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Abstract

This dissertation expounds on algorithms that can deterministically or proba-

bilistically predict the future Signal Phase and Timing (SPAT) of a traffic signal

by relying on real-time information from numerous vehicles and traffic infrastruc-

ture, historical data, and the computational power of a back-end computing cluster.

When made available on an open server, predictive information about traffic signals’

states can be extremely valuable in enabling new fuel efficiency and safety function-

alities in connected vehicles: Predictive Cruise Control (PCC) can use the predicted

timing plan to calculate globally optimal velocity trajectories that reduce idling time

at red signals and therefore improve fuel efficiency and reduce emissions. Advanced

engine management strategies can shut down the engine in anticipation of a long

idling interval at red. Intersection collision avoidance is another functionality that

can benefit from the prediction.

We start by exploring a globally optimal velocity planning algorithm through the

use of Dynamic Programming (DP), and provide to it three levels of traffic signal

information - none, real-time only, and full-future information. The no-information

case represents the average driver today, and is expected to provide an energy effi-

ciency minimum or baseline. The full-information case represents a driver with full
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and exact knowledge of the future red and green times of all the traffic signals along

their route, and is expected to provide an energy efficiency maximum. We propose

a probabilistic method that seeks to optimize fuel efficiency when only real-time

only information is available with the goal of obtaining fuel efficiency as close to

the full-future knowledge example as possible. We used Monte-Carlo simulations

to evaluate whether the fuel efficiency gains found were merely the result of lucky

case studies or whether they were statistically significant; we found in related case

studies that up to 16% gains in fuel economy were possible. While these results

were promising, the delivery of relevant and accurate future traffic signal phase and

timing information remained an unsolved problem.

The next step we took was towards building traffic signal prediction models.

We took several prescient techniques from the data mining and machine learning

fields, and adapted them to our purposes in the exploration of massive amounts of

data recorded from Traffic Management Centers (TMCs). This manuscript evalu-

ates Transition Probability Modeling, Decision Tree, Multi-Linear Regression, and

Neural Network machine learning methods for use in the prediction of traffic Signal

Phase and Timing (SPaT) information.

Finally, we evaluated the influence of providing SPaT data to vehicles. To

that end, we investigated both smartphone and in-vehicle proof-of-concepts. An

in-vehicle velocity recommendation application has been tested in two cities: San

Jose, California and San Francisco, California. The two test locations used two dif-

ferent data sources: data directly from a TMC, and data crowdsourced from public

transit bus routes, respectively. A total of 14 test drivers were used to evaluate
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the effectiveness of the algorithm. In San Jose, the algorithm was found to pro-

duce a 8.4% improvement in fuel economy. In San Francisco, traffic conditions were

not conducive to testing as the driver was unable to significantly vary his speed to

follow the recommendation algorithm, and a negligible difference in fuel economy

was observed. However, it did provide an opportunity to evaluate the quality of

data coming from the crowdsourced data algorithms. Predicted phase timing com-

pared to camera-recorded ground truth data indicated an RMS difference (error) in

prediction of approximately 4.1 seconds.
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Chapter 1

Introduction

1.1 Motivation

National security, economic, and environmental policies all indicate that many coun-

tries could benefit from reduced oil consumption. Transportation is a significant

consumer of oil, and while electric and hydrogen vehicles offer promise, the required

infrastructure changes would be expensive. This yields a technological niche which

is ripe for development, where techniques to improve existing internal combustion

engine, and hybrid-electric vehicles are sought. With this in mind, the recent de-

velopment of sensors on- and off-board vehicles has led to a boon of information.

Simultaneously, communication bandwidth, data storage, and computational power

have become relatively cheap [5]. It is at this junction that opportunity exists to re-

duce oil consumption by improving vehicle fuel efficiency. Vehicles idling at red lights

cause emissions and noise pollution, and time spent idling can reduce a vehicle’s av-

erage fuel economy. Optimizing signal timings and use of more advanced traffic

signal control software and hardware can help reduce idling times but is quite costly
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Figure 1.1: A vehicle with sufficient information is able to avoid red lights [1].

[6, 7, 8, 9]. Very recent research on developing velocity planning or advisory algo-

rithms based on Signal Phase and Timing (SPAT) information [10, 11, 12, 13, 14, 15]

has the potential to reduce inefficiencies caused by traffic signals, without significant

changes to public infrastructure or automotive production paradigms.

In [11], Vahidi’s group presented a velocity planning algorithm which guided a

driver through multiple traffic signals given full and exact knowledge of the future

state of traffic signals. Figure 1.1 is an intuitive way of understanding the proposed

approach. Provided prior knowledge of SPAT information, each vehicle can poten-

tially plan a velocity that reduces its idling time behind red lights. Simulation results

using the algorithm in [11] indicated approximately 24% increase in fuel economy

when passing through a series of simulated traffic signals. Koukoumidis et al. have

recently developed an iPhone application to guide a driver through a light [13]. An

underlying assumption in both papers is that accurate SPAT information is readily
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available. Unfortunately due to timing drift in fixed-time lights, and ever-changing

traffic conditions for actuated and adaptive lights, accurate SPAT information is

difficult to obtain.

In [13], a machine learning technique, Support Vector Machine (SVM), was used

to predict the phase of the light based on information from windscreen mounted

iPhone cameras. Each iPhone utilized an image analysis algorithm to determine the

current phase of the signal, and generated an ad-hoc wireless network to distribute

this information to other iPhones running the same application. While SVM is one

potential method of prediction, the application’s reliance on ad-hoc wireless networks

and image processing to provide signal timing has shortcomings. In [12], an iPhone

application to re-route drivers around red lights was presented. Unfortunately the

prediction method was not explicitly indicated.

The proposed research in this dissertation is aimed at addressing these shortcom-

ings to enable widespread adoption of technologies that rely on prediction of SPAT

information. We start with a statistical evaluation of the effects on fuel economy

of a dynamic programming speed recommendation algorithm. We then focus on

SPaT prediction using various data sources and data analysis techniques. Finally,

in-vehicle velocity advisory tests were performed to validate effects of providing

SPaT information to in-vehicle algorithms.
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1.2 Research Overview

In Chapter 2, a method is proposed which utilizes either the base timing plan or

historically averaged timing data, in complement with real-time signal phase data,

to produce probabilistic SPAT prediction. This SPAT prediction will be fed into

a Dynamic-Programming algorithm in order to empirically examine whether the

prediction accuracy is sufficient to improve the fuel economy results. As a result

of its reliance only on real-time data instead of full-horizon data, this potentially

overcomes issues of timing drift and unknown traffic conditions at actuated and

adaptive signals. While the results are promising (and can be found in Table 2.1),

the first models are only able to recover about half of the potential fuel savings of a

vehicle with full and exact deterministic knowledge of future traffic signal phase and

timing information. The traffic signal prediction aware velocity recommendation

from the DP is initially evaluated with respect to simpler fixed-time signals. A

Monte-Carlo simulation is used to evaluate the performance in light of a multitude of

different traffic signal phase and timing conditions. The probabilistic prediction DP

velocity recommendation algorithms is then evaluated with actuated and adaptive

traffic signals, using traffic signal phase and timing information recorded over a

24 hour period from a street in Fremont, California. The results indicate that i.

knowledge of traffic signal timing can have a significant effect on fuel efficiency and

ii. future knowledge of traffic signal timing, and evaluation of the same, in real

world situations are important next steps.

To recover more of the potential fuel savings of full future SPAT information,
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and to expand the applicability to all types of traffic signals, in Chapter 3 data

mining and machine learning methods for producing future SPAT information will

be explored. Methods pulled from the computer science field, including Transition

Probability Modeling (TPM), Decision Trees (DT), Multi-Linear Regression (MLR),

and Neural Networks(NN) will be compared. The goal is prediction accuracy, mea-

sured as root mean square error between recorded ground truth data and predicted

phase length data, using only historical and real-time information directly available

from traffic signals. Final models used the attributes elapsed phase length, a three

cycle mean, a ten cycle mean, the time vehicles have been waiting at inactive phases

for all 8 phases, and the vehicle call status for all 8 phases, in both training and test-

ing the algorithms. Due to the diverse age and brands of technologies implemented

in traffic signal controllers, and the non-deterministic influence of vehicle and pedes-

trian arrival, prediction of the next active phase(s) and phase length is a challenging

problem. Several of the methods prove promising enough for consideration as part

of in-vehicle algorithms, potentially including automatic motor start-stop and gear

selection.

With accurate signal phase and timing information from Chapter 3 in hand, in

Chapter 4 opportunities for use of this information will be explored. Both smart-

phone based and on-board vehicle solutions are feasible. Chapter 4 focuses primarily

on in-vehicle testing during the time period at the BMW Technology Office USA and

University of California at Berkeley, where a development 2011 535i was modified in

order to implement and evaluate the effectiveness of the project as a whole. A total

of 14 drivers evaluated an in-vehicle velocity recommendation system, to positive
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effect. Testing methodology, including driver preperation, is surprisingly important

to test results. Testing was performed in both San Jose, California and San Fran-

cisco, California as evaluations of traffic management center and crowdsourced data

sources, respectively. A proof of concept iPhone-based velocity recommendation

application which was tested in Greenville, South Carolina is also presented.

Chapter 5 provides an overall discussion of results and conclusions from previous

chapters, describes the novel contributions, provides a record of dissemination of

results, and explores potential directions for future work.
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Chapter 2

Velocity Recommendation

Algorithm using Traffic Signal

Phase and Timing Data

2.1 Abstract

The main contribution of this chapter is the formulation of a predictive optimal

velocity planning algorithm that uses probabilistic traffic Signal Phase And Timing

(SPAT) information to increase a vehicle’s energy efficiency. We introduce a signal

phase prediction model which uses historically-averaged timing data and real-time

phase data to determine the probability of green for upcoming traffic lights. In

an optimal control framework, we then calculate the best velocity trajectory that

maximizes the chance of going through greens. Case study results from a multi-
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signal simulation indicate that energy efficiency can be increased with probabilistic

timing data and real-time phase data. Monte-Carlo simulations are used to confirm

that the case study results are valid, on average. Finally, simulated vehicles are

driven through a series of traffic signals, using recorded data from a real-world set

of traffic-adaptive signals, to determine the applicability of these predictive models

to various types of traffic signals.

2.2 Introduction

A significant amount of fuel is spent by vehicles slowing down, sitting behind, and

accelerating away from traffic signals [8, 9, 16]. With Corporate Average Fuel Econ-

omy standards set to rise, new technologies must be developed to meet the more

stringent standards. Avoidance of red signals could improve vehicle specific fuel

economy, reduce emissions, and help automotive manufacturers meet these new

standards. While cities can spend time and money improving the timing of traffic

signals [7], new research in velocity advisory algorithms suggests that it is possible

to avoid red traffic signals through intelligent usage of traffic signal phase and timing

information [11, 12, 13, 14, 15, 17]. This benefit comes without the cost imposed by

significant changes to infrastructure or production vehicles.

A velocity planning algorithm which guided a driver through multiple traffic

signals given full and exact knowledge of the future state of traffic signals has pre-

viously been published by our group [11]. This algorithm could be implemented as

a smart phone application displaying a suggested velocity to the driver, or it could
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provide the reference velocity to the adaptive cruise control system of a car. Simula-

tion results using the algorithm in [11] indicated approximately 24% increase in fuel

economy when passing through a series of simulated traffic signals. Koukoumidis et

al. have presented an iPhone application to guide a driver through a light [13]. An

underlying assumption in both papers is that accurate Signal Phase And Timing

(SPAT) information is readily available. Unfortunately due to timing drift in fixed-

time lights, and ever-changing traffic conditions for actuated and adaptive lights,

accurate SPAT information is difficult to obtain.

In this chapter we propose a method which utilizes either the base timing plan

or historically averaged timing data (for example a 24 hour average), in complement

with real-time signal phase data, to produce probabilistic SPAT predictions. A

velocity planning algorithm then uses the prediction to reduce the chance of idling

at a red light. A schematic is shown in Figure 2.1. This method can be implemented

today as a result of its reliance only on real-time data instead of full-horizon data,

and potentially overcomes issues of timing drift and unknown traffic conditions at

actuated and adaptive signals.

In [13], a machine learning technique, Support Vector Machine (SVM), was used

to predict the current phase of the light based on information from windscreen

mounted iPhone cameras. Each iPhone utilized an image analysis algorithm to de-

termine the current phase of the signal, and generated an ad-hoc wireless network

to distribute this information to other iPhones running the same application. While

SVM is one potential method of prediction, the application’s reliance on ad-hoc

wireless networks and image processing to provide signal timing has shortcomings.
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Figure 2.1: Schematic of velocity planning based on probability of green for two
consecutive lights

In [4], several traffic signal phase length prediction algorithms were presented, with

the goal of utilizing the information in vehicle efficiency applications. However, the

accuracy of the proposed methods as phase length predictor algorithms was deemed

insufficient by the thesis author. In [18], the authors looked at clustering of veloc-

ity profiles from drivers who previously visited a road segment to determine traffic

signal state estimations; but the authors do not make phase length predictions.

In [12], an iPhone application to re-route drivers around red lights was presented.

Unfortunately the prediction method was not explicitly indicated. In current liter-

ature, there exists no comprehensive framework for velocity planning when inexact

or incomplete traffic signal phase and timing information is available.

The goal of this chapter is to fill the gap in current research, by developing

SPAT prediction and probabilistic velocity planning algorithms that are applicable

to both fixed time and actuated signals, in the presence of both exact and inex-

act red/green split information. An optimal control formulation for the velocity
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planning problem is presented in Section 2.3. Section 2.4 describes a procedure for

predicting, probabilistically, the future phase of a signal, based on its current phase

and averaged timing data. A full array of simulations in Section 2.5 expands on our

initial results in [19] and statistically evaluates fuel economy gains attainable with

our proposed methods versus cases with no signal information (baseline minimum

efficiency) and full horizon signal information (maximum attainable efficiency). In

particular in Section 2.5.1, we present a motiving simulation case study consisting

of three consecutive traffic signals with our selection of phase and timing configu-

rations. Next in Section 2.5.2 we move to a simulation containing a large number

of test cases, involving randomized traffic signal timings of known red/green split;

this builds statistically significant evidence for use when the driver has access to

exact red/green split information akin to a driver passing through a series of fixed

time lights. To further demonstrate the applicability of proposed methods, in Sec-

tion 2.5.3 we show results for a series of consecutive traffic signal phase and timing

configurations matching a series of real-world intersections. In these simulations we

utilize actuated traffic signal timings, pre-recorded from an actual street. The goal

of using the signal phase and timings from the real world is two-fold: first it al-

lows the evaluation of the algorithm in the presence of actuated signals and inexact

red/green splits, and secondly it reduces author influence on the road geometry and

signal timings.
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2.3 Optimal Velocity Planning

Our goal is to find a velocity profile which reduces the total energy consumption

during a trip based on full or partial SPAT information. One can formulate this

problem as an energy (fuel) minimization problem, but this requires inclusion of

dynamic models of a specific vehicle and its propulsion system (combustion engine,

etc.) to relate energy use to the velocity profile (for example, see Rakha et al.[20]).

To avoid the ensuing computational complexity and to decouple the choice of optimal

speed from a vehicle’s make and model, we simplify the cost function by penalizing in

it a weighted sum of the total trip time and all of the acceleration and decelerations,

instead of total energy use. The underlying assumptions in this choice are that

idling at a traffic light and excessive accelerations and decelerations induced by a

traffic light cost energy with no benefits to the driver. Other factors such as motion

constraints imposed by red intervals, road speed limits, and the fact that very low

velocities will be unacceptable to consumers, can be accounted for by constraining

the solution space. We evaluate the fuel economy for a specific vehicle model a-

posteriori, by feeding the optimal velocity profile to a high-fidelity dynamic model

of the vehicle.

We first describe, in Section 2.3.1, the scenario when deterministic and accurate

SPAT information over the entire planning horizon is available. When the phase

and timing of upcoming signals are uncertain, a probabilistic term can be added to

the cost function, as described in Section 2.3.2.
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2.3.1 Planning with Deterministic SPAT Information

To obtain a best achievable energy efficiency baseline, we first solve the optimal

control problem assuming full and deterministic knowledge of signals’ phase and

timing over the planning horizon. The following cost function is used:

J =
∑
i

[
w1
ti+1 − ti
∆tmin

+ w2|
ai
amax

|+ c(xi, ti)
1

ε

]
(2.1)

where J is the total cost and is indexed over position x with index i, ti+1 − ti

is the time required for a vehicle to cover the distance between steps xi and xi+1

given the velocity at xi and the acceleration ai; ∆tmin is the minimum time to

complete the step if starting and ending at the maximum velocity and is used as

a scaling factor, ai is the constant acceleration assumed during step i, and amax is

the maximum allowed acceleration. The constants w1 and w2 are weighting terms.

Motion constraints imposed by a red interval are imposed as a soft constraint by

inclusion of the term c(xi, ti)
1
ε

in the cost function1. The value of c(xi, ti) is zero

except for spatiotemporal intervals when a light is red in which case its value is set

to one, and ε is a very small constant (for example 10−6), such that idling at red is

discouraged.

The vehicle kinematics, realized by the following two-state equations, are im-

posed as equality constraints. Here x is the independent variable, velocity v and

time t are the two states, and acceleration a is the input:

1Note that in simulations, a low level controller verifies and can override the recommendation
of the velocity planner, if the planner makes a recommendation which would pass through a red
light.

13




dv
dx

= a
v

dt
dx

= 1
v

(2.2)

Discretizing the above equations with a constant sampling interval of ∆x = xi+1−xi

and with a zero-order hold on acceleration, we obtain:


vi+1 =

√
(vi)2 + 2ai∆x

ti+1 = ti + 2∆x

vi+
√

(vi)2+2ai∆x

(2.3)

We also enforce the hard inequality constraints: vmin ≤ vi ≤ vmax and amin ≤ ai ≤

amax. Here vmin and vmax are the road speed limits and can also include lowest speed

acceptable to a driver; −amax and amax are the feasible bounds for deceleration and

acceleration.

The above optimal control problem is solved numerically using Deterministic

Dynamic Programming (DDP) and based on the discretization on position, time,

and velocity[21]. The DDP is solved by value function iterations for each stage,

backwards. Using Bellman’s principle of optimality, one only has to solve for one

control input, here vi. The trajectory is found recursively, instead of attempting to

find the whole velocity trajectory at once.
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2.3.2 Planning with Probabilistic SPAT Information

Because perfect full-horizon SPAT information is generally not available, a solution

which takes advantage of currently available information and technologies is prefer-

able. The goal is a solution that, given imperfect or incomplete phase and timing

information, is still able to increase the energy efficiency by taking advantage of

available data. Because of imperfect or incomplete starting data, this resulting

energy efficiency is expected to be lower than the case with full-horizon information.

The cost function in (2.1) is modified to the following to take into account the

probabilistic nature of SPAT information:

J =
∑
i

[
w1
ti+1 − ti
∆tmin

+ w2|
ai
amax

|+ c(xi, ti)| loge (p(xi, ti))|
]

(2.4)

All parameters and variables in (2.4) are the same as those described for (2.1);

the only new variable is p(xi, ti) which represents probability of green at time ti

for a light situated at position xi. Therefore higher costs are assigned to solutions

that pass through time intervals where probability of green is lower. At the limit

when probability of green at xi,ti is zero, loge(p(xi, ti)) = ∞ and passing through

a red would be discarded. Where p(xi, ti) = 1, this term of the cost function

drops to zero and increases the likelihood that the corresponding velocity will be

selected. The probability of green for each light can be generated based on real-

time and/or historical information as described in Section 2.4. Minimization of the

cost function (2.4) with the equality and inequality constraints described in the

previous subsection, remains a deterministic optimal control problem. The problem
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is solved using DDP but in a receding horizon manner; as new information becomes

available, the DDP is re-solved taking into account the updated information over

the remaining trip horizon.

2.4 Prediction

There can be much uncertainty in the phase and timing of a traffic signal which

makes predicting its future state quite challenging. For fixed-time traffic signals

which do not respond to traffic conditions and operate only on a timing table, we

have confirmed the finding that the traffic signal clock drifts significantly during a 24

hour period. Therefore, it is not possible to know with certainty the start of greens

and reds, even for fixed-time signals. The level of uncertainty is higher for actuated

and adaptive traffic signals which do respond to traffic conditions. Although they

have a base timing table, the timings of actuated and adaptive lights may change

according to traffic conditions, rendering not only the start of reds and greens but

also the phase lengths uncertain.

Due to the aforementioned uncertainties, it is difficult to determine the start and

duration of greens deterministically. Therefore in this paper we employ a probabilis-

tic prediction framework to handle the case with partial or uncertain information.

We focus on cases where only i) the current phase (color) and ii) the average red

and green lengths for a signal are known. We use this information to predict the

probability of a green over the planning horizon.

Access to the current phase of the traffic signal is a major technological hurdle.
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However, solutions have been proposed and implemented in [12, 22] that could ad-

dress this problem. Other approaches, including those that rely on Dedicated Short

Range Communication (DSRC), can be found in [11, 23, 24].

Obtaining a base timing plan for a traffic signal is not trivial either. Direct access

to signal timing plans is prohibitively difficult due to hundreds of local and federal

entities that manage the more than 330,000 traffic lights across the United States

[7]. To overcome these problems, it is possible to combine historical data, operating

logic of signalized intersections, infrastructure sensor data, and even crowd source

information to generate an average timing table. This can be done for different times

in a day (rush hour/midday) and days of a week (weekday/weekend). The outcomes

are average cycle times, and percentage of green and red in each travelling direction

for each signal. Mere knowledge of such a baseline schedule, obtained offline and

using only historical data, has statistical value even when the signal clock time is

unknown.

Let us denote the state of a light by `(t) which can assume two values, g and

r, representing green and red respectively. We are interested in determining the

probability of a light being green at time t + tp conditioned on its current color at

time t. To form this conditional probability function, we assume the durations of

green and red are known to be tg and tr on average. We also assume the traffic

signal operates cyclically2 and as a result the total cycle time3 is fixed and equal to

2This is true for many traffic signals; even many of those that react to traffic can theoretically
have a fixed cycle time.

3We include the yellow time with red time; for safety reasons we do not make recommendations
which would guide a driver through a yellow light.
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Figure 2.2: Conditional future probability of green given that the light is currently
green, for four different light timing patterns. In all patterns the total cycle time
is 60 seconds, with the lengths of green and red indicated in the legends. The time
axis is tp as described in Equations 2.5 and 2.6.

tg + tr. In this formulation, we assume the arrival of vehicles at the intersection to

be uniformly distributed; if the arrival distribution of vehicles at an intersection is

known (for example, in [25]), that distribution may be used as a weighting function

in place of the uniform assumption. Using relatively straight-forward probabilistic

reasoning, the chance of a green light in tp seconds, given a green at current time t

can be found to be:

P [`(t+ tp) = g|`(t) = g] =



tg−tm
tg

tm ≤ tr, tm ≤ tg

tg−tr
tg

tr ≤ tm ≤ tg

0 tg ≤ tm ≤ tr

tm−tr
tg

tg ≤ tm, tr ≤ tm

(2.5)

where tm = mod(tp, tg + tr) is the residue of division of tp by tg + tr. In other
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Figure 2.3: Conditional future probability of green given that the light is currently
red, for four different light timing patterns. In all patterns the total cycle time is 60
seconds, with the lengths of green and red indicated in the legends. The time axis
is tp as described in Equations 2.5 and 2.6.

words, because the signal clock is assumed to be periodic, the resulting conditional

probability is also going to be a periodic function of time with the same period.

Similarly, the chance of a green light in tp seconds, given a red at time t is:

P [`(t+ tp) = g|`(t) = r] =



tm
tr

tm ≤ tr, tm ≤ tg

1 tr ≤ tm ≤ tg

tg
tr

tg ≤ tm ≤ tr

tg+tr−tm
tr

tg ≤ tm, tr ≤ tm

(2.6)

Figures 2.2 and 2.3 show several probabilistic prediction examples with different

splits between red and green but with the same cycle length. These are visualizations

of the probabilities used in the probabilistic simulation cases described next.
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2.5 Simulations

A series of simulations were run in increasing order of complexity and increasing

applicability to real world applications. The first step involved a simple case study,

whereby the efficacy of the algorithm was examined in a generic scenario. The

second step was to implement the algorithms as part of a Monte-Carlo simulation,

whereby in each simulation the consecutive signal timing configurations were ran-

domly adjusted to simulate spatio-temporal effects similar to that of varied intersec-

tion geometries. In the third step, traffic signal spacing and timing configurations

were adapted from a semi-urban environment, further validating the applicability of

the algorithms.

We evaluate three levels of SPAT information (none, deterministic, and proba-

bilistic) in all of the following studies. In many of the simulations, a vehicle which is

unaware of the future phase of traffic signals would have to alter the vehicle velocity

for some of the traffic lights and stop at some of them. In many of the simulations,

a driver with full SPAT information and sufficient space and time is able to avoid

coming to a stop at any of the traffic signals. The real time information case, with

probabilistic models, often falls somewhere in the middle.

In the scenario with probabilistic information, the optimal control problem in

Section 2.3.2 was solved in a receding horizon manner and once per sample time

using DDP. To simulate the uncertainty in the phase and timing of an actual traffic

signal, a random number generator could be used to slightly and randomly shift the

start of a green and change phase durations. At each sample time, a prediction of the
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probability of green was made for the remainder of the trip using only the current

color of the lights and an assumed and fixed green/red split ratio as described in

Section 2.4; this prediction was fed to the DDP algorithm at each sample time. The

recent behavior history of a signal was not accounted for in the prediction stage.

A maximum speed limit of 20 meters/second is enforced in all simulations, cor-

responding to an arterial road. The simulated driver is required to start at zero

velocity and a terminal constraint is enforced such that the driver ends at zero

velocity.

In all simulations, the penalty weights in the cost function J are set equally to

empirically derived values of w1=1/8, w2=1/8. Weighting factors values are derived

empirically such that simulated vehicles complete the distance in a reasonable time

without violating red lights. This involved several, but not necessarily exhaustive,

iterations. The value of ε is set at 10−6. To solve the DDP, the solution space

is discretized to distances of 20 meters, time increments of 1 second, and velocity

steps of 1 meter/second. In this discretization grid choice, we have tried to maintain

the computational time and memory requirements at a reasonable level without

noticeably influencing the solution.

AUTONOMIE, a high fidelity vehicle simulation environment developed by Ar-

gonne National Laboratory, was used in calculating fuel economy. In simulations

where it was not computationally feasible to run all cases through a full high-fidelity

AUTONOMIE simulation cycle, a simplified vehicle model was developed using ef-

ficiency maps taken from AUTONOMIE and a simplified gear shifting logic 4. The

4For example, the effects of engine start and stop transients on fuel economy were not modeled
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simulated vehicle is a two-wheel-drive, automatic transmission, conventional-engine

vehicle. This vehicle had a total mass of 1580 kg, an engine producing a peak of

115 kW, and a constant electrical load of 200 W. The velocity profiles generated

by the dynamic program were fed to this model to calculate the fuel economy for

each case. The simplified model provides a significant reduction in computational

time when calculating the fuel economies for large numbers of simulation cases and

we believe the fuel economy numbers will remain directionally valid, if not in the

absolute sense5.

2.5.1 Motivating Demonstration

A case study was run as a motivating first step and involved a single simulation of

a set of three consecutive signal timing configurations. The velocity profiles for the

case studies with no advanced information, with read-time only information, and

with full horizon information are shown in Figure 2.4. A DP solution for the full

horizon information case has a smooth velocity profile, an uninformed driver must

stop and start at lights, and a driver with access to real-time signal information

is able to partially smooth her/his velocity profile . In Figure 2.4 the uninformed

driver is required to come to a complete stop twice, for a combined total of about 7

seconds of idle time.

To help visualize how the decisions are made as the car receives more information

and progresses along, time-lapses of the real-time information simulation in Figure

in the author-derived fuel economy calculations.
5The directionality of fuel economy results utilizing this simplified model matches those com-

puted using AUTONOMIE as in [19]
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Figure 2.4: Case Study: Comparison of velocity profiles of a driver with no infor-
mation, real-time information, and full horizon information.

2.4 are shown in six subplots of Figure 2.5. In these subplots the information about

the future color of a light is only probabilistic and is visualized by a red to green

color spectrum. As the simulated driver approaches a traffic signal, the probability

prediction becomes both more confident (i.e. probability becomes bimodal around

either 1 or 0), and more relevant to the simulated driver. Bright red indicates the

probability of green is near 0. Bright (neon) green indicates the probability of green

is near 1. Dark reds and dark greens indicate probabilities in the middle. Because

probability is only one of the terms in the cost function, at times it may appear as

though the driver is moving aggressively towards a light with a high probability of

red; the color spectrum shown is only the value of probability of green, and does

not reflect the total cost function. A simulation movie for the first case study can

be found at [2].

The fuel economy for each scenario was evaluated in AUTONOMIE and using
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Figure 2.5: Snapshots of a running simulation for Case Study 1. Probability predic-
tion is indicated by the red to green color spectrum. See the video at the following
link [2].

Table 2.1: Fuel economies in miles per gallon (mpg). The results show the impact
information can have on the energy efficiency.

Case Study
No Information 10.3
Real Time Information 16.6
Full Information 31.5
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the full vehicle model. The results presented in Table 2.1 are promising. With

only real-time phase data and the probabilistic prediction model, a 61% increase in

fuel economy over an uninformed driver is observed. This corresponds to 29% of

the potential benefit of having full and exact future knowledge of SPAT information.

Note that because the total simulation distance is only 800 meters with three signals,

the fuel economy differences may be more exaggerated than average gains expected

over driving cycles where traffic signals are less frequent.

2.5.2 Monte-Carlo Simulations

While the results of the preceding case study is promising, it is not clear if significant

improvement in average fuel economy can be gained with the proposed algorithm,

if relative offsets in the three signal timings are varied. In other words, it remains

to verify that fuel economy gains were not solely a result of author-designed signal

offsets. Therefore in this section we evaluate a statistically significant number of

cases with randomly generated timing offsets; this is a variant on a Monte-Carlo

experiment.

For these Monte-Carlo simulations, drivers with access to the three levels of

information were run, in which the start of red phases were randomized within a

window of sufficient length for the driver to complete the route. The total cycle

length, and length of each red were kept constant. Also the proportion of red

to green times across all simulations were constrained to be the same (this ratio

is the average used for the simulated signals, and could match a 24 hour or any

other temporal average for a specific traffic signal). The start of the red phase of
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Table 2.2: Monte-Carlo simulation results reflect the positive influence of informa-
tion, on average, on fuel economy.

Mean(MPG) Standard Deviation(MPG)
No Information 25.9 5.0
Real Time Information 29.9 3.7
Full Information 32.5 3.0

each signal was uniformly varied within the cycle so long as the full length of red

was preserved. The start of each red of a traffic signal was chosen independently

of the start of red of the next traffic signal. Three thousand simulated cases, with

three traffic signals per simulation, with a simulation length of eight hundred meters

were run (1000 simulations for each level of information: no information, real-time

information, and full information).

The fuel economy for each of the The Monte-Carlo simulations was obtained by

feeding the resulting velocity profile to our simplified vehicle model. The averaged

results for each information level are summarized in Table 2.2. The results indicate

that for the road conditions described and with only real-time information and the

probabilistic models, an average of 16% increase in fuel economy could be expected,

representing approximately 62% of the benefit of full and exact traffic signal timing

information.

It was determined that the chosen 1000 simulations per information level is

sufficient and captures reasonably well the average fuel economy for each information

level. This can be seen in Figure 2.6 where the cumulative average fuel economy

over the number of simulations is shown for each information level. By the time
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Figure 2.6: Average fuel economy for increasing number of simulated streets.

1000 runs were simulated for each level of information, only very minor changes in

average MPG occurred with the addition of more cases.

Figure 2.7 shows histograms of Monte-Carlo fuel economy traces. As apparent

in the figure and also shown in Table 2.2, the standard deviation of the case where

the driver has no information is highest, where the case where the driver has full

information is lowest. One possible explanation of this is that the driver with no

information has significantly different fuel economy when the driver has to stop at

all lights versus no lights, whereas the driver with full information is able to achieve

more uniform fuel economy results by smoothing the velocity and avoiding stopping.

The driver with no information is occasionally able to be faster and more efficient

than the driver with some or full information. This situation may occur as a result

of the no-information driver accelerating at full speed, and just passing before a
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Figure 2.7: Histogram of Monte-Carlo simulation results for the three levels of
information.
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light turns red. When this occurs, the driver is able to significantly reduce total trip

time, which in turn reduces fuel usage. Because the real time or full information

drivers have cost functions (Equations 2.1 and 2.4) which place some weight on

acceleration, the optimal solution is rarely maximum acceleration. The driver with

no information applied full acceleration and full deceleration as necessary, reflecting

an aggressive driver.

2.5.3 Simulations Using Recorded Timings from Arterial

Adaptive Lights

With Monte-Carlo simulations indicating positive relationships between future in-

formation about traffic signals and fuel economy, we turn to more realistic examples

in which we use signal timing and geometry of actual intersections. Toward this

goal, we have obtained the timing of signals of three intersections from the city of

Fremont in California.The lengths of the green phases in the direction of travel for

these simulations for a 24 hour period can be found in Figure 2.8. From this Figure,

it is clear that the traffic signals are not fixed, they respond to traffic conditions. Use

of actual signal timings and actual offsets between multiple intersections, reduces

any unintended bias that may have been present in our Monte Carlo simulation

design. Moreover, we show in this section that while our proposed algorithms were

developed for fixed-time signals, they are robust to variance in nominal traffic signal

timing and could potentially be used even in the presence of actuated traffic signals.
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Figure 2.8: Histories of relevant phases for each light along the chosen real-world
route, for every cycle over a 24 hour period (midnight to midnight).
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A vehicle was simulated driving through the three traffic signals every 10 minutes

over the 24 hours yielding a total of 144 simulated drives per level of information.

The real-world distance between the signals is preserved in the simulation, such that

the simulated vehicle has to cover the same distance using the same traffic signal

timing offsets as a real driver would encounter. The total simulation distance is

1320 meters. The first light occurs 520 meters into the simulation. The second

light occurs 280 meters later. The third and final light occurs at 1200 meters from

the start. The resolution of the dynamic programming algorithm was kept similar

to simulations in Section 2.5.2. Velocity resolution remains at 1 meter per second,

distance resolution remains at 20 meters, time resolution remains at 1 second. The

traffic signal phase and timings are taken from recorded data from the city and are

merely played back into this simulation. No other vehicles are considered to be on

the road - the only obstacles the vehicle routing algorithm must avoid are the lights

themselves. For the purposes of prediction, the real-time simulation is given a 24

hour average of red and green lengths, though if more relevant averages (for example

a short-term average, a time of day average, or other statistical means) are available,

they may continue to improve the performance of this real-time information case.

Fuel economy was calculated in the same manner as the Monte-Carlo simula-

tions, due to the calculation time of AUTONOMIE for the number of drive cycles

considered. The results of these fuel economy calculations can be found in Figure

2.9, and the means of those simulations found in Table 2.3. The maximum error

between the velocity profile generated and the velocity profile followed by the fuel

economy calculations was 3.6%. Figure 2.9 and Table 2.3 both confirm the positive
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Table 2.3: Fuel economy results from recorded real-world traffic signal timings with
simulated vehicles moving between the lights reflect the positive influence of infor-
mation.

Mean(MPG) Standard Deviation(MPG)
No Information 31.7 3.1
Real Time Information 33.7 3.0
Full Information 34.5 3.6

Figure 2.9: Histogram of fuel economies for real-world traffic signal timings.
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influence of information on fuel economy.

The real-world data used in Section 2.5.3 provides another step towards imple-

mentability in comparison to the Monte Carlo simulations of Subsection 2.5.2. The

use of recorded traffic signal data reduces the possibility of author-induced errors,

e.g. inadvertently creating red or green waves. The simulation indicates that drivers

with access to real-time information were able to improve fuel economy over drivers

with no information by approximately 6%. This accounts for roughly 70% of the

potential gains available through access to full and exact future knowledge of traffic

signal timing. The particular implementation chosen here allows finding the new

optimal trajectory based on the most current data by recalculating the cost to go

and control matrices at each position step. This is one technique for dealing with

unexpected traffic, pedestrians crossing out of cross-walks, and other disturbances.

In the real-world data, at some times throughout the day the base timing plan

of some of the traffic signals have cycle lengths of 60 seconds. The decision to

simulate a vehicle every 10 minutes (a multiple of the 1 minute nominal cycle length)

is therefore a potentially problematic choice. However, as the traffic signals are

adapting to traffic conditions, the cycle length and splits adjust, reducing the chance

of aliasing of results. This ensures that the simulations are not 144 repetitions of the

same cycle (the variation in simulations can be confirmed by reviewing Figure 2.9).

Additionally, the timing plans of the various traffic signals appear to be lacking

in synchronization, as even late at night and early in the morning, when neither

vehicles nor pedestrians make calls, the lights drift with respect to each other.

In general, in a coordinated series of signals, under actuated or adaptive control
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logic, the offsets and other signal timing parameters may play an increasingly im-

portant role - for example in creating a green wave. If the proposed probabilistic

models are able to assist a driver in joining a green wave, this may have a positive

effect on fuel economy for that driver.

2.6 Conclusions

This chapter statistically evaluated velocity planning algorithms which minimize

idling time behind red lights based on probabilistic traffic signal timing models

that we proposed. Three cases were evaluated - vehicles with no information about

upcoming traffic signals, vehicles with real-time information, and vehicles with full

and exact future knowledge of traffic signal timings. Drivers today fit into the first

case - the least efficient. Drivers of the future may fit into the third and most efficient

case, if infrastructure and technologies develop to provide this information. The

middle case is feasible today, and obtains much of the potential benefit obtainable

via knowledge of upcoming traffic signal timing.

Real time knowledge with probabilistic models where the driver encountered

fixed-time lights yielded an optimistic 61% increase in a motivating case study, and

a 16% increase in average fuel economy across 1000 multi-signal simulations of fixed

time signals. The same models in combination with real time information yielded a

6% increase in fuel economy for actuated signals. These reflect technologies which

could be feasibly implemented with little or no infrastructure changes and with only

software updates to current production vehicles.
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Chapter 3

Machine Learning Prediction of

Actuated Traffic Signal Phase and

Timing Data

3.1 Abstract

Predictive Traffic Signal Phase and Timing (SPaT) information has the potential

to improve in-vehicle driver assistance and safety applications, increasing safety and

energy efficiency. However, due to the diverse age and brands of technologies im-

plemented in traffic signal controllers, and the non-deterministic influence of vehicle

and pedestrian arrival, prediction of the next active phase(s) and phase length is a

challenging problem. This chapter evaluates Transition Probability Modeling, Deci-

sion Tree, Multi-Linear Regression, and Neural Network machine learning methods
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for use in the prediction of traffic signal phase length. Final models used the at-

tributes elapsed phase length, a three cycle mean, a ten cycle mean, the time vehicles

have been waiting at inactive phases for all 8 phases, and the vehicle call status for

all 8 phases, in both training and testing the algorithms. Multi-Linear Regression

performs best in the tests performed herein, with a root mean square prediction

error, averaged across 8 phases over 24 hours of test data, of 3.6 seconds.

3.2 Introduction

Fully autonomous vehicles have the potential to significantly improve vehicle safety

and energy efficiency, but both public acceptance and technological solutions are

currently insufficient. Consumer reception of driver assistants like navigation sys-

tems is popular and increasing, and may be one way to increase vehicular safety

without giving up driver volition. However, while academic researchers and con-

sumer products have numerous offerings which all guide towards avoiding traffic

congestion, none of these programs utilize traffic signal information and as a result

many of them have mediocre urban travel time estimations. The missing link is the

availability of traffic Signal Phase and Timing (SPaT) information.

Prototype vehicles and infrastructure built by the Vehicle Safety Communica-

tions Consortium (Ford, GM, Honda, Mercedes-Benz, Toyota) have shown it to be

possible to reduce collisions at intersections through red light runner prediction [26],

as have others [27]. In many sources [11, 19, 28, 29, 30] it is shown to be possible

to improve fuel economy through appropriate speed recommendations. These ap-
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plications generally assume the presence of real time and or future traffic signal

information; this is a large assumption because knowledge of current and future

SPaT information is an undeveloped area.

Microsoft [31] has worked on traffic flow prediction, using mobile phone locational

data, to observe and predict current and future traffic flow information. Similarly,

University of California Berkeley PATH program [32] have been able to use cell

phones to build traffic flow models for travel time prediction. Researchers from MIT,

and the University of Luxembourg have created traffic congestion models and routing

algorithms which avoid these hot spots in [33, 34]. Finally, the company WAZE is

built primarily around a smart-phone application which builds predictive congestion

models [35]. All of these focused on traffic flow, not signal SPaT calculation or

prediction.

In [13], current traffic signal status is determined via mobile phone cameras

placed in vehicles. From there, the phones transmit current status of signals, and

make predictions about future states of the system. However, the signals in [13]

had only 2 phases, and therefore the results reflect an unrealistically simple and

optimistic situation if the algorithms are intended to be utilized generally.

In [12], traffic signal data is collected from the city, both static location and

parameter data, as well as dynamic actuation and timing data. This solution, when

this data is available, has many benefits - high accuracy, low latency, and immediate

knowledge of outlier events like emergency vehicles and sports games. An additional

benefit is that clock drift in pre-timed signals is negated by the constant connection

to the data source. However, accurate predictions are only available for pre-timed
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signals (not for actuated or adaptive), and transitional periods still present an issue

for prediction.

In [18, 36], multiple vehicle locational and velocity data traces are used for back-

calculation of pre-timed signal timings in two complementary techniques. However,

neither successfully addresses actuated or traffic adaptive signals.

The most relevant source is a master’s thesis from the Technical University of

Munich which uses machine learning methods to predict both phase lengths and

the next phase [4]. However, because the metric for success also includes time

periods when the signal is inactive, the metric is overly optimistic and hides the

accuracy of the system in predicting active phase lengths. The use of this success

metric unfortunately does not allow direct comparison therefore between the results

presented and those found in this manuscript. Additionally, the thesis does not

provide comparison across methods for the same prediction - the different methods

are used for different types of prediction and therefore no objective analysis of the

relative applicability of any method is available.

While these solutions may provide access to real-time SPaT information, they

are not able to provide future traffic signal information. For applications like route

planning, engine start-stop, and transmission control, future knowledge of traffic

signal information could improve the overall vehicle efficiency.

The goal of this chapter is to provide a comprehensive analysis of several methods

performance at predicting the length of a traffic signal phases. In addition, it is

important to provide a measure of confidence in that prediction to determine its

applicability in a particular driver assistance system.
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This paper is organized as follows: in Section 3.3, a brief overview of the basic

operation and types of traffic signals is presented. The process of obtaining histori-

cal data, the attributes used in prediction, is described in Section 3.4. Preprocessing

and a preliminary analysis to determine suitability to data mining techniques can

be found in Section 3.5. In Section 3.6, probabilistic models are used to predict

pre-timed signals. For the actuated and adaptive signals in Section 3.7, data min-

ing methods, and motivation for their use in prediction of SPaT information are

presented and evaluated.Discussion of results, comparison across phase length pre-

diction methods, and future work are presented in Section 3.8.

3.3 Background on Traffic Signal Control

An overview of a standard intersection may be found in Figure 3.1.

Some terminology is an important starting point for understanding traffic signal

controller logic, though the terminology varies from manufacturer to manufacturer

and city to city. The word phase is commonly used to describe a permitted move-

ment, be it vehicles in the through direction or a turning direction, or pedestrian

movements. Phases are active during the time period that specific movement is

shown a green light or walk symbol (sometimes active phases includes yellow). It

is common to assign even phase numbers to through lanes, and odd phase numbers

to dedicated left turn lanes. Permissive right turns are generally not given their

own phase number, it is considered to be lumped with the through phase. Similarly,

pedestrian movements are generally numbered in accordance with the appropriate
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Figure 3.1: Phase numbering of a standard intersection per FHWA standards [3].

Figure 3.2: Overview of signal control schemes in place around the United States.
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Figure 3.3: A standard (leading left) ring-barrier diagram [4].

phase which would occur concurrently (e.g. westbound through lane for vehicles,

and westbound pedestrians are normally numbered the same, as seen in Figure 3.1).

Phases are commonly grouped into organizational structures called rings. The

phases of an 8 phase intersection will often be grouped into 2 rings, such that

phases 1-4 and 5-8 are grouped into rings 1 and 2 respectively, as seen in Figure

3.3. In order to ensure the safe passage of vehicles while concurrent movements are

active, barriers are used to separate conflicting movements (sometimes called all-red

periods). The ring-diagram for an 8-phase intersection may be found in Figure 3.3.

In this example, both phases 1 and 5 could be activated at the beginning of the

cycle. If either active phase gaps out or reaches the maximum green, through a

lack of vehicle movement or reaching the longest programmed active phase duration

allowed, that phase will transition to the next phase in that ring, phases 2 and 6

respectively. It is therefore possible for the combinations 1 and 5, 1 and 6, 2 and 5

or 2 and 6 to be active concurrently, but no other combinations. Once both 2 and
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6 have either gapped out or maxxed out, they become inactive, the barrier may be

safely crossed, and phases 3 and 7 are activated. The rotation through the phases

of the intersection, permitting movement such that all requested phases are served

is also sometimes called a cycle.

When a vehicle arrives at an intersection, there is often a sensor (commonly an

inductive loop), which tells the signal controller that there is a vehicle call requesting

activation of that phase. This is essentially equivalent to a pedestrian pushing

the crosswalk button, which places a pedestrian call to the controller, requesting

activation of that phase.

Numerous control strategies have been developed to efficiently process traffic at

varying intersection geometries under changing conditions, as can be seen in Figure

3.2. For the purpose of prediction, the primary difference is whether the intersection

controller operates in a fixed (cyclical) pattern, or whether the signal responds to

vehicle requests. This distinction discriminates pre-timed signals from actuated and

adaptive signals. Therefore, we describe the simpler prediction of pre-timed signals

in Section 3.6 and the more complex actuated and adaptive signals in Section 3.7.

In this chapter, it is assumed that intersections are of the same geometry as

found in Figure 3.1, with a nominal count of 8 vehicular phases. For intersections

which use fewer phases, the same model may be used with some columns empty.
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3.4 Raw Data Acquisition

The process used to acquire the data used in building the predictions models in

Section 3.7 are described here.

First a note on terminology; we use the word tuple to describe a set of attributes

which are connected (generally a single record). These attributes, described in

Section 3.4.1, form the basis of the historical information stored in a database from

which predictive models are built.

Data in this chapter was recorded in Portland, Oregon, San Jose, California and

Fremont, California. Traffic signals in all three test areas have been connected to

controllers, in this case Siemens controllers. Those controllers are in turn networked

to Traffic Management Centers (TMC). Each TMC is able to poll its respective

traffic signals about their current status. The software program WireShark was

used to replicate the data coming in to the TMC, and the duplicated data stream

was sent to and recorded by a separate server for storage and analysis [37]. In each

city, data was collected over two consecutive business days, with the first day being

used for training data and the second day being used for test data.

The training data in Fremont provided 100351 training tuples. The test data con-

tains 97703 tuples for classification. The training data in Portland provided 15922

training tuples. The test data contains 15626 tuples for classification. The training

data in San Jose provided 31012 training tuples. The test data contains 32195 tuples

for classification. The apparent difference in data sizes is due to recording format, as

Fremont training data was recorded at 1Hz independent of status updates (a limita-
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tion imposed by the controllers), whereas Portland and San Jose are change-based

recording. A visualization of the phase lengths, taken from the Fremont training

data, may be found in Figure 3.4.

Descriptions of the recorded data, later used as attributes, can be found in

Subsection 3.4.1.

3.4.1 Raw Data (Attributes)

While the raw data recorded directly from the traffic signal is useful, modification of

that data as well as computation of new attributes has the potential to significantly

increase the accuracy of the data mining models and techniques. What we describe

here are the various data sets from which we pulled our model training and testing

data. Not all of these attributes will prove useful, not all of these attributes will be

included in the final model, and not all of these attributes were present at all signal

controllers in all testing locations.

• phaseOnStatus is the encoded phase status of all phases of a signal.

• ring1Status is the phase status for all phases of ring 1 of a signal.

• ring2Status is the phase status for all phases of ring 2 of a signal.

• ring1Walk is the walk status for all phases of ring 1 of a signal.

• ring2Walk is the walk status for all phases of ring 2 of a signal.

• vehicleCall is the vehicle call status for all phases of a signal.
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Figure 3.4: Twenty four hours of training data for an example signal at each of the
three test locations. Graphs show only data from Ring 1, and have been abbreviated
in the Y-axis, cutting off outliers in order to show the phase length variance in the
majority of cycles.
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• pedCall is the pedestrian call status for all phases of a signal.

• coordinationInControl is a flag indicating whether the master intersection is

attempting to coordinate the corridor.

• elapsedTime is the time, in seconds, since the previous midnight.

• elapsedPhaseLength is the time, in seconds, since the last phase change.

• waitTime is the time, in seconds, since the vehicle loop detector indicated a

vehicle arrived at an inactive phase (red).

• shortMean is the mean time, in seconds, the phase lasted over the last 3 cycles.

• longMean is the mean time, in seconds, the phase lasted over the last 10 cycles.

• remainingTime is the time, in seconds, until the phase ends.

Many attributes were modified for programmatic reasons, but no information was

lost or gained. Additionally, the attributes elapsedTime, elapsedPhaseLength, wait-

Time, shortMean, longMean, and remainingTime, were calculated and appended to

each tuple entry, and are not generated by the traffic signal controller software. A

full 24 hours of data per signal is approximately 5 megabytes; for a city the size of

San Jose, approximately 3 gigabytes of data is recorded per day.

Of special note is the attribute remainingTime; this is calculated on historic

data. This will be used as a “ground truth” for the supervised learning aspect of

the data mining.
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3.5 Data Preparation and Exploration

It is important to determine which variables are significant predictors of the phase

length, as computational requirements will increase commensurate with an increase

in modeled data. Visual inspection indicates that the individual phase lengths are

fairly consistent in the early morning and the evening. During mid day, the traffic

signal controller switches from coordinated action with the other signals on the

street to operating individually; the variance of individual phase lengths increases

significantly when this occurs.

We use here Principal Component Analysis to determine which attributes are

responsible for the most variance in the system, and therefore which attributes

to build into predictive models first. An example attribute has been selected for

additional variance analysis to show the applicability of that attribute in statistical

predictive models.

3.5.1 Principal Component Analysis

Principal Component Analysis is a transformation of a set of attributes into a linearly

uncoordinated set. This leads to an equal or lesser number of vectors, called the

Principal Components. It is, for the purposes here, a multi-dimensional rotation of

axes such that variance is maximized along axes. Each column (attribute) had the

column-mean removed, a process called “centering” which standardizes attribute

ranges. The axes are then ranked according to total variance along that axis. Axes

which have relatively low variance are candidates for removal (model simplification).
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Figure 3.5: PCA results.

The PCA results found in Figure 3.5 indicate that the most influential variable

accounts for only 23% of the variance of the system. It also implies that many

variables have extremely low variance in the system and could be dropped with

little statistical significance in the results. This information was used to rank which

variables should be initially included, in order to build computationally efficient

models. The final list of attributes included in the models may be found in Section

3.8. We turn now to a detailed analysis of one attribute to determine its potential

applicability to prediction models.
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Table 3.1: Standard Deviation (in seconds) of Training Data

Phase 1 Phase 2 Phase 3 Phase 4

σ for 24 hr period 4.85 24.14 5.15 9.78
σ for morning, CIC ON 2.09 4.78 2.75 5.05
σ for midday, CIC OFF 3.12 35.24 5.88 10.97
σ for evening, CIC ON 2.44 5.27 3.57 4.56

3.5.2 Variance of Phases

The attribute coordinationInControl (CIC) was selected for additional observation,

as this attribute explained a significant amount of variability. This attribute is bi-

nary valued, representing whether multiple signals are being coordinated. Each sig-

nal controller may have several algorithms which determine phase lengths through-

out the day. These algorithms may be specific to on- and off-peak rush periods.

At certain times of the day an individual signal controller may have the ability to

operate freely, and at other times of the day a master controller may be attempting

to guide a platoon of vehicles through a series of coordinated signals.

The data set was divided based on that variable, and the standard deviation was

observed. The results can be found in Table 3.1, showing the promise of a statistical

method; by differentiating according to whether the signal is able to operate freely or

must abide by coordination, the standard deviation in most cases drops significantly.
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3.6 Prediction of Pre-Timed Signals

As indicated in Section 3.3, in this chapter we divide the various types of traffic signal

controller logics into two areas - those that react to traffic, and those which do not.

This section is on pre-timed signals, which do not react to current traffic conditions,

and ostensibly follow a predetermined pattern of phase lengths. However, there are

some complications. There can be much uncertainty in the phase and timing of a

traffic signal which makes predicting its future state quite challenging. For fixed-

time traffic signals which do not respond to traffic conditions and operate only on a

timing table, we have confirmed the finding that the traffic signal clock drifts some

during a 24 hour period (see [38, 13] for more details on variation from the pre-timed

schedule). There is also uncertainty during the time periods around timing schedule

shifts, when the controller is transitioning from one schedule to another.

Due to the aforementioned uncertainties, even for fixed-time signals it is not

possible to determine the start and duration of greens deterministically. Therefore

in this section we propose a probabilistic prediction framework to handle the case

with partial or uncertain information. We focus on cases where only i) the current

phase (color) and ii) the average red and green lengths for a signal are known. We

use this information to predict the probability of a green over the planning horizon.

As previously mentioned, access to the current phase of the traffic signal is a ma-

jor technological hurdle. However, solutions have been proposed and implemented in

[12, 22, 39] that could address this problem. Other approaches, including those that

rely on Dynamic Short Range Communication (DSRC), can be found in [11, 23, 24].
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Figure 3.6: Conditional probability of green given green now, for four different light
timing patterns. In all patterns the total cycle time is 60 seconds, with the lengths
of green and red indicated in the legends. The time axis is tp as in Equations 3.1
and 3.2.

Let us denote the state of a light by `(t) which can assume two values, g and

r, representing green and red respectively. We are interested in determining the

probability of a light being green at time t + tp conditioned on its current color at

time t. To form this conditional probability function, we assume the durations of

green and red are known to be tg and tr on average. We also assume the traffic

signal operates cyclically1 and as a result the total cycle time is fixed and equal to

tg + tr. Using relatively straight-forward probabilistic reasoning, the chance of a

green light in tp seconds, given a green at current time t can be found to be:

1This is true for many traffic signals; even many of those that react to traffic have a fixed cycle,
although in some cases the length may be shortened or extended.
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Figure 3.7: Conditional probability of green given red now, for four different light
timing patterns. In all patterns the total cycle time is 60 seconds, with the lengths
of green and red indicated in the legends. The time axis is tp as in Equations 3.1
and 3.2.

P [`(t+ tp) = g|`(t) = g] =



tg−tm
tg

tm ≤ tr, tm ≤ tg

tg−tr
tg

tr ≤ tm ≤ tg

0 tg ≤ tm ≤ tr

tm−tr
tg

tg ≤ tm, tr ≤ tm

(3.1)

where tm = mod(tp, tg + tr) is the residue of division of tp by tg + tr. In other

words because the signal clock is assumed to be periodic, the resulting conditional

probability is also going to be a periodic function of time with the same period.

Similarly, the chance of a green light in tp seconds, given a red at time t is:
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P [`(t+ tp) = g|`(t) = r] =



tm
tr

tm ≤ tr, tm ≤ tg

1 tr ≤ tm ≤ tg

tg
tr

tg ≤ tm ≤ tr

tg+tr−tm
tr

tg ≤ tm, tr ≤ tm

(3.2)

Figures 3.6 and 3.7 show several probabilistic prediction examples with different

splits between red and green but with the same cycle length. While not directly

comparable to a single numeric prediction as found in the following section, these

models have been used in speed recommendation algorithms with success [28], and

may be useful in other driver assistance applications.

The preceeding probabilistic models have two downsides - they work best for

fixed-time traffic signals, and because the output is a probability map and not an

integer it is difficult to use as an input to other in-vehicle systems. We shift now to

providing a single prediction of remaining phase length, and tackle the additional

complexity of predicting the phase and timing of actuated traffic signals, in the next

section.

3.7 Prediction of Actuated and Adaptive Signals

In comparison to the pre-timed signals in Section 3.6, in this Section we predict phase

lengths for traffic signal controllers which respond to current traffic conditions.

Simple preprocessing analysis of small subsets of the data indicated that a data

mining approach was promising (see Section 3.5 Subsection 3.5.2). Moving beyond
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Figure 3.8: Inputs and outputs of machine learning prediction models.

simple variance analysis, more advanced data mining methods offer numerous tools

for analysing and predicting future trends in time series. Four methods have been

selected as most promising: Transition Probability Models (TPM), Decision Trees

(DT), Multi-Linear Regression (MLR) and Neural Networks (NN).

As shown in Figure 3.8, the final set of inputs used in each method were elapsed-

PhaseLength, shortMean, longMean, waitTime (for all 8 phases), and vehicleCall

(for all 8 phases), in both training and testing the algorithms. This is a total of 19

inputs, for each output. The output was an integer, the predicted remaining phase

length. When a full 24 hours of data is used, the inputs and outputs are fed into

the models as vectors.

In each of the following cases, the analysis was run for each phase independently,

to determine if the predicted remaining phase length matched the remainingTime

calculated from historical data. The remainingTime is used as the “ground truth”.
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3.7.1 Transition Probability Modeling Approach

A phase transition probability curve is a historical record of the probability of a

phase ending after a certain phase length. It is a 1xp vector, where each entry

represents the probability of the phase transitioning at p seconds. It is created by

iterating through all historical phase records (tuples) (with a total of n records),

and for each record, decrementing the pth vector entry and all higher entries, where

p is the recorded phase length, by 1/n. This represents the (historical) probability

of the signal remaining active over a time window. This is a step away from the

probabilistic methods in Section 3.6, towards building a single numerical predictor as

might be necessary for an engine start-stop algorithm. This offers an interesting and

unique method, which is very fast computationally, by comparison to the following

methods.

For example, in the transition probability map in Figure 3.9 it is clear that

the phase always remains active longer than 7 seconds. This is a useful piece of

information. However, this map offers much more, as the largest (absolute value of

the) derivative of this transition probability map is the time of highest likelyhood of

phase transition. It is important to note that this is a changing window - if the cycle

time for the largest derivative has already been passed, the largest derivative in the

remainder of the historically observed window is used. In this model we discretize

into 1 second increments, then build transition probability maps on-line, adjust the

window to take into account the elapsed phase length, take the derivative of the

remainder of the window of the map, and find the absolute value of the maximum.

This is the predicted remaining phase length.
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Figure 3.9: Transition probability for Phase 4 of Signal 0001 in Portland, Oregon
based on data collected 09/24/2012.

3.7.2 Decision Tree

An implementation of decision trees was used as a starting point because the original

coding structure of traffic signal controller logic is a series of logical statements.

The structure of a decision tree algorithm may be able to recreate those logical

statements from the controller without having access to the original controller code.

We used a standard greedy decision tree, with pruning enabled, and regression at

each leaf. The Gini-Simpson Diversity Index is used to determine whether to split.

Error-based pruning is done after the tree is generated, and is the process of going

through each node and replacing it with the class of highest probability; if this does

not significantly affect the error rate, the change is kept. This both simplifies the

classification tree and reduces the likelyhood of overfitting to an outlier.
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In the decision tree models, both the training and testing data was discretized

into 1 second increments, and all phase lengths observed in the training data were

used as potential classes. Test data was then classified. The difference between the

classes was the error (in seconds).

3.7.3 Multi-Linear Regression

Multi-Linear Regression, similar to simple regression, is an attempt to create a linear

equation which fits a set of 2 or more explanatory attributes or variables. It is, in

this implementation, regression in multiple dimensions.

Two MLR models were built. The first model required all inputs to be used

explicitly; however, the weight on any given attribute may be zero. The resultant

model will be of the standard regression form found in Equation 3.3.

y =
n∑
i=1

cixi (3.3)

where y is the predicted phase length, and ci indicates the weighting constant asso-

ciated with attribute xi. The i subscript indicates the attribute, up to n attributes.

The second model used the R-squared value was to determine which inputs or

combination of inputs (interactions) to include in the model. Fitting starts with that

linear fit model (from Equation 3.3) and in a stepwise manner adds and removes

terms, up to the maximum complication of terms (e.g. square, cubic, interactions,

etc).
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Table 3.2: Neural Networking neurons-per-layer sensitivity. All units are seconds.

RMSE σ Computation Time

2 neurons per hidden layer 8.3 0.3 61
4 neurons per hidden layer 8.0 0.3 102
8 neurons per hidden layer 8.4 0.5 550
16 neurons per hidden layer 8.6 0.5 2300

3.7.4 Neural Networks

Neural Networks are computer simulations of neural pathways similar to that found

in mammals. Neural networks have layers of neurons between the inputs and out-

puts, which create the so called network. The number of neurons and layers, input

and feedback delays determines not only the computational complexity of the net-

work, but also its ability to efficiently approximate more complex systems.

While the other methods described in this section are deterministic, a neural

network requires a seed to start building the network. This means that, unless the

seed characteristics are saved, the resulting neural network may perform differently

based on different seeds. This seed based variance can be seen in Figure 3.2, where

10 seeds were run for each number of neurons to obtain an average RMSE and a

standard deviation. In this Table, only a single layer of neurons was used; there were

up to 4 input delays, and up to 4 feedback delays. No gains were observed beyond

4 neurons, and computational time rose drastically. It is important understand the

implications of network complexity and the effects of seed selection.
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Figure 3.10: Method performance given varying amounts of data (from signal 0035
in Fremont, CA). Hours of data (for training, also for testing) given on X-axis, mean
performance across all 8 phases given across Y-axis.

3.8 Discussion

3.8.1 Results

In Figure 3.10, multi-linear regression and neural networking training and test data

sets were divided into smaller time segments, to determine if the amount of training

data significantly affected method performance. It was initially thought that using

training data from a narrow window (e.g. on-peak vs off-peak) would positively

influence test results, however that was not found to be the case. While performance

may be slightly altered by adjusting the amount of training data, regression clearly

outperforms neural networking at all segment sizes up to the maximum tested, 24
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hours. The lack of results for short segments (e.g. segments less than 4 hours) is a

result of insufficient training data in the models leading to insufficient trainng or test

matrix rank. It is interesting to note that for the NN models, the through phases

perform worse as training data volume goes down, yet the turn phases perform better

as the training data volume goes down; this may be a reflection of the relatively large

variance in through phases.

Results presented here are for an example traffic signal in each test location

(Fremont, California, Portland, Oregon and San Jose, California). In these tests, the

attributes elapsedPhaseLength, shortMean, longMean, waitTime (for all 8 phases),

and vehicleCall (for all 8 phases) were used as inputs in both training and testing the

algorithms. These signals represent worst-case scenarios, with the most complicated

control schemas, and the most phases.

The results found in Figure 3.11 reflect 24 hours of training and test data for

each test site. Training data was recorded on a Monday and test data was recorded

on a Tuesday. Multi-linear regression obtained the lowest root mean square error in

Fremont, California. In Portland, Oregon, Multi-linear regression obtained the low-

est root mean square error. In San Jose, California Transition probability modeling

obtained the lowest root mean square error, with multi-linear regression performing

second best. These results have lower error than the closest comparable results,

found in [4]. When comparing the same prediction methods, in [4] it is not clear

how that author arrived at the neural network design he did; results here show the

process of arriving at the design used, and the change in error for variance from

that design. In addition, different attributes have been used: the process of select-
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Figure 3.11: Root mean square error divided by mean phase length for test data
from Fremont California, Portland Oregon, and San Jose California, with algorithms
provided 19 attributes.
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ing attributes here, using PCA, is described; no such process is described in [4], so

the authors are not able to compare processes. Finally, different traffic signals have

been evaluated. Differences in predictability exist even for signals with the same

hardware,firmware and number of phases, due to installation parameters related to

the controller operation and the specific intersection geometry. Still, the results here

have significantly reduced error, even when utilizing a more pessimistic metric.

Both Linear Discriminant Analysis and Naive-Bayes Classifiers were used, and

while in some situations they provided reasonable results, their dependence on full

rank and positive covariance matrices makes their use in this implementation dif-

ficult, especially if small volumes of training data are used (e.g. < 12 hours). For

this reason, they are not included here.

It is easy to get discouraged by a cursory review of Figure 3.11, because occa-

sionally a specific method performs poorly. However, what should instead be taken

away from this, is that an approach like bootstrap aggregating (bagging) of vari-

ous methods will provide a more consistent level of error. The goal of showing the

specific algorithm results in Figure 3.11 is to show the variance in methods, signals,

and locations - and the successes with specific methods in certain situations. Future

work could potentially evaluate aggregated results across a larger number of signals.

While the authors have not exhaustively examined all prediction techniques, or

attributes, the goal of this manuscript was to determine the feasibility of predict-

ing traffic signal timing information for use in vehicle systems. In determining for

example whether an automatic start-stop system should be allowed to shut down

the engine, two factors have the biggest impact on existing systems - the presence
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or absence of an intersection, and the error. If a system is able to determine that

the vehicle is approaching a traffic jam or a stop sign instead of an intersection,

this is important. The second effect, that of prediction error once it is determined

that the vehicle is approaching an intersection, is more application specific; an RMS

prediction error of 3.6 seconds would be sufficiently accurate to significantly reduce

the number of engine shutoffs immediately followed by engine startups caused when

a vehicle approaches a signal about to change. In addition, this is why a level of

confidence is provided, to allow the automatic engine start-stop system to deter-

mine if the level of confidence in the prediction is sufficiently high to prevent engine

shut-off. Similarly, in determining whether the vehicle under braking should begin

downshifting in the approach to an intersection, this level of error would be suffi-

ciently accurate to determine whether to hold or downshift gears. However, for a

velocity recommendation algorithm or a red light runner (collision prediction) sys-

tem, where very high system accuracy is safety critical, it may prove insufficient. In

addition, if a velocity recommendation system is able to provide a recommendation

in some circumstances, and not in others, because the prediction confidence is low,

or data is not available, this will provide a poor user experience. It is therefore the

recommended that these methods be used in internal algorithms, and not customer

facing driver assistance systems.

3.8.2 Sources of Error

Prediction error is significant, despite extensive analysis. We have found the error

can be divided into two types: errors which are inherent to the system, and are
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present in the raw data, and errors which are a direct or indirect result of our

modeling methods.

Errors which are part of the system and present in recorded data are:

1. Arrival of new vehicles or pedestrians. When a prediction is made based on

the available inputs, it may be correct at that moment. However, when a new

vehicle or pedestrian arrives, it will influence the following phase lengths and

any previous predictions which were previously correct may now be incorrect.

This is impossible to avoid, and indicates that despite perfect data and perfect

algorithms and implementation, it will never be possible to achieve 0 error.

2. Issues of missed data. In the Fremont raw data, it appears that data is occa-

sionally lost. This could be because of transfer protocols used, other processes

running on the host TMC computer, or dropped connections between the sig-

nal and the TMC computer or the TMC computer and our mirrored computer.

This causes issues because if for example, the start of yellow or start of red

is not recorded, this will result in a long green for that phase in that cycle,

which is only present in recorded data and not present at the actual signal.

3. Discrepancies with documentation. While documentation like the Siemens

Training Guide [40] indicate the effects of certain parameters, the observed

effects appear to be in conflict with the descriptions found. For example,

when a vehicle is in maxgreen mode, it is expected to last the duration of

this parameter. In fact, the duration while the signal shows this maxgreen

parameter contains significant variance.
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4. Calculation of ground truth data. Ground truth data is calculated backwards

in time, based on whether the active phases at the earlier timestep are the

same. If so, active phase lengths are incremented by the time differential be-

tween records. This may introduce error to the system when the recording

computer system loses connection with the traffic signal, and regains connec-

tion with the same phases active.

5. Imperfect attribute set. Because the authors are to some extent reverse-

engineering the attributes going into the traffic signal controller algorithm

without having access to the algorithm or the parameters set by the city, it

is not possible to know if we have accounted for all possible influences. For

example, the influence of conflicting vehicle calls has been included in this

model, but the exact effect on current and future phase lengths is not known.

In addition, the influence of ring order has not been evaluated or built into

these models.

Errors which are specific to the methods we have used are:

1. Transition Probability Model. In Fremont, because data was recorded at

approximately 1Hz, and traffic signals updated the server at approximately

1Hz, a small amount of aliasing was observed, whereby data was occasion-

ally recorded twice and the next message was not recorded. The aliasing of

data will affect the transition probability map slightly, but this effect was

statistically insignificant. To avoid the issue completely, Portland and San

Jose were recorded in an event-based manner. This has the potential draw-

66



back however, that diagnosing a scarcity of messages between the TMC and

the mirroring/recording server is made more difficult as it could be either a

dropped network connection or simply a lack of events (though this is solvable

using communications requiring handshakes or message receipts, for example

TCP connections).

2. Decision Tree. In this method, the previously discussed imperfect attribute set

negatively impacts the performance of the decision tree directly. The goal of

a decision tree is to recreate the decision making process of the deterministic

traffic signal controller algorithm, yet because the inputs do not match exactly,

its performance is not the same.

3. Multi-Linear Regression. Multi-linear regression does not allow for highly non-

linear models. In addition, because our metric of RMSE is not the metric used

directly (R-squared is used) to determine which terms are added or removed

from the stepwise model, the stepwise algorithm performs differently than a

standard linear fit.

4. Neural Networks. Neural Networks allow non-linearity, yet it did not perform

consistently better than other algorithms. This, despite varying neurons per

layer, varying layers, and varying inputs. This is a potential area for future

work.
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3.8.3 Discussion

In this Chapter, we seek a predictive model of traffic signal phase and timing informa-

tion such that in-vehicle driver assistance systems and powertrain control algorithms

can make the vehicle both safer and more efficient. To that end, we begin with an

evaluation of the data sets to the application of statistical predictive models. From

there we build several machine learning models, to evaluate their relative applica-

bility to the prediction of SPAT information. Finally, we discuss the many sources

of error, both in the data itself and in the model building process, and evaluate the

results.
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Chapter 4

In-Vehicle Velocity

Recommendation Architecture

Evaluation

4.1 Disclosure

This work was performed as a group consisting primarily of Andreas Winckler, my-

self, and a variety of BMW interns over several years. While I have played a signif-

icant role in the development of the system, in coding, in bug fixing, and in testing,

it is not solely mine to take credit for.
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4.2 Abstract

The main contribution of this chapter is experimental verification of a system ar-

chitecture for providing real time communication of individualized Traffic Signal

Phase and Timing (SPaT) data, tailored to a specific vehicle for use in that ve-

hicle’s driver assistance systems. The role of data collected directly from Traffic

Management Centers is explored; in addition, the collection and condensation of

crowdsourced SPaT data is investigated as a complementary solution to providing

SPaT data in situations where timing information is not available directly from a

city’s Traffic Management Center (TMC). Experiments with a number of drivers

show that when data is available from a TMC, a 8.4% decrease in fuel usage is

possible with the use of a velocity recommendation engine. When data from crowd-

sourced GPS traces is available, the system functions as intended; however, as a

result of excessive traffic at the test location, drivers were not able to vary their

speed according to the recommendation and a negligible difference in fuel usage has

been observed.

4.3 Introduction

The process of improving transportation infrastructure is a balance between costs [6],

and return on investment [41]. Recent technological advances may be shifting that

balance [42]. It is now possible to tailor traffic signal communication to and from

individual vehicles. The benefits of communication are significant. Prototype safety

services from the Vehicle Safety Communications Consortium (Ford, GM, Honda,
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Mercedes-Benz, Toyota) like the Smart Intersection and its related vehicular position

communication technologies are able to warn a driver of other vehicles which are

likely to run conflicting red lights at the upcoming intersection, potentially avoiding

accidents [43, 44]. Similarly, with the communication of traffic signal information,

it is possible to improve fuel economy through appropriate speed recommendations

[11, 29, 19]. And while little is publicly available, the Audi Travolution project

conceptually communicates traffic signal timing for in vehicle use, though it is not

clear exactly what driver assistance systems would be available [23].

What these examples all lacked at the time of their writing was appropriate

communication technologies. Many required Dedicated Short Range Communica-

tion technologies as part of their solution, and yet 14 years after the allocation of

spectrum, this technology is present in neither cars nor infrastructure. There is sig-

nificant cost associated with equipping the US’ 330,000 traffic signals and all future

vehicles with this technology [6].

However, major rollouts of 4G/LTE by wireless carriers, significantly increasing

the bandwidth and decreasing the cost of broadband wireless internet, are opening

new options. Similarly, major rollouts of IPv6 technologies, significantly increasing

the number of uniquely addressable devices, creates new opportunities for communi-

cation infrastructures. The combination of these two sets of technologies now makes

it feasible to send and receive Signal Phase and Timing(SPaT) information directly

to and from individual vehicles.

In contrast to DSRC, what we are proposing is to use existing infrastructure

and technologies. Some cities already collect and centralize SPaT information for
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management purposes. Existing broadband communication architectures can then

be used to transmit this data stream to servers for collection and analysis. In-place

wireless technologies like 4G/LTE can then get the data from the servers to the

vehicles. This system is implementable today and we are now testing it in prototype

development vehicles.

Prior art reveals considerable work in the area of red light avoidance, and many

conceptual solutions. However, the authors did not find public documentation of

complete, implemented systems, or objective evaluations of their benefits. The

big picture concept of using real time traffic signal information in speed advisory

algorithms is not new and has been discussed in [11, 45, 12] and others. One of

the most complete systems is that found in [13], wherein a system is developed

based on cell phone cameras and ad-hoc wireless networks. While instrumental in

shifting opinion on the feasibility of these types of systems, the proposed set of

technologies have several drawbacks including a lack of extended communication

range, inferior driver visibility as a result of devices attached to the windscreen, and

limited evaluation of the various kinds of traffic signals.

As an incremental development step, when real time but not future SPaT data

is available, probabilistic techniques such as those discussed in [19, 28] may be one

solution. A similar set of solutions is also offered in [30], with the primary difference

being that the speed advisory algorithms depend more on work-energy algorithms

and less on red light avoidance. All of these require some form of SPaT data, and

a new method for gathering traffic signal data from numerous probe vehicles, the

prerequisite step to providing the same to speed advisory algorithms, is discussed
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in [36]. If historical SPaT data is available, [18, 4, 46] offer novel data mining

techniques for predicting future SPaT information, and analysing the quality of said

predictions. The authors seek to build on these works by offering a complete solution

to providing individualized SPaT information directly to vehicles.

In this chapter, Section 4.4 describes the overall system architecture of how we

get information to a vehicle. Section 4.5 describes where we get the information

we are sending to the vehicle. Section 4.6 describes one potential use case for the

information, once it has made it to the vehicle. Problems encountered in implemen-

tation are expounded upon in Section 4.8. And in Section 4.9 we review the effects

of this driver assistance system, with different information sources, on vehicle fuel

economy.

4.4 System Architecture

A system architecture is sought which is able to collect, analyze, and distribute

to vehicles signal phase and timing data. The architecture must discriminate in

sending specific intersections to specific vehicles, must scale to a significant number

of intersections and vehicles in an efficient manner, and must cover various types of

intersections and their respective technologies.

The following subsections will describe how we determine which information to

send to which vehicles, and how we get that information.
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Figure 4.1: System overview of the path of data from a traffic signal to server to
a vehicle. The path of data from the vehicle camera is described in more detail in
Section 4.5 Subsection 4.5.3.

4.4.1 Vehicle Subscriptions

In determining which traffic signals are relevant to a vehicle along a trip, a database

of traffic signals is stored locally in the vehicle. For prototype development purposes,

this initial database contains only those traffic signals located in the appropriate zip

code. The vehicle also stores a database revision number, which is verified against

the revision number on the server at vehicle startup. If a difference exists, either the

differences between revisions, or in the case of corruption an entirely new database

can be downloaded.

Within that database, in order to identify the upcoming traffic signal movement

most relevant to the vehicle, we used a three step process.

1. In the first step, we conduct an initial scan through the database to determine

traffic signals within a specified range of the vehicle (e.g. 3 miles).
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2. In the second step, we use this list of traffic signals within range, and compare

vectors of relevant traffic signal movement entry headings with current vehicle

heading. This removes signals which are behind the vehicle.

3. In the third step, we select the closest signal from amongst the previous list.

This is required because along a straight road we may have multiple signals

on the same heading which are close matches for our current heading.

This three step process identifies and selects the upcoming relevant traffic signal

movement. While this may lack potential benefits achievable with full future knowl-

edge of all upcoming traffic signals along a route, it is an incremental step in that

direction, and it is implementable today.

With the appropriate movement selected, the vehicle then sends the server a

subscription request for the relevant phase. The server will respond immediately

with the current status of that phase. Additionally, any time that traffic signal has

an update (e.g. phase changes from green to yellow, placement of a pedestrian call,

or a vehicle call), the appropriate information is forwarded to the vehicle.

After a vehicle has passed through an intersection, that intersection is no longer

relevant, and the vehicle sends an unsubscribe message to the server indicating

the vehicle no longer wishes to receive updates on that intersection. If another

intersection is now relevant according to the 3 step process outlined above, that

intersection will be subscribed to, and the process continues.
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4.4.2 System Backend

Data from traffic signals intended for vehicle consumption is initially stored in system

RAM on a scalable cloud-based server, allowing for fluctuations in number of con-

nected intersections and number of connected vehicles requesting SPaT information

(and the associated fluctuations in bandwidth, storage capacity, and performance).

Messages received on the backend indicate a change in the current status of a

traffic signal and addition or removal of a connection to a traffic signal. If nothing

has changed since the previously recorded status of a traffic signal, no message is

sent, no record is made.

4.5 Data Sources

While traffic signals in some major cities are connected to traffic management cen-

ters, drivers will likely encounter many signals which are not connected to their

city’s traffic management center. If a driver assistance system is customer facing,

drivers will not understand if their driver assistance system is only able to provide

recommendations at certain intersections at specific times of the day. It is imper-

ative to provide a reliable user experience; this requires broad coverage of traffic

signals across most geographical areas drivers are likely to take their vehicle.

The majority of data used in this manuscript is received from TMCs. However,

for those signals which are not connected, predictions of green and red switching

times are used, based on crowdsourced data as described below in Subsections 4.5.2

and 4.5.3. Subsection 4.5.2 describes how to collect SPaT data and build predictions
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from crowdsourced GPS traces. Subsection 4.5.3 describes how to collect SPaT

data and build predictions from crowdsourced in-vehicle camera data. These two

approaches complement the collection of data from traffic management centers, in

order to provide consistent coverage across as large an area as possible.

From the driver’s perspective, there should be no difference between data col-

lected directly from traffic management centers, data collected from crowdsourced

GPS traces, and data collected from on-board cameras.

4.5.1 Traffic Management Center

Traffic management centers operate by polling connected traffic signals for cur-

rent status information. In the cities used as test fields for the purposes of this

manuscript, that polling occurs at approximately 1 Hz. This data is available to

city engineers, and allows a traffic engineer to sit at her/his desk and verify that

the signal is operating exactly as the engineer intended. This also provides an inter-

face from which it is possible to extract the real-time data into another system, for

example when updating to a new signal controller, or when connecting an outside

system such as that described in this manuscript. Details of the technologies for

providing city data vary from city to city. As this data is owned by the public, it is

available to anyone that requests it, provided the city has the technical capabilities

in place.
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4.5.2 Crowdsourced Data via GPS Traces

For traffic signals not connected to traffic management centers and public infras-

tructure, another approach is necessary to provide traffic signal phase and timing

data. Specifically, recent publications have made it clear that probe vehicle GPS

traces could potentially be used to determine traffic signal timing.

The feasibility of generating SPaT information from crowdsourced probe vehicle

GPS traces has been shown by our group in [36] and the overview is provided here:

1. Aggregate statistically significant number of vehicle traces/probes

2. Identify and filter data around traffic signal locations

3. Rebuild vehicle “most likely” velocity trajectory

4. Estimate phase and or phase change of signal

5. Build phase estimator from statistically significant number of observed phas-

es/phase changes

6. Estimate future phase/phase changes

For testing and evaluation purposes, a public feed of bus location and velocity

data from the city of San Francisco is being used to crowdsource the collection of

traffic signal information. The feed is being provided by NextBus Incorporated [47]

through eXtensible Markup Language (XML). The XML feed can be accessed using

URLs with parameters specified in the query string.
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A server continuously receives vehicle location updates and stores the resulting

XML data in our SQL database. Another node of this server is dedicated to esti-

mating the traffic signal phase and timing information including cycle length, phase

length, offset, and signal schedule changes. More details of the algorithms can be

found in [36].

In order to compare the estimates with real-time signal states at the intersections,

a web server with a PHP interpreter was built. The web server connects to an SQL

database to read the most updated crowdsourced start-of-green as well as the timing

of the desired intersection.

With estimates of future phase and phase changes from the crowdsourced data

in hand, it becomes a matter of sending a UDP message to the signal server every

time a phase change is predicted. The signal server is therefore able to treat this

data source exactly the same as data coming from a traffic management center.

4.5.3 Crowdsourced Data via On-Board Cameras

The test vehicle contains a next-generation MobilEye camera and image processing

system (EYE-Q) capable of detecting traffic signals. The image processing system

provided by MobilEye reports recognized traffic signals on the CAN bus [48]. Our

software then utilizes the traffic signal heading and distance from the camera host

(ego) vehicle, and ego position and heading, to determine the approximate traffic

signal location. This approximate traffic signal location is then compared with

the list of known traffic signal locations. If a close match is found, the status of

the detected traffic signal, along with a timestamp, are sent to and stored in the

79



Figure 4.2: Driver’s dash display, including speed recommendation and countdown
to green.

crowdsourcing back end. If no known traffic signal is nearby, a new database entry

is created and the traffic signal location and status information is sent and stored

in the crowdsourcing back end.

From the data collected by MobilEye cameras, we are building a database of

traffic signal locations and traffic signal statuses. Other authors have examined the

effects of penetration rates on fleet efficiency [18, 49]. And our group has shown

it is possible to utilize even more sparse data to predict upcoming traffic signal

information [36].

4.6 Speed Recommendation as Exemplary Use Case

While data of this nature has uses in safety applications like red-light-runner warn-

ings, and use in efficiency applications like automatic motor start-stop, in this section

we focus primarily on a speed recommendation engine. A velocity advisory algo-
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rithm was devised which recommends the appropriate speed range to pass through

the next upcoming traffic signal during the green phase, as described in Subsection

4.6.1. The appropriate speed recommendation is displayed to the driver as green and

red zones on the speedometer as seen in Figure 4.2. In addition, when an upcoming

phase change is known, a countdown will appear at the center of the speedometer

indicating the remaining time to change of phase.

In Subsection 4.6.2, the velocity recommendation algorithms are evaluated at

two test fields, in San Jose, California and in San Francisco, California.

4.6.1 Velocity Advisory Algorithm

In general, the primary objective is to avoid stopping at a red light if at all feasible.

Idling may require fuel, depending on the vehicle. Even in vehicles with automatic

start-stop, the deceleration and associated acceleration back to cruising requires

significant quantities of fuel. It is also important to note that an on-board camera

ensures that speed recommendations calculated in this section are not made to

drivers which could result in a collision; the recommendations are turned off when

impeding vehicles are detected which are either going significantly slower or are

stopped.

It is assumed that the approximate distance to the next traffic light(s) is known

at each time and shown by di. The subscript i denotes the light number in a sequence

of traffic lights, i.e. d1 is the approximate distance to the first upcoming light and d2

to the second light at each time. The light(s) update and broadcast their expected

sequence of green and red times regularly. Suppose gij is start of the jth green of
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the ith traffic light and rij is start of the jth red of the ith light. For example, when

the timing of light number 1 is known, a recurring sequence

[g11, r11, g12, r12, g13, · · · ] = [40, 100, 150, 200, 240, · · · ]

which implies the first traffic light is currently red, it will turn green in 40 seconds,

red in 100 seconds, green again in 150 seconds, and so forth is possible. Figure 4.3

shows a schematic of the map formed at each time step based on the information

received from the lights. Equipped vehicles can use the remaining distance to the

next light(s) and the green and red sequence to set their target speed. This target

speed (slope of each path) should be in the feasible range [vmin, vmax] where vmin is

the road’s minimum speed limit and vmax is the road’s maximum speed limit. Other

constraints, such as maintaining a safe distance to the vehicle in front, are handled

separately.

The following steps determine the target speed at each step k:

1. For a vehicle to pass during the first green of the first light, its velocity should

be in the interval [ d1
r11
, d1
g11

]. This is only feasible if this interval has a set inter-

section with the feasible speed interval of [vmin, vmax]. If this set intersection

is empty, passing through the first green without stopping at red is deemed

infeasible. In that event, feasibility of passing during the next green interval

is checked and the process is repeated until for some ith interval [ d1
r1i
, d1
g1i

] has

a set intersection with [vmin, vmax]. This set intersection is mathematically

characterized by:
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[
d1

r1i

,
d1

g1i

] ∩ [vmin, vmax] (4.1)

and determines the range of speed that ensures passing the first light without

having to stop at a red.

2. If passing without stop at the first light is determined to be feasible, the

process in step 1 is repeated for the second traffic light by checking the set

intersections

[
d2

r2i

,
d2

g2i

] ∩ [vmin, vmax]

and picking the first non-empty one.

3. Next, the set intersection of the feasible range of speeds determined in step 1

and that of step 2 is calculated. A non-empty solution [vlow, vhigh] indicates

feasibility of passing the two lights without having to stop at a red by main-

taining a constant speed. However an empty solution does not imply that

stopping at red is necessarily required. It only means that passing the two

consecutive lights with the same speed is not feasible. In that event, the vehi-

cle can re-adjust its target speed after passing the first light to pass the green

of the second light.

4. The process is continued by checking the next lights until a stop at red be-

comes unavoidable. The last feasible range [vlow, vhigh] is an appropriate target

velocity range. In this paper we set the speedometer to green for the range

[vlow, vhigh], with the target of reducing fuel usage and trip time.
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Figure 4.3: Schematics map of red lights distributed over space-time. The graphics
shows how an informed vehicle passes two consecutive traffic intersection without
having to stop at a red.

While this process describes what could happen in the case where timings for

multiple signals are known, and known for some number of cycles in the future, only

the first signal and only the first cycle are used for speed recommendations in this

manuscript. This was done for two reasons. The technical reason was that future

cycles are not necessarily deterministic in actuated signals. The human factor reason

is that the idea of passing through a single signal is the easiest concept for drivers

to understand.

Note that the velocity range is updated at each sampling time and therefore

may change at each instant based on vehicle’s position and the most recent informa-

tion from the lights. This set of rules is not necessarily “optimal”, but helps break

down a fundamentally non-convex optimization problem to a simpler real-time im-

plementable one.
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In-Vehicle Camera Integration with Velocity Advisory Algorithm

The presence of traffic at an intersection could potentially affect how a vehicle

seeking to pass unimpeded through the intersection should behave. For example,

the absence of any vehicles in the ego vehicle’s lane waiting at a red light suggests

that the connected vehicle could arrive at the stop bar shortly after the light turned

green. However, the presence of another vehicle in the ego vehicle’s lane would alter

the ego vehicle’s speed profile, depending on the rate of acceleration of the other

vehicle and other factors. Similarly, the presence of another moving vehicle in the

ego vehicle’s lane as the ego vehicle approaches a traffic signal could also alter the

ego vehicle’s speed profile (and appropriate speed recommendations).

The presence (or absence) of other vehicles on the road can be detected by

the MobilEye camera, and updates about obstructing vehicle position, speed, and

other information are sent by the camera over the CAN bus. This allows the speed

recommendation engine to provide recommendations that take into account other

vehicles on the road.

For the results presented in this manuscript, the camera was used for detection

of vehicles travelling significantly slower than the ego vehicle, and for detection

of vehicles stopped at intersections. In both cases, if it was unsafe to display a

speed recommendation because the ego vehicle could potentially impact the detected

vehicles by following a speed within the recommended range, the recommendation

was turned off.
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4.6.2 Fuel Economy Evaluations

The above algorithm was implemented in a test vehicle, and the following subsec-

tions describe evaluation of that algorithm in real world test environments. Two

test environments have been selected - the cities of San Jose, California and San

Francisco, California. They have been selected to test two different data sources. In

San Jose, the traffic signal data will be coming directly from a traffic management

center, and is assumed to be correct. This may not be true in 100% of cases, but

is sufficient for testing purposes. In San Francisco, the traffic signal data will be

coming from predictions based on crowdsourced GPS traces. Fuel economy is used

as a metric to determine the accuracy of the data and efficacy of the algorithms, in

the presence of actuated signals, traffic, pedestrians, buses, and other factors.

Testfield San Jose, California

A test field has been set up in San Jose, California. Traffic signal data from approx-

imately 800 traffic signals are available to the vehicle in real time. Approximately

150 status updates are recorded each second. Data from the traffic signals is first

collected by a traffic management center, and then forwarded to a BMW cloud based

server for analysis, storage, and re-distribution to appropriately subscribed vehicles.

A map of the test route can be found in Figure 4.4. This route was selected to

evaluate the feasibility of the system in an urban environment; the test route crosses

2 sets of train tracks, passes a bus stop, a fire station, city hall, a superior court, and

a construction zone. Pedestrians are present at many intersections, light to medium

traffic was observed throughout all testing. The test route contains 3 right turns at
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intersections, 3 left turns at intersections, and 8 intersections where the test vehicle

is able to pass through without turning. Speed recommendations were available at

10 out of the 14 intersections; please see Figure 4.4 for further information about

which intersections had recommendations available.

The test vehicle is a modified 2011 BMW 535i. The vehicle has additional

test equipment, including supplemental power electronics to support multiple on-

board computers for testing purposes. The vehicle has an automatic transmission.

Automatic engine start-stop was not enabled in this development vehicle.

A total of 14 drivers were used. Drivers were asked to obey all road laws. Each

driver was given approximately 20 minutes and 15 miles to familiarize themselves

with the development vehicle. Initially, the authors gave turn-by-turn directions to

drivers to ensure that they understood the test route. The drivers were then given

one unrecorded lap of the test route, to ensure they understood where to go. Drivers

were asked to drive for approximately 1 hour around the test loop with the speed

recommendation and countdown systems disabled. The drivers were then asked to

repeat driving the same route for approximately 1 hour, this time with the speed

recommendation and countdown systems enabled. Drives occured primarily from

9-11AM and from 1-3PM; every weekday was used, and no testing was performed

on weekends. Drivers ranged from 18-40 years old. The fuel economy of each driver

was recorded and can be found in Table 4.1.

The authors noted that in some instances, test drivers were not following the

requested test procedures. Therefore, a second set of drivers were asked to perform

as above, except the test time was shortened to a 30 minute session with the system
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Figure 4.4: Fuel economy evaluation route in San Jose, California.

Table 4.1: Field testing in San Jose, California. Drivers were not given specific
instructions to follow speed recommendations.

Driver # System Inactive System Active

Driver 1 11.4 MPG 13.0 MPG
Driver 2 12.8 MPG 13.4 MPG
Driver 3 14.3 MPG 13.2 MPG
Driver 4 12.3 MPG 14.3 MPG
Driver 5 14.2 MPG 13.3 MPG
Driver 6 13.2 MPG 12.6 MPG
Driver 7 12.0 MPG 11.4 MPG
Driver 8 12.9 MPG 12.4 MPG
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Table 4.2: Field testing in San Jose, California. Drivers were given specific instruc-
tions to follow speed recommendations.

Driver # System Inactive System Active

Driver 1 13.5 MPG 14.4 MPG
Driver 2 12.7 MPG 13.5 MPG
Driver 3 13.2 MPG 15.9 MPG
Driver 4 10.9 MPG 11.2 MPG

off and a 30 minute session with the system on. Drivers were explicitly asked to

follow speed recommendations, safety permitting. The results from those drives are

found in Table 4.2.

With two drivers, data corruption lead to insufficient data to make analysis

significant (2 or fewer recorded laps without issues). In one case, the test was cut

short for safety reasons. In the other case the driver was unable to successfully

follow the test route, despite the authors providing verbal directions.

Testfield San Francisco, California

A test field has been set up in San Francisco, California. Data from buses driving

public transportation routes in the city are used to estimate traffic signal switching

times, as described in [36]. Data from the traffic signals is first collected by a

crowdsourcing server, and then forwarded to a BMW cloud based server for analysis,

storage, and re-distribution to appropriately subscribed vehicles.

Because the test route along which information is available, namely Van Ness

Avenue, is short (approximately 1.1km), fuel efficiency along the test route is highly

dependant on avoiding red lights. In addition, in this test we ran only 4 laps for
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Figure 4.5: Fuel economy evaluation route in San Francisco, California.

Table 4.3: Field testing in San Francisco, California. Fuel economies in miles per
gallon (mpg).

Fuel Economy
Speed Recommendation Inactive 11.2
Speed Recommendation Active 10.8
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each system state (off and on). Further complicating matters is the timing of these

signals - some signals have red lengths of approximately 60 seconds. In this test case,

though the inactive system fuel economy is slightly lower than when the system is

active, this is likely the result of having stopped on one lap when the system was

on for a nearly 50 second long red. This aberration skews the results significantly.

Finally, traffic was moderate to heavy during the test phase, allowing the driver

little freedom to vary his speed in accordance with the velocity recommendation

algorithm. A more significant number of laps would be needed to conclusively

evaluate whether the system is effective or not. This was not possible at this time

due to the unavailability of both test drivers and the test vehicle.

While the fuel economy results are inconclusive, this did allow us to verify the

prediction quality of the bus-crowdsourced phase change information. The on-board

camera system recorded timestamps, locational data, and phase change data for

when traffic signals changed. This data was then compared with the predicted re-

sults. The RMS difference (error) between the predicted phase changes and the

camera-recorded phase changes, observed at 8 of the 10 intersections, over 21 phase

changes, was 4.1 seconds. Both the prediction algorithm and the vehicle use Network

Time Protocols to connect to time-keeping servers to verify that in this calculated

error we are not including computer system clock time error. In addition to the

21 phase changes recorded and used in this calculation, 2 more phase changes were

observed by the camera system, which did not align with predicted phase change

intervals; these may be the camera system observing the wrong phase at an inter-

section, e.g. a left turn signal is visible to the camera but the through lane signal is
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blocked from view by another vehicle.

4.7 iPhone Implementation

A rudimentary version of this has been successfully implemented in downtown

Greenville, South Carolina on an iPhone 3GS. A screenshot of the application that

was written is shown in Figure 4.6. Prior to implementation, it was unclear whether

the 3G cellular data network would have low enough latency to retrieve the database

information with sufficient time to make the velocity calculations as a vehicle was

moving. Clock synchronization remained the largest issue; Verizon iPhones, ATT

iPhones, traffic signal master controllers, and the National Institute of Standards

and Technology disagree significantly on what time it is. A potential solution has

been implemented in the iPhone application for testing purposes, and a human

driver was able to successfully avoid red traffic signals when disturbances such as

other vehicles or pedestrian traffic were low. This solution has many drawbacks by

comparison to in-vehicle algorithms, including significantly reduced accuracy of po-

sitioning information, the previously described timing issues, limited computational

power, and driver distraction complications related to having a separate screen in-

stead of in-dash implementation. However, it was an important early evaluation

of the feasibility of providing real time information, and provided initial feedback

regarding future driver human-machine-interface issues and potential solutions.
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Figure 4.6: Screenshots of our iPhone application that uses SPAT information to
calculate the speed to reduce idling at reds. On the left: dynamically changing
optimal speed. On the right: instantaneous state of upcoming lights on Pleasantburg
Drive in Greenville, SC.
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4.8 Problems Encountered

In evaluating the collection, analysis, distribution and use of traffic signal phase and

timing data as part of a speed recommendation fuel efficiency algorithm, a variety of

problems were encountered. Issues ranged from technical errors to driver acceptance

and attention issues.

Five technical issues were encountered.

1. Network connectivity. The 4G/LTE system occasionally dropped out for peri-

ods of 1-2 minutes as it lost signal and re-established connection. This means

that drivers were not able to receive traffic signal updates during those periods.

2. Simple traffic signal selection algorithm. Occasionally while driving on an over-

pass, the system will mistakenly select the signal which is under the overpass,

which is understandable given the role GPS position and heading attributes

play in the algorithm.

3. The use of uni-directional UDP for many interfaces means that it is not pos-

sible to verify whether all data has been received, meaning the driver may be

approaching a signal which has changed phase but the data was lost in trans-

mission to the vehicle. In the case of a prototype system, and specifically in a

system where overall network latency is a topic of research, UDP will generally

outperform TCP. Additionally, in the case of information coming from cities

to our servers, while a firewall is employed by the city, there is concern over

interference from nefarious users. A unidirectional communication channel is
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one piece of the security profile which ensures the continued safe operation

of the traffic signal infrastructure. However, if this system is being used for

a safety-focused driver assistance system such as a red-light-runner predictor,

the communication technologies could change to ensure the vehicle’s receipt

of all safety messages.

4. Obtaining an accurate positional location of the vehicle. The GPS position

available on the CAN bus is already map-matched, meaning that the raw GPS

position, along with a basic Kalman filter, yields a GPS position which has

been corrected to be on the internally stored map of roads. This may be

different than the raw GPS position obtained directly from the sensor. This

causes issues if other locational data, like traffic signal stop bars, is generated

using non-map-matched data. However, this is merely a result of the specific

test vehicle used, and is not a conceptual problem with the project proposed

in this manuscript.

5. Camera systems and algorithms. Because the camera is a single lens, dis-

tance measurements become error prone. The vector based image recognition

algorithm appears to need sufficient vehicle speed (and therefore difference

between captured frames) to accurately estimate distance to objects identified

by the image recognition system (like impeding vehicles, and traffic signals).

This would suggest that a stereo system (e.g. two camera lenses, with signifi-

cant horizontal separation between them) would increase the accuracy of the

system.
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The compounding effect of the GPS and camera errors, starting with the vehicle

position and heading obtained from the GPS system/inertial positioning system, in

combination with the error induced by the image recognition system in determin-

ing the distance and heading to the perceived traffic signal, causes some issues in

identifying and correlating the perceived signal with the database of signals. The

total combined error at the time of writing can come close to 30 meters, which may

actually cause incorrect identification of the signal.

In addition to technical errors, at least three human interface issues were en-

countered.

1. Displaying speed recommendations. Initially a driver was given a specific

speed to hit - a single number (derived from the target to pass through as

many lights as possible). Drivers found this too difficult to follow, especially

as the number changed frequently, as vehicle speed, signal timing changes,

and traffic influenced matters. This was changed to the green/red areas on

the speedometer (as seen in Figure 4.2), which while conceptually less efficient

because they only relate to the upcoming signal and not a series of signals,

actually can be followed by drivers.

2. Driver use of the system. Some drivers forgot about the system and did not

pay attention. Some drivers got bored and started accelerating excessively,

simply enjoying access to a powerful vehicle, with little regard for the system

indicating an upcoming red signal.

3. Driver compliance with road laws. The system only displays recommendations
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when the driver is following road laws. However, some drivers may try to

exceed the speed limit if they are able to surmise from the provided information

that they will not be able to pass the current intersection within the speed

limits and recommendations provided by the system.

4.9 Conclusions

This chapter presented a vehicle architecture for providing real time traffic signal

data to a vehicle for use in a speed recommendation algorithm.

In the first case study, performed in San Jose, California, exact traffic signal

information was utilized to provide speed recommendations at 10 out of 14 traffic

signals along the test route. The recommendation system resulted in a 0.8% average

decrease in fuel consumption across the uniformed test drivers. The recommendation

system resulted in a 8.5% average decrease in fuel consumption across the informed

test drivers. These improvements are possible even in an urban setting, with traffic,

buses, trains, pedestrians, and construction. Clearly, testing methodology and driver

understanding plays a significant role in the results.

In the second case study, performed in San Francisco, California, estimated traffic

signal information was used to provide speed recommendations at 10 traffic signals

along a very short test route, only 1.1km long. This did not result in a statisti-

cally significant fuel economy difference, primarily because traffic was too dense.

However, it did provide an opportunity to evaluate the quality of data coming from

the crowdsourced data algorithms. Predicted phase timing compared to camera-
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recorded ground truth data indicated an RMS difference (error) in prediction of

approximately 4.1 seconds. With the two outliers excepted, the average error was

1.9 seconds.

Many effects including time of day, driving style, and the use of automatic motor

start-stop were not studied in this manuscript and remain topics for future work.

Additional future work will focus on the network wide effect of informed vehicles on

uninformed vehicles, penetration rates, and fleet efficiency.
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Chapter 5

Summary of Contributions and

Proposed Future Work

5.1 Review of Results

In Chapter 2, we statistically evaluated velocity planning algorithms which minimize

idling time behind red lights based on probabilistic traffic signal timing models that

we proposed. Three cases were evaluated - vehicles with no information about

upcoming traffic signals, vehicles with real-time information, and vehicles with full

and exact future knowledge of traffic signal timings. Drivers today fit into the first

case - the least efficient. Drivers of the future may fit into the third and most efficient

case, if infrastructure and technologies develop to provide this information. The

middle case is feasible today, and obtains much of the potential benefit obtainable

via knowledge of upcoming traffic signal timing.
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Real time knowledge with probabilistic models where the driver encountered

fixed-time lights yielded an optimistic 61% increase in a motivating case study, and

a 16% increase in average fuel economy across 1000 multi-signal simulations of fixed

time signals. The same models in combination with real time information yielded a

6% increase in fuel economy for actuated signals. These reflect technologies which

could be feasibly implemented with little or no infrastructure changes and with only

software updates to current production vehicles.

In Chapter 3, we sought a predictive model of traffic signal phase and timing

information such that in-vehicle driver assistance systems and powertrain control

algorithms would make the vehicle both safer and more efficient. To that end, we

began with an evaluation of the data sets to the application of statistical predictive

models. From there we built several machine learning models, to evaluate their

relative applicability to the prediction of SPAT information. Finally, we discussed

the many sources of error, both in the data itself and in the model building process,

and evaluated the results.

In Chapter 4, we presented a vehicle architecture for providing real time traffic

signal data to a vehicle for use in a speed recommendation algorithm.

In the first case study, performed in San Jose, California, exact traffic signal

information was utilized to provide speed recommendations at 10 out of 14 traffic

signals along the test route. The recommendation system resulted in a 0.8% average

decrease in fuel consumption across the uniformed test drivers. The recommendation

system resulted in a 8.5% average decrease in fuel consumption across the informed

test drivers. These improvements are possible even in an urban setting, with traffic,
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buses, trains, pedestrians, and construction. Clearly, testing methodology and driver

understanding plays a significant role in the results.

In the second case study, performed in San Francisco, California, estimated traffic

signal information was used to provide speed recommendations at 10 traffic signals

along a very short test route, only 1.1km long. This did not result in a statisti-

cally significant fuel economy difference, primarily because traffic was too dense.

However, it did provide an opportunity to evaluate the quality of data coming from

the crowdsourced data algorithms. Predicted phase timing compared to camera-

recorded ground truth data indicated an RMS difference (error) in prediction of

approximately 4.1 seconds.
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5.2 Novel Contributions

This dissertation contributes a globally optimal velocity planning algorithm, at least

three techniques to provide SPAT information to said algorithm, and an evaluation

of the algorithm and the SPAT information via empirical road tests.

The new approach in our globally optimal velocity planning algorithm provides

the big picture for this dissertation - the Dynamic Program is the starting point

of this project. However, the DP requires SPAT information in order to make

velocity recommendations. To this end, we started with probabilistic methods,

and moved from there. Multiple data sources have been explored, to improve the

quality of information going into the velocity planning algorithm. Because of the

raw volume of data, processing must be performed on a cloud-based service and

the processed information made accessible to any device or connected vehicle. Such

real-time information of current and future state of traffic lights does not exist

today. New vehicle functions that rely on prediction of traffic signal state can be

deployed starting today, locally and gradually, and do not require major involvement

of government or a paradigm shift by auto-makers. By relying mostly on software,

information, and fast cellular and Wi-Fi networks that exist today, traffic flow and

safety can be improved and there can be dramatic reduction in CO2 emissions and

total national fuel use with direct societal and economic impacts [50, 51, 14, 52, 53,

54].
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As described in Chapter 2,

• a globally optimal velocity planning algorithm

• a novel probabilistic approach to prediction of traffic signal phase and timing

information

• a new application of Monte-Carlo simulations in the evaluation of velocity

planning algorithms.

As described in Chapter 3,

• new utilization of two existing data mining methods in the analysis of historical

traffic signal phase and timing information for prediction

• a new technique for evaluation of mined historical information.

As described in Chapter 4,

• a unique cloud-based database which is able to distribute just-in-time traffic

signal phase and timing information for the relevant signals to the relevant

drivers

• a new in-vehicle cruise control algorithm

• a new iPhone application for optimal velocity planning.

Experimental implementation of an in-vehicle algorithm as described in Chapter

4 validates the work in preceding chapters. These implementations demonstrate

the full breadth of the project, from prediction to velocity planning, to in-vehicle

implementations, to a final fuel economy gain.
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5.3 Takeaways

What is at first glance a fairly simple question, upon second look is a rabbit hole of

issues. The concept of getting traffic signal information into vehicles is an assump-

tion in many works, yet no one has made public a viable, complete, system. The

process of obtaining traffic signal data, which is owned by the public, turns into

both a technical and bureaucratic nightmare, as paper records are often the most

up-to-date records available and digitizing the information a tedious process. Cities

may have traffic signals from the 1940s only a block away from brand new traffic

signals, making the process of building a homogeneous phase and timing database

increasingly difficult. Cities are strapped for funding, and the nature of technol-

ogy is such that the replacement of every traffic signal controller in a city with a

standard controller,firmware,software, and programming is unlikely. Every city en-

gineer that touched the signal controller appears to have differing preferences as to

how to set up the controller logic, and there are a wide range of intersection ge-

ometries with varying temporal traffic patterns. Signal controller manufacturers are

themselves unsure as to the effects of various timing parameters during transition

phases between timing plans. These combine to make a difficult set of prediction

and implementation problems.

The biggest takeaway to me, is that a dispersed, passive measurement system is

the most promising avenue for collecting traffic signal information for dissemination

to connected vehicles. This has benefits including network stability, widely dispersed

data collection costs, and enormous system flexibility. The greatest concentration
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of sensors would match where data is needed the most.
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5.4 Dissemination of Results

• Initial results from Chapter 2, including the case studies, were submitted and

accepted to the 2012 American Controls Conference in Montreal Canada and

were presented in June 2012.

• Results from Monte-Carlo simulations and traffic-adaptive signals have been

accepted by IEEE Transaction on Intelligent Transportation Systems.

• Results from Chapter 3, including many of the data mining techniques, are

ready to be submitted to the Journal of Transportation Engineering.

• Results from experimental implementation, as discussed in Chapter 4, are

ready to be submitted to the IEEE Transactions on Vehicular Technology.

• An abbreviated version of the experimental validation will be sent to the IEEE

ITSC 2014.
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5.5 Future Work

While the preceding work has been successful, there is always a next step in research.

Data is not available from traffic management centers in very many cities. The

infrastructure exists, but many cities have yet to consider the potential positive

effects of making such data available as a public stream. This points future research

towards the crowdsourcing methods described briefly in Chapter 4, and in [36]. This

concept is just at the beginning, and has huge potential for future vehicle efficiency

and safety applications.

The field of computer science, specifically the sub areas of data mining and

machine learning, is experiencing its time in the spotlight and associated rapid

growth. New methods, improvements to existing methods, and efficiency gains to

existing methods, all portend future successes and increased accuracy and promise of

this as a prediction technique. Additional time spent considering new and innovative

attributes may yield increased accuracy; similarly, an improved understanding of

traffic signal programming, and/or access to actual traffic signal code, may improve

accuracy. Future work should look at hundreds or thousands of traffic signals, with

future improvements in computational power, to evaluate machine learning methods

across entire cities or multiple cities.

In-vehicle testing provided only a proof-of-concept application. Though well

polished, it is not ready for mass production. As just mentioned, data is not available

in all cities, and consumers would expect the system to work everywhere. While

superficially trivial, there is an interesting research question regarding driver intent
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when making turns. Steering wheel angle, blinker status, and vehicle position in

intersection proved insufficient to predict driver intent - drivers often leave blinkers

on when they don’t necessarily intend to turn, or don’t use blinkers at all. This is

an important problem to solve before a system showing velocity recommendations

or phase change countdowns is able to be shown to customers. It would not be safe

to show the information for the wrong phase.

The communication infrastructure is an important step towards providing infor-

mation to semi- or fully- autonomous vehicles. This has the potential for influencing

efficiency algorithms like automatic motor start-stop, red-light-runner warning (col-

lision prediction), and gear selection maps. But those are the tip of the iceberg. A

vehicle which is able to react to perceived traffic signals, as in existing Google and

other development vehicles, is the next step. What is shown in Chapter 4 would

be one piece of the infrastructure in this next step - a vehicle which drives itself

autonomously through more green signals than its human-driven alternative, with

efficiency and safety benefits.

Finally, the most significant area this dissertation affects is route planning. Ex-

isting proprietary route planning algorithms often use node-link models where traffic

signal timing is taken into account only via the effect it has on probe vehicle delay

on the relevant link. Real time traffic signal information, and prediction models,

has the potential to significantly influence route recommendation algorithms, like

Google Maps and in-vehicle systems like Navteq. Route planning, travel time pre-

diction, and traffic load density balancing are expected to be most affected in urban

areas because of the high traffic signal density.
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Appendix A

Appendices

A.1 Supplemental Experimental Setup Informa-

tion

The process of analyzing fuel economy for a vehicle with and without traffic signal

recommendations involves both in-vehicle software as well as data post-processing.

In all cases the vehicle is the same. The BMW 535i has been equipped with

both supplemental and prototype development systems which are necessary aspects

to the testing process. The 535i has x86 based boxes in the trunk, running screens

in both the dash and the Multi-Media Interface (MMI). These screens are essentially

computer LCD monitors. The dash and Heads-Up Display (HUD) are running a

development version of FLORIS, a Flash-based program which integrates with the

Controller-Area-Network (CAN) to replicate via software and LCD display, the func-

tionality of typical gauge and trouble-light based dash displays. Typical CAN bus

messages could include vehicle speed, engine RPM, oil pressure, coolant temperature

and many other things. In addition, we are able to send messages to the FLORIS

116



display regarding color spectrums we wish to display on the speedometer. In the

examples detailed in this manuscript we have used this functionality for displaying

speed recommendations for passing through traffic signals.

Traffic signal data is coming from three sources. The first source is from Traffic

Management Centers. The second source is from reverse-engineered probe-vehicle

data, including public transportation buses in San Francisco. The third source is

from the development vehicle’s camera system.

Data coming from TMCs is sent to a third party to integrate so-called static

and dynamic data. Static data is traffic signal GPS position, intersection geometry,

and similar information which describes the intersection itself, and not the status

of the intersection. The dynamic data is the presence or absence of vehicle calls,

pedestrian calls, the active phases, the inactive phases, and the presence or absence

of overriding public transportation or emergency vehicle transponders. Dynamic

information from signal controllers updates once per second to the TMC in the

cities in which we tested. The TMC has a direct connection with the third party,

and the third party filters and forwards status-based updates to a BMW server.

User-Datagram Protocol (UDP) messages are sent from the third party to BMW

when something about the status changes; for example, the arrival of a pedestrian,

the switching from active to inactive of a phase, or similar things. BMW maintains

an SQL database for each city with signal status information for each phase of each

signal about which information is known.

Data coming from reverse engineered probe data starts with collecting and

recording public bus route data for the city of San Francisco. Data is provided

117



by NextBus, over an HTML interface. Positional data is combined with speed data

to estimate when the bus passed through, or was stopped at, the intersection. This

process is repeated for each bus over a significant time period to determine base

timing data for pre-timed intersections (e.g. cycle time, nominal split, etc.). Then,

to determine what phases are currently active at an intersection, analysis is done

on recent bus passes through the intersection. Several passes are compared to de-

termine which passes estimate traffic signal timing with the least difference. Those

passes which estimate the closest timing to each other are used to determine where

the clock signal is with respect to the nominal timing plan, and thus which phases

are active. This predictive information regarding estimated phase updates is then

sent, over a similar UDP interface, to BMW and is stored in an SQL database.

Data coming from camera systems has the opportunity to be similar to, but more

accurate than, the bus data. The in-vehicle development camera system recognizes

traffic signals using image-processing algorithms. This information is then compared

to vehicle position and heading and the currently perceived phase status information

recorded. The information is available over the CAN bus and is then sent to BMW

over a 4G/LTE connection. However, because the camera perceives the actual signal

status, errors in active phase information are different than the second data source.

Like the other data sources, this is stored in an SQL database by BMW.

With data collected from the three data sources, the problem remains of how

to get data to the vehicle. The vehicle maintains a 4G/LTE connection to the

internet. The SQL server with signal status information may be accessed via this

network connection. When the test vehicle turns on, it asks the server what the
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current version of the known traffic signal list is. This is the previously mentioned

static information, and is primarily a list of intersections to which the system has

a connection, and GPS and geometry information about those intersections. The

vehicle compares the server version information to the in-vehicle version information,

and updates if necessary.

As the vehicle drives through an area where GPS positions start to match up

with traffic signal GPS information in the maintained list of intersections, a selection

algorithm starts running. This is the multi-step signal selection algorithm described

in detail in Chapter 4. The upcoming traffic signal is selected, and a messsage sent

to the server subscribing to that phase of that signal. The server responds with the

appropriate status information, and any subsequent status changes. As the vehicle

passes through the intersection, an unsubscribe message is sent to the server.

In the vehicle, this signal status information is used to create the velocity recom-

mendations shown to the driver. As described in Chapters 2 and 4, the phase change

information is used to calculate upper and lower bounds for passing through green,

or being blocked by red. In addition, the camera information is used to determine

whether obstacles will be impediments to the vehicle’s safe following of those recom-

mendations, and if so, only a phase countdown and not a velocity recommendation

can be made.

A total of 14 drivers were evaluated using the in-vehicle display. Drivers were

predominantly interns at the BMW Technology Office USA in Mountain View, Cal-

ifornia. As the people most closely related to the project, neither Andreas Winckler

nor myself were test drivers. Drivers were asked to drive from the Tech Office to
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the test area in San Jose, as an opportunity to familiarize themselves with the ve-

hicle. As described in Chapter 4, drivers drove first with the system off and then

with the system on. This ordering was done for two reasons. The first was that we

did not want drivers to achieve the benefits of the system after it was turned off

simply because they have muscle memory and knowledge of the signal timing from

repeated driving of the test loop. Secondly, we did not want to tell drivers what we

were testing, because we wanted them to drive naturally in the naive test session.

Of the drivers, only 1 was female. Driver ages ranged from 18 to almost 40.

While driving, we record the full CAN bus data stream. We also record specific

messages pertaining to GPS position, vehicle speed, fuel consumed, and several other

things. We record separate files for the naive and the informed test drives. These

files are analyzed in post-processing. We use scripts written in Matlab to visualize

how many laps were driven, and to calculate fuel economy. The fuel economies

calculated here are those reported in preceeding chapters.
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