
Clemson University
TigerPrints

All Dissertations Dissertations

12-2015

CONFIGURATION MANAGEMENT IN
MANUFACTURING AND ASSEMBLY: CASE
STUDY AND ENABLER DEVELOPMENT
Keith Phelan
Clemson University, ktphela@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Phelan, Keith, "CONFIGURATION MANAGEMENT IN MANUFACTURING AND ASSEMBLY: CASE STUDY AND
ENABLER DEVELOPMENT" (2015). All Dissertations. 1591.
https://tigerprints.clemson.edu/all_dissertations/1591

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1591&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/1591?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1591&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

CONFIGURATION MANAGEMENT IN MANUFACTURING AND

ASSEMBLY: CASE STUDY AND ENABLER DEVELOPMENT

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Mechanical Engineering

by

Keith Thomas Ashman Phelan

December 2015

Accepted by:

Dr. Joshua D. Summers, Committee Chair

Dr. Georges Fadel

Dr. Mary E. Kurz

Dr. Joshua A. Levine

Dr. Gregory M. Mocko

 ii

ABSTRACT

The overall goal of this research is to improve the product configuration change

management process. The increase in the demand for highly customizable products has

led to many manufacturers using mass customization to meet the constantly changing

demands of a wide consumer base. However, effectively managing the configurations can

be difficult, especially in large manufacturers or for complex products with a large number

of possible configurations. This is largely due to a combination of the scope of the

configuration management system and the difficulty in understanding how changes to one

element of a configuration can propagate through the configuration system. To increase

the engineer’s ability to understand the configuration management system and how

changes can affect it, an improved method is required.

Based on the results of a case study at a major automotive OEM, a configuration

change management method is developed to address the aforementioned gap. In addition,

a set of design enablers is deployed as part of the method. The major contribution of this

work is the improved method for configuration change management and the use of graph

visualization in exploring configuration changes. The use of graph visualizations for

configuration management is validated through a user study, four implementation studies

using ongoing configuration changes at the OEM, and user feedback and evaluation. The

method is validated through application in three historical cases and user feedback. The

results show that the method increases the capabilities of the engineer in exploring a

proposed configuration change and identifying any potential errors.

 iii

DEDICATION

Dedicated to my wife because without her support, I would not have made it this far and

to my parents for always encouraging me to strive for more.

 iv

ACKNOWLEDGEMENTS

I sincerely thank my advisor Dr. Joshua Summers. I cannot overstate how much

his guidance has shaped me and my research during my time as a student. He has gone

above and beyond in mentoring me as an engineer, a researcher, and as a person.

I would also like to thank Dr. Fadel, Dr. Kurz, Dr. Levine, and Dr. Mocko for their

assistance as members of my committee. Specifically, I would like to thank Dr. Mocko for

continuing to challenge me to defend my research. This strengthened my belief in the

research and in my ability to present the research.

As most of my research was funded through projects with BMW Spartanburg, I

would like to them for their support and for providing the opportunity to work with them

for the past two and a half years. I would also like to thank the personnel in the Launch

and Change Control group for providing their time and expertise, without which the

research would not have been as successful. I would especially like to thank Matt

Wasatonic at BMW for countless hours of working with me and providing assistance in

whatever capacity was required.

Last, but not least, I thank all of my CEDAR team members, both present and past,

for supporting my research and assisting when called upon. The countless discussions of

research, current events, and, most importantly, college football always provided an outlet

when needed.

 v

TABLE OF CONTENTS

Page

Abstract ... ii

Dedication .. iii

Acknowledgements .. iv

List of Tables ... viii

List of Figures ..x

Chapter One : Introduction ..1

1.1 What is Configuration Management? ..1

1.2 Why Configuration and Change Management? ...2

1.3 Dissertation Outline ...4

Chapter Two : Preliminary Effort – Understanding Change Management7

2.1 Current Change Management Practice ..7

2.2 Study on Product Component Interaction ..31

2.3 Conclusions ..46

2.4 Dissertation Roadmap ..48

Chapter Three : Research Approach ..50

3.1 Research Questions and Tasks ...52

3.2 Dissertation Roadmap ..60

Chapter Four : Configuration Change Management – A Case Study62

4.1 Current Configuration Management Practice ..62

4.2 Research Methods ..71

4.3 Selection of the Case ..73

4.4 Data Collection ..74

4.5 Results ..77

4.6 Conclusions ..85

4.7 Dissertation Roadmap ..87

 vi

Table of Contents (Continued)

 Page

Chapter Five : Improved Method for Configuration Change Management89

5.1 Proposed Process ...89

5.2 Interaction Identification ..91

5.3 Visualization and Interaction (V&I) ..93

5.4 Complexity Analysis (CCA) ..95

5.5 Algorithmic Validation (AV) ...102

5.6 Conclusions ..107

5.7 Dissertation Roadmap ..108

Chapter Six : Visualization Support Tool ..110

6.1 Data Visualization: Review of Literature ..110

6.2 Graph Layout User Study (Development Study)114

6.3 Development of the Visualization Tool ...135

6.4 Implementation of the Visualization Tool ...139

6.5 Software Development ..147

6.6 Conclusions ..157

6.7 Dissertation Roadmap ..159

Chapter Seven : Visualization Tool Validation ...160

7.1 Implementation Cases ..160

7.2 Rule Authoring User Study (Validation Study) ...167

7.3 User Feedback ..179

7.4 Conclusions ..181

7.5 Dissertation Roadmap ..182

Chapter Eight : Method Implementation and Recommendations184

8.1 Implementation Cases ..184

8.2 User Feedback ..192

8.3 System Architecture to Support the Configuration Management Method 193

8.4 Conclusions ..197

 vii

Table of Contents (Continued)

 Page

8.5 Dissertation Roadmap ..198

Chapter Nine : Conclusions and Future Work ...200

9.1 Concluding Remarks ..200

9.2 Future Work ...205

REFERENCES ..208

Appendices ...220

Appendix A: Complete DSM for Historical Example221

Appendix B: Trendline Graphs for Component Interaction Study222

Appendix C: Example of a Configuration Rule Database227

Appendix D: Example Configuration Change Request Form228

Appendix E: User Study Response Form ..231

Appendix F: Visualization Tool Development User Study Graphs233

Appendix G: Visualization Tool Validation User Study Packets245

 viii

LIST OF TABLES

Table Page

Table 2.1: Example requirements table ...18

Table 2.2: Section of an example design structure matrix (DSM) (a) initial and (b)

extended ...20

Table 2.3: List of affected components for brake drum ...21

Table 2.4: E-S-V combination identification ...22

Table 2.5: Combination vectors ...22

Table 2.6: Filtering of assembly combinations interface23

Table 2.7: Example DVP matrix ..24

Table 2.8: Requirements to tests relationships matrix ...25

Table 2.9: Requirements to components relationship matrix26

Table 2.10: Baseline test strategy ..27

Table 2.11: Example of a test-analysis matrix ...28

Table 2.12: Component interaction saturation for product architecture39

Table 2.13: Component interaction saturation for product configuration42

Table 2.14: Product architecture component interaction44

Table 2.15: Product configuration component interaction44

Table 3.1: Research Questions and Tasks..52

Table 4.1: Configuration management to change management mapping table69

Table 4.2: Examples of other case-based research in configuration management 70

Table 4.3: Justification for case study research method ..72

Table 4.4: Case study interviews conducted ..75

Table 4.5: Example rules in the rule database ...77

Table 4.6: Visualization requirements and related issues to address86

Table 6.1: Survey question triangulation ...122

Table 6.2: Packet set-variable assignment ...124

Table 6.3: Number of correct responses for each question by group128

Table 6.4: Percent of correct responses by variable ..129

Table 6.5: Average confidence for each question by group129

 ix

List of Tables (Continued)

Table Page

Table 6.6: Software platform selection overview ..138

Table 7.1: Number and percent of correct responses by group for Change 1175

Table 7.2: Number and percent of correct responses by group for Change 2175

Table 7.3: Number and percent of correct responses by group for Change 3175

Table A.1: Full DSM for Brake Drum Example..221

Table A.2: Example of a configuration rule database ..227

 x

LIST OF FIGURES

Figure Page

Figure 1.1: Configuration management entity relationships....................................2

Figure 1.2: Model depicting possible configuration variants (adapted from [4])3

Figure 1.3: Dissertation overview ..5

Figure 2.1: Change Propagation Model (CPM) [19] ...12

Figure 2.2: 3-D CAD model for a pen (a) and the resulting connectivity graph

(b) ...35

Figure 2.3: Initial (a) and full populated (b) product design structure matrices for a

pen ..36

Figure 2.4: Graph of population densities for a pen ..36

Figure 2.5: Initial (a) and fully populated (b) product configuration DSMs for a

product change ...37

Figure 2.6: Product group 1 saturation graph ..41

Figure 2.7: Product group 2 saturation graph ..41

Figure 2.8: Product group 3 saturation graph ..41

Figure 2.9: Product group 4 saturation graph ..41

Figure 2.10: Product configuration saturation graph ...42

Figure 2.11: Group 1 saturation graph ...43

Figure 2.12: Group 2 saturation graph ...43

Figure 2.13: Group 3 saturation graph ...43

Figure 2.14: Dissertation roadmap ...49

Figure 3.1: Research plan overview...50

Figure 3.2: Dissertation roadmap ...61

Figure 4.1: Configuration change management process for OEM81

Figure 4.2: Dissertation roadmap ...88

Figure 5.1: Simplified process model with proposed tools....................................90

Figure 5.2: ER diagram for integrated database ..93

Figure 5.3: Example graph for a proposed change ..94

Figure 5.4: Example graph edge input file...98

Figure 5.5: Example data representation for the complexity analysis tool101

 xi

List of Figures (Continued)

Figure Page

Figure 5.6: Simpler data representation for complexity analysis102

Figure 5.7: Simplest data representation for complexity analysis102

Figure 5.8: Dissertation roadmap ...109

Figure 6.1: Node-link diagram of a diesel engine for predicting change propagation

[71] ...112

Figure 6.2: Straight-edged graph [119] ..113

Figure 6.3: Curved-edge graph[119] ..113

Figure 6.4: Functionally arranged graph (a) and circular graph layout (b)116

Figure 6.5: Graph colored based on part data (a) or based on interaction type

(b) ...117

Figure 6.6: Graph will all information (a) and option information only (b)117

Figure 6.7: Classroom layout ...119

Figure 6.8: Example of a visualization graph (provided to Groups 1, 7)125

Figure 6.9: Modified 100mm confidence scale ...127

Figure 6.10: Graph of the correctness for each question based on availability of

information ...131

Figure 6.11: Graph of the correctness for each question based on color-coding .132

Figure 6.12: Graph for the correctness of each question based on layout133

Figure 6.13: Graph of the correctness for each question based on order134

Figure 6.14: Example graph node input file ..140

Figure 6.15: Example graph edge input file...141

Figure 6.16: Rule and corresponding graph for an inclusive, binary

relationship ...142

Figure 6.17: Rule and corresponding graph for an exclusive, binary

relationship ...142

Figure 6.18: Rule and corresponding graph for a relationship requiring an “OR”

node ..143

Figure 6.19: Rule and corresponding graph for a relationship with an “AND” node

..143

Figure 6.20: Additional rule and graph for a relationship with an “AND” node .144

Figure 6.21: Graph visualization for a specific change144

 xii

List of Figures (Continued)

Figure Page

Figure 6.22: Dissertation roadmap ...159

Figure 7.1: Visualization graph for windshield option change (Case 1)162

Figure 7.2: Visualization graph for existing model ...163

Figure 7.3: Visualization graph for replacement model164

Figure 7.4: Existing model graph with the Australian country option already

available ...166

Figure 7.5: Graph of the model to which the country option will be added167

Figure 7.6: Rule system graph provided to the experimental groups173

Figure 7.7: Percent correct responses for Change 1 ..176

Figure 7.8: Percent correct responses for Change 2 ..177

Figure 7.9: Percent correct responses for Change 3 ..177

Figure 7.10: Dissertation Roadmap ...183

Figure 8.1: Method for evaluating the existing system..185

Figure 8.2: Implemented method for Problem 2 ..188

Figure 8.3: Implemented method for Problem 3 ..190

Figure 8.4: Configuration management support tool system architecture196

Figure 8.5: Dissertation roadmap ...199

Figure A.1: Trendline for all product architectures ...222

Figure A.2: Trendline for Group 1 product architectures222

Figure A.3: Trendline for Group 2 product architectures223

Figure A.4: Trendline for Group 3 product architectures223

Figure A.5: Trendline for Group 4 product architectures224

Figure A.6: Trendline for all product changes ...224

Figure A.7: Trendline for Group 1 with 1 added product change225

Figure A.8: Trendline for Group 3 with 1 added product change225

Figure A.9: Trendline for Group 4 with 1 added product change226

Figure A.10: Graph for European models with functional grouping and coloring

based on interactions ..233

Figure A.11: Graph for US models with functional grouping and coloring based on

interactions ...234

 xiii

List of Figures (Continued)

Figure Page

Figure A.12: Graph for European models with functional grouping and coloring

based on interactions (options only) ..235

Figure A.13: Graph for US models with functional grouping and coloring based on

interactions (options only) ...236

Figure A.14: Graph for European models with functional grouping and coloring

based on parts ...237

Figure A.15: Graph for US models with functional grouping and coloring based on

parts ..238

Figure A.16: Graph for European models with circular layout and coloring based

on interactions ..239

Figure A.17: Graph for US models with circular layout and coloring based on

interactions ...240

Figure A.18: Graph for European models with circular layout and coloring based

on parts ...241

Figure A.19: Graph for US models with circular layout and coloring based on parts

..242

Figure A.20: Graph for European models with circular layout and coloring based

on interactions (options only) ..243

Figure A.21: Graph for US models with circular layout and coloring based on

interactions (options only) ...244

 1

CHAPTER ONE: INTRODUCTION

1.1 What is Configuration Management?

Configuration management is a method for capturing, verifying, and maintaining

the information regarding how product variants can feasibly achieve customer

requirements. The first aspect of this process is to understand the capabilities and

interrelationships of the components within the product family. Product families, or

“configurable products,” are defined according to the following criteria [1,2]:

 Are adapted according to customer requirements [1]

 Consist of (almost) only pre-designed components [1,2]

 Have a pre-designed product structure [1]

 Are adapted by systematic product configuration [1,2]

It is important to note that a key element of these criteria is that the components

that contribute to the product family are well specified, including the relationships between

the components. In this way, the configuration management process is different from

traditional design in that no new component types are created, nor are the interfaces

between components modified in any way [3]. Therefore, a difficulty in configuration

management is in accurately modeling this knowledge.

The second aspect of the configuration management process is to understand the

individual needs of the customer and how the needs can be met through the selection and

integration of specific components. As in the case of the product family domain

knowledge, the customer requirements should all be well-specified when conducting

configuration management. That is, before a new customer requirement should be added

 2

as an option within a product family, a coordinating component for achieving that need

must first be identified. This relationship is shown in Figure 1.1.

Figure 1.1: Configuration management entity relationships

While this may seem counterintuitive, the goal of configuration management is not

to develop novel concepts, but rather to produce a new configuration of existing

components that is adapted to the needs of the customer [1].

1.2 Why Configuration and Change Management?

Configuration management is essential to mass customization because without it

the difficulty in managing the potential configurations can hinder the efficient manufacture

of product [3–5]. When viewed from the perspective of assembly lines, the many different

configurations can quickly lead to increases in the possibility of errors [3]. The high

number of configurations available, specifically in the automotive industry, is shown in the

model in Figure 1.2. These errors, depending on where they are identified in the product

life-cycle, can be extremely costly. As a result, configuration management is necessary for

successful manufacture of product families.

 3

Figure 1.2: Model depicting possible configuration variants (adapted from [4])

An additional benefit of configuration management is the ability to effectively

conduct change management and product improvement [5]. While a central facet of

configuration management is an understanding of how the components interrelate, when a

change is required on a single component, one may identify how the specified change will

affect the other components within any of the variants in that product family. This includes

manufacturers that rely heavily on modifying existing products in the development of new

designs, as is the case with the intra-organizational benefits of product configuration

identified in a study of an aeronautics manufacturer [5]. As a current product is adapted to

fit new customer requirements, it is easy to identify how the modifications will affect the

other variants in a product family.

The implementation of configuration management also increases the amount of

product control and organizational support of a manufacturer [4,5]. Others describe

configuration management as a basic process within systems engineering that serves as the

“backbone” of many of the core processes that enable efficient manufacture of a

 4

configurable product [4]. Similar findings on the benefits of configuration management

were identified in a case study based on interviews with employees in management

positions within an aeronautics OEM [5]. The interviewees all stated that the use of

configuration management practices increased the amount of control of the company over

the product and the product variant development process.

1.3 Dissertation Outline

This section presents an overview of the dissertation, visually depicted in Figure

1.3. Chapter One provides an introduction to the research. This includes the motivation

for the research and some background information on configuration management. Chapter

Two presents the foundation for the research: a review of current change management

practices (including a literature review and the development of a support tool for an

existing change management support method) and a study on product component

interaction. This preliminary research introduced the author to the principles of change

management and developed the interest in change management, specifically with regard to

change management in configurable products or products with multiple variants. Chapter

Three presents the overall research plan for the dissertation. This includes the research

objectives, their corresponding research sub-questions and the tasks that were executed to

achieve the objectives.

 5

Figure 1.3: Dissertation overview

Chapter Four begins the process of answering the research questions through the

presentation of an industrial case study on configuration management. The case study and

accompanying literature review are intended to answer the question of how companies

conduct configuration management (RO 1). Based on the findings of the case study, an

improved method for configuration management, including design enabler support, is

 6

presented in Chapter Five. The proposed method provides an integrated method that

incorporates support tools from multiple domains (data visualization, algorithmic

validation, and complexity analysis) to assist in the configuration management process.

Chapter Six focuses on the development and implementation of a graph

visualization support tool. The visualization support tool uses relationship information

from the product rule databases to assist in understanding how proposed changes can

propagate in unexpected ways. The validation of the graph visualization tool is presented

in Chapter Seven. This consists of four implementation cases of ongoing configuration

changes at the OEM and a user study to test the effectiveness of the proposed tool for

configuration rule implementation. Chapter Eight consists of a validation of the entire

configuration management support method through additional implementation cases and a

user feedback interview with a change manager at the OEM. Finally, Chapter Nine

concludes the dissertation and provides potential avenues for future research.

 7

CHAPTER TWO: PRELIMINARY EFFORT – UNDERSTANDING CHANGE

MANAGEMENT

The purpose of the research presented in this chapter is to understand current

change management practice. This objective is achieved through the execution of three

related tasks: a literature review of change management practices, the development of a

change management support tool based on a verification, validation, and testing planning

method, and a study on component interaction for change propagation. These three tasks

will be discussed in the following sections, with the findings being summarized in 2.3.

2.1 Current Change Management Practice

In order to develop a better understanding of current configuration change

management, a literature review is conducted and a computational support tool is

developed to increase the usability and adoptability of an existing change management

method. These are discussed in Sections 2.1.1 and 2.1.2, respectively.

2.1.1 Literature Review of Change Management Practice

There has been a large amount of research conducted on ways to mitigate the effects

and/or occurrences of engineering change [6–9]. The research can be categorized

according to the following types of mitigation: tools for documentation, tools for decision-

making, and engineering change coping strategies [7].

2.1.1.1 Documentation Tools

The first type of tool involves those used for assistance in documentation and

managing the work flow of the engineering change process. Such tools are recognized as

 8

necessary to effectively and efficiently execute engineering changes [6,10]. Engineering

change management systems that are primarily paper-based are typically inefficient in that

the information is largely centralized. As the number of engineering changes of a product

increases, the situation is compounded [6]. The high degree of centralization limits the

ability for all personnel within a company to have access to the changes and understand

how they can affect different operations within the company [11]. Therefore, having the

ability to document and manage change can greatly improve the efficiency of the change

management process by ensuring that all parties are kept current on a change’s status.

As a result, there has been a focus on computer-based systems for documenting the

instances of engineering change over the life of an engineering change. Huang and Mak

[12] use the following classification method for computer-based tools:

 Dedicated engineering change management systems: They include databases of

engineering change activities and can generate engineering change forms.

 Computer aided configuration management systems: These systems are software-

based engineering change management systems and allow the user to address

product structuring and versioning.

 Product data management (PDM) or product life-cycle management (PLM)

systems: These systems incorporate all of the above functionalities and also are

able to encompass all stages of the product life-cycle, such as product planning.

Often, the scope of these systems requires that they be developed externally by

software design companies.

The increase in the use of computer networking in company infrastructures has led

to an increase in academic research into computer-based change management systems

[12,13]. One example, a stand-alone, web-based system for managing the engineering

 9

change process, has been developed at the University of Hong Kong’s Department of

Industrial and Manufacturing Systems Engineering [13]. The proposed engineering

change management (ECM) system seeks to remove the limitations due to time and

geography typically found in paper-based systems by using a distributed web-based

system. The major limitation of the system is that it only supports basic ECM functions

and activities. Additionally, no case study regarding implementation or validation of the

tool is provided. Reddi [11,14] presents a framework for engineering change management

based on Service Oriented Architecture that allows for an agile engineering change

management process to be used in a collaborative environment. The primary limitation of

this work is that the tool was not validated with industry data, but rather with previous

research. Additionally, the tool requires an extensive amount of user expertise in order to

estimate the values for parameters used in the process.

Despite the prevalence of commercially available engineering change management

software packages, it has been found that few companies have moved to integrate these

systems [15]. Some possible reasons behind this are [12]:

 Companies do not realize the systems are available

 Available systems do not meet the needs of the user

 Available systems are not worth the difficulty to implement

 The systems require too much data input to be time-effective

 The technology does not fulfil its functions as promised

In a study of three Swedish engineering companies [16], it was found that none of

the companies used the benefits of computer-based support of change management to their

full potential. However, it is understood that at the time of the report that all of the

 10

companies were investing in these computer-based systems. The biggest determining

factor was whether it was more efficient to develop their own software or to revise

commercially available software for use within the company. In a similar review of two

British companies [6], the companies felt that adapting a commercially available system

would be more expensive and time-consuming than developing their own. Thus, cost of

adoption and development appear to be major hurdles in adoption.

The following conclusions are made regarding the current research on

documentation tools for configuration management:

 Many of the tools discussed have not been implemented in an industry setting to

validate their usefulness

 Difficulty in adopting an existing ECM system leads companies to develop their

own support tools instead

 Many of the tools require a large amount of user input in order to fulfill the

required functions

2.1.1.2 Decision-Making Tools

A major emphasis of research on engineering change has been on tools to aid in the

decision-making of the engineering change process. While solid modelling, Failure Mode

and Effects Analysis (FMEA), and Value Analysis are examples of enablers that can be

used in engineering change mitigation, the focus of this section is on methods and research

prototype systems.

Ollinger and Stahovich [17] propose a tool called “RedesignIT,” a computer

program that employs model-based reasoning to create and evaluate proposals for redesign

plans. The program uses the relevant physical parameter of the design and the relationships

 11

between the parameters to build the model. The benefit to this tool is that it proposes

modifications to the proposals to mitigate negative effects of the proposed change.

However, it only provides the parameters that should be modified and does not propose

how the quantities should be altered.

Laurenti and Rozenfeld [18] present a modified version of FMEA that specifically

covers the analysis of modifications to a system. The method, Failure Mode and Effect

Analysis of Modifications (FMEAM), was developed based on an integration of FMEA

and Design Review Based on Failure Mode (DRBFM). It incorporates a multi-disciplinary

work group to review engineering changes and the possible failure rates that may be

associated with them. At this point, there has been no validation of the feasibility or utility

of the proposed method.

The Change Prediction Model [19] is a tool for predicting how change will

propagate through a design. This method uses Design Structure Matrices (DSMs) to build

a product model. The product model consists of the relationships between components that

increase either the likelihood or impact of engineering change propagation. By

determining the possible propagation pathways, it is then possible to use the product model

to create DSMs representing the predicted likelihood and risk of a change. From these

DSMs it is possible to predict the possible impact of a change. This model is shown in

Figure 2.1.

 12

Figure 2.1: Change Propagation Model (CPM) [19]

This method has also been used in additional research and has been applied in

several case studies [20–22]. A similar method has been proposed that uses DSMs to

determine the second-order relationships between requirements [23]. From these

secondary relationships, they were able to successfully predict how product requirements

would change as a result of an initial requirement change. By modelling the predicted

change early in the design process, during requirements development, it is possible to

minimize the associated costs resulting from an engineering change. The method was

shown to be successful in predicting the resulting changes in two industrial case studies,

but more validation is needed to explore its effectiveness. Another potential negative of

this method is that it requires an initial change in order to be effective.

 Change Favorable Representation (C-FAR) [24] is a method that uses product

information to assist in the representation, propagation and evaluation of changes. C-FAR

 13

decomposes a product into its basic entities and then represents these entities as vectors,

with the attributes of the entity as components of the vector. The approach then uses

matrices to create relationships between entity vectors, with the individual components of

the matrix being referred to as linkage values. The linkage values represent the relationship

between two attributes (one from each entity) and can be used to determine how change in

one attribute or entity can affect other entities/attributes. The method has been used with

numerous industrial case studies, but because of the high processing power required, it is

only feasible when used with fairly simple products.

The following conclusions are made regarding the current research on decision

tools for configuration management:

 Many of the tools discussed have not been implemented in an industry setting to

validate their usefulness

 Difficulty in adopting an existing ECM system leads companies to develop their

own support tools instead

 Many of the tools require a large amount of user input in order to fulfill the

required functions

2.1.1.3 Engineering Change Mitigation Strategies

While other researchers [25,26] have also proposed strategies for mitigating the effects

of engineering change, Fricke, et al. [15] provides a comprehensive list of strategies:

1. Prevention: Reduce the number of emergent changes of a product. This is often the

majority of changes that occur for a given design [9,27]. It is understood that this can

be extremely difficult to execute effectively.

2. Front-loading: Early detection of engineering changes within the product- life-cycle.

This is in line with the “Rule of Ten” discussed earlier in the paper. The use of

 14

concurrent engineering encourages early identification of changes that must be made

to a product. However, due to the ever-changing nature of the market, implementing

this to its fullest extent may prevent the company from changing to meet the latest

needs of the customer, possibly leading to an eventual loss of market share and

profitability.

3. Effectiveness: Conducting analysis on the benefit of executing an engineering change

against the cost of implementation. As previously mentioned, not all engineering

changes are meaningful and/or mandatory. Therefore, it is necessary that design

engineers understand the difference between meaningful and meaningless changes.

4. Efficiency: Implementing engineering changes as efficiently as possible by optimally

using available resources (time, costs, etc.). To facilitate this effort, engineering

changes must be communicated to all contributing parties as quickly as possible. In

some instances, this may be assisted by being flexible with the engineering change

process. Loch and Terweisch promoted this idea by proposing methods to remove

some of the bottlenecks in the process [28].

5. Learning and reviewing: Conducting a review of the engineering change process for

each implemented change. Despite the fact that every change is a chance to improve

upon a company’s engineering change management process, few companies regularly

execute reviews following a change. The United States Army has recognized the

importance of after-action reviews to continuously improve upon previous operations,

mandating that reviews be conducted at all levels.

Additional research has been done that supplements the above strategies. Tavcar and

Duhovnik [26] have developed a questionnaire to assist in the review process that assess

the quality of a company’s engineering change management process. The questionnaire

assesses the process based on a variety of information, including: resources expended in

implementation, duration of the engineering change, change tracking, frequency of

 15

decision points, and the accuracy and precision of implementing the change in both

production and documentation. In their review of current engineering change practices,

Jarratt, et al. [8] believe that a fundamental shift away from “ab initio” design advocated

by many systematic design methods, such as the approach proposed by Pahl and Beitz [29],

would lead to increased effort in change research.

2.1.2 Development of a Change Management Support Tool

A recurring theme in review of existing change management practices is that

despite the prevalence of available methods for managing change, the difficulty in adopting

the proposed methods has resulted in many companies not implementing them. To better

understand how existing methods can be adapted to better increase adoptability, a

computational support tool was developed from an existing validation, verification and

testing (VV&T) planning method [30]. The VV&T method was selected due to its

inclusion of variant propagation pathways, which is an aspect that is unique to the method

and is of interest to the researcher. The purpose of this task is to determine how the

methods proposed in academia can be supported to increase their usability by industry and

therefore increase the level of adoption

2.1.2.1 Overview of Method

The purpose of the change management support tool is to assist a change engineer

in executing the validation, verification, and testing (VV&T) planning method discussed

in [30]. The support tool follows the steps outlined in the 7-Step VV&T planning [31]:

 16

- Step 1: Identify requirements – identify the requirements for the system at one

level above the sub-system that contains the changed component

- Step 2: Conduct system analysis – determine the other components that are

likely to be affected by the changed component

- Step 3: Identify assembly configurations – identify the potential assembly

configurations for the affected components, including different variants and

suppliers for each component

- Step 4: Filter assembly configurations – determine whether any assembly

configurations can be removed from the VV&T method

- Step 5: Develop design validation plan (DVP) matrix – create the matrix for the

VV&T plan, including administrative data, such as responsibilities and

timelines for the validation of each requirement

- Step 6: Develop test strategy – determine the baseline for each test to be run

- Step 7: Conduct trade-off analysis – identify areas where tests can be combined

and prioritize the validation of specific requirements

2.1.2.2 Tool Requirements

Case studies of applying the method at International Truck and Reliable Sprinkler

led to requirements for the support tool. In addition to the primary requirement (the tool

should easily guide the engineer through the process) other requirements were identified

to mitigate some of the other issues that have been identified when using the 7-step

planning method. One major issue is the large amount of data that must be carried between

the steps, leading to the possibility for human input errors. Additionally, the tool should

 17

assist in the documentation of the change management process. The resulting design

problem is as follows: Develop a computational support tool to guide a change engineer

through the 7-step VV&T process while minimizing the opportunity for error and assisting

in documenting the change process without the requirement for additional input.

As previously mentioned, one requirement of the tool was its adoptability. One

reason that support tools developed in academia are not used heavily in industry is the

resistance to new software or interfaces [1]. In order to ensure easy distribution and use of

the computational support tool, it was developed in Microsoft Excel using the Visual Basic

for Applications programming language. This allowed for simplified implementation

while maximizing the functionality of the tool for prototyping purposes.

To determine the appropriate level of automation, each step was analysed to

determine what information and reasoning needed to be supported and what would be

conducted manually. For example, in the first step (Identify Requirements), it is possible

to have the tool import a requirements list from an external source, such as a requirements

document generated and used by the company. However, because the source document

was of unknown origin, the information for this step is manually entered. On the other

hand, the creation of the Design Validation Plan (DVP) matrix is almost completely

automated. The only manual input required for this document is the administrative data,

such as team members and testing responsibility (Table 2.7). Another factor that prevented

automation of a step was the need for experiential knowledge in understanding the specifics

of the engineering change in question. This is shown in the filtering of assembly

configurations (Step 5). Determining which assembly configurations can be neglected is

 18

dependent on the system in question. As such, it would be difficult to automate the

identification of which configurations could be eliminated.

Following the best practices for software engineering approaches, the module for

each step was created on an individual basis and then these modules were linked together

[32–34]. The tool consists of a series of spreadsheets that are able to be edited by the user.

Once pertinent data for a given step has been entered, an associated macro may be run to

facilitate the completion of that step in the process. The steps below follow the VV&T

plan development for an example change to the brake drum in an automotive braking

system.

2.1.2.3 Step 1 – Identify Requirements

 The first step in the VV&T planning method is the identification of requirements

at the level of the component of interest and one system level above the component being

changed. An example of the requirement data table is shown in Table 2.1. It should be

noted that sections highlighted in yellow are those intended for data entry. This step also

stores the requirements for future use in the process. Note that these are not requirements

on the brake drum, but rather on the encapsulating braking system.

Table 2.1: Example requirements table

 19

2.1.2.4 Step 2 – Conduct System Analysis

The next step in the process is a system analysis to identify any components that

may be affected by the component being changed. This interaction can include geometric,

behavioural, variant, and organization propagation pathways. In this step, the engineer

manually enters the design structure matrix (DSM) for the system containing the change

component. Additionally, the external components that interact with the system of interest

are included. The DSM is developed by identifying the relationships between components

in the system. In this example, only physical, geometric relationships are considered.

However, as discussed in the VV&T planning method [31], other possibilities exist for

relationships, such as organizational pathways. It is important to note that building the

DSM is a possible source of human error. A section of an example DSM entered by the

engineer is shown in Table 2.2 (a). The intersections with “1” represent interactions

between the specified components. The same section of the DSM is shown in Table 2.2(b)

and includes higher order interactions. The complete DSMs are found in 9.2Appendix A:.

Any cells containing “2” or higher represent higher order interactions and will be discussed

below. For instance, the brake drum directly interfaces with the brake lining. Because the

brake lining also directly interfaces with the foundation brake, a second order interaction

occurs between the foundation brake and the brake drum.

 20

Table 2.2: Section of an example design structure matrix (DSM) (a) initial and (b)

extended

The support tool also requires the entry of the number of components, the change

component, and the desired order of interaction. The desired order of interaction is required

because research has shown that interactions at the second order are often useful in

identifying/predicting change propagation [27]. Once all relevant data has been entered,

the support tool populates the rest of the DSM with any higher order interactions (the

second order of interaction was desired in the example in Table 2.2) and a list of all of the

components affected by the change component is created. Based on the DSM from the

example in Table 2.2, the following list was created, as shown in Table 2.3. Thes

components will then be used in the next step.

 21

Table 2.3: List of affected components for brake drum

2.1.2.5 Step 3 – Identify Assembly Configurations

The third step in the process is the identification of possible assembly

configurations. Each component affected by the engineering change (from list in Table

2.3) may have multiple variants and multiple suppliers. Therefore, when considering a

VV&T plan, it is necessary to determine all of the combinations that may need to be tested.

Testing all of the possible component combinations would be equivalent to a full-factorial

design of experiments, and while thorough, this may or may not be feasible. To support

this, the tool populates a list of components, while the engineer enters information

regarding the suppliers and variants possible for each component. Once the data is entered,

each element-supplier-variant (E-S-V) combination is given a unique identifier and the

total number of E-S-Vs for each component is tallied. This is shown in Table 2.4. For

example, the hub has two different variants from two different suppliers, while the brake

lining has the same variants from different suppliers.

 22

 Table 2.4: E-S-V combination identification

The tool also allows the engineer to remove any combinations from being evaluated

and provides an area for comments regarding the reasoning behind the removal. For the

example in Table 2.4, E-S-V 3.S5.V6 is not used because that specific variant of the tire

and wheel trim is not used in the platform being tested. It is important to note that the

removal of specific E-S-V combinations from the list of possible configurations is

manually executed by the engineer. The support tool also provides a list of all of the

combination vectors (possible combinations of different E-S-V combinations) for further

evaluation. The results from this are shown in Table 2.5. The list of combinations then

undergoes additional filtering in the following step.

Table 2.5: Combination vectors

Affected Elements
Supplier

(S#)

Variants

(V#)

E-S-V

Identifier

Combination

selection?

(Y or N)

Selection

reasoning

Number of

E-S-V

combinations

S1 V1 1.S1.V1 Y

S2 V1 1.S2.V1 Y

S3 V3 2.S3.V3 Y

S4 V4 2.S4.V4 Y

S5 V5 3.S5.V5 Y

S5 V6 3.S5.V6 N

Brake Lining 2

Hub

1

2

Variant 6 is not

used in this

platform

Tire and Wheel Trim

 23

2.1.2.6 Step 4 – Filter Assembly Configurations

The fourth step involves the filtering of assembly configurations identified in Step

3. Conducting a full analysis for each assembly combination can be time-consuming and

costly. Therefore, it is beneficial to identify any combinations that may be ignored. One

reason a particular subset of configurations could be ignored is that one variant might

perform better in all requirements than the alternate variant. An example of this would be

two different wheel variants, one of which provides a significantly larger amount of

airflow, thereby minimizing the amount of heat build-up and increasing the performance.

In this instance, the higher airflow, performance wheel would be ignored. As such, it is

reasonable to assume that combinations featuring the first variant would perform better

than combinations featuring the second variant. Therefore, the better performing

combinations may be ignored in future analysis. Essentially, it is desirable to test the worst-

case scenario.

This aspect of the VV&T planning method remains manual because the analysis

required to identify which combinations may be neglected is highly specific to the system

requirements. In this instance, the support tool provides an interface for documenting the

decisions made and the reasoning behind the decisions. The interface provided to the user

is shown in Table 2.6.

Table 2.6: Filtering of assembly combinations interface

 24

As shown in the example in Table 2.6, two of the combinations were neglected. As

a result, the associated cells were highlighted and marked through for ease of visualization.

The remaining combinations are stored for use in future analysis.

2.1.2.7 Step 5 – Develop Design Validation Plan (DVP) Matrix

The next step in the VV&T planning method is to construct the Design Validation

Plan (DVP) matrix. The DVP matrix consists of all of the administrative data as well as

all of the requirements, associated tests, and any additional information regarding how the

testing will be executed. An example DVP matrix is shown in Table 2.7. At present, much

of the administrative data must be entered manually, while 70% of the testing data is

populated by the tool. In Table 2.7, R1 is the requirement for a stopping distance of less

than 60 feet. The method to validate is a vehicle test as per FMVSS 121, with stopping

distance being the test measurable. The combinations vectors to be tested are C2 and C4.

Table 2.7: Example DVP matrix

Date

System

Req.

Index
Requirement Test

Combination

vectors

V & V

method

Test

measureable

Acceptance

criteria

Need for legal

certification
Responsibility Start date End date Remarks

R1
Stopping

distance <60ft

As per

FMVSS 121
C4, C2,

Vehicle

test

Distance in

ft.

As per

FMVSS 121
Y A 07/10 08/10

R2

Stopping dist

<75ft after down

hill test

As per

FMVSS 121
C4, C2,

Vehicle

test

Distance in

ft.

As per

FMVSS 121
Y A 07/10 08/10

R3
Brake lining life

>40000 miles

Fit lining

in field

vehicle

C4, C2,

Field

Demonst

ration

Lining wear

in in.

Average

life >40000

miles

N B 07/10 10/10

Manufacturing

Service

Supplier

Program #

DVP Ver #

DVP #

Development engineer

Team

Virtual test engineer

Physical test engineer

Requirements doc #

Marketing

 25

In order to assist in the creation of the DVP matrix, additional data must be entered

elsewhere. The support tool uses a test database to store all information regarding the tests

that must be executed to evaluate the system.

Additionally, two separate matrices are required to aid the creation of the DVP

matrix. The matrices identify the relationships between the requirements and the system

components and between the requirements and the tests. Examples of these matrices are

shown in Table 2.8 and Table 2.9. The purpose of the two matrices is to relate the system

components and possible tests to the design requirements. Having this information allows

the engineer to focus on the aspects of the VV&T plan that are most relevant. Entering the

relationship information into the matrices is another potential source for human error as the

requirements to component information is likely to be determined based on experiential

knowledge. In the example, the brake lining life requirement relates only to the field

vehicle test as the other test only considers the performance during a single braking event.

Table 2.8: Requirements to tests relationships matrix

A
s

p
er

 F
M

V
SS

 1
2

1

Fi
t

lin
in

g
in

 f
ie

ld
 v

eh
ic

le

0

T1 T2 0

Stopping distance <60ft R1 Y

Stopping dist <75ft after down hill test R2 Y

Brake lining life >40000 miles R3 Y

0 0

Requirements x Tests

R
e

q
u

ir
e

m
e

n
ts

Tests

 26

When relating the requirements to the components, the example shows that the

brake lining life requirement only relates to the brake lining and is not affected by the hub

or the tire and wheel trim.

Table 2.9: Requirements to components relationship matrix

All of the components, tests and requirements are automatically retrieved from

elsewhere in the support tool in order to reduce user data entry. Only the relationship data

is required to be manually entered during this stage of the process.

2.1.2.8 Step 6 – Develop Test Strategy

The sixth step in the VV&T planning method is to develop a baseline test strategy

to evaluate the requirements. The purpose of this step is to identify the acceptance criteria

for any tests that must be conducted, oftentimes based on the performance values for the

existing design. Once again, this step is highly specific to the system being evaluated and

requires the data to be entered manually. The support tool assists in this step by providing

B
ra

ke
 C

h
am

b
er

B
ra

ke
 L

in
in

g

A
xl

e

H
u

b

Ti
e

an
d

 W
h

ee
l T

ri
m

En
gi

n
e

In
st

ru
m

en
t

P
an

el

Fr
am

e

C4 C5 C12 C13 C14 C15 C16 C17

Stopping distance <60ft R1 Y Y

Stopping dist <75ft after down hill test R2 Y Y

Brake lining life >40000 miles R3 Y

0 0

Requirements x Components

Components

R
e

q
u

ir
e

m
e

n
ts

 27

a table consisting of all of the tests identified in the DVP matrix with cells for each of the

information requirements. An example of the interface is shown in Table 2.10.

Table 2.10: Baseline test strategy

2.1.2.9 Step 7 – Conduct Trade-Off Analysis

The final step in the process is to conduct a trade-off analysis for the tests and

requirements to be conducted based on the DVP matrix. It is not always feasible to conduct

every test or to test every requirement due to cost or lead time restrictions. Therefore, it is

essential to prioritize which tests to conduct given certain parameters. The VV&T planning

method used in the development of this tool focuses on the requirements to be tested, as

opposed to the tests available to be run. The method uses the Verification Complexity

Index (VCI) to determine the complexity of verifying an individual requirement [1]. While

other methods for developing a testing plan exist, the VCI is chosen in the VV&T planning

method because it focuses on the requirements as opposed to the tests. The VCI is

calculated using the following equation:

 (1)
* (*)severity testsVCI req num PI

In order to facilitate this, the support tool provides the requirements and tests from

the DVP matrix. The user enters the severity of each requirement, the cost and lead times

for each test, and the number of tests to verify each requirement as described in the VV&T

Test
Baseline

Combination
Baseline Test Description

Acceptance Criteria for the

modified design

T1
As per FMVSS

121
C3

With existing vehicle, identify

stopping distance

New system should be on par with

existing vehicle

T2
Fit lining in

field vehicle

 28

method. The tool calculates the VCI for each requirement and ranks them. An example of

the trade-off analysis matrix is shown in Table 2.11.

Table 2.11: Example of a test-analysis matrix

In the example shown in Table 2.11, a severity is entered for each requirement. The

severity is based on how necessary each requirement is. For instance, 9 would be a legal

requirement, whereas 1 would be less important. The tests are then populated on the table,

with the number of iterations of the test that are required to verify each requirement being

below the test identifier. Also in the same column are the cost and lead time per test, where

a high number indicates a relatively high cost or lead time. This indicates the relative

cost/time to the company for the tests. The scale can be adjusted to conform to company-

specific definitions. The performance indicator for each test is the cost multiplied by the

lead time. At this point, the VCI can be calculated according to Equation 1 and the

requirements are ranked accordingly.

Requirement 1 (R1) has the highest VCI in Table 2.11, which implies that the

change engineers should focus on that requirement to consider for trade-off and

T1 T2 0 0 0 0 0 0 0 0

R1 9 1 3 2268 1

R2 9 3 2187 2

R3 3 1 27 3

0

0

0

0

0

3 9

3 9

9 81 0 0 0 0 0 0

Requirement
Severity

(1/3/9)

Tests (# iterations req'd) Verification

complexity

index

Ranking

Performance indicator

Lead time/Test (1/3/9)

Cost/Test (1/3/9)

 29

prioritization. The tool also allows the user to visualize how specific tests can possibly

verify multiple requirements.

2.1.2.10 Conclusions

The VV&T planning method the research in this section is based on [31] has been

shown to effectively mitigate change propagation resulting from an in-production

engineering change. However, the large amount of data entry involved and the planning

method’s reliance on an engineer’s experience can hinder the application of the method in

complex engineering systems.

The computational support tool described in this section successfully addresses

these issues. The support tool was shown to correctly guide an engineer through the

implementation of the VV&T planning method for a historic example of an engineering

change in an automotive brake assembly. The support tool also minimized the

opportunities for human error by carrying data over between the process steps. When

manually conducting the planning method for the described example, the user would have

to enter and keep track of 193 data points. With the implementation of the tool, the user

was required to manually input data in 129 locations. Therefore there was a 33% reduction

in the number of opportunities for human error. It should be noted that this is a fairly

simple system and the results would increase as the system becomes more complex.

Additionally, the support tool conducts all calculations and any analysis required for

evaluating change propagation beyond just the first order of interaction.

Without any additional input required from the user, the support tool provided

documentation to show how the prescribed VV&T planning method was implemented.

 30

The documentation includes the requirements list, a list of the affected components, the

DVP matrix, the baseline test strategy, and the trade-off analysis. Additionally, the support

tool provides space to specify why individual decisions were made regarding the design of

the VV&T plan

Additional research needs to be conducted in order to improve the trade-off analysis

functionality of the computational support tool. Currently, the trade-off analysis is

conducted based solely on the Verification Complexity Index (VCI), which focuses on the

importance of verifying individual requirements, combined with the costs and lead times

for the associated tests. However, depending on the scope and characteristics of the

engineering change being made, different companies will have different goals in executing

the trade-off analysis. For instance, in certain situations, a requirement associated with an

engineering change may have legal ramifications and needs to be implemented

immediately. As a result, the company would likely focus on tests that focus on the legal

requirement and can be conducted with minimal lead time. Therefore additional trade-off

metrics need to be determined that can allow companies to determine which criteria are

most important and guide the testing plan in that direction.

Another area of future research is to consider the level of change propagation when

managing the effects of engineering change. As previously discussed, the support tool

allows for the consideration of change propagation beyond the first order. However, it is

not clear to what level the change propagation should be considered. Further research into

this area is discussed in the following section.

 31

2.2 Study on Product Component Interaction

During the development of the change management support tool, the question was

asked about how deep one must traverse the relation graph to ensure complete exploration.

In order to answer this question, a study was conducted on product component and option

interaction using design structure matrices.

2.2.1 Background

Before executing the study, a review of design structure matrices, their use in

change management and understanding change propagation, and the use of complexity

metrics for understand product architecture was conducted.

2.2.1.1 Design structure matrices

Design structure matrices (DSM) are commonly used to better understand and

analyse product architectures [35]. DSMs can be used to model product architecture,

organizational structure, information flow, and design parameter relationships [35]. Others

extend the research by providing a review of the benefits of applying DSMs in

understanding product architecture, while acknowledging that a major limitation of DSMs

is that they are only applicable in a single domain [36]. The domain mapping matrix

(DMM) maps the interactions between DSMs from different domains [37]. Similarly,

DSMs are used to characterize complex systems by decomposing them down into clusters

or "building blocks" [38]. DSMs have also been used to explore how software architectures

can be managed [39], introducing architectural metrics, derived from the software

architecture DSMs, that can be used in development.

 32

As DSMs become more prominent in engineering design, the number of proposed

applications in which DSMs can be implemented has increased [40]. An early example of

using DSMs to predict some aspect of product development resulted in a proposed method

to predict the time required for product development [41]. This time prediction model uses

the amount of dependencies between product development tasks to determine how required

changes to specific tasks will affect the other tasks. Other applications include product

configuration [42], modelling engineering design activities [43], and product modularity

[32].

2.2.1.2 Change propagation

As DSMs provide an effective method for both viewing and analysing the

interactions between components [21], they are commonly used to better understand

change propagation within a product or system. Based on a study on engineering changes

and how the interactions between product components could be used to better understand

change propagation through the product, a DSM-based engineering change management

tool was created to assist in product development [44]. DSMs have been used to understand

change propagation in a complex system by decomposing the system into interacting

subsystems [20]. The change requests over the system’s life-cycle was related to one

another by considering the decomposed subsystems from which they originated.

DSMs have also been used to predict change propagation. Based on the use of

DSMs in understanding change propagation, the Change Prediction Method (CPM)

software tool was developed to assist in visualizing the possible change propagation

pathways from a single component prior to the execution of an engineering change [19].

 33

Since its development, the CPM tool has been implemented in case studies, demonstrating

the effectiveness of using DSMs to predict change propagation in a system [45,46]. While

the CPM tool focuses on change propagation in the product development process, the

DSMs primarily consist of product components with the change indices being subjectively

assigned.

Additional research on predicting requirements change has been conducted using

DSMs linking product requirements [23]. A historical based approach was used with many

different relationship sets to determine which combinations yielded the best predictors. A

significant conclusion from this research is the fact that using higher order DSMs,

specifically at the second order of interaction, is necessary to best predict future changes

to requirements. Thus, the question at hand is whether second or higher order interactions

are critical in other DSM applications for understanding and, eventually, predicting change.

To better answer this question, one may consider how product complexity could play a role

in increasing change propagation within a system or product.

2.2.1.3 Product complexity

When considering product structural or connectivity complexity, 29 different graph

theory metrics have been used for evaluating a product or system to predict assembly time

from component assemblies [47]. However, when focusing on how complexity can

influence change propagation within a product, the researchers focused on the complexity

metrics that primarily looked at the interactions between the components. This mirrors the

concept of complexity as coupling that is proposed in [48], with an initial algorithm based

on decomposability proposed to determine connectivity complexity. Using this algorithm,

 34

a simple experiment was conducted using the proposed metric to evaluate multiple existing

products represented in different model types [49]. The experiment showed the importance

of coupling when considering complexity in a product's architecture. Similarly, the

connective complexity in a system was used to model and understand design tasks [50].

Using connectivity metrics, the researchers were able to identify patterns and infer

additional relationships within the system.

2.2.2 Approach

The approach used in this portion of the research consists of two phases. The first

phase is the development of the DSMs from models of existing products. The second phase

consists of the analysis of the products based on how the individual components or

elements interact beyond the first order of interaction. The analysis is done based on both

assembly models and also on product configuration (option) graphs.

2.2.2.1 Product architecture

In the development of the product assembly-based DSMs for this study, previous

models are used to address issues of research objectivity and bias. The DSMs allow one

to draw comparisons between the physical attributes of the product and the data on how

the product’s components interacted. This was especially beneficial in looking for patterns

between different products that exhibit similar interaction behaviours. Previous work was

done to create connectivity graphs of all of the physical interactions between components

within a product based on the analysis of a 3-D CAD model [47]. Figure 2.2 shows an

example of a 3-D CAD model and the corresponding connectivity graph. In the work

 35

presented here, the types of relationships between components (elements) are not studied,

rather only the adjacency topology of the system architecture is investigated. Specifically,

the relationships in Figure 2.2(b) are capturing when parts are touching.

Figure 2.2: 3-D CAD model for a pen (a) and the resulting connectivity graph (b)

Using the connectivity graphs, it was possible to construct a DSM for each of the

products being analysed. It is important to note that these DSMs created from the

connectivity graphs only include physical interactions identified in the associated 3-D CAD

models. An example of the resulting DSM is shown in Figure 2.3(a). The second phase

begins with the identification of component interactions beyond the first order. The DSMs

are then populated with the higher order interactions. A higher order interaction is an

interaction between two components through other components. For example, in Figure

2.2(b), a second order interaction exists between the body and the grip body through the

rubber grip. An example of a completed DSM with higher order interactions is shown in

Figure 2.3(b). The cells in the DSM indicate the shortest path length between the

components, or the minimum order of interaction between components.

 36

Figure 2.3: Initial (a) and full populated (b) product design structure matrices for a

pen

The final step is to calculate the population density of the DSMs at each order of

interaction. The population density refers to the percentage of existing interactions

compared to the total number of possible interactions. The population density includes any

interactions that take place up to and including a given order. In the example of the pen

(Figure 2.3(b)), the population density for the 1st order would be 33.33% (14 interactions

out of a possible 42). Then, for the 2nd order, the population density is 57.14% (24

interactions out of 42 possible interactions). The complete graph for the population

densities for all orders of interaction is shown in Figure 2.4.

Figure 2.4: Graph of population densities for a pen

Component Name A B C D E F G

Grip Body A 1 1 1

Rubber Grip B 1 1

Press Button C 1 1

Spring D 1 1

Ink Body E 1 1

Body F 1 1

Indexer G 1

Component Name A B C D E F G

Grip Body A 1 3 1 1 2 4

Rubber Grip B 1 2 2 2 1 3

Press Button C 3 2 4 4 1 1

Spring D 1 2 4 1 3 5

Ink Body E 1 2 4 1 3 5

Body F 2 1 1 3 3 2

Indexer G 4 3 1 5 5 2

 37

Another statistic used to analyse the data is the average shortest path length applied

against the entire graph. The shortest path length for a given component is the minimum

number of steps required to reach every other component in the system. Therefore, the

average shortest path length for the DSM is the average for all of the relations in the system.

In the example shown in Figure 2.2, the maximum shortest path length for "press button"

to reach each of the other components is 4. By averaging the path lengths in the example,

the average maximum shortest path length is 4.143 (average of all values in its row).

2.2.2.2 Product configuration

In addition to considering propagation in products, product configuration data was

also evaluated. The purpose of this aspect of the research is to determine how DSMs for

product configuration are similar to DSMs for product architecture. This is of interest in

that it is important to understand change propagation in configuration management,

especially when using rule-based configuration management [51]. An example DSM for

product configuration is shown in Figure 2.5(a) considering 14 options. These are related

through option rules. This DSM represents the options found in a single change request.

Figure 2.5: Initial (a) and fully populated (b) product configuration DSMs for a

product change

Option Name A B C D E F G H I J K L M N

161 A

167 B 1

169 C 1 1

1CB D 1

2VB E 1

6UF F 1

823 G 1

842 H 1 1

843 I 1 1 1

858 J 1

8EB K 1

8S9 L 1

991 M 1 1 1 1 1 1

9AE N 1

Option Name A B C D E F G H I J K L M N

161 A

167 B 2 2 2 2 1 2

169 C 2 2 1 1 2

1CB D 2 4 1 3 4

2VB E 2 2 2 2 1 2

6UF F 2 2 2 2 1 2

823 G 2 4 3 1 2

842 H 1 1 3 2 3

843 I 1 3 1 2 1

858 J 2 4 2 3 1

8EB K 2 2 2 2 1 2

8S9 L 2 2 2 2 1 2

991 M 1 1 1 1 1 1

9AE N 2 2 2 2 2 1

 38

In Figure 2.5(a), the elements of the DSM are product options that might be selected

independently or within packages by a customer. They relate to other options by a series

of rules that might be either engineering based or marketing focused. In the DSM, the

connections, through the rules, are shown by 1st order interactions in the DSM. For

example, in Figure 2.5(a), Option 167 is directly related to Option 991 through a

configuration rule. Using the same method discussed previously, a higher order DSM is

created. Figure 2.5(b) shows the resulting higher order DSM based on the DSM in Figure

2.5(a). When analysing product configurations, two levels of DSMs are used: a full

configuration ruleset, consisting of approximately 600 components connected by 1400

rules; and a series of configuration DSMs created by considering the affected components

from historical changes implemented at an automotive OEM. The DSMs are created by

starting with the options affected by the change. The rest of the DSM is populated using

the 1st and 2nd order interactions stemming from the initial change components. In the

example shown in Figure 2.5, the graph is not fully populated due to clustering in the

ruleset. For example, option 161 is not connected to any other options, while options 169,

1CB, 823, 842, 843, and 858 for a cluster and do not interact with any options outside of

the cluster. Once the higher order DSM is created, the same analysis is conducted as with

the product architecture DSMs. The purpose behind this is to use the conclusions drawn

from analysing product architecture and apply it to product configuration.

2.2.3 Results

The results were compiled for component saturation rates and higher order

component interaction levels.

 39

2.2.3.1 Component saturation

When applied to thirteen products [47], the given approach yielded the results

shown in Table 2.12. In the table, the number of components, the betweenness density,

and the population density for each product based on the order of interaction are illustrated.

Table 2.12: Component interaction saturation for product architecture

Betweenness density is a measure of the average betweenness value for all of the

components with a given product. Betweenness is a useful metric for evaluating

complexity in that it provides a measure of the importance of a specified component [52].

It is equal to the number of shortest paths from all vertices to all others that pass through

that node. Also shown in Table 2.12 are the orders of interaction for complete saturation

of the DSM and the row density for each product. The row density shows the highest

percent of interactions present for a single component of the product. For example, in the

pen, there are seven components, resulting in six possible interactions between a single

component and the other components. The most interconnected component, the grip body,

1 2 3 4 5 6 7

Boothroyd Piston 67% 7 2 0.314 47.6 100.0 100.0 100.0 100.0 100.0 100.0

Mouse 82% 12 3 0.186 25.8 86.4 100.0 100.0 100.0 100.0 100.0

Stapler 87% 16 4 0.245 27.5 83.3 99.2 100.0 100.0 100.0 100.0

Pencil Compass 45% 12 4 0.431 27.3 66.7 92.4 100.0 100.0 100.0 100.0

Solar Yard Light 64% 15 5 0.454 19.1 57.1 88.6 99.1 100.0 100.0 100.0

Drill 70% 28 5 0.259 14.0 61.9 92.1 99.2 100.0 100.0 100.0

Hole Punch 39% 27 4 0.658 9.1 34.8 74.4 100.0 100.0 100.0 100.0

Vise 44% 19 5 0.546 15.2 42.1 80.1 97.7 100.0 100.0 100.0

Chopper 38% 41 6 0.577 8.4 35.5 73.9 93.9 99.3 100.0 100.0

Blender 33% 43 6 0.620 7.8 32.6 70.2 92.3 99.0 100.0 100.0

Pen 50% 7 5 0.857 33.3 57.1 76.2 90.5 100.0 100.0 100.0

Maglight 38% 14 7 1.471 17.6 39.6 58.2 74.7 87.9 95.6 100.0

Brake subsystem 40% 11 7 Unknown 20.0 43.6 63.6 81.8 92.7 98.2 100.0

Row

Density

Population Density by Order of Interaction

Product Architecture

Product
of

Comp
Saturation

Betweenness

Density

 40

interacts with three components out of the possible six. Therefore, the pen has a 50% row

density. The row density was considered as it may help to explain why some of the

saturation rates behave as they do.

Using visual inspection, one can separate the resulting graphs into groupings of

products that exhibit similar curves. Figure 2.6 shows the first grouping, consisting of the

stapler and the computer mouse. These curves exhibit quick saturations (3rd order) with a

steep initial slope. The second grouping is depicted in Figure 2.7 and consists of the pencil

compass, solar yard light, and the electric drill. The curves of this group exhibit slightly

slower saturations (4th order) and resemble a parabola. Figure 2.8 contains the third

grouping, consisting of the 3-hole punch, an electric food chopper/processor, a pony vise,

and an electric blender. These curves exhibit medium saturation order (4th/5th orders) and

have a slight “s-curve” as the order of interaction is increased. The final grouping is shown

in Figure 2.9 and consists of the pen, a Maglite flashlight, and the brake subsystem

modelled in the motivating project. The curves of this group exhibit slow saturations (5th-

7th orders) and are parabolic in shape. Trendlines that represented all of the points for each

product within the grouping were created using cubic polynomials. The resulting R2 values

are as follows: Group 1 – 0.9797; Group 2 – 0.9895; Group 3 – 0.9791; Group 4 – 0.9559.

The R2 value for the trendline from all of the product curves together is 0.8663. The

complete graphs showing the trendlines can be found in 9.2Appendix B:. It should be

noted that all of the trendlines were created using third order polynomials. The noticeable

increase in R2 values when the product curves are combined indicates that the groupings

are correct.

 41

Figure 2.6: Product group 1 saturation

graph

Figure 2.7: Product group 2 saturation graph

Figure 2.8: Product group 3 saturation

graph

Figure 2.9: Product group 4 saturation graph

Similar results were created for four product configuration change DSMs from the

automotive OEM. The results are shown in Table 2.13. The resulting graphs for the

product configuration changes are shown in Figure 2.10. When a trendline is created for

the product configuration change curves, the R2 value is 0.2175. Much of this is due to

two of the curves not reaching 100% saturation.

 42

Table 2.13: Component interaction saturation for product configuration

Figure 2.10: Product configuration saturation graph

When the product configuration subsets are considered alongside the products,

three of the changes (1, 2, 4) fit within three of the product groups. The resulting graphs

are shown in Figure 2.11, Figure 2.12, and Figure 2.13. It should be noted that Change 3

and the complete ruleset were not able to be matched to a specific group due to the low

maximum population density. When considering product configurations, it is common that

there will be clusters of product options that do not interact in any way with other clusters.

It the case of the complete ruleset, this was much more severe, with only 16.17% of the

possible interactions existing at maximum saturation (reached in the 10th order). When

trendlines for the three groups are created, the following R2 values are achieved: Group 1

1 2 3 4 5 6 7 8 9 10 11

Change 1 35% 38 7 8.3 32.6 50.9 61.5 73.7 92.9 100.0 100.0 100.0 100.0 100.0

Change 2 80% 26 N/A 21.5 71.1 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8

Change 3 46% 14 N/A 12.1 34.1 37.4 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6

Change 4 50% 17 5 19.9 52.9 86.8 98.5 100.0 100.0 100.0 100 100 100 100

Complete Ruleset 6% 395 N/A 0.63 2.24 4.63 7.26 10.35 13.29 15.12 15.92 16.14 16.17 16.17

Saturation
of

Comp

Population Density by Order of Interaction

Product Configuration

Row

Density
Product

 43

– 0.8533; Group 3 – 0.9197; Group 4 – 0.9408. The complete graphs can be found in

9.2Appendix B:.

2.2.3.2 Higher order component interaction

The average shortest path length is also considered as a method for better

understanding component interaction within a system. By applying the outlined approach

to the product DSMs, the following results table was created and is shown in Table 2.14.

Figure 2.11: Group 1 saturation graph

Figure 2.12: Group 2 saturation graph

Figure 2.13: Group 3 saturation graph

 44

Table 2.14: Product architecture component interaction

In addition, the same approach was used to analyse the product configuration

DSMs. The resulting data is shown in Table 2.15.

Table 2.15: Product configuration component interaction

Visual inspection of both the product architecture and product configuration

datasets show that the average shortest path length and the order for complete saturation

are closely related. A larger sample population would be required for a more robust

correlation analysis. However, it is clear from the results that the relationships between

average shortest path length and complete saturation of the DSM are similar for both

Product Row Dens. Saturation Avg Path Comp

Boothroyd Piston 67% 2 2.00 7

Mouse 82% 3 2.58 12

Stapler 87% 4 3.50 12

Pencil Compass 45% 4 2.94 16

Solar Yard Light 64% 4 3.64 27

Drill 70% 5 4.14 7

Hole Punch 39% 5 4.00 15

Vise 44% 5 3.89 28

Chopper 38% 5 4.05 19

Blender 33% 6 4.71 41

Pen 50% 6 4.98 43

Maglight 38% 7 5.86 14

Brake subsystem 40% 7 5.45 11

Product Architecture

Product Row Dens. Saturation Avg Path Comp

Change 1 35% 7 (100%) 6.16 38

Change 2 80% 3 (78.8%) 2.42 26

Change 3 46% 4 (39.6%) 2.36 14

Change 4 50% 5 (100%) 4.00 17

Complete Ruleset 6% 11 (16.17%) 3.26 395

Product Configuration

 45

product architecture and product configuration. Therefore, one can be used as a substitute

for the other.

2.2.4 Analysis

When the betweenness values are compared to the saturation curves for the four

product groupings, a correlation is suggested; as the betweenness density decreases, the

slope of the saturation curve increases, or the individual components more quickly interact

with all of the other components through higher order interactions. It can also be noted

that the betweenness density values for those products within a group are similar when

compared to the values for the other products (for example, all of the products in group 3

have values between 0.54 and 0.66). This shows that as the slope of the saturation curve

increases, the interconnectivity (betweenness) of the product increases.

Because of the familiarity with the products involved, it was possible to identify

additional relationships regarding the product groupings with respect to the product

architecture. It was noted that the products in group 4 exhibited a stacked-linear assembly

structure [53], which likely corresponds to a decreased saturation rate as components only

directly interact with neighbouring components along the body of the product. On the

opposite end of the spectrum, those products in group 1 all exhibit chassis product

architectures similar to the spokes of a wheel [53], where a single body or frame component

interacts with a large percentage of the other components in the product. This would

correspond with a rapid saturation rate as any given component would quickly interact with

the other components through higher order interactions as soon as it interacts with the

 46

central frame/body component. Additionally, the high amount of interactions for a single

component is also shown in the row density statistic provided.

Average shortest path length is another metric often used when considering the

complexity of a system as it correlates to the level of interconnectedness of the components

in the system [47,50,54]. In the analysis of component interaction a clear relationship is

identified between the average shortest path length and the order of interaction at which

the DSM is fully saturated. This shows that as the level of interconnectivity of the system

increases, the DSM saturation rate also increases.

When comparing the metrics for product architecture and product configuration, it

is clear that the metrics for analysing product complexity can also be applied to evaluating

the complexity of a product configuration subset or even the entire product configuration

ruleset. This analysis is based on the similarities that were identified between the different

types of DSMs and the fact that the saturation graphs for the product configuration subsets

were able to be matched closely with the graphs depicting product architecture.

2.3 Conclusions

The research objective that is covered in this chapter is to increase understanding

of existing industry practices for conducting change management. This objective was

accomplished through three related sub-questions, discussed below.

The first sub-question is: What is the state-of-the-art for engineering change

management? In order to answer this question, a literature review of change management

practice was conducted. The literature review consisted of an analysis of engineering

change and change propagation, followed by a discussion of existing change management

 47

tools and methods, including their usefulness and shortcomings. In the literature review,

it was identified that numerous tools and methods exist for engineering change

management. However, it was also noted that much of the research conducted in academia

is not put into practice in industry. The primary reasons for this include costs and difficulty

of adopting the methods or tools proposed by researchers.

The answers to the first sub-question directly tie into the second question: How can

the existing change management practices be improved to further enhance usability and

efficiency? To answer this question, a computational support tool was developed and

evaluated based on an existing change management planning method. The planning

method selected for adoption into a tool was chosen due to its focus on variant change

propagation, something that was not seen in the other change management support

methods. The resulting support tool was developed with an emphasis on increasing

adoptability and minimizing costs, while also increasing change management capabilities.

The support tool was evaluated using a case example and showed a significant decrease in

the potential for human entry error, as well as an ability to automatically document the

steps and decisions taken in the change management process.

During the development of the change management support tool, the question was

asked regarding the depth required to sufficiently evaluate the effects of change

propagation. The led to the final sub-question for this research objective: When

considering change propagation, what order of interaction is required to verify affected

components? In order to answer this question, a study was conducted on component

interaction. In the study, design structure matrices (DSMs) were created based on product

 48

assembly models and option configuration rulesets. The DSMs were then evaluated based

on how quickly the components interacted with all of the other components through higher

order interactions. Through the study, it was found that the second or third order is

recommended when considering change propagation, though this is dependent on the

system and the change in question. Additionally, it was identified that interaction

saturation rates could be a useful metric when evaluating or describing the complexity in a

system.

2.4 Dissertation Roadmap

The motivation for this dissertation was an interest in product configuration, with

an emphasis on configuration change and configuration management practices. Chapter

Two presented the research in current change management practice that led to the author’s

interest in dynamic configuration management. Since this chapter has provided the

foundation for the remainder of the research, the next chapter (Chapter Three) builds on

this by presenting the research objectives of the dissertation. The progress of this

dissertation is shown in Figure 2.14 in which the completed portion is highlighted in green.

 49

Figure 2.14: Dissertation roadmap

 50

CHAPTER THREE: RESEARCH APPROACH

Once again, the goal of this research is to understand how configuration change

management is conducted in industry in order to increase the capabilities of the

configuration change management process through method development. An overview of

the research path followed is shown in Figure 3.1.

Figure 3.1: Research plan overview

In order to address this goal, the research is divided into three separate, but related,

objectives. The first objective consists of the preliminary work that led to the proposed

research: understanding existing industry practice for change management (Chapter Two).

This includes a review of current literature regarding engineering change management

 51

methods and strategies. An existing method for identifying possible change propagation

pathways is selected and used to develop an engineering change management support tool

[55]. This method was selected in part because of its focus on understanding change

propagation through variant pathways. During the development of the support tool, a

question asked was about how far into a change propagation pathway is necessary to

identify affected components for verification. This led to a study into how design structure

matrices (DSMs) can be used to understand component and configuration option

interaction and interconnectedness [56]. As shown in Figure 3.1, the lessons learned from

the preliminary research were applied to product configuration to assist in understanding

and improving configuration change management.

The second research objective is to understand how a major automotive OEM

conducts configuration management (Chapter Four). The purpose of the second objective

is to develop a better understanding of product configuration management. The approach

taken to develop this understanding was through case study analysis at a major automotive

OEM to identify how the company conducts configuration management. A review of the

literature on configuration management in other industries and in academia provides

insight to determine if the processes identified in the case study are in line with the state-

of-the-art and relevant best practices [51]. As shown in Figure 3.1, the knowledge gained

from this objective is used to develop an improved configuration change management

method.

The third objective includes the development of an improved method for

conducting product configuration change management (Chapter Five). To accomplish this,

 52

a visualization support tool was developed to assist in understanding the potential

implications of configuration changes and to increase the user’s ability to explore a

proposed change (Chapter Six). Additionally, the use of complexity metrics and a

satisfiability engine are explored in support of the method. During the development of the

visualization support tool, a user study was conducted to investigate the relationship

between specific graph parameters and the user’s ability to read and interpret the graph

[57]. To validate the effectiveness of the visualization method, a second user study was

employed (Chapter Seven). Further, the visualization tool was used in four ongoing

configuration changes at the automotive OEM. Additional validation is presented for the

overall configuration change management method through three select cases where the

benefit of the method was evaluated (Chapter Eight).

3.1 Research Questions and Tasks

Nine specific tasks were defined to answer these research questions. Table 3.1

illustrates the research objectives and their related tasks. These tasks are detailed further

in the following sections.

Table 3.1: Research Questions and Tasks

Research

Objectives
Research Sub-questions Tasks

RO 1-

Understanding

existing industry

practice for change

management

RQ 1.1 What is the state-of-the-art for

engineering change management?

Task 1A: Review of

change management

practice

Task 1B: Support tool

development

Task 1C: Component

interaction study

RQ 1.2 How can the existing change management

practices be improved to further enhance usability

and efficiency?

RQ 1.3 When considering change propagation,

what order of interaction is required to verify

affected components?

 53

RO 2- Understand

how an OEM

conducts

configuration

change

management

RQ 2.1 What is the state-of-the-art for

configuration management?

Task 2A: Review of

current configuration

management practices

Task 2B: Case study

with automotive OEM

RQ 2.2 How does a major automotive OEM

conduct configuration change management?

RO 3 –

Development of an

improved method

for configuration

change

management

RQ 3.1 How can data visualization be used to

increase the ability to understand component

relationships in a system?

Task 3A: Review of

visualization

techniques

Task 3B: Graph

layout user study

Task 3C: Rule

implementation user

study

Task 3D:

Implementation

RQ 3.2 Does the implementation of a graph

visualization design enabler assist in identifying

errors and understanding the relationships in a

proposed configuration change?

RQ 3.3 Does the proposed method assist in

identifying errors and understanding the

relationships in the possible product

configurations?

3.1.1 RO 1: Understanding existing industry practice for change management

The preliminary portion of this research began with a review of existing change

management practice. This is shown in the first research sub-question for the objective:

RQ 1.1: What is the state-of-the-art for change management practice?

The question is answered through a literature review of engineering change and

change propagation and the existing change management support tools to manage the

changes (Task 1A). The purpose of this task is to gain a better understanding for change

management in industry and identify areas where the existing practices can be

supplemented to increase their effectiveness and/or usability. During the review of existing

support tools it is identified that a significant gap exists between change management

methods proposed by academia and the methods in use by industry [15].

 54

This led to the development of the second sub-question:

RQ 1.2: How can the existing change management practices be improved to further

enhance usability and efficiency?

To answer this research question, an existing change management support method

was selected and developed into a computational support tool to assist in its implementation

(Task 1B). The VV&T method was selected due to its inclusion of variant propagation

pathways, which is an aspect that is unique to the method and is of interest to the researcher

[30]. The purpose of this task is to determine how the methods proposed in academia can

be supported to increase their usability by industry and therefore increase the level of

adoption. During the development of the change management support tool, the question

was asked about how deep one must traverse the relation graph to ensure complete

exploration.

This led to the creation of the third sub-question:

RQ 1.3: When considering change propagation, what order of interaction is

required to verify affected components?

To answer this research question, a study is conducted on component interactions

using design structure matrices (Task 1C). In the study, component interactions (option

rules and touching parts) were used to identify how a change could potentially propagate

through a system at higher orders of interaction. The purpose of this task is to gain a better

understanding of component interaction in product architecture and configuration rulesets

and determine whether similar patterns exist between them.

 55

3.1.2 RO 2: Understand how an OEM conducts configuration change management

In addition to regularly changing their products to remain current, many companies

also use multiple possible configurations to reach the needs of individual customers [58].

In the last decade, there has been a widespread shift in manufacturing from mass production

to mass customization, such as making multiple configurations from a single product

platform, which enables companies to maintain the efficient production practices

associated with mass production, while targeting specific customers [58,59]. Due to the

increased use of product configuration as a means towards mass customization, a large

amount of research has been conducted to develop tools for possible use in configuration

management [3,60–68]. However, research has shown that there is a significant gap

between the latest methods and tools developed in academia and what is being used in

industry [1]. If companies are not using the proposed methods, then it is necessary to

understand why the companies are not using those methods and what practices they are

using instead.

The first step in achieving this objective is to build a knowledge base regarding

configuration management practices in industry. This led to the research sub-question:

RQ 2.1: What is the state-of-the-art for configuration management?

This question is answered through a literature review of configuration management

and the existing configuration change management methods (Task 2A). The purpose of

this task is to gain a better understanding of configuration management in industry and aid

in identifying the specific practices in use at the OEM during the case study. While the

literature review provides a broad spectrum of knowledge regarding configuration

 56

management practice, it does not provide the required level of detail regarding an

individual company’s practices.

This led to the development of the second sub-question:

RQ 2.2: How does a major automotive OEM conduct configuration change

management?

This question is answered through a case study on the configuration management

practices at a major automotive OEM in Spartanburg, SC (Task 2B). The manufacturer

was chosen as the preferred case because the company uses a large, but unknown, number

of configurations for each of the vehicle models and, therefore, must be able to identify

how configuration changes will impact the system. For example, in the current

configuration management method, the OEM uses over 600 rules to manage over 400

options that relate to approximately 1500 parts for a single vehicle model, resulting in

greater than 108 interactions between the elements. As a result of the large number of

elements affecting the possible configurations, proper configuration management is

essential.

The case study in Task 2B consists of data gathering through interviews, document

analysis, and direct observations of employees executing configuration change

management over a one year period. The purpose of the case study is to identify how the

manufacturer conducts configuration and configuration change management. Finally,

opportunities to improve the existing configuration management practices at the OEM are

recommended.

 57

3.1.3 RO 3: Development of an improved method for configuration change management

In order for configuration management to be an effective process, the large amount

of data that is available to the engineer must be readily accessible and easy to understand.

It was shown in [51] that rule-based configuration management is used in the automotive

OEM being studied, as well as in numerous other manufacturers [69,70]. A major issue

that was identified with respect to rule-based configuration management is the difficulty in

making changes to the system and in determining the accuracy of the system. This is

primarily due to the scale of the ruleset that is required to completely specify the system

[3]. Previous research has shown that different visualization techniques can simplify the

process of analyzing large or complicated data sets. As previously stated, the scale of the

problem identified in the case study (greater than 108 possible interactions) results in the

problem being an ideal opportunity for the implementation of alternate data visualization

techniques. Therefore, it is necessary to develop additional resources to support the

visualization of the data found in the ruleset when using rule-based configuration

management.

The level of complexity involved in rule-based configuration management makes

it difficult to understand how changes can have unintended consequences throughout the

configuration system. Previous research has shown that data visualization can be useful

when considering complex systems [71–73]. This leads to the first sub-question for this

research objective:

RQ 3.1: How can data visualization be used to increase the ability to understand

component relationships in a system?

 58

This question is answered through a review of data visualization techniques,

specifically focusing on graph visualization and their usefulness for identifying

relationships in complex systems (Task 3A). The purpose of this task is to determine how

data visualization has been used previously and then to determine whether the use of

visualizations would be beneficial in configuration change management. It was found that

using graph visualizations, based on past studies, could increase the capabilities for

understanding and managing changes to the configuration system.

Once it was determined that graph visualizations could be used in the new method,

it was necessary to identify which factors would affect the usefulness of the graph

visualization. This question is answered through a user study (Task 3B). The user study

was conducted with the specific purpose of determining which factors (layout, amount of

information, and color scheme) had the greatest effect on the usability of the graph

visualizations. The participants were provided with different variations of a portion of the

configuration system and were asked questions about different aspects of the rules or how

specific rule changes could affect the entire system. From the results, it was found that the

amount of information presented had the greatest influence on the participants’ ability to

answer questions about the rule system. After the completed development of the

visualization support tool, the next step was to evaluate its usefulness.

This led to the second sub-question:

RQ 3.2: Does the implementation of a graph visualization design enabler assist in

identifying errors and understanding the relationships in a proposed configuration change?

 59

This question was partially answered through a second user study (Task 3C) to

determine whether the implementation of a graph visualization tool would increase the

accuracy and consistency of rule implementation into the configuration system. Further,

training was tested to determine its impact on usability. It was found that with limited

training, the graph was comparable to the existing method used by the personnel at the

OEM. Additionally, the visualization group showed the greatest improvement in

answering questions requiring a greater level of analysis.

The research question was also answered through using the visualization tool in

four ongoing configuration changes at the (Task 3D). In these changes, implementing the

visualization method allowed the users to better explore the effects of the proposed change

and identify potential conflicts. Additionally, a time study showed that the visualization

would allow the user to conduct the same analysis in approximately one fourth of the time

required in the current process.

While graph visualization is useful for understanding relationships between

components, certain aspects of configuration management require different reasoning

solutions, such as the ability to validate the system and identify conflicts. Thus, two

additional design enablers for conflict detection and complexity analysis are implemented

alongside graph visualization in the proposed method. The next step was to evaluate the

usefulness of the overall method.

The led to the third sub-question:

RQ 3.3: Does the proposed method assist in identifying errors and understanding

the relationships in the possible product configurations?

 60

The research question was answered through implementing the proposed method

on three configuration changes (Task 3D). When applying the proposed method to the

three configuration changes, it was shown that the proposed method increases the user’s

capabilities when validating proposed configuration changes. Feedback obtained from a

formal interview with a primary user of the method, personnel from the Launch and

Change Control group at the OEM, showed that implementing the proposed method when

evaluating configurations would increase the group’s capability to correctly identify errors

and prevent future issues resulting from a proposed change. Additional informal feedback

received throughout the development of the proposed process supports also this conclusion.

3.2 Dissertation Roadmap

Chapter Three presented the discussed the research objectives and provided an

overview of the dissertation. With the structure of the dissertation established, the next

chapter (Chapter Four) begins the exploratory portion of the dissertation. In the following

chapter, a case study of an automotive OEM is presented to illustrate how companies

conduct configuration management. The progress of this dissertation is shown in Figure

3.2 in which the completed portion is highlighted in green.

 61

Figure 3.2: Dissertation roadmap

 62

CHAPTER FOUR: CONFIGURATION CHANGE MANAGEMENT – A CASE

STUDY

The purpose of the research in this chapter is to identify how a company conducts

configuration change management. Specifically, the research aims to better understand

how an individual manufacturer that heavily employs mass customization principles in its

manufacturing process implements configuration and change management to adapt to the

varied and changing needs of production. Based on the findings identified in the research,

recommendations are made to increase the effectiveness of configuration and change

management practices in industry.

4.1 Current Configuration Management Practice

A variety of techniques have been developed to assist in the implementation of

configuration management [5,42,66,74–77]. For the purposes of this research, the

classification scheme proposed in [3] is used to facilitate discussion of the different existing

methods. To examine the different methods, the type of reasoning is used as the central

comparison characteristic, specifically rule-based, model-based, and case-based reasoning

[78]. Viewing configuration management as an instance of engineering change

management is an additional facet of configuration change management that is discussed

in this chapter.

4.1.1 Rule-based reasoning

Rule-based reasoning is one of the earlier forms of implemented configuration

management and relies on a series of rules to manage the possible configurations of

components within a system. The rules can best be described as a set of conditions and

 63

consequences (if “A” then “B”). Therefore, the condition relates to an existing component

or state of the product which, if met, results in an execution of the consequence action or

part inclusion. An example of this would be as follows: “If Part A is found in the

configuration, then Part B cannot be used in this configuration”. As a result, the execution

of this type of reasoning is deductive; each condition leads to consequences, which act as

conditions for subsequent rules. This allows the configurator to analyze each rule to

determine if the condition has been met, and if it has, to assign a consequence based on the

rule. The only complication occurs when consequences conflict and the configurator must

conduct additional reasoning to find a feasible solution. Examples of rule-based

configurators are [60–62].

A significant limitation to rule-based approaches involves the large number of rules

required to accurately represent the possible configurations. For instance, a single entity

or component within the possible thousands of components is likely to be governed by

multiple rules. Complexity is composed of three aspects: size, coupling and solvability

[49]. Here, coupling is of critical interest. Therefore, as the complexity of the product

increases, both with the increase in the number of possible components and in the degree

of coupling, the size of the rule database would increase drastically. This leads to two

known challenges: the ability to maintain the rule database and the difficulty in ensuring

the completeness of the rule database [3].

The first major challenge with rule-based reasoning is the ability of a rule database

to accurately represent all of the possible configurations. This is due to the sheer volume

of the database. The rule set for a complex system could have tens of thousands of rules

 64

[3]; ensuring that each of these rules is accurate and that the rule set is complete is nearly

impossible.

For the second challenge, any change to a single component within the rule

database is likely to result in propagated change to multiple other components due to the

interaction of the rules, which in turn could result in additional changes. Therefore,

tracking the changes as they propagate through the system is necessary. This will be

discussed further in the discussion of product configuration as change management in

Section 4.2.4.

4.1.2 Case-based reasoning

Case-based reasoning uses preexisting product variants to assist in the development

of future configurations. As such, the configuration knowledge database consists of the

previous variants of a specific product and the information regarding each variant, such as

requirements met or component configuration [3]. Researchers have proposed a number

of steps for the case-based reasoning process [3,63,79,80], with the general approach as

follows:

 Classify the cases already existing in the database

 Input the customer requirements for the new design problem

 Attempt to match the requirements to existing cases

 Adapt the identified cases to the stated customer requirements

 Evaluate the new cases for feasibility

 Store the newly created configurations in the database with the information

regarding feasibility

 65

Case-based reasoning is useful in situations where there are a limited number of

possible configurations [81]. As adapting the existing cases to meet the customer

requirements is necessary for case-based reasoning, the case set must span the possible

space. Another advantage of this process is the prevention of the loss of historical

knowledge, whether employee knowledge of existing products or information concerning

previous failed attempts [81]. The retention of engineering knowledge is one of the major

issues identified in a case study regarding the presence, or lack, of configuration

management in the aerospace industry [64]. One method has been proposed for applying

case-based reasoning to mass customization using a tree-structured bill of materials

diagram [63]. Others look at the reuse of manufacturing information to assist in developing

product platforms, a process similar to that of case-based reasoning, but focusing on the

development of the initial cases as opposed to creating variants to meet new requirements

[65,67]. By focusing on the creation of a complete initial case, one aims to make the

adaption to new product variants a simpler process.

The reliance of case-based reasoning on existing feasible configurations is the

primary disadvantage of the method. In order for case-based reasoning to be effective, the

customer requirements must be able to be matched with a reasonably close approximation.

If no such configuration exists, then either the new configuration must be completely

adapted from nothing or a significant portion must be adapted, negating the benefits of

using case-based reasoning. On the other hand, if the number of possible and existing

configurations is too large, the opposite can occur, where the subset of returned matches is

 66

too large to be easily managed or the amount of adaption is too great, due to the number of

total components to be changed.

4.1.3 Model-based reasoning

Model-based reasoning relies on the assumption that each product can be

effectively modeled as a system [3,82]. Within the system model are entities that can be

decomposed into components and the interactions between the components. Numerous

types of approaches have been developed from model-based reasoning [3]; however, only

four types will be discussed here.

The first model-based approach is the use of description logics in configuration

management. Description logics are a form of knowledge management that allows for the

structured storage and reasoning of engineering information [83]. The three elements of

description logics are individuals (objects in the domain), concepts (sets of individuals)

and roles (relationships between individuals) [84]. Through the use of these elements, it is

possible to create complex descriptions of product configurations and use reasoning tools

to evaluate the feasibility and functionality of configurations. This aligns with one of the

major advantages of description logics for configuration management: the ability to

maintain consistency as the model is updated and new components are added to the system

[83]. However, a potential limitation of description logics is in the level of specificity of

the model. If the description logic system remains fairly general, then it is easy to maintain

consistency, but the model may become too simplistic. On the other hand, a specific model

may limit the ability of the system to work with complex products.

 67

Another common model-based approach is resource-based configuration

management. In the resource-based approach, the primary consideration is the interaction

between the technical systems and their environments. Therefore, a specific configuration

is only considered feasible if the resources, both concrete and abstract, that the components

or environment require are equal to the resources supplied by either the environment or the

system [75]. A major advantage of this method is the simplicity of configuring systems

using this approach. The required resources of the environment are analyzed; a resource

that is not currently balanced is selected and a component is added to the system that can

remove the imbalance for the resource. This process continues until all of the resources in

the system are balanced. This method works well where only functional characteristics

must be considered, which is why it is used extensively in software configuration

management, such as the Koala Component Model [85]. However, because of the inability

of this approach to effectively consider component geometries, any configurations where

there are structural or physical constraints are not ideal for use with this method.

Constraint-based reasoning is another example of an approach derived from model-

based configuration management. In constraint-based reasoning, a component is defined

by its properties and the interfaces for interacting with other components [77]. The

constraints restrict the ways in which the components can be combined to form a

configuration. Therefore the goal of constraint-based configuration management is to build

a configuration of components that meet the constraint requirements based on a given set

of requirements. When solving a constraint problem, there are two basic assumptions: the

user knows the functional roles to be fulfilled and the user can identify at least one

 68

component to fulfill each role [76]. Based on these assumptions, the user can use the set

of functional roles to determine the required components and use the constraining

relationships to identify feasible configurations for the design problem. A major

disadvantage for this method is that many of the available configurators using constraint-

based requires all possible constraint and functional relationships to be entered into the

system prior to use, whether they or not will be used [3].

A final approach is the treatment of configuration management as a multi-objective

optimization problem [86]. The basis for this approach is in resource-based reasoning in

that the optimization technique uses product and component information that is similar to

the resources used in that approach. However, in this method, equations are developed to

model the requirements, while connection matrices are used to model the interactions

between the available components. Then, through multi-objective optimization, the

configuration(s) with the highest overall satisfaction for the objective function (a weighted

equation of all of the requirements) is (are) selected for further review. Based on the

similarity to resource-based reasoning, the advantages and disadvantages are comparable.

An additional disadvantage is the large amount of data required to be input to run the

optimization. However, the use of optimization techniques makes the method more

adaptable to changes in the requirements and can factor in weighting functions for more

important requirements.

4.1.4 Product configuration system maintenance

Little research has been done that focuses on managing the dynamic product

information used in the configuration management process [87]. One of the challenges

 69

identified with many of the previous configuration management methods is the difficulty

in maintaining the product information as the number and variety of possible components

changes over time due to changing customer requirements. A process-oriented approach

was proposed to assist in solving this problem [87]:

1. Identify new product configuration knowledge

2. Create a configuration model change request

3. Evaluate the configuration model change request

4. Update the product configuration model (or cancel the request if not approved)

The proposed process was intended for the systematic implementation of new

components into the set of possible configurations. It should be noted that the process is

similar to the general engineering change process which consists of the following steps [8]:

1. Request for an engineering change

2. Development of possible solutions

3. Evaluate impacts of the change

4. Engineering change approval

5. Implementation

6. Review

Table 4.1 shows how the steps of these two processes coincide.

Table 4.1: Configuration management to change management mapping table

Configuration Management Step # Change Management Step #

1 2

2 1

3 3

4 4, 5

Therefore, it is possible to consider the process of updating a product configuration

as a variation of engineering change management. As such, some of the tools used to

 70

manage engineering changes and their propagation can be similarly applied to assist in

managing product configurations [12,31].

4.1.5 Configuration Management Case Studies in the Literature

As a result of the need for effective configuration management in industry,

numerous researchers are conducting industry case studies to determine how companies

are doing configuration management and how newly developed tools can be used to

increase their capabilities. Table 4.2 provides a sampling of industry case studies on

configuration management practices.

Table 4.2: Examples of other case-based research in configuration management

R
ef

er
en

ce

In
d
u
st

ry

T
o
o
l

P
ro

p
o
se

d

R
ea

so
n
in

g

P
u
rp

o
se

R
es

ea
rc

h

M
et

h
o
d

[63] Machining equipment Yes C V II

[88] Playground

equipment

No M V

[89] Manufacturing

equipment

No C E IF, D

[90] Cement factory Yes M V

[70] Automotive Yes R V

[91] Power transformer No C E IF, S

[92] Electric bicycle Yes C V

[69] Custom bicycle

assembly

Yes R V

Reasoning Types:

C: Case Based Reasoning; M: Model Based Reasoning; R: Rule Based Reasoning

Purpose:

E: Exploratory; V: Tool Validation; C: Case Based Reasoning; M: Model Based

Reasoning; R: Rule Based Reasoning

Research Method:

IF: Interview (formal); II: Interview (informal); S: Software Analysis; D:

Document Analysis

 71

From Table 4.2 it is clear that configuration management research is being

conducted across a variety of manufacturing domains, ranging from custom bicycle

assembly to automotive manufacturing to the design and assembly of modular playground

equipment. In the table, the third column (Tool Proposed) asks whether or not the purpose

of the case study is to assist in proposing a new tool for configuration management. The

Reasoning column specifies the type of reasoning identified through the case study. The

fifth column (Purpose) asks the purpose of the case study, whether it is purely exploratory

or if it is intended to validate a configuration management method. The final column

describes the investigative methods used in the case study, if available. The blank cells in

the table indicate a lack of available information regarding that column header.

4.2 Research Methods

When determining the type of research instrument or method to use to explore this

objective, the following questions may be asked, as discussed in [93]:

1. Form of the research problem – is it exploratory or explanatory?

2. Does the researcher require control over the events?

3. Is the phenomenon under study a contemporary or a historical event?

Using these questions, Table 4.3 is constructed to determine whether the case study

research method is a fit for this research objective.

 72

Table 4.3: Justification for case study research method

Research

Question
Question Answer Justification

RQ 2.1

Form of the research –

explanatory of exploratory?
Explanatory

The research questions

seeks to explain the

configuration

management process at

the OEM

Does the researcher require

control over the events?
No

The goal is to learn the

existing process.

Therefore, no control is

required.

Is the phenomenon under

study a contemporary or

historical event?

Contemporary

The research is conducted

regarding the active

configuration

management process.

When evaluating the type of research strategy to be used, the first question is the

form of the research. Because the research question seeks to understand “how” the OEM

conducted configuration management, the research is explanatory. Secondly, the goal of

the research is to understand the current processes at the OEM, which means that the

process should be studied in its present form, without any external controls in place by the

researcher. Lastly, while it is possible to study the configuration management process

using document analysis and interviews for a previous configuration change, better

conclusions and a more in-depth analysis is able to be conducted by evaluating the

configuration management process as a proposed configuration change is validated and

implemented.

Based on the answers provided in Table 4.3, a case study research method is chosen

to answer RQ 2.1. Additionally, case studies are often used when conducting design

 73

research to understand the current process or how a design enabler can benefit the current

process [94–100]. The following sections detail the specifics of the case study research.

4.3 Selection of the Case

The subject of the case study was chosen because of the extensive amount of

configuration management conducted at this automotive OEM. Over the course of one

year, the manufacturing facility typically will conduct up to three launches per vehicle,

where four separate vehicles are manufactured at the plant, with one major launch

occurring every year for each vehicle. A launch consists of the addition of new

components, options or upgrades to the existing model line. A specific launch can

introduce new paint colors, a software upgrade, or an entirely new feature for the vehicle.

This means that the OEM has monthly launches with new options and/or packages.

Configuration management is especially important at this OEM in that the 600

possible options lead to more than 108 possible configurations for any given model, each

of which must, ideally, be validated for feasibility. The OEM asserts that, essentially, each

vehicle built in the plant is unique, resulting in over 300,000 unique vehicle configurations

built. Therefore, in order to ensure that each vehicle is a feasible configuration, an effective

configuration management system must be used.

A brief analysis of manufacturing and configuration management documents at the

facility illustrated the large number of possible factors that affect each possible

configuration. The total numbers of parts, options, and rules that comprise the current

configuration management system at the facility are approximately 1500 parts and 600

 74

available options per vehicle, requiring approximately 800 configuration rules. This results

in over 108 possible interactions.

4.4 Data Collection

When conducting the case study, the primary means of data collection was through

targeted interviews with employees primarily from the Launch and Change Control

division of the manufacturing facility. At the OEM, Launch and Change Control is

responsible for planning and verifying all of the scheduled launches at the facility. This

includes determining which new components and options are ultimately included in a

launch and evaluating potential configurations for functional and assembly feasibility.

When conducting the interviews, targeted questions were asked that focused on the process

and the systems/tools used in implementing configuration management, with follow-up

interviews conducted to ensure accuracy of the information. The majority of the interviews

were conducted in person; however, a few interviews were primarily conducted over

teleconference due to unavailability of the required personnel as they were housed in the

Germany design facility. A summary of the interviews conducted is shown in Table 4.4.

The interviews were conducted by pairs from the research team to help increase objectivity

through interviewer triangulation. A total of 24 hours of interviews were conducted, with

summaries and transcripts generated to support the case study. These interviews were

conducted over the course of three months (Spring 2014) and included on site interviews

with associates at the US facility and video conference interviews with associates at the

European design headquarters. Additional interviews were conducted as needed

throughout the development of the configuration management.

 75

Table 4.4: Case study interviews conducted

Position Section
Time

(hours)
Topics of Discussion

1 Section

manager

Launch and Change

Control

6 Configuration

management and

change processes

2 Launch and

change

coordinator

Launch and Change

Control

15 Configuration

management and

change processes

3 Launch

planning

coordinator

Launch and Change

Control

5 Launch planning and

configuration change

process

4 Release

quality

assurance

specialist

Launch and Change

Control

3 Vehicle ordering and

configuration

management systems

5 Launch and

change

coordinator

Launch and Change

Control

3 Launch planning and

parts release

6 Electronics

specialist

Electrical/Electronics

Validation

1 Configuration

verification process

7 Product data

manager

Product Data 2 Rule database and

configuration change

process

8 Product data

manager

Special vehicle

projects

1 Configuration change

process

In addition to conducting interviews, a review of historical documents pertaining

to the execution of configuration management was done. Document analysis is a case

study tool for better understanding the specific systems in place at the case being studied

[93]. The primary documents analyzed were the master rules document used to list all of

the configuration rules for a specific vehicle (9.2Appendix C:) and the project change

request form (9.2Appendix D:) used for updating the rule system.

 76

The purpose behind this was to evaluate the systems used at the manufacturer. The

classification system discussed in Section 4.1 assisted in classifying the configuration

management method and identifying the associated challenges.

As a goal of the research was to identify the process used for managing

configuration changes, ethnographic research was also conducted at the facility in

Spartanburg, SC. Ethnographic research is the study of a culture or environment through

close, direct observation [101]. The purpose of the ethnographic research was to obtain a

first-hand view of how configuration management is conducted and how configuration

changes are validated prior to approval and implementation. During this portion of the

case study, meetings with the change control personnel were observed to better understand

the following: the process by which changes are proposed, the status of ongoing changes

is discussed, and the exact method for improving changes at the plant level. Additionally,

the individual methods used by the change control personnel were observed as they

attempted to understand and validate ongoing configuration changes.

In conducting the case study, the researcher expected to find a robust configuration

management process in place that conformed to at least one of the existing approaches

identified in Section 4.2. Specific evidence is sought to confirm this pattern and the

associated counter patterns, according to best practices from case study research [102].

The findings of the case study are described in the following sections.

 77

4.5 Results

4.5.1 Configuration management method

The foundation for the manufacturer’s configuration management system is a rule

database that contains the rules governing the possible options and packages for a specific

vehicle or “project” in the parlance of the OEM. For each vehicle, the rule database also

specifies which rules apply to which model codes. This is shown in the table below (Table

4.5):

Table 4.5: Example rules in the rule database

Model codes (in the right-most columns) can represent the country destination for

the vehicle specified or the engine type of the vehicle. The format for the rules in the

database includes a condition and a resulting consequence. In the above example, the

condition is designated by the “If-Part of the rule” (column 2) and the resulting

consequence is designated by the “Then-Part of the rule” (column 3). Additional options

are shown in the “Standard” column, which implies that a certain option is standard for the

prescribed model codes. The far left column describes whether the rule involves an

inclusion, Z, or exclusion, A. The values under the model codes dictates if the rule is active

for the specified model code, where “blank” is not active and “R” is required. For example,

the first rule states that for model KR01, if option L8AAA is present, then option S230A

is required. For the last rule, if option L8AAA is present, then option S536A is unavailable

 78

for model KR01. The number in the “Description” column is a unique identifier for each

rule to enable quick referencing.

In this way, the process used at the OEM closely resembles the rule-based reasoning

approach described in Section 4.1.1. As such, the system is subject to many of the

limitations shared by other rule-based reasoning methods. The scope of the rule database

(approximately 800 rules per vehicle) makes it difficult to ensure the accuracy of all of the

rules and to ensure that the rule database covers the complete set of feasible configurations

for each vehicle. This was corroborated in the interviews with the personnel at the OEM,

who repeatedly mentioned that the size of the rule document made it extremely difficult to

identify individual issues. Additionally, maintaining the rule database, with either updates

or changes, is equally challenging due to the amount of possible change propagation and

ensuring that all necessary changes have been made. This issue was documented in three

of the interviews (#’s 1, 2, and 5) that were conducted with the personnel at the OEM.

Current rule database maintenance practices will be discussed in the following section.

The configuration management process also includes the ordering, or specifying,

of vehicles. Unlike many automotive OEMs, all vehicles produced at this manufacturer

are specified by an external customer. When the customer specifies a vehicle, they have

the ability to select all of the possible components or options that are available or feasible

based on location and other specified options. The tool used for specifying the vehicles

relies on the above rule database and ensures that a customer is not ordering a set of options

that is not feasible. Once the vehicle has been ordered, a third system uses the specified

options to identify the parts that are required for the vehicle. As all of the systems rely on

 79

the rule database, it is imperative that all of the rules are accurate and complete. While not

the focus of this research, an additional issue that was identified is the difficulty of ensuring

that all of the varied systems communicate properly.

Throughout the interview process, an important theme that was discussed is the

necessity of the correctness of the rule database and how the rules are verified. Much of

the verification process is conducted purely based on the individual experience levels of

the employees that are familiar with specific aspects of the vehicle. For example, a

specialist from the electronics and electrical validation section said that much of the

verification was based on his experience with different vehicle systems and he knows to

look more closely at certain areas because they had been troublesome in the past. For

instance, windshields are often difficult to configure due to the large number of available

parts and their reliance on the presence or lack of over 10 different options. As a result,

one of the interviewees (# 2) stated that he would give special consideration to changes

involving windshields because of the high number of past issues. This view was similarly

expressed by all those involved with verifying the rules in the database.

Further, it is not uncommon for an error in the rule database to be identified only

when a vehicle is being assembled and either parts are missing or there are complications

that prevent two different options from being assembled on the same vehicle. For example,

one interviewee (# 2) described to the research team an instance where a vehicle had been

ordered in such a way that no windshield part number was ordered for installation on the

vehicle. Thus, the current approach based solely on experience in identifying possible

conflicts is not sufficient.

 80

The primary limitation identified is that the manufacturer does not have a coherent

method for ensuring the accuracy and completeness of the entire rule set outside of

manually verifying every rule in the database. However, manual verification is not feasible

due to the scope of the rule set. There are approximately 1,500 parts in a typical bill of

materials for the vehicle, with nearly 10 variants per component. Additionally, there are a

half dozen models with dozens of variants and scores of options in configuring these

components. Ultimately, there are appromxiamtely 108 possible configurations that must

be checked for feasibility every three months.

4.5.2 Configuration change management process

Because managing changes to the rule database is the most difficult aspect of this

approach to configuration management according to the interviewees, as well as the

research discussed in Section 4.2.1, much of this research has been focused on how the

automotive OEM maintains the rule set. As stated previously, the manufacturer in question

conducts up to three launches per year per vehicle. Each of these launches contains

numerous changes to the possible vehicle configurations. In the launch process, the first

step is to determine the intent of the new launch content. The content for each launch is

determined by a series of workgroups that consist of personnel from Launch and Change

Control and representatives from the other sections. This can include personnel from

marketing, product data management, and the technical sections (electrical, body, power

train, and systems). Once the changes for a given launch is set, the information for updated

options and components are entered into a variant planning tool to assist the launch planner

in configuring the test cars that will be assembled prior to execution of the launch. The

 81

variant planning tool also identifies the number of test cars that need to be built in order to

effectively generate a sample that is representative of the entire set of new possible

configurations resulting from the changes in the launch.

Concurrent to the launch process is the maintenance of the rule database to reflect

the changes to the possible configurations as a result of the launch. The configuration

change management process is shown in Figure 4.1.

Figure 4.1: Configuration change management process for OEM

This process consists of the following basic steps:

 82

1. The configuration change is proposed, typically by a member of the technical sections

(electrical, body, power train, and systems)

2. After an initial review period, the change is distributed for further review by any

groups that may be affected by the change. This can include Product Data

Management, Launch and Change Control, and any additional affected technical

sections. Any issues identified during this step are brought back to the working group

for further action and review.

3. Once the review process is complete, the configuration change is discussed at a

weekly change approval meeting. If approved, the change is sent out for distribution

to any affected parties. If disapproved, the change goes back for additional review.

4. The product data management team receives the configuration change and manually

inputs any new rules and options/packages into the rule database.

This process can take anywhere from a couple days to three weeks, though the

typical situation is between two and three weeks, according to interviewee # 7. Multiple

situations were identified where a product change was rushed at the last minute and the

reviewers were not given sufficient time to conduct a full review of the change, which

normally takes about a week, but can take up to or greater than a month depending on the

complexity of the change. It should again be noted that the verification process is often

based primarily on the individual experience of the personnel reviewing the changes. For

instance, during one interview, the interviewee (# 2) mentioned that, due to his extensive

experience with vehicle windshields, he will often review any changes that include options

or rules concerning windshields. The primary issue with a high dependency on experiential

knowledge is maintaining that knowledge despite personnel turnover.

The primary disadvantage with the current configuration change approach is the

inability to see how new rules will affect existing rules. This includes ensuring that the

 83

proper changes are implemented as a result of the new rules being implemented. One

example of a change not propagating properly through the rule database that was identified

during the case study involved a change made based on an error during assembly. It was

identified on the assembly line that an exhaust system used with the diesel versions of a

particular model was not compatible with a sports package due to a geometric constraint

with the included fog lights. The change was made as necessary based on the issue.

However, months later, it was decided that the fog lights should be added as a separate

option. The same problem was again identified during production between the exhaust

system and the fog lights because the rule regarding the geometric constraint was not

carried over from the sports package to the fog lights.

4.5.3 Historical problems

Numerous problems that stemmed from the use of the current configuration

management system are identified from the case study. Two primary problems are the

absence of an essential component during assembly (in the given example, a windshield

was not assigned to the vehicle) and rule constraints not being correctly translated during

the creation of a new ruleset (the fog light issue discussed above). In the first problem, a

vehicle was being assembled for which there was no windshield. This can occur because

parts are ordered based on the combination of options present for a given vehicle. If the

selected options result in a configuration that is not feasible (or for which there is no

applicable windshield), then there is an error in the system; the configuration management

rule database should prevent the combination of options that are not possible.

 84

In another situation, also involving windshields, a new rule was created (and

approved) which artificially limited the possible windshield options for a given model. The

added rule disallowed the selection of the option for an anti-glare strip on the windshield

for certain models. However, due to limitations with the parts, this meant that the only

allowable configuration for customers desiring the anti-glare strip would also be required

to purchase the heads-up display option. There is no technical reason for the two options

to require the presence of the other option; therefore this is another example of a failure in

the current configuration management system to properly configure products.

In a third situation, the OEM is considering a change in the warning advisory labels

that are found on the passenger sun visors regarding child restraint. The issue is that some

of the visors come from the supplier with the labels already attached, whereas other labels

are affixed during assembly. Because the current configuration management system does

not include part interactions directly with the other components (rules, options, and

packages), the OEM has encountered a series of problems in making the change to the new

advisory labels. One issue is that certain options include sun visors come with the label

from the supplier, while others have the label affixed during assembly. The difficulty lies

in ensuring that any changes to the label are made to both types of options.

Based on the findings of the case study, an improved process with design enabler

support is recommended to assist in configuration management at the OEM. A discussion

of the conclusions made by the researcher are discussed in the following section.

 85

4.6 Conclusions

The research objective for this chapter is to understand how an OEM conducts

configuration change management. This research objective is supported through two sub-

questions, which are discussed below.

The first sub-question is: What is the state-of-the-art for configuration

management? Answering this question helps to provide a knowledge base when evaluating

the configuration management practices at an OEM and can be used to help categorize the

OEM’s methods. The sub-question was answered through a literature review of current

configuration management practice. The literature review consists of a review of

configuration management and its importance in modern manufacturing, followed by a

review of existing tools and methods used in configuration management. Through the

literature review, a classification scheme for configuration management methods was

identified, with the capabilities and shortcomings or each category being discussed.

With a more complete understanding of configuration management practice in

mind, the following question can now be asked: How does a major automotive OEM

conduct configuration change management? To answer this question, a case study was

conducted at an automotive OEM facility in Spartanburg, SC. The case study primarily

consisted of both exploratory and targeted interviews with personnel from the Launch and

Change Control group at the OEM. In addition, document analysis and ethnographic

research was conducted to help understand how the company conducts configuration

management. It was identified that the company uses a rule-based configuration

management method. In addition, many of the shortcomings of the existing method at the

 86

OEM matched the shortcomings for rule-based methods identified during the literature

review.

Through the course of the case study, a need was identified for a support tool to

assist in the configuration management process, to include managing the effects of

proposed configuration changes. In order to address the identified issues, the following

requirements are proposed:

- Able to easily visualize the interactions between configuration components

(including parts) to make it easier for personnel to understand possible

propagation pathways

- Able to highlight specific areas of interest to assist in simplifying the rule

database

- Able to check for errors in the existing rule database to ensure the validity of the

ruleset

- Able to preview how proposed configuration changes would affect the existing

rule database to prevent against the creation of impossible configurations

Table 4.6: Visualization requirements and related issues to address

Requirement Issue

Visualize interactions Errors resulting from unexpected change

propagation between options

Highlight specific areas Ruleset is too complex to understand in its

entirety

Check for errors in database Errors in configuration result are not

found until assembly is attempted

Preview changes Management of rule database is difficult

due to scope of assessing every possible

consequence of a change

These requirements were identified through the interviews to address specific

issues experienced by the automotive OEM in their current configuration management

 87

process (shown in Table 4.6). Most of the requirements focus on the visualization aspect

of configuration management. The proposed development of a visualization method for

configuration management will be further discussed as next steps in Chapter Five.

4.7 Dissertation Roadmap

Chapter Four presented the methods and results of the case study on configuration

management at a major automotive OEM, concluding with a series of recommendations

regarding improvements to the current configuration management process. The next

chapter (Chapter Five) builds on the conclusions from the previous chapter by proposing

an improved method for configuration management with designer enabler support. The

progress of this dissertation is shown in Figure 4.2 in which the completed portion is

highlighted in green.

 88

Figure 4.2: Dissertation roadmap

 89

CHAPTER FIVE: IMPROVED METHOD FOR CONFIGURATION CHANGE

MANAGEMENT

The purpose of the research presented in this chapter is to develop an improved

method for configuration management with design enabler support. The developed

approach enables engineers in validating the configuration management system when

implementing configuration changes. This is done through (1) identifying possible change

propagation pathways when evaluating configuration changes, (2) aiding in identification

of errors in the current configuration management ruleset, and (3) determining whether a

proposed change will result in conflicts with existing rules. The requirements of the

configuration management support tool are established in the case study and described in

Table 4.6.

5.1 Proposed Process

In order to address the specified requirements, a series of support tools are

developed to enable the configuration and configuration change management processes.

The four tools are as follows and are described in more detail below: (1) interaction

identification, (2) visualization and interaction (V&I), (3) change complexity analysis

(CCA), and (4) algorithmic validation (AV). Figure 5.1 shows how the proposed tools

would fit into the current configuration change management process. For the purposes of

implementing the tools, a simplified model is used.

 90

Figure 5.1: Simplified process model with proposed tools

As shown above, after a change is proposed, an initial review period would occur,

during which a complexity analysis can be conducted. The purpose of the complexity

analysis is to determine an estimate for the difficulty in validating the proposed change.

By determining the difficulty to validate the change, it is possible to cancel a proposed

change that would be overly difficult to validate but is not necessary. For a complicated

change that must be implemented, it allows the change personnel to properly plan for the

amount of time/effort required to validate the change. The complexity analysis support

tool is described in greater detail in Section 5.4.

If a proposed change is moved forward to the detailed review period, much of the

current validation is done through experiential knowledge, guessing how the specified

options will affect other options and other parts. The use of a visualization tool can greatly

increase the user’s ability to understand and explore the interactions between the affected

options and parts. Using the visualization within the proposed method is discussed further

in Section 5.3. As the use of data visualization for configuration management is a major

 91

contribution by the author, an in-depth discussion on data visualization and the

development and implementation of the graph visualization tool will be discussed in

Chapter Six.

Before the change is approved, an algorithmic validation should be done to ensure

that there are no conflicts that would occur as a result of implementing the change. The

algorithmic validation uses satisfiability criteria to ensure that configurations can be built

based on the current rule set and that there are no situations where two rules could be in

conflict with each other. After final approval and distribution, the algorithmic validation

should be conducted a final time prior to implementation to ensure that the change is being

implemented correctly and that no changes are made to the rule database that would cause

any conflicts. The use of algorithmic validation will be discussed in greater detail in

Section 5.5.

5.2 Interaction Identification

To facilitate the implementation of the other tools, it is necessary to have a method

for mapping the interactions between the options/parts/packages and to filter the results to

only provide the interactions of interest for the specified change. The tool must provide all

interactions between the different types of change components (options/parts/packages),

including rules as specified in the part and option rule databases, and any options included

in functional groups. In order to facilitate this, the tool should be able to access the option

and part databases that govern how vehicles are configured and specified for parts. If the

database is not available, then the tool must be able to convert the available report

 92

documents to obtain the relationships between the possible change components. An

example database model for the relationships discussed above is shown in Figure 5.2.

The primary elements of the database include Models, Options, Parts, and Rules.

These are the elements that form the foundation of the configuration management system

at the OEM. Release lines are similar to rules in that they govern whether a part is needed

for a specific configuration, but apply only to parts instead of options. In order to show

how all of these elements interact, the following tables are created: ReleaselineModels,

OptionModels, and RulesModels. FClasses are functional groupings of options that carry

an exclusive relationship. If the FClass is present in a configuration, one and only one

option from that FClass must be present in the configuration.

 93

Figure 5.2: ER diagram for integrated database

Once the required rules are input into the tool, the tool should parse the rules into

interactions, where any change components in a single rule are considered to have a first

order interaction. In addition, the tool should provide the user with the option of selecting

a maximum order of interaction for the outputs, as previous research has shown the

importance of higher order interactions, and thus the tool should be able to support this.

In order to use the tool, the user inputs the vehicle model and the options or parts

of interest from dropdown menus and enters the desired order of interaction for

consideration. The output from the interaction identification tool should be a list of all

specified and affected options up to the desired order of interaction and lists the other

options with which each interacts, and how the options are related. Additional data that

may be added is the order of interaction at which the interaction takes place.

5.3 Visualization and Interaction (V&I)

Previous research has shown the benefits of visualizing data to assist in

understanding and exploring it. When evaluating a proposed change, therefore, it can be

useful to use a visualization support tool to graphically depict the affected options and

rules. The proposed visualization tool would use the outputs from the interaction

identification tool to produce a node-link graph to show the options/parts as nodes with the

rules or interactions as edges. An example of a node-link graph for a specific change is

shown below in Figure 5.3.

 94

Figure 5.3: Example graph for a proposed change

Another essential component for the visualization tool is the ability to interact with

the graph. Therefore, the tool must be implemented in such a way as to be dynamic, rather

than simply a static graph viewer. The graph interaction increases the user’s ability to

explore the data and to better understand the interactions between the components. It is

recommended that the visualization tool should facilitate the following interactions:

 Addition/subtraction of nodes to/from the graph

 Relocating nodes to better cluster option/part groups

 Addition/subtraction of rules/interactions between nodes

 95

 Highlighting specific nodes to view the potential propagation pathways

 A method for algorithmically arranging the graph (i.e. force-directed layout)

In addition, the visualization tool should provide the capabilities of outputting a

static graph image for reference at a later time and the resulting rule set and/or interaction

list that would result from any changes made to the graph by the user. This can aid in

automated rule creation based on any knowledge gained from exploring the graph. The

development and implementation of the visualization tool will be further discussed in

Chapter Six.

5.4 Complexity Analysis (CCA)

The use of complexity metrics has been shown to be useful in evaluating change

propagation within a system. As such, a complexity analysis tool is recommended to

determine the difficulty of a proposed change through identifying the potential change

propagation that could result from the change.

5.4.1 Use of Complexity Metrics

Previous research has shown that complexity metrics can be used in prediction.

One such example is the use of 29 different graph theory metrics to predict product

assembly time [47,54,103]. In the research, the authors used the physical interactions

between product parts as the network. By using the resulting complexity metrics to train a

neural network, the authors were able to accurately predict additional product assembly

times. In a related study, the same complexity metrics were also used to successfully aid

in predicting a product’s market price [104]. Research in software design has shown that

 96

complexity metrics can also be used to successfully predict errors or bugs in software

[105,106]. These examples show that complexity metrics have successfully been used in

multiple instances for prediction purposes and should be further explored for this research.

5.4.2 Data Organization and Source

In order to conduct the complexity analysis, one set of inputs is required: the

potential change components (vehicle options/packages/parts) and the relationships

between them. Because the relationship information required for the complexity analysis

includes the distinct components, a single input file can be used that has a list of binary

relationships between components. This input is created through a data parsing tool which

translates the option and part rules into conjunctive normal form (CNF). The following

subsections describe the inputs in more depth.

5.4.2.1 Components

The components, or graph nodes, consist of the vehicle options, parts, and packages

that the user is interested in changing or that can be affected by change propagation from

the changed components. However, the complexity analysis is only concerned with the

nodes and the connections between them, not any of the information regarding the nodes,

as was seen in the graph visualization tool. Therefore, the information provided by the

edge graph input file, which contains unique numerical identifiers for each distinct node,

is sufficient input for this data type.

 97

5.4.2.2 Component Relationships

The relationships, or edges, between the components consist of the rules that govern

how the different components interact. These relationships include all of the rules as

specified in the option and part rule databases, as well as option functional group

information. It is also possible to use new rules as created in the conflict detection tool as

relationships. Because the complexity analysis is only concerned with the connections

between components and not the types of relationships, only the source and target of the

relationship is needed to conduct the analysis. As a result, it is possible to use the same

edge input files as for the graph visualization tool.

The source node of the edge refers to the “If” portion of the rule in a binary rule,

while the target node refers to the “Then” portion of the rule. In more complex rules (non-

binary), a more comprehensive grammar must be used and is discussed in 6.4.2.1. The

edge type represents the type of relationship between the nodes. Three different types of

relationships are currently used: inclusive, exclusive, and multiple-inclusive relationships.

An inclusive relationship means that the source requires the target to also be present.

Similarly, exclusive requires that the target must not be present. The multiple-inclusive

relationship is used in conjunction with “OR” and “AND” nodes to help delineate that the

relationship is not binary. Multiple-exclusive could also be represented separately, but has

not been used in the current implementation. An example of an edge input file is shown in

Figure 5.4.

 98

Figure 5.4: Example graph edge input file

5.4.3 Methods

The following subsections describe the complexity metrics used in the complexity

analysis.

5.4.3.1 Size and Order Calculation

When analyzing a system or graph, the most basic complexity metrics are size and

order. The size of the graph is the number of nodes in the graph. The order is the number

of interactions between them. While these complexity metrics may seem overly simplified,

an analysis of 29 separate complexity metrics showed that an approximation for the

complete set of metrics could be found by using the size and order metrics, which are

simpler to calculate and easier to understand. The following subsection will discuss the

other available complexity metrics.

 99

Using the example input file shown in Figure 5.4 the size of the system is the

number of distinct node ID numbers, which would be 17. The order of the system is found

by identifying the number of relationships in the edge list, which would be 18.

5.4.3.2 Other Potential Complexity Metrics

In some instances, it may be beneficial to use a broader group of complexity metrics

for analysis. While the size and order metrics can assist in identifying a general level of

difficulty to validate a change, using the full suite of metrics, in conjunction with a trained

neural net, could predict the level of difficulty or resources required for validation more

accurately. An example of using complexity metrics for prediction can be found in [47].

However, the focus of this technical report is on a tool used to provide the complexity

metrics for user analysis and while the other complexity metrics can be useful in the

analysis, the prediction methods are outside the scope of this report. A discussion of

additional metrics that have been successfully used by the research group can be found in

[107].

5.4.4 Implementation

This section describes the methods used to transform source data into a

representation that is easy to understand. Because this tool considers the potential level of

change propagation as a result of a configuration change, it is necessary to calculate the

complexity metrics at the first order of interaction (the change components and those they

directly interact with) and the second order of interaction (this includes any components

that interact with the affected components at the first order of interaction). Previous

 100

research has shown that beyond the second order of interaction, the number of components

increases to near saturation and is not likely to provide additional utility [56]. Additionally,

the complexity metrics will vary significantly between different vehicle models. As such,

it is necessary to calculate the metrics for all applicable models that are affected by the

change. Once the metrics have been calculated, the tool need only to output the data in a

representation that is easy for the user to understand. Recommendations for how the

resulting data can best be represented can be found in 6.5.1.

5.4.4.1 Data Representation

The purpose of the data representation is to assist the user in predicting the

difficulty in validating a proposed configuration change. In this tool, the measure used to

determine the difficulty is the amount of potential change propagation as a result of a

change. This is represented by the increase in complexity from the first order of interaction

to the second order of interaction. Therefore, the goal of the data representation should be

to increase the user’s ability to quickly see how the complexity increases for each vehicle

model. In order to accomplish this, the researcher recommends a color-coded “flag” that

corresponds to the amount of complexity increase for each model. The amount of change

is based on the second order complexity metrics divided by the first order complexity

metric. Therefore, if the size increased from 13 to 29, the increase would be a factor of

2.2. In the proposed color scheme, a green “flag” represents little or no change propagation

(a factor of < 1.1). Yellow represents a small amount of propagation (factor of > 1.1 and

< 2.5). Orange is a moderate amount of propagation (factor of > 2.5 and < 5.5). Red is a

significant amount of change propagation (factor of > 5.5). These factors are for the size

 101

and order metrics and were identified based on empirical data. It may be useful to modify

these values based on company practice for specific complexity metrics. An example

output for a larger set of complexity metrics is shown in Figure 5.5

Figure 5.5: Example data representation for the complexity analysis tool

In the figure, the vehicle models are shown in the left-hand column, with the

complexity metrics along the top. For each vehicle model, the first and second order

metrics are provided, along with the resulting flag for each metric. In the above example,

KR62 shows a significant amount of potential change propagation due to the proposed

change and is likely to require more resources for validation, whereas the US models

(KR03, KR23, KR63) show no propagation and are likely to be easier to validate. The

example representation provides maximum information for analysis. A less complicated,

Metric Size Order DOF Conn SP Sum SP Max SP mean FR Sum FR Max

1 13 18 18 36 374 4 2.3974 326 5

2 29 40 40 80 2666 6 3.3 1298 10

Flag Yellow Yellow Yellow Yellow Yellow Yellow Yellow Yellow Yellow

1 13 19 19 38 370 4 2.3718 342 5

2 54 76 76 152 7554 6 2.6 3966 42

Flag Orange Orange Orange Orange Orange Yellow Green Orange Red

1 12 16 16 32 334 4 2.5303 240 5

2 12 16 16 32 334 4 2.5303 240 5

Flag Green Green Green Green Green Green Green Green Green

1 12 16 16 32 334 4 2.5303 240 5

2 12 16 16 32 334 4 2.5303 240 5

Flag Green Green Green Green Green Green Green Green Green

1 13 18 18 36 374 4 2.3974 326 5

2 53 86 86 172 8874 6 3.2 4676 27

Flag Orange Orange Orange Orange Orange Yellow Yellow Orange Orange

1 17 25 25 50 690 4 2.5368 516 7

2 260 400 400 800 265270 10 0 89570 40

Flag Red Red Red Red Red Orange Green Red Red

1 12 16 16 32 334 4 2.5303 240 5

2 12 16 16 32 334 4 2.5303 240 5

Flag Green Green Green Green Green Green Green Green Green

KR62

KR01

KR02

KR03

KR23

KR61

KR63

 102

and potentially easier to read representation could be used, such as Figure 5.6 or Figure

5.7.

Figure 5.6: Simpler data representation for complexity analysis

Figure 5.7: Simplest data representation for complexity analysis

Each of the above representations has potential advantages and disadvantages due

to the simplicity to read and amount of information provided.

5.5 Algorithmic Validation (AV)

In addition to exploration and complexity analysis, it may be necessary to determine

whether there are any conflicts or impossible configurations that may result from the

implementation of a proposed change. In other applications, a satisfiability solver has been

used to use a set of constraints to determine whether any conflicts exist. It is recommended

that a satisfiability tool be used with the existing rule database to determine whether or not

any conflicts exist. A discussion of algorithmic validation is included for completeness as

part of the developed method. While the design and use of this tool was done by the

Size Order

KR01 Yellow Yellow

KR02 Orange Orange

KR03 Green Green

KR23 Green Green

KR61 Orange Orange

KR62 Red Red

KR63 Green Green

KR01 KR02 KR03 KR23 KR61 KR62 KR63

 103

researcher, its implementation was developed by a research project partner. A complete

discussion of the algorithmic validation methods can be found in [108].

5.5.1 Satisfiability

First-order Boolean logic provides techniques for reasoning about logical

expressions. These expressions are constructed as a series of operators and literals,

assembled according to a formal grammar. Literals are Boolean objects, which may take

values of either TRUE or FALSE. Within the case of configuration management, objects

like options, parts, etc. are literals, as they are either present on a vehicle instance (TRUE)

or not (FALSE). Operators are functions like OR, AND, and NOT, used to conjoin literals

into expressions that represent system constraints.

If all literals are assigned a truth value, then a Boolean expression containing them

may be resolved to either true or false. If, on the other hand, some or all of the literals are

unassigned, then the truth of the expression may be unresolved. Indeed, within

configuration management literals do not typically take explicit values, as it is the

discretion of the customer to choose which options, etc. are chosen for the vehicle. The

task for configuration management is to manage the set of system constraints, such that all

valid, user-selectable configurations result in correctly specified, buildable vehicles. When

working with Boolean expressions that contain unspecified literals, a pertinent question

may be “Is there any set of true/false values for literals that results in the expression

resolving to true?” This question is known as the Boolean satisfiability problem (SAT).

SAT approaches have been successfully applied in non-automotive sectors, for problems

 104

ranging from software configuration validation, electronic circuit design validation, and

mathematical proof-checking.

5.5.2 Applications

The algorithmic validation tool will use the six question types discussed previously

(rule conflict, object activation, part family allocation, part family matching, antecedent

relationships, and implicit relationships) to validate each proposed change. When applying

the support tool, the user specifies the type of analysis to conduct from the above question

types. Based on the information identified in the case study, the following types of

questions should be supported:

1. “Rule conflict.” Is there a subset of two or more VRM rules such that no possible

configuration may satisfy them?

2. “Object activation.” Can all options/parts/etc. that are declared as being available for

selection actually be selected?

3. “Antecedent satisfiability.” Are there any rules for which the antecedent (IF-part) of

the rule cannot be satisfied? If so, then the effects of the rule are inconsequential, as

the rule is never active.

4. “Implicit relationships.” Are there any binary inclusion/exclusion object relationships

that are implicitly enforced, through the collected effects of explicit constraints?

5. “Part family allocation.” For a given family of alternative parts (e.g. all windshields),

will one (and only one) of the parts be allocated for every configuration?

6. “Part family matching.” Consider a suite of several part families, some of which are

intended to match to others for geometry or color reasons. Are the rules correctly

implemented, or is there a configuration that mismatches parts?

Based on the question type selected, the user is required to input additional data

into the rule set. For example, for part family questions, the user would be required to enter

 105

the part family of interest and the members of the part family. Based on the additional

input, the satisfiability engine is able to determine whether multiple parts from the family

can exist in a single, valid configuration. It is also possible for the engine to evaluate the

existing rule set for conflicts without any additional inputs or changes to the rule database.

This can be useful not only in evaluating changes, but also in validating the current system.

The specifics and applications of each use case listed above are described in the following

sections.

5.5.2.1 Rule conflict

Rule conflict is the most basic level of conflict that should be considered. A rule

conflict implies that two rules in the database cannot be satisfied concurrently. An example

of this would be where option A requires the presence of option B; option B requires the

presence of option C; option C requires the absence of option A. While it is clear that the

three rules cannot coincide, the satisfiability solver may not return that the ruleset is invalid.

This is due to the fact that the absence of all three options is a viable configuration with the

above ruleset. The major downfall of this method is that any viable configuration will

result in a valid ruleset. One method for minimizing the impact of this issue is to implement

the rule conflict check alongside the object activation check discussed in the following

section. This check supports question 1 from the list above.

5.5.2.2 Object activation

Object activation tests to ensure a specific option, package or part is able to be

included in a valid configuration. This test is conducted iteratively for all of the objects in

 106

the ruleset to check for disabled objects. An object is considered disabled if it is not valid

for any configuration. This can occur as a result of legacy options or packages that are no

longer in use, but were mistakenly left in the rule database. It is also possible that a

configuration change may result in disabling an object. This check supports question 2

from the list above.

Another aspect of the object activation test is to determine if any rules are disabled.

In this instance, the solver is checking to see whether the “if” portion of the rule, or

antecedent, is capable of being activated (is part of a valid configuration). This determines

whether or not any of the rules are disabled. This version of the test can be combined with

the rule conflict test to ensure that each rule is considered when determining whether there

is a conflict. This check supports question 3 from the list above.

5.5.2.3 Implicit relationships

In any complex system, implicit relationships between two entities will exist. An

implicit relationship is a relationship between two entities that is not stated, but still exists.

For instance, given the following situation: option A requires option B and option B

requires option C; an implicit relationship exists: option A requires option C. While it is

possible to manually identify these relationships by tracing the interactions between objects

throughout the ruleset, the use of the satisfiability solver simplifies the process. Given two

objects, the solver is able to quickly determine whether an implicit relationship exists

between them. This check supports question 4 from the list above.

 107

5.5.2.4 Part families

While the object activation test checks to ensure that all parts are active, it is useful

to ensure that two different variants of the same part are not able to be in the same

configuration. For example, a car can be assembled with many different wheel options.

However, the configuration rules should result in only a single wheel variant being called.

These groupings of part variants are referred to as part families. Within a part family, a “1

and only 1” relationship exists, where only a single variant should be called from the part

family for a given configuration. Therefore, the solver checks that a part from the family

is valid and that only one part from the family is valid. This check supports question 5

from the list above.

Another application of part families is that certain parts or types of parts are

designed to fit with other parts. For instance, wheels of a certain diameter and width are

designed to fit with a tire with a matching diameter and width. An example that was

discussed during the case study was the fitting of exhaust tips and bumpers. At the OEM,

exhaust tips can either be round or square and must fit through a similarly shaped hole in

the bumper. When using the satisfiability solver, part families can be created for round

tips and the square tips, as well as for the round-hole bumpers and square-hole bumpers.

The solver can then check to ensure that only parts are called where the correct fit is

achieved. This check supports question 6 from the list above.

5.6 Conclusions

The third research objective is the development of an improved method for

configuration change management. Based on the findings of the case study, a configuration

 108

change management method is proposed, along with design enabler support. The design

enablers that are integrated into the overall method include interaction evaluation to help

identify the relationships between potential change components, complexity analysis to

predict the difficulty of a proposed change and assist in determining the vehicle models

that will require the most effort, graph visualization to understand how the proposed change

can propagate through the system, and algorithmic validation to check for conflicts or other

user-defined queries about the changed system. While this chapter was focused on the over

research objective, the sub-questions that help to achieve this objective are presented in the

following chapters. The use of graph visualization to assist in configuration management

is discussed in greater detail in Chapter Six. Chapter Seven focuses on the validation of

the graph visualization design enabler, while the validation of the entire method is

presented in Chapter Eight.

5.7 Dissertation Roadmap

Chapter Five presented proposed a method for configuration management and

provided the foundation for four design enablers to support the proposed method. As three

of the design enablers (interaction identification, algorithmic validation, and complexity

analysis) are not the primary contribution of this research, only the visualization support

tool will be discussed in detail in the following chapter (Chapter Six). The progress of this

dissertation is shown in Figure 5.8 in which the completed portion is highlighted in green.

 109

Figure 5.8: Dissertation roadmap

 110

CHAPTER SIX: VISUALIZATION SUPPORT TOOL

The purpose of the research presented in this chapter is to develop a visualization

support tool for use in the configuration management method discussed in Chapter Five.

First, a review of data visualization and its applications is presented to show why graph

visualizations was selected for the support tool. Then a user study is presented to explain

why specific design decisions were made regarding the visualization tool. Based on the

findings from the literature review and the development user study, a graph visualization

support tool is developed to assist in exploring proposed changes as part of the

configuration management method.

6.1 Data Visualization: Review of Literature

It is necessary to be able to understand and interact with the data and communicate

it to others in a meaningful way [109]. This becomes even more important with increased

amounts of data. Previous research has shown that implementing a data visualization

method can be useful in increasing the ability to understand complex data systems [110–

112]. An example discussed in the literature is a set of computer files. If the files are listed

out with their locations, finding a specific file or understanding how the files are stored

would be nearly impossible. Using a tree graph, the file hierarchy can be broken down into

folders and subfolders to more easily illustrate the structure of the system.

Graph visualization, a subset of data visualization that uses a series of nodes and

edges to describe relationships, is applicable and in certain instances, ideal, for any dataset

where relationships between entities are a key focus of the data [113]. Graph visualizations

 111

have been shown to be useful when identifying both direct and indirect relationships

between entities in a system [71–73,114]. This is a key application of the developed

visualization method for use in configuration management. Node-link graphs are

particularly useful when considering path finding, which is essential to understanding

possible propagation pathways [115]. It was identified that DSMs were useful in

identifying change propagation pathways up to a point, but once the data set become too

large, the DSMs were too difficult to interpret to be useful.

Graph visualizations have been used to understand change propagation where

network relationships are essential. However, in reviewing the literature, it does not appear

that graph visualizations have been used for configuration management. Therefore graph

visualization in change management is reviewed here. In the most similar instance to the

application derived from the case study, design structure matrices (DSMs) and node-link

graphs were used to understand change propagation pathways in physical product

components [46]. An example graph from this research is shown in Figure 6.1. Other

examples of using graph visualizations to understand and interact with data networks are

shown in [116–119].

 112

Figure 6.1: Node-link diagram of a diesel engine for predicting change propagation

[71]

Though graph visualizations are useful in portraying network relationships and

information, many factors can affect the readability of the graph itself. One study into

these factors is how the use of straight (Figure 6.2) verses curved (Figure 6.3) edges to

connect components in the graph affected the overall readability of the graph [120]. The

researchers found that the use of edge curved edges had a detrimental impact on the

readability of the graphs.

 113

Figure 6.2: Straight-edged graph [120]

Figure 6.3: Curved-edge graph[120]

Numerous researchers have focused on the aesthetics of graph visualizations [121–

123]. However, these studies focused on just the numerical aspects of the data, such as

shortest path length, and number of edges, rather than on understanding the indirect

relationships between nodes. Graph aesthetics is a term used to describe the appearance of

 114

a graph and includes readability. Archambault used a series of graph visualizations over

time to understand whether the “difference maps” were useful in understanding change to

a network over time [124]. The researchers found that users generally preferred the

difference maps for identifying changes over time. It was also found that use of the

difference maps was effective in answering questions about large scale changes over time.

Lastly, Holten considered how varying the drawing of edges in a directed graph affected

the readability of the graph [125].

Additionally, multiple researchers have provided guidelines on the use of color on

the effectiveness of visualizations as a whole and the potential effects of poor or ineffective

implementation [126–128]. Purchase et al. conducted a series of studies on the effects of

using different graph layout algorithms [123,129]. The researchers found that it was

difficult to show that any one algorithm provided the “best” result; however, it was shown

that the use of an algorithm, particularly one that minimizes crossing paths, is more

effective for improving graph readability. This sentiment is echoed in the review of graph

visualization layout techniques by Gibson, et al [130].

6.2 Graph Layout User Study (Development Study)

The first step in developing a visualization method for configuration management

is to understand the information requirements for the user interface. Specifically, what is

it that the user needs to see when applying the method. In this way, it is possible to

backtrack from the required information to the available information provided in the

current organizational systems to determine the additional requirements of the visualization

method. In order to better understand what information best assists the user in identifying

 115

relationships between configuration components, such as options, parts, and configuration

rules, a user study was conducted using different variations on the layout and available

information provided to the user. The user study was designed in accordance with the

benchmark task method proposed in [131]. The remainder of the section provides

additional details regarding the design and execution of the development user study.

6.2.1 Research Questions for Development Study

Research has shown that different types of data representation may be more

accommodating for answering different types of questions about the system being

represented [121,125,129]. This led to the following research questions:

1. How does the layout of the data representation graph affect the ability of the user

to successfully answer questions about the system being represented?

2. How does the coloring of the data representation graph affect the ability of the

user to successfully answer questions about the system being represented?

3. Does a change in the amount of information represented affect the user’s ability to

answer questions about the system?

It is hypothesized that the layout will not have a significant impact, while increasing

the color-coding will increase the ability to correctly answer questions. This hypothesis is

made because the color-coding should increase the user’s ability to easily identify different

types of interactions. Additionally, the it is hypothesized that limiting the amount of

information will increase the accuracy of responses for those questions that are still

answerable, while making it impossible to answer the questions regarding the missing

information. This hypothesis is made because limiting the amount of information should

remove clutter from the graph, more easily highlighting where the interactions take place.

 116

6.2.2 Variables for Development Study

In order to answer the above research question, a user study was developed and

executed. The user study consisted of three experimental variables:

 geometry of the graph used for data visualization

 coloring of the interactions between the nodes in the graph

 amount of information available to the user

The first variable consisted of two levels: the graph is arranged with the vehicle

option nodes on the outside in a circle (Figure 6.4 (b)), or the vehicle option nodes arranged

based on the functionality of the option (Figure 6.4 (a)). The purpose of this variable was

to see if the layout of the graph allowed for easier identification of interactions or if the

shape did not matter and any shape would result in the same accuracy of the responses

(research question 1).

Figure 6.4: Functionally arranged graph (a) and circular graph layout (b)

The second variable included two levels: interactions regarding parts were red with

all other interactions grey (Figure 6.5 (a)), or interactions were color-coded based on

whether they were inclusions, exclusions, or either/or relationships (Figure 6.5 (b)). The

 117

purpose of this variable was to determine whether the coloring allowed for easier

identification of different types of interactions (research question 2).

Figure 6.5: Graph colored based on part data (a) or based on interaction type (b)

The third variable included two levels: all information (Figure 6.6 (a)) or reduced

information (Figure 6.6 (b)). The purpose of this variable was to determine if removing

some of the information increased the user’s ability to answer the remaining questions with

greater clarity (research question 3).

Figure 6.6: Graph will all information (a) and option information only (b)

 118

A final variable consisted of two different orders in which the questions were asked

and was simply used to determine whether the question order affected which questions

were answered correctly. This variable is not used to answer a research question, but to

ensure robustness of the experiment. Limited analysis was needed as the results were

comparable.

6.2.3 Participants for Development Study

The participants for this user study consisted of industrial engineering students

enrolled in the junior level industrial engineering operational research course (IE 3810 at

Clemson University). During the case study (discussed in Chapter Four), it was identified

that many of the engineers conducting configuration management at the OEM did not have

a mechanical engineering background, but they did have some form of engineering

background. Therefore, using junior-level industrial engineering students was applicable

for the purposes of this study. The students were selected for this study as they provided a

large sampling (78 students) with homogenous educational backgrounds and experience.

As such, it was unlikely that any variation in the results of the experiment would be due to

differences in educational preparation. The students had varying levels of work

experience, but due to the low likelihood of working with a visualization tool similar to the

one being used in the study, it was assumed that prior work experience was outside the

scope of the study. The students were not rewarded based on the quality of their results.

However, participation in the user study was counted as a “quiz grade” in order to ensure

participation for the experiment.

 119

6.2.4 Environment for Development Study

The user study was conducted in a single one-hour session during a normally

scheduled class period of the junior operational research course. The students were told a

week in advance that they would be conducting an in-class exercise. By conducting the

experiment in a single session during the normal class period, the researcher was able to

ensure that the time of day for the experiment did not affect the outcome of the study while

maximizing the availability of the participants. The setting for the experiment was the

room in which the course usually met. The classroom layout was a typical, auditorium-

style classroom with a presentation stage in the front of the room and tables for the students

to sit at, all facing the front of the classroom (as depicted in Figure 6.7). The experience

of the students due to environmental conditions was uniform. The experiment was

conducted during the twelfth week of the Spring semester of the students’ junior year.

Figure 6.7: Classroom layout

 120

6.2.5 Response Form Design for Development Study

In developing the response form to be used in the experiment, the first step was to

determine the type of queries that may be asked of the visualization during the change

evaluation process. During the course of the case study discussed in Chapter 4, numerous

types of questions were identified that are commonly considered during a change to the

configuration system. For the purposes of this experiment, the list of queries was further

expanded through additional interviews with Launch and Change Control personnel at the

OEM. This resulted in the following list of query types:

 availability of additional options based on a specified set of options

 availability of parts based on a specified set of options

 comparing option availability in different models

 effects of adding rules or options to the system

 effects of removing a part from the possible set

 identifying logic errors in the configuration set

A list of queries was then developed from the set of required query types. The

response form used in the study is shown in 9.2Appendix E:. The list of queries follows:

1. Which vehicle options are not available to US customers for the available

windshields?

2. If a US customer wants option S5DFA, what windshield part numbers are available?

Which numbers are not available? Does it change for a customer in Europe and why?

3. If a vehicle option (S123A) was added to the Europe model that requires S5ARA and

cannot work with S5DFA, will this cause any problems? Why or why not?

4. Provide a feasible vehicle option combination to result in Part number WS 495 (in

Europe).

5. Which part numbers are compatible with option S610A (in Europe)?

 121

6. Are there any option contradiction errors in the connectivity graph? If so, what are

they?

7. If a European customer wants S5ATA, how does this affect availability of other

vehicle options?

8. If a customer in Europe wants option S358A, what other vehicle options are affected,

and how?

9. Which windshields are not offered in the US?

10. Provide a feasible vehicle option combination to result in Part number WS 401 (for

Europe).

11. Is there any scenario where a combination of vehicle options will result in two

different windshields being required (in Europe)?

12. Are there any valid vehicle option combinations where no windshields are specified?

13. If windshield WS 399 was removed from the European model, would this cause any

issues? Why or why not?

Before conducting the experiment, it was necessary to ensure that each type of

query was being asked in multiple ways. Triangulating the queries to ensure each type is

covered in multiple ways is important when attempting to understand the relationship

between the independent and dependent variables within a study [102,132]. The

triangulation of questions for the user study is shown in Table 6.1.

 122

Table 6.1: Survey question triangulation

The above table provides an expanded list of possible query types with the question

number from the survey that corresponds to that subject. The interaction between options

and parts has the highest level of querying as it is the most complex relationship within the

configuration model. Also, as the identification of errors in the configuration model is the

primary purpose of the data visualization, finding errors in the available parts and options

was important. While three of the query types were only given a single question in the

form, this was done purposefully as these subjects are not as central to the purpose of the

visualization and the number of total questions in the survey was purposefully limited to

keep the time requirement within a single class period.

Triangulation

Question type 1 2 3 4 5 6 7 8 9 10 11 12 13

Option availability X X

Option - part

interaction
X X X X X X

US vs Europe

availability
X

Effect of adding

rule/option
X

Using options to

choose a part
X X

Finding option

errors
X X X

Option - option

interaction
X X

Finding part errors X X X

Effect of removing

a part
X

Question

 123

6.2.6 Experimental Procedure for Development Study

The students arrived for the normally scheduled class and sat at tables of their

choice. Once all of the students had arrived and were seated, the user study packets were

distributed to the students. Each packet contained a form and two visualization graphs.

The assignment of groups and the contents of each packet will be discussed in the following

section. 12 different packet sets were randomly distributed throughout the class. All work

was conducted individually. Once the packets were distributed, the instructions were

provided to the participants. Additionally, a brief (approximately 5 minutes) tutorial on

the data visualization techniques was provided. This was done because none of the

participants had prior experience with the data visualization method being used to represent

the system discussed in the form. Following the tutorial, the students were allowed to ask

any questions regarding the form or the data visualization technique. The participants were

then given 40 minutes to complete the experiment. However, upon completion of the

questionnaire, individual students were allowed to submit their packets early and leave the

classroom.

6.2.7 Packet Set-Variable Assignment for Development Study

The sets (1-12) were assigned such that each packet set would test a different set of

variables. All relevant combinations were provided. It should be noted that the part-base

level for coloring variable requires the full level for the information availability level. The

assignment of the variables to the packet sets is shown in Table 6.2.

 124

Table 6.2: Packet set-variable assignment

The materials that each participant received depended upon the packet set to which

they were assigned. However, every student from all of the groups received one form with

thirteen questions about the system being presented, and two data visualization graphs (one

representing US models and one representing European models). The queries chosen for

the survey were selected based on research with a manufacturing company on what types

of questions would be asked of a visualization tool used in identifying component

interactions and errors within a system. An example of one of the data visualization graphs

is shown in Figure 6.8. The depicted graph is the European graph received by Groups 1

and 7. All of the graphs are found in 9.2Appendix F:.

Condition 1 2 3 4 5 6 7 8 9 10 11 12

Functional X X X X X X

Circle X X X X X X

Full X X X X X X X X

Reduced X X X X

Interaction-

based
X X X X X X X X

Part-based X X X X

Order A X X X X X X

Order B X X X X X X

Group

Q
u

e
st

io
n

O
rd

e
r

C
o

lo
ri

n
g

G
ra

p
h

G
e

o
m

e
tr

y

In
fo

rm
at

io
n

A
va

il
ab

le

 125

Figure 6.8: Example of a visualization graph (provided to Groups 1, 7)

6.2.8 Pilot Study for Development Study

Prior to the execution of the user study, a pilot study was conducted. The purpose

of the pilot study was to determine the time requirements for the user study execution and

to validate the queries and procedures for the user study. The time required to conduct the

user study was a topic of consideration in that the user study needed to be conducted during

a single class period in order to minimize the impact on the students and to ensure that the

training and experiment could be conducted concurrently. The queries needed to be

validated to ensure that the participants were not confused by the wording and that the

novice students were capable of answering the queries.

 126

To execute the pilot study, the procedure described earlier was used. Following the

presentation, the participants were given a block of time to finish. In this instance,

however, the time was not limited to allow for maximum time to finish. The participants

were nine beginning graduate level engineering students with no experience in using graph

visualizations for configuration management. The difference in experience level between

the participants in the pilot study and in the full study was not expected to be a factor due

to the similar level of inexperience with graph visualizations. Additionally, no conclusions

were drawn from the pilot study other than time to finish and question answerability.

After evaluating the responses, it was determined that only a few of the queries

needed rework in order to ensure that they were clearly understood and could be answered

by a novice user. Additionally, the average time requirement was determined to be

approximately 22 minutes, with a maximum time required of 28 minutes. The results of

the pilot study ensured that the user study could be executed in its present form, with

minimal modifications, during a single class period.

6.2.9 Evaluation Protocol for Development Study

The forms were evaluated according to the number of queries answered correctly.

In many of the queries, multiple correct answers were possible and varying levels of detail

were acceptable. As a result, the possibility existed for subjectivity in the grading process.

However, because a single evaluator was used to examine all of the responses, this

minimized the amount of variability in the grading process. As such, no inter-rater

reliability assessment was conducted.

 127

6.2.10 Evaluation Metrics for Development Study

The metrics that were used for evaluation are correctness and confidence. These

metrics were chosen because it was not only important to determine which set of variables

produced the most accurate or correct responses, but also to determine the confidence of

the users in selecting those answers. As such, it was necessary to include a method for

measuring the participants’ confidence levels for each individual question.

Determining the correctness for each response was simple. The total number of

correct responses was determined, along with the number of possible correct answers (in

the packet sets with limited information available, not all questions were capable of being

answered). The confidence for each response was collected using a modified 100 mm

scale. In the traditional 100 mm scale, the user makes a tick mark along a blank 100 mm

line and the distance from the left side to the mark is measured and recorded for the

confidence [133,134]. A similar rating method was used in previous studies on confidence

in design review decision-making [135]. To simplify the process, the line used in this study

was graduated at 10% intervals, from 0 to 100. An example of the scale with a tick mark

is shown in Figure 6.9.

Figure 6.9: Modified 100mm confidence scale

 128

6.2.11 Results for Development Study

A total of 78 forms were collected from the participants and evaluated by a single

grader, as previously discussed. The data was tabulated into spreadsheets for ease of

analysis.

For correctness, the results were consolidated according to the different variable

levels. For instance, all of the groups of individual participants that received the full

information in the graph (1, 3, 4, 6, 7, 9, 10, 12) were in one consolidation, while the groups

receiving reduced information (2, 5, 8, 11) were treated separately. This was done for each

variable in order to see how the different variables affected the accuracy of the responses.

The results for each group and the consolidated results are shown in Table 6.3 and Table

6.4 respectively. Blank spaces in Table 6.3 represent queries that were unanswerable due

to a lack of available information.

Table 6.3: Number of correct responses for each question by group

responses 1 2 3 4 5 6 7 8 9 10 11 12 13

1A 7 2 5 6 3 7 1 5 3 6 7 7 1 2

2A 7 7 6 6 6

3A 7 1 5 5 2 5 0 4 2 4 6 5 1 4

4A 7 4 3 4 1 6 0 6 6 5 7 6 4 1

5A 7 3 5 3 1 3 1 5 6 6 3 4 3 2

6A 7 6 5 6 4

1B 6 3 3 5 2 5 0 3 2 3 6 4 1 1

2B 7 7 6 7 7

3B 5 3 3 3 0 5 0 4 3 5 3 2 3 1

4B 6 2 3 6 2 3 0 5 0 6 6 4 1 0

5B 6 3 4 3 2 4 0 4 3 5 5 3 0 2

6B 6 4 5 5 4

P
ac

ke
t

Se
t

Query

 129

Table 6.4: Percent of correct responses by variable

Table 6.4 also includes the percent difference between the variable levels, with

those questions indicating a noticeable difference between the variables highlighted in

yellow.

For confidence, the level of confidence for each query was measured using the

graduated scale on the confidence indicator line. This was done for each query and then

consolidated for each group. The average confidence levels for each question for each

group are shown in Table 6.5.

Table 6.5: Average confidence for each question by group

1 2 3 4 5 6 7 8 9 10 11 12 13

Parts 41% 61% 69% 25% 75% 4% 71% 49% 78% 84% 69% 27% 25%

No Parts 89% 0% 0% 0% 0% 0% 81% 89% 0% 0% 0% 78% 0%

% Diff 54% 100% 100% 100% 100% 100% 13% 45% 100% 100% 100% 65% 100%

Circle 56% 58% 62% 23% 62% 4% 77% 67% 85% 81% 65% 41% 19%

Function 59% 64% 76% 28% 88% 4% 72% 59% 72% 88% 72% 49% 32%

% Diff 4% 10% 19% 18% 30% 4% -7% -13% -18% 8% 9% 16% 40%

Colored 54% 36% 54% 21% 54% 3% 74% 56% 51% 67% 54% 38% 10%

Red/Grey 62% 44% 36% 13% 44% 3% 74% 69% 51% 44% 36% 51% 23%

% Diff 13% 18% -50% -60% -24% 0% 0% 19% 0% -53% -50% 25% 56%

Set A 55% 64% 64% 25% 75% 7% 74% 69% 75% 82% 79% 45% 32%

Set B 61% 57% 74% 26% 74% 0% 75% 56% 83% 87% 57% 44% 17%

% Diff 10% -14% 13% 4% -1% 100% 2% -24% 9% 6% -39% -2% -85%

Query

 130

6.2.12 Discussion for Development Study

It should first be noted that there are limitations in the analysis due to the responses

of the participants. From evaluating the responses, it was identified that some of the

participants did not take the experiment seriously or were confused by the instructions.

This conclusion was made due to a number of responses being unsuitable based on the

question being asked and/or instructions provided to the participants. For example, in

multiple instances, the participants would respond to a question asking for vehicle options

with a series of part numbers. This is clearly an example of the participants being confused

by what was being asked in the question. In such an instance, the response was simply

scored as incorrect, even if the thought process might have been correct. Additionally, a

number of students turned in their completed questionnaires after only 15 minutes of work.

During the pilot study discussed in Section 3, the fastest completion times were 20 minutes

or higher, so it is unlikely that multiple participants were able to finish that quickly. It is

more likely that the students rushed through the questions in order to be released early.

Fortunately, the above situations were in the small minority and should not significantly

affect the outcomes.

6.2.12.1 Availability of information

When considering the availability of part information, a definite trend existed

where the accuracy of the answerable questions greatly increased when the part

information was removed from the data visualization graph. Figure 6.10 illustrates the

percentage of correct responses for each question for both the full information and reduced

information (part vs. no parts) groups.

 131

Figure 6.10: Graph of the correctness for each question based on availability of

information

In the questionnaires, the only questions that remained answerable after the removal

of the part information were Questions 1, 7, 8, and 12. In the above graph, all other

questions are shown as having 0% correct responses for the “No Parts” group. However,

for the answerable questions, the percentages of correct responses were significantly higher

in almost all situations. The percentages for the answerable questions ranged from 78% to

89%, whereas the range for the same questions for the “Parts” group was 27% to 71%.

This corresponds with the hypothesis that decreasing the amount of information presented

will increase the ability to answer correctly for those questions that are still answerable.

However, it should also be noted that for 9 of the 13 questions (the unanswerable

questions for the “No Parts” group), the one group was not even able to attempt the question

due to the lack of information. Therefore, there are clearly situations where the full amount

of information will be required in order to answer the questions. In such situations, it may

 132

be advantageous, based on these results, to find other methods for limiting the total amount

of information presented to the user through the visualization graph.

6.2.12.2 Color-coding of interactions

There appears to be little correlation between the method for color-coding the

interactions between the components and the user’s ability to accurately answer the

questions. Figure 6.11 depicts the percentage of correct responses for each question for

the groups based on the type of color-coding used to identify interactions.

Figure 6.11: Graph of the correctness for each question based on color-coding

As seen in the above graph, the percentage of correct responses for each question

do not differ significantly based on the type of color-coding used to identify the

interactions. Only 5 of the 13 questions (3, 4, 10, 11, 13) show a marked difference

between the percentages of correct answers. Additionally, one of the questions (13) shows

a difference in the opposite direction (color-coding based on the node type being superior),

and the majority of the non-significant differences also show the node type color coding

 133

being slightly superior. As such, it is impossible to show that there is a direct relationship

between the color-coding scheme used and the accuracy of the responses.

6.2.12.3 Confidence

An ANOVA was conducted for the confidence ratings for the different groups. The

analysis showed no statistically significant difference in the confidence of the users based

on which type of graph they were given. Due to differences in the way the confidence was

understood by the participants and a lack of variation in the results for confidence, no

conclusions were able to be made regarding the resulting confidence levels of the

participants for individual questions.

6.2.12.4 Graph geometry

No correlation was found between the geometry of the data visualization graph and

the accuracy of the responses. Figure 6.12 illustrates the percentage of correct responses

for each question for the groups based on the graph geometry.

Figure 6.12: Graph for the correctness of each question based on layout

 134

As seen in the above graph, the percentages of correct responses for each question

are almost the same, regardless of the geometry of the graph. Only 2 of the 13 questions

show a marked difference between the percentages of correct answers. As such, it is

suspected that there is no relationship between the shape of the graph and the accuracy of

the responses

6.2.12.5 Question order

To ensure that question order did not play a factor in the accuracy of the responses,

two different orderings of the questions were used. Figure 6.13 illustrates the percentage

of correct responses for each question for the groups based on the order of the questions.

Figure 6.13: Graph of the correctness for each question based on order

As seen in the above graph, there is no trend for response accuracy based on the

order of the questions. Therefore, it can be concluded that the ordering of the questions

did not impact the results.

 135

6.2.13 Findings of the Development Study

The results generally showed an increase in the percentage of correct answers for

those questions that could still be answered when the amount of information presented was

reduced. On the other hand, the color-coding scheme did not seem to have any identifiable

effect on the results. The most significant limitation in this study was the possibility for

variations in the amount of effort put forth by the participants. It was clear, based on the

results, that some of the students did not put forth their best effort or follow the instructions

of the experiment.

6.3 Development of the Visualization Tool

The purpose of the graph visualization creation tool is to automatically import the

output from the previous tool and display a node-link graph visualization. Additionally,

the tool will provide a degree of interaction for the user to be able to manipulate the graph.

As discussed in the literature review, the ability to interact with the visualization greatly

enhances the user’s ability to understand the representations being displayed in the graph.

A graph visualization software package was developed in order to fulfill the requirements

for the design enabler to support the proposed configuration management method. The

following section discusses the process for selecting the platform to be used for the graph

visualization tool.

6.3.1 Platform Selection

Three platforms are being considered for the development of the graph visualization

that will provide the foundation for the visualization method. These platforms are Gephi

[136], Data-Driven Documents (D3) [137], and Processing [138].

 136

6.3.1.1 Gephi

Gephi is a visualization tool used for exploring networks, systems, and graphs

[136]. Unlike the other platforms being considered, Gephi is a fully functional software

package for importing node and edge data and displaying interactive network graphs. The

researcher also has some familiarity with Gephi as the early visualization graphs used in

the user study (discussed in 6.2) were created using this software. The major benefits of

Gephi are that it already exists, is open-sourced, and can be modified through the use of

plugins. The major drawbacks of Gephi are that many of its functions are unrelated to the

goals of this research, the development of new plugins would require learning a new

programming language, and does not provide, even with additional plugins, some

capabilities for data encoding that may be necessary for this research.

6.3.1.2 Data-Driven Documents (D3)

D3 is a JavaScript library that is used to visualize data in meaningful ways [137].

Because D3 is a JavaScript library, much of the desired functionality for the visualization

support tool is already available, but would require the supporting programming code for

interacting with the data and displaying the results properly. This leads to the major

benefit, and also drawback, of using D3. On the one hand, the required functionality

already exists and D3 is capable of a wide range of possibilities with respect to visualizing

graph-based data. The drawback is that D3 is run in HTML, which would require a better

understanding of data recovery and programming in HTML.

 137

6.3.1.3 Processing

Processing is an open-source programming language that was designed specifically

to assist in adding a visual context to data [138]. Processing is a widely used language

within data visualization and has over 100 libraries to extend the capabilities of the original

software. The main positive of using processing as the platform is that the software is

completely build-to-suit, meaning that the resulting tool can be programmed to be exactly

what is required. Other benefits are that the large number of libraries can assist in

developing the necessary functions and the researcher is already familiar with the

programming language. The largest drawback is that the graph visualization software

would have to be built from scratch.

6.3.1.4 Summary

The level of familiarity, availability, and functionality for each of the possible

platforms is shown in Table 6.6: Software platform selection overview. Due to the low

level of familiarity with programming with D3, as a result of it being HTML-based, D3 is

rejected from the possible platforms. Additionally, Gephi is excluded because it is not

capable of some of the required functionality for the visualization support method. As a

result, Processing is chosen as the platform for the development of the visualization support

method.

 138

Table 6.6: Software platform selection overview

6.3.2 Visualization Tool Requirements Identification

Through the course of the case study, a need was identified for support tools to

assist in the configuration management process, to include managing the effects of

proposed configuration changes. In order to address the identified issues, the following

requirements are proposed:

 Able to easily visualize the interactions between configuration components

(including parts)

 Able to highlight specific problem areas to assist in simplifying the rule database

 Able to check for errors in the existing rule database

 Able to preview how proposed configuration changes would affect the existing

rule database

These requirements were identified through the interviews to address specific

issues experienced by the automotive OEM in their current configuration management

process.

 139

6.4 Implementation of the Visualization Tool

6.4.1 Data Organization and Source

In order to create each graph visualization, two sets of inputs are required: the nodes

(items of interest) and the edges (relationships) of the graph. Both of these inputs are

created through the additional software tools used to support the configuration management

process at the OEM (discussed in 5.2). The following subsections describe the inputs in

more depth.

6.4.1.1 Graph Nodes

The graph nodes, or items of interest, consist of the vehicle options, parts and

packages that exist in the configuration rule database. Also, the researcher created “AND”

and “OR” nodes to assist in representing rules that are not strictly binary. In addition to

the node label, the following information is recommended for capture in the input file: a

unique ID number for easy recall and data storage, the type of node, the lowest level of

interaction from the specified nodes, and the X/Y coordinates for the nodes position in the

graph.

Specifying the type of node increases the amount of information that can be visually

stored in the graph and allows for easier understanding of what a specific node entails. The

lowest level of interaction from the specific nodes identifies the number of interactions

required to move from the original nodes to a specific node (for example: in A->B->C,

where “A” is a node specified in the change document, the level of interaction for “C”

would be 2). This information is useful in that it can assist the user in determining the

likelihood of a change propagating to other components. Lastly, the X/Y coordinates are

 140

useful if any prepositioning of the nodes is used for an initial layout of the graph. An

example node input file is shown in Figure 6.14.

Figure 6.14: Example graph node input file

6.4.1.2 Graph Edges

The graph edges, or relationships between the nodes, consist of the rules that govern

how the different components interact. These relationships include all of the rules as

specified in the option and part rule databases, as well as function class information. It is

also possible to use new rules as created in the conflict detection tool as relationships.

While it may be useful to label the edges on the graph, a label is not currently included in

the information provided in the edge input file. The information provided for each edge is

a unique ID number of easy data storage and recall, the source node of the edge, the target

node of the edge, and the type of edge.

The source node of the edge refers to the “If” portion of the rule in a binary rule,

while the target node refers to the “Then” portion of the rule. In more complex rules (non-

 141

binary), a more comprehensive grammar must be used and is discussed in 6.4.2.1. The

edge type represents the type of relationship between the nodes. Three different types of

relationships are currently used: inclusive, exclusive, and multiple-inclusive relationships.

An inclusive relationship means that the source requires the target to also be present.

Similarly, exclusive requires that the target must not be present. The multiple-inclusive

relationship is used in conjunction with “OR” and “AND” nodes to help delineate that the

relationship is not binary. Multiple-exclusive could also be represented separately, but has

not been used in the current implementation. An example of an edge input file is shown in

Figure 6.15.

Figure 6.15: Example graph edge input file

6.4.2 Methods

The following subsections describe the two major functions of the visualization

tool: graph creation and graph manipulation.

 142

6.4.2.1 Graph Creation

In graph creation, the data from the input files are read and displayed on the screen

in a node-link diagram. In order to accurately depict the different types of

rules/relationships between nodes, a visualization grammar was required. For binary rules,

the grammar consists of an arrow pointing from one node to another. An example of an

inclusive, binary rule is shown in Figure 6.16. In the figure, P5A3A is the source node,

and S5ACA is the target node, meaning that if P5A3A is present, S5ACA must also be

active. The green arrow is being used to represent the inclusivity of the relationship.

Figure 6.16: Rule and corresponding graph for an inclusive, binary relationship

On the other hand, an exclusive, binary relationship is shown in Figure 6.17. In

this instance, the presence of S5A1A requires that P5A3A not be present for the

configuration to work.

Figure 6.17: Rule and corresponding graph for an exclusive, binary relationship

When considering relationships that are not binary, “OR” and “AND” nodes are

used to assist in representing the rules. An example of a rule with an “OR” node is shown

 143

in Figure 6.18. In this graph, the “OR” node is created as the target for the “If” part of the

rule and the source for the “Then” part of the rule. The meaning of the following graph is

that if S645A is present, then neither S825A nor L807A must be present.

Figure 6.18: Rule and corresponding graph for a relationship requiring an “OR”

node

An “AND” node is represented in a similar manner to the “OR” node and is shown

in Figure 6.19. The following graph shows that if both L807A and S6VAA are present,

then S6AEA cannot be present.

Figure 6.19: Rule and corresponding graph for a relationship with an “AND” node

Another example of an “AND” node is shown in Figure 6.20. In this example

though, one of the source nodes has a negative attached to it, changing the type of

relationship between the node and the “AND” node. The resulting interpretation is that if

L807A is not present, but S552A is present, then S5ACA must be present.

 144

Figure 6.20: Additional rule and graph for a relationship with an “AND” node

Colors were chosen to represent the types of relationships instead of either size or

dash-lines because in a more complex graph, it is more difficult to distinguish between or

trace different line thicknesses or different types of dashed lines. While red, green, and

blue were chosen for the colors in this mapping, a different set of colors could be used in

their place. An example of a completed graph is shown in Figure 6.21.

Figure 6.21: Graph visualization for a specific change

 145

6.4.2.2 Graph Manipulation

While it is possible to explore a static graph visualization, the ability to interact

with the data greatly increases the user’s understanding of the system. As such, the

software tool supports graph manipulation. The current level of interaction includes the

ability to move nodes on the existing graph, to create new nodes and edges, to remove

nodes, to highlight a specific node and all of its interactions, and to rearrange the layout of

the graph to increase readability. Additional options are for the user to save the existing

visualization or to reset the visualization to its original state.

At the most basic level of interaction is the ability of the user to move the existing

nodes. This is necessary as it allows the user to manually position items of interest or to

cluster specific nodes based on some criteria. As the edges are directly linked to the nodes,

as the nodes are moved, the edges change to accommodate the placement of the nodes.

As one of the required tasks of the visualization is to assist in the evaluation of

potential changes to the system, it is necessary for the user to be able to add and remove

nodes and edges. At present, the current system allows the addition of both nodes and

edges, but only the manual removal of nodes. When a specific node is removed, however,

all of the associated edges are removed as well. When adding a node or edge, the user

must also have the ability to specify which type of node or edge is being created, along

with entering in any information that is to be stored in the associated data file.

When evaluating the potential propagation pathways from one node to another, it

is useful to be able to select a specific node for highlighting. When a node is selected, all

of its interactions are highlighted, while any relationships not directly related to the node

 146

are dimmed slightly. These represent the first-order interactions for the node. It may also

be possible to allow the user to change the order of interaction for this highlighting for

increased user specificity. To show the full relationship, the path between nodes should be

between two components (options/parts/packages) and not “AND” or “OR” nodes, but

should pass through the intermediate nodes. An additional extension of this is that when

two nodes are selected, the shortest path between them (or all unique paths) is highlighted

to show the level of interaction between the two nodes.

Research has shown that while using a specific layout algorithm is not essential, it

is important to use some algorithm for arranging the nodes. This helps to alleviate clutter

and greatly increases the readability of the graph. For this visualization, a force-directed

algorithm is used and will be discussed further in the following section.

In addition to the ability to save the current visualization (which captures the current

image of the graph), it is also useful to be able to output the current data files that go with

the graph. The data files could be outputted in the data file format as described in 6.4.1 or

in the form of rules that could then be merged with the existing rule database.

6.4.2.3 Force-Directed Graph Layout

The force-directed algorithm is a basic graph layout algorithm that uses a repulsive

force between all nodes and an attractive force along all edges. To apply the algorithm, a

repulsive force is determined between the nodes and a movement value is created for each

node. Then the attractive force is determined for each edge and each nodes movement

value is adjusted accordingly. After both forces have been applied, the nodes are moved

according to their final movement values. This process is repeated until the user is satisfied

 147

with the dispersion of the nodes. It is also important that outer boundaries are set for the

nodes to ensure that the graph does not grow continually, but rather reaches a steady-state.

6.5 Software Development

This section describes the programming methods used to transform source data into

a graph visualization and then allow the user to interact with the graph. All of the code

found in this section is from Processing (www.processing.org), a common visualization

programming language. The first task is to import the data from the graph and edge files

and store them locally for editing, as discussed in 6.5.1. A discussion of the data classes

that are used for data storage can be found in 6.5.2. From the graph data, the software then

creates the graph visualization, as discussed in 6.5.3. Lastly, the tool provides the ability

to interact with the graph, as discussed in 6.5.4.

6.5.1 Data Management

For each input file (node and edge), a data table is created. For the data tables, a

specific object class is used. The data is stored in a dataTable, along with some meta-data

about the table to increase the ability to search through the data. The purpose of this is to

store the data in a way that is more manageable both for retrieval and editing.

1 class dataTable {

2 int rowCount;

3 String[][] data;

4 String[] columnNames;

5

6 dataTable(String filename) {

7 String[] rows = loadStrings(filename);

8 data = new String[rows.length-1][];

9

10 // skip row 0 (column headers)

11 for (int i = 1; i < rows.length; i++) {

12 // skip empty rows

13 if (trim(rows[i]).length() == 0) { continue; }

14

15 // split the row on the tabs

http://www.processing.org/

 148

16 String[] pieces = split(rows[i], TAB);

17

18 // copy Data into the table starting at pieces[1]

19 data[rowCount] = (subset(pieces, 0));

20

21 // increase row count

22 rowCount++;

23 }

24 // resize the array as necessary

25 data = (String[][]) subset(data, 0, rowCount);

26 }

27

28 int getRowCount() {

29 return rowCount;

30 }

31

32 String getString(int rowIndex, int col) {

33 return data[rowIndex][col];

34 }

35 }

6.5.2 Data Classes

To assist in creating the graph and storing information that is specific to the nodes

or edges, two additional data classes are used: Node and Edge. For the nodes, the Node

class stores the information from graph input file as well as contains a function for how the

nodes should be drawn on the graph. Additionally, another variable “selected” is either

turned on (1) or off (0) depending on whether or not the node has been highlighted. The

coloring of the node is defined according to the type of node.

1 class Node

2 {

3 String label;

4 int ID;

5 int selected = 0;

6 int nodeType;

7 float x;

8 float y;

9

10 Node(int _ID, String _label, int _nodeType, float _x, float _y) {

11 ID=_ID; label=_label; nodeType=_nodeType; x=_x; y=_y;

12 }

13

14 void draw(int selection) {

15 int opacity = 255;

16 if (selection == 1) {

17 opacity = 100;

18 }

19 strokeWeight(10);

20 if (selected == 1) {

21 strokeWeight(12);

22 opacity = 255;

23 }

 149

24 if (nodeType == 1) {

25 stroke(255, 100, 0, opacity);

26 } else if (nodeType == 2) {

27 stroke(0, 200, 200, opacity);

28 } else if (nodeType == 3) {

29 stroke(0, 0, 200, opacity);

30 } else if (nodeType == 4) {

31 stroke(200, 200, 0, opacity);

32 } else if (nodeType == 5) {

33 stroke(200, 0, 200, opacity);

34 } else {

35 stroke(150);

36 }

37 point(x, y);

38 fill(0);

39 textSize(13);

40 textAlign(LEFT, CENTER);

41 text(label, x + 10, y - 10);

42 }

43 }

For the edges, the Edge class stores the information from graph input file as well

as contains a function for how the edges should be drawn on the graph. The method for

drawing the edges is to create a line from the source node to the target node, with an

arrowhead also being drawn on the target end (lines 42-52). Additionally, another variable

“selected” is either turned on (1) or off (0) depending on whether or not an associated node

has been highlighted. As with the nodes, the coloring of the edge is assigned according to

the type of edge.

1 class Edge

2 {

3 int edgeType;

4 Node source;

5 Node target;

6

7 Edge(Node _source, Node _target, int _edgeType) {

8 source=_source; target=_target; edgeType=_edgeType;

9 }

10

11 void draw(int selection) {

12 strokeWeight(4);

13 int opacity = 255;

14 if (selection == 1) {

15 opacity = 100;

16 }

17 if (source.selected == 1) {

18 strokeWeight(8);

19 opacity = 255;

20 }

21 if (target.selected == 1) {

22 strokeWeight(6);

23 opacity = 255;

24 }

 150

25 if (edgeType == 1) {

26 stroke(225,0,0, opacity);

27 fill(225,0,0, opacity);

28 }

29 if (edgeType == 2) {

30 stroke(0,75,255, opacity);

31 fill(0,75,255, opacity);

32 }

33 if (edgeType == 3) {

34 stroke(0,200,0, opacity);

35 fill(0,200,0, opacity);

36 }

37 float xSource = source.x;

38 float ySource = source.y;

39 float xTarget = target.x;

40 float yTarget = target.y;

41 line(xSource, ySource, xTarget, yTarget);

42 pushMatrix();

43 translate(xTarget, yTarget);

44 float a = atan2(xSource-xTarget, yTarget-ySource);

45 rotate(a);

46 strokeWeight(2);

47 beginShape();

48 vertex(0, 0);

49 vertex(-5, -15);

50 vertex(5, -15);

51 endShape();

52 popMatrix();

53 }

54 }

6.5.3 Graph Creation

In Processing, a base setup function is run initially, after which, a draw function is

run continuously. In the setup function, the data is transferred from the input files into the

dataTable classes and additional meta-data is collected about the graph. At the end of the

setup, the initial set of nodes and edges are stored through the storeNodes and storeEdge

functions.

1 void setup() {

2 nodeData = new dataTable("Nodes.tsv");

3 edgeData = new dataTable("Edges.tsv");

4 nodeCount = nodeData.getRowCount();

5 edgeCount = edgeData.getRowCount();

6 size(visHeight + 3 * border, visHeight);

7 day = day();

8 month = month();

9 year = year();

10

11 storeNodes();

12 storeEdges();

13 }

 151

The storeNodes function retrieves the data from the nodes dataTable (nodeData)

and creates an entity of the Node class (line 11), which is then added to an ArrayList of all

nodes in the graph through the addNode function (line 12).

1 void storeNodes() {

2

3 for (int row = 0; row < nodeCount; row++) {

4 int nodeID = parseInt(nodeData.getString(row, 0));

5 String nodeName = nodeData.getString(row, 1);

6 int nodeType = parseInt(nodeData.getString(row, 2));

7 float x = parseFloat(nodeData.getString(row, 4));

8 x = centerX + (x * visHeight)/2;

9 float y = parseFloat(nodeData.getString(row, 5));

10 y = centerY + (y * visHeight)/2;

11 Node ni = new Node(nodeID, nodeName, nodeType, x, y);

12 addNode(ni);

13 }

14 }

The storeEdges function retrieves the data from the edges dataTable (edgeData)

and creates an entity of the Edge class (line 14), which is then added to an ArrayList of all

edges in the graph through the addEdge function (line 15). The edge uses the ID numbers

of the nodes to identify the source and target. Lines 10-13 show the method for matching

the current nodes to the edge.

1 void storeEdges() {

2 Node nSource = null;

3 Node nTarget = null;

4

5 int edgeSource, edgeTarget, nodeID;

6 for (int row = 0; row < edgeCount; row++) {

7 edgeSource = parseInt(edgeData.getString(row, 1));

8 edgeTarget = parseInt(edgeData.getString(row, 2));

9 int edgeType = parseInt(edgeData.getString(row, 3));

10 for(Node n: nodes) {

11 if(n.ID == edgeSource) { nSource = n; }

12 if(n.ID == edgeTarget) { nTarget = n; }

13 }

14 Edge e1 = new Edge(nSource, nTarget, edgeType);

15 addEdge(e1);

16 }

17 }

Once all of the data has been stored properly, the draw function is run continuously

to create the graph. The program draw function executes the Node and Edge class draw

functions, populating the items on the visualization (lines 12-13). Additionally, the legend,

 152

instructions for interaction, the date of graph creation, and two interface buttons (reset and

save) are drawn (lines 6-10). The checkSelection function checks if any of the nodes have

been highlighted. This is used to determine whether the non-highlighted portions of the

graph should be dimmed. Lastly, the forceCheck variable is used to determine whether the

user has chosen to implement the force-directed algorithm. While the check is active, the

force directed algorithm will run continuously, until the user is satisfied with the graph

dispersion and turns off the algorithm.

1 void draw() {

2 selection = 0;

3 background(240);

4 scale(zoom);

5

6 drawReset();

7 drawSave();

8 drawDates();

9 drawLegend();

10 drawInstructions();

11 checkSelection();

12 for(Edge e: edges) { e.draw(selection); }

13 for(Node n: nodes) { n.draw(selection); }

14 if (forceCheck == 1) {

15 forceDirect();

16 }

17 }

The force-directed algorithm starts by looping through all of the nodes (line 10).

For each node, an initial movement vector is created. Then the repulsive forces from all

other nodes are calculated (lines 25-54). The algorithm first checks to make sure the nodes

are within a certain distance of each other (lines 28-33) and uses the magnitude and

direction between the nodes to create a movement value in the opposite direction (lines 34-

44). Then the node is adjusted accordingly.

After the repulsive forces have been evaluated, the attractive forces provided by the

edges are considered (lines 56-84). Again, the distance and direction between the nodes

 153

are determined (lines 63-72) and used to create a move value towards the other node that

increases as the distance increases (lines 74-80). The nodes are then moved accordingly.

1 void forceDirect() {

2 float k = sqrt((visHeight * visHeight)/nodeCount);

3 float distX, distY, dist;

4 float centerDist, centerDistX, centerDistY;

5 float moveX, moveY, move;

6 float pushX, pushY, push;

7 float direction;

8 float pushFactor = 10000;

9 float pullFactor = 1000000000;

10 for (Node n1: nodes) {

11 distX = 0;

12 distY = 0;

13 dist = 0;

14 direction = 0;

15 pushX = 0;

16 pushY = 0;

17 push = 0;

18 moveX = 0;

19 moveY = 0;

20 move = 0;

21 centerDistX = n1.x - centerX;

22 centerDistY = n1.y - centerY;

23 centerDist = sqrt((centerDistX * centerDistX)+(centerDistY * centerDistY));

24

25 for (Node n2: nodes) {

26 if (n1 == n2) {}

27 else {

28 distX = n1.x - n2.x;

29 distY = n1.y - n2.y;

30 dist = sqrt((distX * distX) + (distY * distY));

31 direction = getDirection(distX, distY);

32 push = (1 / ((dist * dist) + 1)) * pushFactor;

33 if (dist < k && dist > -k) {

34 pushX = cos(direction) * push;

35 pushY = sin(direction) * push;

36 if (pushX > 15) {pushX = 15;}

37 if (pushX < -15) {pushX = -15;}

38 if (pushY > 15) {pushY = 15;}

39 if (pushY < -15) {pushY = -15;}

40 float newX = n1.x + pushX;

41 float newY = n1.y + pushY;

42 float newDistX = newX - centerX;

43 float newDistY = newY - centerY;

44 float newDist = sqrt((newDistX * newDistX) + (newDistY * newDistY));

45 if (newDist > 1.2 * radius) {

46 pushX = 0;

47 pushY = 0;

48 }

49 else {

50 n1.x += pushX;

51 n1.y += pushY;

52 }

53 }

54 }

55

56 for (Edge e: edges) {

57 distX = 0;

58 distY = 0;

59 dist = 0;

60 moveX = 0;

 154

61 moveY = 0;

62 move = 0;

63 if (e.source == n1) {

64 distX = e.target.x - n1.x;

65 distY = e.target.y - n1.y;

66 }

67 else if (e.target == n1) {

68 distX = e.source.x - n1.x;

69 distY = e.source.y - n1.y;

70 }

71 dist = sqrt(distX * distX + distY * distY);

72 if (dist > k || dist < -k) {

73 direction = getDirection(distX, distY);

74 move = dist * dist * pullFactor;

75 moveX += cos(direction) * move;

76 moveY += sin(direction) * move;

77 if (moveX > 15) {moveX = 15;}

78 if (moveX < -15) {moveX = -15;}

79 if (moveY > 15) {moveY = 15;}

80 if (moveY < -15) {moveY = -15;}

81 }

82 n1.x = n1.x + moveX;

83 n1.y = n1.y + moveY;

84 }

85 }

86 }

87 }

6.5.4 Graph Interaction

Processing allows interaction with the visualization through the use of the computer

mouse and the keyboard. As such, all graph interactions use a combination of these input

devices. When the mouse is clicked, a left click will enable either the creation of a new

node (when the keys “o,” “p,” “f,” “t,” or “l” are pressed, depending on the type of node to

add) or the selection of a node (if the control key is pressed and the cursor is on an existing

node). Additionally, if the mouse is in a specific area (the reset and save “buttons” on the

screen) either the visualization is reset or a screenshot of the visualization is taken and

saved to the specified location (lines 11-14). A right click of the mouse, with the control

key down, will delete the node on which the cursor is placed (lines 16-20).

1 void mouseClicked() {

2 if (mouseButton == LEFT) {

3 if (keyPressed == true) {

4 if (key == 'o') { createNode(1); }

5 if (key == 'p') { createNode(2); }

6 if (key == 'f') { createNode(3); }

7 if (key == 'l') { createNode(4); }

 155

8 if (key == 't') { createNode(5); }

9 if (keyCode == CONTROL) { selectNode(); }

10 }

11 if (mouseX <= 120 && mouseY <= 30) { resetAll(); }

12 if (mouseY >= 35 && mouseY <= 65) {

13 if (mouseX <= 120) { save("output_graph.jpeg"); }

14 }

15 }

16 if (mouseButton == RIGHT) {

17 if (keyPressed == true) {

18 if (keyCode == CONTROL) { deleteNode(); }

19 }

20 }

21 }

 The selectNode function is used to highlight a specific node the interacting nodes

and edges. First, the selected variable is set to “1” indicating it is turned on. If the node is

already selected, then it is set to “0” to turn it off (lines 3-10). Then, all of the edges are

check to determine if they include the selected node. In the case of “OR” and “AND”

nodes, those nodes are also turned on to ensure than the full relationship is highlighted, not

just part of it.

1 void selectNode() {

2 for(Node n: nodes) {

3 if (dist(mouseX, mouseY, n.x, n.y) < 10) {

4 if (n.selected == 0) {

5 n.selected = 1;

6 }

7 else if (n.selected == 1) {

8 n.selected = 0;

9 }

10 }

11 }

12 for (Edge e:edges) {

13 if (e.source.selected == 1 || e.target.selected == 1) {

14 if (e.target.label.contains("OR") || e.target.label.contains("AND")) {

15 e.target.selected = 1;

16 }

17 else if (e.source.label.contains("OR") || e.source.label.contains("AND"))

{

18 e.source.selected = 1;

19 }

20 }

21 }

22 }

If a node is to be deleted, the deleteNode function is run. This function first

identifies which node is under the cursor. Then any edges attached to the node are removed

prior to the node itself being removed.

 156

1 void deleteNode() {

2 for(int i = nodes.size(); i-- !=0;) {

3 Node n = nodes.get(i);

4 if (dist(mouseX, mouseY, n.x, n.y) < 10) {

5 for (int j = edges.size(); j-- !=0;) {

6 Edge e = edges.get(j);

7 if (e.source == n) {

8 edges.remove(j);

9 }

10 if (e.target == n) {

11 edges.remove(j);

12 }

13 }

14 nodes.remove(i);

15 }

16 }

17 }

In order to move a node, the mouse is left-clicked while on a node and dragged to

the desired location. To ensure that only a single node is selected, the draggedNode

variable is used. As the cursor moves with the node still selected, the position of the node

continually updates. Upon release of the mouse button, the draggedNode value returns to

-1 and the node is “dropped.”

1 void mouseDragged() {

2 if (mouseButton == LEFT) {

3 if (draggedNode == -1) {

4 for(Node n: nodes) {

5 if (dist(mouseX, mouseY, n.x, n.y) < 10) {

6 nSelect = n;

7 draggedNode = 1;

8 }

9 }

10 } else {

11 nSelect.x = mouseX;

12 nSelect.y = mouseY;

13 }

14 }

15 }

16

17

18 void mouseReleased() { draggedNode = -1; }

Lastly, the user has the ability to create a new edge between two nodes. When the

left mouse button is pressed and either the “a” or “z” keys are pressed, depending on the

type of interaction desired, the source node is selected. This is determined by a proximity

of the cursor to the node (lines 6-10). The newEdgeSource variable is used to ensure that

a single source and target are selected. After the source has been selected, the user (while

 157

still pressing either “a” or “z”) selects the target node to create the edge. At this point, the

edge is created, added to the array, and newEdgeSource is returned to -1 to prepare for the

next edge creation (lines 22-24).

1 void mousePressed() {

2 if (mouseButton == LEFT) {

3 if (keyPressed == true) {

4 if (key == 'z' || key == 'a') {

5 if (newEdgeSource == -1) {

6 for(Node n: nodes) {

7 if (dist(mouseX, mouseY, n.x, n.y) < 10) {

8 newSource = n;

9 newEdgeSource = 1;

10 }

11 }

12 }

13 else {

14 for(Node n: nodes) {

15 if (dist(mouseX, mouseY, n.x, n.y) < 10) {

16 newTarget = n;

17 }

18 }

19 if (key == 'z') { newEdgeType = 3; }

20 if (key == 'a') { newEdgeType = 1; }

21

22 Edge e1 = new Edge(newSource, newTarget, newEdgeType);

23 addEdge(e1);

24 newEdgeSource = -1;

25 }

26 }

27 }

28 }

29 }

6.6 Conclusions

This chapter continues to support the third research objective: development of an

improved method for configuration change management. The previous chapter (Chapter

Five) proposed the overall method and discussed the design enablers that would be

necessary to support the proposed method. The focus of this chapter is on the first sub-

question in support of the research objective: How can data visualization be used to

increase the ability to understand component relationships in a system? This research

question is answered through a review of relevant literature, a user study, and the

development of a graph visualization software tool.

 158

The literature review was conducted in order to understand how graph visualization

can be implemented for configuration change management. The literature review focused

on how data visualization is used to understand and manage large amounts of data. More

specifically, graph visualization was identified for its usefulness in understanding the

relationships between entities within a system. During the literature review, it was also

identified that numerous factors can affect the usefulness of graph visualizations. This led

to the second task to answer the above research question.

The user study was conducted in order to understand what aspects of the

visualization graph (color, layout, and availability of information) affect the user’s ability

to understand and identify relationships between vehicle options and parts in a

configuration system. The participants were given different graphs and tasked with

answering questions regarding the configuration system portrayed in the graph. The results

showed that color and layout did not have a significant impact while availability of

information (the removal of unnecessary information) greatly increased the users’ ability

to answer questions about the configuration system. This information was then used in the

development of the visualization software tool.

The graph visualization tool was developed using the Processing visualization

programming language. Based on a set of inputs from one of the other supporting design

enablers (interaction identification), the visualization tool creates a graph visualization of

the configuration system. The software tool also allows for a wide range of interactions

with the graph, including reshaping, adding and removing nodes and edges, and outputting

the resulting graph for future use or evaluation.

 159

6.7 Dissertation Roadmap

Chapter Six focused on the development and implementation of the graph

visualization support tool. The next chapter (Chapter Seven) builds on this by presenting

the methods and results of three validation techniques: a user study, implementation cases,

and user feedback. The progress of this dissertation is shown in Figure 6.22 in which the

completed portion is highlighted in green.

Figure 6.22: Dissertation roadmap

 160

CHAPTER SEVEN: VISUALIZATION TOOL VALIDATION

The purpose of the research presented in this chapter is to validate the graph

visualization support tool discussed in Chapter Six. Previous research has shown the need

for rigorous validation of design research [139]. As such, the Validation Square [140] is

used as a guideline for the validation of the visualization tool. The literature review

conducted during the development of the visualization tool in Section 6.1 answers first

aspect of validation – accepting the construct’s validity. The visualization tool was

evaluated through four implementation studies of ongoing configuration changes at the

OEM, a validation user study on the tool’s usefulness in rule implementation, and user

feedback.

7.1 Implementation Cases

In order to test the visualization tool throughout its development, the researcher

used the software to assist in validating in-progress configuration changes at the OEM.

These problems were identified by both the researcher and the OEM users as exemplars

appropriate for testing. This ties into the fourth aspect (accepting usefulness of method for

some example problems) of the Validation Square in that the problems being used for

evaluation are representative [140]. Additionally, because the tool was implemented by

the researcher alongside the personnel at the OEM conducting their own validation, the

fifth part (accepting the usefulness is linked to applying the method) is also fulfilled. The

following sections discuss how the visualization tool was used to assist in the analysis of

four ongoing changes at the OEM.

 161

7.1.1 Case 1: Windshield Option Change

The first change for which the visualization tool was implemented involved

changing the rules that governed the relationships between two vehicle options.

Previously, the presence of option 358 required that option 3AP also be present. However,

this led to an issue in assigning parts for the vehicle, so a change was made that made the

presence of option 358 require the absence of option 3AP. This configuration change

affected all models for the X5 and X6 vehicle lines in the European markets and was

proposed in June 2014. The proposed change affected eight different options and explicitly

required the change or addition of ten rules.

One question that was asked regarding the change was whether it would result in

any windshields that were no longer valid. Essentially, were there any windshields that

required a configuration that no longer worked due to the change? To assist in answering

the question, a visualization graph for the windshields and all options affecting the ordering

of windshields was created (Figure 7.1). In the graph, the available windshields are found

on the left with labels of WS###, while the options are on the right and a represented by

S###A. The links between them represent the rules according the grammar discussed in

6.4.2.1. A brief review of the graph shows that no windshield requires the both 3AP and

358 to be present. To conduct this review, the options of concern (3AP and 358) are

identified in the graph. Then the windshield parts are identified in the graph (along the left

hand side). The rules for each windshield part is checked for whether it requires (has a

green arrow) to the options of concern. For example, WS905 requires option 358, but not

3AP. On the other hand, WS 401 requires 3AP, but not option 358.

 162

Figure 7.1: Visualization graph for windshield option change (Case 1)

This is the same conclusion that the change control personnel at the OEM came to

while working concurrently on the configuration change. However, in the traditional

approach, the OEM engineers spent approximately 2 hours analyzing the change. With the

graph, the question was answered in minutes. In addition, the use of the visualization

assisted the researcher in understanding and explaining to the change control personnel as

to why the change was written as is and to validate that there were no other configuration

conflicts resulting from the implementation of the change.

 163

7.1.2 Case 2: Indian Country Model Change

Another change in which the visualization tool proved helpful involved changing

the standard Indian country model for the one of the diesel SUVs from one model to

another. The intent of the configuration change validation in this instance was to determine

whether any additional rules needed to be added, other than changing the availability of the

option code between the two models.

In order to support the validation of this change, two separate graphs were created,

one for each model code that was effected. The graph for the model code that currently

existed as the model for use in India is shown in Figure 7.2. It should be noted that this is

an earlier instance of the graph visualization tool and the readability of the graphs has since

been improved to increase usability.

Figure 7.2: Visualization graph for existing model

 164

The graph for the model that would replace the previous model is shown in Figure

7.3 below.

Figure 7.3: Visualization graph for replacement model

By comparing the two graphs, it was possible to determine if there were any

differences between the options and rules for the two models.

A brief inspection of the graphs above shows that a series of rules/options are

missing from the middle of the left side of the graph. Essentially, this meant that change

the engine size (the only significant change between the two model codes) resulted in no

longer disallowing a certain emissions standard in the ruleset. When asked if this was

intentional, the change control personnel at the OEM were not aware of the inconsistency.

To determine whether it would have been faster to create a list of the options and

rules present for each model, an additional study was conducted. In this study, the time

was determined to create the visualization and then inspect to determine where any

 165

differences may lie. This time was compared to the amount of time it would take to identify

the difference using the methods in place at the OEM. It was determined that the use of

the visualization graph reduced the required time by 75%.

7.1.3 Case 3: Emissions Standards Option Change

Because the configuration changes are not written by personnel in the change

control group at the OEM, understanding the reasoning and implications behind the change

can be difficult when attempting to validate a specific change, even if the validation itself

is simple. This was the case with the third configuration change. This change focused on

the emissions standard levels (S161A, S167A, and S169A) for four vehicle models (KS01,

KS02, LS01, LS02) of the X5 vehicle line. The change was proposed and evaluated in

July 2014. After the analysis, it was determined that models LS01 and LS02 were being

created to allow a specific emission standard (S167A), which was not available for the

other two models.

7.1.4 Case 4: Australian Country Option Addition

The final change for which the visualization tool was implemented was the addition

of the Australian country option to a current model. Essentially, the OEM wanted to

expand its vehicle offerings in Australia.

In order to validate this change, a model was selected that most closely matched

the model being changed, but that already included the Australian country option. This

mirrored the method used by the change control personnel at the OEM. Two visualization

graphs were then created for the models. The first graph showed the model that already

 166

had the option, shown in Figure 7.4. The second graph showed the model to which the

option was being added, shown in Figure 7.5. In addition, a blank node (“New Node 2”)

was added to the graph to mimic the option being added to the model. Also, the

corresponding rules between the new option and other related options were added to the

graph to create a close duplicate to the existing model.

Figure 7.4: Existing model graph with the Australian country option already

available

 167

Figure 7.5: Graph of the model to which the country option will be added

 Based on an inspection of the above graphs, no issues were identified to result from

adding the Australian country option to the new model. The only changes were that two

other options (S2AMA and L8LAA) were not available for the new model and those would

not be of concern. An additional application of this tool is that the new options and ruleset

that were created using the visualization tool could be exported to provide the written

rules/options that needed to be modified in the ruleset to implement the change.

7.2 Rule Authoring User Study (Validation Study)

One of the potential applications of the graph visualization support tool is to allow

the user to export any rules or options created through the graphical user interface. These

new rules or options could then be implemented directly into the OEM’s rule database to

avoid having to convert the rules to the correct format and enter them manually. As such,

 168

a user study was conducted to evaluate the usefulness of the graph visualization support

tool for assisting in rule implementation. In addition, the user study evaluated the ability

of an untrained user (the participants) to understand and implement the visualization

support tool in conjunction with proposed configuration changes. The details of the

validation user study are discussed in the following sections.

7.2.1 Research Questions for Validation Study

Research has shown that different types of data representation may be more

accommodating for answering different types of questions about the system being

represented. Additionally, the use of a graphical user interface (GUI) for making changes

to a system or for implementing changes is a common method for simplifying data

maintenance. This led to the following research questions:

 How does the use of a graphical method for rule implementation affect the user’s

ability to accurately author rule changes in a system?

 How does the use of a graphical method for rule implementation affect multiple

users’ abilities to consistently author rule changes in a system?

It is hypothesized that the use of a graphical representation for rule implementation

will increase both the accuracy and consistency for making changes to the rule database.

This hypothesis is made because the graphical representation has been shown previously

to increase the user’s ability to understand the system better, and a better understanding

should lead to increased accuracy when implementing the changes.

Based on the initial results, which showed a marked decrease in the effectiveness

using the visualization method, the following research question was added:

 169

 How does the amount of training and familiarity with the visualization method

affect the user’s ability to implement rules in the system?

It is hypothesized that implementing a small training period will greatly increase

the familiarity of the participants with the method and will result in increased effectiveness

at implementing the rules.

7.2.2 Experimental Procedure for Validation Study

7.2.2.1 Variables for Validation Study

In order to answer the above research question, a user study was developed and

executed. The user study consisted of two variables: the method for implementing the rule

changes and the amount of training on the new visualization method. The first variable

consisted of two levels: implementation of changes through a graphical representation or

implementation using a text-based representation. The purpose of this variable was to see

if using a different method increased the user’s ability to accurately and consistently

implement the changes. The second variable had two levels, and only applied to the group

assigned the visualization method: a minimal amount of training on what the new method

is and a slightly increased training period (approximately five minutes) showing how the

new method can be used to show changes to the system. This variable was developed

based on concerns during the initial results that a lack of familiarity with the new method

was resulting in decreased scores, as opposed to the actual effectiveness of the new method.

7.2.2.2 Participants for Validation Study

The participants of the user study were senior, undergraduate, mechanical

engineering students at Clemson University. All of the students ranged in age between

 170

approximately 19-24 years of age and had less than one year of coursework remaining prior

to graduation. The students were chosen for the experiment because, as seniors, they have

a similar level of experience to new employees at a company. Additionally, selecting the

participants from this course ensured that the students would have a similar educational

background. At the time of the experiment, all of the students were enrolled in the senior

mechanical engineering design course at Clemson University.

7.2.2.3 Environment for Validation Study

The user study was conducted in two sessions during a normally scheduled class

period of the senior mechanical engineering design course, with each group only attending

a single session. The control group and the experimental group with minimal training

attended the first session and the experimental group with additional training attended the

second session. The students were told in advance that they would be conducting an in-

class exercise while the instructor was unavailable. The setting for the experiment was the

classroom in which the course usually met (for two groups) or in a nearby classroom with

a slightly different setup (for the third group). While the classroom layouts were different

for the groups, the researcher did not believe this would be a factor in the results as all

environments were standard classroom types, with which the participants were familiar.

The classroom layouts were typical, auditorium-style classrooms with a projector in the

front of the room and tables for the students to sit at, either circular or in rows.

Additionally, minimal distractions were present during the experiment. In general, the

experience of the students due to environmental conditions was as uniform as possible.

 171

7.2.2.4 Experimental Procedure for Validation Study

For the first session, the students arrived for the normally scheduled class and sat

at tables of their choice. Once all of the students had arrived and were seated, the user

study packets were randomly distributed to the students. Each packet contained a set of

documents according to whichever group the participant was assigned. The contents of the

packets will be discussed in the following section. Once the packets were handed out, the

participants were separated based on the packet that they had received. Once in separate

classrooms, each group was given a brief class instructing the students on the background

of the research and the specific instructions for their part of the research. The presentations

were developed to provide similar levels of detail regarding the study and to take a similar

amount of time to complete. This was necessary to ensure that all participants had a similar

level of familiarity with the processes being used; none of the students had experience with

the methods begin studied prior to the research being conducted. Following the

instructional period, the students were allowed to ask any questions regarding the survey

or the data visualization technique. The participants were then given 40 minutes to conduct

the experiment; however, upon completion of the study and a brief survey for additional

data collection, the students were allowed to turn their packets in early and leave the

classroom. While the participants were assigned to groups, the grouping was only

conducted to control variables; all work during the study was conducted individually.

The second session mirrored the first session, except only one group was present,

so the participants did not have to be divided. Additionally, the second session included

the increased training period during the presentation. The increased training period

 172

consisted of providing an example (from a different rule database and product) of how a

change could be implemented to the system. The increased training period took less than

five minutes to conduct.

7.2.2.5 Packet Contents for Validation Study

The materials that each participant received with their packet depended upon which

group they were in, which was assigned randomly during distribution of the packets. The

control group, which implemented the changes using a text-based representation, received

an instruction sheet that contained the instructions, as well as a brief overview of the rule

grammar; three different configuration change documents, which contained information

regarding the background, solutions and implementation for the change; and the rule

system documents, which would be modified by the participant according to the

corresponding configuration change document. Both experimental groups, which

implemented the changes using a graphical representation, received an instruction sheet

that contained the instructions, as well as a brief overview of the rule visualization

techniques; three different configuration change documents, which contained information

regarding the background, solutions and implementation for the change (the same

documents provided to the control group); a single copy of the rule database, for reference

only; and three rule system graphs (Figure 7.6), which would be modified by the participant

according to the corresponding configuration change document. The configuration

changes chosen for the study were developed based on the types of changes that occur at a

local automotive manufacturing facility. Additionally, the documents were created to

 173

mirror the change documents used at the OEM. The full packets received by all groups

(Groups A and C received the same packets) are found in 9.2Appendix G:.

Figure 7.6: Rule system graph provided to the experimental groups

7.2.3 Evaluation Protocol for Validation Study

The protocol analysis of the user study is relatively straight-forward. The resulting

rule systems were evaluated as to whether or not the resulting system accurately portrayed

the changes specified in the configuration change documents. In many instances, multiple

different results could be considered as correct, as long as the allowable configurations that

would result from the rule system would be the same. To account for the possibility of

multiple, different correct answers, the resulting configuration rule sets were evaluated to

determine if the set of allowable configurations would be the same for both the expected

 174

answer and the participants’ answers. To assist in identifying the effectiveness of each

method, the changes were broken down into components of the change. For example,

adding a package to the system requires adding the package, and adding the individual

rules that apply to the package. Each of the rules would could as a component of the

change. Because a single grader was used to evaluate all of the results, no inter-rater

reliability assessment was conducted. Additionally, an intra-rater reliability assessment

was not conducted.

7.2.4 Evaluation Metrics for Validation Study

The metric that was used for evaluation is accuracy of the resulting rule database.

The researcher considered using a degree of accuracy for this metric, but decided instead

that simply correct/incorrect would provide a more consistent method for scoring the

results. This was decided because for any given change set, multiple results could be a

correct interpretation of the rule set. This would lead to difficulty in determining which

correct answer to use as the basis for grading each result.

7.2.5 Results for Validation Study

A total of 74 results (3 configuration changes per result and 4 components per

change) were collected from the participants and evaluated during the user study. The

results were evaluated by a single grader, as previously discussed, and the data was

tabulated into spreadsheets for ease of analysis.

For accuracy, the results were consolidated according to which group the

participants were in (control, experimental, and experimental w/ training). This was done

 175

in order to see how the rule implementation method affected the accuracy of the resulting

rule sets. The results for each group for changes 1, 2, and 3 are shown in Table 7.1, Table

7.2, and Table 7.3, respectively.

Table 7.1: Number and percent of correct responses by group for Change 1

Table 7.2: Number and percent of correct responses by group for Change 2

Table 7.3: Number and percent of correct responses by group for Change 3

7.2.6 Discussion for Validation Study

It should first be noted that there are limitations in the analysis. While the

participants had no previous experience with either method for rule implementation, the

use of spreadsheets and the basic logical grammar used in if-then statements is

Change 1

Group # % # % # % # %

1.1 1.2 1.3 1.4

Experimental 26 100% 15 58% 26 100% 25 96%

Control 25 100% 21 84% 24 96% 25 100%

Training 23 100% 20 87% 22 96% 23 100%

Change 2

Group # % # % # % # %

2.1 2.2 2.3 2.4

18 69% 17 89%

Control 25 100% 25 100% 25

Experimental 25 96% 15 58%

100% 19 79%

Training 23 100% 22 96% 22 96% 17 85%

3

Group # % # % # % # %

3.1 3.2 3.3 3.4

35% 9 35%

Control 23 92% 23 92% 25 100%

Experimental 26 100% 23 88% 9

52%

25 100%

Training 23 100% 19 83% 12 52% 12

 176

commonplace. However, the use of node-link graphs to visually represent configuration

rules, and the grammar that is associated with it, is something the participants were unlikely

to have any experience with at any level. While a similar amount of training was provided

to the control and experimental groups, the experimental group that was given the graphs

was less likely to fully understand and become familiar with the process during the brief

training period. This likely caused the decrease in the capabilities of the graph visualization

method for rule implementation and was the reasoning for the second session with an

increased training period for the training group.

When considering the accuracy of the results based on the method of rule

implementation, a definite trend existed where the accuracy of the answerable questions

greatly increased with the use of the text-based (control) method. However, a brief training

session with the second experimental group significantly decreased the gap. Figure 7.7,

Figure 7.8, and Figure 7.9 illustrate the percentage of correct responses for each question

for all of the groups.

Figure 7.7: Percent correct responses for Change 1

 177

Figure 7.8: Percent correct responses for Change 2

Figure 7.9: Percent correct responses for Change 3

From the above graphs, it is clear that, in each situation, the text-based method for

rule implementation surpassed the visualization-based method for accuracy, when the

groups received the same amount of training. This was especially true for Changes 2 and

3, the changes that involved the addition or modification of packages. Because package

declarations are the most complicated rules in the database, it is likely that the participants

were not familiar enough with the visualization method to accurately convey the correct

relationships in the more complicated rules.

 178

With the additional training period, the accuracy of the responses for the second

experimental group increases significantly and only lags behind the control group for the

third change. After reviewing the third change, the authors realized that an issue with the

wording in the question resulted in confusion as to how directionality in the visualization

was applied. This is likely the cause of the significant drop in accuracy for both of the

visualization groups for parts 3.3 and 3.4.

7.2.7 Findings for Validation Study

The purpose of this paper was to describe a user study that was conducted in order

to determine whether the use of a visualization-based method for configuration rule

implementation would increase the accuracy of the rule sets generated as a result of the

proposed changes. The researcher hypothesized that using the visualization-based method

would increase the accuracy of the results. The results proved the hypothesis to be false,

in that the average accuracy level for the text-based method was higher for all of the

changes, and significantly higher for the more complicated changes, or those requiring

package rule modification. The most significant limitation in this study was the difference

in the difficulty of learning the methods; the text-based method, using a spreadsheet and

standard if-then logic, was likely much easier for the participants to understand in the short

training period prior to the study. This could have led to a decrease in the familiarity of

the participants with the visualization-based method, resulting in decreased scores for that

group.

As a result of this limitation, a second study was conducted in which a group of

participants was given the same materials as the visualization group, but was also provided

 179

with an additional amount of training (approximately five minutes) on the graph

visualization method. It was hypothesized that the increased training would lessen the delta

between the experimental and control groups. This hypothesis was proven to be mostly

true in that, for the majority of the changes, the experimental group with training performed

as well as the control group.

Possible future work includes conducting an additional user study where the

participants are not provided with the rules that are to be implemented; instead, the

participants would have to use the rule database to figure out what rules had to be

implemented in order to correctly implement the required solution. This would require a

greater amount of critical thinking about and understanding of the change, which is likely

to be better suited for the visualization-based, rather than text-based, method for

configuration management. The additional experiment would be structured similarly to

this study, with the primary difference being the amount of information provided to the

participants

7.3 User Feedback

In order to fully validate the usefulness of graph visualization for configuration

management, user feedback was gathered in the form of a targeted interview with a Launch

and Change Controller at the OEM. The interview was conducted with interviewee #2 at

the end of the development of the configuration management method. The interview lasted

approximately one hour. During the interview, the researcher reviewed the visualization

design enabler, including its usefulness, potential applications, and potential additional

functionality. The interviewee stated that using graph visualizations would be most helpful

 180

when evaluating highly complicated changes to the configuration rule system, as is the case

in the example in Section 7.1.1. In these changes, the ability to quickly conduct path tracing

through the graph would greatly assist in understanding what other options would be

affected by the proposed change. Additionally, visually inspecting for patterns in the

graphs would increase the likelihood of identifying rule conflicts or redundancies.

However, the interviewee also stated that the addition of a conflict detection algorithm

within the graph visualization tool would greatly increase its usefulness. This would

remove the need for the user to conduct as many inspections of the graph, allowing the user

to focus on the potential propagation pathways.

In addition, the interview also revealed that other common uses of the graph

visualization tool would include the implementation of new packages and the introduction

of new model codes to the configuration rule database, as is the case in the examples

discussed in Sections 7.1.2 and 7.1.4. This is due to the level of interaction that is provided

by the graph visualization tool. When adding a new package, the user is able to add the

package and any associated rules and see how this can affect the system in unintended

ways. When adding or changing model codes, the user is able to create multiple graphs to

allow a comparison between an existing (proven) model code and the new (unproven)

model code. While discussing the comparison of graphs for different model codes, the

interview mentioned that automating the graph comparison and highlighting the difference

between two graphs would increase the effectiveness of the tools by not having to rely on

visual inspection alone. It was agreed, though, that having the visualization of the systems,

with the differences highlighted, would be preferable to a just a list of differences between

 181

the models because of the ability to see how those differences could affect other aspects of

the rule database.

In conclusion, the interviewee stated that the graph visualization was a useful tool

for configuration management that had already assisted in identifying potential issues in

the limited implemented cases (as described in Section 7.1). As a result, the interviewee

felt that the graph visualization would be used on a weekly basis in the future, at least once

for each proposed change, and more for more complicated changes, to review potential

unintended consequences.

7.4 Conclusions

This chapter continues to support the third research objective: development of an

improved method for configuration change management. Previous chapters proposed the

overall method (Chapter Five) and presented the development and implementation of the

graph visualization design enabler (Chapter Six). The focus of this chapter is on the second

sub-question in support of the research objective: Does the implementation of a graph

visualization design enabler assist in identifying errors and understanding the relationships

in a proposed configuration change? This research question is answered through a user

study, a limited implementation case study, and user feedback.

The rule implementation user study tasked participants with using the graph

visualization method to implement proposed configuration changes into the rule system.

During the initial run, the participants using the graph visualization did not perform as well

as those using the spreadsheet-based method (the control group) due to a lack of familiarity

with the visualization method. With a small amount of additional training, a second group

 182

of participants were able to perform at the same level as the control group. Additionally,

the graph visualization method showed promise when evaluating the reasoning behind the

rules.

To further test the usefulness of the graph visualizations for configuration

management, the method was implemented in four ongoing configuration changes at the

OEM. In all four instances, using graph visualization allowed the user to more easily

understand the implications of the proposed change and identify any errors resulting from

the changes. Additionally, a time study was conducted on evaluating one of the changes

with the visualization method versus using the existing method and a 75% time reduction

when using the graph visualizations was identified.

Finally, an additional interview conducted with the proposed users of the graph

visualization design enabler resulted in user feedback regarding its usefulness. The

feedback showed that implementing the graph visualization design enabler would greatly

increase the users’ ability to understand the implications of proposed changes.

7.5 Dissertation Roadmap

Chapter Seven presented the validation of the graph visualization support tool

through three evaluation techniques: a user study, four implementation cases, and user

feedback. The following chapter (Chapter Eight) expands the validation to the entire

configuration management method, including the other three design enablers (interaction

identification, algorithmic validation, and complexity analysis). The progress of this

dissertation is shown in Figure 7.10 in which the completed portion is highlighted in green.

 183

Figure 7.10: Dissertation Roadmap

 184

CHAPTER EIGHT: METHOD IMPLEMENTATION AND RECOMMENDATIONS

The purpose of the research presented in this chapter is to validate configuration

change management method discussed in Chapter Five. The configuration management

method was evaluated through three implementation studies at the OEM and user feedback.

Based on the findings of the implementation cases and the user feedback, a system

architecture for to support the configuration management method is presented.

8.1 Implementation Cases

In order to validate the proposed process, a series of implementation cases were

presented based on ongoing configuration changes or validation problems. The intent was

to show how the proposed method could be used to assist in each of the implementation

cases. These cases were presented by the OEM as challenge problems that were

representative of the types of problems normally experienced at the OEM. The cases are

discussed in the following sections.

8.1.1 Problem 1: Exhaust Tips

When building vehicles at the OEM, two different types of exhaust tips exist. The

exhaust tips can either be round or square depending on the options that affect the exhaust

system. For this OEM, the exhaust tips pass through the bumper. Therefore, the bumper

needs to have a hole that corresponds to the shape and size of the exhaust tip that will pass

through it. While there may be additional constraints between the bumper types and

exhaust tip types, this is the primary concern due to the large number of tips and bumpers

available. The goal of this is to determine whether the proposed method can prove that the

 185

current configuration ruleset is free of any configurations where a round exhaust tip is

placed with a square bumper or vice versa.

8.1.1.1 Solution

Because this is a validation of the existing system, as opposed to validating a

proposed change, a modified validation flowchart is used (FIGURE). Essentially, only the

review loop is being used in this instance.

Figure 8.1: Method for evaluating the existing system

 In order to validate the current configuration rule set the user would first be

required to enter some additional data into the ruleset through the conflict detection tool.

This additional information consists of the “part families” for the exhaust tips and the

bumpers. For each type of part, two families would be created, one with all parts (bumper

or exhaust tip) with a square interface and one with those with a round interface. Once the

four part families have been created, the user would define a set of rules that attempt to

force a round exhaust tip with a square bumper or a square exhaust tip with a round bumper.

At this point, the user would run the satisfiability solver (Step 1 in Figure 8.1). If the

satisfiability check is successful, then a configuration exists where the exhaust tip and

 186

bumper are mismatched (round and square in same configuration). If the modified ruleset

is not satisfiable, then no configuration exists where there is the possibility for mismatched

exhaust tips and bumpers.

While the satisfiability solver will determine whether there is an incorrect

configuration, it does not state where the problem lies. One method for narrowing down

the configuration is to increase the number of specified rules in the modified ruleset. This

can be done by forcing specific model/option/part codes in the ruleset and rerunning the

satisfiability solver until the specific pair of parts is identified. From this point, the graph

visualization tool can be used to assist in determining why this error exists in the

configuration ruleset (Step 2 in Figure 8.1).

8.1.1.2 Conclusion

Based on using the above solution to validate the pairing of exhausting tips and

bumpers, the researchers are confident that the proposed method would correctly identify

any issues if they exist or validate the configuration set as correct if no errors are present.

This implementation case required the use of the algorithmic validation tool to check for

errors in the ruleset using user-modified rules and part families. Then the graph

visualization tool would assist in identifying why the issue (if one exists) is present in the

system. The complexity analysis tool was not used in the above solution as this

implementation case does not concern a proposed configuration change, but rather a

validation of the existing setup. Therefore, the complexity analysis tool would not help in

determining the difficulty of validating the change or for which models the validation

would be most difficult.

 187

8.1.2 Problem 2: Passenger Visor Safety Labels

Due to the number of countries and languages for which the vehicles are assembled

at the facility, many of the warning labels are required to be available in multiple languages.

This results in a large number of part number variations with complicated rules to govern

which label part number is used for a given vehicle configuration. In order to streamline

the part management for this feature on the vehicle, it was decided that using graphical

cues, rather than verbal cues to display the warning would meet the intent behind the safety

regulations and would limit the number of different part numbers available. A

complicating issue with this proposed change is that some of the visors come with the label

already affixed, while others are attached on the vehicle assembly line. The goal of this is

to determine whether the proposed method can assist in validating the updated rules and

part numbers for the new labels prior to implementing the change.

8.1.2.1 Solution

In order to validate the proposed change discussed above, the configuration

management method is implemented as shown in Figure 8.2.

 188

Figure 8.2: Implemented method for Problem 2

As this is a proposed configuration change that is not mandated, the first step would

be to determine the difficulty in validating the change (Step 1 in Figure 8.2). This would

be conducted using the complexity analysis tool. The user would enter the affected options

and parts into the complexity analysis tool and the tool would provide the expected level

of difficulty for validating each model that is affected by the proposed change. Based on

the software output, the change managers would be able to make a recommendation on

whether to move forward with the proposed change.

Assuming that the level of difficulty is not too severe for the assumed gain from

implementing the change, the next step would be to conduct an exploration of the proposed

change using the graph visualization tool (Step 2 in Figure 8.2). By entering the affected

options and parts, the user would be shown a localized graph of the configuration system.

From this, the user would be able to identify what options are likely to be affected by the

change and which options should be considered when determining the validity of different

configurations.

 189

Additionally, the user could also use the algorithmic validation tool to ensure that

a single label is being affixed during assembly (Step 3 in Figure 8.2). In order to

accomplish this, the user would implement a part family, similar to the families discussed

in Section 8.1.1.1. By then forcing this rule, the satisfiability solver would check to ensure

that a single part from the family is being called based on the configuration specified. This

could also be used to ensure that either a label or a part with the label is called, but not

both.

8.1.2.2 Conclusion

Based on using the above solution to validate the proposed configuration change,

the researchers are confident that the proposed method would correctly identify any issues

in how the new part numbers are called. The graph visualization tool would assist in

identifying which options, and potentially parts, would be affected by the change and

should be considered when validating the potential configurations. This implementation

case also required the use of the algorithmic validation tool to check for errors in the ruleset

using user-modified rules and part families. The complexity analysis tool was used at the

beginning of the solution to determine the expected difficulty to validate the change for

each of the affected models.

8.1.3 Problem 3: Dark Carpet Validation

In United States markets, many customers did not like the fact that the light coloring

of the beige carpets would easily show dirt over time. As a result, a change was proposed

that would make a darker color the standard coloring for the lower half of the interior on

 190

all configurations with the beige interior. Additionally, this change would only affect US

vehicle models, as it was not an issue with foreign markets.

8.1.3.1 Solution

In order to validate the proposed change discussed above, the configuration

management method is implemented as shown in Figure 8.3.

Figure 8.3: Implemented method for Problem 3

This is another example of a proposed configuration change that reflects customer

desires as opposed to legal mandates or regulations. Therefore, the first step is to consider

the potential difficulty in validating and implementing the change prior to moving forward.

This would be conducted using the complexity analysis tool (Step 1 in Figure 8.3). The

user would input the parts and options that are affected by the proposed change and the

software tool would provide a list of the affected models and the expected difficulty in

validating the changes for each. Based on the results, the change planners would determine

whether or not to move forward with the change.

 191

The next step would be to use the graph visualization tool to explore the proposed

change to identify how the change would affect other options and parts (Step 2 in Figure

8.3). This would provide a subset of options and parts that should be considered when

validating the new option and part configurations. Similarly to the previous problem, the

change engineer could also use the algorithmic validation tool to ensure that the correct

parts were being called and that duplicate parts were not being called (Step 3 in Figure 8.3).

To accomplish this, the user would once again input part families, consisting of the darker

colored interior parts and specify rules forcing the inclusion of a part from this part family.

In the event of any inconsistencies, the graph visualization tool would be used to explore

the identified issue to understand why the error occurred.

8.1.3.2 Conclusion

Based on using the above solution to validate the proposed configuration change,

the researchers are confident that the proposed method would correctly identify any issues

in how the new part numbers are called. The graph visualization tool would assist in

identifying which options, and potentially parts, would be affected by the change and

should be considered when validating the potential configurations. This implementation

case also required the use of the algorithmic validation tool to check for errors in the ruleset

using user-modified rules and part families. The complexity analysis tool was used at the

beginning of the solution to determine the expected difficulty to validate the change for

each of the affected models.

 192

8.2 User Feedback

In order to fully validate the usefulness of the configuration change management,

user feedback was gathered in the form of a targeted interview with a Launch and Change

Controller at the OEM and from informal feedback received throughout the development

of the configuration management method. During the interview, the researcher reviewed

the configuration change management method with the interviewee, including its

usefulness in the different validation tasks and in potential additional applications. In

addition to the applications of the visualization tool (discussed in Section 7.3), the

interviewee felt that the conflict detection algorithms would greatly increase the

capabilities of the change managers at the OEM. As was identified in the case study, a

major challenge with the existing method is the inability to verify the accuracy of the rule

database. Using the conflict detection algorithms would enable the engineers to validate

the rule database both before and after a proposed change to prevent any issues from

arising. The interviewee also felt that the use of part families in the algorithmic validation

design enabler would enhance their capabilities. This is due to the ability to do part

matching between multiple part families (as in the case of matching the bumpers and

exhaust tips) or ensuring a specific number of parts are present, despite multiple variants

(as in the case of ensuring a single windshield per vehicle).

The interviewee also stated that the complexity analysis would be a useful tool in

predicting which models would be most difficult to validate. The models that are most

difficult to validate present a worst-case scenario for a given change and the change

engineers could then focus on the identified models when validating the proposed change.

 193

Focusing on the worst-case scenario assists in maximizing the usefulness of the engineer’s

time. The interviewee stated that this would be conducted early in the validation process

to maximize the time focused on the worst-case scenario. However, the interviewee also

requested additional functionality from the complexity analysis tool. The two additional

functions are the ability to predict the amount of time required to validate a change and the

ability to predict the number of test cars required to validate a proposed change. While the

complexity analysis tool does not predict the number of test vehicles for a change, it does

highlight which models are best suited for test car evaluation. This has the potential for

minimizing the number of test vehicles used for validation.

Overall, the interviewee felt that implementing the developed configuration change

management method will greatly increase their capabilities when validating a proposed

change. Using the existing methods, the validation process is limited to experiential

knowledge verification of the potential propagation pathways. Using the developed

method provides the change engineers with concrete evidence as to the presence of issues

in the database, both present and after a proposed change, and a method for exploring

unintended consequences from a proposed change.

8.3 System Architecture to Support the Configuration Management Method

Based on the requirements identified in the study and the feedback received through

user interviews and implementation cases, a suite of prototype software tools has been

developed, offering decision support and problem investigation functionality. Each tool is

specialized to support specific tasks within configuration management. The first three tools

(model refinement, visualization and interaction, and conflict detection) orient towards

 194

validation tasks. The final tool (complexity analysis) is oriented toward planning in

advance of beginning a change.

The suite of software tools created share the same data sources and over-arching

support goals. These tools may be integrated into a single, cohesive software suite, from

which a user may choose to apply any one of the tools individually, depending on the user’s

needs. Figure 8.4 presents a schematic for the integration of these tools under a single

interface. From the central interface, a user may launch each of the specific tools in its

own module.

Note that data inputs are delivered from configuration rule databases (VRM and

TAIS) prior to execution of any tool. This constraint information provides the basis from

which each of the tools performs its function. To explore a future configuration change, it

may be necessary to experiment upon an altered version of this constraint information. For

this reason there are several data models available within the main interface. The current

state of the configuration ruleset is represented in only a single data model. Distinct,

separate changes may be managed by placing each change in a separate data model, within

the array of sandbox models available. Before launching any of the tools it is necessary to

carefully control which data model will be investigated.

The model refinement module is not directly called by the user for a specific task,

but rather supports the other modules. The purpose of this module is to input the data from

the user and from the current data model through the interface in order to output an

interaction model that can be used by the other analysis modules. As a result, there is no

direct output from this module to the interface.

 195

If the user chooses a task related to complexity analysis, the model refinement

module is launched first. This module receives the user inputs regarding the vehicle models

in question, as well as the options or parts that are affected by the change. The model

refinement module then outputs an interaction model to the complexity module for

analysis. Based on the user inputs, a response of the complexity metrics and any flags (as

discussed in 5.4) are returned to the user. The user is then able to conduct further analysis

as needed.

If the user chooses a task related to visualization, the model refinement module is

launched first. This module receives the user inputs regarding the vehicle models in

question, as well as the options or parts that are affected by the change. The model

refinement module then outputs an interaction model to the visualization module for graph

creation an interaction. While in the visualization module, the user has the ability to

interact with the graph in order to facilitate increased understanding of the change and its

potential impact on the system. The user then has the option to save the modified graph to

a separate data model for future evaluation.

When a task requiring conflict detection analysis is selected, the conflict detection

module is launched. The user inputs and current data model are sent to the Problem

Manager for additional input by the user regarding the specific type of conflict and any

additional parameters (as discussed in 5.5). From this point, the query is converted into a

satisfiability problem and is solved using the SAT solver. The result is returned to the

Problem Manager for any additional queries and is also returned to the interface with the

 196

results of the query. The user is then able to continue to make queries regarding any

potential conflicts.

Figure 8.4: Configuration management support tool system architecture

 197

8.4 Conclusions

This chapter continues to support the third research objective: development of an

improved method for configuration change management. A previous chapter (Chapter

Five) proposed the overall method. While the following chapters presented the

development and validation of the graph visualization design enabler (Chapter Six and

Chapter Seven), the focus of this chapter returns to the overall configuration management

method: Does the proposed method assist in identifying errors and understanding the

relationships in the possible product configurations? This research question is answered

through user feedback and a limited implementation case study.

An interview conducted with the proposed users of the configuration management

method and the supporting design enablers resulted in user feedback regarding their

usefulness. The feedback showed that implementing the design enablers in the proposed

manner would greatly increase the users’ ability to understand the implications of proposed

changes. Additionally, the user feedback provided additional functionality

recommendations that should be incorporated.

To further test the usefulness of the graph visualizations for configuration

management, the method was implemented for three historical configuration changes. In

all three instances, the use of the proposed method and associated design enablers would

have increased the users’ ability to identify errors or prevent conflicts that were not seen

when the changes were first evaluated at the OEM.

Based on the evaluation of the configuration management method, a system

architecture is proposed for the suite of design enablers that is intended to assist in the

 198

method’s implementation. The proposed suite consists of an integrated software tool that

combines the functionality of the four modules discussed previously: interaction

identification, complexity analysis, graph visualization, and algorithmic validation. By

integrating the four tools into a single piece of software, the usability and adoptability of

the design enablers is increased.

8.5 Dissertation Roadmap

Chapter Eight presented the validation of the proposed configuration management

method with design enabler support and provides final recommendations for the supporting

design enablers. The final chapter (Chapter Nine) concludes the dissertation and presents

opportunities for future work. The progress of this dissertation is shown in Figure 8.5 in

which the completed portion is highlighted in green.

 199

Figure 8.5: Dissertation roadmap

 200

CHAPTER NINE: CONCLUSIONS AND FUTURE WORK

This chapter presents the concluding remarks on this research in Section 9.1 and

the future work in Section 9.2.

9.1 Concluding Remarks

This dissertation presented a configuration change management method to explore

proposed configuration changes and mitigate the potential negative effects of the proposed

change. To achieve this, three research objectives were identified and addressed.

Research objective RO 1 (understanding the current practices for change

management) is foundational research that is discussed in Chapter Two. The research

objective consists of three research sub-questions that are useful in exploring existing

change management practice. Research question RQ 1.1 is answered through a review of

literature on current engineering change management practice. During the review, it was

identified that while many change management design enablers exist, companies are often

hesitant to use them due to a high degree of difficulty and costs in adopting the available

methods and/or tools. This led to research question RQ 1.2, which is answered through the

development and evaluation of a change management support tool based on an existing

change management method (a verification, validation and testing planning method). This

method was selected primarily because of its focus on variant change propagation, but also

because of its reliance on data entry and engineering experience. The purpose of

developing the support tool was to show how existing change management methods could

be improved to increase adoptability and usability. By implementing the VV&T planning

 201

method into a support tool, the possibility of human error due to repeated data entry by

reducing the number of data points to be entered by 33%.

During the development of the change management support tool, the question was

asked as to what depth should be considered when determining the effects of change

propagation, leading to research question RQ 1.3. To answer this research question, a study

on component interaction was conducted using design structure matrices. In the study, the

way in which higher order interactions occurred was examined to determine if patterns

could be identified. Based on the results of the study, it was determined that the beyond

the second or third order of interaction, the number of component interactions present

would likely prevent any meaningful analysis from taking place, though this is dependent

on the system in question. Additionally, it was found that both product components and

configuration rules in a ruleset exhibited similar patterns when interacting at higher orders

of interaction.

The second research objective, RO 2, is to understand how an OEM conducts

configuration and configuration change management, and is discussed in Chapter Four.

This research objective is achieved through two research questions. The first research

question, RQ 2.1, seeks to understand the state-of-the-art for configuration management

practices. As such, the question is answered through a literature review of configuration

management research. Through the literature review, a classification scheme is identified

to assist in evaluating the configuration management practices in place at the automotive

OEM. Additionally, challenges with the existing methods are identified that will be of use

when evaluating the current methods at the OEM. Research question RQ 2.1 asks the

 202

question of how a major automotive OEM conducts configuration management and is

answered through case study research. The case study consists of interviews with

personnel in the Launch and Change Control group at the OEM, document analysis, and

ethnographic research. Based on the results of the case study and the classification scheme

identified in the literature review, it was evident that the OEM employs a rule-based

configuration management system. In the current system, rule database explicitly states

how options can interact within a possible configuration. As such, many of the problems

commonly associated with rule-based reasoning in configuration management hold true.

The large size of the rule database make it difficult to verify either for completeness or

accuracy. Additionally, when making a change to the rule database, it is nearly impossible,

using the current methods, to determine the unintended consequences of a potential change.

Therefore, it was recommended that an improved process be implemented that incorporates

design enablers to assist in validating the existing rule database and exploring proposed

configuration changes to better understand unintended consequences.

The third research objective, RO 3, is discussed in Chapter Five through Chapter

Eight and includes the development of an improved method for configuration change

management. The first research question, RQ 3.1, to support this objective, discussed in

Chapter Six, asks how data visualization techniques can be used to assist in exploring a

proposed change. This question is answered in part through a literature review of data

visualization techniques and their uses. From the literature review, it was identified that

graph visualization is a useful method for visualizing data where the relationships between

components is important. To assist in developing a graph visualization design enabler for

 203

use in configuration management, a user study was conducted to determine what factors

(color, layout, data availability) affect a user’s ability to read and interpret a graph

visualization of a configuration rule database. Based on the results, it was identified that

the amount of information presented to the user had the greatest effect on how well the user

could interpret the data; removal of clutter greatly increased the user’s ability to correctly

answer questions regarding the system.

Research question RQ 3.2 then asks whether the implementation of the proposed

graph visualization design enabler assists in configuration management (discussed in

Chapter Seven). This research question is answered through a second user study, a series

of implementation cases, and user feedback. In the second user study, the usefulness of

graph visualizations is compared to the existing method with respect to implementing rules

in the configuration rule database. The user study found that, with limited training, the

graph visualization method was as effective as the existing method when just implementing

rules and showed promise when evaluating the reasoning behind why the rules were

implemented. The series of implementation cases consisted of using the graph

visualization design enabler to assist in the validation of four ongoing, proposed

configuration changes at the OEM. In each case, using the graph visualization resulted in

identifying issues in the proposed changes that either were not identified using the existing

method or took longer to identify. Additionally, a time study was conducted and it was

determined that using graph visualizations resulted in a three-fourths reduction in the time

required to identify an issue. Lastly, the user feedback showed that implementing the graph

 204

visualization would increase the capabilities of the configuration change validation

personnel at the OEM.

The third research question, RQ 3.3, addresses the effectiveness of the overall

configuration management method and is discussed in Chapter Eight. This research

question is answered through three additional implementation cases and user feedback. In

the implementation cases, the usability of the method is evaluated as to whether it is capable

of preventing issues from a proposed change or evaluating the current configuration system

for a specific set of criteria. From the implementation cases, it was found that the proposed

method would successfully validate the configuration ruleset in each of the three situations

more effectively and rapidly than when using the existing method. The user feedback

consisted of a targeted interview with a potential user of the proposed method and informal

feedback received throughout the development of the configuration management method.

Based on the feedback, it was identified that implementing the proposed configuration

management method with the associated design enablers would increase the group’s

capabilities when exploring and validating proposed changes.

While many of the applications of the proposed method have been focused on the

automotive OEM from the case study, it is expected that the method would also be

applicable in other domains. As stated in the case study, the configuration management

system at the OEM is representative of any system that employs rule-based reasoning for

configuration management. Therefore, the methods and design enablers proposed in this

research can also be implemented in any company that uses rule-based reasoning.

 205

To conclude, the overarching goal of this research to develop a configuration

management method for exploring proposed configuration changes and mitigating the

negative effects of the change has been successfully developed and tested. In this process,

three research objectives are addressed that contribute directly to the body of knowledge

in the configuration management field. However, there are areas where the proposed

configuration management method can be improved by further research, which is discussed

next.

9.2 Future Work

The limitations in the proposed configuration management method are identified

for future research work. The first limitation of the research is that while the configuration

management method was evaluated for whether it would prevent issues in three historical

cases, the proposed method was not validated alongside the existing method for any

ongoing configuration changes. Evaluating the method alongside the existing method for

an ongoing change would aid in validating the research. This was not done during the

current research due to restrictions on the availability of data by the OEM in question. To

increase the effectiveness of the method, the system should be capable of tying in directly

to an OEM’s PDM system. This would be a Master’s level research project.

Second, the use of complexity analysis early in the proposed method is a means of

predicting the difficulty in validating a proposed change. While complexity metrics have

been shown to be useful in predicting other factors (market price, assembly times), no

research has been done to prove that they can be used for predicting change validation

requirements. Data for historical configuration change requests was collected during the

 206

research, but a suitable metric for change validation difficulty was not available for the

previous changes. Thus, prior to conducting research on the predictive capabilities of

complexity metrics for change validation difficulty, a numerical value for the level of

difficulty must be determined. This is another Master‘s level research project.

Third, in evaluating the depth of interaction required when projecting potential

change propagation, the population density was evaluated at each level of interaction until

interaction saturation was met. When compared, patterns were identified that allowed for

the grouping of products and configuration rulesets based on the curve formed by the

population densities. Based on this, it is proposed that an additional complexity metric

could be identified that is based on the population density at each order of interaction.

While this was initially identified in this research, more substantial testing of the proposed

metric is required in order to prove its usefulness. This would also be a Master’s level

research project.

Lastly, the graph visualization software is limited to the ability to create the

visualizations and allow interaction with the resulting graph. The current degree of

interaction is limited to rearranging the layout of the graph to increase readability (either

using the force-directed algorithm of manually) and addition and subtraction of

nodes/edges. In order to maximize the potential of the graph visualization, increased

interaction and analytical capabilities may be necessary. Some examples of additional

functionality include the ability to do automated comparisons between multiple graphs,

highlighting logical conflicts within a single graph, and automated filtering of different

 207

types of nodes or edges (parts, options, packages, trim types, etc.). This would be a

Master’s level research project.

 208

REFERENCES

[1] Tiihonen, J., and Soininen, T., 1996, “State of the practice in product configuration–

a survey of 10 cases in the finnish industry,” Knowledge Intensive CAD, Chapman

& Hall, pp. 95–114.

[2] Simpson, T. W., 2005, “Product platform design and customization: Status and

promise,” AI Edam, 18(01), pp. 3–20.

[3] Sabin, D., and Weigel, R., 1998, “Product configuration frameworks-a survey,”

IEEE Intell. Syst. their Appl., 13(4), pp. 42–49.

[4] Knippel, E., and Schulz, A., 2004, “Lessons learned from implementing

configuration management within electrical/electronic development of an

automotive OEM,” 4th Annual Symposium of INCOSE 2004, Toulouse, France.

[5] Persson Slumpi, T., Ahlin, K., and Oberg, M., 2012, “Intraorganizational Benefits

from Product Configuration Information – A Complementary Model,” International

Design Conference 2012, Dubrovnik, Croatia, pp. 83–92.

[6] Kidd, M., and Thompson, G., 2000, “Engineering design change management,”

Integr. Manuf. Syst., (2000).

[7] Jarratt, T. A., Eckert, C. M., Caldwell, N., and Clarkson, P. J., 2011, “Engineering

change: an overview and perspective on the literature,” Res. Eng. Des., 22(2), pp.

103–124.

[8] Jarratt, T. A., Eckert, C. M., and Clarkson, P. J., 2004, “Engineering Change,”

Design Process Improvement, Springer, New York, NY.

[9] Shankar, P., Morkos, B., and Summers, J. D., 2012, “Reasons for change

propagation: a case study in an automotive OEM,” Res. Eng. Des., 23(4), pp. 291–

303.

[10] Huang, G. Q., Yee, W. Y., and Mak, K. L., 2003, “Current practice of engineering

change management in Hong Kong manufacturing industries,” J. Mater. Process.

Technol., 139(1-3), pp. 481–487.

[11] Reddi, K. R., and Moon, Y. B., 2011, “System dynamics modeling of engineering

change management in a collaborative environment,” Int. J. Adv. Manuf. Technol.,

55(9-12), pp. 1225–1239.

[12] Huang, G. Q., and Mak, K. L., 1998, “Computer aids for engineering change

control,” J. Mater. Process. Technol., 76(1), pp. 187–191.

 209

[13] Huang, G. Q., Yee, W. Y., and Mak, K. L., 2001, “Development of a web-based

system for engineering change management,” Robot. Comput. Integr. Manuf.,

17(3), pp. 255–267.

[14] Reddi, K. R., and Moon, Y. B., 2011, “A framework for engineering change

management in enterprise resource planning using service-oriented architecture,”

Int. J. Bus. Inf. Syst., 8(1), pp. 46–65.

[15] Fricke, E., Gebhard, B., Negele, H., and Igenbergs, E., 2000, “Coping with changes:

Causes, findings, and strategies,” Syst. Eng., 3(4), pp. 169–179.

[16] Pikosz, P., and Malmqvist, J., 1998, “A comparative study of engineering change

management in three Swedish engineering companies,” 1998 ASME Design

Engineering Technical Conference, Atlanta, GA.

[17] Ollinger, G., and Stahovich, T., 2001, “Redesignit-a constraint-based tool for

managing design changes,” 2001 ASME Design Engineering Technical Conference,

pp. 1–11.

[18] Laurenti, R., and Rozenfeld, H., 2009, “An Improved Method of Failure Mode

Analysis for Design Changes,” 19th CIRP Design Conference, pp. 436–442.

[19] Clarkson, P. J., Simons, C., and Eckert, C. M., 2004, “Predicting Change

Propagation in Complex Design,” J. Mech. Des., 126(5), p. 788.

[20] Giffin, M. L., de Weck, O., Bounova, G., Keller, R., Eckert, C. M., and Clarkson,

P. J., 2009, “Change Propagation Analysis in Complex Technical Systems,” J.

Mech. Des., 131(8), p. 081001.

[21] Giffin, M. L., 2007, “Change propagation in large technical systems,”

Massachusetts Institute of Technology.

[22] Keller, R., Alink, T., and Pfeifer, C., 2007, “Product models in design: a combined

use of two models to assess change risks,” International Conference on Engineering

Design, Paris, France, pp. 1–12.

[23] Morkos, B., Shankar, P., and Summers, J. D., 2012, “Predicting requirement change

propagation, using higher order design structure matrices: an industry case study,”

J. Eng. Des., (November 2012), pp. 37–41.

[24] Cohen, T., Navathe, S. B., and Fulton, R. E., 2000, “C-FAR, change favorable

representation,” Comput. Des., 32(5-6), pp. 321–338.

 210

[25] Terwiesch, C., and Loch, C., 1999, “Managing the process of engineering change

orders: the case of the climate control system in automobile development,” J. Prod.

Innov. Manag., 6782(98).

[26] Tavcar, J., and Duhovnik, J., 2005, “Engineering change management in individual

and mass production,” Robot. Comput. Integr. Manuf., 21(3), pp. 205–215.

[27] Saeed, B. I., Bowen, D. M., and Sohoni, V. S., 1993, “Avoiding engineering changes

through focused manufacturing knowledge,” IEEE Trans. Eng. Manag., 40(1), pp.

54–59.

[28] Loch, C., and Terwiesch, C., 1999, “Accelerating the process of engineering change

orders: capacity and congestion effects,” J. Prod. Innov. Manag., 6782(98).

[29] Pahl, G., Beitz, W., Feldhusen, J., and Grote, K.-H., 2007, Engineering Design: A

Systematic Approach, Springer-Verlag, London.

[30] Shankar, P., 2012, “Development of a design method to reduce change propagation

effects,” Clemson University.

[31] Shankar, P., Summers, J. D., and Phelan, K. T., 2014, “A verification and validation

planning method to address propagation effects in engineering design,” International

Symposium on Tools and Methods of Competitive Engineering, Istanbul, Turkey.

[32] Sullivan, K. J., Griswold, W. G., Cai, Y., and Hallen, B., 2001, “The structure and

value of modularity in software design,” ACM SIGSOFT Softw. Eng. Notes, 26(5),

p. 99.

[33] Sonnentag, S., 1998, “Expertise in professional software design: a process study.,”

J. Appl. Psychol., 83(1998), pp. 703–715.

[34] Parnas, D. L., and Clements, P. C., 1986, “A rational design process: How and why

to fake it,” IEEE Trans. Softw. Eng., SE-12(2), pp. 251–257.

[35] Browning, T. R., 2001, “Applying the design structure matrix to system

decomposition and integration problems: a review and new directions,” IEEE Trans.

Eng. Manag., 48(3), pp. 292–306.

[36] Danilovic, M., and Browning, T. R., 2007, “Managing complex product

development projects with design structure matrices and domain mapping matrices,”

Int. J. Proj. Manag., 25(3), pp. 300–314.

[37] Ezhilan, T., 2007, “Modeling requirements propagation to generate solutions for

minimizing mass.”

 211

[38] Sharman, D. M., and Yassine, A. A., 2004, “Characterizing complex product

architectures,” Syst. Eng., 7(1), pp. 35–60.

[39] Sosa, M. E., Browning, T. R., and Mihm, J., 2007, “Dynamic, DSM-based analysis

of software product architectures,” 9th International Design Structure Matrix

Conference, Munich, Germany, pp. 349–361.

[40] Xiao, R., and Chen, T., 2010, “Research on design structure matrix and its

applications in product development and innovation: an overview,” Int. J. Comput.

Appl. Technol., 37(3/4), p. 218.

[41] Carrascosa, M., Eppinger, S. D., and Whitney, D. E., 1998, “Using the design

structure matrix to estimate product development time,” 1998 ASME Design

Engineering Technical Conference, Atlanta, GA, pp. 1–10.

[42] Helo, P. T., 2006, “Product configuration analysis with design structure matrix,”

Ind. Manag. Data Syst., 106(7), pp. 997–1011.

[43] Kumar, P., and Mocko, G. M., 2007, “Modeling and Analysis of an Ontology of

Engineering Design Activities Using the Design Structure Matrix,” 2007 ASME

International Design Engineering Technical Conference, Las Vegas, NV, pp. 1–13.

[44] He, R., Tang, D., and Xue, J., 2008, “Engineering change propagation based on

design structure matrix,” Comput. Integr. Manuf. Syst., 4(4), pp. 656–660.

[45] Jarratt, T. A., Eckert, C. M., and Clarkson, P. J., 2004, “The benefits of predicting

change in complex products: application areas of a DSM-based prediction tool,”

International Design Conference 2004, Dubrovnik, Croatia, pp. 1–7.

[46] Keller, R., Eger, T., Eckert, C. M., and Clarkson, P. J., 2005, “Visualising change

propagation,” International Conference on Engineering Design 2005, Melbourne,

Austrailia, pp. 1–12.

[47] Namouz, E. Z., and Summers, J. D., 2014, “Comparison of Graph Generation

Methods for Structural Complexity Based Assembly Time Estimation,” J. Comput.

Inf. Sci. Eng., 14(2).

[48] Summers, J. D., and Shah, J. J., 2010, “Mechanical Engineering Design Complexity

Metrics: Size, Coupling, and Solvability,” J. Mech. Des., 132(2), p. 021004.

[49] Ameri, F., Summers, J. D., Mocko, G. M., and Porter, M., 2008, “Engineering

design complexity: an investigation of methods and measures,” Res. Eng. Des.,

19(2-3), pp. 161–179.

 212

[50] Mathieson, J. L., Miller, M., and Summers, J. D., 2011, “A Protocol for Connective

Complexity Tracking in the Engineering Design Process,” International Conference

on Engineering Design 2011, Copenhagen, Denmark.

[51] Phelan, K. T., Wilson, C., Summers, J. D., and Kurz, M. B., 2014, “A case study of

configuration management methods in a major automotive OEM,” 2014 ASME

International Design Engineering Technical Conference, Buffalo, NY.

[52] Freeman, L., 1977, “A set of measures of centrality based on betweenness,”

Sociometry, 40(1), pp. 35–41.

[53] Whitney, D. E., 2004, Mechanical Assemblies: The Design Manufacture, and Role

in Product Development, Oxford University Press, New York, NY.

[54] Summers, J. D., Miller, M. G., Mathieson, J. L., Mocko, G. M., Summers, J. D.,

Mathieson, J. L., and Mocko, G. M., 2014, “Manufacturing Assembly Time

Estimation Using Structural Complexity Metric Trained Artificial Neural

Networks,” J. Comput. Inf. Sci. Eng., 14(1), p. 11005.

[55] Shankar, P., Phelan, K. T., and Summers, J. D., 2016, “A Verification and Validation

Planning Method to Address Change Propagation Effects in Engineering Design and

Manufacturing,” Concurr. Eng. Res. Appl.

[56] Phelan, K. T., Summers, J. D., Pearce, B., and Kurz, M. E., 2015, “Higher order

interactions: Product and configuration study on DSM saturation,” International

Conference on Engineering Design, Milan, Italy, pp. 1–10.

[57] Phelan, K. T., Summers, J. D., Wilson, C., and Kurz, M. E., 2015, “Graph

visualization styles for use in configuration management: a user study,” 2015 ASME

Design Engineering Technical Conferences, Boston, MA, pp. 1–9.

[58] Scavarda, L. F., Reichhart, A., Hamacher, S., and Holweg, M., 2010, “Managing

product variety in emerging markets,” Int. J. Oper. Prod. Manag., 30(2), pp. 205–

224.

[59] Da Silveira, G., Borenstein, D., and Fogliatto, F. S., 2001, “Mass customization :

Literature review and research directions,” Int. J. Prod. Econ., 72, pp. 1–13.

[60] Choi, I., and Bae, S., 2001, “An Architecture for Active Product Configuration

Management in Industrial Virtual Enterprises,” Int. J. Adv. Manuf. Technol., 18(2),

pp. 133–139.

[61] Andersson, H., Steinkellner, S., and Erlandsson, H., 2010, “Configuration

Management of Models for Aircraft Simulation,” 27th International Congress of the

Aeronautical Sciences, pp. 1–10.

 213

[62] Raffaeli, R., Mengoni, M., Germani, M., and Mandorli, F., 2009, “An Approach to

Support the Implementation of Product Configuration Tools,” 2009 ASME

International Design Engineering Technical Conference, San Diego, CA, pp. 1–12.

[63] Tseng, H.-E., Chang, C.-C., and Chang, S.-H., 2005, “Applying case-based

reasoning for product configuration in mass customization environments,” Expert

Syst. Appl., 29(4), pp. 913–925.

[64] Burgess, T. F., McKee, D., and Kidd, C., 2005, “Configuration management in the

aerospace industry: a review of industry practice,” Int. J. Oper. Prod. Manag., 25(3),

pp. 290–301.

[65] Alizon, F., Shooter, S. B., and Simpson, T. W., 2006, “Reuse of Manufacturing

Knowledge to Facilitate Platform-Based Product Realization,” J. Comput. Inf. Sci.

Eng., 6(2), p. 170.

[66] Byron, B., and Shooter, S. B., 2006, “Case Study: User Adoption of a Product

Configuration Management System at a Modular Playground Equipment Producer,”

2006 ASME International Design Engineering Technical Conferences,

Philadelphia, PA, pp. 1–9.

[67] Alizon, F., Shooter, S. B., and Simpson, T. W., 2005, “Introduction of the REUSE

Method: Retrieving Knowledge From Existing Product Designs,” Des. Eng. Parts A

B, 2005, pp. 335–343.

[68] Ramos, A. L., Ferreira, J. V., and Barceló, J., 2012, “Model-based systems

engineering: An emerging approach for modern systems,” Syst. Man, Cybern. Part

C Appl. Rev. IEEE Trans., 42(1), pp. 101–111.

[69] Chen, Z., and Wang, L., 2010, “Personalized product configuration rules with dual

formulations: A method to proactively leverage mass confusion,” Expert Syst.

Appl., 37(1), pp. 383–392.

[70] Sinz, C., Kaiser, A., and Küchlin, W., 2003, “Formal methods for the validation of

automotive product configuration data,” Ai Edam, 17(01), pp. 1–37.

[71] Keller, R., Eckert, C. M., and Clarkson, P. J., 2006, “Matrices or node-link diagrams:

which visual representation is better for visualising connectivity models?,” Inf. Vis.,

5(1), pp. 62–76.

[72] Becker, R. A., Eick, S. G., and Wilks, A. R., 1995, “Visualizing network data,” IEEE

Trans. Vis. Comput. Graph., 1(1), pp. 16–28.

[73] Lee, B., Plaisant, C., Parr, C. S., Fekete, J.-D., and Henry, N., 2006, “Task taxonomy

for graph visualization,” BELIV, Venice, Italy.

 214

[74] Nummela, J., 2006, “Integrated Configuration Knowledge Management by

Configuration Matrices–A Framework for Representing Configuration

Knowledge,” Tampereen Tek. Yliop.

[75] Ommering, R. Van, 2003, “Configuration management in component based product

populations,” Softw. Config. Manag.

[76] Mittal, S., and Frayman, F., 1989, “Towards a Generic Model of Configuraton

Tasks.,” IJCAI, pp. 1395–1401.

[77] Siddique, Z., and Rosen, D., 2000, “Product family configuration reasoning using

discrete design spaces,” 2000 ASME Design Engineering Technical Conference, pp.

1–12.

[78] Summers, J. D., 2005, “Reasoning in Engineering Design.”

[79] Summers, J. D., McLaren, B., and Aha, D. W., 2004, “Towards Applying Case-

Based Reasoning to Composable Behavior Modeling,” Behavior Representation in

Modeling and Simulation, Arlington, VA.

[80] Summers, J. D., Lacroix, Z., and Shah, J. J., 2002, “Case-based design facilitated by

the design exemplar,” 7th Int. Conf. Artif. Intell. Des., pp. 453–476.

[81] Kolodner, J. L., 1992, “An introduction to case-based reasoning,” Artif. Intell. Rev.,

6, pp. 3–34.

[82] Ramos, A., Ferreira, J., and Barceló, J., 2012, “Model-based systems engineering:

An emerging approach for modern systems,” Syst. Man, …, 42(1), pp. 101–111.

[83] Borgida, A., 1995, “Description logics in data management,” IEEE Trans. Knowl.

Data Eng., 7(5).

[84] McGuinness, D., and Wright, J., 1998, “Conceptual modelling for configuration: A

description logic-based approach,” AI EDAM, (September 2000), pp. 333–344.

[85] Ommering, R. Van, and Linden, F. Van Der, 2000, “The Koala component model

for consumer electronics software,” IEEE Comput., pp. 78–85.

[86] Liu, Y., and Liu, Z., 2010, “Multi-objective product configuration involving new

components under uncertainty,” J. Eng. Des., 21(4), pp. 473–494.

[87] Mesihovic, S., and Malmqvist, J., 2004, “A Process-Oriented Approach for

Management of Product Configuration Models,” 2004 ASME International Design

Engineering Technical Conferences, Salt Lake, UT, pp. 1–11.

 215

[88] Hart, K. M., Shooter, S. B., and Simpson, T. W., 2007, “Application of a Product

Platform Knowledge Management Methodology Using the Semantic Web Paradigm

to a Playground System,” Comput. Inf. Eng. Conf. Parts A B, 2, pp. 747–758.

[89] Forza, C., and Salvador, F., 2002, “Product configuration and inter-firm co-

ordination: An innovative solution from a small manufacturing enterprise,” Comput.

Ind., 49(1), pp. 37–46.

[90] Hvam, L., Pape, S., and Nielsen, M. K., 2006, “Improving the quotation process

with product configuration,” Comput. Ind., 57(7), pp. 607–621.

[91] Forza, C., and Salvador, F., 2002, “Managing for variety in the order acquisition and

fulfilment process: The contribution of product configuration systems,” Int. J. Prod.

Econ., 76(1), pp. 87–98.

[92] Shao, X.-Y., Wang, Z.-H., Li, P.-G., and Feng, C.-X. J., 2006, “Integrating data

mining and rough set for customer group-based discovery of product configuration

rules,” Int. J. Prod. Res., 44(14), pp. 2789–2811.

[93] Yin, R. K., 2014, Case Study Research: Design and Methods, Sage, Thousand Oaks,

CA.

[94] Frost, R., 1999, “Why does industry ignore design science?,” J. Eng. Des., 10(4),

pp. 301–304.

[95] Roth, S., 1999, “The state of design research: design issues,” Des. Res., 15(2), pp.

18–26.

[96] George, A. L., and Bennett, A., 2005, Case Studies and Theory Development in the

Social Sciences, MIT Press, Cambridge, MA.

[97] Flyvbjerg, B., 2006, “Five misunderstandings about case study research,” Qual. Inq.,

12(2), pp. 219–245.

[98] Sheldon, D. F., 2006, “Design review 2005/2006 - The ever increasing maturity of

design research papers and case studies,” J. Eng. Des., 17(6), pp. 481–486.

[99] Stowe, D. T., 2008, “The role of prototyping in mechanical design using case study

validation,” Clemson University.

[100] Teegavarapu, S., and Summers, J. D., 2008, “Case study method for design

research,” 2008 ASME Int. Des. Eng. Tech. Conf., pp. 1–9.

[101] LeCompte, M. D., and Schensul, J. J., 2010, Designing and Conducting

Ethnographic Research, AltaMira Press, Plymouth, UK.

 216

[102] Noor, K. B. M., 2008, “Case study: a strategic research methodology,” Am. J. Appl.

Sci., 5(11), pp. 1602–1604.

[103] Owensby, J. E., and Summers, J. D., 2014, “Assembly Time Estimation: Assembly

Mate Based Structural Complexity Metric Predictive Modeling,” J. Comput. Inf.

Sci. Eng., 14(1), p. 011004.

[104] Mohinder, C. V. S., Sridhar, S., and Summers, J. D., 2014, “A comparative study:

structural complexity metrics applied against function and assembly product graphs

in predicting market price and assembly times,” Des. Comput. Cogn. 2014, p. 51.

[105] Khoshgoftaar, T. M., and Munson, J. C., 1990, “Predicting software development

errors using software complexity metrics,” Sel. Areas Commun. IEEE J., 8(2), pp.

253–261.

[106] Bhattacharya, P., Iliofotou, M., Neamtiu, I., and Faloutsos, M., 2012, “Graph-based

Analysis and Prediction for Software Evolution,” Proc. 34th Int. Conf. Softw. Eng.

(ICSE 2012), pp. 419–429.

[107] Mathieson, J. L., and Summers, J. D., 2010, “Complexity Metrics for Directional

Node-Link System Representations: Theory and Applications,” ASME International

Design Engineering Technical Conferences and Computers and Information in

Engineering Conference, pp. DETC2010–28561.

[108] Pearce, B., Phelan, K. T., Kurz, M. E., and Summers, J. D., 2016, “Configuration

Management through Constraint Programming,” CIRP Conference on Assembly

Technologies and Systems, Gothenburg, Sweden.

[109] Heer, J., Bostock, M., and Ogievetsky, V., 2010, “A tour through the visualization

zoo,” Commun. ACM, 53(6), pp. 59–67.

[110] Van Wijk, J. J., 2005, “The Value of Visualization,” VIS 05. IEEE Visualization,

2005., IEEE, Minneapolis, MN, pp. 79–86.

[111] Chen, C., and Yu, Y., 2000, “Empirical studies of information visualization: a meta-

analysis,” Int. J. Hum. Comput. Stud., 53(5), pp. 851–866.

[112] Gonzalez, V., and Kobsa, A., 2003, “Benefits of information visualization systems

for administrative data analysts,” International Conference on Information

Visualization, IEEE Comput. Soc, London, UK, pp. 331–336.

[113] Herman, I., Melancon, G., and Marshall, M. S., 2000, “Graph visualization and

navigation in information visualization: A survey,” IEEE Trans. Vis. Comput.

Graph., 6(1), pp. 24–43.

 217

[114] Keller, R., Eckert, C. M., and Clarkson, P. J., 2005, “Multiple views to support

engineering change management for complex products,” Coord. Mult. Views

Explor. Vis. 2005. (CMV 2005). Proceedings. Third Int. Conf., pp. 33–41.

[115] Ghoniem, M., Fekete, J.-D., and Castagliola, P., 2004, “A comparison of the

readability of graphs using node-link and matrix-based representations,” IEEE

Symposium on Information Visualization, Austin, TX, pp. 17–24.

[116] Schaub, M., Matthes, F., and Roth, S., 2012, “Towards a Conceptual Framework for

Interactive Enterprise Architecture Management Visualizations,” Modellierung, pp.

75–90.

[117] Kurtoglu, T., and Tumer, I. Y., 2008, “A Graph-Based Fault Identification and

Propagation Framework for Functional Design of Complex Systems,” J. Mech.

Des., 130(5), p. 051401.

[118] Teacher, A. G. F., and Griffiths, D. J., 2011, “HapStar: automated haplotype

network layout and visualization,” Mol. Ecol. Resour., 11(1), pp. 151–3.

[119] Sorger, J., Buhler, K., Schulze, F., Liu, T., and Dickson, B., 2013, “neuroMAP—

Interactive graph-visualization of the fruit fly’s neural circuit,” IEEE Symposium

on Bioloical Data Visualization, Atlanta, GA.

[120] Xu, K., Rooney, C., Passmore, P., Ham, D.-H., and Nguyen, P. H., 2012, “A User

Study on Curved Edges in Graph Visualization,” IEEE Trans. Vis. Comput. Graph.,

18(12), pp. 2449–2456.

[121] Ware, C., Purchase, H. C., Colpoys, L., and McGill, M., 2002, “Cognitive

measurements of graph aesthetics,” Inf. Vis., 1(2), pp. 103–110.

[122] Purchase, H. C., 2014, “A healthy critical attitude: Revisiting the results of a graph

drawing study,” J. Graph Algorithms Appl., 18(2), pp. 281–311.

[123] Purchase, H. C., Carrington, D., and Allder, J.-A., 2002, “Empirical evaluation of

aesthetics-based graph layout,” Empir. Softw. Eng., 7(3).

[124] Archambault, D., Purchase, H. C., and Pinaud, B., 2011, “Difference map

readability for dynamic graphs,” Graph Drawing, pp. 50–61.

[125] Holten, D., Isenberg, P., van Wijk, J. J., and Fekete, J.-D., 2011, “An extended

evaluation of the readability of tapered, animated, and textured directed-edge

representations in node-link graphs,” IEEE Pacific Visualization Symposium, Hong

Kong, China, pp. 195–202.

 218

[126] Brewer, C. A., 1999, “Color use guidelines for data representation,” Proceedings of

the Section on Statistical Graphics, Aerican Statistical Association, Alexandria, VA,

pp. 55–60.

[127] Wong, B., 2010, “Color coding,” Nat. Methods, 7(8), p. 573.

[128] Lee, S., Sips, M., and Seidel, H.-P., 2013, “Perceptually driven visibility

optimization for categorical data visualization.,” IEEE Trans. Vis. Comput. Graph.,

19(10), pp. 1746–1757.

[129] Purchase, H. C., 1998, “The effects of graph layout,” Australasian Computer Human

Interaction Conference, IEEE Comput. Soc, pp. 80–86.

[130] Gibson, H., Faith, J., and Vickers, P., 2012, “A survey of two-dimensional graph

layout techniques for information visualisation,” Inf. Vis., 12(3-4), pp. 324–357.

[131] North, C., Saraiya, P., and Duca, K., 2011, “A comparison of benchmark task and

insight evaluation methods for information visualization,” Inf. Vis., 10(3), pp. 162–

181.

[132] Griffee, D., 2005, “Research Tips: Interview Data Collection.,” J. Dev. Educ.

[133] Schraw, G., 1993, “Constraints on the calibration of performance,” Contemp. Educ.

Psychol., 18(4), pp. 455–463.

[134] Dinsmore, D. L., and Parkinson, M. M., 2013, “What are confidence judgments

made of? Students’ explanations for their confidence ratings and what that means

for calibration,” Learn. Instr., 24, pp. 4–14.

[135] Thimmaiah, S., Phelan, K. T., and Summers, J. D., 2013, “Predicting design

performance with and without controls,” 2013 ASME International Design

Engineering Technical Conference, Portland, OR.

[136] Bastian, M., Heymann, S., and Jacomy, M., 2009, “Gephi: An open source software

for exploring and manipulating networks,” Third International Conference on

Weblogs and Social Media, San Jose, CA, pp. 361–362.

[137] Bostock, M., Ogievetsky, V., and Heer, J., 2011, “D3 Data-Driven Documents,”

IEEE Trans. Vis. Comput. Graph., 17(12), pp. 2301–2309.

[138] Reas, C., and Fry, B., 2006, “Processing: Programming for the media arts,” AI Soc.,

20, pp. 526–538.

[139] Le Dain, M.-A., Blanco, E., and Summers, J. D., 2013, “Assessing design research

quality: investigating verification and validation criteria,” International Conference

on Engineering Design, Seoul, South Korea.

 219

[140] Seepersad, C., Pedersen, K., Emblemsvåg, J., Bailey, R., Allen, J., and Mistree, F.,

2006, “The Validation Square: How Does One Verify and Validate a Design

Method?,” Decision Making in Engineering Design, ASME, Three Park Avenue

New York, NY 10016-5990, pp. 303–313.

 220

APPENDICES

 221

Appendix A:Complete DSM for Historical Example

The below table shows the completed design structure matrix (DSM) for the

historical example for the brake drum discussed in Section 2.1.2.

Table A.1: Full DSM for Brake Drum Example

Component Name

Internal External

A B C D E F G H I J K L M N O P Q

In
te

rn
al

Foundation Brake A 1 1 1 1

Brake Drum B 1 1 1

Slack Adjuster C 1 1

Brake Chamber D 1 1 1 1

Brake Lining E 1 1

Air Tanks F 1 1 1 1

E Valve G 1 1 1 1

Brake Pedal H 1 1

Relay Valve I 1 1 1

Quick Release Valve J 1 1

Governor K 1 1

Ex
te

rn
al

Axle L 1

Hub M 1

Tie and Wheel Trim N 1

Engine O 1 1

Instrument Panel P 1

Frame Q 1 1 1 1 1 1

 222

Appendix B: Trendline Graphs for Component Interaction Study

The following graphs show the trendlines for the component interaction study

conducted in Section 2.2.

Figure A.1: Trendline for all product architectures

Figure A.2: Trendline for Group 1 product architectures

 223

Figure A.3: Trendline for Group 2 product architectures

Figure A.4: Trendline for Group 3 product architectures

 224

Figure A.5: Trendline for Group 4 product architectures

Figure A.6: Trendline for all product changes

 225

Figure A.7: Trendline for Group 1 with 1 added product change

Figure A.8: Trendline for Group 3 with 1 added product change

 226

Figure A.9: Trendline for Group 4 with 1 added product change

 227

Appendix C: Example of a Configuration Rule Database

An example of the configuration rule database discussed in the case study in

Chapter Four. As the full document is over 1500x40, an abbreviated example is used.

Table A.2: Example of a configuration rule database

 228

Appendix D: Example Configuration Change Request Form

 229

 230

 231

Appendix E: User Study Response Form

Answer each question and provide your confidence in the answer you have provided.

“vehicle option” signifies a node marked S___A.

“windshield” or “part” signifies a node marked WS ___.

1. Which vehicle options are not available to US customers for the available

windshields?

2. If a US customer wants option S5DFA, what windshield part numbers are

available? Which numbers are not available? Does it change for a customer in

Europe and why?

3. If a vehicle option (S123A) was added to the Europe model that requires S5ARA

and cannot work with S5DFA, will this cause any problems? Why or why not?

4. Provide a feasible vehicle option combination to result in Part number WS 495 (in

Europe).

5. Which part numbers are compatible with option S610A (in Europe)?

6. Are there any option contradiction errors in the connectivity graph? If so, what are

they?

 232

7. If a European customer wants S5ATA, how does this affect availability of other

vehicle options?

8. If a customer in Europe wants option S358A, what other vehicle options are

affected, and how?

9. Which windshields are not offered in the US?

10. Provide a feasible vehicle option combination to result in Part number WS 401 (for

Europe).

11. Is there any scenario where a combination of vehicle options will result in two

different windshields being required (in Europe)?

12. Are there any valid vehicle option combinations where no windshields are

specified?

13. If windshield WS 399 was removed from the European model, would this cause

any issues? Why or why not?

 233

Appendix F: Visualization Tool Development User Study Graphs

The following graphs were used for the visualization tool development user study

discussed in Section 6.2.

Figure A.10: Graph for European models with functional grouping and coloring

based on interactions

 234

Figure A.11: Graph for US models with functional grouping and coloring based on

interactions

 235

Figure A.12: Graph for European models with functional grouping and coloring

based on interactions (options only)

 236

Figure A.13: Graph for US models with functional grouping and coloring based on

interactions (options only)

 237

Figure A.14: Graph for European models with functional grouping and coloring

based on parts

 238

Figure A.15: Graph for US models with functional grouping and coloring based on

parts

 239

Figure A.16: Graph for European models with circular layout and coloring based

on interactions

 240

Figure A.17: Graph for US models with circular layout and coloring based on

interactions

 241

Figure A.18: Graph for European models with circular layout and coloring based

on parts

 242

Figure A.19: Graph for US models with circular layout and coloring based on parts

 243

Figure A.20: Graph for European models with circular layout and coloring based

on interactions (options only)

 244

Figure A.21: Graph for US models with circular layout and coloring based on

interactions (options only)

 245

Appendix G: Visualization Tool Validation User Study Packets

 246

A

 247

Provided

 1x rule database

 3x rule graphs

 3x example configuration changes

Instructions

 Based on the information provided in each configuration change, make edits to

the provided rule graph.

 Configuration changes are independent – Configuration Change 1 should not be

considered when evaluating Configuration Change 2.

 Use a fresh rule graph for each Configuration Change.

 No changes need to be made to the rule database, it is for reference only.

 If removing a rule is required, make sure it is clear which rule is to be removed

and how the removal is shown.
Rule Grammar

 248

Rule Database

Option type Name Description

Option MB1 VALUE MOTHERBOARD

Option MB2 HIGH-END MOTHERBOARD

Option CPU1 VALUE PROCESSOR UNIT

Option CPU2 MID-RANGE PROCESSOR UNIT

Option CPU3 HIGH-END PROCESSOR UNIT

Option VID1 VALUE VIDEO CARD

Option VID2 MID-RANGE VIDEO CARD

Option VID3 HIGH-END VIDEO CARD

Option HDD HARD DISK DRIVE

Option SSD SOLID STATE DRIVE

Option CD1 CD-ROM DISK DRIVE

Option BD1 BLURAY DISK DRIVE

Package VALU VALUE PACKAGE

Package BASE MID-RANGE PACKAGE

Rule type If-Part of rule Then-part of rule

- MB1 MB2

- CPU2 MB1

- CPU2 MB2

- CPU1 CPU2

- CPU1 CPU3

- CPU2 CPU3

- CD1 BD1

+ VID3 CPU3

+ VID2 CPU2 / CPU3

+ BD1 VID2 / VID3

PK VALU VID1 & CPU1 & MB1 & HDD

PK BASE VID2 & MB2 & SSD & CD1

 249

Configuration change 1

Problem:

A previous change in the CPU (CPU2) from Supplier Y resulted in an incompatibility with all of the
existing motherboards that are available for all laptops.

Solution:

A new motherboard (MB3) has been identified from Supplier X that meets the performance criteria for
all of the CPUs currently being manufactured. Make the motherboard available for all laptops and
ensure the correct CPUs are associated with the newly added motherboard.

Rule changes:

-Add new motherboard (MB3 – “High-end motherboard”) to the rule database

-Add inclusion between CPU2 and MB3

-Add exclusion between MB3 and MB1

-Add exclusion between MB3 and MB2

 250

Change 1

 251

Configuration change 2

Problem:

The supplier that manufacturers the parts for CPU1 has gone out of business, resulting in the
potential loss of that option.

Solution:

A new supplier has been found that can produce a similar processor unit to the previous one
used in CPU1. As a result, CPU1 remains a viable option. Video card rules must be changed due
to new part compatibilities.

Rule changes:

-Add exclusion between CPU1 and VID1

-Remove inclusion between VID2 and CPU2 / CPU3

-Change package declaration for VALU from VID1 & CPU1 & MB1 & HDD to VID1 & MB1 & HDD

Bonus:

Why is the third rule change necessary?

 252

Change 2

 253

Configuration change 3

Problem:

Order history has shown that the customers are ordering the high-end video card (VID3) with
the high-end CPU (CPU3), but have been settling for the less expensive motherboard (MB1).
As MB1 is compatible with both options and has not been shown to hinder the performance of
either higher-end option, many customers have ordered these together, resulting in a decrease
in sales for laptops with the more expensive motherboard (MB2).

Solution:

Implement a new package (XPNS) that includes the high-end eversion of the motherboard
(MB2), CPU (CPU3), and video card (VID3). In order for the customers to order either the high-
end CPU or video card, they must include the XPNS package.

Rule changes:

-Add new package (XPNS – “High-end package”) to the ruleset

-Add package declaration for XPNS of SSD & BD1 & VID3 & MB2 & CPU3

-Add inclusion between VID3 and XPNS

-Add inclusion between CPU3 and XPNS

 254

Change 3

 255

B

 256

Provided

 3x rule database

 3x example configuration changes

Instructions

 Based on the information provided in each configuration change, make edits to

the provided rule database.

 Configuration changes are independent – Configuration Change 1 should not be

considered when evaluating Configuration Change 2.

 Use a fresh rule database for each Configuration Change.

 If removing a rule is required, make sure it is clear which rule is to be removed

and how the removal is shown.

Rule Grammar

 “-“ indicates mandatory exclusion (negative relationship)

 “+” indicates mandatory inclusion (positive relationship)

 “PK” indicates a package declaration rule (elements are included in the package)

 “/” indicates “either/or” relationship (only one of them is required)

 “&” indicates “and” relationships (both are required)

 257

Configuration change 1

Problem:

A previous change in the CPU (CPU2) from Supplier Y resulted in an incompatibility with all of the
existing motherboards that are available for all laptops.

Solution:

A new motherboard (MB3) has been identified from Supplier X that meets the performance criteria for
all of the CPUs currently being manufactured. Make the motherboard available for all laptops and
ensure the correct CPUs are associated with the newly added motherboard.

Rule changes:

-Add new motherboard (MB3 – “High-end motherboard”) to the rule database

-Add inclusion between CPU2 and MB3

-Add exclusion between MB3 and MB1

-Add exclusion between MB3 and MB2

 258

Change 1

Option type Name Description

Option MB1 VALUE MOTHERBOARD

Option MB2 HIGH-END MOTHERBOARD

Option CPU1 VALUE PROCESSOR UNIT

Option CPU2 MID-RANGE PROCESSOR UNIT

Option CPU3 HIGH-END PROCESSOR UNIT

Option VID1 VALUE VIDEO CARD

Option VID2 MID-RANGE VIDEO CARD

Option VID3 HIGH-END VIDEO CARD

Option HDD HARD DISK DRIVE

Option SSD SOLID STATE DRIVE

Option CD1 CD-ROM DISK DRIVE

Option BD1 BLURAY DISK DRIVE

Package VALU VALUE PACKAGE

Package BASE MID-RANGE PACKAGE

Rule type If-Part of rule Then-part of rule

- MB1 MB2

- CPU2 MB1

- CPU2 MB2

- CPU1 CPU2

- CPU1 CPU3

- CPU2 CPU3

- CD1 BD1

+ VID3 CPU3

+ VID2 CPU2 / CPU3

+ BD1 VID2 / VID3

PK VALU VID1 & CPU1 & MB1 & HDD

PK BASE VID2 & MB2 & SSD & CD1

 259

Configuration change 2

Problem:

The supplier that manufacturers the parts for CPU1 has gone out of business, resulting in the
potential loss of that option.

Solution:

A new supplier has been found that can produce a similar processor unit to the previous one
used in CPU1. As a result, CPU1 remains a viable option. Video card rules must be changed due
to new part compatibilities.

Rule changes:

-Add exclusion between CPU1 and VID1

-Remove inclusion between VID2 and CPU2 / CPU3

-Change package declaration for VALU from VID1 & CPU1 & MB1 & HDD to VID1 & MB1 & HDD

Bonus:

Why is the third rule change necessary?

 260

Change 2

Option type Name Description

Option MB1 VALUE MOTHERBOARD

Option MB2 HIGH-END MOTHERBOARD

Option CPU1 VALUE PROCESSOR UNIT

Option CPU2 MID-RANGE PROCESSOR UNIT

Option CPU3 HIGH-END PROCESSOR UNIT

Option VID1 VALUE VIDEO CARD

Option VID2 MID-RANGE VIDEO CARD

Option VID3 HIGH-END VIDEO CARD

Option HDD HARD DISK DRIVE

Option SSD SOLID STATE DRIVE

Option CD1 CD-ROM DISK DRIVE

Option BD1 BLURAY DISK DRIVE

Package VALU VALUE PACKAGE

Package BASE MID-RANGE PACKAGE

Rule type If-Part of rule Then-part of rule

- MB1 MB2

- CPU2 MB1

- CPU2 MB2

- CPU1 CPU2

- CPU1 CPU3

- CPU2 CPU3

- CD1 BD1

+ VID3 CPU3

+ VID2 CPU2 / CPU3

+ BD1 VID2 / VID3

PK VALU VID1 & CPU1 & MB1 & HDD

PK BASE VID2 & MB2 & SSD & CD1

 261

Configuration change 3

Problem:

Order history has shown that the customers are ordering the high-end video card (VID3) with
the high-end CPU (CPU3), but have been settling for the less expensive motherboard (MB1).
As MB1 is compatible with both options and has not been shown to hinder the performance of
either higher-end option, many customers have ordered these together, resulting in a decrease
in sales for laptops with the more expensive motherboard (MB2).

Solution:

Implement a new package (XPNS) that includes the high-end eversion of the motherboard
(MB2), CPU (CPU3), and video card (VID3). In order for the customers to order either the high-
end CPU or video card, they must include the XPNS package.

Rule changes:

-Add new package (XPNS – “High-end package”) to the ruleset

-Add package declaration for XPNS of SSD & BD1 & VID3 & MB2 & CPU3

-Add inclusion between VID3 and XPNS

-Add inclusion between CPU3 and XPNS

 262

Change 3

Option type Name Description

Option MB1 VALUE MOTHERBOARD

Option MB2 HIGH-END MOTHERBOARD

Option CPU1 VALUE PROCESSOR UNIT

Option CPU2 MID-RANGE PROCESSOR UNIT

Option CPU3 HIGH-END PROCESSOR UNIT

Option VID1 VALUE VIDEO CARD

Option VID2 MID-RANGE VIDEO CARD

Option VID3 HIGH-END VIDEO CARD

Option HDD HARD DISK DRIVE

Option SSD SOLID STATE DRIVE

Option CD1 CD-ROM DISK DRIVE

Option BD1 BLURAY DISK DRIVE

Package VALU VALUE PACKAGE

Package BASE MID-RANGE PACKAGE

Rule type If-Part of rule Then-part of rule

- MB1 MB2

- CPU2 MB1

- CPU2 MB2

- CPU1 CPU2

- CPU1 CPU3

- CPU2 CPU3

- CD1 BD1

+ VID3 CPU3

+ VID2 CPU2 / CPU3

+ BD1 VID2 / VID3

PK VALU VID1 & CPU1 & MB1 & HDD

PK BASE VID2 & MB2 & SSD & CD1

	Clemson University
	TigerPrints
	12-2015

	CONFIGURATION MANAGEMENT IN MANUFACTURING AND ASSEMBLY: CASE STUDY AND ENABLER DEVELOPMENT
	Keith Phelan
	Recommended Citation

	tmp.1452273486.pdf.FLFXg

