 Interacts with Murine Hop2-Mnd1
The activity of the Dmc1 recombinase is modulated by several accessory factors [2] that include
the heterodimeric meiotic recombination accessory protein complex, Hop2-Mnd1. Much of
our understanding of the molecular biochemical role of Hop2-Mnd1 in homologous recombi-
nation comes from studies that used mHop2-Mnd1 with the hRAD51 and hDMC1 recombi-
nases [20–22, 64–70]. In addition to the interaction with hRAD51 and hDMC1 recombinases,
the mHop2-Mnd1 complex was shown to interact with spDmc1 [23]. This is likely due to the
high degree of amino acid conservation between hDMC1 to murine Dmc1 (~97%; mDmc1)
and to spDmc1 (~60% identity). The discovery of a missing exon in the S. cerevisiaeHop2 gene
finally allowed active scHop2-Mnd1 complex to be purified [71]. While E. histolytica possess
the genes that encode ehHop2 and ehMnd1, purified ehHop2-Mnd1 complex is currently not
available. Based on the heterologous interaction between mHop2-Mnd1 and hRAD51,
hDMC1 and spDmc1 [20–23, 67], and given ehDmc1 is ~61% identical to hDMC1, we rea-
soned that mHop2-Mnd1 may interact with ehDmc1. To determine if ehDmc1 interacted with
mHop2-Mnd1, an affinity pull-down assay was performed using Affi-gel matrix conjugated
with either mHop2-Mnd1 or bovine serum albumin (BSA). When ehDmc1 was incubated with
Affi-mHop2-Mnd1, ehDmc1 was found in the eluate indicating a physical interaction (Fig 5,
lane 4). Incubation of ehDmc1 with Affi-BSA beads resulted in ehDmc1 being found only in
the supernatant (Fig 5, lane 5) signifying no interaction between ehDmc1 and BSA. The results
indicate the interaction between ehDmc1 and mHop2-Mnd1 was specific.

ehDmc1-mediated D-loop Formation is Stimulated by mHop2-Mnd1 and
Ca2+

Previous reports indicated the D-loop forming activity of scDmc1 [63, 71, 72] and hDMC1
[51] is enhanced by calcium. Using the preferred order of addition and nucleotide to support
ehDmc1-mediated homologous DNA pairing, we used the D-loop assay to determine if cal-
cium stimulated ehDmc1 D-loop formation. Calcium mediated an approximate 2-fold stimula-
tion of D-loop formation catalyzed by ehDmc1 (Fig 6, compare lanes 2–4 with 6–8). Our
observation that ehDmc1 interacts with mHop2-Mnd1 and previous reports demonstrating
mHop2-Mnd1 enhances both spDmc1 [23] and hDMC1 D-loop formation [20, 67] led us to
ask if mHop2-Mnd1 stimulated ehDmc1 D-loop formation. When mHop2-Mnd1 was added
to the ehDmc1 D-loop reaction, there was an approximate 3.5-fold increase in D-loop forma-
tion (Fig 6, lanes 10–12). Since both calcium and mHop2-Mnd1 stimulated D-loop formation,
we investigated whether co-addition of calcium with mHop2-Mnd1 would further enhance
ehDmc1 D-loop formation. As shown in Fig 6 (lanes 14–16), addition of calcium did not

an aliquot was removed and deproteinized. The reaction products were separated on a 12% native
polyacrylamide gel followed by analysis with a phosphorimager. The mean percent protection of the ssDNA
from DNase I digestion of three independent experiments was graphed. Error bars represent SEM. Lane 5 is
devoid of protein.B. 32P-OL90 ssDNA was incubated with ehDmc1 in the presence of 2.5 mM nucleotide
(ATP, lane 1; ATP-γ-S, lane 2; ADP, lane 3; and AMP-PNP, lane 4) prior to the addition of DNase I. Lane 5 is
devoid of protein and DNase I. Lane 6 is devoid of protein but contains DNase I. After a 10 min incubation, an
aliquot was removed and processed as described in A. The mean percent protection of three independent
experiments was graphed. Error bars represent SEM. (ss), 32P-radiolabeled single-stranded OL90; (deg)
degradation.

doi:10.1371/journal.pone.0139399.g003

ehDmc1 Catalyzes D-Loop Formation and DNA Strand Exchange

PLOS ONE | DOI:10.1371/journal.pone.0139399 September 30, 2015 13 / 27



further enhance ehDmc1 D-loop formation in the presence of mHop2-Mnd1. Taken together,
the results indicate ehDmc1 catalyzes DNA homologous pairing. This activity is stimulated by

Fig 4. ehDmc1 catalyzes D-loop formation. A. Schematic of D-loop formation assay (ss, single-strand oligonucleotide; sc, supercoiled dsDNA).B.
ehDmc1 was incubated with 32P-radiolabeled OL90 ssDNA (lane 2), dsDNA (lane 3) prior to the addition of dsDNA or ssDNA (lanes 2 and 3, respectively), or
both ssDNA and dsDNA (lane 4) simultaneously. Lane 1 is devoid of protein. After a 12 min incubation, an aliquot was removed and deproteinized prior to
separation on an agarose gel. The mean percent of six independent experiments was graphed. Error bars represent SEM.C. ehDmc1 was incubated with
32P-OL90 ssDNA in the presence of 2 mM nucleotide (ATP, lanes 1–4), ATP-γ-S (lane 5), ADP (lane 6) and AMP-PNP (lane 7). Lane 8 was devoid of
nucleotide. At the indicated times, an aliquot was removed and processed as described inB. The mean percent of six independent experiments was
graphed. Error bars represent SEM.

doi:10.1371/journal.pone.0139399.g004
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both calcium and mHop2-Mnd1 in agreement with reports of Dmc1 from other species [20,
23, 67].

ehDmc1 Catalyzes DNA Strand Exchange Using ϕX174 DNA
The ability of ehDmc1 to form D-loops led us to determine whether ehDmc1 was capable of
DNA strand exchange in a 3-strand assay that utilizes ϕX174 DNA viral (+) ssDNA and linear-
ized ϕX174 dsDNA that are 5.4 kilobase pairs in length [9]. In this assay, ehDmc1 was pre-
incubated with the ϕX174 DNA viral (+) ssDNA to allow for presynaptic filament formation.
This was followed by the addition of hRPA, a single strand DNA binding protein that stabilizes
the ssDNA by preventing the formation of secondary structure. The addition of linear ϕX174
dsDNA initiated the reaction leading to joint molecule formation and strand exchange forming
a nicked circular product (Fig 7A). As shown in Fig 7B, ehDmc1 catalyzed ATP-dependent
DNA strand exchange over 5.4 kilobase pairs. This DNA strand exchange was similar to the
activity shown for Dmc1 proteins from other species [9, 18, 73]. Although the molecular effect
of spermidine on the ability of other recombinases [9, 74] to commence DNA strand exchange
is not known, we found ehDmc1 DNA strand exchange was dependent upon the presence of
spermidine (data not shown).

Oligonucleotide DNA Strand Exchange by ehDmc1
Since ehDmc1 weakly catalyzed DNA strand exchange on plasmid length DNA substrates, we
switched to an oligonucleotide-based DNA strand exchange assay [43, 45] to further investi-
gate the influence of calcium and mHop2-Mnd1 on ehDmc1. In this assay, an oligonucleotide
ssDNA substrate was incubated with ehDmc1 followed by the addition of radiolabeled dsDNA
to initiate the reaction. DNA strand exchange occurs when the radiolabeled strand of the
dsDNA substrate is replaced by the unlabeled homologous ssDNA within the ehDmc1 presyn-
aptic filament (Fig 8A). Our results demonstrate that ehDmc1 is adept at DNA strand exchange

Fig 5. mHop2-Mnd1 interacts with ehDmc1. ehDmc1 was mixed with Affi-Gel matrix conjugated to either
mHop2-Mnd1 (lanes 2–4) or bovine serum albumin (BSA, lanes 5–7). After a wash, bound protein was eluted
with SDS. The supernatant (S), wash (W), and eluate (E) were subjected to SDS-PAGE, and the gel was
stained with Coomassie blue.

doi:10.1371/journal.pone.0139399.g005
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using oligonucleotide substrates (Fig 8). The presence of calcium in the reaction increased not
only the rate of DNA strand exchange but also the amount of strand exchange product (~38%)
compared to the absence of calcium (~16%). The addition of mHop2-Mnd1 alone or in combi-
nation with calcium greatly increased the rate of ehDmc1-mediated DNA strand exchange (Fig
8B and 8C). The time scale of the reactions containing mHop2-Mnd1 separately or in combi-
nation with calcium did not allow us to determine if calcium enhanced the ehDmc1/
mHop2-Mnd1-mediated DNA strand exchange. Therefore, we performed the same DNA
strand exchange assay using shorter time points. The presence of calcium greatly increased the
rate of the DNA strand exchange activity of ehDmc1-mHop2-Mnd1 (Fig 8D and 8E) with the
reaction reaching a plateau in less than 15 seconds. There was over a 240-fold increase in the
rate of the strand exchange reaction mediated by ehDmc1 in the presence of both calcium and
mHop2-Mnd1. Taken together, these results indicate that calcium and mHop2-Mnd1 enhance
ehDmc1-mediated DNA strand exchange.

Phylogenetic Relationship of ehDmc1 to Other Pathogens, Yeast, and
Higher Eukaryotes
The similarity of the response by ehDmc1 and hDMC1 to calcium and mHop2-Mnd1 in D-
loop formation and DNA strand exchange prompted us to evaluate the relationship of ehDmc1
to hDMC1, scDmc1, spDmc1, and Dmc1 from other pathogens by sequence alignment (S1
Fig). The phylogenetic tree (S2 Fig) shows that ehDmc1 is more closely related to other patho-
gens than to the yeasts and human. However, ehDmc1 shares 201 identical sites with the

Fig 6. mHop2-Mnd1 and Ca2+ stimulate ehDmc1-mediated D-loop formation. ehDmc1 was incubated with 32P-radiolabeled OL90 ssDNA in the absence
(lanes 1–4 and 9–12) or presence of calcium (lanes 5–8 and 13–16) and/or mHop2-Mnd1 (lanes 9–16). The reaction was initiated with the addition of
supercoiled dsDNA. Aliquots were removed at the indicated times, deproteinized, and the reaction products were separated by agarose gel electrophoresis.
Lanes 1, 5, 9, and 13 were lacking ehDmc1. Mean values from three individual experiments were graphed. Error bars represent SEM.

doi:10.1371/journal.pone.0139399.g006
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hDMC1 and 176 with scDmc1 (S1 Fig) with the most unique region of the protein among the
groups being the C-terminal domain, suggesting ehDmc1 is more similar to hDMC1 than
scDmc1.

DIDS Inhibits ehDmc1 Homologous DNA Pairing
To date, no inhibitors for any Dmc1 protein have been identified. However, several compounds
have been reported to inhibit hRAD51 [75]. We tested one of these compounds, 4,40-diisothio-
cyanostilbene-2,20-disulfonic acid (DIDS) to determine if it would inhibit ehDmc1-mediated
functions [76, 77]. Previous work suggested DIDS may inhibit DNA binding to the hRAD51
recombinase [76]. We wished to determine if DIDS directly inhibited DNA binding by
ehDmc1. To do this, we used an EMSA where ehDmc1 was incubated with ssDNA, ATP and
increasing concentrations of DIDS. As shown in Fig 9A, DIDS inhibited ssDNA binding by
ehDmc1. The concentration of DIDS that was required to completely inhibit ssDNA binding
by ehDmc1 was ~6 fold higher (66 μM) than reported for hRAD51 (10 μM, [76]). Because ATP
was present in the EMSA, we wished to determine whether DIDS directly inhibited ssDNA
binding by ehDmc1 or whether DIDS indirectly inhibited DNA binding by interfering with
ATP binding that is necessary for presynaptic filament formation. We addressed these possibil-
ities using the ATP hydrolysis assay. Incubation of ehDmc1 in the presence of ssDNA with the
amount of DIDS that inhibited DNA binding resulted in attenuation of the stimulatory effect
ssDNA has on ehDmc1 ATP hydrolysis activity (Fig 9B). In the absence of ssDNA, DIDS had
no effect on the ATP hydrolysis activity of ehDmc1 (Fig 9B). These results suggest DIDS
directly interferes with ssDNA binding and not with binding of ATP. We used the nuclease

Fig 7. ehDmc1mediates plasmid length DNA strand exchange. A. Schematic of the 3-strand
homologous DNA pairing and strand exchange reaction. Homologous DNA pairing between the circular
ssDNA (css) and linear dsDNA (lds) first forms a DNA joint molecule (jm). DNA strand exchange converts the
joint molecule into a nicked circular duplex (nc) displacing the linear ssDNA (lss).B. ehDmc1 (12.5 μM) was
incubated with ϕX174 virion ssDNA (css) to allow presynaptic filament formation to occur before the addition
of hRPA (3.8 μM) and KCl (150 mM final concentration). The reaction was initiated by the addition of
linearized double-strand ϕX174 DNA (lds) and spermidine. At the indicated time points, the reactions were
deproteinized, subjected to agarose gel electrophoresis, and stained with ethidium bromide.

doi:10.1371/journal.pone.0139399.g007
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Fig 8. Stimulation of ehDmc1-mediated DNA strand exchange activity bymHop2-Mnd1 and Ca2+. A. Schematic of oligonucleotide strand exchange
assay.B. A time course analysis of ehDmc1 strand exchange activity (top panel) in the presence of 2 mM calcium (Ca2+), mHop2-Mnd1 (H2M1), and the
combination of calcium and mHop2-Mnd1 (Ca2+ H2M1), as indicated. At the indicated times, an aliquot was removed and deproteinized. The reaction
products were separated on 12% native polyacrylamide gels, and the gels were analyzed by a phosphorimager. Lane 1 is devoid of protein (Bl.). C.Mean
values from three individual experiments from B were graphed. Error bars represent SEM.D. A 5 min time course analysis of ehDmc1 strand exchange
activity in the presence of mHop2-Mnd1 (H2M1) or the combination of 2 mM calcium and mHop2-Mnd1 (Ca2+ H2M1), as indicated. At the indicated times, an
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protection assay to monitor the stability of the ehDmc1 nucleoprotein filament in the presence
of DIDS. ehDmc1 was incubated in the presence or absence of ssDNA and/or increasing con-
centrations of DIDS. Our results show that DIDS inhibits presynaptic filament formation (Fig
9C). Notably, the concentration of DIDS that inhibits presynaptic filament formation is the
same concentration that inhibits ssDNA binding by ehDmc1. Lastly, we asked whether the
inhibition of presynaptic filament formation by DIDS would compromise the ability of
ehDmc1 to catalyze D-loop formation. The results show that increasing concentrations of
DIDS inhibited D-loop formation by ehDmc1 (Fig 9D). The IC50 of DIDS on ehDmc1-me-
diated homologous pairing is 4.5 +/- 0.23 μM. Our results demonstrate that ehDmc1 is a poten-
tial target for small molecule inhibitors in a manner similar to hRAD51 [75, 76, 78–83].

Discussion
Here, we report that ehDmc1 protein is expressed in E. histolytica. We cloned and devised a
purification procedure for the ehDmc1 recombinase. We demonstrated purified ehDmc1 pos-
sesses ATP hydrolysis activity that was stimulated preferentially by ssDNA. ehDmc1 binds
ssDNA with a higher affinity than with dsDNA and forms presynaptic filaments on ssDNA in
an ATP-dependent manner. Additionally, ehDmc1 catalyzed robust ATP-dependent D-loop
formation and DNA strand exchange, which is stimulated by the presence of calcium. We
showed that mHop2-Mnd1 interacts with ehDmc1 to enhance the D-loop formation and DNA
strand exchange activity of ehDmc1. Our results demonstrated that ehDmc1 catalyzes DNA
strand exchange over several thousand base pairs. Based on phylogenetic analysis, we found
that ehDmc1 is more similar to higher plants and pathogens. Our biochemical and phyloge-
netic analysis show that ehDmc1 is more similar to hDMC1 than scDmc1. Lastly, we demon-
strated that a small molecule, DIDS, is an effective inhibitor of ehDmc1 homologous DNA
pairing. Our data provide strong evidence that ehDmc1 is catalytically active and may be a
potential target for therapeutic treatment for E. histolytica infection.

The co-expression of both Rad51 and Dmc1 recombinases is typically seen only in meiosis
[14, 84–86]. We were surprised to find two proteins bands recognized by our scRad51 antibod-
ies that correspond to the molecular weights of ehDmc1 and ehRad51 in E. histolytica normal
cell culture. Importantly, these two bands migrate similarly in SDS-PAGE with purified recom-
binant ehDmc1 and ehRad51. We are careful to note we relied on the cross-reactivity of
scRad51 antibodies to detect expression of ehDmc1 and ehRad51. Previously, two bands (41
and 46 kDa) of ehRad51 were observed by Lopez-Casamichana et al. [37]. These molecular
weights differ from the predicted molecular weight of ehRad51 (ehRad51 is 40.3 kDa contain-
ing 366 amino acids and ehDmc1 is 37.1 kDa containing 334 amino acids). The difference in
molecular weight of the two protein bands observed in this study and that previously reported
[37] were both ~4 kDa. Therefore, like the antibodies used in this study, the antibodies used by
Lopez-Casamichana et al. [37] may have also cross-reacted with ehDmc1. As a result, Lopez-
Casamichana may have actually detected both ehDmc1 and ehRad51.

Our results demonstrate that ehDmc1 has similar biochemical characteristics as those previ-
ously described for Dmc1 recombinases from other organisms [9, 18, 23, 51, 52]. The ATPase
is stimulated by both ssDNA and dsDNA with ssDNA providing the greater level of stimula-
tion. The preference of binding ssDNA is in agreement with the preferred order of addition in
the D-loop formation assay where the recombinase binds to ssDNA prior to the addition of
dsDNA. The formation of a stable presynaptic filament is dependent upon the binding and not

aliquot was removed, deproteinized and processed as described in B. Lane 1 (Bl.) is devoid of protein. E.Mean values of three independent experiments
from D were plotted. Error bars represent SEM.

doi:10.1371/journal.pone.0139399.g008
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Fig 9. DIDS inhibits presynaptic filament formation by ehDmc1. A. ehDmc1 was incubated with 32P-radiolabeled OL90 ssDNA in the presence and
absence of increasing amounts of DIDS at 37°C for 20 min. Products were separated on 12% polyacrylamide gels and analyzed with a phosphorimager.B.
ehDmc1 was incubated with saturating amounts of [32P-γ]-ATP in the presence and absence of ϕX174 ssDNA and/or DIDS (66.6 μM). The reactions were
stopped at the indicated times, subjected to TLC, and analyzed using a phosphorimager. C. ehDmc1 was incubated with 32P-radiolabeled OL90 in the
presence and absence of increasing amounts of DIDS followed by exposure to DNase for 15 min at 37°C. The reactions were stopped, separated on 12%
polyacrylamide gels, and analyzed with a phosphorimager. D. ehDmc1 was incubated with 32P-radiolabeled OL90 ssDNA for 2 min prior to the addition of
DIDS (2.5 μM, lane 3; 5 μM, lane 4; 7.5 μM, lane 5; and 10 μM, lane 6). After 8 min of incubation, the reaction was initiated by the addition of supercoiled
dsDNA. After 12 min, an aliquot was removed and deproteinized. The reaction products were separated by agarose gel electrophoresis, and the gels were
analyzed with a phosphorimager. Mean results from three separate experiments were graphed. Error bars represent SEM. DIDS, 4,4'-diisothiocyanostilbene-
2,2'-disulfonic acid.

doi:10.1371/journal.pone.0139399.g009
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hydrolysis of ATP as the non-hydrolyzable ATP analog, AMP-PNP, supported presynaptic fil-
ament formation to the same extent as ATP. The observation that AMP-PNP did not support
the same level of D-loop formation is similar to that reported for hDMC1 [9] but unlike
scDmc1 [72]. The lack of D-loop formation by ehDmc1 in the presence of ATP-γ-S is similar
to what is reported for hDMC1 [9]. It is not clear why ATP-γ-S fails to support D-loop forma-
tion or DNA strand exchange by ehDmc1 and hDMC1. However, ATP-γ-S weakly supports
DNA strand exchange and D-loop formation by hRAD51 [87]. This difference could reflect
slight differences within the ATP binding pocket that permit hRAD51 to accommodate ATP-
γ-S. It is possible, that ehDmc1 has low affinity for ATP-γ-S. In support of this idea,
hRAD51-ssDNA nucleoprotein filaments formed in the presence of ATP-γ-S are less extended
than ecRecA nucleoprotein filaments [62]. Furthermore, the hRAD51-ssDNA nucleoprotein
filaments formed in the presence of ATP-γ-S resemble the inactive ecRecA nucleoprotein fila-
ments formed in the absence of a nucleotide cofactor [88].

The ATP-dependent DNA strand exchange using plasmid length DNA substrates was
rather weak when compared hDMC1 [9], hRAD51 [87], and scRad51 [74]. We suggest the full
potential of ehDmc1 may not be realized due to the use of human single-strand DNA binding
protein, replication protein A (RPA) in the 3-strand DNA strand exchange assay.

Our results show that mHop2-Mnd1 physically interacts with ehDmc1. We find this result
intriguing given the identity of ehDmc1 to mDmc1 is 61% and to hDMC1 61%. Furthermore,
mHop2 has only 32% identity with ehHop2 and mMnd1 has 41% identity with ehMnd1. We
interpret these results to suggest that the interaction surfaces between Dmc1 and Hop2-Mnd1
proteins are well conserved. In agreement with this idea, Ploquin et al. (2007) demonstrated
the spDmc1 interacted with mHop2-Mnd1. Here, the 32% identity between mHop2 and
spHop2 is the same as that between mHop2 and ehHop2 while the 33% identity between
mMnd1 and spMnd1 is lower than the identity between 41% mMnd1 and ehMnd1. Despite
this, both spDmc1 and ehDmc1 interact with mHop2-Mnd1.

We show that calcium and mHop2-Mnd1 enhance both homologous DNA pairing and
DNA strand exchange by ehDmc1. When both calcium and mHop2-Mnd1 were present, we
failed to see any further enhancement of ehDmc1-mediated D-loop formation than seen with
either calcium or mHop2-Mnd1 alone. This may be due to the selection of time points for the
D-loop formation experiments. To resolve this issue, we switched to a slower oligonucleotide-
based DNA strand exchange assay [43]. When we initially used the oligonucleotide-based
DNA strand exchange assay, the results were similar to those seen in the ehDmc1-mediated D-
loop formation assay where no apparent difference between incubation with mHop2-Mnd1
alone or in combination with calcium was observed. However, the use of shorter time points
revealed that calcium synergistically worked with mHop2-Mnd1 to dramatically increase the
rate of the ehDmc1-mediated DNA strand exchange reaction over 240-fold. Importantly, we
show that calcium is not required for mHop2-Mnd1-mediated stimulation of ehDmc1 as
reported for scHop2-Mnd1 and scDmc1 [71]. These results suggest that the activation of
ehDmc1 by mHop2-Mnd1 is mechanistically different than the activation by calcium. In sup-
port of this idea, calcium was shown to inhibit the ATP hydrolysis activity of hDMC1 and pro-
mote a more stable hDMC1-ADP-ssDNA complex [51], while Hop2-Mnd1 is reported to
stabilize the hDMC1 presynaptic filament and facilitate the capture of dsDNA [67]. Our results
demonstrating that ehDmc1 interacts with, and is stimulated by mHop2-Mnd1 suggests
ehHop2-Mnd1 will likely enhance the recombination activities of ehDmc1. It will be important
to demonstrate these putative interactions upon availability of purified ehHop2-Mnd1 protein
complex.

Leishmania [32], T. brucei [33–35], and G. lamblia [36] are pathogens that undergo meiosis.
A distantly related amoebazoan, Dictyostelium discoideum also has a meiotic cycle [89, 90].
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Currently, meiosis is only proposed to occur during encystation in E. histolytica [42]. Given
that HR was demonstrated in E. histolytica [39], ehDmc1 is expressed in E. histolytica [42], our
results demonstrating the ehDmc1 protein is likely present in E. histolytica in cell culture, and
our biochemical analysis demonstrating ehDmc1 is an active recombinase, provides additional
support for the possibility that meiosis occurs in E. histolytica.

An alternate explanation is that polyploidy in E. histolyticamay be an adaptation for sur-
vival. This is seen in human cancer cells that are known to be aneuploid, tetraploid, and poly-
ploid [91, 92]. Radiation treatment of cancer cells induces MC [79] leading to aberrant mitosis.
As a result, radiation treated cancer cells become polyploid and aneuploid. Polyploid cells are
more resistant to radiation treatment than diploid cells [93]. While polyploidy may be tempo-
rarily beneficial to cancer cells, the genome is highly unstable and often triggers DNA check-
point cell cycle arrest. These cells may attempt to escape cell death through depolyploidization
using HR, but most often, the cells undergo apoptosis [94]. However, there are instances of
meiotic genes, including Dmc1, being aberrantly upregulated in cancer cells in response to
radiation-induced MC [48]. These cells were shown to depolyploidize to become smaller
mononucleated cells that survive the radiation treatment and produce progeny [48]. This
response to radiation treatment in human cancer cells is similar to the response of Cryptococcus
neoformans to fluconazole where the cell becomes aneuploid for specific chromosomes [95].
Once the fluconazole is removed, the cells depolyploidize to their original chromosome copy
number. It is possible that E. histolytica does not undergo meiosis, but uses ehDmc1-mediated
HR in a manner similar to these radiation-induced MC surviving cancer cells to maintain the
pseudomeiotic polyploid state of the E. histolytica cell in response to unknown cues that induce
encystation. These examples suggest the formation of a polyploid or aneuploid state may be a
conserved survival tactic utilized by eukaryotic organisms.

We present the first report of a small molecule inhibitor for any Dmc1 recombinase. Our
demonstration that DIDS is a small molecule inhibitor of ehDmc1 may provide a helpful tool
to reveal if ehDmc1 has a role in encystation or as a potential drug therapeutic. The biochemi-
cal system described herein should provide a basis on which to better understand the role of
ehDmc1 and other HR proteins in E. histolytica.

Supporting Information
S1 Fig. Dmc1 multiple sequence alignment. Amultiple sequence alignment was constructed
with MUSCLE, depicting amino acid sequence similarities and variance. The boxes indicated
the two conserved Walker Motifs.
(TIF)

S2 Fig. Dmc1 neighbor-joining tree. A phylogenetic tree was constructed from 36 representa-
tive taxa that encode a functional Dmc1 with 70 nodes. ehDmc1 shares a higher similarity with
other pathogens and higher order plant species. ehDmc1 is more similar to hDMC1 than
scDmc1.
(TIF)
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