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ABSTRACT 

Nowadays, more and more people are having pets as members of their family. To the year 

of 2012, there are 78.2 million dogs and 86.4 million cats owned in the U.S according to the 

report of the Humane Society of the U.S. The pet food industry as a result has been prosperous, 

with an estimated market size of $21 billion in the year of 2013. However, there is a common 

problem for the industry - fat rancidification. Pet foods usually contain relatively high levels of 

fat, which, if not well protected, are prone to oxidation and generate unfavorable products 

including acids, ketones and aldehydes. The resulting small volatile molecules will not only lead 

to unpleasant flavors and odors, but also could be unsafe if accumulated at high concentrations. 

In order to better preserve the quality of foods, it is a common and necessary practice to add 

antioxidant preservatives, which can scavenge free radicals and hence prevent or slow down the 

oxidation of fats. Currently available antioxidants can be generally divided into two categories: 

synthetic and natural antioxidants. Commonly used synthetic antioxidants include butylated 

hydroxytoluene (BHT), butylated hydroxyanisole (BHA) and tert-butylhydroquinone (TBHQ) 

and ethoxyquin (ETQ). Synthetic antioxidants are advantageous because of their high efficiency 

and low cost; however, they are criticized for having potential safety issues [3-7]. The natural 

options such as tocopherols and ascorbic acid are recognized as safer but less effective and are 

much more expensive compared to their synthetic counterparts. In spite of higher price and 

lower efficiency, there is a great customer demand for natural antioxidant, which is perceived to 

be beneficial for pet’s health. Consequently, there is a need to develop an alternative natural 

antioxidant, which is effective, inexpensive and safe. 

Animal blood is a good source for natural antioxidants. Erythrocytes as oxygen carrier are 

rich in antioxidants including superoxide dismutase (SOD), catalase (CAT) and glutathione 
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(GSH). Besides, animal blood is a by-product of rendering industry and it can be obtained easily 

at a low cost. 

This work seeks an efficient and inexpensive way to extract antioxidants from animal 

erythrocytes as a novel pet food preservative. Two extraction methods were applied: a standard 

method and a novel simplified method. The standard method was originally designed to extract 

non-purified superoxide dismutase (SOD) from red blood cells and involves the use of several 

organic solvents. The product of this method is denoted as C-SOD. The second method is 

simplified to yield a crude protein mixture containing various antioxidants, as well as other 

proteins, and is denoted as CP. The characterization of the two products showed that C-SOD 

contained 1100 U/ml of SOD activity and 300 U/ml of catalase activity. In comparison, CP 

contained 224 U/ml of SOD activity. The following two assays were used to evaluate the 

antioxidant efficacy of the two products. Ferrous xylenol orange (FOX) assay and thiobarbituric 

(TBARS) assay showed that adding 5% (v/w) CP into ground chicken meat inhibited 100% of 

fat oxidation for 12 hours at 37 ℃, while C-SOD was less effective, reducing oxidation level by 

about 62%. In the chicken fat model, 5% (v/v) of C-SOD and CP inhibited 85% and 67% 

oxidation respectively for 12 hours at 50℃. Aging study showed that CP was quite stable, losing 

no more than 20% of its activity after accelerated aging for 10 days at 50℃. Overall, the results 

demonstrated that erythrocytes extracts CP and C-SOD were able to protect fats from oxidation 

in a number of food models. CP is more likely to be used by the industry because the extraction 

procedure is cheap and involves no organic solvents. In summary, CP is a very promising 

preservative for pet foods. In the future, with proper quality control and proof of safety, it may 

be potentially used in a number of animal and human food products. 
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CHAPTER 1 

INTRODUCTION 

The pet food industry has been steadily growing for years, with a market size of $20 billion 

in the year of 2012 and it is estimated to be over $21 billion in 2013 according to the American 

Pet Products Association [9]. A good pet food is supposed to have the following characteristics. 

First, it should provide the necessary calories to support the animals’ daily activities and nutrients 

such as proteins, fats, vitamins, fibers and minerals to maintain the health of the animals. Second, 

it needs to be tasty and palatable. Third, it should be inexpensive. Lastly and most importantly, it 

has to be safe for consumption.  

However, a common problem for pet food is fat rancidification, which can compromise 

both its taste and nutrition value, and even more severely, cause safety problems. Pet foods 

normally contain relatively high levels of fats. If not well protected, fats are prone to oxidation 

and degrade into small volatile molecules like aldehydes and acids, releasing unpleasant flavors. 

Further, microbial growth can exacerbate the situation. Fats deterioration will not only lead to 

direct economic loss, but can also cause health problems [10, 11]. Therefore, it is a necessary and 

common practice to add preservatives into pet foods, which arrest or prevent the oxidation of fats 

and also inhibit the growth of microorganisms. 

Antioxidants are the primary and indispensable preservatives for pet food because they 

prevent or slow down fat oxidation and degradation. Available antioxidants on market include: 

natural options such as tocopherols (vitamin E), ascorbic acid (vitamin C) and various kinds of 

plant oils; synthetic options such as butylated hydroxytoluene (BHT), butylated hydroxyanisole 
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(BHA) and tert-butylhydroquinone (TBHQ) and ethoxyquin (ETQ). Overall, synthetic 

antioxidants have stronger antioxidation activity and are also more cost effective in comparison 

with the natural alternatives. Unfortunately, there has always been a safety concern regarding the 

potential side effects of these synthetic materials [12-15]. In contrast, natural antioxidants are 

generally recognized as safe,[16], but they are more costly and less active and need to be added in 

larger quantity to achieve the same protection as their synthetic counterparts [17]. Hence, there is 

a need to develop a safe, inexpensive and effective alternative antioxidant. 

Rendered materials, animal blood in particular, provide such an alternative. Erythrocytes 

function in the transport of oxygen in the blood and are constantly exposed to oxidative stress 

caused by radicals such as hydroxyl radical, superoxide anion and also hydrogen peroxide. As an 

adaptation to this oxidative stress, erythrocytes have successfully developed a comprehensive 

system of antioxidants to ensure those harmful molecules are eliminated effectively before they 

do any severe damages to the important cell organelles. Superoxide dismutase (SOD), catalase 

(CAT), glutathione (GSH) and glutathione peroxidase (GHX) are the main antioxidant substances 

in erythrocytes. Therefore, we propose to find an inexpensive way to extract these antioxidants 

and apply them to pet food as a preservative to inhibit the oxidation of fat contents. To realize this 

goal, three challenges need to be addressed. 

First of all, while the antioxidant systems in erythrocytes are effective at protecting the 

cells from the daily oxidative stress they are subjected to, their ability to protect food products 

need to be evaluated. Antioxidants in red blood cells are mostly enzymes, and as macromolecules, 

they are structurally complicated and sensitive to environmental changes. In other words, their 

activity depends on many factors including pH, temperature and ionic strength. Second, the cost 

of extracting them from the cells has to be low so it can be competitive with commercially 

available products, otherwise they may not be able to compete with other natural antioxidants 
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such as tocopherols and ascorbic acid. Lastly, most conventional protein extraction procedures 

involve the use of organic solvents, which may denature proteins and lead to additional safety 

issues if not removed completely. Therefore it is necessary to reduce or avoid the use of any 

hazardous or potentially hazardous chemicals during extraction. 

To address these challenges, we conducted experiments to evaluate the proposed system 

using porcine blood obtained from a local slaughterhouse as an inexpensive source of 

erythrocytes. Two extraction methods were adopted. The first one was simplified method for 

extraction of superoxide dismutase enzyme, which we initially deemed to be the strongest 

antioxidant present in blood. This method involves several steps and a number of organic solvents.  

The idea of the second method is based on the elimination of hemoglobin, the most abundant pro-

oxidant compound, from erythrocyte lysates. This procedure leaves a complex protein cocktail 

that contains a number of antioxidants naturally present in erythrocytes, in a mixture with many 

other proteins. The products of the two methods were tested with ground chicken breast meat and 

chicken fat as two important food models. Degree of oxidation was evaluated by two techniques, 

ferrous oxidation xylenol orange (FOX) assay and thiobarbituric reactive substances (TBARS) 

assay. PETOX, a commonly used synthetic antioxidant preservative containing 10% BHA and 10% 

BHT, was used for comparison and samples with no preservatives were used as negative controls. 

Finally, the potential application and future recommendations for future development of these 

products are discussed. 

 

.
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Pet food 

Pet food typically refers to any plant or animal materials that are intended to be consumed 

by pets. Dog food and cat food constitute a large portion of the market. The pet food industry is 

tightly associated with the rendering industry since it utilizes a significant amount of rendered 

ingredients. Products produced by the rendering industry include bone meal, feather meal, and 

meat meal and these are the popular materials for making pet foods because they provide an 

inexpensive source of nutrients for pets. Also, rendered fats and oils are also added to pet foods to 

promote nutritive value and flavor. 

Generally, there are two categories of pet foods: dry pet food and wet pet food. Dry food is 

made with a machine called an extruder. In brief, materials are blended according to the nutritive 

requirements and then subjected to high pressure in steam, being compressed and pushed through 

dies which will determine the final shapes of the food. As the mixture comes out of the extruder, 

they are cut into smaller pieces. At the same time, due to the decrease of pressure, they expand 

into their final shapes. The last step is to spray with fat (usually poultry fat which is a by-product 

of the rendering process) and compounds that make the food more palatable. Wet pet food 

production starts by using emulsified animal parts with additives. Then the mixture is cooked or 

canned directly and sterilized. Also, wet food is generally regarded as fresher than dry food. In 

terms of components, wet food generally contains higher protein content and less carbohydrates.  
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Compared to human food, pet food usually undergoes a longer storage time and contains 

relatively high levels of fat and oil content, leaving them very susceptible to lipid deterioration. 

Consequently, adding preservatives to inhibit fat deterioration and microbial growth is a common 

practice in the pet food industry. The most commonly used additives are synthetic ones such as 

butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA) and ethoxyquin, which are 

generally very effective but have raised a lot of controversies regarding safety issues. (Details 

will be discussed in 2.3). Many efforts have been made to seek safe alternatives.  

2.2 Food rancidification 

Rancidity is the unpleasant and characteristic odor or flavor released from edible fats and 

oils as a result of oxidative and hydrolytic degradation [18]. Rancidity mostly occurs in foods that 

contain fats, including both raw food like fresh beef and processed food like pet foods or snacks. 

The unpleasant odor of rancidity not only turns customers away, but also decreases the nutritive 

value in the food (loss of unsaturated fatty acids) and even generates toxic chemicals (aldehydes, 

hydroperoxides).  

Typically, rancidification is carried out in three ways: a) oxidation, b) hydrolysis and c) 

microbial degradation.  

2.2.1 Oxidative rancidity 

 Oxidative rancidity is probably the most fundamental source of rancidity among the three 

pathways, and usually occurs through an auto-oxidation pathway[19]. First, lipid oxidation can be 

initiated by various factors, including heat, moisture, light, enzymatic activity, as well as pro-

oxidants, and result into lipid free radicals, which will subsequently be attacked by oxygen and 

form peroxy radicals. Then, the newly formed peroxy radicals start to take hydrogen from other 

lipids, mostly unsaturated lipids, yielding another hydroperoxide and a new lipid free radical, 

indicating the onset of propagation. In the meantime, secondary oxidation begins and proceeds, 
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producing small volatile molecules such as aldehydes and ketones. Lastly, the chain reaction is 

terminated when those free radicals encounter antioxidants and new free radicals cannot be 

generated.  

2.2.2 Hydrolytic rancidity 

Hydrolytic rancidity, as indicated by its name, refers to the hydrolysis of triglycerides and 

the formation of free fatty acids (FFAs), monoglyceride, diglyceride or glycerol. It is a major 

concern to the dairy industry because both the indigenous and the microbial lipolytic enzymes in 

milk can facilitate the hydrolysis of fats and the release of small molecule of unpleasant flavor. 

Figure 2-1 Lipids autoxidation pathway [2] 
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2.2.3 Microbial rancidity 

Microbial growth causing food spoilage is very familiar to everyone in our daily life. 

Notably, it is not independent of the other two pathways (oxidation and hydrolysis). In fact, 

bacteria in many cases accelerate food hydrolysis and decomposition, releasing metabolites that 

may be toxic and change the pH of food, and result into the off-odors and off-flavors. Bacterial 

spoilage is most evident and rapid in proteinaceous foods such as meat, fish and milk since they 

are highly nutritious, pH neutral or slightly acidic and possess high moisture contents [8]. 

Specific spoilage organisms (SSO) usually comprise only a small proportion of the initial 

microflora on fresh food, but they are well-adapted to the storage conditions and generally good 

at utilizing the nutrients in foods, and consequently, they are able to overgrow and prevail in the 

Figure 2-2 Generalized scheme of food spoilage due to the over growth of specific  

spoilage organisms (SSO) [8]. 
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end (Fig 2-2). For example, pseudomonas species are the most common spoilage organisms. 

They consume non-protein nitrogen fraction (NPN) in animal foods and produce lipases or 

proteases which hydrolyze fats as described above. Lastly, the over-growth  of the bacteria and 

accumulation of extracellular substances is directly visible by eyes[20].  

The three pathways, independently or in combinations, are responsible for the 

rancidification of foodstuffs and have caused economic loss over the world which can hardly be 

calculated exactly. 

2.3 Antioxidants as food additives 

A food additive is a substance or a mixture of substances that are not normally consumed 

as food by itself, whether or not it has nutritive value, but is added to food to preserve flavor or 

enhance the taste and appearance. For example, artificial sweeteners are used to make diet Cokes 

sweet but free from calories; emulsifiers are added to make a better mixture of oil and water as in 

ice cream and homogenized milk; food coloring agents are processed into drinks or foods to make 

it look tasty as in green ketchup or red wine. The most frequently used additives are antimicrobial 

agents and antioxidants, which are responsible for tackling the rancidity problems caused by 

bacterial growth and oxidation respectively.  

Antioxidants (AOs), in general, refer to any molecule that inhibits the oxidation of other 

molecules. Basically, food antioxidants, according to theirs sources, can be divided into two 

categories: synthetic ones which are synthesized from smaller molecules and natural ones which 

are extracted mostly from natural plants. Alternatively AO can be categorized according to their 

mechanisms into primary ones, which contribute hydrogen to free radicals and thus break the 

chain reaction, and secondary ones which trap radicals or chelate metals. 
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2.3.1 Synthetic antioxidants 

In food industry, overall, synthetic antioxidants are more popular than natural ones, 

primarily because of their better antioxidant activity [21] and lower cost of production. Most of 

them have phenolic chemical structures and serve as primary antioxidants (meaning they directly 

eliminate free radicals instead of inhibiting pro-oxidants). Common examples include butylated 

hydroxyanisole (BHA), butylated hydroxytoluene (BHT), propyl gallate (PG), tert-

butylhydroquinone (TBHQ) and ethoxyquin (ETQ). 

2.3.1.1 Butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) 

Butylated hydroxyanisole and butylated hydroxytoluene share similar chemical structures 

(Fig 2-3). Both of them are derivatives of phenol and are fat-soluble thus they have been used to 

protect fats from oxidation. BHT is prepared by the reaction between 4-methylphenol and 

isobutylene catalyzed by sulfuric acid [22].The FDA regulates the purity of BHT to be at least 99% 

as food additive. BHA is prepared from 4-methoxyphenol and isobutylene and its required 

minimum purity is 98.5%. They both act as free radicals scavengers by forming non-radical 

products with free radicals to break the chain reaction. The bulk price of BHT can be as low as 10 

dollars per kilogram. 

Nowadays BHT and BHA are used in enriched rice, in margarine, as an emulsion stabilizer 

for dehydrated potato, in dry breakfast cereals, in potato granules and in essential oils. However, 

although almost the entire population has been exposed to BHT and BHA for years, the safety 

concern on their use has not been resolved yet. Actually, it is as controversial as ever before. For 

years, many animal studies have indicated that BHT not only caused short-term damages to lungs, 

but also induced the development of pulmonary tumor and skin tumor in the animal models [3, 

23-25]. However, in those animal studies, the dosages (100mg/ kg, or g/kg) used were generally 

much higher than the approved level by the FDA, many of those negative effects became less 
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evident as smaller doses were used. Besides, a retrospective study on human showed there was no 

connection between BHT or BHA intake and stomach cancer risk [26]. Currently, FDA allows 

the use of BHT or BHA, in combination or alone, up to 200 ppm in fats or oil contents, 50 ppm in 

dry breakfast cereals or sweet potato flakes, and 33 ppm in rice [27]. The regulation, to some 

extent, has limited their performance. 

2.3.1.2 Tert-butylhydroquinone (TBHQ) 

Another antioxidant, tert-butylhydroquinone (TBHQ) is also a phenol-based compound and 

it is also a highly effective antioxidant with similar mechanism. Like the debate on BHT and 

BHA, conclusion regarding the safety of TBHQ has not been drawn yet. On one hand, the two 

major authorities, the United States Food and Drug Administration (FDA) and the European Food 

safety Authority have evaluated TBHQ and claimed that it is safe to consume under the approved 

levels [28]. On the other hand, at a higher doses level, it can be problematic. Animal studies have 

Figure 2-3 The chemical structures of 4 common synthetic 

antioxidants with phenolic structures 
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shown TBHQ was responsible for the development of stomach cancer or proliferative lesion in 

forestomach [29, 30] . Over all, the adverse effects of TBHQ observed in animals studies have 

been confirmed, but only at very high dose levels, hundreds or thousands times higher than that 

permitted by FDA for human consumption. 

2.3.1.3 Propyl gallate (PG) 

Propyl gallate (PG) is also a phenolic compound, which is an ester formed by the 

condensation of gallic acid and propanol. PG is usually used in conjugation with BHT and BHA 

and added to fats, oil contents, margarine, and chewing gums. The permitted dose level of PG is 

close to that of BHT and BHA. Like all the other phenolic antioxidants, PG has also been 

criticized for its potential carcinogenic effects [29, 31]. In 2009, PG was found to be an estrogen 

antagonist [32], rendering its use in food even more controversial. 

2.3.1.4 Ethoxyquin (ETQ) 

Ethoxyquin (1, 2 dihydro-6-ethoxy-2, 2, 4-trimethylquinoline) is a quinolone based 

antioxidant and it is sacrificed in its antioxidant action, which means it scavenges free radicals 

and change its own structures. Oxidation products of ethoxyquin include 2, 4-dimethy-6-

ethoxyquinoline, quinone-imine N-oxide, ethoxyquin 1, 8 dimer. 

ETQ has been used in some animal feeds since the 1950s and over the decades, its 

application has been extended to the whole pet food industry. ETQ has been proved to be 

effective at retarding the oxidation of vitamin E, vitamin A, carotene in animal feeds and 

preventing oxidation in pet food. Currently, According to FDA regulation, it is approved to be 

added into animal feeds at the quantity of no more than 150 parts per million (ppm). However, 

FDA has received complaints with regard to the adverse effects of this compound since 1988 [33]. 

Numerous studies have pointed the potential safety issues of ETQ. For instance, Blaszczyk found 

that ETQ could induce DNA damages in human lymphocytes in a dose-dependent manner [34]; 
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Ornsrud showed that a major metabolite of ethoxyquin, ethoxyquin dimer, could lead to adverse 

effects in liver and kidney in rats[35]. 

2.3.2 Natural antioxidants 

In comparison to synthetic antioxidants, which are not consumed normally as food, natural 

antioxidants are mostly necessary nutrients themselves and have been used as supplements in 

many ways in addition to their part in a regular diet. Also, due to the heated debate and concern 

regarding the safety of synthetic antioxidants, it is not surprising that natural alternatives are 

receiving more and more attention from researchers and also better acceptance from consumers. 

The most commonly used natural antioxidants are tocopherols (vitamin E), tocotrienols (vitamin 

E) and ascorbic acid (vitamin C). 

2.3.2.1 Vitamin E  

Tocopherols and tocotrienols, or vitamin E, is a group of eight fat-soluble compounds, 

termed as alpha, beta, gamma, delta tocopherols and tocotrienols. Tocopherols were first 

identified from a dietary factor in rats back in 1936, thus given the name “tocopherol” meaning 

“birth”, and the discovery of tocotrienols occurred much later, in 1964 by Pennock and Whittle, 

who isolated this chemical from rubber. Both tocopherols and tocotrienols have a relatively 

hydrophilic chromanol head and a hydrophobic tail. Their slight structural difference lies in the 

Figure 2-4 The chemical structure of ethoxyquin 
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presence of 3 double bonds in the lipid tail of tocotrienols. All members of vitamin E family are 

all fat-soluble. 

For decades, vitamin E has been extensively studied and numerous functions and 

applications of it have been discovered. One primary function of vitamin E is antioxidation. All 8 

forms of vitamin E have antioxidant properties because the hydroxyl group on the chromanol ring 

can donate one hydrogen atom to eliminate a free radical. This antioxidation activity is of crucial 

biological significance. For example, in vivo vitamin E can be incorporate into cell membranes 

and protect them from oxidative stresses. Besides, independent of its free radical scavenging 

ability, vitamin E regulates enzymatic activity. For instance, alpha-tocopherol inhibits protein 

kinase C (PKC) and consequently leads to the stop of smooth muscle growth [36]. As a gene 

expression regulator, vitamin E may decrease the expression of CD36 in human monocyte-

derived macrophages [37]. Vitamin E also plays a role in the inhibition of platelets aggregation 

Figure 2-5 Chemical structures of tocopherols and tocotrienols [1]. 
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[38, 39], and researchers have found that supplementation of vitamin E at a dose level of 400-

800IU/day for 2 years in coronary atherosclerosis patients has significantly reduced 

cardiovascular death incidence by 77% [40]. Vitamin E is also thought to be essential in 

maintaining neurological functions [41]. 

Most early studies focused on tocopherols, especially alpha-tocopherol, partially because it 

is preferentially absorbed and accumulated in humans, while studies on the other half of the 

family - tocotrienols, were much fewer [42]. However, later, researchers started to recognize the 

significance of tocotrienols and pay more attention to them. Since the 1990s, the anti-cancer 

properties of tocotrienols [43], along with its neurological protection effects [44], started to be 

unveiled. In ehrlich sarcoma, tocotrienols were reported to suppress tumor cell proliferation[45], 

and similar result was discovered with liver and lung cancer [46]. In a breast cancer model 

constructed in mice, tocotrienols modulate the immune responses and might explain the reason 

why tocotrienols inhibited the development of breast cancer [47]. Besides, amazingly, in vitro 

studies showed that tocotrienols possess high antiangiogeneic properties,  and its antiangiogenesis 

effect is even higher than tocopherols [48] [49]. In 2009, a group of scientists in Hong Kong 

University found that when treated with gamma-tocotrienol with chemotherapy drugs, skin cancer 

cells were reduced [50].  

Given the multiple important biological activities that vitamin E is involved in, it is 

expected that the deficiency of it would result in many problems of different severities. So far, it 

has been reported and confirmed that vitamin E deficiency would cause spinocerebellar ataxia 

[51], myopathies [52], peripheral neuropathy [53], retinopathy [53], impairment of immune 

response, red blood cell destruction. The recommended daily intake of vitamin E for adults is 15 

mg. However, even though it is true that vitamin E is so necessary and beneficial, 

supplementation of vitamin E did not exhibit expected health benefits on humans [54].  
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 Consequently, it seems very tempting to use vitamin E as a food additive given its high 

nutritive value, less safety concern and decent protective effects on lipids. However, there are 

also several disadvantages of it.  First, vitamin E, like many other redox-active compounds, has 

both anti- and pro-oxidant effects in presence of certain molecules. The pro-oxidative activity of 

alpha-tocopherol has been observed in LDL isolated from volunteers [55]. Second, the bulk price 

of vitamin E is generally higher than synthetic antioxidants. Third, vitamin E is not as effective as 

synthetic antioxidants. One study compared the free radicals scavenging capability of synthetic 

and natural antioxidants, finding alpha-tocopherols were not as effective as TBHQ and BHT [56]. 

2.3.2.2 Ascorbic acid 

Ascorbic acid, as one form of vitamin C, is familiar to most people because of its essential 

role in maintaining our health. The first scientific story of vitamin C dates back to the middle of 

18
th
 century, when people found that drinking lemon juice can prevent sailors from getting scurvy, 

though they had no knowledge about what was the magical thing in the juice that was responsible 

for the therapeutic effects.  The chemical structure of ascorbic acid was determined by Norman 

Haworth, who as a result received the Noble prize in 1937. 



 

13 

 

Distinct from all the antioxidants discussed above, ascorbic acid is water-soluble because 

of the multiple hydroxyl groups and the relatively small size. One primary function of vitamin C 

is to serve as an enzyme cofactor in mammals used for synthesis of collagen, and  its antioxidant 

activity is equally, if not more, important in biological system.  Ascorbate protects lipids from 

oxidation by donating electrons to become dehydroascorbic acid. This is of crucial biological 

significance since oxidative stress, if not controlled properly, can lead to severe diseases 

including cardiovascular disease, hypertension and even diabetes [57].  Interestingly, despite its 

essential biological role, vitamin C cannot be synthesized in the human body. As a result, it is 

necessary to take in this substance through diet. According to UK Food Standards Agency, it is 

recommended to take 40 mg of vitamin C per day or 280 mg per week at once. 

Therefore, adding vitamin C into food is safe and promotes nutritive value. However, it 

suffers from the same drawbacks as vitamin E in that its antioxidant activity is not competitive 

compared to the synthetic options, and, as it is water-soluble, its use in fat is limited. 

Figure 2-6 Reduced and oxidized forms of ascorbic acid. 
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2.4 Measurement of lipids oxidation 

As discussed previously, lipid oxidation in food causes the loss of nutritive value and the 

release of unpleasant flavor. However, there is no uniform method that can be used to evaluate 

the oxidation for all the foods, because different fats are present in different substrates, under 

different oxidative stresses, and can be oxidized via various pathways and generate different 

products. One method usually determines the level of one oxidation by-product, and therefore, 

may not give a comprehensive picture. 

As a result, numerous analytical methods have been developed to evaluate lipids oxidation. 

Some of the tests are physical and some are chemical. Some measure primary oxidation products 

such as lipid peroxide and some measure secondary products like malonaldehyde (MA). 

Therefore, it is important to carefully select an appropriate measurement method for a particular 

application. 

2.4.1 Measurement of primary oxidation products 

In the initial stage of fat oxidation, lipid hydroperoxides and some dienes will form, and 

they are identified as the primary oxidation products. Following methods are commonly used to 

determine the levels of the primary oxidation products as an indicator of oxidation. 

2.4.1.1 Measurement of Peroxide Value (PV).  

PV stands for the total concentration of hydroperoxide and is one of the most commonly 

used parameters for determination of fat quality. The autoxidation of lipids continuously 

generates hydroperoxides, which are not stable and can break down into secondary volatile and 

nonvolatile products. Initially, peroxide is generated at higher rate than it breaks down, so PV 

increases as the oxidation proceeds. Therefore, PV is a good parameter for oxidation at initial 

stage [58]. However, when the oxidation enters later stage, the situation is totally reversed.   
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Multiples methods have been proposed to determine PV, mainly including ferric ion 

complex method, iodometric titration method and Fourier transformation infrared spectroscopy 

(FTIR).  

Iodometric titration method is based on the oxidation of iodide ion (I
-
) into iodine (I2) by 

lipid hydroperoxide. Then, the iodine is titrated with sodium thiosulfate solution. This iodometric 

method has been commonly used to determine PV and has become a standard reference method 

for other methods. However, it has several drawbacks. First, the procedure includes too many 

steps and is therefore time-consuming, which would be especially problematic when it comes to a 

large amount of samples to measure at different time points. Besides, the sensitivity of this test is 

not very satisfying as well. 

The ferric ion complexes method is based on the oxidation of ferrous ions (Fe
2+

) into ferric 

ions (Fe
3+

) under acidic condition. Ferrous ions can be oxidized by lipid hydroperoxide, and the 

Figure 2-7 Schematic diagram of interferometer for FTIR use 

(from Wikipedia) 
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resulting ferric ions form a complex with a dye (thiocyanate or xylenol orange) and show strong 

absorption at specific wavelengths (505nm for ferric-thiocyanate and 550nm-600nm for ferric-

xylenol orange). Thus the PV is determined by reading absorbance at those specific wavelengths. 

Thiocyanate method is sensitive, easy, and reproducible [59]. Ferrous oxidation of xylenol orange 

(FOX) assay is also sensitive, rapid and inexpensive. It has been used to evaluate the PV of 

various substrates including snacks, plant tissues, plasma and chicken meat [60-62]. Also, 

importantly, it has shown good agreement with the standard iodometric method. 

Unlike chemical colorimetric methods, Fourier transformation infrared spectroscopy (FTIR) 

relies on more sophisticated principles. FTIR detects the absorption, emission and 

photoconductivity in infrared spectrum and it is capable of collecting a wide range of spectral 

data simultaneously, which is the major advantage of FTIR over traditional dispersive 

spectroscopy technique. It directly provides information on different functional groups present in 

the samples. Also, this technique requires no sample preparation before analysis, thus it is a fast 

and convenient technique which can be used to monitor the oxidation process in a kinetic fashion. 

However, though free from sample preparation, researchers using this technique have to interpret 

the spectral data carefully because it contains information for more than one compound. Similarly, 

Raman spectroscopy has also been applied to characterize edible oil, mainly for determination of 

total unsaturation, cis/trans isomers and free fatty acids contents [63]. 

2.4.1.2 Measurement of conjugated dienes.  

Oxidation of polyunsaturated fatty acids generates conjugated dienes and lead to a rise in 

the absorption in the ultraviolet region (234 nm). Lipids containing dienes and polyenes show a 

shift in double-bond position during oxidation and conjugation. Similarly, conjugated trienes 

strongly adsorbs at wavelength of around 264 nm. Based on this principle, the oxidation change is 

detected by direct reading at those two wavelengths, which makes it a convenient and simple 
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method. Further, a good agreement between PV and the levels of conjugated dienes has been 

found [64].  

However, this technique suffers from some drawbacks as well. First of all, many biological 

materials share very close absorption peaks in the same UV region and may interfere with each 

other. Carotenoids are such compounds which may strongly interfere with reading in this region. 

In terms of specificity and sensitivity, this technique is not very satisfying in comparison with PV 

methods [65]. 

2.4.2 Measurement of secondary products 

Primary oxidation products are very unstable themselves and they accumulate only at the 

initial stage of oxidation. At the later stage, primary oxidation products like lipid hydroperoxides 

start to degrade into relatively stable secondary products including aldehydes, ketones, alcohols, 

hydrocarbons and so on. Many of them are volatile and directly contribute to the unpleasant 

flavor in food. Numerous techniques have been developed to analyze these compounds. 

Figure 2-8 Formations of conjugated dienes and trienes in oil 
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2.4.2.1 Thiobarbituric acid (TBA) assay.  

Currently, TBA assay is one of the most commonly used techniques for oil quality analysis 

[66]. Polyunsaturated lipids are prone to oxidize and break down into many volatile small 

molecules such as aldehydes and acids. Malondialdehyde (MDA) is a common one and has been 

used as an indicator of lipids oxidation. TBA is able to react with MDA in acid medium and 

results into a compound called TBA-MDA adduct which strongly absorbs at 532 nm (or it can be 

excited at 520nm and emit at 560nm). The result is usually expressed as milligrams of MDA 

equivalents per kilogram sample or as micromoles of MDA per gram of sample.  

However, TBA assay is limited by its cross-reactivity. In other words, not just MDA form 

adducts with 2-thiobarbituric acid. Substances such as alkenals and other aldehydes also complex 

with TBA and therefore interfere with the results. For instance, TBA forms yellow color 

compounds with many other aldehydes and result in a strong absorption at 455nm [67], which 

may overlap with the absorption of TBA-MDA adduct. Therefore, another term, called 

thiobarbituric acid reactive substances (TBARS) has been used instead.  

In order to improve the sensitivity and accuracy of the assay, many different procedures 

and modifications have been proposed. Basically, TBA assay has been performed (1) directly on 

the food samples followed by the extraction of colored adducts [68]; (2) on steam distillated from 

samples because secondary oxidation products are mainly volatile; (3) on liquid extractions of the 

samples by acid; (4) on lipids extraction. It should be noted that different procedures may result 

in quite different TBA numbers for the same sample. For example, distillation method usually 

yields about twice larger TBA numbers than the lipid extraction method, probably because the 

heat applied to the sample during distillation leads to additional oxidation. On the other hand, 

TBA assay is usually a good option for comparative study. 
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FOX assay provides oxidation information regarding the primary oxidation products 

(hydroperoxide lipids) and TBARS assay measures the level of secondary oxidation products. 

Therefore, in our work, both assays were used to provide comprehensive information regarding 

the oxidation degree of the samples. 

2.4.2.2 P-anisidine value (p-AnV). 

P-anisidine value measures the amounts of alpha and beta unsaturated aldehydes, which are 

mainly 2-alkenals and 2, 4-dienals). Under acidic conditions, p-AnV reacts with aldehydes and 

form yellowish compounds, which have maximum absorption at 350 nm. This method has been 

reported to show excellent correlation with the total amount of volatile substances [69]. Therefore, 

it is suitable for estimating the off-odor of samples.  

Figure 2-9 The formation of chromogen from p-anisidine and aldehydes 
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In industry, p-anisidine test is usually combined with PV, termed as total oxidation 

(TOTOX): 

TOTOX= 2 PV + p-AnV 

As discussed previously, at early stage of oxidation, PV rises because of the accumulation 

of lipids hydroperoxide, while these primary products are unstable and degrade to secondary 

products, mainly various aldehydes.  However, in reality, for different substrates and under 

different conditions, it is hard to determine when the oxidation is in early stage and when it is in 

the later stage. Therefore, to comprehensively evaluate the oxidation change of foods, a 

combination measurement is preferred. 

2.4.2.3 Oil stability index.  

OSI also measures the secondary products of oxidation, but its principle is quite different. 

During lipids oxidation, big molecules are degraded into small and volatile molecules including 

aldehydes, alcohols and acids. In the OSI machine, these volatile molecules will be carried away 

Figure 2-10 Rancimat 743 OSI machine model. 



 

21 

 

by an air flow and re-dissolved in water, and the electrical conductivity of the water will increase 

as a result. The OSI value is defined as point of the maximum rate of oxidation, or, the maximum 

rate of rise in conductivity. 

OSI test is convenient and simple since it requires no additional chemical reagents, and the 

procedure has been automated. Besides, it is able to monitor the oxidation process in a kinetic 

way. However, a drawback of this method is that it can only work at relatively high levels of 

oxidation; in other words, it lacks sensitivity. Also, it is more suitable for measuring bulk oil 

sample instead of fat in foods. 

2.5 Antioxidants in erythrocytes 

Antioxidant enzymes are present in almost all the organisms, ranging from as simple as 

bacteria to as intelligent as us human beings. The main purpose of antioxidant enzymes is to cope 

with the oxidative stress brought by reactive oxygen species (ROS), including hydroxyl radicals, 

superoxide anions and hydrogen peroxide. ROS is involved in multiple cell behaviors including 

growth, differentiation and progression. And it serves as an important defense mechanism when 

pathogens are present [70]. However, when cells dysfunction and lose the control of it, ROS may 

be over-produced and accumulated in cells, causing damages to the cells, or on a larger scale, 

leading to chronic inflammation. 

Red blood cells, as oxygen transporter, are constantly exposed to the threat of oxidative 

stress, but they rarely show any sign of severe damage. The key lies in the fact that they are 

especially rich in antioxidants such as superoxide dismutase, catalase, and glutathione, which 

work close together to maintain the normal operation of the “oxygen transporter”, as is shown in 

Fig 2-11 [71]. 
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2.5.1 Superoxide dismutase (SOD) 

SOD is one of the most extensively studied antioxidant enzymes, due to its crucial 

importance in dealing with oxidative stress, and it is universally present in organisms that need to 

cope with oxidative challenge. In human red blood cells, the SOD activity is around 496 units/g 

Hb [72].  SOD catalyzes the dismutation of highly reactive superoxide anion (
-

2O  ) into less 

reactive hydrogen peroxide ( 22OH ) and oxygen ( 2O ).  According to the metal cofactors they 

bind to, SOD can be categorized into three groups: copper and zinc SOD, iron or manganese SOD 

and nickel SOD.  Cu/Zn-SOD is a homodimer with a molecular weight of around 32,500, and it is 

usually present in eukaryotes. Currently, most commercially available SOD is extracted from 

bovine erythrocytes.  Mn-SOD is often found in prokaryotes, protists and mitochondria. Ni-SOD 

is used in prokaryotes.  

Superoxide anion (
-

2O  ) is very reactive and can damage critical cellular organelles even 

in very short exposure time. Besides, the half-life of superoxide is very short at high 

concentrations but much longer at low concentration. Fortunately, SOD eliminates this potentially 

harmful substance effectively. SOD has the largest catalytic efficiency among any known 

enzymes ( about 
119107  SM ) [73], in other words, this dismutation  reaction is almost only 

diffusion limited.  Given the excellent antioxidant activity, it is not surprising that in mammal 

cells SOD serves as the primary anti-inflammatory enzyme. The disruption of SOD activity is 

reponsible for many human diseases. For example, depressed SOD expression in the kidney is 

partially responsible for chronic renal failures [74], amyotrophic lateral sclerosis has been found 

to be associated with mutations in the Cu-Zn-SOD gene, and chemical modification of SOD in 

the brain is linked to degenerative disorders such as Alzeimer disease (AD) and Parkinson disease 

(PD) [75]. Futher, many efforts have been made to apply SOD to treat various  ROS-related 
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problems. For instance, recombinant human Cu/Zn-SOD has been given to premature infants to 

improve pulmanory outcome [76]. For microbial organisms, SOD is also of crucial importance  

because it counteracts the deleterious effects from oxygen metabolites [77]. 

With regard to the determination of SOD activity, many methods have been proposed to 

analyze different types of sample. Nebot proposed to make use of the autoxidation of  tetracyclic 

catechol and kinetically measure the spectral absorbance at 525 nm [78]. Another method is on 

the inhibition of NADH oxidation by SOD and it has been applied to determine SOD activity in 

tissue extracts [79]. Similarly, the principle of xanthine oxidase method is the inhibition of 

oxidative enzyme.  

2.5.2 Catalase (CAT) 

Catalase is another important antioxidant enzyme, which works together with SOD to 

protect cells or tissues against oxidative damages and it is found in almost all organisms exposed 

to oxygen. Catalase converts two molecules of hydrogen peroxide into two molecules of water 

Figure 2-11 Illustration of antioxidant enzymes cooperating to 

work in cells 
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and one molecule of oxygen. Like SOD, catalase is also a very powerful enzyme and it has one of 

the highest turnover numbers among all known enzymes. Catalase is primarily an intracellular 

enzyme. It consists of four polypeptide chains and contains four porphyrin heme groups, which 

allow the enzyme to react with hydrogen peroxide. One unit of catalase will remove 1.0 µmole of 

hydrogen peroxide per minute at pH 7.0 and 25℃. 

Catalase gene mutation has been associated with many diseases, including diabetes, 

hypertension and vitiligo [80]. Animal study shows that catalase deficiency also increased the 

chance of tissue injury and renal fibrosis in kidney [81].  In contrast, overexpression of catalase 

targeted to mitochondria increased the life span of mouse [82]. Therefore, its activity in patients 

has been an important physiological parameter. 

Notably, the endogenous catalase activity in beef longissimus dorsi (LD) is around 500 

units per gram of the meat, and the number for pork LD and for chicken breast is 750 U/g and 

148 U/g respectively. This remarkable catalase activity was shown to play an important role in 

meat stability during storage, and inhibition of the endogenous catalase activity would render the 

meat to be more vulnerable to oxidation [83].  

2.5.3 Glutathione (GSH) and Glutathione peroxidase (GPX) 

Glutathione is a tripeptide, which can be synthesized from L-cysteine, L-glutamic acid and 

glycine. The thiol group (SH) serves as a proton donor and this is the key for its antioxidant 

activity. Glutathione exists in two states: the reduced glutathione form (GSH) and the oxidized 

glutathione disulfide (GSSG). In human blood, the normal concentration of GSH is around 1.7 

mol/ml [84]. 

Glutathione peroxidase is a general name for a family of enzymes, which catalyzes the 

reduction of lipid hydroperoxide and hydrogen peroxide to corresponding alcohols and water 

respectively using glutathione as substrate. In this process, glutathione is converted into 
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glutathione disulfide, which will later be reduced back by glutathione reductase using NADPH as 

electron donor. This cycle is quite important for protecting cells from oxidation damages. In 

human red blood cells, the GPX activity is about 17 U/g Hb [85]. 

Similar to SOD and catalase, GPX activity has been taken as an important pathological 

parameter for diagnosis of multiple diseases. For instance, a gradual decrease of GPX activity 

was observed in patients with chronic kidney disease mainly because this organ is responsible for 

the synthesis of this enzyme [85]. In patients with chronic obstructive pulmonary disease (COPD), 

a significant decrease in GPX activity was found, along with the increase in lipid oxidation 

products-MDA [86] 
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CHPATER 3 

EXTRACTION AND CHARACTERIZATION OF 

ANTIOXIDANTS FROM ANIMAL ERYTHROCYTES 

3.1 Introduction 

As is known, extraction of proteins from cells is a ubiquitous procedure in both industry 

and in scientific research. For example, in many biological science studies, proteomics provide 

important clues on the state of the cells. Commercially, many valuable proteins have been 

extracted from animal cells for sale, such as superoxide dismutase (SOD) from bovine 

erythrocytes and catalase from bovine liver cells. Generally, protein extraction from cells can be 

divided into three steps a) disruption of cell membrane; b) crude separation c) further purification. 

a) Extraction of protein from cells typically starts with the disruption of cell membranes, 

which encapsulate the proteins. There are many factors to be considered for this procedure. 

Proper methods should be selected to effectively disrupt various types of cells with different 

toughness but protein denaturation should be avoided. For instance, osmotic pressure is a 

relatively gentle method that can usually break mammalian cell membranes quite successfully, 

but does not work very well with bacterial membranes whose structure is able to resist high 

pressure. Therefore, addition of enzymes or sonication may be required to lyse these tiny but 

tough microorganisms. To break red blood cells, osmotic pressure can do the work.  

b) Following cell disruption is the crude separation step. Most undesired proteins and other 

substances like DNA and RNA must be removed in this step. Nucleic acids should be removed at 

early stage because they may interfere with protein isolation later. Selective precipitation of 
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protein can be carried out to remove/keep the undesired/desired proteins. One of the most 

commonly used techniques for selective precipitation is salting out. When salts concentration 

increases, water molecules are attracted by the salt ions and hence pulled away from proteins, 

leaving fewer available water molecules to interact with the charged or hydrophilic parts of 

protein. As a result, proteins are no longer able to maintain the soluble conformation and 

precipitate out. In a protein cocktail, different proteins precipitate out at different salts 

concentrations. Typically, SOD precipitates at 40%-80% saturation point of ammonium sulfate 

[87], while catalase precipitates at 10%-50% saturation point of ammonium sulfate [88]. Salting 

out procedure can help remove most of the undesired proteins before the final purification. 

c) Lastly, after crude separation, further purification may be or may not be required, mainly 

depending on the future application of the product. For biological analysis, the isolated protein 

would certainly need to be relatively pure, while for industrial application, such as production of 

a nutritive supplemental protein, cost may be the primary concern. A popular technique to purify 

proteins is high performance liquid chromatography (HPLC). It utilizes the unique 

physicochemical properties (hydrophilic or hydrophobic), binding affinity as well as biological 

activity of the target protein to selectively isolate it. However, the price of this procedure is high 

and may be impractical for a large-scale production. Hence, it is not used in our extraction 

methods. 

 In this work, which is aimed to the extraction of antioxidants from animal erythrocytes as 

a food preservative, there are three guidelines: 

 1) It has not yet been determined, which particular antioxidant (or perhaps their synergistic 

action) is the most effective as preservative in food and there is no requirement for protein purity, 

therefore, the extraction procedure should aim at obtaining a cocktail with as high antioxidant 

activity as possible;  
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2) Currently, treatment by commercially available food antioxidants such as PETOX 

(containing 10% BHA and 10% BHT) costs about $5-7 per ton of food. Therefore, producing 

antioxidants from erythrocytes will only be practical when the cost is competitive with those 

antioxidants on market.  

3) Safety. Substances from red blood cells themselves should be safe as additives in animal 

feeds. However, during the procedure of extraction, some hazardous chemicals may be added/not 

completely removed from the system. Therefore, the use of dangerous chemicals should be 

avoided or reduced. 

Based on these three guidelines, two extraction protocols were adopted. The first method is 

a standard procedure used in the literature for the extraction of SOD, which skips the most 

expensive chromatographic purification step. It utilizes ethanol and chloroform to specifically 

remove hemoglobin, which is a potential pro-oxidant and precipitate the desired proteins with 

acetone and potassium phosphate. The product of this method is denoted as crude SOD (C-SOD). 

The second method is yet more simplified. In this method, zinc chloride was employed to 

specifically remove hemoglobin from cell lysates and no further purification was performed. The 

resulting product is denoted as crude protein (CP).  

To characterize the two products (C-SOD and CP), SOD activity and catalase activity of 

them were measured because these two enzymes are the most common and effective antioxidant 

enzymes in cells. Total protein content was analyzed by bicinchoninic acid assay (BCA). Since a 

large amount of zinc was used in the second method, it might lead to additional safety/regulatory 

issues. Thus, zinc content was measured by inductively coupled plasma mass spectrometry (ICP-

MS) to ensure safe zinc levels according to the regulation. 
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3.2 Materials and methods 

Fresh porcine blood was generously donated by Wilson Processing, Inc. (Seneca, SC).  

Chloroform was purchased from VWR Inc. (West Chester, PA). HPLC Grade Acetone, 

anhydrous dipotasium hydrogen phosphate ( 42HPOK ), phosphate buffered saline tablets (PBS), 

sodium chloride ( 2NaCl ) and anhydrous zinc chloride ( 2ZnCl ) were obtained from Fisher 

Scientific Inc. (Fair Lawn, NJ).  Pierce BCA protein assay kit was bought from Thermo Scientific 

Inc. (Rockford, IL).  WST-1 was from Dojindo Molecular Technologies Inc. (USA). 

Xanthin/Xanthine and Catalase (from bovine liver) was bought from Sigma-Aldrich, LLC. (St. 

Louis, MO).  Superoxide dismutase (bovine erythrocytes) was from Calbiochem Inc. (Darmstadt, 

Germany). Xanthine Oxidase (from cow milk) was purchased from Roche Diagnostics Inc. 

(Mannheim, Germany). Hydrogen peroxide ( 22OH , 3%) was purchased from Rite Aid (Camp 

Hill, PA). 

3.2.1 Extraction of crude SOD (C-SOD) by the standard method 

The standard method to extract SOD from blood was adopted with minor modifications 

[89](as is detailed in Fig 3-1). In brief, fresh porcine blood was centrifuged at 5000g for 15min to 

obtain packed red blood cells (RBCs), followed by washing using 0.9% sodium chloride twice. 

The clean and packed cells were lysed by equal volume of 1% tween-20 in DI water. Hemoglobin 

was then removed by Tsuchihashi treatment (ethanol/chloroform 62.5/37.5 v/v). Then, salting out 

was carried out with 42HPOK  (1/3 w/w) to remove extraneous proteins. Lastly, acetone (75% 

v/v) was applied to precipitate and obtain crude SOD. The resulting product was washed briefly 

by 1X PBS and re-dissolved in the same buffer with minimum volume. 
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3.2.2 Extraction of crude protein mixture (CP) by a simplified method 

The procedure is detailed in Fig 3-2. Briefly, fresh porcine blood was centrifuged at 5000g 

for 15min to obtain a pellet of packed RBCs. Subsequent cell lysis was conducted with 3-4 times 

cell volume of DI water, followed by vigorous shaking for 30 min to ensure complete lysis. 

2ZnCl  (1.2% w/v) was then added, followed by incubation and occasional shaking for about 

1hour or longer. The hemoglobin was precipitated and removed by centrifugation at 5000g for 

15min. Resulting transparent solution was stored refrigerated (4 ℃).  

3.2.3 Total protein content analysis 

The total protein contents of C-SOD and CP were determined by bicinchoninic acid (BCA) 

assay using the assay kit purchased from Pierce Biotechnology Inc. Its basic principal is as follow. 

In an alkaline solution 
2Cu  is reduced to 

1Cu by proteins, and bicinchoninic acid specifically 

complexes with cuprous cation (
1Cu ) and the resulting compound strongly absorbs at 562 nm. 

In brief, 50 parts of solution “A” is mixed with 1 part of solution “B” to obtain working solution.  

Then 0.1 ml of sample was mixed with 2.0 ml of working solution, followed by incubation at 37 ℃ 

for 30 min. The absorbance at 562 nm of the resulting solution was measured using a microplate 

reader. Total protein contents were calculated by comparing with the standard curve. 

3.2.4 SOD activity assay 

SOD activity was determined by the xanthine-xanthine oxidase method. This method is 

based on a water soluble tetrazolium salt, WST-1 which is converted into formazan dye upon 

interaction with superoxide anion generated by the xanthine/xanthine oxidase system. Therefore, 

SOD activity is reversely proportional to the production of the yellow formazan dye. A 20 µl 

aliquot of each sample (n=3) was mixed with reaction reagents containing xanthine, xanthine 

oxidase and WST-1 in 96-well plate (Costar). The reaction was carried out at 37 ℃ for 1hour. 

The absorbance at 450 nm was read with a microplate reader. SOD activity was calculated based 
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on the standard curve (0.1 U/ml - 100 U/ml).For CP, since zinc will interfere with xanthine 

oxidase activity, 10 kilo-Dalton membrane was used to remove over 99% of the zinc in CP. 

3.2.5 Catalase activity  

Catalase activity was determined using the method described by Pardha [83]. In brief, each 

sample (0.1 ml) was reacted at room temperature with 2.9 ml of 30 mM hydrogen peroxide in 

HEPES buffer (pH=7.0). The loss of 22OH  was continuously monitored by measuring the 

absorbance at 240 nm. A unit of catalase would decompose 1 µmole of 22OH  per minute at 

room temperature at pH 7.0.  

3.2.6 Elemental analysis 

Zinc elements analysis was conducted by Public Agriculture Service Center at Clemson 

University using inductively coupled plasma mass spectra (ICP-MS). 
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Figure 3-1 Extraction of crude SOD by the standard method (the HPLC step was 

removed to decrease the cost) 
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Figure 3-2 Extraction of crude protein mixture (CP) from 

red blood cells by a simplified method 

Figure 3-3 Illustration of xanthine/ xanthine oxidase method of SOD 

activity assay. 
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3.3 Results  

The results have been summarized in Table 3-1. The two extraction methods started with 

same volume (100 ml) of blood so they would be directly comparable. The standard method 

yielded 20 ml of crude SOD solution (C-SOD) with protein concentration of 2.2 mg/ml. In 

comparison, the simplified method obtained 91 ml of final solution (CP) with protein 

concentration of only 0.6 mg/ml. It can be calculated from these numbers that the total protein 

yields for C-SOD and CP are 44.0 mg and 54.6 mg respectively. 

In terms of SOD activity, C-SOD was much more concentrated than CP, with SOD activity 

of as high as 1100 units/ml compared to 224 units/ml of CP. Further, considering that the 

standard method was specifically designed to extract SOD, it was not surprising C-SOD also 

showed a higher SOD specific activity (500 units/mg) over CP (373 units/mg). However, it 

should be noted that the total SOD activity yields for the two methods are close (22000 units for 

C-SOD and 20384 units for CP from 100 ml of blood).  

Interestingly, C-SOD was shown to have a decent amount of catalase activity (300 units/ml) 

whereas CP contained no discernible catalase activity, indicating that high concentration of zinc 

might have inhibited catalase or precipitated it along with hemoglobin.  

 

Table 3-1 Characterization of C-SOD and CP 

 

 Initial 

blood 

volume 

(ml) 

Ending 

volume 

(ml) 

Protein 

concentra

tion 

(mg/ml) 

SOD 

activity 

(U/ml) 

SOD 

specific 

activity 

(U/mg) 

Catalase 

activity 

(U/ml) 

Zinc 

Concentrat

ion (ppm) 

C-SOD 100 20 2.2 1100 500 300 NA 

CP 100 91 0.6 224 373 <10 4800 
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3.4 Discussion 

Due to the excellent antioxidant ability and crucial biological significance of SOD, many 

researchers have extracted and characterized SOD from different sources for various purposes. 

Blood is a favorable and inexpensive source of this enzyme. Early work has shown that a 

significant amount of SOD can be extracted from porcine blood ( 13300 units SOD from 100ml 

of blood) [90]. Also, SOD and catalase were also extracted from human blood for medical 

application [88]. Besides blood, many plants are also rich in SOD. Hadji’s group purified Cu-Zn-

SOD from garlic to investigate its antioxidant effects on tumor cells [91]. 

However, most of these researchers utilized chromatography or dialysis to achieve a 

desirable purity, which greatly increases the cost and renders it impractical for large scale 

industrial applications such as food preservatives. Consequently, in this work, efforts were made 

to achieve a balance between purity and cost-crude products were extracted without any further 

purification in order to lower the cost to a level that is competitive to current food preservatives 

on market. 

The comparison between the two methods used here is summarized in Table 3-2. By the 

standard method, SOD was successfully extracted with the specific activity of 500 units/mg and 

total activity of 22000 units. The simplified method was just slightly less effective, yielding SOD 

with the specific activity of 373 units/mg and 20384 units in total. With respect to cost and safety, 

the simplified method does not employ any organic solvents and use much less reagents hence it 

is preferred over the standard method. A major drawback of the simplified method is that it 

yielded very little catalase activity (<10 units/ml), which may compromise its antioxidant activity. 

The residual zinc (4800 ppm) in CP complicates the story. On one hand, in terms of safety, 

zinc is classified as a GRAS (Generally recognized as safe) material by FDA while it is regulated 

to be no more than 250 ppm in animal feeds in Europe. On the other hand, there are numerous 
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benefits of zinc that have been discovered. First, zinc is an essential trace element required for 

both humans and animals due to its indispensable role in over 100 enzymes [92, 93], including 

several antioxidant enzymes. Zinc supplementation has been reported to improve clinical 

outcomes of several diseases including spinal cord injury [94],aid in the recovery of burn patients 

[95] and in the case of acute diarrhea [96]. Second, zinc may stabilize and improve the 

performance of SOD. 

To sum up, the simplified method is more likely to be amplified to an industrial scale 

because it is less expensive, simpler and also safer. But one crucial question remains: is the 

erythrocytes extract, either C-SOD or CP, capable of arresting or slowing down fats oxidation in 

foods, which will be addressed in next chapter. 

Table 3-2 Comparison between the standard method and the simplified method 

 

 

 Standard Method Simplified Method 

Denotation of Products C-SOD CP 

Concentration High (1100 U/ml) Low, 224 U/ml (if this 

concentration does not 

work, it may need to be 

concentrated, which 

may lead to additional 

cost for the procedure) 

Total antioxidant enzyme yield High SOD activity and 

some catalase activity 

High SOD activity, no 

discernible catalase 

activity 

Purity Relatively high  Relatively low 

Cost High Low 

Safety Organic solvents residue 

need to be removed 

Not much safety 

concern as long as Zinc 

concentration is well 

controlled 

Time of procedure Around 4 hours Around 3 hours 

   



 

37 

 

CHAPTER 4 

EVALUATION OF ERYTHROCYTES EXTRACTS TO 

INHIBIT FAT OXIDATION BY FOX ASSAY AND TBARS 

ASSAY  

4.1 Introduction 

Fat rancidification, as discussed in chapter 2.1, is mainly caused by the oxidation of fats 

and lipids. The oxidation products are mainly lipid hydroperoxides and they are prone to 

degradation into small molecules including acids, ketones and aldehydes, which are responsible 

for the off-flavor of foodstuffs. Auto-oxidation is the primary pathway of fats deterioration. Free 

radicals such as superoxide anion, hydroxyl radicals and hydroxyl peroxide are the main players 

in the auto-oxidation process. As a result, in pet food industry, it is a common practice to add 

antioxidant preservatives scavenge those free radicals and prevent oxidation. At present, 

commercially available antioxidant preservatives include: synthetic options such as butylated 

hydroxytoluene (BHT), butylated hydroxyanisole (BHA) and tert-butylhydroquinone (TBHQ) 

and ethoxyquin (ETQ) and natural options such as tocopherols (vitamin E) and ascorbic acid 

(vitamin C). Synthetic antioxidants are generally effective and relatively inexpensive but they 

suffer from a notorious reputation of being potentially carcinogenic [5, 14, 97, 98]. The natural 

antioxidants are safe, but not as effective as the synthetic ones, and they are generally more 

expensive. Consequently, there is a need to seek for an inexpensive, safe and effective alternative. 
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Erythrocytes are rich in antioxidants such as superoxide dismutase (SOD), catalase (CAT) 

and glutathione (GSH), which are responsible for eliminating free radicals in the cells. Therefore, 

these antioxidants can be extracted from red blood cells as a novel alternative preservative. In our 

work, two methods were used to extract the antioxidants: a standard method which was 

specifically designed for SOD and the product is denoted as C-SOD; a novel and simplified 

method which simply removed hemoglobin (a potential pro-oxidant) and its product is denoted as 

CP. We hypothesize that addition of C-SOD and CP into foodstuffs can effectively prevent or 

slow down fat oxidation. 

This chapter focuses on validating the hypothesis by evaluating the protective effects of C-

SOD and CP. To fulfill this goal, it is necessary to choose: a) proper food or fat samples relevant 

to pet foods; b) appropriate treatments to oxidize the samples in a way that resembles the 

oxidation process occurring to foodstuffs in the real conditions; c) appropriate methods to 

measure lipids oxidation. 

a) In the pet food industry, rendered poultry fat is added into pet foods because it promotes 

flavor and nutritive value and chicken fat is a commonly used one. Besides, chicken fat is rich in 

linoleic acid (17.9%-22.8%) and other omega-6 and omega-9 acids which are susceptible to 

oxidation. Therefore, chicken fat can serve as an appropriate oxidation model for our research. 

Chicken meat was also used because it appropriately models canned wet pet foods, which are 

made from emulsified animal organs and tissues. 

b) Many factors can accelerate lipids oxidation, such as UV irradiation, moisture and heat. 

UV irradiation catalyzes the formation of free radicals in unsaturated acids [99]; High 

temperature can increase the rate of auto-oxidation and hence speed up oxidation of fats 

exponentially [100]. The effect of moisture is a little more complicated. It was proposed that a 

food sample is most stable at its monolayer water content [101], but as water content is above this 
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“monolayer level”, oxidation can be increased by moisture. With respect to the oxidation of pet 

foods, the exposure to high temperature and induction of unintended moisture are the common 

causes for oxidation while UV irradiation is less likely to happen in the process of manufacturing 

and storage. Consequently, heating treatment was applied to the meat/fat samples and moisture 

was purposely induced to the fat samples to simulate the naturally occurring oxidation process in 

an accelerated way. 

c) To evaluate the oxidation of fats, various methods are available and must be chosen 

carefully depending on the particular application. Ferrous oxidation xylenol-orange (FOX) assay 

is a sensitive, inexpensive and accurate method which has been extensively used to measure the 

level of lipids peroxides in various types of samples including meats and fats [59] [102, 103]. 

Thiobarbituric reactive substances (TBARS) assay is also a popular technique used in food 

industry to evaluate lipids oxidation. This method specifically detects secondary oxidation 

products representative by malonaldehyde. Besides, TBARS assay is also sensitive, cheap, simple 

and suitable for different types of samples. Therefore, FOX assay and TBARS assay were 

employed to measure the lipids oxidation in the food samples. 

In order to compare the performance of the erythrocytes extracts (CP and C-SOD) with 

commercially available antioxidants, PETOX, which contains 10% BHT and 10% BHA, was 

used as an internal standard. Further, in order to identify the antioxidant activity of individual 

antioxidant enzymes, we also incorporated commercial purified SOD and catalase in the 

experiments. Lastly, accelerated aging experiment was conducted to estimate the shelf-life of 

extracts. 

4.2 Materials and methods 

Ground chicken breast meat (10% fat content) was purchased from local supermarket 

(Clemson, SC). Chicken fat was homemade by Dr Vladimir Reukov. PETOX was obtained from 
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Kemin, Inc. (Des Moines, Iowa). Methanol, Methanolic Sulfuric acid and Catalase (from bovine 

liver) were bought from Sigma-Aldrich, LLC. (St. Louis, MO). Commercially available 

superoxide dismutase from bovine erythrocytes was purchased from Calbiochem Inc. (Darmstadt, 

Germany). Xylenol orange was bought from MP Biomedical, LLC, (Solon, OH). Ferrous 

ammonium sulfate was obtained from Avantor Performance Materials, Inc. (Center Valley, PA). 

Dichloromethane was bought from Thermo Fisher Scientific, Inc. (Fair Lawn, NJ).  

Trichloroacetic acid was bought from VWR, Inc. (West Chester, PA). Thiobarbituric acid was 

purchased from TCI, Inc. (Tokyo, Japan). 

4.2.1 Antioxidants treatment and oxidation 

a) Oxidation of chicken meat. For each sample, 1.5 gram of ground chicken breast meat 

containing about 10% fat was weighed into a 15-ml tube and 75 µl of following antioxidants 

samples (or controls) are added and mixed with the meat: 

1) CP (the final concentration of zinc element in the meat would be around 250 ppm); 

2) C-SOD; 

3) Commercial purified SOD, dissolved in deionized water, 1000 U/ml; 

4) Commercial purified catalase, dissolved in deionized water, 1000 U/ml; 

5) 2000 ppm PETOX in water, emulsified by an ultra-sonicator (the final concentration 

would be 1000 ppm based on fat, which is the current the dose level used in industry) 

6) Deionized water (negative control). 

7) Deionized water (this sample was to be refrigerated as a positive control). 

After antioxidants treatments, all samples except the positive control were incubated at 37 ℃ 

for 12 hours. The resulting meat samples were ready for analysis. All the samples were prepared 

in duplicates (n=2). 
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b) Oxidation of chicken fat. Similar to treatments for chicken meat, 500 µl of chicken fat 

was mixed with 25 µl of the same antioxidants samples used in the meat experiment in a 1-ml 

centrifuge tube. The mixture was ultra-sonicated for 15 seconds to form emulsion. All samples, 

except the positive control, were incubated at 50 ℃ for 12 hours. All the samples were prepared 

in duplicates (n=2). 

4.2.2 FOX assay 

An improved FOX assay method [104] was applied with some modifications. 

a) For meat samples, 4 ml of cold (-20 ℃) dichloromethane/ethanol (v/v 3/2) was added 

into each meat sample, followed by ultra-sonication for 1 min to liberate the hydroperoxide lipids 

in meat. Centrifugation at 8000g for 5 min was applied so that the organic phase containing lipids 

would separate out (the bottom phase) and was ready for assay. In the meantime, the FOX 

reaction medium was prepared. It consists of 10 µl 5mM aqueous ferrous ammonium sulfate, 20 

µl 0.25 M methanolic sulfuric acid, 20 µl 1mM methanolic XO, and 130 µl 

dichloromethane/ethanol (v/v 3/2). Lastly, 20 µl of the lipids solution was taken and mixed with 

the reaction medium in a quartz 96-well plate and incubated at room temperature for about 15 

min. Absorbance at 560 nm was read. 

b) For fats samples, 100 µl of the fat was taken and dissolved in 4 ml of cold (-20 ℃) 

dichloromethane/ethanol (v/v 3/2). Then, the lipids solution was ready to be analyzed using the 

same FOX reaction medium as described above. 

The oxidation inhibition rate of sample was calculated by the following equation: 

Oxidation inhibition (%) = %100)( 




PCNC

SNC

ODOD

ODOD
. (OD: optical density; NC: negative control; 

PC: positive control; S: sample).  
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4.2.3 TBARS assay 

TBARS assay was only applied to the meat samples. First, 50 µl of 7.2% BHT (in ethanol) 

was added to the meat sample. Then, 4 ml of deionized water was added into each meat sample, 

followed by ultra-sonication for 1 min to homogenize the tissue and hence fully dissolve the 

volatile oxidation products such as aldehydes and acids. 250 µl of this homogenate was taken and 

mixed with 250 µl of TBA reaction medium containing 15 mM TBA and 15% TCA (w/v). The 

mixture was incubated at 90 ℃ for 15 min to allow the formation TBA-MDA adducts. The 

resulting compounds can be excited at 520 nm and strongly absorb at 560 nm. 

4.2.4 Dosage effects  

Three concentrations of CP, the original concentration, 2-fold dilution and 3-fold dilution, 

were tested on both ground chicken meat and chicken fat using the method described above. 

4.2.5 Accelerated aging experiment 

The production of C-SOD involves the use of organic solvents including ethanol, 

chloroform and acetone which may lead to safety issues, and the cost of C-SOD is also relatively 

high. Therefore it is less likely to be commercialized. Hence, the aging experiment was conducted 

with only CP. CP was aliquoted in 0.5 ml centrifuge tubes (300 μl each tube), followed by 

incubation at 50 ℃ for12 hours, 1 day, 2 days, 4 days and 8 days, and 10 days. Antioxidation 

efficacy of the samples from different time points was tested on both ground chicken meat and fat 

as described above. Oxidation change was determined by FOX assay. The oxidation inhibition 

rate was plotted versus the time of aging. 
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4.3 Results and discussion 

4.3.1 Antioxidation efficacy in meat  

FOX assay (Fig 4-1A) shows that CP, PETOX and the positive control have the lowest 

levels of peroxide value and they are not significantly different from each other. The meat sample 

mixed with water was most seriously oxidized as expected. Both CP and PETOX successfully 

inhibited 100% oxidation within 12 hour-incubation at 37 ºC. C-SOD, however, though 

containing more SOD activity and catalase activity than CP, turned out to be less effective, 

reducing oxidation by 62%. Commercially purified SOD and catalase decreased the oxidation 

level by only approximately 23% and 32% respectively.  

Overall, the TBARS assay results (Fig 4-1B) agreed with the FOX assay very well with 

only minor differences. CP and PETOX were equally effective, successfully preventing oxidation 

within the time frame of 12 hours. C-SOD, commercial purified SOD and catalase suppressed the 

oxidation by 66%, 37% and 18% respectively.  

It can be seen that adding individual natural antioxidant enzymes, SOD or catalase (75 

U/gram of the meat), was able to improve the stability of fats and lipids in chicken meat slightly, 

but far away from practical requirements. 
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Figure 4-1 The comparative levels of oxidation of in meat model with different 

antioxidants treatments. A: the oxidation was evaluated by FOX assay. B: the 

oxidation was evaluated by TBARS assay. PETOX as a commercial food 

antioxidant was used as an internal control. Water was a negative control 

Samples stored at 4 ℃ was the positive control.
aP <0.05: comparison with 

PETOX was significant. 
bP <0.05: comparison with water was significant 

cP

<0.05: comparison with positive control was significant.  
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It is important to note that the endogenous enzyme activity of meat is crucial for its 

stability. Chicken meat itself contains a significant amount of antioxidant enzymes. The 

endogenous SOD activity in chicken breast is around 58-70 U/g and the catalase activity is about 

40 U/g depending on the species of chicken and ways of raising [105]. One study found 

endogenous antioxidants enzymes were important for the stability of lipids in meat[106] and it 

has been reported that endogenous catalase effectively protected lipids from oxidation in meat 

whereas addition of high concentration of exogenous purified catalase did not improve the lipids 

stability much [107]. The reason could be that antioxidant enzymes like SOD and catalase tend to 

be more effective when working together. Besides, enzymes are water-soluble and hence can 

barely eliminate free radicals inside of fat tissues. Further, high moisture (40%-50%) content in 

meat dilutes the antioxidant enzymes while fat-soluble antioxidants such as BHT and BHA can 

easily dissolve and concentrate in fat to scavenge free radicals.  

Though C-SOD was more concentrated than CP, containing more SOD and catalase, its 

performance was less satisfying than CP. One reason may be that CP could contain some other 

antioxidants which may actually be equally or even more important than SOD and catalase. 

Glutathione and glutathione peroxidase, for example, are responsible for reducing oxidized lipids 

in cells and therefore they may play a vital role in protecting fats, however they are not studied in 

this work. Besides, the presence of zinc in CP can be extremely helpful because zinc may 

stabilize both the endogenous and exogenous SOD and improve their activity [108, 109], which is 

important for the prevention of the fats oxidation in the meat. 

Further, it is also easy to realize the add-in value of zinc. Nowadays, people are quite 

familiar with zinc because of its essential role in maintaining human health. Dietary 

supplementation of zinc has become common. Numerous studies have demonstrated the health 

benefits of taking dietary zinc. For instance, zinc rich diet was believed to restore impaired 



 

46 

 

immune responses in elderly people, especially for those with specific IL-6 polymorphism [110]; 

Zinc supplementation was proved to improve pregnancy and infant outcome [111]; Children with 

protein energy malnutrition (PEM) supplemented with 10 mg of zinc in the form of zinc sulfate 

made significant gains in terms of albumin levels, probably reflecting the rehabilitation of the 

PEM [112]. Also, zinc has also been reported to be a potential preservative due to its capability in 

the inhibition of microbial growth in food. For instance, a study tested zinc chloride as a 

preservative in cracked table olive and found 0.05% and 0.1% (w/v) ZnCl2 reduced E.coli growth 

significantly and even promoted sensory profile [113]. 

Regarding the safety of zinc (in forms of zinc chloride or zinc sulfate), FDA classifies it as 

a GRAS (generally recognized as safe) material and puts no clear dose restriction on the use of it 

as a food additive; in Europe it is regulated to be less than 250 mg/kg ( or ppm) in animal feeds. 

The dose level applied in our experiment did not exceed this maximum limit (the background 

zinc in ground chicken meat can be neglected). Consequently, using zinc at this concentration to 

protect meat can be regarded as safe.  

In summary, being effective, inexpensive, and natural, CP is a promising product as a 

future alternative antioxidant preservative for meat and meat based products.  

4.3.2 Antioxidation efficacy in fat 

The fat model turned out to be much more stable since it contained much fewer pro-

oxidants and lower moisture level. Therefore, the difference between the positive control (the 

sample refrigerated at 4 ℃) and the negative control was not large, only 0.075 in terms of optical 

absorbance. Consequently, the variation was relatively big. The result was summarized in Fig 4-2. 

Both C-SOD and PETOX inhibited 85% of the oxidation. CP was slightly less effective, 

inhibiting 67% of the oxidation. Purified commercial SOD and catalase reduced the oxidation by 

34% and 13% respectively, similar to the results of the meat model. 
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In the fat model, the moisture content was 5%, much lower than that of the meat model. 

Therefore, the water-soluble antioxidants in C-SOD could easily concentrate in the water phase 

and effectively scavenge free radicals generated near the water-fat interface, where much of the 

oxidation may occur. In the meat model, however, high moisture content greatly diluted C SOD 

and compromised its effectiveness. 

In the meat model, CP was shown to be better than C-SOD since zinc may stabilize and 

enhance both endogenous and exogenous SOD as discussed previously. However, in the chicken 

fat model, there is no native SOD to speak of; therefore the impact of zinc weighed less. As a 

result, C-SOD, which has much higher SOD activity and catalase activity did a better job in the 

fat model. 
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Figure 4-2 The comparative levels of oxidation in fat model. PETOX as a commercial food 

antioxidant was used as an internal standard. Water was used as the negative 

control Samples stored at 4 ℃ was the positive control.
aP <0.05: comparison with 

PETOX was significant. 
bP <0.05: comparison with water was significant 

cP

<0.05: comparison with positive control was significant. 
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Overall, both CP and C-SOD work in the fat model, but whether they can be applied to 

bulk fat as a preservative needs to be further investigated. Adding water-soluble antioxidants into 

bulk fat is a paradoxical practice because it inevitably increases the moisture content greatly (the 

normal moisture level in bulk poultry fat is less than 0.1%), which will actually accelerate fat 

oxidation. Besides, mixing water-soluble antioxidants with fat requires emulsifiers or strong 

physical energy like ultra-sonication, which increase the cost of the manufacturing. But for foods 

which containing some levels of moisture, such as canned pet food, CP and C-SOD can be used 

as alternatives for synthetic antioxidants.  

4.3.3 Dosage effects 

Generally, the result shows that the antioxidant ability of CP decreased quickly along with 

the decrease of dosage in both meat model and fat model (Fig 4-3).  

With respect to the protection of meat (as is shown in Fig 4-3A), 5% (v/w) of the original 

CP (1xCP) inhibited 91% of the oxidation. However, the 2-fold diluted CP and the 3-fold diluted 

CP only inhibited 50% and 25% of the oxidation, not comparable to the performance of PETOX 

which inhibited as much as 85% of the oxidation. The result for fat is similar. As is shown in Fig 

4-3B, 5% (v/v) of the original CP inhibited around 86% of the oxidation. The 2-fold dilution also 

showed decent antioxidant ability, reducing peroxide value by 70% while the 3-fold dilution only 

inhibited 35% of the oxidation. It should be noted that in this experiment, the performance of CP 

was better than the result of Fig 4-2B. The reason is that the fat model was not a very sensitive 

one. The margin between the positive control and negative control is too small (<0.05 in terms of 

optical absorbance). Therefore, the variation is relatively large. 

Overall, it can be seen that in order to achieve the antioxidant effects of commercially 

available antioxidant (PETOX), it is necessary to use at least 5% of the CP of original or even 

higher concentration (or it may also be viable to use very concentrated CP in a small volume). 



 

49 

 

 

 

 

 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1XCP (1/2)XCP (1/3)XCP PETOX Water Positive
control

O
D

 5
6

0
n

m
 

A 

Dosage dependent protection of meat 

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

1XCP (1/2)XCP (1/3)XCP PETOX Water Positive
control

O
D

 5
6

0
n

m
 

B 

Dosage dependent protection of fat 

Figure 4-3 Dosage dependent protection of meat (A) and fat (B). 5% (v/w for 

meat, v/v for fat) of three concentrations of CP (original, 2-fold 

dilution, 3-fold dilution) were added into meat or fat. The comparative 

oxidation level was determined by FOX assay. 
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4.3.4 Accelerated aging experiment 

During the accelerated aging at 50 ℃，some proteins became unstable and started to 

precipitate out of the solution at day 1. The precipitates were removed before experiments on 

meat and fat. The result with meat model was shown in Fig 4-3A. The oxidation inhibition ability 

of CP with meat did not decrease much. The fast decrease occurred between day 1and day 2, 

from 100% to around 85%. In the following days, its antioxidation ability remained impressively 

stable, staying at around 85%-90%.  

The result with fat was shown in Fig 4-3B. The oxidation inhibition rate was around 70% 

initially, and dropped to 59% after one day. Later, CP’s activity did not go down much. After 10-

day incubation at 50℃, CP could still inhibit around 50% of the oxidation, indicating the effective 

ingredient responsible for the protection of fat was also quite stable. 

The excellent stability of CP can be partially explained by the presence of zinc. First, with 

respect to the protection of meat, zinc can be very important since it can stabilize the native SOD 

in meat and improve its activity [108, 114], and as a metal element, zinc itself does not lose this 

ability during the accelerated aging. In contrast, macromolecules such as proteins tend to denature 

over time. Even small molecules like BHT and BHA, they tend to lose activity inevitably 

gradually because they are sacrificial antioxidants in essence and always ready to get oxidized. 

Second, SOD is also an effective ingredient in CP, which can also be stabilized by zinc. 

 

 

 

 

 

 



 

51 

 

 

 

 

 

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10 12

O
xi

d
at

io
n

 I
n

h
ib

it
io

n
 R

at
e

 

Aging time (days) 
B 

  

20%

40%

60%

80%

100%

0 2 4 6 8 10 12

O
xi

d
at

io
n

 I
n

h
ib

it
io

n
 R

at
e

  

Aging time (days) 
A  

Figure 4-4 The accelerated aging of CP at 50 ℃. CP was stored at 50 ℃. and taken 

out at different time points to test its antioxidant efficacy in both the meat 

model (A) and the fat model (B). Oxidation inhibition rate was calculated 

and plotted versus the aging time. 
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From an industry perspective, the storage of CP is inconvenient since it is not concentrated. 

Specifically, to protect a ton of food, 50 liters of CP will be needed, while in comparison, only 

0.1-1liter of PETOX will be sufficient for the same work. Storing large volume of liquid in a 

manufacturing facility will increase the cost and also make it difficult to operate. Therefore, in the 

future, it may be necessary to concentrate CP using appropriate centrifuge membranes. Besides, 

though zinc has been shown to be antibacterial previously [115], CP as a cocktail of various 

biological substances including proteins and nucleic acids, may still be susceptible to bacterial 

contamination and pose additional safety issues which needs to be studied in the with caution. 
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CHPATER 5 

CONCLUSIONS AND FUTURE RECOMMENDATIONS 

5.1 Conclusions 

Nowadays more and more people are paying attention to the safety of the petfood they feed 

to their pets. The safety of synthetic antioxidants such as BHT, BHA and ethoxyquin is 

controversial. Though being approved by FDA to use in animal feeds for a long time, they have 

been shown to be causing tumors and many other problems in animal experiments. In response to 

customer’s need, there is a trend of looking for natural alternatives in recent years. At present, the 

most popular natural antioxidants on market are vitamin E and vitamin C as well as herbs such as 

thyme, dittany, marjoram, lavender and rosemary. High cost and relatively low efficacy are the 

main drawbacks of these natural antioxidants as food preservatives. Besides, herbs extracts have 

strong flavors which may change the original taste of food.  

Erythrocytes are a good source of antioxidants. Erythrocytes function to transport oxygen 

for blood and are constantly exposure to the oxidative stress. As a result, they are rich in 

antioxidants including superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) to 

eliminate the oxidative free radicals before they cause any severe damages to the cells. This work 

looks to find a way to extract these natural antioxidants from erythrocytes and add them into pet 

foods to retard the oxidation of the fats contents.  

To fulfill this goal, two extraction methods were implemented. One is a standard procedure 

which was designed to obtain SOD from red blood cells. This standard method uses several 

organic solvents including acetone, ethanol and chloroform which can be problematic when it 
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comes to safety issues. The product of this procedure is denoted as C-SOD. The other method 

was a novel and simplified one using no organic solvents during the procedure and the product of 

this method is denoted as CP. The two products were partially characterized. The effectiveness of 

CP and C-SOD was tested using ground chicken breast meat and chicken fat, evaluated by ferrous 

xylenol orange (FOX) assay and thiobarbituric (TBARS) assay. CP and C-SOD were also 

compared to a commonly used antioxidant in the industry-PETOX. Lastly, accelerated aging 

experiment was conducted with CP. 

The work on extraction and characterization demonstrated that: 

a) Both the standard method and the novel simplified method successfully obtained a 

decent amount of total SOD activity. But, the former also yielded some catalase 

activity while the latter did not.  

b) Since the standard method involves more extraction and purification procedures than 

the simplified one, it is not surprising that its product (C-SOD) has higher specific 

activity than the product of the simplified method (CP). 

c) In terms of safety and price, the simplified method would be preferred since it involves 

no organic solvents which can lead to health concerns and raise the cost 

The work on antioxidant efficacy of CP and C-SOD test demonstrated that: 

a) CP was very effective at inhibiting oxidation in meat probably because 1) CP contains 

some other strong antioxidants that were not identified; 2) zinc may stabilize both the 

exogenous and endogenous SOD activity. 

b) Both CP and C-SOD were effective in the fat model which contained 5% moisture. C-

SOD was better. The reason may be that it is more concentrated with SOD activity of 

1100U/ml in comparison of 224 U/ml of CP. 
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c) Different types of food undergo oxidation via different mechanisms. For meat products, 

the presence of pro-oxidants (especially iron) greatly accelerates fat oxidation, 

however in pure fat, pro-oxidants are much fewer and the moisture may be a critical 

factor instead. As a result, an appropriate antioxidant should be selected for a specific 

type of food.  

The work on accelerated aging experiment demonstrated that: 

a) In the meat model, CP’s antioxidant activity did not decrease much over the course of 

10-day incubation at 50℃, from 100% inhibition to around 85% inhibition.  

b) In the fat model, CP’s performance also remained relatively constant because the 

antioxidant SOD could have been stabilized and improved by the presence of zinc. 

5.2 Future recommendations 

For future study, several questions need to be addressed. 

a) Identify the proper type of petfood to which the erythrocytes extracts, C-SOD and CP, 

can be applied. 

As mentioned previously, both CP and C-SOD are antioxidants in water solution, so it 

would be difficult to apply them to pure bulk fat with extremely low moisture because 

that will actually induce oxidation. Wet canned pet food contains a high level of 

moisture and it essentially resembles the meat model in this work, therefore, it may be 

tested in the future.  

b) Test the samples in petfood in a real industrial manufacturing, packaging and storage 

conditions. 

Though CP and C-SOD were demonstrated to be effective in the two models in the 

experiments, the real industrial conditions can be more complicated. Moisture, UV 

irradiation and presence of pro-oxidants are all reasons for fast oxidation of fats while 
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it is unknown whether the erythrocytes extracts can successfully work against all of 

them. They need to be tested on the real pet food in the manufacturing facility to 

validate their efficacy. 

c) Identify other effective ingredients in the erythrocytes 

This work mainly looks at only two antioxidants in erythrocytes, SOD and catalase, 

however, there are some other antioxidants which may be equally or even more 

effective for preventing lipids oxidation. Glutathione and glutathione peroxidase can be 

a good research object to look into in the future work. 

d) Verify the safety of CP.  

Though no hazardous chemical is involved in the production of CP, the safety of it still 

needs to be carefully studied. Further, with proper quality control, it may be added into 

human foods as well. 
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