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ABSTRACT 

The overall goal of this research is to improve the product configuration change 

management process.  The increase in the demand for highly customizable products has 

led to many manufacturers using mass customization to meet the constantly changing 

demands of a wide consumer base.  However, effectively managing the configurations can 

be difficult, especially in large manufacturers or for complex products with a large number 

of possible configurations.  This is largely due to a combination of the scope of the 

configuration management system and the difficulty in understanding how changes to one 

element of a configuration can propagate through the configuration system.  To increase 

the engineer’s ability to understand the configuration management system and how 

changes can affect it, an improved method is required. 

Based on the results of a case study at a major automotive OEM, a configuration 

change management method is developed to address the aforementioned gap.  In addition, 

a set of design enablers is deployed as part of the method.  The major contribution of this 

work is the improved method for configuration change management and the use of graph 

visualization in exploring configuration changes.  The use of graph visualizations for 

configuration management is validated through a user study, four implementation studies 

using ongoing configuration changes at the OEM, and user feedback and evaluation.  The 

method is validated through application in three historical cases and user feedback.  The 

results show that the method increases the capabilities of the engineer in exploring a 

proposed configuration change and identifying any potential errors.  
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CHAPTER ONE: INTRODUCTION 

1.1 What is Configuration Management? 

Configuration management is a method for capturing, verifying, and maintaining 

the information regarding how product variants can feasibly achieve customer 

requirements.  The first aspect of this process is to understand the capabilities and 

interrelationships of the components within the product family.  Product families, or 

“configurable products,” are defined according to the following criteria [1,2]: 

 Are adapted according to customer requirements [1] 

 Consist of (almost) only pre-designed components [1,2] 

 Have a pre-designed product structure [1] 

 Are adapted by systematic product configuration [1,2] 

It is important to note that a key element of these criteria is that the components 

that contribute to the product family are well specified, including the relationships between 

the components.  In this way, the configuration management process is different from 

traditional design in that no new component types are created, nor are the interfaces 

between components modified in any way [3].  Therefore, a difficulty in configuration 

management is in accurately modeling this knowledge. 

The second aspect of the configuration management process is to understand the 

individual needs of the customer and how the needs can be met through the selection and 

integration of specific components.  As in the case of the product family domain 

knowledge, the customer requirements should all be well-specified when conducting 

configuration management.  That is, before a new customer requirement should be added 
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as an option within a product family, a coordinating component for achieving that need 

must first be identified.  This relationship is shown in Figure 1.1. 

 

Figure 1.1: Configuration management entity relationships 

While this may seem counterintuitive, the goal of configuration management is not 

to develop novel concepts, but rather to produce a new configuration of existing 

components that is adapted to the needs of the customer [1]. 

1.2 Why Configuration and Change Management? 

Configuration management is essential to mass customization because without it 

the difficulty in managing the potential configurations can hinder the efficient manufacture 

of product [3–5].  When viewed from the perspective of assembly lines, the many different 

configurations can quickly lead to increases in the possibility of errors [3].  The high 

number of configurations available, specifically in the automotive industry, is shown in the 

model in Figure 1.2.  These errors, depending on where they are identified in the product 

life-cycle, can be extremely costly.  As a result, configuration management is necessary for 

successful manufacture of product families. 
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Figure 1.2: Model depicting possible configuration variants (adapted from [4]) 

An additional benefit of configuration management is the ability to effectively 

conduct change management and product improvement [5].  While a central facet of 

configuration management is an understanding of how the components interrelate, when a 

change is required on a single component, one may identify how the specified change will 

affect the other components within any of the variants in that product family.  This includes 

manufacturers that rely heavily on modifying existing products in the development of new 

designs, as is the case with the intra-organizational benefits of product configuration 

identified in a study of an aeronautics manufacturer [5].  As a current product is adapted to 

fit new customer requirements, it is easy to identify how the modifications will affect the 

other variants in a product family. 

The implementation of configuration management also increases the amount of 

product control and organizational support of a manufacturer [4,5].  Others describe 

configuration management as a basic process within systems engineering that serves as the 

“backbone” of many of the core processes that enable efficient manufacture of a 
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configurable product [4].  Similar findings on the benefits of configuration management 

were identified in a case study based on interviews with employees in management 

positions within an aeronautics OEM [5].  The interviewees all stated that the use of 

configuration management practices increased the amount of control of the company over 

the product and the product variant development process. 

1.3 Dissertation Outline 

This section presents an overview of the dissertation, visually depicted in Figure 

1.3.  Chapter One provides an introduction to the research.  This includes the motivation 

for the research and some background information on configuration management.  Chapter 

Two presents the foundation for the research: a review of current change management 

practices (including a literature review and the development of a support tool for an 

existing change management support method) and a study on product component 

interaction. This preliminary research introduced the author to the principles of change 

management and developed the interest in change management, specifically with regard to 

change management in configurable products or products with multiple variants.  Chapter 

Three presents the overall research plan for the dissertation.  This includes the research 

objectives, their corresponding research sub-questions and the tasks that were executed to 

achieve the objectives. 
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Figure 1.3: Dissertation overview 

Chapter Four begins the process of answering the research questions through the 

presentation of an industrial case study on configuration management.  The case study and 

accompanying literature review are intended to answer the question of how companies 

conduct configuration management (RO 1).  Based on the findings of the case study, an 

improved method for configuration management, including design enabler support, is 
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presented in Chapter Five.  The proposed method provides an integrated method that 

incorporates support tools from multiple domains (data visualization, algorithmic 

validation, and complexity analysis) to assist in the configuration management process.   

Chapter Six focuses on the development and implementation of a graph 

visualization support tool.  The visualization support tool uses relationship information 

from the product rule databases to assist in understanding how proposed changes can 

propagate in unexpected ways.  The validation of the graph visualization tool is presented 

in Chapter Seven.  This consists of four implementation cases of ongoing configuration 

changes at the OEM and a user study to test the effectiveness of the proposed tool for 

configuration rule implementation.  Chapter Eight consists of a validation of the entire 

configuration management support method through additional implementation cases and a 

user feedback interview with a change manager at the OEM.  Finally, Chapter Nine 

concludes the dissertation and provides potential avenues for future research. 
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CHAPTER TWO: PRELIMINARY EFFORT – UNDERSTANDING CHANGE 

MANAGEMENT 

The purpose of the research presented in this chapter is to understand current 

change management practice.   This objective is achieved through the execution of three 

related tasks: a literature review of change management practices, the development of a 

change management support tool based on a verification, validation, and testing planning 

method, and a study on component interaction for change propagation.  These three tasks 

will be discussed in the following sections, with the findings being summarized in 2.3. 

2.1 Current Change Management Practice 

In order to develop a better understanding of current configuration change 

management, a literature review is conducted and a computational support tool is 

developed to increase the usability and adoptability of an existing change management 

method.  These are discussed in Sections 2.1.1 and 2.1.2, respectively. 

2.1.1 Literature Review of Change Management Practice 

There has been a large amount of research conducted on ways to mitigate the effects 

and/or occurrences of engineering change [6–9].  The research can be categorized 

according to the following types of mitigation: tools for documentation, tools for decision-

making, and engineering change coping strategies [7]. 

2.1.1.1 Documentation Tools 

The first type of tool involves those used for assistance in documentation and 

managing the work flow of the engineering change process.  Such tools are recognized as 
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necessary to effectively and efficiently execute engineering changes [6,10].  Engineering 

change management systems that are primarily paper-based are typically inefficient in that 

the information is largely centralized.  As the number of engineering changes of a product 

increases, the situation is compounded [6].  The high degree of centralization limits the 

ability for all personnel within a company to have access to the changes and understand 

how they can affect different operations within the company [11].  Therefore, having the 

ability to document and manage change can greatly improve the efficiency of the change 

management process by ensuring that all parties are kept current on a change’s status. 

As a result, there has been a focus on computer-based systems for documenting the 

instances of engineering change over the life of an engineering change.  Huang and Mak 

[12] use the following classification method for computer-based tools: 

 Dedicated engineering change management systems: They include databases of 

engineering change activities and can generate engineering change forms. 

 Computer aided configuration management systems: These systems are software-

based engineering change management systems and allow the user to address 

product structuring and versioning. 

 Product data management (PDM) or product life-cycle management (PLM) 

systems: These systems incorporate all of the above functionalities and also are 

able to encompass all stages of the product life-cycle, such as product planning.  

Often, the scope of these systems requires that they be developed externally by 

software design companies. 

The increase in the use of computer networking in company infrastructures has led 

to an increase in academic research into computer-based change management systems 

[12,13].  One example, a stand-alone, web-based system for managing the engineering 
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change process, has been developed at the University of Hong Kong’s Department of 

Industrial and Manufacturing Systems Engineering [13].  The proposed engineering 

change management (ECM) system seeks to remove the limitations due to time and 

geography typically found in paper-based systems by using a distributed web-based 

system. The major limitation of the system is that it only supports basic ECM functions 

and activities.  Additionally, no case study regarding implementation or validation of the 

tool is provided.  Reddi [11,14] presents a framework for engineering change management 

based on Service Oriented Architecture that allows for an agile engineering change 

management process to be used in a collaborative environment.  The primary limitation of 

this work is that the tool was not validated with industry data, but rather with previous 

research.  Additionally, the tool requires an extensive amount of user expertise in order to 

estimate the values for parameters used in the process. 

Despite the prevalence of commercially available engineering change management 

software packages, it has been found that few companies have moved to integrate these 

systems [15].  Some possible reasons behind this are [12]: 

 Companies do not realize the systems are available 

 Available systems do not meet the needs of the user 

 Available systems are not worth the difficulty to implement 

 The systems require too much data input to be time-effective 

 The technology does not fulfil its functions as promised 

In a study of three Swedish engineering companies [16], it was found that none of 

the companies used the benefits of computer-based support of change management to their 

full potential.    However, it is understood that at the time of the report that all of the 



 10 

companies were investing in these computer-based systems.  The biggest determining 

factor was whether it was more efficient to develop their own software or to revise 

commercially available software for use within the company.  In a similar review of two 

British companies [6], the companies felt that adapting a commercially available system 

would be more expensive and time-consuming than developing their own.  Thus, cost of 

adoption and development appear to be major hurdles in adoption. 

The following conclusions are made regarding the current research on 

documentation tools for configuration management: 

 Many of the tools discussed have not been implemented in an industry setting to 

validate their usefulness 

 Difficulty in adopting an existing ECM system leads companies to develop their 

own support tools instead 

  Many of the tools require a large amount of user input in order to fulfill the 

required functions  

2.1.1.2 Decision-Making Tools 

A major emphasis of research on engineering change has been on tools to aid in the 

decision-making of the engineering change process.  While solid modelling, Failure Mode 

and Effects Analysis (FMEA), and Value Analysis are examples of enablers that can be 

used in engineering change mitigation, the focus of this section is on methods and research 

prototype systems. 

Ollinger and Stahovich [17] propose a tool called “RedesignIT,” a computer 

program that employs model-based reasoning to create and evaluate proposals for redesign 

plans.  The program uses the relevant physical parameter of the design and the relationships 
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between the parameters to build the model.  The benefit to this tool is that it proposes 

modifications to the proposals to mitigate negative effects of the proposed change.  

However, it only provides the parameters that should be modified and does not propose 

how the quantities should be altered.   

Laurenti and Rozenfeld [18] present a modified version of FMEA that specifically 

covers the analysis of modifications to a system.  The method, Failure Mode and Effect 

Analysis of Modifications (FMEAM), was developed based on an integration of FMEA 

and Design Review Based on Failure Mode (DRBFM).  It incorporates a multi-disciplinary 

work group to review engineering changes and the possible failure rates that may be 

associated with them.  At this point, there has been no validation of the feasibility or utility 

of the proposed method. 

The Change Prediction Model [19] is a tool for predicting how change will 

propagate through a design.  This method uses Design Structure Matrices (DSMs) to build 

a product model.  The product model consists of the relationships between components that 

increase either the likelihood or impact of engineering change propagation.  By 

determining the possible propagation pathways, it is then possible to use the product model 

to create DSMs representing the predicted likelihood and risk of a change.  From these 

DSMs it is possible to predict the possible impact of a change.  This model is shown in 

Figure 2.1. 
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Figure 2.1: Change Propagation Model (CPM) [19] 

This method has also been used in additional research and has been applied in 

several case studies [20–22].  A similar method has been proposed that uses DSMs to 

determine the second-order relationships between requirements [23].  From these 

secondary relationships, they were able to successfully predict how product requirements 

would change as a result of an initial requirement change.  By modelling the predicted 

change early in the design process, during requirements development, it is possible to 

minimize the associated costs resulting from an engineering change.  The method was 

shown to be successful in predicting the resulting changes in two industrial case studies, 

but more validation is needed to explore its effectiveness.  Another potential negative of 

this method is that it requires an initial change in order to be effective. 

 Change Favorable Representation (C-FAR) [24] is a method that uses product 

information to assist in the representation, propagation and evaluation of changes.  C-FAR 
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decomposes a product into its basic entities and then represents these entities as vectors, 

with the attributes of the entity as components of the vector.  The approach then uses 

matrices to create relationships between entity vectors, with the individual components of 

the matrix being referred to as linkage values.  The linkage values represent the relationship 

between two attributes (one from each entity) and can be used to determine how change in 

one attribute or entity can affect other entities/attributes.  The method has been used with 

numerous industrial case studies, but because of the high processing power required, it is 

only feasible when used with fairly simple products.  

The following conclusions are made regarding the current research on decision 

tools for configuration management: 

 Many of the tools discussed have not been implemented in an industry setting to 

validate their usefulness 

 Difficulty in adopting an existing ECM system leads companies to develop their 

own support tools instead 

  Many of the tools require a large amount of user input in order to fulfill the 

required functions 

2.1.1.3 Engineering Change Mitigation Strategies  

While other researchers [25,26] have also proposed strategies for mitigating the effects 

of engineering change, Fricke, et al. [15] provides a comprehensive list of strategies: 

1. Prevention: Reduce the number of emergent changes of a product.  This is often the 

majority of changes that occur for a given design [9,27].  It is understood that this can 

be extremely difficult to execute effectively.   

2. Front-loading: Early detection of engineering changes within the product- life-cycle.  

This is in line with the “Rule of Ten” discussed earlier in the paper.  The use of 
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concurrent engineering encourages early identification of changes that must be made 

to a product.  However, due to the ever-changing nature of the market, implementing 

this to its fullest extent may prevent the company from changing to meet the latest 

needs of the customer, possibly leading to an eventual loss of market share and 

profitability. 

3. Effectiveness: Conducting analysis on the benefit of executing an engineering change 

against the cost of implementation.  As previously mentioned, not all engineering 

changes are meaningful and/or mandatory.  Therefore, it is necessary that design 

engineers understand the difference between meaningful and meaningless changes. 

4. Efficiency: Implementing engineering changes as efficiently as possible by optimally 

using available resources (time, costs, etc.).  To facilitate this effort, engineering 

changes must be communicated to all contributing parties as quickly as possible.  In 

some instances, this may be assisted by being flexible with the engineering change 

process.  Loch and Terweisch promoted this idea by proposing methods to remove 

some of the bottlenecks in the process [28]. 

5. Learning and reviewing: Conducting a review of the engineering change process for 

each implemented change.  Despite the fact that every change is a chance to improve 

upon a company’s engineering change management process, few companies regularly 

execute reviews following a change.  The United States Army has recognized the 

importance of after-action reviews to continuously improve upon previous operations, 

mandating that reviews be conducted at all levels.   

 

Additional research has been done that supplements the above strategies.  Tavcar and 

Duhovnik [26] have developed a questionnaire to assist in the review process that assess 

the quality of a company’s engineering change management process.  The questionnaire 

assesses the process based on a variety of information, including: resources expended in 

implementation, duration of the engineering change, change tracking, frequency of 
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decision points, and the accuracy and precision of implementing the change in both 

production and documentation.  In their review of current engineering change practices, 

Jarratt, et al. [8] believe that a fundamental shift away from “ab initio” design advocated 

by many systematic design methods, such as the approach proposed by Pahl and Beitz [29], 

would lead to increased effort in change research. 

2.1.2 Development of a Change Management Support Tool 

A recurring theme in review of existing change management practices is that 

despite the prevalence of available methods for managing change, the difficulty in adopting 

the proposed methods has resulted in many companies not implementing them.  To better 

understand how existing methods can be adapted to better increase adoptability, a 

computational support tool was developed from an existing validation, verification and 

testing (VV&T) planning method [30].  The VV&T method was selected due to its 

inclusion of variant propagation pathways, which is an aspect that is unique to the method 

and is of interest to the researcher.  The purpose of this task is to determine how the 

methods proposed in academia can be supported to increase their usability by industry and 

therefore increase the level of adoption 

2.1.2.1 Overview of Method 

The purpose of the change management support tool is to assist a change engineer 

in executing the validation, verification, and testing (VV&T) planning method discussed 

in [30]. The support tool follows the steps outlined in the 7-Step VV&T planning [31]: 
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- Step 1: Identify requirements – identify the requirements for the system at one 

level above the sub-system that contains the changed component 

- Step 2: Conduct system analysis – determine the other components that are 

likely to be affected by the changed component 

- Step 3: Identify assembly configurations – identify the potential assembly 

configurations for the affected components, including different variants and 

suppliers for each component 

- Step 4: Filter assembly configurations – determine whether any assembly 

configurations can be removed from the VV&T method 

- Step 5: Develop design validation plan (DVP) matrix – create the matrix for the 

VV&T plan, including administrative data, such as responsibilities and 

timelines for the validation of each requirement 

- Step 6: Develop test strategy – determine the baseline for each test to be run 

- Step 7: Conduct trade-off analysis – identify areas where tests can be combined 

and prioritize the validation of specific requirements 

2.1.2.2 Tool Requirements 

Case studies of applying the method at International Truck and Reliable Sprinkler 

led to requirements for the support tool.  In addition to the primary requirement (the tool 

should easily guide the engineer through the process) other requirements were identified 

to mitigate some of the other issues that have been identified when using the 7-step 

planning method.  One major issue is the large amount of data that must be carried between 

the steps, leading to the possibility for human input errors.  Additionally, the tool should 
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assist in the documentation of the change management process.  The resulting design 

problem is as follows: Develop a computational support tool to guide a change engineer 

through the 7-step VV&T process while minimizing the opportunity for error and assisting 

in documenting the change process without the requirement for additional input.   

As previously mentioned, one requirement of the tool was its adoptability.  One 

reason that support tools developed in academia are not used heavily in industry is the 

resistance to new software or interfaces [1]. In order to ensure easy distribution and use of 

the computational support tool, it was developed in Microsoft Excel using the Visual Basic 

for Applications programming language.  This allowed for simplified implementation 

while maximizing the functionality of the tool for prototyping purposes. 

To determine the appropriate level of automation, each step was analysed to 

determine what information and reasoning needed to be supported and what would be 

conducted manually.  For example, in the first step (Identify Requirements), it is possible 

to have the tool import a requirements list from an external source, such as a requirements 

document generated and used by the company.  However, because the source document 

was of unknown origin, the information for this step is manually entered.  On the other 

hand, the creation of the Design Validation Plan (DVP) matrix is almost completely 

automated.  The only manual input required for this document is the administrative data, 

such as team members and testing responsibility (Table 2.7).  Another factor that prevented 

automation of a step was the need for experiential knowledge in understanding the specifics 

of the engineering change in question.  This is shown in the filtering of assembly 

configurations (Step 5).  Determining which assembly configurations can be neglected is 
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dependent on the system in question.  As such, it would be difficult to automate the 

identification of which configurations could be eliminated. 

Following the best practices for software engineering approaches, the module for 

each step was created on an individual basis and then these modules were linked together 

[32–34].  The tool consists of a series of spreadsheets that are able to be edited by the user.  

Once pertinent data for a given step has been entered, an associated macro may be run to 

facilitate the completion of that step in the process.  The steps below follow the VV&T 

plan development for an example change to the brake drum in an automotive braking 

system. 

2.1.2.3 Step 1 – Identify Requirements 

 The first step in the VV&T planning method is the identification of requirements 

at the level of the component of interest and one system level above the component being 

changed.  An example of the requirement data table is shown in Table 2.1.  It should be 

noted that sections highlighted in yellow are those intended for data entry.  This step also 

stores the requirements for future use in the process.  Note that these are not requirements 

on the brake drum, but rather on the encapsulating braking system. 

Table 2.1: Example requirements table 
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2.1.2.4 Step 2 – Conduct System Analysis 

The next step in the process is a system analysis to identify any components that 

may be affected by the component being changed.  This interaction can include geometric, 

behavioural, variant, and organization propagation pathways.  In this step, the engineer 

manually enters the design structure matrix (DSM) for the system containing the change 

component.  Additionally, the external components that interact with the system of interest 

are included.  The DSM is developed by identifying the relationships between components 

in the system.  In this example, only physical, geometric relationships are considered.  

However, as discussed in the VV&T planning method [31], other possibilities exist for 

relationships, such as organizational pathways. It is important to note that building the 

DSM is a possible source of human error.  A section of an example DSM entered by the 

engineer is shown in Table 2.2 (a).  The intersections with “1” represent interactions 

between the specified components.  The same section of the DSM is shown in Table 2.2(b) 

and includes higher order interactions.  The complete DSMs are found in 9.2Appendix A:.  

Any cells containing “2” or higher represent higher order interactions and will be discussed 

below.  For instance, the brake drum directly interfaces with the brake lining.  Because the 

brake lining also directly interfaces with the foundation brake, a second order interaction 

occurs between the foundation brake and the brake drum. 
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Table 2.2: Section of an example design structure matrix (DSM) (a) initial and (b) 

extended 

     

 

The support tool also requires the entry of the number of components, the change 

component, and the desired order of interaction.  The desired order of interaction is required 

because research has shown that interactions at the second order are often useful in 

identifying/predicting change propagation [27].  Once all relevant data has been entered, 

the support tool populates the rest of the DSM with any higher order interactions (the 

second order of interaction was desired in the example in Table 2.2) and a list of all of the 

components affected by the change component is created.  Based on the DSM from the 

example in Table 2.2, the following list was created, as shown in Table 2.3.  Thes 

components will then be used in the next step. 



 21 

Table 2.3: List of affected components for brake drum 

 

2.1.2.5 Step 3 – Identify Assembly Configurations  

The third step in the process is the identification of possible assembly 

configurations.  Each component affected by the engineering change (from list in Table 

2.3) may have multiple variants and multiple suppliers.  Therefore, when considering a 

VV&T plan, it is necessary to determine all of the combinations that may need to be tested.  

Testing all of the possible component combinations would be equivalent to a full-factorial 

design of experiments, and while thorough, this may or may not be feasible.  To support 

this, the tool populates a list of components, while the engineer enters information 

regarding the suppliers and variants possible for each component.  Once the data is entered, 

each element-supplier-variant (E-S-V) combination is given a unique identifier and the 

total number of E-S-Vs for each component is tallied.  This is shown in Table 2.4.  For 

example, the hub has two different variants from two different suppliers, while the brake 

lining has the same variants from different suppliers. 
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 Table 2.4: E-S-V combination identification 

 

The tool also allows the engineer to remove any combinations from being evaluated 

and provides an area for comments regarding the reasoning behind the removal.  For the 

example in Table 2.4, E-S-V 3.S5.V6 is not used because that specific variant of the tire 

and wheel trim is not used in the platform being tested.  It is important to note that the 

removal of specific E-S-V combinations from the list of possible configurations is 

manually executed by the engineer.  The support tool also provides a list of all of the 

combination vectors (possible combinations of different E-S-V combinations) for further 

evaluation.  The results from this are shown in Table 2.5.  The list of combinations then 

undergoes additional filtering in the following step. 

Table 2.5: Combination vectors 

 

Affected Elements
Supplier

(S#)

Variants

(V#)

E-S-V 

Identifier

Combination 

selection?

(Y or N)

Selection 

reasoning

Number of 

E-S-V 

combinations

S1 V1 1.S1.V1 Y

S2 V1 1.S2.V1 Y

S3 V3 2.S3.V3 Y

S4 V4 2.S4.V4 Y

S5 V5 3.S5.V5 Y

S5 V6 3.S5.V6 N

Brake Lining 2

Hub

1

2

Variant 6 is not 

used in this 

platform

Tire and Wheel Trim
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2.1.2.6 Step 4 – Filter Assembly Configurations 

The fourth step involves the filtering of assembly configurations identified in Step 

3.  Conducting a full analysis for each assembly combination can be time-consuming and 

costly.  Therefore, it is beneficial to identify any combinations that may be ignored.  One 

reason a particular subset of configurations could be ignored is that one variant might 

perform better in all requirements than the alternate variant.  An example of this would be 

two different wheel variants, one of which provides a significantly larger amount of 

airflow, thereby minimizing the amount of heat build-up and increasing the performance.  

In this instance, the higher airflow, performance wheel would be ignored.  As such, it is 

reasonable to assume that combinations featuring the first variant would perform better 

than combinations featuring the second variant.  Therefore, the better performing 

combinations may be ignored in future analysis.  Essentially, it is desirable to test the worst-

case scenario. 

This aspect of the VV&T planning method remains manual because the analysis 

required to identify which combinations may be neglected is highly specific to the system 

requirements.  In this instance, the support tool provides an interface for documenting the 

decisions made and the reasoning behind the decisions.  The interface provided to the user 

is shown in Table 2.6. 

Table 2.6: Filtering of assembly combinations interface 
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As shown in the example in Table 2.6, two of the combinations were neglected.  As 

a result, the associated cells were highlighted and marked through for ease of visualization.  

The remaining combinations are stored for use in future analysis. 

2.1.2.7 Step 5 – Develop Design Validation Plan (DVP) Matrix 

The next step in the VV&T planning method is to construct the Design Validation 

Plan (DVP) matrix.  The DVP matrix consists of all of the administrative data as well as 

all of the requirements, associated tests, and any additional information regarding how the 

testing will be executed.  An example DVP matrix is shown in Table 2.7.  At present, much 

of the administrative data must be entered manually, while 70% of the testing data is 

populated by the tool.  In Table 2.7, R1 is the requirement for a stopping distance of less 

than 60 feet.  The method to validate is a vehicle test as per FMVSS 121, with stopping 

distance being the test measurable.  The combinations vectors to be tested are C2 and C4. 

Table 2.7: Example DVP matrix 

 

Date

System

Req. 

Index
Requirement Test

Combination 

vectors

V & V 

method

Test 

measureable

Acceptance 

criteria

Need for legal 

certification
Responsibility Start date End date Remarks

R1
Stopping 

distance <60ft

As per 

FMVSS 121
C4, C2, 

Vehicle 

test

Distance in 

ft.

As per 

FMVSS 121
Y A 07/10 08/10

R2

Stopping dist 

<75ft after down 

hill test

As per 

FMVSS 121
C4, C2, 

Vehicle 

test

Distance in 

ft.

As per 

FMVSS 121
Y A 07/10 08/10

R3
Brake lining life 

>40000 miles

Fit lining 

in field 

vehicle

C4, C2, 

Field 

Demonst

ration

Lining wear 

in in.

Average 

life >40000 

miles

N B 07/10 10/10

Manufacturing

Service

Supplier

Program #

DVP Ver #

DVP #

Development engineer

Team

Virtual test engineer

Physical test engineer

Requirements doc #

Marketing
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In order to assist in the creation of the DVP matrix, additional data must be entered 

elsewhere.  The support tool uses a test database to store all information regarding the tests 

that must be executed to evaluate the system.   

Additionally, two separate matrices are required to aid the creation of the DVP 

matrix.  The matrices identify the relationships between the requirements and the system 

components and between the requirements and the tests.  Examples of these matrices are 

shown in Table 2.8 and Table 2.9.  The purpose of the two matrices is to relate the system 

components and possible tests to the design requirements.  Having this information allows 

the engineer to focus on the aspects of the VV&T plan that are most relevant.  Entering the 

relationship information into the matrices is another potential source for human error as the 

requirements to component information is likely to be determined based on experiential 

knowledge.  In the example, the brake lining life requirement relates only to the field 

vehicle test as the other test only considers the performance during a single braking event.   

Table 2.8: Requirements to tests relationships matrix 
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When relating the requirements to the components, the example shows that the 

brake lining life requirement only relates to the brake lining and is not affected by the hub 

or the tire and wheel trim. 

Table 2.9: Requirements to components relationship matrix 

 

All of the components, tests and requirements are automatically retrieved from 

elsewhere in the support tool in order to reduce user data entry.  Only the relationship data 

is required to be manually entered during this stage of the process. 

2.1.2.8 Step 6 – Develop Test Strategy 

The sixth step in the VV&T planning method is to develop a baseline test strategy 

to evaluate the requirements.  The purpose of this step is to identify the acceptance criteria 

for any tests that must be conducted, oftentimes based on the performance values for the 

existing design.  Once again, this step is highly specific to the system being evaluated and 

requires the data to be entered manually.  The support tool assists in this step by providing 
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a table consisting of all of the tests identified in the DVP matrix with cells for each of the 

information requirements.  An example of the interface is shown in Table 2.10. 

Table 2.10: Baseline test strategy 

 

2.1.2.9 Step 7 – Conduct Trade-Off Analysis 

The final step in the process is to conduct a trade-off analysis for the tests and 

requirements to be conducted based on the DVP matrix.  It is not always feasible to conduct 

every test or to test every requirement due to cost or lead time restrictions.  Therefore, it is 

essential to prioritize which tests to conduct given certain parameters.  The VV&T planning 

method used in the development of this tool focuses on the requirements to be tested, as 

opposed to the tests available to be run.  The method uses the Verification Complexity 

Index (VCI) to determine the complexity of verifying an individual requirement [1].  While 

other methods for developing a testing plan exist, the VCI is chosen in the VV&T planning 

method because it focuses on the requirements as opposed to the tests.  The VCI is 

calculated using the following equation:  

  (1)   
* ( * )severity testsVCI req num PI   

In order to facilitate this, the support tool provides the requirements and tests from 

the DVP matrix.  The user enters the severity of each requirement, the cost and lead times 

for each test, and the number of tests to verify each requirement as described in the VV&T 

# Test
Baseline 

Combination
Baseline Test Description

Acceptance Criteria for the 

modified design

T1
As per FMVSS 

121
C3

With existing vehicle, identify 

stopping distance

New system should be on par with 

existing vehicle

T2
Fit lining in 

field vehicle
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method.  The tool calculates the VCI for each requirement and ranks them.  An example of 

the trade-off analysis matrix is shown in Table 2.11. 

Table 2.11: Example of a test-analysis matrix 

 

In the example shown in Table 2.11, a severity is entered for each requirement.  The 

severity is based on how necessary each requirement is.  For instance, 9 would be a legal 

requirement, whereas 1 would be less important.  The tests are then populated on the table, 

with the number of iterations of the test that are required to verify each requirement being 

below the test identifier.  Also in the same column are the cost and lead time per test, where 

a high number indicates a relatively high cost or lead time.  This indicates the relative 

cost/time to the company for the tests.  The scale can be adjusted to conform to company-

specific definitions.  The performance indicator for each test is the cost multiplied by the 

lead time.    At this point, the VCI can be calculated according to Equation 1 and the 

requirements are ranked accordingly. 

Requirement 1 (R1) has the highest VCI in Table 2.11, which implies that the 

change engineers should focus on that requirement to consider for trade-off and 

T1 T2 0 0 0 0 0 0 0 0

R1 9 1 3 2268 1

R2 9 3 2187 2

R3 3 1 27 3

0

0

0

0

0

3 9

3 9

9 81 0 0 0 0 0 0

Requirement
Severity 

(1/3/9)

Tests (# iterations req'd) Verification 

complexity 

index

Ranking

Performance indicator

Lead time/Test (1/3/9)

Cost/Test (1/3/9)
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prioritization.  The tool also allows the user to visualize how specific tests can possibly 

verify multiple requirements. 

2.1.2.10 Conclusions 

The VV&T planning method the research in this section is based on [31] has been 

shown to effectively mitigate change propagation resulting from an in-production 

engineering change.  However, the large amount of data entry involved and the planning 

method’s reliance on an engineer’s experience can hinder the application of the method in 

complex engineering systems.      

The computational support tool described in this section successfully addresses 

these issues. The support tool was shown to correctly guide an engineer through the 

implementation of the VV&T planning method for a historic example of an engineering 

change in an automotive brake assembly.  The support tool also minimized the 

opportunities for human error by carrying data over between the process steps. When 

manually conducting the planning method for the described example, the user would have 

to enter and keep track of 193 data points.  With the implementation of the tool, the user 

was required to manually input data in 129 locations.  Therefore there was a 33% reduction 

in the number of opportunities for human error.  It should be noted that this is a fairly 

simple system and the results would increase as the system becomes more complex.  

Additionally, the support tool conducts all calculations and any analysis required for 

evaluating change propagation beyond just the first order of interaction. 

Without any additional input required from the user, the support tool provided 

documentation to show how the prescribed VV&T planning method was implemented.  
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The documentation includes the requirements list, a list of the affected components, the 

DVP matrix, the baseline test strategy, and the trade-off analysis.  Additionally, the support 

tool provides space to specify why individual decisions were made regarding the design of 

the VV&T plan 

Additional research needs to be conducted in order to improve the trade-off analysis 

functionality of the computational support tool.  Currently, the trade-off analysis is 

conducted based solely on the Verification Complexity Index (VCI), which focuses on the 

importance of verifying individual requirements, combined with the costs and lead times 

for the associated tests.  However, depending on the scope and characteristics of the 

engineering change being made, different companies will have different goals in executing 

the trade-off analysis.  For instance, in certain situations, a requirement associated with an 

engineering change may have legal ramifications and needs to be implemented 

immediately.  As a result, the company would likely focus on tests that focus on the legal 

requirement and can be conducted with minimal lead time.  Therefore additional trade-off 

metrics need to be determined that can allow companies to determine which criteria are 

most important and guide the testing plan in that direction. 

Another area of future research is to consider the level of change propagation when 

managing the effects of engineering change.  As previously discussed, the support tool 

allows for the consideration of change propagation beyond the first order.  However, it is 

not clear to what level the change propagation should be considered.  Further research into 

this area is discussed in the following section. 
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2.2 Study on Product Component Interaction 

During the development of the change management support tool, the question was 

asked about how deep one must traverse the relation graph to ensure complete exploration.  

In order to answer this question, a study was conducted on product component and option 

interaction using design structure matrices. 

2.2.1 Background  

Before executing the study, a review of design structure matrices, their use in 

change management and understanding change propagation, and the use of complexity 

metrics for understand product architecture was conducted. 

2.2.1.1 Design structure matrices 

Design structure matrices (DSM) are commonly used to better understand and 

analyse product architectures [35].  DSMs can be used to model product architecture, 

organizational structure, information flow, and design parameter relationships [35].  Others 

extend the research by providing a review of the benefits of applying DSMs in 

understanding product architecture, while acknowledging that a major limitation of DSMs 

is that they are only applicable in a single domain [36].  The domain mapping matrix 

(DMM) maps the interactions between DSMs from different domains [37].  Similarly, 

DSMs are used to characterize complex systems by decomposing them down into clusters 

or "building blocks" [38].  DSMs have also been used to explore how software architectures 

can be managed [39], introducing architectural metrics, derived from the software 

architecture DSMs, that can be used in development. 



 32 

As DSMs become more prominent in engineering design, the number of proposed 

applications in which DSMs can be implemented has increased [40].  An early example of 

using DSMs to predict some aspect of product development resulted in a proposed method 

to predict the time required for product development [41].  This time prediction model uses 

the amount of dependencies between product development tasks to determine how required 

changes to specific tasks will affect the other tasks.  Other applications include product 

configuration [42], modelling engineering design activities [43], and product modularity 

[32]. 

2.2.1.2 Change propagation 

As DSMs provide an effective method for both viewing and analysing the 

interactions between components [21], they are commonly used to better understand 

change propagation within a product or system.  Based on a study on engineering changes 

and how the interactions between product components could be used to better understand 

change propagation through the product, a DSM-based engineering change management 

tool was created to assist in product development [44].  DSMs have been used to understand 

change propagation in a complex system by decomposing the system into interacting 

subsystems [20].  The change requests over the system’s life-cycle was related to one 

another by considering the decomposed subsystems from which they originated. 

DSMs have also been used to predict change propagation.  Based on the use of 

DSMs in understanding change propagation, the Change Prediction Method (CPM) 

software tool was developed to assist in visualizing the possible change propagation 

pathways from a single component prior to the execution of an engineering change [19].  
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Since its development, the CPM tool has been implemented in case studies, demonstrating 

the effectiveness of using DSMs to predict change propagation in a system [45,46].  While 

the CPM tool focuses on change propagation in the product development process, the 

DSMs primarily consist of product components with the change indices being subjectively 

assigned.   

Additional research on predicting requirements change has been conducted using 

DSMs linking product requirements [23].  A historical based approach was used with many 

different relationship sets to determine which combinations yielded the best predictors.  A 

significant conclusion from this research is the fact that using higher order DSMs, 

specifically at the second order of interaction, is necessary to best predict future changes 

to requirements.  Thus, the question at hand is whether second or higher order interactions 

are critical in other DSM applications for understanding and, eventually, predicting change.  

To better answer this question, one may consider how product complexity could play a role 

in increasing change propagation within a system or product. 

2.2.1.3 Product complexity 

When considering product structural or connectivity complexity, 29 different graph 

theory metrics have been used for evaluating a product or system to predict assembly time 

from component assemblies [47].  However, when focusing on how complexity can 

influence change propagation within a product, the researchers focused on the complexity 

metrics that primarily looked at the interactions between the components.  This mirrors the 

concept of complexity as coupling that is proposed in [48], with an initial algorithm based 

on decomposability proposed to determine connectivity complexity.  Using this algorithm, 
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a simple experiment was conducted using the proposed metric to evaluate multiple existing 

products represented in different model types [49].  The experiment showed the importance 

of coupling when considering complexity in a product's architecture.  Similarly, the 

connective complexity in a system was used to model and understand design tasks [50].  

Using connectivity metrics, the researchers were able to identify patterns and infer 

additional relationships within the system. 

2.2.2 Approach 

The approach used in this portion of the research consists of two phases.  The first 

phase is the development of the DSMs from models of existing products.  The second phase 

consists of the analysis of the products based on how the individual components or 

elements interact beyond the first order of interaction. The analysis is done based on both 

assembly models and also on product configuration (option) graphs. 

2.2.2.1 Product architecture 

In the development of the product assembly-based DSMs for this study, previous 

models are used to address issues of research objectivity and bias.  The DSMs allow one 

to draw comparisons between the physical attributes of the product and the data on how 

the product’s components interacted.  This was especially beneficial in looking for patterns 

between different products that exhibit similar interaction behaviours.  Previous work was 

done to create connectivity graphs of all of the physical interactions between components 

within a product based on the analysis of a 3-D CAD model [47].  Figure 2.2 shows an 

example of a 3-D CAD model and the corresponding connectivity graph.  In the work 
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presented here, the types of relationships between components (elements) are not studied, 

rather only the adjacency topology of the system architecture is investigated.  Specifically, 

the relationships in Figure 2.2(b) are capturing when parts are touching. 

     

Figure 2.2: 3-D CAD model for a pen (a) and the resulting connectivity graph (b) 

Using the connectivity graphs, it was possible to construct a DSM for each of the 

products being analysed. It is important to note that these DSMs created from the 

connectivity graphs only include physical interactions identified in the associated 3-D CAD 

models.  An example of the resulting DSM is shown in Figure 2.3(a).  The second phase 

begins with the identification of component interactions beyond the first order.  The DSMs 

are then populated with the higher order interactions.  A higher order interaction is an 

interaction between two components through other components.  For example, in Figure 

2.2(b), a second order interaction exists between the body and the grip body through the 

rubber grip.  An example of a completed DSM with higher order interactions is shown in 

Figure 2.3(b).  The cells in the DSM indicate the shortest path length between the 

components, or the minimum order of interaction between components. 
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Figure 2.3: Initial (a) and full populated (b) product design structure matrices for a 

pen 

The final step is to calculate the population density of the DSMs at each order of 

interaction.  The population density refers to the percentage of existing interactions 

compared to the total number of possible interactions.  The population density includes any 

interactions that take place up to and including a given order.  In the example of the pen 

(Figure 2.3(b)), the population density for the 1st order would be 33.33% (14 interactions 

out of a possible 42).  Then, for the 2nd order, the population density is 57.14% (24 

interactions out of 42 possible interactions).  The complete graph for the population 

densities for all orders of interaction is shown in Figure 2.4. 

 

Figure 2.4: Graph of population densities for a pen 

Component Name A B C D E F G

Grip Body A 1 1 1

Rubber Grip B 1 1

Press Button C 1 1

Spring D 1 1

Ink Body E 1 1

Body F 1 1

Indexer G 1

Component Name A B C D E F G

Grip Body A 1 3 1 1 2 4

Rubber Grip B 1 2 2 2 1 3

Press Button C 3 2 4 4 1 1

Spring D 1 2 4 1 3 5

Ink Body E 1 2 4 1 3 5

Body F 2 1 1 3 3 2

Indexer G 4 3 1 5 5 2
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Another statistic used to analyse the data is the average shortest path length applied 

against the entire graph.  The shortest path length for a given component is the minimum 

number of steps required to reach every other component in the system.  Therefore, the 

average shortest path length for the DSM is the average for all of the relations in the system.  

In the example shown in Figure 2.2, the maximum shortest path length for "press button" 

to reach each of the other components is 4.  By averaging the path lengths in the example, 

the average maximum shortest path length is 4.143 (average of all values in its row). 

2.2.2.2 Product configuration 

In addition to considering propagation in products, product configuration data was 

also evaluated.  The purpose of this aspect of the research is to determine how DSMs for 

product configuration are similar to DSMs for product architecture.  This is of interest in 

that it is important to understand change propagation in configuration management, 

especially when using rule-based configuration management [51].  An example DSM for 

product configuration is shown in Figure 2.5(a) considering 14 options.  These are related 

through option rules.  This DSM represents the options found in a single change request. 

    

Figure 2.5: Initial (a) and fully populated (b) product configuration DSMs for a 

product change 

Option Name A B C D E F G H I J K L M N

161 A

167 B 1

169 C 1 1

1CB D 1

2VB E 1

6UF F 1

823 G 1

842 H 1 1

843 I 1 1 1

858 J 1

8EB K 1

8S9 L 1

991 M 1 1 1 1 1 1

9AE N 1

Option Name A B C D E F G H I J K L M N

161 A

167 B 2 2 2 2 1 2

169 C 2 2 1 1 2

1CB D 2 4 1 3 4

2VB E 2 2 2 2 1 2

6UF F 2 2 2 2 1 2

823 G 2 4 3 1 2

842 H 1 1 3 2 3

843 I 1 3 1 2 1

858 J 2 4 2 3 1

8EB K 2 2 2 2 1 2

8S9 L 2 2 2 2 1 2

991 M 1 1 1 1 1 1

9AE N 2 2 2 2 2 1
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In Figure 2.5(a), the elements of the DSM are product options that might be selected 

independently or within packages by a customer.  They relate to other options by a series 

of rules that might be either engineering based or marketing focused.  In the DSM, the 

connections, through the rules, are shown by 1st order interactions in the DSM.  For 

example, in Figure 2.5(a), Option 167 is directly related to Option 991 through a 

configuration rule.  Using the same method discussed previously, a higher order DSM is 

created.  Figure 2.5(b) shows the resulting higher order DSM based on the DSM in Figure 

2.5(a).  When analysing product configurations, two levels of DSMs are used: a full 

configuration ruleset, consisting of approximately 600 components connected by 1400 

rules; and a series of configuration DSMs created by considering the affected components 

from historical changes implemented at an automotive OEM.  The DSMs are created by 

starting with the options affected by the change.  The rest of the DSM is populated using 

the 1st and 2nd order interactions stemming from the initial change components.  In the 

example shown in Figure 2.5, the graph is not fully populated due to clustering in the 

ruleset.  For example, option 161 is not connected to any other options, while options 169, 

1CB, 823, 842, 843, and 858 for a cluster and do not interact with any options outside of 

the cluster.  Once the higher order DSM is created, the same analysis is conducted as with 

the product architecture DSMs.  The purpose behind this is to use the conclusions drawn 

from analysing product architecture and apply it to product configuration.   

2.2.3 Results 

The results were compiled for component saturation rates and higher order 

component interaction levels. 
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2.2.3.1 Component saturation 

When applied to thirteen products [47], the given approach yielded the results 

shown in Table 2.12.  In the table, the number of components, the betweenness density, 

and the population density for each product based on the order of interaction are illustrated.   

Table 2.12: Component interaction saturation for product architecture 

 

Betweenness density is a measure of the average betweenness value for all of the 

components with a given product.  Betweenness is a useful metric for evaluating 

complexity in that it provides a measure of the importance of a specified component [52].  

It is equal to the number of shortest paths from all vertices to all others that pass through 

that node.  Also shown in Table 2.12 are the orders of interaction for complete saturation 

of the DSM and the row density for each product.  The row density shows the highest 

percent of interactions present for a single component of the product.  For example, in the 

pen, there are seven components, resulting in six possible interactions between a single 

component and the other components.  The most interconnected component, the grip body, 

1 2 3 4 5 6 7

Boothroyd Piston 67% 7 2 0.314 47.6 100.0 100.0 100.0 100.0 100.0 100.0

Mouse 82% 12 3 0.186 25.8 86.4 100.0 100.0 100.0 100.0 100.0

Stapler 87% 16 4 0.245 27.5 83.3 99.2 100.0 100.0 100.0 100.0

Pencil Compass 45% 12 4 0.431 27.3 66.7 92.4 100.0 100.0 100.0 100.0

Solar Yard Light 64% 15 5 0.454 19.1 57.1 88.6 99.1 100.0 100.0 100.0

Drill 70% 28 5 0.259 14.0 61.9 92.1 99.2 100.0 100.0 100.0

Hole Punch 39% 27 4 0.658 9.1 34.8 74.4 100.0 100.0 100.0 100.0

Vise 44% 19 5 0.546 15.2 42.1 80.1 97.7 100.0 100.0 100.0

Chopper 38% 41 6 0.577 8.4 35.5 73.9 93.9 99.3 100.0 100.0

Blender 33% 43 6 0.620 7.8 32.6 70.2 92.3 99.0 100.0 100.0

Pen 50% 7 5 0.857 33.3 57.1 76.2 90.5 100.0 100.0 100.0

Maglight 38% 14 7 1.471 17.6 39.6 58.2 74.7 87.9 95.6 100.0

Brake subsystem 40% 11 7 Unknown 20.0 43.6 63.6 81.8 92.7 98.2 100.0

Row 

Density

Population Density by Order of Interaction

Product Architecture

Product
# of 

Comp
Saturation

Betweenness 

Density
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interacts with three components out of the possible six.  Therefore, the pen has a 50% row 

density.  The row density was considered as it may help to explain why some of the 

saturation rates behave as they do. 

Using visual inspection, one can separate the resulting graphs into groupings of 

products that exhibit similar curves.  Figure 2.6 shows the first grouping, consisting of the 

stapler and the computer mouse.  These curves exhibit quick saturations (3rd order) with a 

steep initial slope.  The second grouping is depicted in Figure 2.7 and consists of the pencil 

compass, solar yard light, and the electric drill.  The curves of this group exhibit slightly 

slower saturations (4th order) and resemble a parabola.  Figure 2.8 contains the third 

grouping, consisting of the 3-hole punch, an electric food chopper/processor, a pony vise, 

and an electric blender.  These curves exhibit medium saturation order (4th/5th orders) and 

have a slight “s-curve” as the order of interaction is increased.  The final grouping is shown 

in Figure 2.9 and consists of the pen, a Maglite flashlight, and the brake subsystem 

modelled in the motivating project.  The curves of this group exhibit slow saturations (5th-

7th orders) and are parabolic in shape.  Trendlines that represented all of the points for each 

product within the grouping were created using cubic polynomials.  The resulting R2 values 

are as follows: Group 1 – 0.9797; Group 2 – 0.9895; Group 3 – 0.9791; Group 4 – 0.9559.  

The R2 value for the trendline from all of the product curves together is 0.8663.  The 

complete graphs showing the trendlines can be found in 9.2Appendix B:.  It should be 

noted that all of the trendlines were created using third order polynomials.  The noticeable 

increase in R2 values when the product curves are combined indicates that the groupings 

are correct. 
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Figure 2.6: Product group 1 saturation 

graph 

 

Figure 2.7: Product group 2 saturation graph 

 

Figure 2.8: Product group 3 saturation 

graph 

 

Figure 2.9: Product group 4 saturation graph 

Similar results were created for four product configuration change DSMs from the 

automotive OEM.  The results are shown in Table 2.13.  The resulting graphs for the 

product configuration changes are shown in Figure 2.10.  When a trendline is created for 

the product configuration change curves, the R2 value is 0.2175.  Much of this is due to 

two of the curves not reaching 100% saturation. 
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Table 2.13: Component interaction saturation for product configuration 

 

 

Figure 2.10: Product configuration saturation graph 

When the product configuration subsets are considered alongside the products, 

three of the changes (1, 2, 4) fit within three of the product groups.  The resulting graphs 

are shown in Figure 2.11, Figure 2.12, and Figure 2.13.  It should be noted that Change 3 

and the complete ruleset were not able to be matched to a specific group due to the low 

maximum population density.  When considering product configurations, it is common that 

there will be clusters of product options that do not interact in any way with other clusters.  

It the case of the complete ruleset, this was much more severe, with only 16.17% of the 

possible interactions existing at maximum saturation (reached in the 10th order).  When 

trendlines for the three groups are created, the following R2 values are achieved: Group 1 

1 2 3 4 5 6 7 8 9 10 11

Change 1 35% 38 7 8.3 32.6 50.9 61.5 73.7 92.9 100.0 100.0 100.0 100.0 100.0

Change 2 80% 26 N/A 21.5 71.1 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8

Change 3 46% 14 N/A 12.1 34.1 37.4 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6

Change 4 50% 17 5 19.9 52.9 86.8 98.5 100.0 100.0 100.0 100 100 100 100

Complete Ruleset 6% 395 N/A 0.63 2.24 4.63 7.26 10.35 13.29 15.12 15.92 16.14 16.17 16.17

Saturation
# of 

Comp

Population Density by Order of Interaction

Product Configuration

Row 

Density
Product
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– 0.8533; Group 3 – 0.9197; Group 4 – 0.9408.  The complete graphs can be found in 

9.2Appendix B:.  

2.2.3.2 Higher order component interaction 

The average shortest path length is also considered as a method for better 

understanding component interaction within a system.  By applying the outlined approach 

to the product DSMs, the following results table was created and is shown in Table 2.14. 

 

Figure 2.11: Group 1 saturation graph 

 

Figure 2.12: Group 2 saturation graph 

 

Figure 2.13: Group 3 saturation graph 
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Table 2.14: Product architecture component interaction 

 

In addition, the same approach was used to analyse the product configuration 

DSMs.  The resulting data is shown in Table 2.15. 

Table 2.15: Product configuration component interaction 

 

Visual inspection of both the product architecture and product configuration 

datasets show that the average shortest path length and the order for complete saturation 

are closely related.  A larger sample population would be required for a more robust 

correlation analysis.  However, it is clear from the results that the relationships between 

average shortest path length and complete saturation of the DSM are similar for both 

Product Row Dens. Saturation Avg Path Comp

Boothroyd Piston 67% 2 2.00 7

Mouse 82% 3 2.58 12

Stapler 87% 4 3.50 12

Pencil Compass 45% 4 2.94 16

Solar Yard Light 64% 4 3.64 27

Drill 70% 5 4.14 7

Hole Punch 39% 5 4.00 15

Vise 44% 5 3.89 28

Chopper 38% 5 4.05 19

Blender 33% 6 4.71 41

Pen 50% 6 4.98 43

Maglight 38% 7 5.86 14

Brake subsystem 40% 7 5.45 11

Product Architecture

Product Row Dens. Saturation Avg Path Comp

Change 1 35% 7 (100%) 6.16 38

Change 2 80% 3 (78.8%) 2.42 26

Change 3 46% 4 (39.6%) 2.36 14

Change 4 50% 5 (100%) 4.00 17

Complete Ruleset 6% 11 (16.17%) 3.26 395

Product Configuration
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product architecture and product configuration.  Therefore, one can be used as a substitute 

for the other. 

2.2.4 Analysis 

When the betweenness values are compared to the saturation curves for the four 

product groupings, a correlation is suggested; as the betweenness density decreases, the 

slope of the saturation curve increases, or the individual components more quickly interact 

with all of the other components through higher order interactions.  It can also be noted 

that the betweenness density values for those products within a group are similar when 

compared to the values for the other products (for example, all of the products in group 3 

have values between 0.54 and 0.66).  This shows that as the slope of the saturation curve 

increases, the interconnectivity (betweenness) of the product increases. 

Because of the familiarity with the products involved, it was possible to identify 

additional relationships regarding the product groupings with respect to the product 

architecture.  It was noted that the products in group 4 exhibited a stacked-linear assembly 

structure [53], which likely corresponds to a decreased saturation rate as components only 

directly interact with neighbouring components along the body of the product.  On the 

opposite end of the spectrum, those products in group 1 all exhibit chassis product 

architectures similar to the spokes of a wheel [53], where a single body or frame component 

interacts with a large percentage of the other components in the product.  This would 

correspond with a rapid saturation rate as any given component would quickly interact with 

the other components through higher order interactions as soon as it interacts with the 
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central frame/body component.  Additionally, the high amount of interactions for a single 

component is also shown in the row density statistic provided. 

Average shortest path length is another metric often used when considering the 

complexity of a system as it correlates to the level of interconnectedness of the components 

in the system [47,50,54].  In the analysis of component interaction a clear relationship is 

identified between the average shortest path length and the order of interaction at which 

the DSM is fully saturated.  This shows that as the level of interconnectivity of the system 

increases, the DSM saturation rate also increases. 

When comparing the metrics for product architecture and product configuration, it 

is clear that the metrics for analysing product complexity can also be applied to evaluating 

the complexity of a product configuration subset or even the entire product configuration 

ruleset.  This analysis is based on the similarities that were identified between the different 

types of DSMs and the fact that the saturation graphs for the product configuration subsets 

were able to be matched closely with the graphs depicting product architecture. 

2.3 Conclusions 

The research objective that is covered in this chapter is to increase understanding 

of existing industry practices for conducting change management.  This objective was 

accomplished through three related sub-questions, discussed below. 

The first sub-question is: What is the state-of-the-art for engineering change 

management?  In order to answer this question, a literature review of change management 

practice was conducted.  The literature review consisted of an analysis of engineering 

change and change propagation, followed by a discussion of existing change management 
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tools and methods, including their usefulness and shortcomings.  In the literature review, 

it was identified that numerous tools and methods exist for engineering change 

management.  However, it was also noted that much of the research conducted in academia 

is not put into practice in industry.  The primary reasons for this include costs and difficulty 

of adopting the methods or tools proposed by researchers. 

The answers to the first sub-question directly tie into the second question: How can 

the existing change management practices be improved to further enhance usability and 

efficiency?  To answer this question, a computational support tool was developed and 

evaluated based on an existing change management planning method.  The planning 

method selected for adoption into a tool was chosen due to its focus on variant change 

propagation, something that was not seen in the other change management support 

methods.  The resulting support tool was developed with an emphasis on increasing 

adoptability and minimizing costs, while also increasing change management capabilities.  

The support tool was evaluated using a case example and showed a significant decrease in 

the potential for human entry error, as well as an ability to automatically document the 

steps and decisions taken in the change management process. 

During the development of the change management support tool, the question was 

asked regarding the depth required to sufficiently evaluate the effects of change 

propagation.  The led to the final sub-question for this research objective: When 

considering change propagation, what order of interaction is required to verify affected 

components?  In order to answer this question, a study was conducted on component 

interaction.  In the study, design structure matrices (DSMs) were created based on product 
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assembly models and option configuration rulesets.  The DSMs were then evaluated based 

on how quickly the components interacted with all of the other components through higher 

order interactions.  Through the study, it was found that the second or third order is 

recommended when considering change propagation, though this is dependent on the 

system and the change in question.  Additionally, it was identified that interaction 

saturation rates could be a useful metric when evaluating or describing the complexity in a 

system. 

2.4 Dissertation Roadmap 

The motivation for this dissertation was an interest in product configuration, with 

an emphasis on configuration change and configuration management practices.  Chapter 

Two presented the research in current change management practice that led to the author’s 

interest in dynamic configuration management.   Since this chapter has provided the 

foundation for the remainder of the research, the next chapter (Chapter Three) builds on 

this by presenting the research objectives of the dissertation. The progress of this 

dissertation is shown in Figure 2.14 in which the completed portion is highlighted in green. 
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Figure 2.14: Dissertation roadmap 
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CHAPTER THREE: RESEARCH APPROACH 

Once again, the goal of this research is to understand how configuration change 

management is conducted in industry in order to increase the capabilities of the 

configuration change management process through method development.  An overview of 

the research path followed is shown in Figure 3.1. 

 

Figure 3.1: Research plan overview 

In order to address this goal, the research is divided into three separate, but related, 

objectives.  The first objective consists of the preliminary work that led to the proposed 

research: understanding existing industry practice for change management (Chapter Two).  

This includes a review of current literature regarding engineering change management 
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methods and strategies.  An existing method for identifying possible change propagation 

pathways is selected and used to develop an engineering change management support tool 

[55].  This method was selected in part because of its focus on understanding change 

propagation through variant pathways.  During the development of the support tool, a 

question asked was about how far into a change propagation pathway is necessary to 

identify affected components for verification.  This led to a study into how design structure 

matrices (DSMs) can be used to understand component and configuration option 

interaction and interconnectedness [56].  As shown in Figure 3.1, the lessons learned from 

the preliminary research were applied to product configuration to assist in understanding 

and improving configuration change management. 

The second research objective is to understand how a major automotive OEM 

conducts configuration management (Chapter Four).  The purpose of the second objective 

is to develop a better understanding of product configuration management.  The approach 

taken to develop this understanding was through case study analysis at a major automotive 

OEM to identify how the company conducts configuration management.  A review of the 

literature on configuration management in other industries and in academia provides 

insight to determine if the processes identified in the case study are in line with the state-

of-the-art and relevant best practices [51].  As shown in Figure 3.1, the knowledge gained 

from this objective is used to develop an improved configuration change management 

method. 

The third objective includes the development of an improved method for 

conducting product configuration change management (Chapter Five).  To accomplish this, 
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a visualization support tool was developed to assist in understanding the potential 

implications of configuration changes and to increase the user’s ability to explore a 

proposed change (Chapter Six).  Additionally, the use of complexity metrics and a 

satisfiability engine are explored in support of the method.  During the development of the 

visualization support tool, a user study was conducted to investigate the relationship 

between specific graph parameters and the user’s ability to read and interpret the graph 

[57].  To validate the effectiveness of the visualization method, a second user study was 

employed (Chapter Seven).  Further, the visualization tool was used in four ongoing 

configuration changes at the automotive OEM.  Additional validation is presented for the 

overall configuration change management method through three select cases where the 

benefit of the method was evaluated (Chapter Eight). 

3.1 Research Questions and Tasks 

Nine specific tasks were defined to answer these research questions.  Table 3.1 

illustrates the research objectives and their related tasks.  These tasks are detailed further 

in the following sections. 

Table 3.1: Research Questions and Tasks  

Research 

Objectives 
Research Sub-questions Tasks 

RO 1- 

Understanding 

existing industry 

practice for change 

management 

RQ 1.1 What is the state-of-the-art for 

engineering change management? 

Task 1A: Review of 

change management 

practice 

 

Task 1B: Support tool 

development 

 

Task 1C: Component 

interaction study 

RQ 1.2 How can the existing change management 

practices be improved to further enhance usability 

and efficiency? 

RQ 1.3 When considering change propagation, 

what order of interaction is required to verify 

affected components? 
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RO 2- Understand 

how an OEM 

conducts 

configuration 

change 

management 

RQ 2.1 What is the state-of-the-art for 

configuration management? 

Task 2A: Review of 

current configuration 

management practices 

 

Task 2B: Case study 

with automotive OEM 

RQ 2.2 How does a major automotive OEM 

conduct configuration change management?  

RO 3 – 

Development of an 

improved method 

for configuration 

change 

management 

RQ 3.1 How can data visualization be used to 

increase the ability to understand component 

relationships in a system? 

Task 3A: Review of 

visualization 

techniques 

 

Task 3B: Graph 

layout user study 

 

Task 3C: Rule 

implementation user 

study  

 

Task 3D: 

Implementation  

RQ 3.2 Does the implementation of a graph 

visualization design enabler assist in identifying 

errors and understanding the relationships in a 

proposed configuration change? 

RQ 3.3 Does the proposed method assist in 

identifying errors and understanding the 

relationships in the possible product 

configurations? 

3.1.1 RO 1: Understanding existing industry practice for change management 

The preliminary portion of this research began with a review of existing change 

management practice.  This is shown in the first research sub-question for the objective: 

RQ 1.1:  What is the state-of-the-art for change management practice? 

The question is answered through a literature review of engineering change and 

change propagation and the existing change management support tools to manage the 

changes (Task 1A).  The purpose of this task is to gain a better understanding for change 

management in industry and identify areas where the existing practices can be 

supplemented to increase their effectiveness and/or usability.  During the review of existing 

support tools it is identified that a significant gap exists between change management 

methods proposed by academia and the methods in use by industry [15].   
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This led to the development of the second sub-question: 

RQ 1.2:  How can the existing change management practices be improved to further 

enhance usability and efficiency? 

To answer this research question, an existing change management support method 

was selected and developed into a computational support tool to assist in its implementation 

(Task 1B).  The VV&T method was selected due to its inclusion of variant propagation 

pathways, which is an aspect that is unique to the method and is of interest to the researcher 

[30].  The purpose of this task is to determine how the methods proposed in academia can 

be supported to increase their usability by industry and therefore increase the level of 

adoption.  During the development of the change management support tool, the question 

was asked about how deep one must traverse the relation graph to ensure complete 

exploration. 

This led to the creation of the third sub-question: 

RQ 1.3:  When considering change propagation, what order of interaction is 

required to verify affected components? 

To answer this research question, a study is conducted on component interactions 

using design structure matrices (Task 1C).  In the study, component interactions (option 

rules and touching parts) were used to identify how a change could potentially propagate 

through a system at higher orders of interaction.  The purpose of this task is to gain a better 

understanding of component interaction in product architecture and configuration rulesets 

and determine whether similar patterns exist between them. 
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3.1.2 RO 2: Understand how an OEM conducts configuration change management 

In addition to regularly changing their products to remain current, many companies 

also use multiple possible configurations to reach the needs of individual customers [58].  

In the last decade, there has been a widespread shift in manufacturing from mass production 

to mass customization, such as making multiple configurations from a single product 

platform, which enables companies to maintain the efficient production practices 

associated with mass production, while targeting specific customers [58,59]. Due to the 

increased use of product configuration as a means towards mass customization, a large 

amount of research has been conducted to develop tools for possible use in configuration 

management [3,60–68].  However, research has shown that there is a significant gap 

between the latest methods and tools developed in academia and what is being used in 

industry [1].  If companies are not using the proposed methods, then it is necessary to 

understand why the companies are not using those methods and what practices they are 

using instead.   

The first step in achieving this objective is to build a knowledge base regarding 

configuration management practices in industry.  This led to the research sub-question: 

RQ 2.1: What is the state-of-the-art for configuration management? 

This question is answered through a literature review of configuration management 

and the existing configuration change management methods (Task 2A).  The purpose of 

this task is to gain a better understanding of configuration management in industry and aid 

in identifying the specific practices in use at the OEM during the case study.  While the 

literature review provides a broad spectrum of knowledge regarding configuration 
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management practice, it does not provide the required level of detail regarding an 

individual company’s practices. 

This led to the development of the second sub-question: 

RQ 2.2: How does a major automotive OEM conduct configuration change 

management? 

This question is answered through a case study on the configuration management 

practices at a major automotive OEM in Spartanburg, SC (Task 2B).  The manufacturer 

was chosen as the preferred case because the company uses a large, but unknown, number 

of configurations for each of the vehicle models and, therefore, must be able to identify 

how configuration changes will impact the system.  For example, in the current 

configuration management method, the OEM uses over 600 rules to manage over 400 

options that relate to approximately 1500 parts for a single vehicle model, resulting in 

greater than 108 interactions between the elements.  As a result of the large number of 

elements affecting the possible configurations, proper configuration management is 

essential. 

The case study in Task 2B consists of data gathering through interviews, document 

analysis, and direct observations of employees executing configuration change 

management over a one year period.  The purpose of the case study is to identify how the 

manufacturer conducts configuration and configuration change management.  Finally, 

opportunities to improve the existing configuration management practices at the OEM are 

recommended. 
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3.1.3 RO 3: Development of an improved method for configuration change management 

In order for configuration management to be an effective process, the large amount 

of data that is available to the engineer must be readily accessible and easy to understand.  

It was shown in [51] that rule-based configuration management is used in the automotive 

OEM being studied, as well as in numerous other manufacturers [69,70].  A major issue 

that was identified with respect to rule-based configuration management is the difficulty in 

making changes to the system and in determining the accuracy of the system.  This is 

primarily due to the scale of the ruleset that is required to completely specify the system 

[3].  Previous research has shown that different visualization techniques can simplify the 

process of analyzing large or complicated data sets.  As previously stated, the scale of the 

problem identified in the case study (greater than 108 possible interactions) results in the 

problem being an ideal opportunity for the implementation of alternate data visualization 

techniques.  Therefore, it is necessary to develop additional resources to support the 

visualization of the data found in the ruleset when using rule-based configuration 

management. 

The level of complexity involved in rule-based configuration management makes 

it difficult to understand how changes can have unintended consequences throughout the 

configuration system.  Previous research has shown that data visualization can be useful 

when considering complex systems [71–73].  This leads to the first sub-question for this 

research objective: 

RQ 3.1: How can data visualization be used to increase the ability to understand 

component relationships in a system? 
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This question is answered through a review of data visualization techniques, 

specifically focusing on graph visualization and their usefulness for identifying 

relationships in complex systems (Task 3A).  The purpose of this task is to determine how 

data visualization has been used previously and then to determine whether the use of 

visualizations would be beneficial in configuration change management.  It was found that 

using graph visualizations, based on past studies, could increase the capabilities for 

understanding and managing changes to the configuration system.   

Once it was determined that graph visualizations could be used in the new method, 

it was necessary to identify which factors would affect the usefulness of the graph 

visualization.  This question is answered through a user study (Task 3B).  The user study 

was conducted with the specific purpose of determining which factors (layout, amount of 

information, and color scheme) had the greatest effect on the usability of the graph 

visualizations.  The participants were provided with different variations of a portion of the 

configuration system and were asked questions about different aspects of the rules or how 

specific rule changes could affect the entire system.  From the results, it was found that the 

amount of information presented had the greatest influence on the participants’ ability to 

answer questions about the rule system.  After the completed development of the 

visualization support tool, the next step was to evaluate its usefulness.   

This led to the second sub-question: 

RQ 3.2: Does the implementation of a graph visualization design enabler assist in 

identifying errors and understanding the relationships in a proposed configuration change? 
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This question was partially answered through a second user study (Task 3C) to 

determine whether the implementation of a graph visualization tool would increase the 

accuracy and consistency of rule implementation into the configuration system.  Further, 

training was tested to determine its impact on usability.  It was found that with limited 

training, the graph was comparable to the existing method used by the personnel at the 

OEM.  Additionally, the visualization group showed the greatest improvement in 

answering questions requiring a greater level of analysis.   

The research question was also answered through using the visualization tool in 

four ongoing configuration changes at the (Task 3D).  In these changes, implementing the 

visualization method allowed the users to better explore the effects of the proposed change 

and identify potential conflicts.  Additionally, a time study showed that the visualization 

would allow the user to conduct the same analysis in approximately one fourth of the time 

required in the current process. 

While graph visualization is useful for understanding relationships between 

components, certain aspects of configuration management require different reasoning 

solutions, such as the ability to validate the system and identify conflicts.  Thus, two 

additional design enablers for conflict detection and complexity analysis are implemented 

alongside graph visualization in the proposed method.  The next step was to evaluate the 

usefulness of the overall method. 

The led to the third sub-question: 

RQ 3.3: Does the proposed method assist in identifying errors and understanding 

the relationships in the possible product configurations? 
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The research question was answered through implementing the proposed method 

on three configuration changes (Task 3D).  When applying the proposed method to the 

three configuration changes, it was shown that the proposed method increases the user’s 

capabilities when validating proposed configuration changes.  Feedback obtained from a 

formal interview with a primary user of the method, personnel from the Launch and 

Change Control group at the OEM, showed that implementing the proposed method when 

evaluating configurations would increase the group’s capability to correctly identify errors 

and prevent future issues resulting from a proposed change.  Additional informal feedback 

received throughout the development of the proposed process supports also this conclusion. 

3.2 Dissertation Roadmap 

Chapter Three presented the discussed the research objectives and provided an 

overview of the dissertation.   With the structure of the dissertation established, the next 

chapter (Chapter Four) begins the exploratory portion of the dissertation.  In the following 

chapter, a case study of an automotive OEM is presented to illustrate how companies 

conduct configuration management. The progress of this dissertation is shown in Figure 

3.2 in which the completed portion is highlighted in green. 
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Figure 3.2: Dissertation roadmap 
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CHAPTER FOUR: CONFIGURATION CHANGE MANAGEMENT – A CASE 

STUDY 

The purpose of the research in this chapter is to identify how a company conducts 

configuration change management.   Specifically, the research aims to better understand 

how an individual manufacturer that heavily employs mass customization principles in its 

manufacturing process implements configuration and change management to adapt to the 

varied and changing needs of production.   Based on the findings identified in the research, 

recommendations are made to increase the effectiveness of configuration and change 

management practices in industry. 

4.1 Current Configuration Management Practice 

A variety of techniques have been developed to assist in the implementation of 

configuration management [5,42,66,74–77].  For the purposes of this research, the 

classification scheme proposed in [3] is used to facilitate discussion of the different existing 

methods.  To examine the different methods, the type of reasoning is used as the central 

comparison characteristic, specifically rule-based, model-based, and case-based reasoning 

[78].  Viewing configuration management as an instance of engineering change 

management is an additional facet of configuration change management that is discussed 

in this chapter. 

4.1.1 Rule-based reasoning 

Rule-based reasoning is one of the earlier forms of implemented configuration 

management and relies on a series of rules to manage the possible configurations of 

components within a system.  The rules can best be described as a set of conditions and 
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consequences (if “A” then “B”).  Therefore, the condition relates to an existing component 

or state of the product which, if met, results in an execution of the consequence action or 

part inclusion.  An example of this would be as follows: “If Part A is found in the 

configuration, then Part B cannot be used in this configuration”.  As a result, the execution 

of this type of reasoning is deductive; each condition leads to consequences, which act as 

conditions for subsequent rules.  This allows the configurator to analyze each rule to 

determine if the condition has been met, and if it has, to assign a consequence based on the 

rule.  The only complication occurs when consequences conflict and the configurator must 

conduct additional reasoning to find a feasible solution.  Examples of rule-based 

configurators are [60–62].  

A significant limitation to rule-based approaches involves the large number of rules 

required to accurately represent the possible configurations.  For instance, a single entity 

or component within the possible thousands of components is likely to be governed by 

multiple rules.  Complexity is composed of three aspects: size, coupling and solvability 

[49].  Here, coupling is of critical interest.  Therefore, as the complexity of the product 

increases, both with the increase in the number of possible components and in the degree 

of coupling, the size of the rule database would increase drastically.  This leads to two 

known challenges: the ability to maintain the rule database and the difficulty in ensuring 

the completeness of the rule database [3]. 

The first major challenge with rule-based reasoning is the ability of a rule database 

to accurately represent all of the possible configurations.  This is due to the sheer volume 

of the database.  The rule set for a complex system could have tens of thousands of rules 
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[3]; ensuring that each of these rules is accurate and that the rule set is complete is nearly 

impossible. 

For the second challenge, any change to a single component within the rule 

database is likely to result in propagated change to multiple other components due to the 

interaction of the rules, which in turn could result in additional changes.  Therefore, 

tracking the changes as they propagate through the system is necessary.  This will be 

discussed further in the discussion of product configuration as change management in 

Section 4.2.4. 

4.1.2 Case-based reasoning 

Case-based reasoning uses preexisting product variants to assist in the development 

of future configurations.  As such, the configuration knowledge database consists of the 

previous variants of a specific product and the information regarding each variant, such as 

requirements met or component configuration [3].  Researchers have proposed a number 

of steps for the case-based reasoning process [3,63,79,80], with the general approach as 

follows: 

 Classify the cases already existing in the database 

 Input the customer requirements for the new design problem  

 Attempt to match the requirements to existing cases 

 Adapt the identified cases to the stated customer requirements 

 Evaluate the new cases for feasibility 

 Store the newly created configurations in the database with the information 

regarding feasibility 
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Case-based reasoning is useful in situations where there are a limited number of 

possible configurations [81].  As adapting the existing cases to meet the customer 

requirements is necessary for case-based reasoning, the case set must span the possible 

space.  Another advantage of this process is the prevention of the loss of historical 

knowledge, whether employee knowledge of existing products or information concerning 

previous failed attempts [81].  The retention of engineering knowledge is one of the major 

issues identified in a case study regarding the presence, or lack, of configuration 

management in the aerospace industry [64].  One method has been proposed for applying 

case-based reasoning to mass customization using a tree-structured bill of materials 

diagram [63].  Others look at the reuse of manufacturing information to assist in developing 

product platforms, a process similar to that of case-based reasoning, but focusing on the 

development of the initial cases as opposed to creating variants to meet new requirements 

[65,67].  By focusing on the creation of a complete initial case, one aims to make the 

adaption to new product variants a simpler process. 

The reliance of case-based reasoning on existing feasible configurations is the 

primary disadvantage of the method.  In order for case-based reasoning to be effective, the 

customer requirements must be able to be matched with a reasonably close approximation.  

If no such configuration exists, then either the new configuration must be completely 

adapted from nothing or a significant portion must be adapted, negating the benefits of 

using case-based reasoning.  On the other hand, if the number of possible and existing 

configurations is too large, the opposite can occur, where the subset of returned matches is 
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too large to be easily managed or the amount of adaption is too great, due to the number of 

total components to be changed. 

4.1.3 Model-based reasoning 

Model-based reasoning relies on the assumption that each product can be 

effectively modeled as a system [3,82].  Within the system model are entities that can be 

decomposed into components and the interactions between the components.  Numerous 

types of approaches have been developed from model-based reasoning [3]; however, only 

four types will be discussed here. 

The first model-based approach is the use of description logics in configuration 

management.  Description logics are a form of knowledge management that allows for the 

structured storage and reasoning of engineering information [83].  The three elements of 

description logics are individuals (objects in the domain), concepts (sets of individuals) 

and roles (relationships between individuals) [84].  Through the use of these elements, it is 

possible to create complex descriptions of product configurations and use reasoning tools 

to evaluate the feasibility and functionality of configurations.  This aligns with one of the 

major advantages of description logics for configuration management: the ability to 

maintain consistency as the model is updated and new components are added to the system 

[83].  However, a potential limitation of description logics is in the level of specificity of 

the model.  If the description logic system remains fairly general, then it is easy to maintain 

consistency, but the model may become too simplistic.  On the other hand, a specific model 

may limit the ability of the system to work with complex products. 
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Another common model-based approach is resource-based configuration 

management.  In the resource-based approach, the primary consideration is the interaction 

between the technical systems and their environments.  Therefore, a specific configuration 

is only considered feasible if the resources, both concrete and abstract, that the components 

or environment require are equal to the resources supplied by either the environment or the 

system [75].  A major advantage of this method is the simplicity of configuring systems 

using this approach.  The required resources of the environment are analyzed; a resource 

that is not currently balanced is selected and a component is added to the system that can 

remove the imbalance for the resource.  This process continues until all of the resources in 

the system are balanced.  This method works well where only functional characteristics 

must be considered, which is why it is used extensively in software configuration 

management, such as the Koala Component Model [85].  However, because of the inability 

of this approach to effectively consider component geometries, any configurations where 

there are structural or physical constraints are not ideal for use with this method. 

Constraint-based reasoning is another example of an approach derived from model-

based configuration management.  In constraint-based reasoning, a component is defined 

by its properties and the interfaces for interacting with other components [77].  The 

constraints restrict the ways in which the components can be combined to form a 

configuration.  Therefore the goal of constraint-based configuration management is to build 

a configuration of components that meet the constraint requirements based on a given set 

of requirements.  When solving a constraint problem, there are two basic assumptions: the 

user knows the functional roles to be fulfilled and the user can identify at least one 
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component to fulfill each role [76].  Based on these assumptions, the user can use the set 

of functional roles to determine the required components and use the constraining 

relationships to identify feasible configurations for the design problem.  A major 

disadvantage for this method is that many of the available configurators using constraint-

based requires all possible constraint and functional relationships to be entered into the 

system prior to use, whether they or not will be used [3].   

A final approach is the treatment of configuration management as a multi-objective 

optimization problem [86].  The basis for this approach is in resource-based reasoning in 

that the optimization technique uses product and component information that is similar to 

the resources used in that approach.  However, in this method, equations are developed to 

model the requirements, while connection matrices are used to model the interactions 

between the available components.  Then, through multi-objective optimization, the 

configuration(s) with the highest overall satisfaction for the objective function (a weighted 

equation of all of the requirements) is (are) selected for further review.  Based on the 

similarity to resource-based reasoning, the advantages and disadvantages are comparable.  

An additional disadvantage is the large amount of data required to be input to run the 

optimization.  However, the use of optimization techniques makes the method more 

adaptable to changes in the requirements and can factor in weighting functions for more 

important requirements. 

4.1.4 Product configuration system maintenance 

Little research has been done that focuses on managing the dynamic product 

information used in the configuration management process [87].  One of the challenges 
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identified with many of the previous configuration management methods is the difficulty 

in maintaining the product information as the number and variety of possible components 

changes over time due to changing customer requirements.  A process-oriented approach 

was proposed to assist in solving this problem [87]: 

1. Identify new product configuration knowledge 

2. Create a configuration model change request 

3. Evaluate the configuration model change request 

4. Update the product configuration model (or cancel the request if not approved) 

The proposed process was intended for the systematic implementation of new 

components into the set of possible configurations.  It should be noted that the process is 

similar to the general engineering change process which consists of the following steps [8]: 

1. Request for an engineering change 

2. Development of possible solutions 

3. Evaluate impacts of the change 

4. Engineering change approval 

5. Implementation 

6. Review 

Table 4.1 shows how the steps of these two processes coincide. 

Table 4.1: Configuration management to change management mapping table 

Configuration Management Step # Change Management Step # 

1 2 

2 1 

3 3 

4 4, 5 

Therefore, it is possible to consider the process of updating a product configuration 

as a variation of engineering change management.  As such, some of the tools used to 
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manage engineering changes and their propagation can be similarly applied to assist in 

managing product configurations [12,31]. 

4.1.5 Configuration Management Case Studies in the Literature 

As a result of the need for effective configuration management in industry, 

numerous researchers are conducting industry case studies to determine how companies 

are doing configuration management and how newly developed tools can be used to 

increase their capabilities.  Table 4.2 provides a sampling of industry case studies on 

configuration management practices. 

Table 4.2: Examples of other case-based research in configuration management 
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[63] Machining equipment Yes C V II 

[88] Playground 

equipment 

No M V  

[89] Manufacturing 

equipment 

No C E IF, D 

[90] Cement factory Yes M V  

[70] Automotive Yes R V  

[91] Power transformer No C E IF, S 

[92] Electric bicycle Yes C V  

[69] Custom bicycle 

assembly 

Yes R V  

Reasoning Types:   

C:  Case Based Reasoning; M:  Model Based Reasoning; R:  Rule Based Reasoning 

Purpose:   

E:  Exploratory; V:  Tool Validation; C:  Case Based Reasoning; M:  Model Based 

Reasoning; R:  Rule Based Reasoning 

Research Method:   

IF:  Interview (formal); II:  Interview (informal); S:  Software Analysis; D:  

Document Analysis 
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From Table 4.2 it is clear that configuration management research is being 

conducted across a variety of manufacturing domains, ranging from custom bicycle 

assembly to automotive manufacturing to the design and assembly of modular playground 

equipment.  In the table, the third column (Tool Proposed) asks whether or not the purpose 

of the case study is to assist in proposing a new tool for configuration management.  The 

Reasoning column specifies the type of reasoning identified through the case study. The 

fifth column (Purpose) asks the purpose of the case study, whether it is purely exploratory 

or if it is intended to validate a configuration management method.  The final column 

describes the investigative methods used in the case study, if available.  The blank cells in 

the table indicate a lack of available information regarding that column header. 

4.2 Research Methods 

When determining the type of research instrument or method to use to explore this 

objective, the following questions may be asked, as discussed in [93]: 

1. Form of the research problem – is it exploratory or explanatory? 

2. Does the researcher require control over the events? 

3. Is the phenomenon under study a contemporary or a historical event? 

Using these questions, Table 4.3 is constructed to determine whether the case study 

research method is a fit for this research objective. 
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Table 4.3: Justification for case study research method 

Research 

Question 
Question Answer Justification 

RQ 2.1 

Form of the research – 

explanatory of exploratory? 
Explanatory 

The research questions 

seeks to explain the 

configuration 

management process at 

the OEM 

Does the researcher require 

control over the events? 
No 

The goal is to learn the 

existing process.  

Therefore, no control is 

required. 

Is the phenomenon under 

study a contemporary or 

historical event? 

Contemporary 

The research is conducted 

regarding the active 

configuration 

management process. 

 

When evaluating the type of research strategy to be used, the first question is the 

form of the research.  Because the research question seeks to understand “how” the OEM 

conducted configuration management, the research is explanatory.  Secondly, the goal of 

the research is to understand the current processes at the OEM, which means that the 

process should be studied in its present form, without any external controls in place by the 

researcher.  Lastly, while it is possible to study the configuration management process 

using document analysis and interviews for a previous configuration change, better 

conclusions and a more in-depth analysis is able to be conducted by evaluating the 

configuration management process as a proposed configuration change is validated and 

implemented. 

Based on the answers provided in Table 4.3, a case study research method is chosen 

to answer RQ 2.1.  Additionally, case studies are often used when conducting design 
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research to understand the current process or how a design enabler can benefit the current 

process [94–100].  The following sections detail the specifics of the case study research. 

4.3 Selection of the Case 

The subject of the case study was chosen because of the extensive amount of 

configuration management conducted at this automotive OEM.  Over the course of one 

year, the manufacturing facility typically will conduct up to three launches per vehicle, 

where four separate vehicles are manufactured at the plant, with one major launch 

occurring every year for each vehicle.  A launch consists of the addition of new 

components, options or upgrades to the existing model line.  A specific launch can 

introduce new paint colors, a software upgrade, or an entirely new feature for the vehicle.  

This means that the OEM has monthly launches with new options and/or packages. 

Configuration management is especially important at this OEM in that the 600 

possible options lead to more than 108 possible configurations for any given model, each 

of which must, ideally, be validated for feasibility.  The OEM asserts that, essentially, each 

vehicle built in the plant is unique, resulting in over 300,000 unique vehicle configurations 

built.  Therefore, in order to ensure that each vehicle is a feasible configuration, an effective 

configuration management system must be used. 

A brief analysis of manufacturing and configuration management documents at the 

facility illustrated the large number of possible factors that affect each possible 

configuration.  The total numbers of parts, options, and rules that comprise the current 

configuration management system at the facility are approximately 1500 parts and 600 
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available options per vehicle, requiring approximately 800 configuration rules.  This results 

in over 108 possible interactions. 

4.4 Data Collection 

When conducting the case study, the primary means of data collection was through 

targeted interviews with employees primarily from the Launch and Change Control 

division of the manufacturing facility.  At the OEM, Launch and Change Control is 

responsible for planning and verifying all of the scheduled launches at the facility.  This 

includes determining which new components and options are ultimately included in a 

launch and evaluating potential configurations for functional and assembly feasibility.  

When conducting the interviews, targeted questions were asked that focused on the process 

and the systems/tools used in implementing configuration management, with follow-up 

interviews conducted to ensure accuracy of the information.  The majority of the interviews 

were conducted in person; however, a few interviews were primarily conducted over 

teleconference due to unavailability of the required personnel as they were housed in the 

Germany design facility.  A summary of the interviews conducted is shown in Table 4.4.  

The interviews were conducted by pairs from the research team to help increase objectivity 

through interviewer triangulation.  A total of 24 hours of interviews were conducted, with 

summaries and transcripts generated to support the case study.  These interviews were 

conducted over the course of three months (Spring 2014) and included on site interviews 

with associates at the US facility and video conference interviews with associates at the 

European design headquarters.  Additional interviews were conducted as needed 

throughout the development of the configuration management. 
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Table 4.4: Case study interviews conducted 

# Position Section 
Time 

(hours) 
Topics of Discussion 

1 Section 

manager 

Launch and Change 

Control 

6 Configuration 

management and 

change processes 

2 Launch and 

change 

coordinator 

Launch and Change 

Control 

15 Configuration 

management and 

change processes 

3 Launch 

planning 

coordinator 

Launch and Change 

Control 

5 Launch planning and 

configuration change 

process 

4 Release 

quality 

assurance 

specialist 

Launch and Change 

Control 

3 Vehicle ordering and 

configuration 

management systems 

5 Launch and 

change 

coordinator 

Launch and Change 

Control 

3 Launch planning and 

parts release 

6 Electronics 

specialist 

Electrical/Electronics 

Validation 

1 Configuration 

verification process 

7 Product data 

manager 

Product Data 2 Rule database and 

configuration change 

process 

8 Product data 

manager 

Special vehicle 

projects 

1 Configuration change 

process 

 

In addition to conducting interviews, a review of historical documents pertaining 

to the execution of configuration management was done.  Document analysis is a case 

study tool for better understanding the specific systems in place at the case being studied 

[93].  The primary documents analyzed were the master rules document used to list all of 

the configuration rules for a specific vehicle (9.2Appendix C:) and the project change 

request form (9.2Appendix D:) used for updating the rule system.   
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The purpose behind this was to evaluate the systems used at the manufacturer.  The 

classification system discussed in Section 4.1 assisted in classifying the configuration 

management method and identifying the associated challenges. 

As a goal of the research was to identify the process used for managing 

configuration changes, ethnographic research was also conducted at the facility in 

Spartanburg, SC.  Ethnographic research is the study of a culture or environment through 

close, direct observation [101].  The purpose of the ethnographic research was to obtain a 

first-hand view of how configuration management is conducted and how configuration 

changes are validated prior to approval and implementation.  During this portion of the 

case study, meetings with the change control personnel were observed to better understand 

the following: the process by which changes are proposed, the status of ongoing changes 

is discussed, and the exact method for improving changes at the plant level.  Additionally, 

the individual methods used by the change control personnel were observed as they 

attempted to understand and validate ongoing configuration changes. 

In conducting the case study, the researcher expected to find a robust configuration 

management process in place that conformed to at least one of the existing approaches 

identified in Section 4.2.  Specific evidence is sought to confirm this pattern and the 

associated counter patterns, according to best practices from case study research [102].  

The findings of the case study are described in the following sections.    
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4.5 Results 

4.5.1 Configuration management method 

The foundation for the manufacturer’s configuration management system is a rule 

database that contains the rules governing the possible options and packages for a specific 

vehicle or “project” in the parlance of the OEM.  For each vehicle, the rule database also 

specifies which rules apply to which model codes.  This is shown in the table below (Table 

4.5): 

Table 4.5: Example rules in the rule database 

 

Model codes (in the right-most columns) can represent the country destination for 

the vehicle specified or the engine type of the vehicle.  The format for the rules in the 

database includes a condition and a resulting consequence.  In the above example, the 

condition is designated by the “If-Part of the rule” (column 2) and the resulting 

consequence is designated by the “Then-Part of the rule” (column 3).  Additional options 

are shown in the “Standard” column, which implies that a certain option is standard for the 

prescribed model codes.  The far left column describes whether the rule involves an 

inclusion, Z, or exclusion, A.  The values under the model codes dictates if the rule is active 

for the specified model code, where “blank” is not active and “R” is required.  For example, 

the first rule states that for model KR01, if option L8AAA is present, then option S230A 

is required.  For the last rule, if option L8AAA is present, then option S536A is unavailable 
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for model KR01.  The number in the “Description” column is a unique identifier for each 

rule to enable quick referencing. 

In this way, the process used at the OEM closely resembles the rule-based reasoning 

approach described in Section 4.1.1.  As such, the system is subject to many of the 

limitations shared by other rule-based reasoning methods.  The scope of the rule database 

(approximately 800 rules per vehicle) makes it difficult to ensure the accuracy of all of the 

rules and to ensure that the rule database covers the complete set of feasible configurations 

for each vehicle.  This was corroborated in the interviews with the personnel at the OEM, 

who repeatedly mentioned that the size of the rule document made it extremely difficult to 

identify individual issues.  Additionally, maintaining the rule database, with either updates 

or changes, is equally challenging due to the amount of possible change propagation and 

ensuring that all necessary changes have been made.  This issue was documented in three 

of the interviews (#’s 1, 2, and 5) that were conducted with the personnel at the OEM.  

Current rule database maintenance practices will be discussed in the following section. 

The configuration management process also includes the ordering, or specifying, 

of vehicles.  Unlike many automotive OEMs, all vehicles produced at this manufacturer 

are specified by an external customer.  When the customer specifies a vehicle, they have 

the ability to select all of the possible components or options that are available or feasible 

based on location and other specified options.  The tool used for specifying the vehicles 

relies on the above rule database and ensures that a customer is not ordering a set of options 

that is not feasible.  Once the vehicle has been ordered, a third system uses the specified 

options to identify the parts that are required for the vehicle.  As all of the systems rely on 



 79 

the rule database, it is imperative that all of the rules are accurate and complete.  While not 

the focus of this research, an additional issue that was identified is the difficulty of ensuring 

that all of the varied systems communicate properly. 

Throughout the interview process, an important theme that was discussed is the 

necessity of the correctness of the rule database and how the rules are verified.  Much of 

the verification process is conducted purely based on the individual experience levels of 

the employees that are familiar with specific aspects of the vehicle.  For example, a 

specialist from the electronics and electrical validation section said that much of the 

verification was based on his experience with different vehicle systems and he knows to 

look more closely at certain areas because they had been troublesome in the past.  For 

instance, windshields are often difficult to configure due to the large number of available 

parts and their reliance on the presence or lack of over 10 different options.  As a result, 

one of the interviewees (# 2) stated that he would give special consideration to changes 

involving windshields because of the high number of past issues.  This view was similarly 

expressed by all those involved with verifying the rules in the database.   

Further, it is not uncommon for an error in the rule database to be identified only 

when a vehicle is being assembled and either parts are missing or there are complications 

that prevent two different options from being assembled on the same vehicle.  For example, 

one interviewee (# 2) described to the research team an instance where a vehicle had been 

ordered in such a way that no windshield part number was ordered for installation on the 

vehicle.  Thus, the current approach based solely on experience in identifying possible 

conflicts is not sufficient. 
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The primary limitation identified is that the manufacturer does not have a coherent 

method for ensuring the accuracy and completeness of the entire rule set outside of 

manually verifying every rule in the database.  However, manual verification is not feasible 

due to the scope of the rule set.  There are approximately 1,500 parts in a typical bill of 

materials for the vehicle, with nearly 10 variants per component.  Additionally, there are a 

half dozen models with dozens of variants and scores of options in configuring these 

components.  Ultimately, there are appromxiamtely 108 possible configurations that must 

be checked for feasibility every three months. 

4.5.2 Configuration change management process 

Because managing changes to the rule database is the most difficult aspect of this 

approach to configuration management according to the interviewees, as well as the 

research discussed in Section 4.2.1, much of this research has been focused on how the 

automotive OEM maintains the rule set.  As stated previously, the manufacturer in question 

conducts up to three launches per year per vehicle.  Each of these launches contains 

numerous changes to the possible vehicle configurations.  In the launch process, the first 

step is to determine the intent of the new launch content.  The content for each launch is 

determined by a series of workgroups that consist of personnel from Launch and Change 

Control and representatives from the other sections.  This can include personnel from 

marketing, product data management, and the technical sections (electrical, body, power 

train, and systems).  Once the changes for a given launch is set, the information for updated 

options and components are entered into a variant planning tool to assist the launch planner 

in configuring the test cars that will be assembled prior to execution of the launch.  The 
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variant planning tool also identifies the number of test cars that need to be built in order to 

effectively generate a sample that is representative of the entire set of new possible 

configurations resulting from the changes in the launch. 

Concurrent to the launch process is the maintenance of the rule database to reflect 

the changes to the possible configurations as a result of the launch.  The configuration 

change management process is shown in Figure 4.1.   

 

Figure 4.1: Configuration change management process for OEM 

This process consists of the following basic steps: 
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1. The configuration change is proposed, typically by a member of the technical sections 

(electrical, body, power train, and systems) 

2. After an initial review period, the change is distributed for further review by any 

groups that may be affected by the change.  This can include Product Data 

Management, Launch and Change Control, and any additional affected technical 

sections.  Any issues identified during this step are brought back to the working group 

for further action and review. 

3. Once the review process is complete, the configuration change is discussed at a 

weekly change approval meeting.  If approved, the change is sent out for distribution 

to any affected parties.  If disapproved, the change goes back for additional review. 

4. The product data management team receives the configuration change and manually 

inputs any new rules and options/packages into the rule database. 

This process can take anywhere from a couple days to three weeks, though the 

typical situation is between two and three weeks, according to interviewee # 7.  Multiple 

situations were identified where a product change was rushed at the last minute and the 

reviewers were not given sufficient time to conduct a full review of the change, which 

normally takes about a week, but can take up to or greater than a month depending on the 

complexity of the change.  It should again be noted that the verification process is often 

based primarily on the individual experience of the personnel reviewing the changes.  For 

instance, during one interview, the interviewee (# 2) mentioned that, due to his extensive 

experience with vehicle windshields, he will often review any changes that include options 

or rules concerning windshields.  The primary issue with a high dependency on experiential 

knowledge is maintaining that knowledge despite personnel turnover. 

The primary disadvantage with the current configuration change approach is the 

inability to see how new rules will affect existing rules.  This includes ensuring that the 
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proper changes are implemented as a result of the new rules being implemented.  One 

example of a change not propagating properly through the rule database that was identified 

during the case study involved a change made based on an error during assembly.  It was 

identified on the assembly line that an exhaust system used with the diesel versions of a 

particular model was not compatible with a sports package due to a geometric constraint 

with the included fog lights.  The change was made as necessary based on the issue.  

However, months later, it was decided that the fog lights should be added as a separate 

option.  The same problem was again identified during production between the exhaust 

system and the fog lights because the rule regarding the geometric constraint was not 

carried over from the sports package to the fog lights.  

4.5.3 Historical problems 

Numerous problems that stemmed from the use of the current configuration 

management system are identified from the case study.  Two primary problems are the 

absence of an essential component during assembly (in the given example, a windshield 

was not assigned to the vehicle) and rule constraints not being correctly translated during 

the creation of a new ruleset (the fog light issue discussed above).  In the first problem, a 

vehicle was being assembled for which there was no windshield.  This can occur because 

parts are ordered based on the combination of options present for a given vehicle.  If the 

selected options result in a configuration that is not feasible (or for which there is no 

applicable windshield), then there is an error in the system; the configuration management 

rule database should prevent the combination of options that are not possible. 
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In another situation, also involving windshields, a new rule was created (and 

approved) which artificially limited the possible windshield options for a given model.  The 

added rule disallowed the selection of the option for an anti-glare strip on the windshield 

for certain models.  However, due to limitations with the parts, this meant that the only 

allowable configuration for customers desiring the anti-glare strip would also be required 

to purchase the heads-up display option.  There is no technical reason for the two options 

to require the presence of the other option; therefore this is another example of a failure in 

the current configuration management system to properly configure products. 

In a third situation, the OEM is considering a change in the warning advisory labels 

that are found on the passenger sun visors regarding child restraint.  The issue is that some 

of the visors come from the supplier with the labels already attached, whereas other labels 

are affixed during assembly.  Because the current configuration management system does 

not include part interactions directly with the other components (rules, options, and 

packages), the OEM has encountered a series of problems in making the change to the new 

advisory labels.  One issue is that certain options include sun visors come with the label 

from the supplier, while others have the label affixed during assembly.  The difficulty lies 

in ensuring that any changes to the label are made to both types of options. 

Based on the findings of the case study, an improved process with design enabler 

support is recommended to assist in configuration management at the OEM.  A discussion 

of the conclusions made by the researcher are discussed in the following section.  
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4.6 Conclusions  

The research objective for this chapter is to understand how an OEM conducts 

configuration change management.  This research objective is supported through two sub-

questions, which are discussed below. 

The first sub-question is: What is the state-of-the-art for configuration 

management?  Answering this question helps to provide a knowledge base when evaluating 

the configuration management practices at an OEM and can be used to help categorize the 

OEM’s methods.  The sub-question was answered through a literature review of current 

configuration management practice.  The literature review consists of a review of 

configuration management and its importance in modern manufacturing, followed by a 

review of existing tools and methods used in configuration management.  Through the 

literature review, a classification scheme for configuration management methods was 

identified, with the capabilities and shortcomings or each category being discussed. 

With a more complete understanding of configuration management practice in 

mind, the following question can now be asked: How does a major automotive OEM 

conduct configuration change management?  To answer this question, a case study was 

conducted at an automotive OEM facility in Spartanburg, SC.  The case study primarily 

consisted of both exploratory and targeted interviews with personnel from the Launch and 

Change Control group at the OEM.  In addition, document analysis and ethnographic 

research was conducted to help understand how the company conducts configuration 

management.  It was identified that the company uses a rule-based configuration 

management method.  In addition, many of the shortcomings of the existing method at the 
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OEM matched the shortcomings for rule-based methods identified during the literature 

review. 

Through the course of the case study, a need was identified for a support tool to 

assist in the configuration management process, to include managing the effects of 

proposed configuration changes.  In order to address the identified issues, the following 

requirements are proposed: 

- Able to easily visualize the interactions between configuration components 

(including parts) to make it easier for personnel to understand possible 

propagation pathways 

- Able to highlight specific areas of interest to assist in simplifying the rule 

database 

- Able to check for errors in the existing rule database to ensure the validity of the 

ruleset 

- Able to preview how proposed configuration changes would affect the existing 

rule database to prevent against the creation of impossible configurations 

Table 4.6: Visualization requirements and related issues to address 

Requirement Issue 

Visualize interactions Errors resulting from unexpected change 

propagation between  options 

Highlight specific areas Ruleset is too complex to understand in its 

entirety 

Check for errors in database Errors in configuration result are not 

found until assembly is attempted 

Preview changes Management of rule database is difficult 

due to scope of assessing every possible 

consequence of a change 

 

These requirements were identified through the interviews to address specific 

issues experienced by the automotive OEM in their current configuration management 
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process (shown in Table 4.6).  Most of the requirements focus on the visualization aspect 

of configuration management.  The proposed development of a visualization method for 

configuration management will be further discussed as next steps in Chapter Five. 

4.7 Dissertation Roadmap 

Chapter Four presented the methods and results of the case study on configuration 

management at a major automotive OEM, concluding with a series of recommendations 

regarding improvements to the current configuration management process.   The next 

chapter (Chapter Five) builds on the conclusions from the previous chapter by proposing 

an improved method for configuration management with designer enabler support. The 

progress of this dissertation is shown in Figure 4.2 in which the completed portion is 

highlighted in green. 
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Figure 4.2: Dissertation roadmap 
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CHAPTER FIVE: IMPROVED METHOD FOR CONFIGURATION CHANGE 

MANAGEMENT 

The purpose of the research presented in this chapter is to develop an improved 

method for configuration management with design enabler support.  The developed 

approach enables engineers in validating the configuration management system when 

implementing configuration changes.  This is done through (1) identifying possible change 

propagation pathways when evaluating configuration changes, (2) aiding in identification 

of errors in the current configuration management ruleset, and (3) determining whether a 

proposed change will result in conflicts with existing rules.  The requirements of the 

configuration management support tool are established in the case study and described in 

Table 4.6. 

5.1 Proposed Process 

In order to address the specified requirements, a series of support tools are 

developed to enable the configuration and configuration change management processes.  

The four tools are as follows and are described in more detail below: (1) interaction 

identification, (2) visualization and interaction (V&I), (3) change complexity analysis 

(CCA), and (4) algorithmic validation (AV).  Figure 5.1 shows how the proposed tools 

would fit into the current configuration change management process.  For the purposes of 

implementing the tools, a simplified model is used. 
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Figure 5.1: Simplified process model with proposed tools 

As shown above, after a change is proposed, an initial review period would occur, 

during which a complexity analysis can be conducted.  The purpose of the complexity 

analysis is to determine an estimate for the difficulty in validating the proposed change.  

By determining the difficulty to validate the change, it is possible to cancel a proposed 

change that would be overly difficult to validate but is not necessary.  For a complicated 

change that must be implemented, it allows the change personnel to properly plan for the 

amount of time/effort required to validate the change.  The complexity analysis support 

tool is described in greater detail in Section 5.4. 

If a proposed change is moved forward to the detailed review period, much of the 

current validation is done through experiential knowledge, guessing how the specified 

options will affect other options and other parts.  The use of a visualization tool can greatly 

increase the user’s ability to understand and explore the interactions between the affected 

options and parts.  Using the visualization within the proposed method is discussed further 

in Section 5.3.  As the use of data visualization for configuration management is a major 
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contribution by the author, an in-depth discussion on data visualization and the 

development and implementation of the graph visualization tool will be discussed in 

Chapter Six. 

Before the change is approved, an algorithmic validation should be done to ensure 

that there are no conflicts that would occur as a result of implementing the change.  The 

algorithmic validation uses satisfiability criteria to ensure that configurations can be built 

based on the current rule set and that there are no situations where two rules could be in 

conflict with each other.  After final approval and distribution, the algorithmic validation 

should be conducted a final time prior to implementation to ensure that the change is being 

implemented correctly and that no changes are made to the rule database that would cause 

any conflicts.  The use of algorithmic validation will be discussed in greater detail in 

Section 5.5. 

5.2 Interaction Identification 

To facilitate the implementation of the other tools, it is necessary to have a method 

for mapping the interactions between the options/parts/packages and to filter the results to 

only provide the interactions of interest for the specified change.  The tool must provide all 

interactions between the different types of change components (options/parts/packages), 

including rules as specified in the part and option rule databases, and any options included 

in functional groups.  In order to facilitate this, the tool should be able to access the option 

and part databases that govern how vehicles are configured and specified for parts.  If the 

database is not available, then the tool must be able to convert the available report 



 92 

documents to obtain the relationships between the possible change components.  An 

example database model for the relationships discussed above is shown in Figure 5.2. 

The primary elements of the database include Models, Options, Parts, and Rules.  

These are the elements that form the foundation of the configuration management system 

at the OEM.  Release lines are similar to rules in that they govern whether a part is needed 

for a specific configuration, but apply only to parts instead of options.  In order to show 

how all of these elements interact, the following tables are created: ReleaselineModels, 

OptionModels, and RulesModels. FClasses are functional groupings of options that carry 

an exclusive relationship.  If the FClass is present in a configuration, one and only one 

option from that FClass must be present in the configuration. 
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Figure 5.2: ER diagram for integrated database 

Once the required rules are input into the tool, the tool should parse the rules into 

interactions, where any change components in a single rule are considered to have a first 

order interaction.  In addition, the tool should provide the user with the option of selecting 

a maximum order of interaction for the outputs, as previous research has shown the 

importance of higher order interactions, and thus the tool should be able to support this. 

In order to use the tool, the user inputs the vehicle model and the options or parts 

of interest from dropdown menus and enters the desired order of interaction for 

consideration.  The output from the interaction identification tool should be a list of all 

specified and affected options up to the desired order of interaction and lists the other 

options with which each interacts, and how the options are related.  Additional data that 

may be added is the order of interaction at which the interaction takes place. 

5.3 Visualization and Interaction (V&I) 

Previous research has shown the benefits of visualizing data to assist in 

understanding and exploring it.  When evaluating a proposed change, therefore, it can be 

useful to use a visualization support tool to graphically depict the affected options and 

rules.  The proposed visualization tool would use the outputs from the interaction 

identification tool to produce a node-link graph to show the options/parts as nodes with the 

rules or interactions as edges.  An example of a node-link graph for a specific change is 

shown below in Figure 5.3. 



 94 

 

Figure 5.3: Example graph for a proposed change 

Another essential component for the visualization tool is the ability to interact with 

the graph.  Therefore, the tool must be implemented in such a way as to be dynamic, rather 

than simply a static graph viewer.  The graph interaction increases the user’s ability to 

explore the data and to better understand the interactions between the components.  It is 

recommended that the visualization tool should facilitate the following interactions: 

 Addition/subtraction of nodes to/from the graph 

 Relocating nodes to better cluster option/part groups 

 Addition/subtraction of rules/interactions between nodes 
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 Highlighting specific nodes to view the potential propagation pathways 

 A method for algorithmically arranging the graph (i.e. force-directed layout) 

In addition, the visualization tool should provide the capabilities of outputting a 

static graph image for reference at a later time and the resulting rule set and/or interaction 

list that would result from any changes made to the graph by the user.  This can aid in 

automated rule creation based on any knowledge gained from exploring the graph.  The 

development and implementation of the visualization tool will be further discussed in 

Chapter Six. 

5.4 Complexity Analysis (CCA) 

The use of complexity metrics has been shown to be useful in evaluating change 

propagation within a system.  As such, a complexity analysis tool is recommended to 

determine the difficulty of a proposed change through identifying the potential change 

propagation that could result from the change. 

5.4.1 Use of Complexity Metrics 

Previous research has shown that complexity metrics can be used in prediction.  

One such example is the use of 29 different graph theory metrics to predict product 

assembly time [47,54,103].  In the research, the authors used the physical interactions 

between product parts as the network.  By using the resulting complexity metrics to train a 

neural network, the authors were able to accurately predict additional product assembly 

times.  In a related study, the same complexity metrics were also used to successfully aid 

in predicting a product’s market price [104].  Research in software design has shown that 
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complexity metrics can also be used to successfully predict errors or bugs in software 

[105,106].  These examples show that complexity metrics have successfully been used in 

multiple instances for prediction purposes and should be further explored for this research. 

5.4.2 Data Organization and Source 

In order to conduct the complexity analysis, one set of inputs is required: the 

potential change components (vehicle options/packages/parts) and the relationships 

between them.  Because the relationship information required for the complexity analysis 

includes the distinct components, a single input file can be used that has a list of binary 

relationships between components. This input is created through a data parsing tool which 

translates the option and part rules into conjunctive normal form (CNF).  The following 

subsections describe the inputs in more depth.  

5.4.2.1 Components  

The components, or graph nodes, consist of the vehicle options, parts, and packages 

that the user is interested in changing or that can be affected by change propagation from 

the changed components.  However, the complexity analysis is only concerned with the 

nodes and the connections between them, not any of the information regarding the nodes, 

as was seen in the graph visualization tool.  Therefore, the information provided by the 

edge graph input file, which contains unique numerical identifiers for each distinct node, 

is sufficient input for this data type. 
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5.4.2.2 Component Relationships 

The relationships, or edges, between the components consist of the rules that govern 

how the different components interact.  These relationships include all of the rules as 

specified in the option and part rule databases, as well as option functional group 

information.  It is also possible to use new rules as created in the conflict detection tool as 

relationships.  Because the complexity analysis is only concerned with the connections 

between components and not the types of relationships, only the source and target of the 

relationship is needed to conduct the analysis.  As a result, it is possible to use the same 

edge input files as for the graph visualization tool. 

The source node of the edge refers to the “If” portion of the rule in a binary rule, 

while the target node refers to the “Then” portion of the rule.  In more complex rules (non-

binary), a more comprehensive grammar must be used and is discussed in 6.4.2.1.  The 

edge type represents the type of relationship between the nodes.  Three different types of 

relationships are currently used: inclusive, exclusive, and multiple-inclusive relationships.  

An inclusive relationship means that the source requires the target to also be present.  

Similarly, exclusive requires that the target must not be present.  The multiple-inclusive 

relationship is used in conjunction with “OR” and “AND” nodes to help delineate that the 

relationship is not binary.  Multiple-exclusive could also be represented separately, but has 

not been used in the current implementation.  An example of an edge input file is shown in 

Figure 5.4. 
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Figure 5.4: Example graph edge input file 

5.4.3 Methods 

The following subsections describe the complexity metrics used in the complexity 

analysis.  

5.4.3.1 Size and Order Calculation 

When analyzing a system or graph, the most basic complexity metrics are size and 

order.  The size of the graph is the number of nodes in the graph.  The order is the number 

of interactions between them.  While these complexity metrics may seem overly simplified, 

an analysis of 29 separate complexity metrics showed that an approximation for the 

complete set of metrics could be found by using the size and order metrics, which are 

simpler to calculate and easier to understand.  The following subsection will discuss the 

other available complexity metrics. 
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Using the example input file shown in Figure 5.4 the size of the system is the 

number of distinct node ID numbers, which would be 17.  The order of the system is found 

by identifying the number of relationships in the edge list, which would be 18.  

5.4.3.2 Other Potential Complexity Metrics 

In some instances, it may be beneficial to use a broader group of complexity metrics 

for analysis.  While the size and order metrics can assist in identifying a general level of 

difficulty to validate a change, using the full suite of metrics, in conjunction with a trained 

neural net, could predict the level of difficulty or resources required for validation more 

accurately.  An example of using complexity metrics for prediction can be found in [47].  

However, the focus of this technical report is on a tool used to provide the complexity 

metrics for user analysis and while the other complexity metrics can be useful in the 

analysis, the prediction methods are outside the scope of this report.  A discussion of 

additional metrics that have been successfully used by the research group can be found in 

[107]. 

5.4.4 Implementation 

This section describes the methods used to transform source data into a 

representation that is easy to understand.  Because this tool considers the potential level of 

change propagation as a result of a configuration change, it is necessary to calculate the 

complexity metrics at the first order of interaction (the change components and those they 

directly interact with) and the second order of interaction (this includes any components 

that interact with the affected components at the first order of interaction).  Previous 
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research has shown that beyond the second order of interaction, the number of components 

increases to near saturation and is not likely to provide additional utility [56].  Additionally, 

the complexity metrics will vary significantly between different vehicle models.  As such, 

it is necessary to calculate the metrics for all applicable models that are affected by the 

change.  Once the metrics have been calculated, the tool need only to output the data in a 

representation that is easy for the user to understand.  Recommendations for how the 

resulting data can best be represented can be found in 6.5.1. 

5.4.4.1 Data Representation 

The purpose of the data representation is to assist the user in predicting the 

difficulty in validating a proposed configuration change.  In this tool, the measure used to 

determine the difficulty is the amount of potential change propagation as a result of a 

change.  This is represented by the increase in complexity from the first order of interaction 

to the second order of interaction.  Therefore, the goal of the data representation should be 

to increase the user’s ability to quickly see how the complexity increases for each vehicle 

model.  In order to accomplish this, the researcher recommends a color-coded “flag” that 

corresponds to the amount of complexity increase for each model.  The amount of change 

is based on the second order complexity metrics divided by the first order complexity 

metric.  Therefore, if the size increased from 13 to 29, the increase would be a factor of 

2.2.  In the proposed color scheme, a green “flag” represents little or no change propagation 

(a factor of < 1.1).  Yellow represents a small amount of propagation (factor of > 1.1 and 

< 2.5).  Orange is a moderate amount of propagation (factor of > 2.5 and < 5.5).  Red is a 

significant amount of change propagation (factor of > 5.5).  These factors are for the size 
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and order metrics and were identified based on empirical data.  It may be useful to modify 

these values based on company practice for specific complexity metrics.  An example 

output for a larger set of complexity metrics is shown in Figure 5.5 

 

Figure 5.5: Example data representation for the complexity analysis tool 

In the figure, the vehicle models are shown in the left-hand column, with the 

complexity metrics along the top.  For each vehicle model, the first and second order 

metrics are provided, along with the resulting flag for each metric.  In the above example, 

KR62 shows a significant amount of potential change propagation due to the proposed 

change and is likely to require more resources for validation, whereas the US models 

(KR03, KR23, KR63) show no propagation and are likely to be easier to validate.  The 

example representation provides maximum information for analysis.  A less complicated, 

Metric Size Order DOF Conn SP Sum SP Max SP mean FR Sum FR Max

1 13 18 18 36 374 4 2.3974 326 5

2 29 40 40 80 2666 6 3.3 1298 10

Flag Yellow Yellow Yellow Yellow Yellow Yellow Yellow Yellow Yellow

1 13 19 19 38 370 4 2.3718 342 5

2 54 76 76 152 7554 6 2.6 3966 42

Flag Orange Orange Orange Orange Orange Yellow Green Orange Red

1 12 16 16 32 334 4 2.5303 240 5

2 12 16 16 32 334 4 2.5303 240 5

Flag Green Green Green Green Green Green Green Green Green

1 12 16 16 32 334 4 2.5303 240 5

2 12 16 16 32 334 4 2.5303 240 5

Flag Green Green Green Green Green Green Green Green Green

1 13 18 18 36 374 4 2.3974 326 5

2 53 86 86 172 8874 6 3.2 4676 27

Flag Orange Orange Orange Orange Orange Yellow Yellow Orange Orange

1 17 25 25 50 690 4 2.5368 516 7

2 260 400 400 800 265270 10 0 89570 40

Flag Red Red Red Red Red Orange Green Red Red

1 12 16 16 32 334 4 2.5303 240 5

2 12 16 16 32 334 4 2.5303 240 5

Flag Green Green Green Green Green Green Green Green Green

KR62

KR01

KR02

KR03

KR23

KR61

KR63
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and potentially easier to read representation could be used, such as Figure 5.6 or Figure 

5.7. 

 

Figure 5.6: Simpler data representation for complexity analysis 

 

Figure 5.7: Simplest data representation for complexity analysis 

Each of the above representations has potential advantages and disadvantages due 

to the simplicity to read and amount of information provided. 

5.5 Algorithmic Validation (AV) 

In addition to exploration and complexity analysis, it may be necessary to determine 

whether there are any conflicts or impossible configurations that may result from the 

implementation of a proposed change.  In other applications, a satisfiability solver has been 

used to use a set of constraints to determine whether any conflicts exist.  It is recommended 

that a satisfiability tool be used with the existing rule database to determine whether or not 

any conflicts exist.  A discussion of algorithmic validation is included for completeness as 

part of the developed method.  While the design and use of this tool was done by the 

Size Order

KR01 Yellow Yellow

KR02 Orange Orange

KR03 Green Green

KR23 Green Green

KR61 Orange Orange

KR62 Red Red

KR63 Green Green

KR01 KR02 KR03 KR23 KR61 KR62 KR63
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researcher, its implementation was developed by a research project partner.  A complete 

discussion of the algorithmic validation methods can be found in [108]. 

5.5.1 Satisfiability 

First-order Boolean logic provides techniques for reasoning about logical 

expressions.  These expressions are constructed as a series of operators and literals, 

assembled according to a formal grammar.  Literals are Boolean objects, which may take 

values of either TRUE or FALSE.  Within the case of configuration management, objects 

like options, parts, etc. are literals, as they are either present on a vehicle instance (TRUE) 

or not (FALSE).  Operators are functions like OR, AND, and NOT, used to conjoin literals 

into expressions that represent system constraints.     

If all literals are assigned a truth value, then a Boolean expression containing them 

may be resolved to either true or false.  If, on the other hand, some or all of the literals are 

unassigned, then the truth of the expression may be unresolved.  Indeed, within 

configuration management literals do not typically take explicit values, as it is the 

discretion of the customer to choose which options, etc. are chosen for the vehicle.  The 

task for configuration management is to manage the set of system constraints, such that all 

valid, user-selectable configurations result in correctly specified, buildable vehicles. When 

working with Boolean expressions that contain unspecified literals, a pertinent question 

may be “Is there any set of true/false values for literals that results in the expression 

resolving to true?”  This question is known as the Boolean satisfiability problem (SAT).  

SAT approaches have been successfully applied in non-automotive sectors, for problems 
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ranging from software configuration validation, electronic circuit design validation, and 

mathematical proof-checking. 

5.5.2 Applications 

The algorithmic validation tool will use the six question types discussed previously 

(rule conflict, object activation, part family allocation, part family matching, antecedent 

relationships, and implicit relationships) to validate each proposed change.  When applying 

the support tool, the user specifies the type of analysis to conduct from the above question 

types.  Based on the information identified in the case study, the following types of 

questions should be supported: 

1. “Rule conflict.”  Is there a subset of two or more VRM rules such that no possible 

configuration may satisfy them? 

2. “Object activation.”  Can all options/parts/etc. that are declared as being available for 

selection actually be selected? 

3. “Antecedent satisfiability.”  Are there any rules for which the antecedent (IF-part) of 

the rule cannot be satisfied?  If so, then the effects of the rule are inconsequential, as 

the rule is never active.   

4. “Implicit relationships.”  Are there any binary inclusion/exclusion object relationships 

that are implicitly enforced, through the collected effects of explicit constraints? 

5. “Part family allocation.”  For a given family of alternative parts (e.g. all windshields), 

will one (and only one) of the parts be allocated for every configuration? 

6. “Part family matching.”  Consider a suite of several part families, some of which are 

intended to match to others for geometry or color reasons.  Are the rules correctly 

implemented, or is there a configuration that mismatches parts? 

Based on the question type selected, the user is required to input additional data 

into the rule set.  For example, for part family questions, the user would be required to enter 
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the part family of interest and the members of the part family.  Based on the additional 

input, the satisfiability engine is able to determine whether multiple parts from the family 

can exist in a single, valid configuration.  It is also possible for the engine to evaluate the 

existing rule set for conflicts without any additional inputs or changes to the rule database.  

This can be useful not only in evaluating changes, but also in validating the current system.  

The specifics and applications of each use case listed above are described in the following 

sections. 

5.5.2.1 Rule conflict 

Rule conflict is the most basic level of conflict that should be considered.  A rule 

conflict implies that two rules in the database cannot be satisfied concurrently.  An example 

of this would be where option A requires the presence of option B; option B requires the 

presence of option C; option C requires the absence of option A.  While it is clear that the 

three rules cannot coincide, the satisfiability solver may not return that the ruleset is invalid.  

This is due to the fact that the absence of all three options is a viable configuration with the 

above ruleset.  The major downfall of this method is that any viable configuration will 

result in a valid ruleset.  One method for minimizing the impact of this issue is to implement 

the rule conflict check alongside the object activation check discussed in the following 

section.  This check supports question 1 from the list above. 

5.5.2.2 Object activation 

Object activation tests to ensure a specific option, package or part is able to be 

included in a valid configuration.  This test is conducted iteratively for all of the objects in 
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the ruleset to check for disabled objects.  An object is considered disabled if it is not valid 

for any configuration.  This can occur as a result of legacy options or packages that are no 

longer in use, but were mistakenly left in the rule database.  It is also possible that a 

configuration change may result in disabling an object. This check supports question 2 

from the list above. 

Another aspect of the object activation test is to determine if any rules are disabled.  

In this instance, the solver is checking to see whether the “if” portion of the rule, or 

antecedent, is capable of being activated (is part of a valid configuration).  This determines 

whether or not any of the rules are disabled.  This version of the test can be combined with 

the rule conflict test to ensure that each rule is considered when determining whether there 

is a conflict. This check supports question 3 from the list above.  

5.5.2.3 Implicit relationships 

In any complex system, implicit relationships between two entities will exist.  An 

implicit relationship is a relationship between two entities that is not stated, but still exists.  

For instance, given the following situation: option A requires option B and option B 

requires option C; an implicit relationship exists: option A requires option C.  While it is 

possible to manually identify these relationships by tracing the interactions between objects 

throughout the ruleset, the use of the satisfiability solver simplifies the process.  Given two 

objects, the solver is able to quickly determine whether an implicit relationship exists 

between them.  This check supports question 4 from the list above. 
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5.5.2.4 Part families  

While the object activation test checks to ensure that all parts are active, it is useful 

to ensure that two different variants of the same part are not able to be in the same 

configuration.  For example, a car can be assembled with many different wheel options.  

However, the configuration rules should result in only a single wheel variant being called.  

These groupings of part variants are referred to as part families.  Within a part family, a “1 

and only 1” relationship exists, where only a single variant should be called from the part 

family for a given configuration.  Therefore, the solver checks that a part from the family 

is valid and that only one part from the family is valid.  This check supports question 5 

from the list above. 

Another application of part families is that certain parts or types of parts are 

designed to fit with other parts.  For instance, wheels of a certain diameter and width are 

designed to fit with a tire with a matching diameter and width.  An example that was 

discussed during the case study was the fitting of exhaust tips and bumpers.  At the OEM, 

exhaust tips can either be round or square and must fit through a similarly shaped hole in 

the bumper.  When using the satisfiability solver, part families can be created for round 

tips and the square tips, as well as for the round-hole bumpers and square-hole bumpers.  

The solver can then check to ensure that only parts are called where the correct fit is 

achieved. This check supports question 6 from the list above. 

5.6 Conclusions 

The third research objective is the development of an improved method for 

configuration change management.  Based on the findings of the case study, a configuration 
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change management method is proposed, along with design enabler support.  The design 

enablers that are integrated into the overall method include interaction evaluation to help 

identify the relationships between potential change components, complexity analysis to 

predict the difficulty of a proposed change and assist in determining the vehicle models 

that will require the most effort, graph visualization to understand how the proposed change 

can propagate through the system, and algorithmic validation to check for conflicts or other 

user-defined queries about the changed system.  While this chapter was focused on the over 

research objective, the sub-questions that help to achieve this objective are presented in the 

following chapters.  The use of graph visualization to assist in configuration management 

is discussed in greater detail in Chapter Six.  Chapter Seven focuses on the validation of 

the graph visualization design enabler, while the validation of the entire method is 

presented in Chapter Eight. 

5.7 Dissertation Roadmap 

Chapter Five presented proposed a method for configuration management and 

provided the foundation for four design enablers to support the proposed method.   As three 

of the design enablers (interaction identification, algorithmic validation, and complexity 

analysis) are not the primary contribution of this research, only the visualization support 

tool will be discussed in detail in the following chapter (Chapter Six). The progress of this 

dissertation is shown in Figure 5.8 in which the completed portion is highlighted in green. 
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Figure 5.8: Dissertation roadmap 
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CHAPTER SIX: VISUALIZATION SUPPORT TOOL 

The purpose of the research presented in this chapter is to develop a visualization 

support tool for use in the configuration management method discussed in Chapter Five.  

First, a review of data visualization and its applications is presented to show why graph 

visualizations was selected for the support tool.  Then a user study is presented to explain 

why specific design decisions were made regarding the visualization tool.  Based on the 

findings from the literature review and the development user study, a graph visualization 

support tool is developed to assist in exploring proposed changes as part of the 

configuration management method. 

6.1 Data Visualization: Review of Literature 

It is necessary to be able to understand and interact with the data and communicate 

it to others in a meaningful way [109].  This becomes even more important with increased 

amounts of data.  Previous research has shown that implementing a data visualization 

method can be useful in increasing the ability to understand complex data systems [110–

112].  An example discussed in the literature is a set of computer files.  If the files are listed 

out with their locations, finding a specific file or understanding how the files are stored 

would be nearly impossible.  Using a tree graph, the file hierarchy can be broken down into 

folders and subfolders to more easily illustrate the structure of the system. 

Graph visualization, a subset of data visualization that uses a series of nodes and 

edges to describe relationships, is applicable and in certain instances, ideal, for any dataset 

where relationships between entities are a key focus of the data [113].  Graph visualizations 
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have been shown to be useful when identifying both direct and indirect relationships 

between entities in a system [71–73,114].  This is a key application of the developed 

visualization method for use in configuration management.  Node-link graphs are 

particularly useful when considering path finding, which is essential to understanding 

possible propagation pathways [115]. It was identified that DSMs were useful in 

identifying change propagation pathways up to a point, but once the data set become too 

large, the DSMs were too difficult to interpret to be useful.   

Graph visualizations have been used to understand change propagation where 

network relationships are essential.  However, in reviewing the literature, it does not appear 

that graph visualizations have been used for configuration management.  Therefore graph 

visualization in change management is reviewed here.  In the most similar instance to the 

application derived from the case study, design structure matrices (DSMs) and node-link 

graphs were used to understand change propagation pathways in physical product 

components [46].  An example graph from this research is shown in Figure 6.1. Other 

examples of using graph visualizations to understand and interact with data networks are 

shown in [116–119]. 



 112 

 

Figure 6.1: Node-link diagram of a diesel engine for predicting change propagation 

[71] 

Though graph visualizations are useful in portraying network relationships and 

information, many factors can affect the readability of the graph itself.  One study into 

these factors is how the use of straight (Figure 6.2) verses curved (Figure 6.3) edges to 

connect components in the graph affected the overall readability of the graph [120].  The 

researchers found that the use of edge curved edges had a detrimental impact on the 

readability of the graphs. 
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Figure 6.2: Straight-edged graph [120] 

 

Figure 6.3: Curved-edge graph[120] 

Numerous researchers have focused on the aesthetics of graph visualizations [121–

123]. However, these studies focused on just the numerical aspects of the data, such as 

shortest path length, and number of edges, rather than on understanding the indirect 

relationships between nodes.  Graph aesthetics is a term used to describe the appearance of 
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a graph and includes readability.  Archambault used a series of graph visualizations over 

time to understand whether the “difference maps” were useful in understanding change to 

a network over time [124].  The researchers found that users generally preferred the 

difference maps for identifying changes over time.  It was also found that use of the 

difference maps was effective in answering questions about large scale changes over time.  

Lastly, Holten considered how varying the drawing of edges in a directed graph affected 

the readability of the graph [125]. 

Additionally, multiple researchers have provided guidelines on the use of color on 

the effectiveness of visualizations as a whole and the potential effects of poor or ineffective 

implementation [126–128].  Purchase et al. conducted a series of studies on the effects of 

using different graph layout algorithms [123,129].  The researchers found that it was 

difficult to show that any one algorithm provided the “best” result; however, it was shown 

that the use of an algorithm, particularly one that minimizes crossing paths, is more 

effective for improving graph readability.  This sentiment is echoed in the review of graph 

visualization layout techniques by Gibson, et al [130]. 

6.2 Graph Layout User Study (Development Study) 

The first step in developing a visualization method for configuration management 

is to understand the information requirements for the user interface.  Specifically, what is 

it that the user needs to see when applying the method.  In this way, it is possible to 

backtrack from the required information to the available information provided in the 

current organizational systems to determine the additional requirements of the visualization 

method.  In order to better understand what information best assists the user in identifying 
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relationships between configuration components, such as options, parts, and configuration 

rules, a user study was conducted using different variations on the layout and available 

information provided to the user.  The user study was designed in accordance with the 

benchmark task method proposed in [131].  The remainder of the section provides 

additional details regarding the design and execution of the development user study. 

6.2.1 Research Questions for Development Study 

Research has shown that different types of data representation may be more 

accommodating for answering different types of questions about the system being 

represented [121,125,129].  This led to the following research questions: 

1. How does the layout of the data representation graph affect the ability of the user 

to successfully answer questions about the system being represented? 

2. How does the coloring of the data representation graph affect the ability of the 

user to successfully answer questions about the system being represented? 

3. Does a change in the amount of information represented affect the user’s ability to 

answer questions about the system? 

It is hypothesized that the layout will not have a significant impact, while increasing 

the color-coding will increase the ability to correctly answer questions.  This hypothesis is 

made because the color-coding should increase the user’s ability to easily identify different 

types of interactions.  Additionally, the it is hypothesized that limiting the amount of 

information will increase the accuracy of responses for those questions that are still 

answerable, while making it impossible to answer the questions regarding the missing 

information.  This hypothesis is made because limiting the amount of information should 

remove clutter from the graph, more easily highlighting where the interactions take place. 
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6.2.2 Variables for Development Study 

In order to answer the above research question, a user study was developed and 

executed.   The user study consisted of three experimental variables: 

 geometry of the graph used for data visualization 

 coloring of the interactions between the nodes in the graph 

 amount of information available to the user 

The first variable consisted of two levels: the graph is arranged with the vehicle 

option nodes on the outside in a circle (Figure 6.4 (b)), or the vehicle option nodes arranged 

based on the functionality of the option (Figure 6.4 (a)).  The purpose of this variable was 

to see if the layout of the graph allowed for easier identification of interactions or if the 

shape did not matter and any shape would result in the same accuracy of the responses 

(research question 1). 

  

Figure 6.4: Functionally arranged graph (a) and circular graph layout (b) 

The second variable included two levels: interactions regarding parts were red with 

all other interactions grey (Figure 6.5 (a)), or interactions were color-coded based on 

whether they were inclusions, exclusions, or either/or relationships (Figure 6.5 (b)).  The 
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purpose of this variable was to determine whether the coloring allowed for easier 

identification of different types of interactions (research question 2). 

  

Figure 6.5: Graph colored based on part data (a) or based on interaction type (b) 

The third variable included two levels: all information (Figure 6.6 (a)) or reduced 

information (Figure 6.6 (b)).  The purpose of this variable was to determine if removing 

some of the information increased the user’s ability to answer the remaining questions with 

greater clarity (research question 3). 

 

Figure 6.6: Graph will all information (a) and option information only (b) 
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A final variable consisted of two different orders in which the questions were asked 

and was simply used to determine whether the question order affected which questions 

were answered correctly.  This variable is not used to answer a research question, but to 

ensure robustness of the experiment.  Limited analysis was needed as the results were 

comparable. 

6.2.3 Participants for Development Study 

The participants for this user study consisted of industrial engineering students 

enrolled in the junior level industrial engineering operational research course (IE 3810 at 

Clemson University).  During the case study (discussed in Chapter Four), it was identified 

that many of the engineers conducting configuration management at the OEM did not have 

a mechanical engineering background, but they did have some form of engineering 

background.  Therefore, using junior-level industrial engineering students was applicable 

for the purposes of this study. The students were selected for this study as they provided a 

large sampling (78 students) with homogenous educational backgrounds and experience.  

As such, it was unlikely that any variation in the results of the experiment would be due to 

differences in educational preparation.  The students had varying levels of work 

experience, but due to the low likelihood of working with a visualization tool similar to the 

one being used in the study, it was assumed that prior work experience was outside the 

scope of the study.  The students were not rewarded based on the quality of their results.  

However, participation in the user study was counted as a “quiz grade” in order to ensure 

participation for the experiment. 
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6.2.4 Environment for Development Study 

The user study was conducted in a single one-hour session during a normally 

scheduled class period of the junior operational research course.  The students were told a 

week in advance that they would be conducting an in-class exercise.  By conducting the 

experiment in a single session during the normal class period, the researcher was able to 

ensure that the time of day for the experiment did not affect the outcome of the study while 

maximizing the availability of the participants.  The setting for the experiment was the 

room in which the course usually met.  The classroom layout was a typical, auditorium-

style classroom with a presentation stage in the front of the room and tables for the students 

to sit at, all facing the front of the classroom (as depicted in Figure 6.7).  The experience 

of the students due to environmental conditions was uniform.  The experiment was 

conducted during the twelfth week of the Spring semester of the students’ junior year. 

 

Figure 6.7: Classroom layout 
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6.2.5 Response Form Design for Development Study 

In developing the response form to be used in the experiment, the first step was to 

determine the type of queries that may be asked of the visualization during the change 

evaluation process.  During the course of the case study discussed in Chapter 4, numerous 

types of questions were identified that are commonly considered during a change to the 

configuration system.  For the purposes of this experiment, the list of queries was further 

expanded through additional interviews with Launch and Change Control personnel at the 

OEM.  This resulted in the following list of query types:  

 availability of additional options based on a specified set of options 

 availability of parts based on a specified set of options 

 comparing option availability in different models 

 effects of adding rules or options to the system 

 effects of removing a part from the possible set 

 identifying logic errors in the configuration set 

A list of queries was then developed from the set of required query types.  The 

response form used in the study is shown in 9.2Appendix E:.  The list of queries follows: 

1. Which vehicle options are not available to US customers for the available 

windshields? 

2. If a US customer wants option S5DFA, what windshield part numbers are available?  

Which numbers are not available?  Does it change for a customer in Europe and why? 

3. If a vehicle option (S123A) was added to the Europe model that requires S5ARA and 

cannot work with S5DFA, will this cause any problems?  Why or why not? 

4. Provide a feasible vehicle option combination to result in Part number WS 495 (in 

Europe). 

5. Which part numbers are compatible with option S610A (in Europe)? 
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6. Are there any option contradiction errors in the connectivity graph?  If so, what are 

they? 

7. If a European customer wants S5ATA, how does this affect availability of other 

vehicle options?  

8. If a customer in Europe wants option S358A, what other vehicle options are affected, 

and how? 

9. Which windshields are not offered in the US? 

10. Provide a feasible vehicle option combination to result in Part number WS 401 (for 

Europe). 

11. Is there any scenario where a combination of vehicle options will result in two 

different windshields being required (in Europe)? 

12. Are there any valid vehicle option combinations where no windshields are specified? 

13. If windshield WS 399 was removed from the European model, would this cause any 

issues? Why or why not? 

Before conducting the experiment, it was necessary to ensure that each type of 

query was being asked in multiple ways.  Triangulating the queries to ensure each type is 

covered in multiple ways is important when attempting to understand the relationship 

between the independent and dependent variables within a study [102,132]. The 

triangulation of questions for the user study is shown in Table 6.1. 



 122 

Table 6.1: Survey question triangulation 

 

The above table provides an expanded list of possible query types with the question 

number from the survey that corresponds to that subject.  The interaction between options 

and parts has the highest level of querying as it is the most complex relationship within the 

configuration model.  Also, as the identification of errors in the configuration model is the 

primary purpose of the data visualization, finding errors in the available parts and options 

was important.  While three of the query types were only given a single question in the 

form, this was done purposefully as these subjects are not as central to the purpose of the 

visualization and the number of total questions in the survey was purposefully limited to 

keep the time requirement within a single class period. 

Triangulation

Question type 1 2 3 4 5 6 7 8 9 10 11 12 13

Option availability X X

Option - part 

interaction
X X X X X X

US vs Europe 

availability
X

Effect of adding 

rule/option
X

Using options to 

choose a part
X X

Finding option 

errors
X X X

Option - option 

interaction
X X

Finding part errors X X X

Effect of removing 

a part
X

Question
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6.2.6 Experimental Procedure for Development Study 

The students arrived for the normally scheduled class and sat at tables of their 

choice.  Once all of the students had arrived and were seated, the user study packets were 

distributed to the students.  Each packet contained a form and two visualization graphs.  

The assignment of groups and the contents of each packet will be discussed in the following 

section.  12 different packet sets were randomly distributed throughout the class.  All work 

was conducted individually.  Once the packets were distributed, the instructions were 

provided to the participants.  Additionally, a brief (approximately 5 minutes) tutorial on 

the data visualization techniques was provided.  This was done because none of the 

participants had prior experience with the data visualization method being used to represent 

the system discussed in the form.  Following the tutorial, the students were allowed to ask 

any questions regarding the form or the data visualization technique.  The participants were 

then given 40 minutes to complete the experiment.  However, upon completion of the 

questionnaire, individual students were allowed to submit their packets early and leave the 

classroom. 

6.2.7 Packet Set-Variable Assignment for Development Study 

The sets (1-12) were assigned such that each packet set would test a different set of 

variables.  All relevant combinations were provided.  It should be noted that the part-base 

level for coloring variable requires the full level for the information availability level.  The 

assignment of the variables to the packet sets is shown in Table 6.2. 
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Table 6.2: Packet set-variable assignment 

 

The materials that each participant received depended upon the packet set to which 

they were assigned.  However, every student from all of the groups received one form with 

thirteen questions about the system being presented, and two data visualization graphs (one 

representing US models and one representing European models).  The queries chosen for 

the survey were selected based on research with a manufacturing company on what types 

of questions would be asked of a visualization tool used in identifying component 

interactions and errors within a system.  An example of one of the data visualization graphs 

is shown in Figure 6.8.  The depicted graph is the European graph received by Groups 1 

and 7.  All of the graphs are found in 9.2Appendix F:. 

Condition 1 2 3 4 5 6 7 8 9 10 11 12

Functional X X X X X X

Circle X X X X X X

Full X X X X X X X X

Reduced X X X X

Interaction-

based
X X X X X X X X

Part-based X X X X

Order A X X X X X X

Order B X X X X X X
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Figure 6.8: Example of a visualization graph (provided to Groups 1, 7) 

6.2.8 Pilot Study for Development Study 

Prior to the execution of the user study, a pilot study was conducted.  The purpose 

of the pilot study was to determine the time requirements for the user study execution and 

to validate the queries and procedures for the user study.  The time required to conduct the 

user study was a topic of consideration in that the user study needed to be conducted during 

a single class period in order to minimize the impact on the students and to ensure that the 

training and experiment could be conducted concurrently.  The queries needed to be 

validated to ensure that the participants were not confused by the wording and that the 

novice students were capable of answering the queries. 
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To execute the pilot study, the procedure described earlier was used.  Following the 

presentation, the participants were given a block of time to finish.  In this instance, 

however, the time was not limited to allow for maximum time to finish.  The participants 

were nine beginning graduate level engineering students with no experience in using graph 

visualizations for configuration management.  The difference in experience level between 

the participants in the pilot study and in the full study was not expected to be a factor due 

to the similar level of inexperience with graph visualizations.  Additionally, no conclusions 

were drawn from the pilot study other than time to finish and question answerability. 

After evaluating the responses, it was determined that only a few of the queries 

needed rework in order to ensure that they were clearly understood and could be answered 

by a novice user.  Additionally, the average time requirement was determined to be 

approximately 22 minutes, with a maximum time required of 28 minutes.  The results of 

the pilot study ensured that the user study could be executed in its present form, with 

minimal modifications, during a single class period. 

6.2.9 Evaluation Protocol for Development Study 

The forms were evaluated according to the number of queries answered correctly.  

In many of the queries, multiple correct answers were possible and varying levels of detail 

were acceptable.  As a result, the possibility existed for subjectivity in the grading process.  

However, because a single evaluator was used to examine all of the responses, this 

minimized the amount of variability in the grading process.  As such, no inter-rater 

reliability assessment was conducted. 
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6.2.10 Evaluation Metrics for Development Study 

The metrics that were used for evaluation are correctness and confidence.  These 

metrics were chosen because it was not only important to determine which set of variables 

produced the most accurate or correct responses, but also to determine the confidence of 

the users in selecting those answers.  As such, it was necessary to include a method for 

measuring the participants’ confidence levels for each individual question. 

Determining the correctness for each response was simple.  The total number of 

correct responses was determined, along with the number of possible correct answers (in 

the packet sets with limited information available, not all questions were capable of being 

answered).  The confidence for each response was collected using a modified 100 mm 

scale.  In the traditional 100 mm scale, the user makes a tick mark along a blank 100 mm 

line and the distance from the left side to the mark is measured and recorded for the 

confidence [133,134].  A similar rating method was used in previous studies on confidence 

in design review decision-making [135].  To simplify the process, the line used in this study 

was graduated at 10% intervals, from 0 to 100.  An example of the scale with a tick mark 

is shown in Figure 6.9. 

 

Figure 6.9: Modified 100mm confidence scale 
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6.2.11 Results for Development Study 

A total of 78 forms were collected from the participants and evaluated by a single 

grader, as previously discussed.  The data was tabulated into spreadsheets for ease of 

analysis. 

For correctness, the results were consolidated according to the different variable 

levels.  For instance, all of the groups of individual participants that received the full 

information in the graph (1, 3, 4, 6, 7, 9, 10, 12) were in one consolidation, while the groups 

receiving reduced information (2, 5, 8, 11) were treated separately.  This was done for each 

variable in order to see how the different variables affected the accuracy of the responses.  

The results for each group and the consolidated results are shown in Table 6.3 and Table 

6.4 respectively.  Blank spaces in Table 6.3 represent queries that were unanswerable due 

to a lack of available information. 

Table 6.3: Number of correct responses for each question by group 

 

# responses 1 2 3 4 5 6 7 8 9 10 11 12 13

1A 7 2 5 6 3 7 1 5 3 6 7 7 1 2

2A 7 7 6 6 6

3A 7 1 5 5 2 5 0 4 2 4 6 5 1 4

4A 7 4 3 4 1 6 0 6 6 5 7 6 4 1

5A 7 3 5 3 1 3 1 5 6 6 3 4 3 2

6A 7 6 5 6 4

1B 6 3 3 5 2 5 0 3 2 3 6 4 1 1

2B 7 7 6 7 7

3B 5 3 3 3 0 5 0 4 3 5 3 2 3 1

4B 6 2 3 6 2 3 0 5 0 6 6 4 1 0

5B 6 3 4 3 2 4 0 4 3 5 5 3 0 2

6B 6 4 5 5 4

P
ac

ke
t 

Se
t

Query
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Table 6.4: Percent of correct responses by variable 

 

Table 6.4 also includes the percent difference between the variable levels, with 

those questions indicating a noticeable difference between the variables highlighted in 

yellow. 

For confidence, the level of confidence for each query was measured using the 

graduated scale on the confidence indicator line.  This was done for each query and then 

consolidated for each group.  The average confidence levels for each question for each 

group are shown in Table 6.5. 

Table 6.5: Average confidence for each question by group 

 

1 2 3 4 5 6 7 8 9 10 11 12 13

Parts 41% 61% 69% 25% 75% 4% 71% 49% 78% 84% 69% 27% 25%

No Parts 89% 0% 0% 0% 0% 0% 81% 89% 0% 0% 0% 78% 0%

% Diff 54% 100% 100% 100% 100% 100% 13% 45% 100% 100% 100% 65% 100%

Circle 56% 58% 62% 23% 62% 4% 77% 67% 85% 81% 65% 41% 19%

Function 59% 64% 76% 28% 88% 4% 72% 59% 72% 88% 72% 49% 32%

% Diff 4% 10% 19% 18% 30% 4% -7% -13% -18% 8% 9% 16% 40%

Colored 54% 36% 54% 21% 54% 3% 74% 56% 51% 67% 54% 38% 10%

Red/Grey 62% 44% 36% 13% 44% 3% 74% 69% 51% 44% 36% 51% 23%

% Diff 13% 18% -50% -60% -24% 0% 0% 19% 0% -53% -50% 25% 56%

Set A 55% 64% 64% 25% 75% 7% 74% 69% 75% 82% 79% 45% 32%

Set B 61% 57% 74% 26% 74% 0% 75% 56% 83% 87% 57% 44% 17%

% Diff 10% -14% 13% 4% -1% 100% 2% -24% 9% 6% -39% -2% -85%

Query
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6.2.12 Discussion for Development Study 

It should first be noted that there are limitations in the analysis due to the responses 

of the participants.  From evaluating the responses, it was identified that some of the 

participants did not take the experiment seriously or were confused by the instructions.  

This conclusion was made due to a number of responses being unsuitable based on the 

question being asked and/or instructions provided to the participants.  For example, in 

multiple instances, the participants would respond to a question asking for vehicle options 

with a series of part numbers.  This is clearly an example of the participants being confused 

by what was being asked in the question.  In such an instance, the response was simply 

scored as incorrect, even if the thought process might have been correct.  Additionally, a 

number of students turned in their completed questionnaires after only 15 minutes of work.  

During the pilot study discussed in Section 3, the fastest completion times were 20 minutes 

or higher, so it is unlikely that multiple participants were able to finish that quickly.  It is 

more likely that the students rushed through the questions in order to be released early.  

Fortunately, the above situations were in the small minority and should not significantly 

affect the outcomes. 

6.2.12.1 Availability of information 

When considering the availability of part information, a definite trend existed 

where the accuracy of the answerable questions greatly increased when the part 

information was removed from the data visualization graph.  Figure 6.10 illustrates the 

percentage of correct responses for each question for both the full information and reduced 

information (part vs. no parts) groups. 
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Figure 6.10: Graph of the correctness for each question based on availability of 

information 

In the questionnaires, the only questions that remained answerable after the removal 

of the part information were Questions 1, 7, 8, and 12.  In the above graph, all other 

questions are shown as having 0% correct responses for the “No Parts” group.  However, 

for the answerable questions, the percentages of correct responses were significantly higher 

in almost all situations.  The percentages for the answerable questions ranged from 78% to 

89%, whereas the range for the same questions for the “Parts” group was 27% to 71%.  

This corresponds with the hypothesis that decreasing the amount of information presented 

will increase the ability to answer correctly for those questions that are still answerable. 

However, it should also be noted that for 9 of the 13 questions (the unanswerable 

questions for the “No Parts” group), the one group was not even able to attempt the question 

due to the lack of information.  Therefore, there are clearly situations where the full amount 

of information will be required in order to answer the questions.  In such situations, it may 
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be advantageous, based on these results, to find other methods for limiting the total amount 

of information presented to the user through the visualization graph. 

6.2.12.2 Color-coding of interactions 

There appears to be little correlation between the method for color-coding the 

interactions between the components and the user’s ability to accurately answer the 

questions.  Figure 6.11 depicts the percentage of correct responses for each question for 

the groups based on the type of color-coding used to identify interactions. 

 

Figure 6.11: Graph of the correctness for each question based on color-coding 

As seen in the above graph, the percentage of correct responses for each question 

do not differ significantly based on the type of color-coding used to identify the 

interactions.  Only 5 of the 13 questions (3, 4, 10, 11, 13) show a marked difference 

between the percentages of correct answers.  Additionally, one of the questions (13) shows 

a difference in the opposite direction (color-coding based on the node type being superior), 

and the majority of the non-significant differences also show the node type color coding 
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being slightly superior.  As such, it is impossible to show that there is a direct relationship 

between the color-coding scheme used and the accuracy of the responses. 

6.2.12.3 Confidence 

An ANOVA was conducted for the confidence ratings for the different groups.  The 

analysis showed no statistically significant difference in the confidence of the users based 

on which type of graph they were given.  Due to differences in the way the confidence was 

understood by the participants and a lack of variation in the results for confidence, no 

conclusions were able to be made regarding the resulting confidence levels of the 

participants for individual questions. 

6.2.12.4 Graph geometry 

No correlation was found between the geometry of the data visualization graph and 

the accuracy of the responses.  Figure 6.12 illustrates the percentage of correct responses 

for each question for the groups based on the graph geometry. 

 

Figure 6.12: Graph for the correctness of each question based on layout 
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As seen in the above graph, the percentages of correct responses for each question 

are almost the same, regardless of the geometry of the graph.  Only 2 of the 13 questions 

show a marked difference between the percentages of correct answers.  As such, it is 

suspected that there is no relationship between the shape of the graph and the accuracy of 

the responses 

6.2.12.5 Question order 

To ensure that question order did not play a factor in the accuracy of the responses, 

two different orderings of the questions were used.  Figure 6.13 illustrates the percentage 

of correct responses for each question for the groups based on the order of the questions. 

 

Figure 6.13: Graph of the correctness for each question based on order 

As seen in the above graph, there is no trend for response accuracy based on the 

order of the questions.  Therefore, it can be concluded that the ordering of the questions 

did not impact the results. 
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6.2.13 Findings of the Development Study 

The results generally showed an increase in the percentage of correct answers for 

those questions that could still be answered when the amount of information presented was 

reduced.  On the other hand, the color-coding scheme did not seem to have any identifiable 

effect on the results.  The most significant limitation in this study was the possibility for 

variations in the amount of effort put forth by the participants.  It was clear, based on the 

results, that some of the students did not put forth their best effort or follow the instructions 

of the experiment. 

6.3 Development of the Visualization Tool 

The purpose of the graph visualization creation tool is to automatically import the 

output from the previous tool and display a node-link graph visualization.  Additionally, 

the tool will provide a degree of interaction for the user to be able to manipulate the graph.  

As discussed in the literature review, the ability to interact with the visualization greatly 

enhances the user’s ability to understand the representations being displayed in the graph.  

A graph visualization software package was developed in order to fulfill the requirements 

for the design enabler to support the proposed configuration management method.  The 

following section discusses the process for selecting the platform to be used for the graph 

visualization tool. 

6.3.1 Platform Selection 

Three platforms are being considered for the development of the graph visualization 

that will provide the foundation for the visualization method.  These platforms are Gephi 

[136], Data-Driven Documents (D3) [137], and Processing [138]. 
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6.3.1.1 Gephi 

Gephi is a visualization tool used for exploring networks, systems, and graphs 

[136].  Unlike the other platforms being considered, Gephi is a fully functional software 

package for importing node and edge data and displaying interactive network graphs.  The 

researcher also has some familiarity with Gephi as the early visualization graphs used in 

the user study (discussed in 6.2) were created using this software.  The major benefits of 

Gephi are that it already exists, is open-sourced, and can be modified through the use of 

plugins.  The major drawbacks of Gephi are that many of its functions are unrelated to the 

goals of this research, the development of new plugins would require learning a new 

programming language, and does not provide, even with additional plugins, some 

capabilities for data encoding that may be necessary for this research. 

6.3.1.2 Data-Driven Documents (D3) 

D3 is a JavaScript library that is used to visualize data in meaningful ways [137].  

Because D3 is a JavaScript library, much of the desired functionality for the visualization 

support tool is already available, but would require the supporting programming code for 

interacting with the data and displaying the results properly.  This leads to the major 

benefit, and also drawback, of using D3.  On the one hand, the required functionality 

already exists and D3 is capable of a wide range of possibilities with respect to visualizing 

graph-based data.  The drawback is that D3 is run in HTML, which would require a better 

understanding of data recovery and programming in HTML. 
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6.3.1.3 Processing 

Processing is an open-source programming language that was designed specifically 

to assist in adding a visual context to data [138].  Processing is a widely used language 

within data visualization and has over 100 libraries to extend the capabilities of the original 

software.  The main positive of using processing as the platform is that the software is 

completely build-to-suit, meaning that the resulting tool can be programmed to be exactly 

what is required.  Other benefits are that the large number of libraries can assist in 

developing the necessary functions and the researcher is already familiar with the 

programming language.  The largest drawback is that the graph visualization software 

would have to be built from scratch. 

6.3.1.4 Summary 

The level of familiarity, availability, and functionality for each of the possible 

platforms is shown in Table 6.6: Software platform selection overview.  Due to the low 

level of familiarity with programming with D3, as a result of it being HTML-based, D3 is 

rejected from the possible platforms.  Additionally, Gephi is excluded because it is not 

capable of some of the required functionality for the visualization support method.  As a 

result, Processing is chosen as the platform for the development of the visualization support 

method. 
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Table 6.6: Software platform selection overview 

 

6.3.2 Visualization Tool Requirements Identification 

Through the course of the case study, a need was identified for support tools to 

assist in the configuration management process, to include managing the effects of 

proposed configuration changes.  In order to address the identified issues, the following 

requirements are proposed: 

 Able to easily visualize the interactions between configuration components 

(including parts) 

 Able to highlight specific problem areas to assist in simplifying the rule database 

 Able to check for errors in the existing rule database 

 Able to preview how proposed configuration changes would affect the existing 

rule database 

These requirements were identified through the interviews to address specific 

issues experienced by the automotive OEM in their current configuration management 

process.  
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6.4 Implementation of the Visualization Tool 

6.4.1 Data Organization and Source 

In order to create each graph visualization, two sets of inputs are required: the nodes 

(items of interest) and the edges (relationships) of the graph.  Both of these inputs are 

created through the additional software tools used to support the configuration management 

process at the OEM (discussed in 5.2).  The following subsections describe the inputs in 

more depth. 

6.4.1.1 Graph Nodes 

The graph nodes, or items of interest, consist of the vehicle options, parts and 

packages that exist in the configuration rule database.  Also, the researcher created “AND” 

and “OR” nodes to assist in representing rules that are not strictly binary.  In addition to 

the node label, the following information is recommended for capture in the input file: a 

unique ID number for easy recall and data storage, the type of node, the lowest level of 

interaction from the specified nodes, and the X/Y coordinates for the nodes position in the 

graph. 

Specifying the type of node increases the amount of information that can be visually 

stored in the graph and allows for easier understanding of what a specific node entails.  The 

lowest level of interaction from the specific nodes identifies the number of interactions 

required to move from the original nodes to a specific node (for example: in A->B->C, 

where “A” is a node specified in the change document, the level of interaction for “C” 

would be 2).  This information is useful in that it can assist the user in determining the 

likelihood of a change propagating to other components.  Lastly, the X/Y coordinates are 
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useful if any prepositioning of the nodes is used for an initial layout of the graph.  An 

example node input file is shown in Figure 6.14. 

 

Figure 6.14: Example graph node input file 

6.4.1.2 Graph Edges 

The graph edges, or relationships between the nodes, consist of the rules that govern 

how the different components interact.  These relationships include all of the rules as 

specified in the option and part rule databases, as well as function class information.  It is 

also possible to use new rules as created in the conflict detection tool as relationships.  

While it may be useful to label the edges on the graph, a label is not currently included in 

the information provided in the edge input file.  The information provided for each edge is 

a unique ID number of easy data storage and recall, the source node of the edge, the target 

node of the edge, and the type of edge. 

The source node of the edge refers to the “If” portion of the rule in a binary rule, 

while the target node refers to the “Then” portion of the rule.  In more complex rules (non-



 141 

binary), a more comprehensive grammar must be used and is discussed in 6.4.2.1.  The 

edge type represents the type of relationship between the nodes.  Three different types of 

relationships are currently used: inclusive, exclusive, and multiple-inclusive relationships.  

An inclusive relationship means that the source requires the target to also be present.  

Similarly, exclusive requires that the target must not be present.  The multiple-inclusive 

relationship is used in conjunction with “OR” and “AND” nodes to help delineate that the 

relationship is not binary.  Multiple-exclusive could also be represented separately, but has 

not been used in the current implementation.  An example of an edge input file is shown in 

Figure 6.15. 

 

Figure 6.15: Example graph edge input file 

6.4.2 Methods 

The following subsections describe the two major functions of the visualization 

tool: graph creation and graph manipulation. 
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6.4.2.1 Graph Creation 

In graph creation, the data from the input files are read and displayed on the screen 

in a node-link diagram.  In order to accurately depict the different types of 

rules/relationships between nodes, a visualization grammar was required.  For binary rules, 

the grammar consists of an arrow pointing from one node to another.  An example of an 

inclusive, binary rule is shown in Figure 6.16.  In the figure, P5A3A is the source node, 

and S5ACA is the target node, meaning that if P5A3A is present, S5ACA must also be 

active.  The green arrow is being used to represent the inclusivity of the relationship. 

 

 

Figure 6.16: Rule and corresponding graph for an inclusive, binary relationship 

On the other hand, an exclusive, binary relationship is shown in Figure 6.17.  In 

this instance, the presence of S5A1A requires that P5A3A not be present for the 

configuration to work. 

 

 

Figure 6.17: Rule and corresponding graph for an exclusive, binary relationship 

When considering relationships that are not binary, “OR” and “AND” nodes are 

used to assist in representing the rules.  An example of a rule with an “OR” node is shown 
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in Figure 6.18.  In this graph, the “OR” node is created as the target for the “If” part of the 

rule and the source for the “Then” part of the rule.  The meaning of the following graph is 

that if S645A is present, then neither S825A nor L807A must be present. 

 

 

Figure 6.18: Rule and corresponding graph for a relationship requiring an “OR” 

node 

An “AND” node is represented in a similar manner to the “OR” node and is shown 

in Figure 6.19.  The following graph shows that if both L807A and S6VAA are present, 

then S6AEA cannot be present. 

 

 

Figure 6.19: Rule and corresponding graph for a relationship with an “AND” node 

Another example of an “AND” node is shown in Figure 6.20.  In this example 

though, one of the source nodes has a negative attached to it, changing the type of 

relationship between the node and the “AND” node.  The resulting interpretation is that if 

L807A is not present, but S552A is present, then S5ACA must be present. 
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Figure 6.20: Additional rule and graph for a relationship with an “AND” node 

Colors were chosen to represent the types of relationships instead of either size or 

dash-lines because in a more complex graph, it is more difficult to distinguish between or 

trace different line thicknesses or different types of dashed lines.  While red, green, and 

blue were chosen for the colors in this mapping, a different set of colors could be used in 

their place.  An example of a completed graph is shown in Figure 6.21. 

 

Figure 6.21: Graph visualization for a specific change 
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6.4.2.2 Graph Manipulation 

While it is possible to explore a static graph visualization, the ability to interact 

with the data greatly increases the user’s understanding of the system.  As such, the 

software tool supports graph manipulation.  The current level of interaction includes the 

ability to move nodes on the existing graph, to create new nodes and edges, to remove 

nodes, to highlight a specific node and all of its interactions, and to rearrange the layout of 

the graph to increase readability.  Additional options are for the user to save the existing 

visualization or to reset the visualization to its original state. 

At the most basic level of interaction is the ability of the user to move the existing 

nodes.  This is necessary as it allows the user to manually position items of interest or to 

cluster specific nodes based on some criteria.  As the edges are directly linked to the nodes, 

as the nodes are moved, the edges change to accommodate the placement of the nodes. 

As one of the required tasks of the visualization is to assist in the evaluation of 

potential changes to the system, it is necessary for the user to be able to add and remove 

nodes and edges.  At present, the current system allows the addition of both nodes and 

edges, but only the manual removal of nodes.  When a specific node is removed, however, 

all of the associated edges are removed as well.  When adding a node or edge, the user 

must also have the ability to specify which type of node or edge is being created, along 

with entering in any information that is to be stored in the associated data file. 

When evaluating the potential propagation pathways from one node to another, it 

is useful to be able to select a specific node for highlighting.  When a node is selected, all 

of its interactions are highlighted, while any relationships not directly related to the node 
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are dimmed slightly.  These represent the first-order interactions for the node.  It may also 

be possible to allow the user to change the order of interaction for this highlighting for 

increased user specificity.  To show the full relationship, the path between nodes should be 

between two components (options/parts/packages) and not “AND” or “OR” nodes, but 

should pass through the intermediate nodes.  An additional extension of this is that when 

two nodes are selected, the shortest path between them (or all unique paths) is highlighted 

to show the level of interaction between the two nodes. 

Research has shown that while using a specific layout algorithm is not essential, it 

is important to use some algorithm for arranging the nodes.  This helps to alleviate clutter 

and greatly increases the readability of the graph.  For this visualization, a force-directed 

algorithm is used and will be discussed further in the following section. 

In addition to the ability to save the current visualization (which captures the current 

image of the graph), it is also useful to be able to output the current data files that go with 

the graph.  The data files could be outputted in the data file format as described in 6.4.1 or 

in the form of rules that could then be merged with the existing rule database. 

6.4.2.3 Force-Directed Graph Layout 

The force-directed algorithm is a basic graph layout algorithm that uses a repulsive 

force between all nodes and an attractive force along all edges.  To apply the algorithm, a 

repulsive force is determined between the nodes and a movement value is created for each 

node.  Then the attractive force is determined for each edge and each nodes movement 

value is adjusted accordingly.  After both forces have been applied, the nodes are moved 

according to their final movement values.  This process is repeated until the user is satisfied 
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with the dispersion of the nodes.  It is also important that outer boundaries are set for the 

nodes to ensure that the graph does not grow continually, but rather reaches a steady-state. 

6.5 Software Development 

This section describes the programming methods used to transform source data into 

a graph visualization and then allow the user to interact with the graph.  All of the code 

found in this section is from Processing (www.processing.org), a common visualization 

programming language.  The first task is to import the data from the graph and edge files 

and store them locally for editing, as discussed in 6.5.1.  A discussion of the data classes 

that are used for data storage can be found in 6.5.2.  From the graph data, the software then 

creates the graph visualization, as discussed in 6.5.3.  Lastly, the tool provides the ability 

to interact with the graph, as discussed in 6.5.4. 

6.5.1 Data Management 

For each input file (node and edge), a data table is created.  For the data tables, a 

specific object class is used.  The data is stored in a dataTable, along with some meta-data 

about the table to increase the ability to search through the data.  The purpose of this is to 

store the data in a way that is more manageable both for retrieval and editing. 

1 class dataTable { 

2   int rowCount; 

3   String[][] data; 

4   String[] columnNames; 

5      

6   dataTable(String filename) { 

7     String[] rows = loadStrings(filename); 

8     data = new String[rows.length-1][]; 

9  

10     // skip row 0 (column headers) 

11     for (int i = 1; i < rows.length; i++) { 

12       // skip empty rows 

13       if (trim(rows[i]).length() == 0) { continue; } 

14  

15       // split the row on the tabs 

http://www.processing.org/
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16       String[] pieces = split(rows[i], TAB); 

17        

18       // copy Data into the table starting at pieces[1] 

19       data[rowCount] = (subset(pieces, 0)); 

20  

21       // increase row count 

22       rowCount++;       

23     } 

24     // resize the array as necessary 

25     data = (String[][]) subset(data, 0, rowCount); 

26   } 

27      

28   int getRowCount() { 

29     return rowCount; 

30   }   

31    

32   String getString(int rowIndex, int col) { 

33     return data[rowIndex][col]; 

34   } 

35 } 

6.5.2 Data Classes 

To assist in creating the graph and storing information that is specific to the nodes 

or edges, two additional data classes are used: Node and Edge.  For the nodes, the Node 

class stores the information from graph input file as well as contains a function for how the 

nodes should be drawn on the graph.  Additionally, another variable “selected” is either 

turned on (1) or off (0) depending on whether or not the node has been highlighted.  The 

coloring of the node is defined according to the type of node. 

1 class Node 

2 { 

3   String label; 

4   int ID; 

5   int selected = 0; 

6   int nodeType; 

7   float x; 

8   float y; 

9  

10   Node(int _ID, String _label, int _nodeType, float _x, float _y) { 

11     ID=_ID; label=_label; nodeType=_nodeType; x=_x; y=_y; 

12   } 

13  

14   void draw(int selection) { 

15     int opacity = 255; 

16     if (selection == 1) { 

17       opacity = 100; 

18     }  

19     strokeWeight(10); 

20     if (selected == 1) { 

21       strokeWeight(12); 

22       opacity = 255; 

23     } 
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24     if (nodeType == 1) { 

25       stroke(255, 100, 0, opacity); 

26     } else if (nodeType == 2) { 

27       stroke(0, 200, 200, opacity); 

28     } else if (nodeType == 3) { 

29       stroke(0, 0, 200, opacity); 

30     } else if (nodeType == 4) { 

31       stroke(200, 200, 0, opacity); 

32     } else if (nodeType == 5) { 

33       stroke(200, 0, 200, opacity); 

34     } else { 

35       stroke(150); 

36     } 

37     point(x, y); 

38     fill(0); 

39     textSize(13); 

40     textAlign(LEFT, CENTER); 

41     text(label, x + 10, y - 10); 

42   } 

43 } 

For the edges, the Edge class stores the information from graph input file as well 

as contains a function for how the edges should be drawn on the graph.  The method for 

drawing the edges is to create a line from the source node to the target node, with an 

arrowhead also being drawn on the target end (lines 42-52).  Additionally, another variable 

“selected” is either turned on (1) or off (0) depending on whether or not an associated node 

has been highlighted.  As with the nodes, the coloring of the edge is assigned according to 

the type of edge. 

1 class Edge 

2 { 

3   int edgeType; 

4   Node source; 

5   Node target; 

6  

7   Edge(Node _source, Node _target, int _edgeType) { 

8     source=_source; target=_target; edgeType=_edgeType; 

9   } 

10  

11   void draw(int selection) { 

12     strokeWeight(4); 

13     int opacity = 255; 

14     if (selection == 1) { 

15       opacity = 100; 

16     }  

17     if (source.selected == 1) { 

18       strokeWeight(8); 

19       opacity = 255; 

20     } 

21     if (target.selected == 1) { 

22       strokeWeight(6); 

23       opacity = 255; 

24     } 
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25     if (edgeType == 1) { 

26       stroke(225,0,0, opacity); 

27       fill(225,0,0, opacity); 

28     } 

29     if (edgeType == 2) { 

30       stroke(0,75,255, opacity); 

31       fill(0,75,255, opacity); 

32     } 

33     if (edgeType == 3) { 

34       stroke(0,200,0, opacity); 

35       fill(0,200,0, opacity); 

36     } 

37     float xSource = source.x; 

38     float ySource = source.y; 

39     float xTarget = target.x; 

40     float yTarget = target.y; 

41     line(xSource, ySource, xTarget, yTarget); 

42     pushMatrix(); 

43     translate(xTarget, yTarget); 

44     float a = atan2(xSource-xTarget, yTarget-ySource); 

45     rotate(a); 

46     strokeWeight(2); 

47     beginShape(); 

48     vertex(0, 0); 

49     vertex(-5, -15); 

50     vertex(5, -15); 

51     endShape(); 

52     popMatrix(); 

53   } 

54 } 

6.5.3 Graph Creation 

In Processing, a base setup function is run initially, after which, a draw function is 

run continuously.  In the setup function, the data is transferred from the input files into the 

dataTable classes and additional meta-data is collected about the graph.  At the end of the 

setup, the initial set of nodes and edges are stored through the storeNodes and storeEdge 

functions. 

1 void setup() { 

2   nodeData = new dataTable("Nodes.tsv"); 

3   edgeData = new dataTable("Edges.tsv"); 

4   nodeCount = nodeData.getRowCount(); 

5   edgeCount = edgeData.getRowCount(); 

6   size(visHeight + 3 * border, visHeight); 

7   day = day(); 

8   month = month(); 

9   year = year(); 

10    

11   storeNodes(); 

12   storeEdges(); 

13 } 
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The storeNodes function retrieves the data from the nodes dataTable (nodeData) 

and creates an entity of the Node class (line 11), which is then added to an ArrayList of all 

nodes in the graph through the addNode function (line 12). 

1 void storeNodes() { 

2      

3   for (int row = 0; row < nodeCount; row++) { 

4     int nodeID = parseInt(nodeData.getString(row, 0)); 

5     String nodeName = nodeData.getString(row, 1); 

6     int nodeType = parseInt(nodeData.getString(row, 2)); 

7     float x = parseFloat(nodeData.getString(row, 4)); 

8     x = centerX + (x * visHeight)/2; 

9     float y = parseFloat(nodeData.getString(row, 5)); 

10     y = centerY + (y * visHeight)/2; 

11     Node ni = new Node(nodeID, nodeName, nodeType, x, y); 

12     addNode(ni); 

13   } 

14 } 

The storeEdges function retrieves the data from the edges dataTable (edgeData) 

and creates an entity of the Edge class (line 14), which is then added to an ArrayList of all 

edges in the graph through the addEdge function (line 15).  The edge uses the ID numbers 

of the nodes to identify the source and target.  Lines 10-13 show the method for matching 

the current nodes to the edge. 

1 void storeEdges() {   

2   Node nSource = null; 

3   Node nTarget = null; 

4    

5   int edgeSource, edgeTarget, nodeID; 

6   for (int row = 0; row < edgeCount; row++) { 

7     edgeSource = parseInt(edgeData.getString(row, 1)); 

8     edgeTarget = parseInt(edgeData.getString(row, 2)); 

9     int edgeType = parseInt(edgeData.getString(row, 3)); 

10     for(Node n: nodes) { 

11       if(n.ID == edgeSource) { nSource = n; } 

12       if(n.ID == edgeTarget) { nTarget = n; } 

13     } 

14     Edge e1 = new Edge(nSource, nTarget, edgeType); 

15     addEdge(e1); 

16   } 

17 } 

Once all of the data has been stored properly, the draw function is run continuously 

to create the graph.  The program draw function executes the Node and Edge class draw 

functions, populating the items on the visualization (lines 12-13).  Additionally, the legend, 
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instructions for interaction, the date of graph creation, and two interface buttons (reset and 

save) are drawn (lines 6-10).  The checkSelection function checks if any of the nodes have 

been highlighted.  This is used to determine whether the non-highlighted portions of the 

graph should be dimmed.  Lastly, the forceCheck variable is used to determine whether the 

user has chosen to implement the force-directed algorithm.  While the check is active, the 

force directed algorithm will run continuously, until the user is satisfied with the graph 

dispersion and turns off the algorithm. 

1 void draw() { 

2   selection = 0; 

3   background(240); 

4   scale(zoom); 

5    

6   drawReset(); 

7   drawSave(); 

8   drawDates(); 

9   drawLegend(); 

10   drawInstructions(); 

11   checkSelection(); 

12   for(Edge e: edges) { e.draw(selection); } 

13   for(Node n: nodes) { n.draw(selection); } 

14   if (forceCheck == 1) { 

15     forceDirect(); 

16   } 

17 } 

The force-directed algorithm starts by looping through all of the nodes (line 10).  

For each node, an initial movement vector is created.  Then the repulsive forces from all 

other nodes are calculated (lines 25-54).  The algorithm first checks to make sure the nodes 

are within a certain distance of each other (lines 28-33) and uses the magnitude and 

direction between the nodes to create a movement value in the opposite direction (lines 34-

44).  Then the node is adjusted accordingly. 

After the repulsive forces have been evaluated, the attractive forces provided by the 

edges are considered (lines 56-84).  Again, the distance and direction between the nodes 
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are determined (lines 63-72) and used to create a move value towards the other node that 

increases as the distance increases (lines 74-80).  The nodes are then moved accordingly. 

1 void forceDirect() { 

2   float k = sqrt((visHeight * visHeight)/nodeCount); 

3   float distX, distY, dist; 

4   float centerDist, centerDistX, centerDistY; 

5   float moveX, moveY, move; 

6   float pushX, pushY, push; 

7   float direction; 

8   float pushFactor = 10000; 

9   float pullFactor = 1000000000; 

10   for (Node n1: nodes) { 

11     distX = 0; 

12     distY = 0; 

13     dist = 0; 

14     direction = 0; 

15     pushX = 0; 

16     pushY = 0; 

17     push = 0; 

18     moveX = 0; 

19     moveY = 0; 

20     move = 0; 

21     centerDistX = n1.x - centerX; 

22     centerDistY = n1.y - centerY; 

23     centerDist = sqrt((centerDistX * centerDistX)+(centerDistY * centerDistY)); 

24  

25     for (Node n2: nodes) { 

26       if (n1 == n2) {} 

27       else { 

28         distX = n1.x - n2.x; 

29         distY = n1.y - n2.y; 

30         dist = sqrt((distX * distX) + (distY * distY)); 

31         direction = getDirection(distX, distY); 

32         push = (1 / ((dist * dist) + 1)) * pushFactor; 

33         if (dist < k && dist > -k) { 

34           pushX = cos(direction) * push; 

35           pushY = sin(direction) * push; 

36           if (pushX > 15) {pushX = 15;} 

37           if (pushX < -15) {pushX = -15;} 

38           if (pushY > 15) {pushY = 15;} 

39           if (pushY < -15) {pushY = -15;} 

40           float newX = n1.x + pushX; 

41           float newY = n1.y + pushY; 

42           float newDistX = newX - centerX; 

43           float newDistY = newY - centerY; 

44           float newDist = sqrt((newDistX * newDistX) + (newDistY * newDistY)); 

45           if (newDist > 1.2 * radius) { 

46             pushX = 0; 

47             pushY = 0; 

48           } 

49           else { 

50             n1.x += pushX; 

51             n1.y += pushY; 

52           } 

53         } 

54       } 

55  

56       for (Edge e: edges) { 

57         distX = 0; 

58         distY = 0; 

59         dist = 0; 

60         moveX = 0; 
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61         moveY = 0; 

62         move = 0; 

63         if (e.source == n1) { 

64           distX = e.target.x - n1.x; 

65           distY = e.target.y - n1.y; 

66         } 

67         else if (e.target == n1) { 

68           distX = e.source.x - n1.x; 

69           distY = e.source.y - n1.y; 

70         } 

71         dist = sqrt(distX * distX + distY * distY); 

72         if (dist > k || dist < -k) { 

73           direction = getDirection(distX, distY); 

74           move = dist * dist * pullFactor; 

75           moveX += cos(direction) * move; 

76           moveY += sin(direction) * move; 

77           if (moveX > 15) {moveX = 15;} 

78           if (moveX < -15) {moveX = -15;} 

79           if (moveY > 15) {moveY = 15;} 

80           if (moveY < -15) {moveY = -15;} 

81         } 

82         n1.x = n1.x + moveX; 

83         n1.y = n1.y + moveY; 

84       } 

85     } 

86   } 

87 } 

6.5.4 Graph Interaction 

Processing allows interaction with the visualization through the use of the computer 

mouse and the keyboard.  As such, all graph interactions use a combination of these input 

devices.  When the mouse is clicked, a left click will enable either the creation of a new 

node (when the keys “o,” “p,” “f,” “t,” or “l” are pressed, depending on the type of node to 

add) or the selection of a node (if the control key is pressed and the cursor is on an existing 

node).  Additionally, if the mouse is in a specific area (the reset and save “buttons” on the 

screen) either the visualization is reset or a screenshot of the visualization is taken and 

saved to the specified location (lines 11-14).  A right click of the mouse, with the control 

key down, will delete the node on which the cursor is placed (lines 16-20). 

1 void mouseClicked() { 

2   if (mouseButton == LEFT) { 

3     if (keyPressed == true) { 

4       if (key == 'o') { createNode(1); } 

5       if (key == 'p') { createNode(2); } 

6       if (key == 'f') { createNode(3); } 

7       if (key == 'l') { createNode(4); } 
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8       if (key == 't') { createNode(5); } 

9       if (keyCode == CONTROL) { selectNode(); } 

10     } 

11     if (mouseX <= 120 && mouseY <= 30) { resetAll(); } 

12     if (mouseY >= 35 && mouseY <= 65) { 

13       if (mouseX <= 120) { save("output_graph.jpeg"); } 

14     } 

15   } 

16   if (mouseButton == RIGHT) { 

17     if (keyPressed == true) { 

18       if (keyCode == CONTROL) { deleteNode(); } 

19     } 

20   } 

21 } 

  The selectNode function is used to highlight a specific node the interacting nodes 

and edges.  First, the selected variable is set to “1” indicating it is turned on.  If the node is 

already selected, then it is set to “0” to turn it off (lines 3-10).  Then, all of the edges are 

check to determine if they include the selected node.  In the case of “OR” and “AND” 

nodes, those nodes are also turned on to ensure than the full relationship is highlighted, not 

just part of it. 

1 void selectNode() { 

2   for(Node n: nodes) { 

3     if (dist(mouseX, mouseY, n.x, n.y) < 10) { 

4       if (n.selected == 0) { 

5         n.selected = 1; 

6       } 

7       else if (n.selected == 1) { 

8         n.selected = 0; 

9       } 

10     } 

11   } 

12   for (Edge e:edges) { 

13     if (e.source.selected == 1 || e.target.selected == 1) { 

14       if (e.target.label.contains("OR") || e.target.label.contains("AND")) { 

15         e.target.selected = 1; 

16       } 

17       else if (e.source.label.contains("OR") || e.source.label.contains("AND")) 

{ 

18         e.source.selected = 1; 

19       } 

20     } 

21   } 

22 } 

If a node is to be deleted, the deleteNode function is run.  This function first 

identifies which node is under the cursor.  Then any edges attached to the node are removed 

prior to the node itself being removed. 



 156 

1 void deleteNode() { 

2   for(int i = nodes.size(); i-- !=0;) { 

3     Node n = nodes.get(i); 

4     if (dist(mouseX, mouseY, n.x, n.y) < 10) { 

5       for (int j = edges.size(); j-- !=0;) { 

6         Edge e = edges.get(j); 

7         if (e.source == n) { 

8           edges.remove(j); 

9         } 

10         if (e.target == n) { 

11           edges.remove(j); 

12         } 

13       } 

14       nodes.remove(i); 

15     } 

16   } 

17 } 

In order to move a node, the mouse is left-clicked while on a node and dragged to 

the desired location.  To ensure that only a single node is selected, the draggedNode 

variable is used.  As the cursor moves with the node still selected, the position of the node 

continually updates.  Upon release of the mouse button, the draggedNode value returns to 

-1 and the node is “dropped.” 

1 void mouseDragged() { 

2   if (mouseButton == LEFT) { 

3     if (draggedNode == -1) { 

4       for(Node n: nodes) { 

5         if (dist(mouseX, mouseY, n.x, n.y) < 10) { 

6           nSelect = n; 

7           draggedNode = 1; 

8         } 

9       } 

10     } else { 

11       nSelect.x = mouseX; 

12       nSelect.y = mouseY; 

13     } 

14   } 

15 } 

16  

17  

18 void mouseReleased() { draggedNode = -1; } 

Lastly, the user has the ability to create a new edge between two nodes.  When the 

left mouse button is pressed and either the “a” or “z” keys are pressed, depending on the 

type of interaction desired, the source node is selected.  This is determined by a proximity 

of the cursor to the node (lines 6-10).  The newEdgeSource variable is used to ensure that 

a single source and target are selected.  After the source has been selected, the user (while 
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still pressing either “a” or “z”) selects the target node to create the edge.  At this point, the 

edge is created, added to the array, and newEdgeSource is returned to -1 to prepare for the 

next edge creation (lines 22-24). 

1 void mousePressed() { 

2   if (mouseButton == LEFT) { 

3     if (keyPressed == true) {   

4       if (key == 'z' || key == 'a') { 

5         if (newEdgeSource == -1) { 

6           for(Node n: nodes) { 

7             if (dist(mouseX, mouseY, n.x, n.y) < 10) { 

8               newSource = n; 

9               newEdgeSource = 1; 

10             } 

11           } 

12         } 

13         else { 

14           for(Node n: nodes) { 

15             if (dist(mouseX, mouseY, n.x, n.y) < 10) { 

16               newTarget = n; 

17             } 

18           } 

19           if (key == 'z') { newEdgeType = 3; } 

20           if (key == 'a') { newEdgeType = 1; } 

21            

22           Edge e1 = new Edge(newSource, newTarget, newEdgeType); 

23           addEdge(e1); 

24           newEdgeSource = -1; 

25         } 

26       } 

27     } 

28   } 

29 } 

6.6 Conclusions  

This chapter continues to support the third research objective: development of an 

improved method for configuration change management.  The previous chapter (Chapter 

Five) proposed the overall method and discussed the design enablers that would be 

necessary to support the proposed method.  The focus of this chapter is on the first sub-

question in support of the research objective: How can data visualization be used to 

increase the ability to understand component relationships in a system?  This research 

question is answered through a review of relevant literature, a user study, and the 

development of a graph visualization software tool. 
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The literature review was conducted in order to understand how graph visualization 

can be implemented for configuration change management.  The literature review focused 

on how data visualization is used to understand and manage large amounts of data.  More 

specifically, graph visualization was identified for its usefulness in understanding the 

relationships between entities within a system.  During the literature review, it was also 

identified that numerous factors can affect the usefulness of graph visualizations.  This led 

to the second task to answer the above research question. 

The user study was conducted in order to understand what aspects of the 

visualization graph (color, layout, and availability of information) affect the user’s ability 

to understand and identify relationships between vehicle options and parts in a 

configuration system.  The participants were given different graphs and tasked with 

answering questions regarding the configuration system portrayed in the graph.  The results 

showed that color and layout did not have a significant impact while availability of 

information (the removal of unnecessary information) greatly increased the users’ ability 

to answer questions about the configuration system.  This information was then used in the 

development of the visualization software tool. 

The graph visualization tool was developed using the Processing visualization 

programming language.  Based on a set of inputs from one of the other supporting design 

enablers (interaction identification), the visualization tool creates a graph visualization of 

the configuration system.  The software tool also allows for a wide range of interactions 

with the graph, including reshaping, adding and removing nodes and edges, and outputting 

the resulting graph for future use or evaluation. 
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6.7 Dissertation Roadmap 

Chapter Six focused on the development and implementation of the graph 

visualization support tool.  The next chapter (Chapter Seven) builds on this by presenting 

the methods and results of three validation techniques: a user study, implementation cases, 

and user feedback. The progress of this dissertation is shown in Figure 6.22 in which the 

completed portion is highlighted in green. 

 

Figure 6.22: Dissertation roadmap 
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CHAPTER SEVEN: VISUALIZATION TOOL VALIDATION 

The purpose of the research presented in this chapter is to validate the graph 

visualization support tool discussed in Chapter Six.  Previous research has shown the need 

for rigorous validation of design research  [139].  As such, the Validation Square [140] is 

used as a guideline for the validation of the visualization tool.  The literature review 

conducted during the development of the visualization tool in Section 6.1 answers first 

aspect of validation – accepting the construct’s validity.  The visualization tool was 

evaluated through four implementation studies of ongoing configuration changes at the 

OEM, a validation user study on the tool’s usefulness in rule implementation, and user 

feedback. 

7.1 Implementation Cases 

In order to test the visualization tool throughout its development, the researcher 

used the software to assist in validating in-progress configuration changes at the OEM.  

These problems were identified by both the researcher and the OEM users as exemplars 

appropriate for testing.  This ties into the fourth aspect (accepting usefulness of method for 

some example problems) of the Validation Square in that the problems being used for 

evaluation are representative [140].  Additionally, because the tool was implemented by 

the researcher alongside the personnel at the OEM conducting their own validation, the 

fifth part (accepting the usefulness is linked to applying the method) is also fulfilled.  The 

following sections discuss how the visualization tool was used to assist in the analysis of 

four ongoing changes at the OEM.  
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7.1.1 Case 1: Windshield Option Change 

The first change for which the visualization tool was implemented involved 

changing the rules that governed the relationships between two vehicle options.  

Previously, the presence of option 358 required that option 3AP also be present.  However, 

this led to an issue in assigning parts for the vehicle, so a change was made that made the 

presence of option 358 require the absence of option 3AP.  This configuration change 

affected all models for the X5 and X6 vehicle lines in the European markets and was 

proposed in June 2014.  The proposed change affected eight different options and explicitly 

required the change or addition of ten rules. 

One question that was asked regarding the change was whether it would result in 

any windshields that were no longer valid.  Essentially, were there any windshields that 

required a configuration that no longer worked due to the change?  To assist in answering 

the question, a visualization graph for the windshields and all options affecting the ordering 

of windshields was created (Figure 7.1).  In the graph, the available windshields are found 

on the left with labels of WS###, while the options are on the right and a represented by 

S###A.  The links between them represent the rules according the grammar discussed in 

6.4.2.1.  A brief review of the graph shows that no windshield requires the both 3AP and 

358 to be present.  To conduct this review, the options of concern (3AP and 358) are 

identified in the graph.  Then the windshield parts are identified in the graph (along the left 

hand side).  The rules for each windshield part is checked for whether it requires (has a 

green arrow) to the options of concern.  For example, WS905 requires option 358, but not 

3AP.  On the other hand, WS 401 requires 3AP, but not option 358. 
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Figure 7.1: Visualization graph for windshield option change (Case 1) 

This is the same conclusion that the change control personnel at the OEM came to 

while working concurrently on the configuration change.  However, in the traditional 

approach, the OEM engineers spent approximately 2 hours analyzing the change.  With the 

graph, the question was answered in minutes.  In addition, the use of the visualization 

assisted the researcher in understanding and explaining to the change control personnel as 

to why the change was written as is and to validate that there were no other configuration 

conflicts resulting from the implementation of the change. 
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7.1.2 Case 2: Indian Country Model Change 

Another change in which the visualization tool proved helpful involved changing 

the standard Indian country model for the one of the diesel SUVs from one model to 

another.  The intent of the configuration change validation in this instance was to determine 

whether any additional rules needed to be added, other than changing the availability of the 

option code between the two models. 

In order to support the validation of this change, two separate graphs were created, 

one for each model code that was effected.  The graph for the model code that currently 

existed as the model for use in India is shown in Figure 7.2.  It should be noted that this is 

an earlier instance of the graph visualization tool and the readability of the graphs has since 

been improved to increase usability. 

 

Figure 7.2: Visualization graph for existing model 
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The graph for the model that would replace the previous model is shown in Figure 

7.3 below. 

 

Figure 7.3: Visualization graph for replacement model 

By comparing the two graphs, it was possible to determine if there were any 

differences between the options and rules for the two models. 

A brief inspection of the graphs above shows that a series of rules/options are 

missing from the middle of the left side of the graph.  Essentially, this meant that change 

the engine size (the only significant change between the two model codes) resulted in no 

longer disallowing a certain emissions standard in the ruleset.  When asked if this was 

intentional, the change control personnel at the OEM were not aware of the inconsistency. 

To determine whether it would have been faster to create a list of the options and 

rules present for each model, an additional study was conducted.  In this study, the time 

was determined to create the visualization and then inspect to determine where any 
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differences may lie.  This time was compared to the amount of time it would take to identify 

the difference using the methods in place at the OEM.  It was determined that the use of 

the visualization graph reduced the required time by 75%. 

7.1.3 Case 3: Emissions Standards Option Change 

Because the configuration changes are not written by personnel in the change 

control group at the OEM, understanding the reasoning and implications behind the change 

can be difficult when attempting to validate a specific change, even if the validation itself 

is simple.  This was the case with the third configuration change.  This change focused on 

the emissions standard levels (S161A, S167A, and S169A) for four vehicle models (KS01, 

KS02, LS01, LS02) of the X5 vehicle line.  The change was proposed and evaluated in 

July 2014.  After the analysis, it was determined that models LS01 and LS02 were being 

created to allow a specific emission standard (S167A), which was not available for the 

other two models. 

7.1.4 Case 4: Australian Country Option Addition 

The final change for which the visualization tool was implemented was the addition 

of the Australian country option to a current model.  Essentially, the OEM wanted to 

expand its vehicle offerings in Australia. 

In order to validate this change, a model was selected that most closely matched 

the model being changed, but that already included the Australian country option.  This 

mirrored the method used by the change control personnel at the OEM.  Two visualization 

graphs were then created for the models.  The first graph showed the model that already 
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had the option, shown in Figure 7.4.  The second graph showed the model to which the 

option was being added, shown in Figure 7.5. In addition, a blank node (“New Node 2”) 

was added to the graph to mimic the option being added to the model.  Also, the 

corresponding rules between the new option and other related options were added to the 

graph to create a close duplicate to the existing model. 

 

Figure 7.4: Existing model graph with the Australian country option already 

available 
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Figure 7.5: Graph of the model to which the country option will be added  

 Based on an inspection of the above graphs, no issues were identified to result from 

adding the Australian country option to the new model.  The only changes were that two 

other options (S2AMA and L8LAA) were not available for the new model and those would 

not be of concern.  An additional application of this tool is that the new options and ruleset 

that were created using the visualization tool could be exported to provide the written 

rules/options that needed to be modified in the ruleset to implement the change. 

7.2 Rule Authoring User Study (Validation Study) 

One of the potential applications of the graph visualization support tool is to allow 

the user to export any rules or options created through the graphical user interface.  These 

new rules or options could then be implemented directly into the OEM’s rule database to 

avoid having to convert the rules to the correct format and enter them manually.  As such, 
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a user study was conducted to evaluate the usefulness of the graph visualization support 

tool for assisting in rule implementation.  In addition, the user study evaluated the ability 

of an untrained user (the participants) to understand and implement the visualization 

support tool in conjunction with proposed configuration changes.  The details of the 

validation user study are discussed in the following sections. 

7.2.1 Research Questions for Validation Study 

Research has shown that different types of data representation may be more 

accommodating for answering different types of questions about the system being 

represented.  Additionally, the use of a graphical user interface (GUI) for making changes 

to a system or for implementing changes is a common method for simplifying data 

maintenance.  This led to the following research questions: 

 How does the use of a graphical method for rule implementation affect the user’s 

ability to accurately author rule changes in a system? 

 How does the use of a graphical method for rule implementation affect multiple 

users’ abilities to consistently author rule changes in a system? 

It is hypothesized that the use of a graphical representation for rule implementation 

will increase both the accuracy and consistency for making changes to the rule database.  

This hypothesis is made because the graphical representation has been shown previously 

to increase the user’s ability to understand the system better, and a better understanding 

should lead to increased accuracy when implementing the changes. 

Based on the initial results, which showed a marked decrease in the effectiveness 

using the visualization method, the following research question was added: 
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 How does the amount of training and familiarity with the visualization method 

affect the user’s ability to implement rules in the system? 

It is hypothesized that implementing a small training period will greatly increase 

the familiarity of the participants with the method and will result in increased effectiveness 

at implementing the rules. 

7.2.2 Experimental Procedure for Validation Study 

7.2.2.1  Variables for Validation Study 

In order to answer the above research question, a user study was developed and 

executed.   The user study consisted of two variables: the method for implementing the rule 

changes and the amount of training on the new visualization method.  The first variable 

consisted of two levels: implementation of changes through a graphical representation or 

implementation using a text-based representation.  The purpose of this variable was to see 

if using a different method increased the user’s ability to accurately and consistently 

implement the changes.  The second variable had two levels, and only applied to the group 

assigned the visualization method: a minimal amount of training on what the new method 

is and a slightly increased training period (approximately five minutes) showing how the 

new method can be used to show changes to the system.  This variable was developed 

based on concerns during the initial results that a lack of familiarity with the new method 

was resulting in decreased scores, as opposed to the actual effectiveness of the new method. 

7.2.2.2  Participants for Validation Study 

The participants of the user study were senior, undergraduate, mechanical 

engineering students at Clemson University.  All of the students ranged in age between 
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approximately 19-24 years of age and had less than one year of coursework remaining prior 

to graduation.  The students were chosen for the experiment because, as seniors, they have 

a similar level of experience to new employees at a company.  Additionally, selecting the 

participants from this course ensured that the students would have a similar educational 

background.  At the time of the experiment, all of the students were enrolled in the senior 

mechanical engineering design course at Clemson University. 

7.2.2.3  Environment for Validation Study 

The user study was conducted in two sessions during a normally scheduled class 

period of the senior mechanical engineering design course, with each group only attending 

a single session.  The control group and the experimental group with minimal training 

attended the first session and the experimental group with additional training attended the 

second session.  The students were told in advance that they would be conducting an in-

class exercise while the instructor was unavailable. The setting for the experiment was the 

classroom in which the course usually met (for two groups) or in a nearby classroom with 

a slightly different setup (for the third group).  While the classroom layouts were different 

for the groups, the researcher did not believe this would be a factor in the results as all 

environments were standard classroom types, with which the participants were familiar.  

The classroom layouts were typical, auditorium-style classrooms with a projector in the 

front of the room and tables for the students to sit at, either circular or in rows.  

Additionally, minimal distractions were present during the experiment.  In general, the 

experience of the students due to environmental conditions was as uniform as possible. 
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7.2.2.4  Experimental Procedure for Validation Study 

For the first session, the students arrived for the normally scheduled class and sat 

at tables of their choice.  Once all of the students had arrived and were seated, the user 

study packets were randomly distributed to the students.  Each packet contained a set of 

documents according to whichever group the participant was assigned.  The contents of the 

packets will be discussed in the following section.  Once the packets were handed out, the 

participants were separated based on the packet that they had received.  Once in separate 

classrooms, each group was given a brief class instructing the students on the background 

of the research and the specific instructions for their part of the research.  The presentations 

were developed to provide similar levels of detail regarding the study and to take a similar 

amount of time to complete.  This was necessary to ensure that all participants had a similar 

level of familiarity with the processes being used; none of the students had experience with 

the methods begin studied prior to the research being conducted.  Following the 

instructional period, the students were allowed to ask any questions regarding the survey 

or the data visualization technique.  The participants were then given 40 minutes to conduct 

the experiment; however, upon completion of the study and a brief survey for additional 

data collection, the students were allowed to turn their packets in early and leave the 

classroom.  While the participants were assigned to groups, the grouping was only 

conducted to control variables; all work during the study was conducted individually. 

The second session mirrored the first session, except only one group was present, 

so the participants did not have to be divided.  Additionally, the second session included 

the increased training period during the presentation.  The increased training period 
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consisted of providing an example (from a different rule database and product) of how a 

change could be implemented to the system.  The increased training period took less than 

five minutes to conduct. 

7.2.2.5 Packet Contents for Validation Study 

The materials that each participant received with their packet depended upon which 

group they were in, which was assigned randomly during distribution of the packets.  The 

control group, which implemented the changes using a text-based representation, received 

an instruction sheet that contained the instructions, as well as a brief overview of the rule 

grammar; three different configuration change documents, which contained information 

regarding the background, solutions and implementation for the change; and the rule 

system documents, which would be modified by the participant according to the 

corresponding configuration change document.  Both experimental groups, which 

implemented the changes using a graphical representation, received an instruction sheet 

that contained the instructions, as well as a brief overview of the rule visualization 

techniques; three different configuration change documents, which contained information 

regarding the background, solutions and implementation for the change (the same 

documents provided to the control group); a single copy of the rule database, for reference 

only; and three rule system graphs (Figure 7.6), which would be modified by the participant 

according to the corresponding configuration change document.  The configuration 

changes chosen for the study were developed based on the types of changes that occur at a 

local automotive manufacturing facility. Additionally, the documents were created to 
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mirror the change documents used at the OEM.  The full packets received by all groups 

(Groups A and C received the same packets) are found in 9.2Appendix G:. 

 

Figure 7.6: Rule system graph provided to the experimental groups 

7.2.3 Evaluation Protocol for Validation Study 

The protocol analysis of the user study is relatively straight-forward.  The resulting 

rule systems were evaluated as to whether or not the resulting system accurately portrayed 

the changes specified in the configuration change documents.  In many instances, multiple 

different results could be considered as correct, as long as the allowable configurations that 

would result from the rule system would be the same.  To account for the possibility of 

multiple, different correct answers, the resulting configuration rule sets were evaluated to 

determine if the set of allowable configurations would be the same for both the expected 
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answer and the participants’ answers.  To assist in identifying the effectiveness of each 

method, the changes were broken down into components of the change.  For example, 

adding a package to the system requires adding the package, and adding the individual 

rules that apply to the package.  Each of the rules would could as a component of the 

change.  Because a single grader was used to evaluate all of the results, no inter-rater 

reliability assessment was conducted.  Additionally, an intra-rater reliability assessment 

was not conducted. 

7.2.4 Evaluation Metrics for Validation Study 

The metric that was used for evaluation is accuracy of the resulting rule database.  

The researcher considered using a degree of accuracy for this metric, but decided instead 

that simply correct/incorrect would provide a more consistent method for scoring the 

results.  This was decided because for any given change set, multiple results could be a 

correct interpretation of the rule set.  This would lead to difficulty in determining which 

correct answer to use as the basis for grading each result.  

7.2.5 Results for Validation Study 

A total of 74 results (3 configuration changes per result and 4 components per 

change) were collected from the participants and evaluated during the user study.  The 

results were evaluated by a single grader, as previously discussed, and the data was 

tabulated into spreadsheets for ease of analysis. 

For accuracy, the results were consolidated according to which group the 

participants were in (control, experimental, and experimental w/ training).  This was done 
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in order to see how the rule implementation method affected the accuracy of the resulting 

rule sets.  The results for each group for changes 1, 2, and 3 are shown in Table 7.1, Table 

7.2, and Table 7.3, respectively. 

Table 7.1: Number and percent of correct responses by group for Change 1 

 

Table 7.2: Number and percent of correct responses by group for Change 2 

 

Table 7.3: Number and percent of correct responses by group for Change 3 

 

7.2.6 Discussion for Validation Study 

It should first be noted that there are limitations in the analysis.  While the 

participants had no previous experience with either method for rule implementation, the 

use of spreadsheets and the basic logical grammar used in if-then statements is 

Change 1

Group # % # % # % # %

1.1 1.2 1.3 1.4

Experimental 26 100% 15 58% 26 100% 25 96%

Control 25 100% 21 84% 24 96% 25 100%

Training 23 100% 20 87% 22 96% 23 100%

Change 2

Group # % # % # % # %

2.1 2.2 2.3 2.4

18 69% 17 89%

Control 25 100% 25 100% 25

Experimental 25 96% 15 58%

100% 19 79%

Training 23 100% 22 96% 22 96% 17 85%

3

Group # % # % # % # %

3.1 3.2 3.3 3.4

35% 9 35%

Control 23 92% 23 92% 25 100%

Experimental 26 100% 23 88% 9

52%

25 100%

Training 23 100% 19 83% 12 52% 12
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commonplace.  However, the use of node-link graphs to visually represent configuration 

rules, and the grammar that is associated with it, is something the participants were unlikely 

to have any experience with at any level.  While a similar amount of training was provided 

to the control and experimental groups, the experimental group that was given the graphs 

was less likely to fully understand and become familiar with the process during the brief 

training period.  This likely caused the decrease in the capabilities of the graph visualization 

method for rule implementation and was the reasoning for the second session with an 

increased training period for the training group.  

When considering the accuracy of the results based on the method of rule 

implementation, a definite trend existed where the accuracy of the answerable questions 

greatly increased with the use of the text-based (control) method.  However, a brief training 

session with the second experimental group significantly decreased the gap.  Figure 7.7, 

Figure 7.8, and Figure 7.9 illustrate the percentage of correct responses for each question 

for all of the groups. 

 

Figure 7.7: Percent correct responses for Change 1 
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Figure 7.8: Percent correct responses for Change 2 

 

Figure 7.9: Percent correct responses for Change 3 

From the above graphs, it is clear that, in each situation, the text-based method for 

rule implementation surpassed the visualization-based method for accuracy, when the 

groups received the same amount of training.  This was especially true for Changes 2 and 

3, the changes that involved the addition or modification of packages.  Because package 

declarations are the most complicated rules in the database, it is likely that the participants 

were not familiar enough with the visualization method to accurately convey the correct 

relationships in the more complicated rules. 
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With the additional training period, the accuracy of the responses for the second 

experimental group increases significantly and only lags behind the control group for the 

third change.  After reviewing the third change, the authors realized that an issue with the 

wording in the question resulted in confusion as to how directionality in the visualization 

was applied.  This is likely the cause of the significant drop in accuracy for both of the 

visualization groups for parts 3.3 and 3.4.  

7.2.7 Findings for Validation Study 

The purpose of this paper was to describe a user study that was conducted in order 

to determine whether the use of a visualization-based method for configuration rule 

implementation would increase the accuracy of the rule sets generated as a result of the 

proposed changes.  The researcher hypothesized that using the visualization-based method 

would increase the accuracy of the results.  The results proved the hypothesis to be false, 

in that the average accuracy level for the text-based method was higher for all of the 

changes, and significantly higher for the more complicated changes, or those requiring 

package rule modification.  The most significant limitation in this study was the difference 

in the difficulty of learning the methods; the text-based method, using a spreadsheet and 

standard if-then logic, was likely much easier for the participants to understand in the short 

training period prior to the study.  This could have led to a decrease in the familiarity of 

the participants with the visualization-based method, resulting in decreased scores for that 

group. 

As a result of this limitation, a second study was conducted in which a group of 

participants was given the same materials as the visualization group, but was also provided 
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with an additional amount of training (approximately five minutes) on the graph 

visualization method.  It was hypothesized that the increased training would lessen the delta 

between the experimental and control groups.  This hypothesis was proven to be mostly 

true in that, for the majority of the changes, the experimental group with training performed 

as well as the control group. 

Possible future work includes conducting an additional user study where the 

participants are not provided with the rules that are to be implemented; instead, the 

participants would have to use the rule database to figure out what rules had to be 

implemented in order to correctly implement the required solution.  This would require a 

greater amount of critical thinking about and understanding of the change, which is likely 

to be better suited for the visualization-based, rather than text-based, method for 

configuration management.  The additional experiment would be structured similarly to 

this study, with the primary difference being the amount of information provided to the 

participants 

7.3 User Feedback 

In order to fully validate the usefulness of graph visualization for configuration 

management, user feedback was gathered in the form of a targeted interview with a Launch 

and Change Controller at the OEM.  The interview was conducted with interviewee #2 at 

the end of the development of the configuration management method.  The interview lasted 

approximately one hour.  During the interview, the researcher reviewed the visualization 

design enabler, including its usefulness, potential applications, and potential additional 

functionality.  The interviewee stated that using graph visualizations would be most helpful 
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when evaluating highly complicated changes to the configuration rule system, as is the case 

in the example in Section 7.1.1.  In these changes, the ability to quickly conduct path tracing 

through the graph would greatly assist in understanding what other options would be 

affected by the proposed change.  Additionally, visually inspecting for patterns in the 

graphs would increase the likelihood of identifying rule conflicts or redundancies.  

However, the interviewee also stated that the addition of a conflict detection algorithm 

within the graph visualization tool would greatly increase its usefulness.  This would 

remove the need for the user to conduct as many inspections of the graph, allowing the user 

to focus on the potential propagation pathways. 

In addition, the interview also revealed that other common uses of the graph 

visualization tool would include the implementation of new packages and the introduction 

of new model codes to the configuration rule database, as is the case in the examples 

discussed in Sections 7.1.2 and 7.1.4.  This is due to the level of interaction that is provided 

by the graph visualization tool.  When adding a new package, the user is able to add the 

package and any associated rules and see how this can affect the system in unintended 

ways.  When adding or changing model codes, the user is able to create multiple graphs to 

allow a comparison between an existing (proven) model code and the new (unproven) 

model code.  While discussing the comparison of graphs for different model codes, the 

interview mentioned that automating the graph comparison and highlighting the difference 

between two graphs would increase the effectiveness of the tools by not having to rely on 

visual inspection alone.  It was agreed, though, that having the visualization of the systems, 

with the differences highlighted, would be preferable to a just a list of differences between 
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the models because of the ability to see how those differences could affect other aspects of 

the rule database. 

In conclusion, the interviewee stated that the graph visualization was a useful tool 

for configuration management that had already assisted in identifying potential issues in 

the limited implemented cases (as described in Section 7.1).  As a result, the interviewee 

felt that the graph visualization would be used on a weekly basis in the future, at least once 

for each proposed change, and more for more complicated changes, to review potential 

unintended consequences.  

7.4 Conclusions  

This chapter continues to support the third research objective: development of an 

improved method for configuration change management.  Previous chapters proposed the 

overall method (Chapter Five) and presented the development and implementation of the 

graph visualization design enabler (Chapter Six).  The focus of this chapter is on the second 

sub-question in support of the research objective: Does the implementation of a graph 

visualization design enabler assist in identifying errors and understanding the relationships 

in a proposed configuration change?  This research question is answered through a user 

study, a limited implementation case study, and user feedback. 

The rule implementation user study tasked participants with using the graph 

visualization method to implement proposed configuration changes into the rule system.  

During the initial run, the participants using the graph visualization did not perform as well 

as those using the spreadsheet-based method (the control group) due to a lack of familiarity 

with the visualization method.  With a small amount of additional training, a second group 
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of participants were able to perform at the same level as the control group.  Additionally, 

the graph visualization method showed promise when evaluating the reasoning behind the 

rules. 

To further test the usefulness of the graph visualizations for configuration 

management, the method was implemented in four ongoing configuration changes at the 

OEM.  In all four instances, using graph visualization allowed the user to more easily 

understand the implications of the proposed change and identify any errors resulting from 

the changes.  Additionally, a time study was conducted on evaluating one of the changes 

with the visualization method versus using the existing method and a 75% time reduction 

when using the graph visualizations was identified. 

Finally, an additional interview conducted with the proposed users of the graph 

visualization design enabler resulted in user feedback regarding its usefulness.  The 

feedback showed that implementing the graph visualization design enabler would greatly 

increase the users’ ability to understand the implications of proposed changes. 

7.5 Dissertation Roadmap 

Chapter Seven presented the validation of the graph visualization support tool 

through three evaluation techniques: a user study, four implementation cases, and user 

feedback.   The following chapter (Chapter Eight) expands the validation to the entire 

configuration management method, including the other three design enablers (interaction 

identification, algorithmic validation, and complexity analysis). The progress of this 

dissertation is shown in Figure 7.10 in which the completed portion is highlighted in green. 
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Figure 7.10: Dissertation Roadmap 
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CHAPTER EIGHT: METHOD IMPLEMENTATION AND RECOMMENDATIONS 

The purpose of the research presented in this chapter is to validate configuration 

change management method discussed in Chapter Five.  The configuration management 

method was evaluated through three implementation studies at the OEM and user feedback.  

Based on the findings of the implementation cases and the user feedback, a system 

architecture for to support the configuration management method is presented. 

8.1 Implementation Cases 

In order to validate the proposed process, a series of implementation cases were 

presented based on ongoing configuration changes or validation problems.  The intent was 

to show how the proposed method could be used to assist in each of the implementation 

cases.  These cases were presented by the OEM as challenge problems that were 

representative of the types of problems normally experienced at the OEM.  The cases are 

discussed in the following sections. 

8.1.1 Problem 1: Exhaust Tips 

When building vehicles at the OEM, two different types of exhaust tips exist.  The 

exhaust tips can either be round or square depending on the options that affect the exhaust 

system.  For this OEM, the exhaust tips pass through the bumper.  Therefore, the bumper 

needs to have a hole that corresponds to the shape and size of the exhaust tip that will pass 

through it.  While there may be additional constraints between the bumper types and 

exhaust tip types, this is the primary concern due to the large number of tips and bumpers 

available.  The goal of this is to determine whether the proposed method can prove that the 
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current configuration ruleset is free of any configurations where a round exhaust tip is 

placed with a square bumper or vice versa. 

8.1.1.1 Solution  

Because this is a validation of the existing system, as opposed to validating a 

proposed change, a modified validation flowchart is used (FIGURE).  Essentially, only the 

review loop is being used in this instance. 

 

Figure 8.1: Method for evaluating the existing system 

 In order to validate the current configuration rule set the user would first be 

required to enter some additional data into the ruleset through the conflict detection tool.  

This additional information consists of the “part families” for the exhaust tips and the 

bumpers.  For each type of part, two families would be created, one with all parts (bumper 

or exhaust tip) with a square interface and one with those with a round interface.  Once the 

four part families have been created, the user would define a set of rules that attempt to 

force a round exhaust tip with a square bumper or a square exhaust tip with a round bumper.  

At this point, the user would run the satisfiability solver (Step 1 in Figure 8.1).  If the 

satisfiability check is successful, then a configuration exists where the exhaust tip and 
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bumper are mismatched (round and square in same configuration).  If the modified ruleset 

is not satisfiable, then no configuration exists where there is the possibility for mismatched 

exhaust tips and bumpers. 

While the satisfiability solver will determine whether there is an incorrect 

configuration, it does not state where the problem lies.  One method for narrowing down 

the configuration is to increase the number of specified rules in the modified ruleset.  This 

can be done by forcing specific model/option/part codes in the ruleset and rerunning the 

satisfiability solver until the specific pair of parts is identified.  From this point, the graph 

visualization tool can be used to assist in determining why this error exists in the 

configuration ruleset (Step 2 in Figure 8.1). 

8.1.1.2 Conclusion 

Based on using the above solution to validate the pairing of exhausting tips and 

bumpers, the researchers are confident that the proposed method would correctly identify 

any issues if they exist or validate the configuration set as correct if no errors are present.  

This implementation case required the use of the algorithmic validation tool to check for 

errors in the ruleset using user-modified rules and part families.  Then the graph 

visualization tool would assist in identifying why the issue (if one exists) is present in the 

system.  The complexity analysis tool was not used in the above solution as this 

implementation case does not concern a proposed configuration change, but rather a 

validation of the existing setup.  Therefore, the complexity analysis tool would not help in 

determining the difficulty of validating the change or for which models the validation 

would be most difficult.  
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8.1.2 Problem 2: Passenger Visor Safety Labels  

Due to the number of countries and languages for which the vehicles are assembled 

at the facility, many of the warning labels are required to be available in multiple languages.  

This results in a large number of part number variations with complicated rules to govern 

which label part number is used for a given vehicle configuration.  In order to streamline 

the part management for this feature on the vehicle, it was decided that using graphical 

cues, rather than verbal cues to display the warning would meet the intent behind the safety 

regulations and would limit the number of different part numbers available.  A 

complicating issue with this proposed change is that some of the visors come with the label 

already affixed, while others are attached on the vehicle assembly line.  The goal of this is 

to determine whether the proposed method can assist in validating the updated rules and 

part numbers for the new labels prior to implementing the change. 

8.1.2.1 Solution  

In order to validate the proposed change discussed above, the configuration 

management method is implemented as shown in Figure 8.2. 
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Figure 8.2: Implemented method for Problem 2 

As this is a proposed configuration change that is not mandated, the first step would 

be to determine the difficulty in validating the change (Step 1 in Figure 8.2).  This would 

be conducted using the complexity analysis tool.  The user would enter the affected options 

and parts into the complexity analysis tool and the tool would provide the expected level 

of difficulty for validating each model that is affected by the proposed change.  Based on 

the software output, the change managers would be able to make a recommendation on 

whether to move forward with the proposed change. 

Assuming that the level of difficulty is not too severe for the assumed gain from 

implementing the change, the next step would be to conduct an exploration of the proposed 

change using the graph visualization tool (Step 2 in Figure 8.2).  By entering the affected 

options and parts, the user would be shown a localized graph of the configuration system.  

From this, the user would be able to identify what options are likely to be affected by the 

change and which options should be considered when determining the validity of different 

configurations. 
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Additionally, the user could also use the algorithmic validation tool to ensure that 

a single label is being affixed during assembly (Step 3 in Figure 8.2).  In order to 

accomplish this, the user would implement a part family, similar to the families discussed 

in Section 8.1.1.1.  By then forcing this rule, the satisfiability solver would check to ensure 

that a single part from the family is being called based on the configuration specified.  This 

could also be used to ensure that either a label or a part with the label is called, but not 

both. 

8.1.2.2 Conclusion 

Based on using the above solution to validate the proposed configuration change, 

the researchers are confident that the proposed method would correctly identify any issues 

in how the new part numbers are called.  The graph visualization tool would assist in 

identifying which options, and potentially parts, would be affected by the change and 

should be considered when validating the potential configurations.  This implementation 

case also required the use of the algorithmic validation tool to check for errors in the ruleset 

using user-modified rules and part families.  The complexity analysis tool was used at the 

beginning of the solution to determine the expected difficulty to validate the change for 

each of the affected models. 

8.1.3 Problem 3: Dark Carpet Validation  

In United States markets, many customers did not like the fact that the light coloring 

of the beige carpets would easily show dirt over time.  As a result, a change was proposed 

that would make a darker color the standard coloring for the lower half of the interior on 
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all configurations with the beige interior.  Additionally, this change would only affect US 

vehicle models, as it was not an issue with foreign markets. 

8.1.3.1 Solution 

In order to validate the proposed change discussed above, the configuration 

management method is implemented as shown in Figure 8.3. 

 

Figure 8.3: Implemented method for Problem 3 

This is another example of a proposed configuration change that reflects customer 

desires as opposed to legal mandates or regulations. Therefore, the first step is to consider 

the potential difficulty in validating and implementing the change prior to moving forward.  

This would be conducted using the complexity analysis tool (Step 1 in Figure 8.3).  The 

user would input the parts and options that are affected by the proposed change and the 

software tool would provide a list of the affected models and the expected difficulty in 

validating the changes for each.  Based on the results, the change planners would determine 

whether or not to move forward with the change. 
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The next step would be to use the graph visualization tool to explore the proposed 

change to identify how the change would affect other options and parts (Step 2 in Figure 

8.3).  This would provide a subset of options and parts that should be considered when 

validating the new option and part configurations.  Similarly to the previous problem, the 

change engineer could also use the algorithmic validation tool to ensure that the correct 

parts were being called and that duplicate parts were not being called (Step 3 in Figure 8.3).  

To accomplish this, the user would once again input part families, consisting of the darker 

colored interior parts and specify rules forcing the inclusion of a part from this part family.  

In the event of any inconsistencies, the graph visualization tool would be used to explore 

the identified issue to understand why the error occurred. 

8.1.3.2 Conclusion 

Based on using the above solution to validate the proposed configuration change, 

the researchers are confident that the proposed method would correctly identify any issues 

in how the new part numbers are called.  The graph visualization tool would assist in 

identifying which options, and potentially parts, would be affected by the change and 

should be considered when validating the potential configurations.  This implementation 

case also required the use of the algorithmic validation tool to check for errors in the ruleset 

using user-modified rules and part families.  The complexity analysis tool was used at the 

beginning of the solution to determine the expected difficulty to validate the change for 

each of the affected models. 
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8.2 User Feedback 

In order to fully validate the usefulness of the configuration change management, 

user feedback was gathered in the form of a targeted interview with a Launch and Change 

Controller at the OEM and from informal feedback received throughout the development 

of the configuration management method.  During the interview, the researcher reviewed 

the configuration change management method with the interviewee, including its 

usefulness in the different validation tasks and in potential additional applications.  In 

addition to the applications of the visualization tool (discussed in Section 7.3), the 

interviewee felt that the conflict detection algorithms would greatly increase the 

capabilities of the change managers at the OEM.  As was identified in the case study, a 

major challenge with the existing method is the inability to verify the accuracy of the rule 

database.  Using the conflict detection algorithms would enable the engineers to validate 

the rule database both before and after a proposed change to prevent any issues from 

arising.  The interviewee also felt that the use of part families in the algorithmic validation 

design enabler would enhance their capabilities.  This is due to the ability to do part 

matching between multiple part families (as in the case of matching the bumpers and 

exhaust tips) or ensuring a specific number of parts are present, despite multiple variants 

(as in the case of ensuring a single windshield per vehicle).   

The interviewee also stated that the complexity analysis would be a useful tool in 

predicting which models would be most difficult to validate.  The models that are most 

difficult to validate present a worst-case scenario for a given change and the change 

engineers could then focus on the identified models when validating the proposed change.  
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Focusing on the worst-case scenario assists in maximizing the usefulness of the engineer’s 

time.  The interviewee stated that this would be conducted early in the validation process 

to maximize the time focused on the worst-case scenario.  However, the interviewee also 

requested additional functionality from the complexity analysis tool.  The two additional 

functions are the ability to predict the amount of time required to validate a change and the 

ability to predict the number of test cars required to validate a proposed change.  While the 

complexity analysis tool does not predict the number of test vehicles for a change, it does 

highlight which models are best suited for test car evaluation.  This has the potential for 

minimizing the number of test vehicles used for validation. 

Overall, the interviewee felt that implementing the developed configuration change 

management method will greatly increase their capabilities when validating a proposed 

change.  Using the existing methods, the validation process is limited to experiential 

knowledge verification of the potential propagation pathways.  Using the developed 

method provides the change engineers with concrete evidence as to the presence of issues 

in the database, both present and after a proposed change, and a method for exploring 

unintended consequences from a proposed change.  

8.3 System Architecture to Support the Configuration Management Method 

Based on the requirements identified in the study and the feedback received through 

user interviews and implementation cases, a suite of prototype software tools has been 

developed, offering decision support and problem investigation functionality.  Each tool is 

specialized to support specific tasks within configuration management.  The first three tools 

(model refinement, visualization and interaction, and conflict detection) orient towards 
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validation tasks.  The final tool (complexity analysis) is oriented toward planning in 

advance of beginning a change. 

The suite of software tools created share the same data sources and over-arching 

support goals.  These tools may be integrated into a single, cohesive software suite, from 

which a user may choose to apply any one of the tools individually, depending on the user’s 

needs.  Figure 8.4 presents a schematic for the integration of these tools under a single 

interface.  From the central interface, a user may launch each of the specific tools in its 

own module. 

Note that data inputs are delivered from configuration rule databases (VRM and 

TAIS) prior to execution of any tool.  This constraint information provides the basis from 

which each of the tools performs its function.  To explore a future configuration change, it 

may be necessary to experiment upon an altered version of this constraint information.  For 

this reason there are several data models available within the main interface.  The current 

state of the configuration ruleset is represented in only a single data model.  Distinct, 

separate changes may be managed by placing each change in a separate data model, within 

the array of sandbox models available.  Before launching any of the tools it is necessary to 

carefully control which data model will be investigated.  

The model refinement module is not directly called by the user for a specific task, 

but rather supports the other modules.  The purpose of this module is to input the data from 

the user and from the current data model through the interface in order to output an 

interaction model that can be used by the other analysis modules.  As a result, there is no 

direct output from this module to the interface. 
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If the user chooses a task related to complexity analysis, the model refinement 

module is launched first.  This module receives the user inputs regarding the vehicle models 

in question, as well as the options or parts that are affected by the change.  The model 

refinement module then outputs an interaction model to the complexity module for 

analysis.  Based on the user inputs, a response of the complexity metrics and any flags (as 

discussed in 5.4) are returned to the user.  The user is then able to conduct further analysis 

as needed. 

If the user chooses a task related to visualization, the model refinement module is 

launched first.  This module receives the user inputs regarding the vehicle models in 

question, as well as the options or parts that are affected by the change.  The model 

refinement module then outputs an interaction model to the visualization module for graph 

creation an interaction.  While in the visualization module, the user has the ability to 

interact with the graph in order to facilitate increased understanding of the change and its 

potential impact on the system.  The user then has the option to save the modified graph to 

a separate data model for future evaluation. 

When a task requiring conflict detection analysis is selected, the conflict detection 

module is launched.  The user inputs and current data model are sent to the Problem 

Manager for additional input by the user regarding the specific type of conflict and any 

additional parameters (as discussed in 5.5).  From this point, the query is converted into a 

satisfiability problem and is solved using the SAT solver.  The result is returned to the 

Problem Manager for any additional queries and is also returned to the interface with the 
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results of the query.  The user is then able to continue to make queries regarding any 

potential conflicts. 

 

Figure 8.4: Configuration management support tool system architecture 



 197 

8.4 Conclusions 

This chapter continues to support the third research objective: development of an 

improved method for configuration change management.  A previous chapter (Chapter 

Five) proposed the overall method.  While the following chapters presented the 

development and validation of the graph visualization design enabler (Chapter Six and 

Chapter Seven), the focus of this chapter returns to the overall configuration management 

method: Does the proposed method assist in identifying errors and understanding the 

relationships in the possible product configurations?  This research question is answered 

through user feedback and a limited implementation case study. 

An interview conducted with the proposed users of the configuration management 

method and the supporting design enablers resulted in user feedback regarding their 

usefulness.  The feedback showed that implementing the design enablers in the proposed 

manner would greatly increase the users’ ability to understand the implications of proposed 

changes.  Additionally, the user feedback provided additional functionality 

recommendations that should be incorporated. 

To further test the usefulness of the graph visualizations for configuration 

management, the method was implemented for three historical configuration changes.  In 

all three instances, the use of the proposed method and associated design enablers would 

have increased the users’ ability to identify errors or prevent conflicts that were not seen 

when the changes were first evaluated at the OEM. 

Based on the evaluation of the configuration management method, a system 

architecture is proposed for the suite of design enablers that is intended to assist in the 
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method’s implementation.  The proposed suite consists of an integrated software tool that 

combines the functionality of the four modules discussed previously: interaction 

identification, complexity analysis, graph visualization, and algorithmic validation.  By 

integrating the four tools into a single piece of software, the usability and adoptability of 

the design enablers is increased. 

8.5 Dissertation Roadmap 

Chapter Eight presented the validation of the proposed configuration management 

method with design enabler support and provides final recommendations for the supporting 

design enablers.   The final chapter (Chapter Nine) concludes the dissertation and presents 

opportunities for future work. The progress of this dissertation is shown in Figure 8.5 in 

which the completed portion is highlighted in green. 
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Figure 8.5: Dissertation roadmap 
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CHAPTER NINE: CONCLUSIONS AND FUTURE WORK 

This chapter presents the concluding remarks on this research in Section 9.1 and 

the future work in Section 9.2. 

9.1 Concluding Remarks 

This dissertation presented a configuration change management method to explore 

proposed configuration changes and mitigate the potential negative effects of the proposed 

change. To achieve this, three research objectives were identified and addressed. 

Research objective RO 1 (understanding the current practices for change 

management) is foundational research that is discussed in Chapter Two.  The research 

objective consists of three research sub-questions that are useful in exploring existing 

change management practice.  Research question RQ 1.1 is answered through a review of 

literature on current engineering change management practice.  During the review, it was 

identified that while many change management design enablers exist, companies are often 

hesitant to use them due to a high degree of difficulty and costs in adopting the available 

methods and/or tools.  This led to research question RQ 1.2, which is answered through the 

development and evaluation of a change management support tool based on an existing 

change management method (a verification, validation and testing planning method).  This 

method was selected primarily because of its focus on variant change propagation, but also 

because of its reliance on data entry and engineering experience.  The purpose of 

developing the support tool was to show how existing change management methods could 

be improved to increase adoptability and usability.  By implementing the VV&T planning 
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method into a support tool, the possibility of human error due to repeated data entry by 

reducing the number of data points to be entered by 33%. 

During the development of the change management support tool, the question was 

asked as to what depth should be considered when determining the effects of change 

propagation, leading to research question RQ 1.3.  To answer this research question, a study 

on component interaction was conducted using design structure matrices.  In the study, the 

way in which higher order interactions occurred was examined to determine if patterns 

could be identified.  Based on the results of the study, it was determined that the beyond 

the second or third order of interaction, the number of component interactions present 

would likely prevent any meaningful analysis from taking place, though this is dependent 

on the system in question.  Additionally, it was found that both product components and 

configuration rules in a ruleset exhibited similar patterns when interacting at higher orders 

of interaction. 

The second research objective, RO 2, is to understand how an OEM conducts 

configuration and configuration change management, and is discussed in Chapter Four.  

This research objective is achieved through two research questions.  The first research 

question, RQ 2.1, seeks to understand the state-of-the-art for configuration management 

practices.  As such, the question is answered through a literature review of configuration 

management research. Through the literature review, a classification scheme is identified 

to assist in evaluating the configuration management practices in place at the automotive 

OEM.  Additionally, challenges with the existing methods are identified that will be of use 

when evaluating the current methods at the OEM.  Research question RQ 2.1 asks the 



 202 

question of how a major automotive OEM conducts configuration management and is 

answered through case study research.  The case study consists of interviews with 

personnel in the Launch and Change Control group at the OEM, document analysis, and 

ethnographic research.  Based on the results of the case study and the classification scheme 

identified in the literature review, it was evident that the OEM employs a rule-based 

configuration management system.  In the current system, rule database explicitly states 

how options can interact within a possible configuration.  As such, many of the problems 

commonly associated with rule-based reasoning in configuration management hold true.  

The large size of the rule database make it difficult to verify either for completeness or 

accuracy.  Additionally, when making a change to the rule database, it is nearly impossible, 

using the current methods, to determine the unintended consequences of a potential change.  

Therefore, it was recommended that an improved process be implemented that incorporates 

design enablers to assist in validating the existing rule database and exploring proposed 

configuration changes to better understand unintended consequences. 

The third research objective, RO 3, is discussed in Chapter Five through Chapter 

Eight and includes the development of an improved method for configuration change 

management.  The first research question, RQ 3.1, to support this objective, discussed in 

Chapter Six, asks how data visualization techniques can be used to assist in exploring a 

proposed change.  This question is answered in part through a literature review of data 

visualization techniques and their uses.  From the literature review, it was identified that 

graph visualization is a useful method for visualizing data where the relationships between 

components is important.  To assist in developing a graph visualization design enabler for 
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use in configuration management, a user study was conducted to determine what factors 

(color, layout, data availability) affect a user’s ability to read and interpret a graph 

visualization of a configuration rule database.  Based on the results, it was identified that 

the amount of information presented to the user had the greatest effect on how well the user 

could interpret the data; removal of clutter greatly increased the user’s ability to correctly 

answer questions regarding the system.   

Research question RQ 3.2 then asks whether the implementation of the proposed 

graph visualization design enabler assists in configuration management (discussed in 

Chapter Seven).  This research question is answered through a second user study, a series 

of implementation cases, and user feedback.  In the second user study, the usefulness of 

graph visualizations is compared to the existing method with respect to implementing rules 

in the configuration rule database.  The user study found that, with limited training, the 

graph visualization method was as effective as the existing method when just implementing 

rules and showed promise when evaluating the reasoning behind why the rules were 

implemented.  The series of implementation cases consisted of using the graph 

visualization design enabler to assist in the validation of four ongoing, proposed 

configuration changes at the OEM.  In each case, using the graph visualization resulted in 

identifying issues in the proposed changes that either were not identified using the existing 

method or took longer to identify.  Additionally, a time study was conducted and it was 

determined that using graph visualizations resulted in a three-fourths reduction in the time 

required to identify an issue.  Lastly, the user feedback showed that implementing the graph 
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visualization would increase the capabilities of the configuration change validation 

personnel at the OEM. 

The third research question, RQ 3.3, addresses the effectiveness of the overall 

configuration management method and is discussed in Chapter Eight.  This research 

question is answered through three additional implementation cases and user feedback.  In 

the implementation cases, the usability of the method is evaluated as to whether it is capable 

of preventing issues from a proposed change or evaluating the current configuration system 

for a specific set of criteria.  From the implementation cases, it was found that the proposed 

method would successfully validate the configuration ruleset in each of the three situations 

more effectively and rapidly than when using the existing method.  The user feedback 

consisted of a targeted interview with a potential user of the proposed method and informal 

feedback received throughout the development of the configuration management method.  

Based on the feedback, it was identified that implementing the proposed configuration 

management method with the associated design enablers would increase the group’s 

capabilities when exploring and validating proposed changes. 

While many of the applications of the proposed method have been focused on the 

automotive OEM from the case study, it is expected that the method would also be 

applicable in other domains.  As stated in the case study, the configuration management 

system at the OEM is representative of any system that employs rule-based reasoning for 

configuration management.  Therefore, the methods and design enablers proposed in this 

research can also be implemented in any company that uses rule-based reasoning.   
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To conclude, the overarching goal of this research to develop a configuration 

management method for exploring proposed configuration changes and mitigating the 

negative effects of the change has been successfully developed and tested. In this process, 

three research objectives are addressed that contribute directly to the body of knowledge 

in the configuration management field. However, there are areas where the proposed 

configuration management method can be improved by further research, which is discussed 

next. 

9.2 Future Work 

The limitations in the proposed configuration management method are identified 

for future research work. The first limitation of the research is that while the configuration 

management method was evaluated for whether it would prevent issues in three historical 

cases, the proposed method was not validated alongside the existing method for any 

ongoing configuration changes.  Evaluating the method alongside the existing method for 

an ongoing change would aid in validating the research.  This was not done during the 

current research due to restrictions on the availability of data by the OEM in question.  To 

increase the effectiveness of the method, the system should be capable of tying in directly 

to an OEM’s PDM system.  This would be a Master’s level research project. 

Second, the use of complexity analysis early in the proposed method is a means of 

predicting the difficulty in validating a proposed change.  While complexity metrics have 

been shown to be useful in predicting other factors (market price, assembly times), no 

research has been done to prove that they can be used for predicting change validation 

requirements. Data for historical configuration change requests was collected during the 
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research, but a suitable metric for change validation difficulty was not available for the 

previous changes.  Thus, prior to conducting research on the predictive capabilities of 

complexity metrics for change validation difficulty, a numerical value for the level of 

difficulty must be determined.  This is another Master‘s level research project. 

Third, in evaluating the depth of interaction required when projecting potential 

change propagation, the population density was evaluated at each level of interaction until 

interaction saturation was met.  When compared, patterns were identified that allowed for 

the grouping of products and configuration rulesets based on the curve formed by the 

population densities.  Based on this, it is proposed that an additional complexity metric 

could be identified that is based on the population density at each order of interaction.  

While this was initially identified in this research, more substantial testing of the proposed 

metric is required in order to prove its usefulness.  This would also be a Master’s level 

research project. 

Lastly, the graph visualization software is limited to the ability to create the 

visualizations and allow interaction with the resulting graph.  The current degree of 

interaction is limited to rearranging the layout of the graph to increase readability (either 

using the force-directed algorithm of manually) and addition and subtraction of 

nodes/edges.  In order to maximize the potential of the graph visualization, increased 

interaction and analytical capabilities may be necessary.  Some examples of additional 

functionality include the ability to do automated comparisons between multiple graphs, 

highlighting logical conflicts within a single graph, and automated filtering of different 
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types of nodes or edges (parts, options, packages, trim types, etc.).  This would be a 

Master’s level research project. 
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Appendix A:Complete DSM for Historical Example 

The below table shows the completed design structure matrix (DSM) for the 

historical example for the brake drum discussed in Section 2.1.2. 

Table A.1: Full DSM for Brake Drum Example 

  

Component Name 

  

Internal External 

A B C D E F G H I J K L M N O P Q 

In
te

rn
al

 

Foundation Brake A     1 1 1             1           

Brake Drum B         1               1 1       

Slack Adjuster C 1     1                           

Brake Chamber D 1   1           1 1               

Brake Lining E 1 1                               

Air Tanks F             1   1   1           1 

E Valve G           1   1               1 1 

Brake Pedal H             1                   1 

Relay Valve I       1   1                     1 

Quick Release Valve J       1                         1 

Governor K           1                 1     

Ex
te

rn
al

 

Axle L 1                                 

Hub M   1                               

Tie and Wheel Trim N   1                               

Engine O                     1           1 

Instrument Panel P             1                     

Frame Q           1 1 1 1 1         1     
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Appendix B: Trendline Graphs for Component Interaction Study 

The following graphs show the trendlines for the component interaction study 

conducted in Section 2.2. 

 

Figure A.1: Trendline for all product architectures 

 

Figure A.2: Trendline for Group 1 product architectures 
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Figure A.3: Trendline for Group 2 product architectures 

 

Figure A.4: Trendline for Group 3 product architectures 
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Figure A.5: Trendline for Group 4 product architectures 

 

Figure A.6: Trendline for all product changes 
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Figure A.7: Trendline for Group 1 with 1 added product change 

 

Figure A.8: Trendline for Group 3 with 1 added product change 
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Figure A.9: Trendline for Group 4 with 1 added product change 
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Appendix C: Example of a Configuration Rule Database 

An example of the configuration rule database discussed in the case study in 

Chapter Four.  As the full document is over 1500x40, an abbreviated example is used. 

Table A.2: Example of a configuration rule database 
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Appendix D: Example Configuration Change Request Form 
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Appendix E: User Study Response Form 

Answer each question and provide your confidence in the answer you have provided. 

“vehicle option” signifies a node marked S___A. 

“windshield” or “part” signifies a node marked WS ___. 

 

1. Which vehicle options are not available to US customers for the available 

windshields? 

 

 

 
 

2. If a US customer wants option S5DFA, what windshield part numbers are 

available?  Which numbers are not available?  Does it change for a customer in 

Europe and why? 

 

 

 
 

3. If a vehicle option (S123A) was added to the Europe model that requires S5ARA 

and cannot work with S5DFA, will this cause any problems?  Why or why not? 

 

 

 
 

4. Provide a feasible vehicle option combination to result in Part number WS 495 (in 

Europe). 

 

 

 
 

5. Which part numbers are compatible with option S610A (in Europe)? 

 

 

 
 

6. Are there any option contradiction errors in the connectivity graph?  If so, what are 

they? 
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7. If a European customer wants S5ATA, how does this affect availability of other 

vehicle options?  

 

 

 
 

8. If a customer in Europe wants option S358A, what other vehicle options are 

affected, and how? 

 

 

 
 

9. Which windshields are not offered in the US? 

 

 

 
 

10. Provide a feasible vehicle option combination to result in Part number WS 401 (for 

Europe). 

 

 

 
 

11. Is there any scenario where a combination of vehicle options will result in two 

different windshields being required (in Europe)? 

 

 

 
 

12. Are there any valid vehicle option combinations where no windshields are 

specified? 

 

 

 
 

13. If windshield WS 399 was removed from the European model, would this cause 

any issues? Why or why not? 
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Appendix F: Visualization Tool Development User Study Graphs 

The following graphs were used for the visualization tool development user study 

discussed in Section 6.2. 

 

Figure A.10: Graph for European models with functional grouping and coloring 

based on interactions 
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Figure A.11: Graph for US models with functional grouping and coloring based on 

interactions 
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Figure A.12: Graph for European models with functional grouping and coloring 

based on interactions (options only) 
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Figure A.13: Graph for US models with functional grouping and coloring based on 

interactions (options only) 
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Figure A.14: Graph for European models with functional grouping and coloring 

based on parts 
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Figure A.15: Graph for US models with functional grouping and coloring based on 

parts 
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Figure A.16: Graph for European models with circular layout and coloring based 

on interactions 
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Figure A.17: Graph for US models with circular layout and coloring based on 

interactions 
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Figure A.18: Graph for European models with circular layout and coloring based 

on parts 
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Figure A.19: Graph for US models with circular layout and coloring based on parts 
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Figure A.20: Graph for European models with circular layout and coloring based 

on interactions (options only) 
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Figure A.21: Graph for US models with circular layout and coloring based on 

interactions (options only) 
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Appendix G: Visualization Tool Validation User Study Packets 
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A 
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Provided 

 1x rule database 

 3x rule graphs 

 3x example configuration changes 

Instructions 

 Based on the information provided in each configuration change, make edits to 

the provided rule graph. 

 Configuration changes are independent – Configuration Change 1 should not be 

considered when evaluating Configuration Change 2. 

 Use a fresh rule graph for each Configuration Change. 

 No changes need to be made to the rule database, it is for reference only. 

 If removing a rule is required, make sure it is clear which rule is to be removed 

and how the removal is shown. 
Rule Grammar 
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Rule Database 

  

Option type Name Description

Option MB1 VALUE MOTHERBOARD

Option MB2 HIGH-END MOTHERBOARD

Option CPU1 VALUE PROCESSOR UNIT

Option CPU2 MID-RANGE PROCESSOR UNIT

Option CPU3 HIGH-END PROCESSOR UNIT

Option VID1 VALUE VIDEO CARD

Option VID2 MID-RANGE VIDEO CARD

Option VID3 HIGH-END VIDEO CARD

Option HDD HARD DISK DRIVE

Option SSD SOLID STATE DRIVE

Option CD1 CD-ROM DISK DRIVE

Option BD1 BLURAY DISK DRIVE

Package VALU VALUE PACKAGE

Package BASE MID-RANGE PACKAGE

Rule type If-Part of rule Then-part of rule

- MB1 MB2

- CPU2 MB1

- CPU2 MB2

- CPU1 CPU2

- CPU1 CPU3

- CPU2 CPU3

- CD1 BD1

+ VID3 CPU3

+ VID2 CPU2 / CPU3

+ BD1 VID2 / VID3

PK VALU VID1 & CPU1 & MB1 & HDD

PK BASE VID2 & MB2 & SSD & CD1
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Configuration change 1 

Problem:  

A previous change in the CPU (CPU2) from Supplier Y resulted in an incompatibility with all of the 
existing motherboards that are available for all laptops.     

 

Solution:  

A new motherboard (MB3) has been identified from Supplier X that meets the performance criteria for 
all of the CPUs currently being manufactured.  Make the motherboard available for all laptops and 
ensure the correct CPUs are associated with the newly added motherboard. 

 

Rule changes:  

-Add new motherboard (MB3 – “High-end motherboard”) to the rule database 

-Add inclusion between CPU2 and MB3 

-Add exclusion between MB3 and MB1 

-Add exclusion between MB3 and MB2 
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Change 1 
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Configuration change 2 

Problem:  

The supplier that manufacturers the parts for CPU1 has gone out of business, resulting in the 
potential loss of that option. 

 

Solution:  

A new supplier has been found that can produce a similar processor unit to the previous one 
used in CPU1.  As a result, CPU1 remains a viable option. Video card rules must be changed due 
to new part compatibilities. 

 

Rule changes:  

-Add exclusion between CPU1 and VID1 

-Remove inclusion between VID2 and CPU2 / CPU3 

-Change package declaration for VALU from VID1 & CPU1 & MB1 & HDD to VID1 & MB1 & HDD 

 

Bonus:  

Why is the third rule change necessary? 
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Change 2 
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Configuration change 3 

Problem:  

Order history has shown that the customers are ordering the high-end video card (VID3) with 
the high-end CPU (CPU3), but have been settling for the less expensive motherboard (MB1).  
As MB1 is compatible with both options and has not been shown to hinder the performance of 
either higher-end option, many customers have ordered these together, resulting in a decrease 
in sales for laptops with the more expensive motherboard (MB2).  

 

Solution:  

Implement a new package (XPNS) that includes the high-end eversion of the motherboard 
(MB2), CPU (CPU3), and video card (VID3).  In order for the customers to order either the high-
end CPU or video card, they must include the XPNS package. 

 

Rule changes:  

-Add new package (XPNS – “High-end package”) to the ruleset 

-Add package declaration for XPNS of SSD & BD1 & VID3 & MB2 & CPU3 

-Add inclusion between VID3 and XPNS 

-Add inclusion between CPU3 and XPNS 
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Change 3 
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B 
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Provided 

 3x rule database 

 3x example configuration changes 

Instructions 

 Based on the information provided in each configuration change, make edits to 

the provided rule database. 

 Configuration changes are independent – Configuration Change 1 should not be 

considered when evaluating Configuration Change 2. 

 Use a fresh rule database for each Configuration Change. 

 If removing a rule is required, make sure it is clear which rule is to be removed 

and how the removal is shown. 

Rule Grammar 

 “-“ indicates mandatory exclusion (negative relationship) 

 “+” indicates mandatory inclusion (positive relationship) 

 “PK” indicates a package declaration rule (elements are included in the package) 

 “/” indicates “either/or” relationship (only one of them is required) 

 “&” indicates “and” relationships (both are required)  
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Configuration change 1 

Problem:  

A previous change in the CPU (CPU2) from Supplier Y resulted in an incompatibility with all of the 
existing motherboards that are available for all laptops.     

 

Solution:  

A new motherboard (MB3) has been identified from Supplier X that meets the performance criteria for 
all of the CPUs currently being manufactured.  Make the motherboard available for all laptops and 
ensure the correct CPUs are associated with the newly added motherboard. 

 

Rule changes:  

-Add new motherboard (MB3 – “High-end motherboard”) to the rule database 

-Add inclusion between CPU2 and MB3 

-Add exclusion between MB3 and MB1 

-Add exclusion between MB3 and MB2 
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Change 1 

  

Option type Name Description

Option MB1 VALUE MOTHERBOARD

Option MB2 HIGH-END MOTHERBOARD

Option CPU1 VALUE PROCESSOR UNIT

Option CPU2 MID-RANGE PROCESSOR UNIT

Option CPU3 HIGH-END PROCESSOR UNIT

Option VID1 VALUE VIDEO CARD

Option VID2 MID-RANGE VIDEO CARD

Option VID3 HIGH-END VIDEO CARD

Option HDD HARD DISK DRIVE

Option SSD SOLID STATE DRIVE

Option CD1 CD-ROM DISK DRIVE

Option BD1 BLURAY DISK DRIVE

Package VALU VALUE PACKAGE

Package BASE MID-RANGE PACKAGE

Rule type If-Part of rule Then-part of rule

- MB1 MB2

- CPU2 MB1

- CPU2 MB2

- CPU1 CPU2

- CPU1 CPU3

- CPU2 CPU3

- CD1 BD1

+ VID3 CPU3

+ VID2 CPU2 / CPU3

+ BD1 VID2 / VID3

PK VALU VID1 & CPU1 & MB1 & HDD

PK BASE VID2 & MB2 & SSD & CD1
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Configuration change 2 

Problem:  

The supplier that manufacturers the parts for CPU1 has gone out of business, resulting in the 
potential loss of that option. 

 

Solution:  

A new supplier has been found that can produce a similar processor unit to the previous one 
used in CPU1.  As a result, CPU1 remains a viable option. Video card rules must be changed due 
to new part compatibilities. 

 

Rule changes:  

-Add exclusion between CPU1 and VID1 

-Remove inclusion between VID2 and CPU2 / CPU3 

-Change package declaration for VALU from VID1 & CPU1 & MB1 & HDD to VID1 & MB1 & HDD 

 

Bonus:  

Why is the third rule change necessary? 
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Change 2 

  

Option type Name Description

Option MB1 VALUE MOTHERBOARD

Option MB2 HIGH-END MOTHERBOARD

Option CPU1 VALUE PROCESSOR UNIT

Option CPU2 MID-RANGE PROCESSOR UNIT

Option CPU3 HIGH-END PROCESSOR UNIT

Option VID1 VALUE VIDEO CARD

Option VID2 MID-RANGE VIDEO CARD

Option VID3 HIGH-END VIDEO CARD

Option HDD HARD DISK DRIVE

Option SSD SOLID STATE DRIVE

Option CD1 CD-ROM DISK DRIVE

Option BD1 BLURAY DISK DRIVE

Package VALU VALUE PACKAGE

Package BASE MID-RANGE PACKAGE

Rule type If-Part of rule Then-part of rule

- MB1 MB2

- CPU2 MB1

- CPU2 MB2

- CPU1 CPU2

- CPU1 CPU3

- CPU2 CPU3

- CD1 BD1

+ VID3 CPU3

+ VID2 CPU2 / CPU3

+ BD1 VID2 / VID3

PK VALU VID1 & CPU1 & MB1 & HDD

PK BASE VID2 & MB2 & SSD & CD1
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Configuration change 3 

Problem:  

Order history has shown that the customers are ordering the high-end video card (VID3) with 
the high-end CPU (CPU3), but have been settling for the less expensive motherboard (MB1).  
As MB1 is compatible with both options and has not been shown to hinder the performance of 
either higher-end option, many customers have ordered these together, resulting in a decrease 
in sales for laptops with the more expensive motherboard (MB2).  

 

Solution:  

Implement a new package (XPNS) that includes the high-end eversion of the motherboard 
(MB2), CPU (CPU3), and video card (VID3).  In order for the customers to order either the high-
end CPU or video card, they must include the XPNS package. 

 

Rule changes:  

-Add new package (XPNS – “High-end package”) to the ruleset 

-Add package declaration for XPNS of SSD & BD1 & VID3 & MB2 & CPU3 

-Add inclusion between VID3 and XPNS 

-Add inclusion between CPU3 and XPNS 
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Change 3 

 

Option type Name Description

Option MB1 VALUE MOTHERBOARD

Option MB2 HIGH-END MOTHERBOARD

Option CPU1 VALUE PROCESSOR UNIT

Option CPU2 MID-RANGE PROCESSOR UNIT

Option CPU3 HIGH-END PROCESSOR UNIT

Option VID1 VALUE VIDEO CARD

Option VID2 MID-RANGE VIDEO CARD

Option VID3 HIGH-END VIDEO CARD

Option HDD HARD DISK DRIVE

Option SSD SOLID STATE DRIVE

Option CD1 CD-ROM DISK DRIVE

Option BD1 BLURAY DISK DRIVE

Package VALU VALUE PACKAGE

Package BASE MID-RANGE PACKAGE

Rule type If-Part of rule Then-part of rule

- MB1 MB2

- CPU2 MB1

- CPU2 MB2

- CPU1 CPU2

- CPU1 CPU3

- CPU2 CPU3

- CD1 BD1

+ VID3 CPU3

+ VID2 CPU2 / CPU3

+ BD1 VID2 / VID3

PK VALU VID1 & CPU1 & MB1 & HDD

PK BASE VID2 & MB2 & SSD & CD1
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