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Abstract

Despite the unprecedented success and proliferation of wireless communication, sustainable

reliability and stability among wireless users are still considered important issues in the underlying

link protocols. Existing link-layer protocols, like ARQ [44] or HARQ [57,67] approaches are designed

to achieve this goal by discarding a corrupted packet at the receiver and performing one or more

retransmissions until the packet is successfully decoded or a maximum number of retransmission

attempts is reached. These strategies suffer from degradation of throughput and overall system

instability since packets need to be en/decode in every hop, leading to high burden for relay nodes

especially when the traffic load is high. On the other hand, due to the broadcast nature of wireless

communication, when a relay transmits a packet to a specific receiver, it could become interference

to other receivers. Thus, rather than activating all the relays simultaneously, we can only schedule

a subset of relays in each time slot such that the interference among the links will not cause some

transmissions to fail. Accordingly, in this dissertation, we mainly address the following two problems:

1) Relay selection: given a route (i.e., a sequence of relays), how to select the relays to en/decode

packets to minimize the latency to reach the destination?

2) Link scheduling : how to schedule relays such that the interference among the relays will not

cause transmission failure and the throughput is maximized?

Relay Selection Problem. To solve the relay selection problem, we propose a Code Embedded

Distributed Adaptive and Reliable (CEDAR) link-layer framework that targets low latency. CEDAR

is the first theoretical framework for selecting en/decoding relays to minimize packet latency in wire-

less communication networks. It employs a theoretically-sound framework for embedding channel

codes in each packet and performs the error correcting process in selected intermediate nodes in

packet’s route. To identify the intermediate relay nodes for en/decoding to minimize average packet
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latency, we mathematically analyze the average packet delay, using Finite State Markovian Channel

model and priority queuing model, and then formalize the problem as a non-linear integer program-

ming problem. To solve this problem, we design a scalable and distributed scheme which has very

low complexity. The experimental results demonstrate that CEDAR is superior to the schemes using

hop-by-hop decoding and destination-decoding in terms of both packet delay and throughput. In

addition, the simulation results show that CEDAR can achieve the optimal performance in most

cases.

Link Scheduling Problem. As for the link scheduling problem, we formulate a new problem called

Fading-Resistant Link Scheduling ( Fadin-R-LS) problem, which aims to maximize the throughput

(the sum data rate) for all the links in a single time slot. The problem is different from the existing

link scheduling problems by incorporating the Rayleigh-fading model to describe the interference.

This model extends the deterministic interference model based on the Signal-to-Interference Ratio

(SIR) using stochastic propagation to address fading effects in wireless networks. Based on the

geometric structure of Fadin-R-LS, we then propose three centralized schemes for Fadin-R-LS, with

O(g(L)), O(g(L)), and O(1) performance guarantee for packet latency, where g(L) is the number of

length magnitudes of link set L. Furthermore, we propose a completely distributed approach based

on game theory, which has O(g(L)2α) performance guarantee.

Furthermore, we incorporate a cooperative communication (CC) technique, e.g., maximum

ratio combining (MRC), into our system to further improve the throughput, in which receivers are

allowed to combine messages from different senders to combat transmission errors. In particular, we

formulate two problems named cooperative link scheduling problem (CLS) and one-shot cooperative

link scheduling problem (OCLS). The first problem aims to find a schedule of links that uses the

minimum number of time slots to inform all the receivers. The second problem aims to find a

set of links that can inform the maximum number of receivers in one time slot. We prove both

problems to be NP-hard. As a solution, we propose an algorithm for both CLS and OCLS with

g(K) approximation ratio, where g(K) is so called the diversity of key links. In addition, we propose

a greedy algorithm with O(1) approximation ratio for OCLS when the number of links for each

receiver is upper bounded by a constant.

In addition, we consider a special case for the link scheduling problem, where there is a

group of vehicles forming a platoon and each vehicle in the platoon needs to communicate with the

leader vehicle to get the leader vehicle’s velocity and location. By leveraging a typical feature of a
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platoon, we devise a link scheduling algorithm, called the Fast and Lightweight Autonomous link

scheduling algorithm (FLA), in which each vehicle determines its own time slot simply based on its

distance to the leader vehicle.

Finally, we conduct a simulation on Matlab to evaluate the performance of our proposed

methods. The experimental results demonstrate the superior performance of our link scheduling

methods over the previous methods.
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Chapter 1

Introduction

Despite the unprecedented success and proliferation of wireless communication, there are

major shortcomings in the underlying link-layer protocols in providing sustainable reliability and

stability among wireless users. Popular wireless link-layer protocols, such as the retransmission

ARQ and Forward Error Correction (FEC) based ARQ (HARQ) approaches (employed by the IEEE

802.xx and LTE standard suite) have been designed to achieve some level of reliability by discarding

a corrupted packet at the receiver and performing one or more retransmissions until the packet

is decoded/received error-free or a maximum number of retransmission attempts is reached. This

methodology suffers from degradation of throughput and overall system instability since decoding

failures at the receiver due to a small number of bit errors lead to packet drops and discarding a

large number of correctly delivered data bits.

Besides selecting the intermediate nodes to provide highly sustainable reliability and stability

for the system, we also need to consider avoiding interference among transmissions. Due to the

broadcast nature of wireless communication, when a sender transmits a packet to a specific receiver,

it could become interference to other receivers. Thus, when scheduling links, we need to consider

how to select links such that the interference among the links will not fail transmissions. When

we study the scheduling problem in wireless networks, the choice of the interference model is of

fundamental significance.
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1.1 Problem Statement

Many leading research efforts [11, 16, 22, 28, 29, 36, 37, 43, 56, 57, 64, 67] have highlighted

the inefficiencies of these link-layer protocols and proposed a variety of remedy solutions. The

majority of these efforts either consider variations of the ARQ, HARQ or a hybrid approach of

both schemes [11,28,37,44,57,67]. They largely follow the traditional “store-and-forward” link-layer

design paradigm: each data packet must be fully received and corrected by every relay node before

it is forwarded. This design paradigm increases stability but still cannot provide high stability due

to its hop-by-hop operation.

It is our belief that achieving the ultimate objective of the development of ubiquitous and

heterogeneous wireless networks demands fundamental and radical changes to the conventional link-

layer protocol design. Thus, we study and develop alternative optimal and low-complexity error

recovery strategies in link-layer design to achieve high reliability and stability by partially and

optimally selecting relay nodes. The objectives of the strategies are to ensure: (1) Low end-to-end

latency and rapid delivery of packets; (2) High throughput with minimum data loss. To meet these

objectives, we develop solutions that address the following key issues:

(1) Minimizing propagation and transmission (prop&tran) delay : at which intermediate nodes (if

any) a link-layer packet should be detected to minimize packet delay?

(2) Minimizing queuing delay : as multiple relay nodes in a route perform error recovery on the

same packet stream and one node may perform error recovery for multiple packet streams,

how to select relay nodes that provides global reliability and stability in a wireless network

with many source-destination packet streams?

Note that our work shares the same objectives as some previous works on en/decoding schemes and

network coding (e.g., PPR [28] and MIXIT [37]). However, unlike these previous works that focus

on route determination or en/decoding scheme design, our work aims to determine the intermediate

nodes to en/decode packets given a route and an en/decoding scheme. Our work can be employed

in those en/decoding schemes and network coding schemes for further performance enhancement.

Besides relay selection, we also need to consider how to schedule links to avoid interference

among relay nodes. Although the approximation algorithms for scheduling problem have been widely

studied based on different interference models [4, 10, 15, 18, 20, 21, 25, 30, 33, 35, 40, 45, 53, 61, 62, 65],
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none of the these works take into account the fluctuating fading effect, or cooperative communication

(CC) in transmissions. Also, no previous work considers applying link scheduling methods to some

special scenarios, like the vehicle platoon network. Accordingly, we consider the problem in the

following cases:

(1) Rayleigh fading SIR interference model is applied : One of the most commonly used interference

models in the traditional scheduling problem is the graph based model [30–33,35,40,45,52,53].

It only considers the interference on a receiver from other senders within the transmission

range. However, although the interference from a single far-away sender can be relatively small,

the accumulated interference from several such senders can be sufficiently high to corrupt a

transmission. Hence, the scheduling problem solutions based on the graph based model cannot

be guaranteed to work in many real scenarios. Another interference model, named the physical

interference model or the Signal-to-Interference Ratio (SIR) model, offers a more realistic

representation of wireless networks [4, 15, 18, 20, 21, 65]. In this model, a message is received

successfully iff the SIR is no smaller than a hardware-defined threshold. This definition of

a successful transmission, as opposed to the graph based definition, accounts for interference

generated by senders located far away.

However, the SIR model still uses a limited view of signal propagation. Its main assumption

is that any signal transmitted at power level P is always received at distance d with strength

Pd−α, where α is path loss exponent. The real signal propagation is not deterministic, e.g.,

the links may become susceptible to fading fluctuations in signal strength due to mobility in a

multi-path propagation environment [42]. Therefore, some advanced models using stochastic

approaches to consider fading effects have been proposed [3, 24]. Most prominently, in the

Rayleigh-fading model, the signal strength is modeled by an exponentially distributed random

variable with mean Pd−α [13, 42]. This however also makes the SIR non-deterministic, and

hence causes the judgment of successful transmission in analyzing the link scheduling problem

much more complicated. As a result, finding solutions for the link scheduling problem with

the Rayleigh-fading model is a non-trivial task.

(2) The CC technique (e.g., MRC) is allowed : It has been shown that MRC technique has a

great potential to increase the capacity of wireless networks [1, 48, 60]. In wireless networks,

before a message reaches the destination (receiver), it may have several copies stored by other

3



nodes. For example, the sender’s neighboring nodes can store the unintended message from the

sender due to the broadcast nature of wireless transmission; also, in multi-hop transmission,

relay nodes can store the copies of the original message. In CC, the nodes storing the copies

(including the original message) are allowed to send the copies to the receiver together, and the

receiver combines the signal power of the received copies in an additive fashion using MRC to

recover the message. Similar to Fading-R-LS, we formulated the link scheduling problem based

on the SIR model, namely cooperative link scheduling problem (CLS) and one-shot cooperative

link scheduling problem (OCLS).

(3) Vehicles in a platoon: Finally, we apply the link scheduling method to the vehicle platoon

system, which is considered as a type of next-generation of land transportation systems. In

a platoon, one leader vehicle and several follower vehicles drive in a single lane, where each

vehicle maintains a shorter distance from its preceding vehicle, which requires to build a

well-connected communication network for a platoon so that vehicles can quickly adjust their

velocities through fast communication. Considering vehicles in platoon may change their

locations [46], directly employing the previous link scheduling algorithm to the platoon network

would lead to much higher communication cost and longer transmission delay. Considering

the poor channel capacity for the vehicle to vehicle (V2V) communication [7], a challenge is

how to conduct link scheduling with low delay and low communication cost in a decentralized

platoon network? In this dissertation, we aim to resolve the link scheduling problem arisen in

the platoon network.

1.2 Research Approach

1.2.1 A Low-Latency and Distributed Relay Selection Strategy for Packet

Recovery in Wireless Networks

The design of the strategies requires network-of-queues models that capture the error cor-

rection process and networking effects of traffic flows over multi-hop wireless paths. Accordingly, we

develop mathematical models for the prop&tran delay and queuing delay for a packet based on the

path length between two consecutive decoding nodes in a route (route segment length). Through

rigorous mathematical analysis on the models, we derive two propositions that (1) can identify the
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intermediate nodes for decoding which minimize prop&tran delay of a packet, and prove that (2)

balanced en/decoding load distribution among decoding nodes in the network minimizes the queuing

delay. Based on the propositions, we formulate the problem of minimizing delay as a non-linear inte-

ger programming problem. However, due to the NP-hard nature of the problem and impracticability

of collecting all required information to find the global optimal solution, we propose a sub-optimal

Code Embedded Distributed Adaptive and Reliable (CEDAR) link-layer framework for wireless

networks. CEDAR is a distributed and cooperative error recovery design, which represents a new

paradigm in both transmission and distributed recovery processing and promises significant increase

of capacity and throughput gain in wireless networks. CEDAR provides an adaptive environment

for various error recovery strategies with respect to reliability, stability and energy consumption

constraints. We believe that CEDAR is the first comprehensive theoretical framework for studying

the selection of en/decoding relay nodes to increase networks’ reliability and stability.

1.2.2 Link Scheduling

1.2.2.1 Fading Resistant Link Scheduling

To address the link scheduling problem in fading environment, we formulate a link scheduling

problem called Fading-Resistant Link Scheduling problem (Fading-R-LS), in which the interferences

among links are modeled by the Rayleigh-fading channel model. Given a set of links L, Fading-R-LS

is to determine which subset of L should be activated such that the total throughput is maximized

in one time slot. We first prove that this problem is NP-hard, and then propose three solutions and

analyze their performance guarantees:

1) Link diversity partition algorithm (LDP). According to the geometric structure of

Fading-R-LS, LDP builds several link classes based on link lengths and schedule the links in each

class separately. We prove that LDP has the performance guarantee of O(g(L)), where g(L) is the

number of length magnitudes of link set L.

2) Recursive link elimination algorithm (RLE). RLE is proposed in the case that

data rate of each link is the same. RLE iteratively picks up the unpicked link with the shortest link

length and eliminates other links that interfere with the picked link. We prove RLE has a constant

performance guarantee.

3) Decentralized link scheduling algorithm (DLS). In DLS, each sender makes its own
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decision based on local information. We analyze DLS as a game where the senders are the players

and prove that each achieved Nash equilibrium in this game results in an expected throughput that

is close to optimal.

1.2.2.2 Cooperative Communication Link Scheduling

To solve cooperative link scheduling problem and one-shot cooperative link scheduling prob-

lem, we propose two link length diversity (LLD) based algorithms LLD-CLS and LLD-OCLS to solve

CLS and OCLS, respectively. The basic idea of these two algorithms is to partition all the links

into several classes based on their length (i.e., distance between the link’s sender and receiver) and

schedule the links in each class separately. We prove that both LLD-CLS and LLD-OCLS have g(K)

approximation ratio, where g(K) denotes the diversity of key links (Definition 5.2.2 and Definition

5.1.1). In addition, we consider a special case of the OCLS problem, in which the number of links

for each receiver is upper bounded by a constant, and propose a simple greedy algorithm for it:

in each iteration, the algorithm greedily picks up the “strongest” unpicked links and excludes any

link that conflicts with the links we have selected. We prove that this greedy algorithm has O(1)

approximation ratio.

1.2.2.3 The Fast and Lightweight Autonomous Link Scheduling Algorithm (FLA)

In this part, we aim to resolve the link scheduling problem arisen in the vehicle platoon

network. More specifically, we propose a Fast and Lightweight Autonomous link scheduling algorithm

(FLA) that takes advantage of a typical feature of the platoon. Different from general wireless

networks, where the nodes are arbitrarily distributed, in the platoon, vehicles drive in a single lane

and the distance between neighboring vehicles is equal to the safety distance [66]. Based on this

feature, to avoid interference, we let vehicles use the same time slot only when their distance is

beyond the interference range and let vehicles within the interference range use different time slots.

Interference range is the distance range that makes the interference upper bounded by an acceptable

value for packet decoding. Specifically, we geometrically partition the platoon into segments of the

same length δ such that each segment contains at most one vehicle. Then, we consider every g

consecutive segments as a group, and allocate g different time slots to the segments in each group. g

is the minimum number of time slots needed to avoid the interference. The aforementioned platoon

feature also enables a vehicle to locate its segment position in a group and then autonomously decide
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its time slot accordingly. As a result, the vehicles using the same time slot have a distance equals

to the interference range in between.

1.3 Contributions

The contributions of the dissertation include

• For relay selection problem:

1) Channel model for code embedded packet transmission in multiple hops. We first

derive the closed form of the probability of decoding failure of a code embedded packet traveling

through a given number of hops based on the Finite State Markovian Channel (FSMC) model;

2) Closed form of packet delay . Combining the derived packet failure rate with the

propagation delay model, transmission delay model, and priority queuing model, we then

derive the closed form of the prop&tran delay and queuing delay for each packet.

3) Formal formulation of the relay selection problem . According to the derived packet

delay, we formalize the problem of choosing the intermediate en/decoding nodes for minimum

delay and minimum difference of en/decoding load of all the nodes as a non-linear integer

programming, problem which is an NP-hard problem. As far as we know, this is the first

theoretical work for choosing en/decoding nodes that targets on the reliability and stability of

wireless networks.

4) Time-efficient distributed methods. Due to the hardness of the relay selection problem,

we propose two distributed sub-optimal strategies for CEDAR in heavy traffic environment and

light traffic environment, respectively, to achieve higher reliability, stability and en/decoding

load balancing compared with previous methods.

• For fading resistant link scheduling:

1) The fading resistent link scheduling problem (Fading-R-LS). We formulate the

Fading-R-LS problem that takes into account the fading effect, which is not considered in

previous scheduling problems. In addition, we first give an integer linear programming (ILP)

formulation of Fading-R-LS and prove it is NP-hard;

2) The link diversity partition algorithm (LDP). According to the geometric structure

of Fading-R-LS, we propose the LDP centralized method. It builds a number of link classes
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based on link lengths and schedule the links in each class separately. We prove that LDP has

the performance guarantee of O(g(L)), where g(L) is the number of length magnitudes of link

set L. To the best of our knowledge, no previous works propose an approximation algorithm

for the link scheduling problem in fading environment;

3) The recursive link elimination algorithm (RLE). We then consider a special case of

Fading-R-LS, in which the data rate of each link is the same, and propose the RLE algorithm

accordingly. RLE iteratively picks up the unpicked link with the shortest link length and

eliminates other links that interfere with the picked link. We prove RLE has the performance

guarantee of O(∆α) for throughput, which has a better performance guarantee than LDP (∆ is

the ratio between the maximum and the minimum distances between nodes). In addition, the

experimental results demonstrate that our fading-resistant link scheduling algorithms (LDP

and RLE) outperform the previous methods in term of the successful transmission probability

[18,20];

4) The decentralized link scheduling algorithm (DLS) based on game theory . We

propose DLS which allows each sender to make its own decision based on local information.

We analyze DLS as a game where the senders are the players and prove that each achieved

Nash equilibrium in this game results in an expected throughput that is close to optimal;

• In addition, in the case of cooperative communication link scheduling:

1) The cooperative link scheduling problem (CLS) and the one-shot cooperative link

scheduling problem (OCLS). We formulate two problems: CLS and OCLS. The objective

of CLS is to inform all the receivers using as few time-slots as possible. The objective of OCLS

is to maximize the number of receivers informed concurrently in one time slot. We also prove

both CLS and OCLS to be NP-hard. As far as we know, this paper is the first work studying

the link scheduling problem in cooperative communication networks;

2) The link length diversity (LLD) based algorithm for CLS and OCLS (LLD-CLS

and LLD-OCLS). We propose algorithms LLD-CLS and LLD-OCLS for CLS and OCLS,

respectively, where both algorithms have g(K) approximation ratios. Furthermore, we propose

an algorithm with O(1) approximation guarantee for OCLS when the number of senders in

each request is upper bounded by a constant. The experimental results indicate that our

cooperative link scheduling algorithms outperform the non-cooperative algorithms [18,20];
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• Finally, we applied our link scheduling algorithm to the application of vehicle platoon:

1) The vehicle link scheduling problem (VLS). We formally formulate the VLS and prove

the VLS remains NP-hard;

2) The fast and lightweight autonomous link scheduling algorithm (FLA). By lever-

aging a typical feature of a platoon, i.e., there exists a safety distance between consecutive

vehicles in single lane, we devise a link scheduling algorithm, called the Fast and Lightweight

Autonomous link scheduling algorithm (FLA), in which each vehicle determines its own time

slots simply based on its distance to the leader vehicle. The experimental results demonstrate

the superiority of FLA over the previous methods in terms of packet latency and delivered

ratio.

1.4 Dissertation Organization

The remainder of this dissertation is arranged as followings. Chapter 2 introduces the related

works. Chapter 3 introduces the system model used through this paper and problems formulated

based on this model. Chapter 4 and Chapter 5 introduce the detailed designs of relay selection and

link scheduling in this dissertation. Chapter 6 presents the performance evaluation of these methods.

Finally, Section 7 concludes this dissertation with remarks on future work.
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Chapter 2

Related Work

2.1 Relay Selection

Error detection and correction is one the richest problems in communication literature. The

link-layer protocol of the current TCP/IP stack has adopted variations of error recovery mechanism-

s to provide reliability for point-to-point communication especially for wireless systems. Different

wireless communication standards currently utilize variations of error control protocols that gener-

ally can be categorized into ARQ [44] and HARQ-based [57,67] protocols. For instance IEEE802.11

WiFi uses ARQ where a receiving node discards corrupted packets (even when there is only a single

bit error) and requests for a retransmission. The 4G/LTE deploys HARQ with Turbo Codes where

the sender node encodes the packet payload using Turbo channel codes [14] prior to the transmis-

sion. Accordingly, the receiver node requests for a retransmission when the decoding of the received

packet fails. In conjunction with the current wireless link-layer standards, there is significant work

and research conducted to improve the performance of either ARQ- or HARQ-based protocols. Sev-

eral kinds of HARQ protocols (see [57,67] and the reference therein) improve the throughput of the

ARQ schemes by packet combining, e.g. by keeping the erroneous received packets and utilizing

them for detection and packet recovery. Examples of recent efforts for combating the inefficiency of

ARQ-based wireless protocols include Partial Packet Recovery (PPR) [28], SOFT [64], and Auto-

matic Code Embedding (ACE) framework [55]. Some of these approaches, such as PPR and SOFT,

exploit physical layer information regarding the quality of individual bits to increase the probability

of recovering corrupted packets. Other schemes, such as ACE, utilize information available in the
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current 802.11 link-layer protocols in conjunction with error correcting codes to recover corrupted

packets. Ilyas et al. [26] proposed the “Poor Man’s SIMO System” (PMSS) to reduce packet losses in

networks of commodity IEEE 802.15.4 sensor motes using cooperative communication and diversity

combination. Based on mathematical analysis, Jelenkovi et al. [29] proposed a new dynamic packet

fragmentation algorithm that can adaptively match channel failure characteristics. Reuven et al. [11]

considered a new scenario, in which when a base station wishes to multi-cast information to a large

group of nodes using application-layer forward error correction (FEC) codes. It has been shown

that network coding improves network reliability by reducing the number of packet retransmission-

s in lossy networks [16]. Thus, by coupling channel coding and network coding, Guo et al. [22]

proposed a scheme named Non-Binary Joint Network-Channel Decoding (NB-JNCD) for reliable

communication in wireless networks. These aforementioned works have significantly improved the

ARQ- and HARQ-based link-layer performance and provide a comprehensive error control approach

for wireless communication. However, virtually all of these efforts follow the conventional TCP/IP

link-layer “store-and-forward” design paradigm, where each relay node verifies the correctness of

each packet before forwarding it to the next node. This inherently introduces substantial overhead

on bandwidth utilization and throughput and the overall end-to-end delay. In addition the point-

to-point error recovery is not an optimal approach for energy constrained dense wireless networks.

Though the previous work MIXIT [37] has jettisoned reliable link-layer error detection and recovery

altogether using a symbol level network coding, its coding/decoding algorithms is more demanding

for computational capacities of nodes than traditional store and forward methods. Comparing to

MIXIT’s implementation on software radios, CEDAR is more suitable for the devices with con-

strained processing capability, e.g., sensors, because CEDAR implements the decoding process by

Reed Solomon, which can be encoded and decoded by hardware.

Accordingly, in this paper, we pursue a paradigm shift in the conventional link-layer design

and propose a distributed, low-complexity, and adaptive scheme to achieve high reliability, stability

and energy-efficiency in packet transmission. CEDAR is introducing a new chapter in link-layer

design for future wireless networks comprising of energy constrained nodes where error recovery is

optimally conducted in selected nodes.
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2.2 Link Scheduling

Based on the choice of interference models, the previous works can be classified to two group-

s: graph based scheduling [21, 30–33,35,40,45,52,53] and SINR based scheduling [4, 15,18,20,65].

2.2.1 Graph based scheduling

Graph models have been served as the useful abstraction for studying scheduling problems

for many years. For example, Sharma et al. [53] defined a k-hop interference model, in which no two

links within k-hops can successfully transmit simultaneously, and proved that the scheduling problem

is NP-hard when k > 1. Lin and Shroff [45] proposed Greedy Maximal Scheduling (GMS), which can

be implemented in a distributed manner. Joo et al. [33] further provided numerous analytic results

to characterize the performance limits of GMS and Jiang et al. [31] introduced a modified GMS

scheduling algorithm based on CSMA random access. Wang et al. [61] studied the link scheduling

problem for a multi-hop wireless network to maximize throughput. They assumed each node has

different transmission range and interference range, and the methods they presented can achieve a

constant factor of the optimum. Cheng et al. [10] studied the problem in multi-radio multi-channel

wireless networks, and proved that the problem is NP-hard in this scenario, in both the k-hop

interference model and unit disc model. Wang et al. [62] developed joint TCP congestion control

and carrier sense multiple access (CSMA) scheduling schemes for Internet traffic over distributed

multi-hop wireless links, in which the interference among the links is modeled by a conflict graph.

Kar et al. [35] considered the question of obtaining tight delay guarantees for throughout-optimal link

scheduling in arbitrary topology wireless ad-hoc networks. Jiang et al. [30] presented a distributed

randomized scheme for scheduling and congestion control. Krifa and Barakat [40] investigated both

the problems of scheduling and buffer management in delay tolerant networks. They proposed a

centralized optimal scheme and a distributed scheme using statistical learning to approximate the

required global knowledge. There are also some graph-based link scheduling scheme considering

fading effect [32,52]. Reddy et al. [52] analyzed the performance of GMS where the capacity of links

changes over time. Joo et al. [32] considered the link scheduling problem in fading environment as

a Maximum Weight Independent Set (MWIS) problem and proved it to be NP-hard.

Although these algorithms present extensive theoretical analysis, they are constrained to the

limitations of the graph interference model that omits the accumulative nature of wireless signals.
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Comparing to graph model, SINR model offers a more realistic representation of wireless networks.

As proved by Gronkvist et al. [21] using both theoretical analysis and experiments, the graph based

scheduling protocols are inefficient in the SINR model.

2.2.2 SINR based scheduling

There have been many works studying the problem of joint link scheduling and power control

in the SINR model [39, 41, 50]. For example, Kozat et al. [39] addressed the joint problem to mini-

mize the total transmit power subject to the end-to-end bandwidth guarantees and the bit error rate

requirements of each transmission. The problem is proved NP-hard by constructing a reduction from

integer programming. Leung and Wang [41] proved that the problem of maximizing throughput by

adaptive modulation and power control while meeting packet error constraints is NP-hard. In [50],

Pei and Kumar set the goal of the problem as maximizing capacity region of the network, i.e. the

maximum attainable network throughput. They also proposed a low complexity distributed algo-

rithm for this problem. In addition, Hong and Scaglione [21] showed that the graph based scheduling

protocols are inefficient in SINR model using both theoretical analysis and experiments [15,21,25,65].

ElBatt et al. [15] introduced a joint scheduling and power control algorithm for multicast ad hoc net-

works based on the SINR model. Huang et al. [25] presented an optimization-based formulation for

joint scheduling and resource allocation in the uplink OFDM access network and proposed heuristic

solutions. Xu et al. [65] studied periodic scheduling for data aggregation with minimum delay under

various interference models. They proposed a family of real-time query scheduling protocols and

propose schedulability test schemes to test whether, for a set of queries, each query job can Some

other works focused on designing algorithms with lower approximation guarantee [4,18,20]. Brar et

al. [4] proposed a polynomial time algorithm and proved an approximation ratio for their method

under uniform random node distribution. Goussevskaia et al. [18] formulated the scheduling problem

in the geometric SINR model, proved its NP-hardness, and proposed a greedy solution with perfor-

mance guarantee O(g(L)). Goussevskaia et al. also proposed a scheduling algorithm with constant

approximation guarantee, which is independent of the network topology and size [20]. They further

formulated a variation of the problem, in which analog network coding is allowed, and presented NP-

hard proof of the problem [19]. Goussevskaia et al. [19] also formulated a variation of the problem, in

which analog network coding is allowed, and presented NP-hard proof the problem [19]. Chafekar et

al. [6] proposed an algorithm for the scheduling problem under SINR constraints with O(g(D)) per-
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formance guarantee, where O(g(D)) is the ratio between the maximum and the minimum distances

between nodes. Brar et al. [4] proposed a greedy scheduling algorithm with performance guarantee

of O(N1− 2
ψ(α)+ε (logN)

2
ψ(α)+ε ) based on the assumption that nodes are distributed uniformly in a

square of unit area, where ψ(α) is a constant depending on the path loss exponent α. The SINR

model offers a more realistic representation of wireless networks than that of graph model, but How-

ever, the SINR model still uses a limited view of signal propagation since it does not consider the

fading fluctuations in received signal strength (e.g., caused by the mobility in a multi-path propa-

gation environment). Though Dams et al. [13] have studied the relationship between the non-fading

SINR model and the Rayleigh-fading model for the scheduling problem, they did not discuss either

the complexity of the problem considering fading or how to design an efficient algorithm based on

the Rayleigh-fading model. Our work is the first that analyzes the hardness of the link scheduling

problem under Rayleigh-fading model and proposes approximation algorithms for the problem.
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Chapter 3

Problem Statement

In this chapter, we first introduce the system model we will use throughout this paper in

Section 3.1. Based on the system model, we formally formulate both the relay selection problem

(Section 3.2.1) and the link scheduling problem (Section 3.2.2), where the link scheduling problem

includes the fading resist link scheduling problem (Section 3.2.2.1), the CC link scheduling problem

(Section 3.2.2.2), and the vehicle scheduling problem (Section 3.2.2.3).

3.1 System Model

3.1.1 Relay Selection

Network model. First, we consider a wireless network comprised of N nodes denoted by V =

{v1, ..., vN}. Each traffic flow from a source node to a destination node transverses over a predeter-

mined set of links (a route specified by the network layer). Let R = {r1, ..., rK} denote the set of

transmission routes. Each route rk (rk ∈ R) carries a data stream following Poisson distribution with

arrival rate λk. We use rk = {vk1 , ..., vknk } to represent the node sequence in rk (vk1 , ..., vknk ∈ V),

where nk is the number of nodes in rk. We consider a network with heterogeneous types of traffic,

i.e., a combination of real-time traffic with delay constraint and traffic with no delay constraint. We

use Uk to denote the delay constraint of route rk; Uk = ∞ if the packet in route rk has no delay

constraint. Finally, we use indicator variable yi,k to denote whether vi is in rk. If yes, yi,k = 1;

otherwise yi,k = 0.
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Channel model. Finite State Markovian Channel model (FSMC) [59] is a channel model that

uses finite state Markov chain to describe the process, under which errors are introduced into a

transmitted packet over a wireless route. The model has a finite set of error states Ψ = (ψ1, ψ2, ...,

ψB) (|Ψ| = B), each corresponding to a Binary Symmetric Channel (BSC). The channel model can

be considered as a combination of B number of various BSCs with unique BERs (ε) (i.e., εl 6= εj for

l 6= j, l, j = 1, 2, ..., B). Assuming packets are transmitted during discrete time slots τi (i = 1, 2, 3...)

which can be referred as transmission intervals. During the ith transmission interval, a packet is

transmitted from a BSC to another BSC with cross-over BER εi. Each εi of a particular τi is valued

from Ψ. The Markovian model assumes a homogenous and stationary Markov chain with transition

probability matrix T = (tij)B×B and initial probability π = (π1, ..., πB). T = (tij)B×B can be

trained on real channel traces by using the statistics of previous transmission intervals. This captures

the effects of multi-path fading and interferences on the channel BER in every transmission interval

using a single aggregated model [59]. The system average BER can be calculated as: ε =
∑B
k=1 πkεk.

Based on this prior work, we calculate the average BER for consecutive wireless links within a route

segment in a cascaded system, and derive Lemma 3.1.1.

Lemma 3.1.1 The BER in a cascade system where a node travels along links with states ψa1ψa2 ...ψan

(1 ≤ a1, a2, ..., an ≤ K) can be given by:

εn ≈
∑

{ψa1 ...ψan}∈Sn

πa1 n−1∏
j=1

tajaj+1

n∑
i=1

εi

 (3.1)

where Ψn represents all the possible set of series which is composed of n elements and each element

is contained in Ψ (notice each series can have duplicated elements).

Proof Let

Ei =

1− εi εi

εi 1− εi

 (3.2)

be the transition probability matrix when the packet’s channel is in si. We then derive that

Ei = B−1

1 0

0 1− 2εi

B, (3.3)
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where B =

1 1

1 −1

. Then, we consider the situation that one bit goes through the cascade of n

nodes and the bit’s channel state is changed in the sequence of ψa1 , ψa2 , ...ψai , ..., ψan (1 ≤ ai ≤ K,

1 ≤ i ≤ n). In this case, the transition probability matrix through n nodes, denoted as Ea1a2...an , is

given by

Ea1a2...an = Ea1Ea2 ...Ean (3.4)

= B−1

1 0

0
∏n
i=1 (1− 2εai)

B (3.5)

=

 1+
∏n

i=1
(1−2εai )

2

1−
∏n

i=1
(1−2εai )

2

1−
∏n

i=1
(1−2εai )

2

1+
∏n

i=1
(1−2εai )

2

 (3.6)

Thus, the BER of the cascade of n nodes (a1, a2, a3, ..., an) equals:

εa1a2...an =
1−

∏n
i=1 (1− 2εai)

2
(3.7)

The probability that such a aforementioned situation occurs equals:

Pr [X = {ψa1ψa2 ...ψan}] = πa1

n−1∏
j=1

tajaj+1 (3.8)

where X is a random variable represents the series. Then, the expectation of error bit through the

cascade of n hops is given by:

εn =
∑

{ψa1 ...ψan}∈Ψn

Pr [X = {ψa1ψa2 ...ψan}]× εa1a2...an (3.9)

=
∑

{ψa1 ...ψan}∈Sn
πa1

n−1∏
j=1

tajaj+1

1−
∏n
i=1 (1− 2εai)

2
(3.10)

When ε1, ε2, ..., εn � 1

εn ≈
∑

{ψa1 ...ψan}∈Sn

πa1 n−1∏
j=1

tajaj+1

n∑
i=1

εai

 (3.11)
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3.1.2 Link Scheduling

Network model. We consider a wireless network with N communication links L =

{(s1, r1), ..., (sN , rN )}, where (si, ri) represents a transmission link from sender si to receiver ri

with transmission rate λi. We do not consider the scenario in which either a sender transmits

to multiple receivers or multiple senders transmit to a receiver, so we assume that si 6= sj and

ri 6= rj ∀i 6= j. The set of receivers and the set of senders are denoted by R = {r1, ..., rN} and

S = {s1, ..., sN}, respectively. For each receiver rj , we call si the desired sender of rj if j = i;

otherwise an interfering sender of rj . The Euclidean distance between sender si and receiver rj is

denoted by di,j (or dsi,rj ), and that two senders si and sj is denoted by dsi,sj . We call di,i the length

of link (si, ri). We assume a time slotted system with time slots normalized to integral units, so

that slot boundaries occur at times t ∈ {0, 1, 2, ...}, and slot t refers to the time interval [t, t+ 1). It

is assumed that the length of every link are known at the beginning of each time slot.

Channel model. We consider time-varying and frequency-flat fading wireless channels.

The channel effects from sender si to receiver rj can be modeled by a single, complex and random

channel coefficient hi,j . We consider the Rayleigh fading channel model [42], in which all |hi,j |2 are

independent and exponentially distributed with a mean value

σ2
i,j = Pd−αi,i (3.12)

where α is path loss exponent. Equ. (3.12) actually describes the path loss for signal propagation in

the case of far-field, i.e., when the transmission distance is larger than d0 (i.e., a reference distance for

the antenna far-field), where d0 is typically assumed to be 1–10m indoors and 10–100m outdoors [17].

In this dissertation, we only consider the far-field case. Here, we set P by 1. Also, by convention,

we assume that α > 2. We use Zi,j to represent the instantaneous signal power received by rj from

si. Zi,j is a random variable with Cumulative Distribution Function (CDF) of FZi,j = Pr{Zi,j ≤

x} = 1 − e−x/Pd
−α
i,j . When multiple users transmit simultaneously, they interfere with each other.

We model interference by regarding all competing transmissions. We denote ZP,j as the sum signal

that rj receives from sender set P (P ⊂ S), i.e., ZP,j =
∑
si∈P Zi,j . We use a non-negative random

variable Xj to represent the signal to interference ratio (SIR) received by rj : Xj =
Zj,j

ZP\sj,j
. Here,

like [18,20], we ignore the noise power, which has no significant effect on the results. Receiver rj can

correctly decode the message (or informed) iff Xj ≥ γth, where γth is decoding threshold (γth = 1).
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Figure 3.1: Protocols for packet recovery.

In fading channel models, the probability of successful transmission never can be 0, so we assume

an acceptable error probability ε for transmission. That is, for any receiver rj , we say rj can be

informed by its desired sender sj if the probability of Xj < γth is no larger than ε.

3.2 Problem formulation

In this dissertation, there are two problems to be solved: the relay selection problem for

reducing the average packet latency and the link scheduling problem for increasing the throughput.

3.2.1 Relay Selection Problem for Packet Recovery

As shown in Fig. 3.1, to reach the destination, each packet flow needs to travel through

all nodes in the predetermined route, and some of these nodes are responsible for en/decoding

the packets. In the ARQ and HARQ protocols [11, 57, 67], each hop drops distorted packets and

requests for complete or partial retransmission of the original packets. These methods follow the

conventional link-layer design paradigm and guarantee the reliability between any pair of nodes.

However, this strategy causes high delays and low throughput (due to numerous retransmissions

at every relay hop), leading to significant degradation in channel bandwidth utilization. Further,

although decoding in each hop (adopted by the HARQ family) increases the reliability, it comes at

the cost of high en/decoding overhead. In the existing proposed schemes (e.g., ACE [15]), each relay

node stores an erroneous received packet for packet recovery (with no retransmission requirements)

until the packet is corrected before forwarding it to the next hop. Though these schemes overcome

the shortcomings of the ARQ and HARQ protocols to a certain extent, they are still not effective

in achieving high throughput, and low energy and bandwidth consumption.

CEDAR introduces a new flexible environment for link-layer error recovery: (1) it employs

a theoretically-sound framework and a corresponding strategy for embedding channel codes, using

robust and adaptive code rates, in each packet; (2) the error correction process is performed in
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Figure 3.2: Route segment.

a distributed and suboptimal manner where selected (and not all) intermediate nodes participate

in performing error recovery. The key problem in CEDAR is how to identify candidates among

the intermediate nodes for the CEDAR en/decoding process to decrease the overall delay, increase

throughput and fairness of en/decoding load over the entire network.

To this end, first, we build models to calculate the delay (D (ni)) and the en/decoding load

(L (ni)) of each intermediate node vi based on the lengths of the routing paths (denoted by ni) of

the packets crossing vi. We use these models to calculate the expected delays and en/decoding load

of each node, and ultimately identify the positions of intermediate nodes for en/decoding in each

route in CEDAR. Throughout the paper, we use the key terms provided in the following definitions:

Definition 3.2.1 ( En/Decoding load) The en/decoding load of vi, denoted by L (ni), is defined as

the sum of the arrival rates for all the packet streams that vi is responsible for en/decoding.

Definition 3.2.2 ( Key node) A key node of route rk is a node responsible for en/decoding the

packets traveling along rk. Matrix X = (xi,k)N×K denotes whether vi is a key node in rk:

xi,k =


1, vi is the key node in rk;

0, vi is not the key node in rk.

(3.13)

Definition 3.2.3 ( Route segment) A route segment of rk is a section of the end-to-end path between

one key node to either the endpoints or another key node. The length of a route segment is defined

as the number of hops in the route segment.

In each route segment, the packet sender (the first key node) encodes the packets and the

packet receiver (the second key node) decodes the packets. In other words, the second key node

is responsible for decoding for its route segment. Use matrix N = (ni,k)N×K to denote the length

of a route segment with decoding node vi in rk and use vector ni denote the lengths of route
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segments responsible by vi for all the routes, i.e., N = [n1, ...,nN ]
T

and ni = [ni,1, ..., ni,K ]. Here

we define ni,k = 0 if vi has no responsibility of decoding the packet in rk. For example, in Fig. 3.2,

there are eight nodes V = {v1, ..., v8}, and three routes R = {r1, r2, r3}, where r1 = {v6, v1, v7},

r2 = {v6, v3, v8} and r3 = {v5, v4, v3, v1, v2}. v6, v1 and v7 are the key nodes in r1; v6, v3 and

v8 are the key nodes in r2; v5, v1 and v2 are the key nodes in r3. Then, we can derive that

n1,1 = 1 and n1,3 = 3 because there are one hop from v6 to v1 in r1 and three hops from v5

to v1 in r3. Also, n1,3 = 0 because v1 is not responsible for decoding packets in r3. Hence,

n1 = [n1,1 n1,2 n1,3] = [1 3 0].

Let λi,k denote the arrival rate of the data stream that vi is responsible for en/decoding in

rk. Then λi,k = λk × xi,k. We use D (ni) to denote the average delay when a packet crosses vi with

route segment vector ni. Since the the number of packets at vi within a unit time is
∑K
k=1 λi,k, then

the total average packet delay decoding at vi within a unit time equals D (ni)
∑K
k=1 λi,k. Also, we

use L (ni) to represent the average en/decoding load of vi and use L (N) to represent the average

en/decoding load of all the nodes in V. Then, L (N) =

∑N

i=1
L(ni)

N .

Objective. The objectives of CEDAR are 1) to minimize the total delay of the packets in

the entire system, which can be represented as:

min

N∑
i=1

(
D (ni)

K∑
k=1

λi,k

)
(3.14)

and 2) to balance the en/decoding load of all the nodes in the network. In this paper we use standard

deviation [8] of en/decoding loads, which reflects how much variation exists between each node’s

en/decoding load and L (N), to measure the balance of the en/decoding load of the network. The

lower value of the standard deviation, the higher fairness of the en/decoding load of all the nodes.

Then, the objective can be formulated as:

min

√√√√ N∑
i=1

(
L(ni)− L(N)

)2

(3.15)

Consequently, we combine these two objectives and formulate the optimization problem as:

min γ1

N∑
i=1

(
D (ni)

K∑
k=1

λi,k

)
+ γ2

√√√√ N∑
i=1

(
L(ni)− L(N)

)2

(3.16)
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s.t. xi,k ≤ yi,k, D (ni) ≤ Uk, (3.17)

1 ≤ i ≤ N, 1 ≤ k ≤ K (3.18)

where γ1 and γ2 represent the weights we set for these two objectives. In this paper, we primarily

consider minimizing packet delay and secondarily consider balancing en/decoding load. Thus, we

set γ1 >> γ2 in our system.

Now we need to consider how to solve the multiple objective optimization problem: the

packet delay in vi (which is composed of prop&tran and queueing delays) is a function of ni. This

will be deduced in the mathematical analysis in the next section. We use Dp&t (ni) to denote the

average prop&tran delay of all the packet streams being decoded in vi, and use Dq (ni) to denote

the average queuing delay of the packet stream in vi. Then, the total average delay when one packet

crosses vi is:

D (ni) = Dq (ni) +Dp&t (ni) (3.19)

Thus, we need to minimize Dq (ni) and Dp&t (ni) in order to achieve the objective of CEDAR in

Formula (3.16). To this end, we model the Bit Error Rate (BER) fluctuations of wireless channels and

probability of successful decoding. Sections 4.1.1 and 4.2 use this model to formulate the prop&tran

delay Dp&t (ni) and the queuing delay Dq (ni). Finally, Section 4.3 derives two propositions to

minimize Dq (ni) and Dp&t (ni), respectively. Guided by the propositions, we design CEDAR in

Section 4.5.

3.2.2 Link Scheduling for Throughput

3.2.2.1 Fading resistant link scheduling

First, we formulate the Fading-R-LS problem. Its objective is to identify a subset of senders,

denoted by P (P ⊂ S), such that the throughput (i.e., the total data rate successfully received by

receivers) is maximized in one time slot. In other words, we attempt to use one time slot to its full

capacity. Formally, we define the decision version of Fading-R-LS as follows:

Instance: A finite set of senders S and their respective receivers R in a geometric plane, decoding

threshold γth, acceptable error rate ε, and a constant Λ.

Question: Existence of a subset of senders P, namely a schedule, such that the total successful

transmission rate is no smaller than Λ, i.e., 1) Pr(Xj < γth) < ε, ∀sj ∈ P and 2)
∑
sj∈P λj ≥ Λ.
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We say a schedule P is feasible if all the senders in P can successfully transmit the message

with probability at least 1− ε. Below, we first derive the closed-form expression for the probability

of successful transmission Pr(Xj ≥ γth) for any receiver rj (Theorem 3.2.1). Then, we prove that

Fading-R-LS is NP-hard (Theorem 3.2.5).

Theorem 3.2.1 Given an active link (sj , rj) and active sender set P, the probability of successful

transmission from sj to rj is:

Pr(Xj ≥ γth) =
∏

si∈P\sj

1

1 +
d−α
i,j
γth

d−α
j,j

. (3.20)

Proof The CDF of the quotient Xj =
Zi,j

ZP\sj,j
can be computed as follows:

FXj (x) = P

(
Zj,j

ZP\sj ,j
≤ x

)
(3.21)

= P (Zj,j ≤ xZP\sj ,j) (3.22)

=

∫ ∞
0

∫ xz

0

fZj,j (y)dy · fZP\sj,j (z)dz. (3.23)

By differentiating, we can obtain

fXj (x) =
d

dx
FXj (x) (3.24)

=

∫ ∞
0

zfZj,j (xz)fZP\sj,j (z)dz (3.25)

=

∫ ∞
0

z

Pd−αi,j
e
− xz

Pd
−α
i,j fZP\sj,j (z)dz. (3.26)

Then, the probability of successful transmission from sj to rj equals

Pr(Xj ≥ γth) =

∫ ∞
0

∫ ∞
γth

z

Pd−αj,j
e
− xz

Pd
−α
j,j fZP sj,j

(z)dxdz (3.27)

=

∫ ∞
0

e
− γthz

Pd
−α
j,j fZP sj,j

(z)dz (3.28)

= LZP\sj,j

(
γth

Pd−αj,j

)
(3.29)

where LZP\sj,j (ν) represents the Laplace transform of fZP\sj,j (x). Because the Laplace transform

of the exponential distribution with mean 1/µ equals µ/(µ + ν), LZP\sj,j (ν) =
∏
si∈P\sj

1
1+Pd−α

i,j
ν

.
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Consequently,

Pr(Xj ≥ γth) = LZP\sj,j

(
γth

Pd−αj,j

)
(3.30)

=
∏

si∈P\sj

1

1 +
d−α
i,j
γth

d−α
j,j

. (3.31)

According to Theorem 3.2.1, in the following, we formulate the ILP form of the Fading-R-LS problem

and prove that this problem is NP-hard. First, we take the logarithm on both sides of Equ. (3.20):

ln Pr(Xj ≥ γth) = −
∑

si∈P\sj

fi,j , (3.32)

where

fi,j =

 ln
(

1 + (di,j/dj,j)
−α

γth

)
if i 6= j

0 if i = j
(3.33)

We call fi,j the interference factor of si on rj . Accordingly, we use fP\rj ,rj to denote the interference

factor of P\rj on rj , where

fP\rj ,rj =
∑

si∈P\rj

fi,j . (3.34)

Corollary 3.2.1 Given an active link (sj , rj) and the active sender set P, rj can be informed iff

∑
si∈P\sj

fi,j ≤ γε, (3.35)

where γε = ln
(

1
1−ε

)
is a constant.

By Corollary 3.2.1, we formulate the ILP form of Fading-R-LS as follows:

max

N∑
i=1

λixi (3.36)

s.t.

N∑
i=1

fi,jxi ≤ γε +M(1− xj) j = 1, ..., N, (3.37)

xi ∈ {0, 1} i = 1, ..., N, (3.38)
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Figure 3.3: Mapping Fading-R-LS to Knapsack.

where M is a constant with a very large value.

Theorem 3.2.2 The Fading-R-LS problem is NP-hard.

Proof We construct a polynomial time reduction from the well-known Knapsack NP-hard problem

[38] to Fading-R-LS. The Knapsack problem can be formulated as follows: given n kinds of items,

x1, ..., xn; each item xj has a value pj and a weight wj , and a bag that can carry weight W maximally,

the goal is to choose the items to put into the bag such that the sum of the items’ values is no smaller

than a constant C. We construct a Fading-R-LS instance that can be mapped to the Knapsack

problem (see Fig. 3.3). We position a sender node si in the plane for each xi, such that the received

signal power from si at (0, 0) is wi, i.e.,

Loc(si) =

(e γεwiW − 1

γth

)− 1
α

, 0

 , ∀1 ≤ j ≤ n. (3.39)

Then, we set ri close enough to si to guarantee successful reception regardless of other links.

Loc(ri) = Loc(si) + (δ, 0), ∀1 ≤ i ≤ n, (3.40)

where δ = dmin/
((

(eγε/(n+1) − 1)/γth

)− 1
α + 1

)
, and dmin is the minimum distance between any pair

of senders. After that, we place one more link ln+1, s.t.

Loc(sn+1) = (0, 1) , Loc(rn+1) = (0, 0). (3.41)

Thereafter, we assign a weight to each link:

λi = pi, ∀1 ≤ i ≤ n λn+1 = 2

n∑
j=1

pj . (3.42)
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The question is whether there exists a schedule to make total data rate (i.e., throughput) at least

2
∑n
j=1 pj+C for Fading-R-LS. Now, we need to prove that the solution of the Fading-R-LS instance

exists iff the solution of the Knapsack problem exists.

⇒: Suppose that ∃X s.t.
∑
xj∈X pj ≥ C and

∑
xj∈X wj ≤W . We activate each sender si if xi ∈ X .

Also, sn+1 must be active; otherwise the total data can never reach 2
∑n
j=1 pj + C. First, rn+1 can

successfully receive the packet because

∑
si∈P\sn+1

fj,n+1 =
∑

si∈P\sn+1

ln

(
1 +

d−αi,j γth

d−αn+1,n+1

)
(3.43)

=
∑

si∈P\sn+1

ln

(
1 +

(
e
γεwi
W − 1

γth

)
γth

)
(3.44)

≤ γε (3.45)

Then, for each receiver rj s.t. xj ∈ X , we have λtotal =
∑
xi∈X pixi + 2W ≥ C + 2W , which implies

that exists a schedule such that total data rate is at least 2
∑n
j=1 pj + C for Fading-R-LS.

⇐: Suppose there exists a Fading-R-LS schedule P such that the total data rate is at least

2
∑n
j=1 pj +C, then rn+1 must successfully receive the message, and hence

∑
sj∈P\sn+1

fj,n+1 ≤ γε,

which implies that
∑
si∈P sj

wj ≤ W (by Equ. (3.59)) and
∑
si∈P sj

pj ≥ C. Let X = {xi|si ∈

P/sn+1}, then
∑
xi∈X pi ≥ C and

∑
xi∈X wi ≤W .

3.2.2.2 CC Link scheduling

In this section, we formulate two problems, named CLS and OCLS, and prove that the

problems are NP-hard.

The CLS problem. For the CLS problem, we determine the set of active links at each

time slot. Hence, a CLS schedule can be represented by a link set sequence Icls = {I1, ..., IT }, where

It is the set of active links at time slot t and T is the number of time slots the schedule takes. We

say a CLS schedule is feasible iff this schedule enables every intended receiver to be informed. The

objective of the CLS problem is to find a feasible CLS schedule that takes the minimum number of

time slots. Formally, the decision version of CLS is defined as follows:

Instance: A finite set of nodes in a geometric plane V , a set of requests F = {f1, ..., fN}

(each request fi ∈ F has a set of links Ii and a receiver ri), and constants γth and T .

Question: Existence of a CLS schedule Icls s.t.
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Figure 3.4: An instance of CLS that maps to the Partition problem.

• It ∩ It′ = φ ∀1 ≤ t < t′ ≤ T ;

• each ri can be informed by time slot T .

Theorem 3.2.3 The CLS problem in SIR is NP-hard.

Proof We construct a polynomial time reduction of the well known NP-hard problem, Partition

problem [38], to CLS. The Partition problem can be formulated as follows: given a finite set of

integers X = {x1, x2, ..., xn}, find X1 ⊂ X s.t.

∑
xj∈X1

xj =
1

2

∑
xj∈X

xj =
σ

2
(3.46)

We construct the following CLS instance (see Fig. 3.4) maps to the Partition problem. There are

two data flows f1 and f2 in the network, where

f1 = ({ls1,r1 , ..., lsn,r1}, r1) and f2 =
(
{lsn+1,r2}, r2

)
. (3.47)

The locations of these nodes are set by

1) Loc(r1) = Loc(r2) = (0, 0);

2) Loc(sj) = (x
−1/α
j , 0), j = 1, ..., n;

3) Loc(sn+1) = (0, σ/2).

Let decoding threshold γth and time constraint T equal to 1. The question is whether there exists a

schedule to make both r1 and r2 be informed by the end of slot 1. Now, we need to prove that the

solution of the CLS instance exists iff the solution of the Partition problem exists.
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⇒: Suppose that ∃X1 s.t.
∑
xj∈X1

xj = σ/2, we use lsj ,r1 along with lsn+1,r2 . Then,

SIRr1 =

∑
xj∈X1

(x
−1/α
j )−α

((σ/2)1/α)α
=

∑
xj∈X1

xj

σ/2
= 1 (3.48)

and

SIRr2 =
1

SIRr1

= 1, (3.49)

which implies both r1 and r2 can be informed.

⇐: Suppose that the above CLS instance has a solution, which implies that ∃X1 s.t.

SIRr2 =
σ

2X
≥ 1⇒ X ≤ σ/2 (3.50)

SIRr1 =
σ

2(σ −X)
≥ 1⇒ X ≥ σ/2, (3.51)

where X =
∑
xj∈X1

xj . From Equ. (3.50) and Equ. (3.51), we can get that X = σ/2. Hence, the

Partition problem has a solution.

The OCLS problem. In contrast to the CLS problem, which aims to inform all the

receivers using the minimum number of time slots, the objective of the OCLS problem is to pick a

subset of links, denoted by Iocls, such that the number of receivers to be informed is maximized. In

other words, we attempt to use one slot to its full capacity. Formally, we define the decision version

of the OCLS problem as follows:

Instance: A finite set of nodes in a geometric plane V , a set of requests F = {f1, ..., fN}

(each request fi ∈ F has a set of links Ii and a receiver ri), and constants γth and M .

Question: Existence of a subset of links Iocls s.t. at least M receivers can be informed.

Theorem 3.2.4 The OCLS problem in SIRG is NP-hard.

Proof Note that the CLS instance constructed in the proof of Theorem 3.2.3 is also an instance of

OCLS, where f1 = ({ls1,r, ..., lsn,r}, r1) and f2 =
(
{lsn+1,r}, r2

)
, γth = 1, and M = 2. Hence, we

can construct a polynomial time reduction of the Partition problem to the OCLS problem, which

implies that OCLS is NP-hard.
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3.2.2.3 Vehicle Link Scheduling

Below, we first formulate the Vehicle Link Scheduling (VLS) problem, and then prove that

the problem is NP-hard (Theorem 3.2.5). Formally, the VLS problem is defined as follows:

Instance: A finite set of senders S and their respective receivers R in a geometric plane, decoding

threshold γth, and a constant Λ.

Question: Using Λ channels, whether there exists a schedule (which allocates a channel to each

vehicle sender), such that the SINR received by each vehicle receiver is higher than γth?

Theorem 3.2.5 The VLS problem is NP-hard.

Proof We construct a polynomial time reduction from the well-known Partition problem [38] to

VLS. The Partition problem can be formulated as follows: given n kinds of items, N = {1, ..., n}

and each item i has a value pi. The goal is to find N ′ ⊂ N such that

∑
i∈N ′

pi =
1

2

∑
i∈N

pi (3.52)

We construct an instance of the VLS problem to map to the Partition problem. We position a

vehicle sender si in the plane for each item i, such that the received signal power from si at (0, 0) is

pi, i.e.,

xsi =

((
P

pi

) 1
α

, 0

)
, ∀1 ≤ j ≤ n. (3.53)

Then, we set ri close enough to si to guarantee successful reception regardless of other links.

xri = xsi + δ, ∀1 ≤ i ≤ n. (3.54)

where δ is close to 0. After that, we place one more link ln+1, s.t.

xsn+1
= 1, xrn+1

= 0. (3.55)

Set Λ by 2. Then, the question is whether there exists a schedule such that all the receivers can

receive the packet in two channels. Now, we need to prove that the solution of the VLS problem

exists iff the solution of the Partition problem exists.
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⇒: Suppose that ∃N ′ s.t. ∑
i∈N ′

pi =
1

2

∑
i∈N

pi (3.56)

In the first channel, we activate each sender si if i ∈ N ′ and sn+1. Each ri can receive the packet

since the distance between the sender and the receiver (i.e., δ) is small enough. Also, rn+1 can

successfully receive the packet because the SINR received by receiver rn+1 is equal to

((
P

1
2

∑
i∈N

pi

)− 1
α

)α
P

∑
i∈N ′

((
P
pi

)− 1
α

)α
P

=
1
2P
−1P

∑
i∈N pi∑

i∈N ′
pi
P P

(3.57)

=
1
2

∑
i∈N pi∑

i∈N ′ pi
= 1. (3.58)

Then, in the second channel, we activate each sender si if i ∈ N\N ′ and sn+2. Similarly, each ri

can receive the packet and rn+2 can successfully receive the packet because the SINR received by

receiver rn+2 is equal to

((
P

1
2

∑
i∈N

pi

)− 1
α

)α
P

∑
i∈N ′

((
P
pi

)− 1
α

)α
P

=

1
2

∑
i∈N\N ′ pi∑
i∈N ′ pi

= 1. (3.59)

⇐: Suppose there exists a schedule such that all the packets can be received within the two channels.

First, rn+1 and rn+2 cannot receive the packet in the same channel since they will interfere with each

other. Without loss of generality, let rn+1 and rn+2 be scheduled in the first channel and second

channel, respectively. Let N ′ and N\N ′ be the indices of senders allocated in the first channel and

second channel, respectively. Then, since rn+1 and rn+2 can receive the packet, we have

((
P

1
2

∑
i∈N

pi

)− 1
α

)α
P

∑
i∈N ′

((
P
pi

)− 1
α

)α
P

≥ 1⇒ 1

2

∑
i∈N

pi ≥
∑
i∈N ′

pi (3.60)
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((
P

1
2

∑
i∈N

pi

)− 1
α

)α
P

∑
i∈N\N ′

((
P
pi

)− 1
α

)α
P

≥ 1⇒ 1

2

∑
i∈N

pi ≥
∑

i∈N\N ′
pi. (3.61)

which implies that

∑
i∈N ′

pi =
1

2

∑
i∈N

pi. (3.62)
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Chapter 4

Relay Selection for Packet

Recovery

Recall that in Section 3.1.1, we have presented a Markovian wireless channel model to

capture the variations in wireless error conditions due to non-stationary wireless noise and calculate

BER of a packet when it goes through several channels. Using this model, in this section, we

analyze the relationship between the number of hops a packet goes through and the probability of

its successful decoding. This relationship leads us to calculate the prop&tran delay and queuing

delay, respectively. By minimizing the two delays, we can find the locations of intermediate nodes

in a route for decoding. Finally, we formulate the problem of minimizing the sum of the delays as

a non-linear integer programming problem. The analytical results and the formed problem lay the

foundation for the design of an optimized strategy for choosing intermediate nodes for the CEDAR

packet recovery.

4.1 Probability of Successful Decoding

CEDAR is developed based on the error recovery mechanism in the ACE Communication

Model [55]. Thus, we first introduce ACE before we present the mathematical models. Specifically,

during τi, a transmitter encodes data symbols zi with parity codes xi (referred as type-I parity

code) to create a codeword Ci (zi, xi). It transmits a packet Mi = (Ci(zi, xi), yi), where yi denotes
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Figure 4.1: The curve of Equation (3.1).

the additional parity (hereafter type-II parity) symbols for recovering previously received corrupted

packets at the receiver. We also use xi, yi and zi to denote the number of their symbols. The receiver

utilizes xi to decode Ci. If the decoding operation fails, the receiver stores Ci in its buffer and issues

a request along with ACKi for more parity symbols. The transmitter then sends additional parity

yj(j > i) along with Mj . I use mi = xi + yi to denote the total number of parity symbols of Mi.

First, consider a simple cascade model (v0 → v1 → ...→ vn) in which a packet stream goes

through a series of nodes v0, v1, v2, ..., vn and is encoded and decoded at v0 and vn, respectively.

Fig. 4.1 shows an example of the curve of Equation (3.1), where n is varied from 1 to 10, and the

expected value of ε is varied from 0.0005 to 0.001. We assume the channel has two states: noisy

and not noisy, and each state can transfer to the other state at the next time slot with the same

probability. From the figure, we can find that εn is approximately proportional to n. Thus, we

drew figure to based on Equation (3.1) and found that εn is approximately proportional to n. I can

approximate Equ. (3.1) by Equ. (4.1) to calculate the BER for a routing through n nodes under

the Markovian channel model:

εn ≈ nε (4.1)

As ACE, we take Reed-Solomon codes [63] as an example, which is a kind of non-binary cyclic error-

correcting codes, for channel coding. In the Reed-Solomon codes, each symbol is composed of b bits,

indicating that the probability of error for each symbol equals: εn,b = 1− (1− εn)
b
. The number of

error symbols introduced in one packet Mi with a length of zi +mi symbols through n hops can be

represented by a random variable Ei following a binomial distribution Ei ≈ Bi
(
zi +mi, ε

n,b
)
. If the

error estimate is ε̂n,b for one symbol of b bits, the receiver is capable of correcting up to αmi errors

out of |Ci| symbols in packet Mi, where α is a function measuring the expected error-correcting
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(a) The surface of Fα (n,mi) (b) Simulation results

Figure 4.2: Comparison of Equation (4.3) and simulation.

capability of a particular decoder based on ε̂n,b. For instance, the error-correcting capability of the

Reed-Solomon codes is half as many as redundant symbols (i.e., α = 0.5) [63]. The probability of

successfully recovering data bits by a parity code with mi length symbols equals:

Pr [Ei ≤ αmi] =

bαmic∑
k=0

 zi +mi

k

(1− ε̂n,b)zi+mi−k (ε̂n,b)k (4.2)

From Equ. (4.2), we observe that the probability of successful is a discrete function of two variables:

Pr [Ei ≤ αmi] = Fα (n,mi) . (4.3)

Fα (n,mi) is monotonically decreasing function of n (number of hops in a route), and is monotonically

increasing function of mi (number of symbols in parity code). This is observed in Fig. 2. Fig. 2 (a)

shows the surface of Fα (n,mi) when α = 0.5, zi = 20 and ε̂ = 1.5×10−3, when n is varied from 5 to

50, and mi is varied from 12 to 30. Fig. 2 (b) shows the simulation results of the successful decoding

rate under the FSMC model between a source and a destination node with n hops between them (n

is ranged from 5 to 50). The consistency between the analysis results and simulation results verifies

Equ. (4.2) and Equ. (4.3).

Based on Equ. (4.3), the number of times (i.e., trials) a packet is required to be decoded

until it is recovered has a nonhomogeneous geometric distribution (denoted by G) [47] given that

the length (i.e., number of symbols) of predetermined parity code equals mt at the tth trial.

Lemma 4.1.1 I use f tG (n,mit) to denote the probability of successful decoding on the tth decoding
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Figure 4.3: Transmission and propagation delay.

trial for a packet Mi going through n hops. Then,

f tG (n,mit) = Fα (n,mit)×
t−1∏
j=1

(
1− Fα

(
n,mij

))
(4.4)

4.1.1 Propagation and Transmission Delay

In this section, we consider the prop&tran delay of each packet Mi. We use Di,t
p&t (n) to

denote the prop&tran delay of Mi when the parity code of Mi has been transmitted for t times

through n nodes. Let Dp (n) represent the propagation delay for one packet going through n nodes

and DACK (n) denote the transmission delay of the ACK packet. Further, let Dik
t (n) denote the

transmission delay of the packet Mik . The length of this packet is Likpac= zik + mik , where Mik is

the kth packet that carries Mi’s parity symbols for the kth time after k-1 times of recovery failures

(i.e., type-II parities). Then, as Fig. 4.3 shows, Di,t
p&t (n) can be calculated as

Di,t
p&t (n) =

t−1∑
k=0

(
2Dp (n) +DACK (n) +Dik

t (n)
)

+Dp (n) +Dit
t (n) (4.5)

We use Ri,l to denote the bandwidth provided to the route Mi travels in the lth hop. Assume electric

signal travels at velocity c in the media and the distance of each hop (d) is an invariable. Then,

DACK (n), Dik
t (n) and Dp (n) can be calculated as:

DACK(n) =
nLACK

Ri,l
, (4.6)

Dik
t (n) =

nLilpac

Ri,l
, (4.7)

Dp (n) =
nd

c
(4.8)
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Based on Equ. (4.5) and (4.6), we can derive that:

Di,t
p&t (n) =

n∑
l=1

[
t−1∑
k=0

(
2d

c
+
LACK + Likpac

Ri,l

)
+
d

c
+
Ltpac

Ri,l

]
(4.9)

Based on Equ. (4.4) in Lemma 4.1.1 and Equ. (4.9), we retrieve Lemma 4.1.2 for the expectation of

Di
p&t (n).

Lemma 4.1.2 Assuming each packet has the same length, the expected propagation and transmission

delay of a packet Mi D
i
p&t (n) can be calculated by:

Dp&t (n) =
∞∑
t=1

f tG (n,mit)D
i,t
p&t (n) (4.10)

As shown in Fig. 4.5, given a route from a source node to a destination node, we can divide the

route into e segments, each segment having length of n1, n2, ...., ne. In each route segment, a packet

is encoded at the first node and decoded at the last node. The goal of our scheme is to determine the

n1, n2, ...., ne in order to minimize the prop&tran delay of a packet from the source to the destination,

i.e., to achieve

min

e∑
j=1

Dp&t (nj) (4.11)

s.t.

e∑
j=1

nj = n (4.12)

Note that the above formulated optimization problem still holds with routing delay constraint, since

minimizing Dp&t (nj) is sufficient for satisfying the delay constraint. That is, if the minimum value

of Dp&t (nj) is no larger than the constraint, then the constraint is always satisfied; otherwise, there

is no solution to satisfy the constraint.

Error Estimation Code. Recall that in the above method, a receiver requests its sender to

send the packet repetitively until it can successfully decode the packet, which may lead to multiple

retransmissions for each packet. In order to avoid such retransmissions, we introduce another method

that only needs one retransmission.

In this method, after receiving a packet, each receiver first uses Error Estimation Code

(EEC) [9] to estimate the number of corrupted symbols in the received packet, and then sends a
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request to its sender to ask for the additional parity code, which helps successfully recover the packet.

EEC estimates BER (e.g., checks whether BER is no larger than 1%) of the received packet,

but in CEDAR, the receiver needs to estimate the number of corrupted symbols. Then, CEDAR

uniformly samples the symbols instead of bits and builds EEC for the sampled symbols. More

specifically, for a packet with length mi, there are blog2mic levels of EEC bits added in each packet,

with s EEC bits in each level. An EEC bit at level i(1 ≤ i ≤ blog2mic) is simply the parity bit for

2i − 1 randomly chosen symbols in the packet, which has totally (2i − 1)b bits. Each of these 2i − 1

data symbols is chosen uniformly randomly and independently (with replacement) from the original

mi symbols.

In addition to the parity code, each packet Mi also contains EEC codes, which has a length

of log2bmics/b. Note that though this EEC-based method reduces the number of retransmission,

it increases the transmission packet size. First we consider an ideal scenario, in which EEC never

underestimates the number of corrupted symbols for each packet. Then, the prop&tran delay of a

packet Mi can be simply calculated by:

Did
p&t (n) = Di,1

p&t (n) +Di,2
p&t (n) . (4.13)

However, like any error estimator, EEC may underestimate the number of errors. We use η to

denote the probability of underestimation, then the actual expected prop&tran delay of a packet Mi

is given by:

Dp&t (n) = (1− η)Did
p&t (n) + η

∞∑
t=3

h3,t
G

(
n,m′it

) t∑
l=1

Di,l
p&t (n) (4.14)

where h3,t
G

(
n,m′it

)
= Fα

(
n,m′i3

)∏t−1
j=3

(
1− Fα

(
n,m′ij

))
and m′ij = mij + log2bmijcs/b.

4.2 Queuing Delay

In a priority queuing model, packets entering a buffer are classified into several different

priority categories and added into different queues accordingly. The packets with lower priority can

enter the server only when all queues for higher priority queues are empty. In the wireless network,

for any single node vi that is responsible for decoding at most K routes, there will be K poisson

streams (λi,1, λi,2, ..., λi,K) arriving at this node. Notice if vi is not responsible for decoding packet

for rk, λi,k = 0. vi needs to decide the order of arriving packets to decode. Thus, by regarding
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Figure 4.4: The structure of priority queue model.

vi as the server in the model, we can use the priority queuing model (M/M/1/∞/∞/PR) [23] for

analyzing the queuing delay. Note when a packet fails to decode, it will be decoded (i.e., join in

a queue) again when it received another type-II parity code along with another packet. In order

to balance the queuing delay of each node, we propose a strategy for determining the priority of

decoding packets. That is, the more times a packet has failed to be corrected, the higher priority it

will be given when it is re-decoded. When a packet suffers P number of failures, it is dropped. We

do not consider the stream of retransmission for packets after P failures because the probability of

failing more than P times is extremely small.

Poisson process is widely used to describe the data traffic in wireless networks [5,23,34,49],

so we also use Poisson process to model the data traffic in this paper. The self-similar model has

been proven to be more realistic than Poisson process to describe data traffic in modern LANs and

WANs, in which batch arrivals, event correlations and traffic burstiness are key factors [2]. To the

best of our knowledge, there is no previous work that has studied the priority queuing system based

on the self-similar model. We will use the self-similar model to analyze the packet delay in our future

work.

We use priority queuing model to analyze the queuing delay for the packets crossing a

given node. Fig. 4.4 gives a sketch of the priority queuing model in our scheme. In the figure,

λpi,1, λ
p
i,2, ..., λ

p
i,K denote the arriving rate of the streams whose packets are re-decoded at the (p−1)th

time. Recall that if a packet fails to decode, it is stored in the buffer waiting for the next parity

symbol for recovery. As indicated in [8], if traffic stream A follows Poisson distribution, and each

packet in A with some probability gets selected to generate a new traffic streamB, then packet stream

B will also follow Poisson distribution. Therefore, the re-decoded streams, which are “generated”

by failed decoded packets, follow Poisson distribution and their arrival rates satisfy the following
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condition:

λpi,k (ni,k) = λ1
i,k

p−1∏
t=1

(1− Fα (ni,k,mt)) (4.15)

where ni,k (1 ≤ k ≤ U) denotes the number of hops in the route segment where kth traffic stream

has traveled through since its last en/decoding in the route. Assuming that λ1
i,k and mt have been

pre-determined, the value of λpi,k (ni,k) is determined by ni,k. We assign priority p to the packet

stream of λpi,k (p = 1, 2, ..., P ). The packets in a queue with the highest priority P enter the server

(decoding and encoding part) first. If the queue of priority P is empty, then the packets of priority

P − 1 enter the server; and so on.

Assume there are K data streams in the pth (1 ≤ p ≤ P ) priority queue, because each

packet stream follows Poisson distribution, all of these streams can be combined into one stream

λpi =
∑K
k=1 λ

p
i,k. We use ρl to represent the utilization of a server when the first packet in the buffer

with priority l enters the server and use Yl to represent service time for a packet in a queue with

priority l [23]. Recall ni is the set of all ni,k (1 ≤ k ≤ K). Then, ρl (ni) can be calculated as

ρl (ni) = Yl ×
K∑
k=1

λli,k (ni,k) (4.16)

Wl represents the average delay of packets with priority l packets and W0 represents the average

delay for one tagged waiting packet due to a packet already in service. W0 can be calculated as:

W0 (ni) =

P∑
l=1

Y 2
l

2Yl
× ρl (ni) (4.17)

As a result, the waiting time for each of packets is:

Wp (ni) =
W0 (ni) +

∑P
l=p+1 ρl (ni)Wl (ni)

1−
∑P
l=p ρl (ni)

(4.18)

From Kleinrock’s conservation theorem in priority queuing model [27], the expected queuing delay

for one packet in any node can be calculated as:

Wque (ni) =

P∑
p=1

ρp (ni)Wp (ni) (4.19)

=
ρ (ni)W0 (ni)

1− ρ (ni)
(4.20)
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where

ρ (ni) =

P∑
p=1

ρp (ni) (4.21)

Now, we consider the queueing delay for one packet, which might enter the queueing system several

times due to re-en/decoding. During time interval T (T is large enough), the total number of packets

Ntotal that enter the queueing system equals:

Ntotal (ni) =

P∑
l=1

K∑
j=1

λli,j (ni,j)× T (4.22)

The total waiting time can be given by:

Wtotal (ni) = Ntotal (ni)×Wque (ni) (4.23)

Lemma 4.2.1 The expectation of the total queuing time for one packet when it goes through a node

with ni = [ni,1, ni,2, ni,3, ..., ni,K ] can be calculated as

Dq (ni) =
Wtotal (ni)∑K
k=1 λ

1
i,k (ni,k)

(4.24)

=

∑P
p=1

∑K
k=1 λ

p
i,k (ni,k)×Wque (ni)∑K
k=1 λ

1
i,k

(4.25)

If each receiver uses EEC to estimate the number of corrupted symbols, then the packet only needs

to be retransmitted at most twice, i.e., P = 2. Hence, the expectation of the total queuing time

equals:

Dq (ni) =

∑2
p=1

∑K
k=1 λ

p
i,k (ni,k)×Wque (ni)∑K
k=1 λ

1
i,k

(4.26)

The above priority queue model assumes that packets have no delay constraints, so it gives

a higher priority to a packet that has been retransmitted more times. With the consideration of

packet delay constraints (deadlines), we can first give a higher priority to the packet with smaller

remaining time period to its deadline; if two packets have the same remaining time periods, we

give a higher priority to the packet that has been transmitted more times. Modeling such two-level

priority queue to calculate queuing delay is non-trivial, so we leave this task as our future work.
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4.3 Minimizing the Delays

We need to minimize Dq (ni) and Dp&t (ni) in order to achieve the objective of CEDAR in

Formula (3.16). According to Equ. (4.10), the prop&tran delay of the packet stream for rk in vi is

calculated as:

Dp&t (ni,k) =

∞∑
t=1

f tG (ni,k)Dt
p&t (ni,k) (4.27)

Consequently, the average prop&tran delay of all the packet stream decoded in vi is calculated as:

Dp&t (ni) =

∑K
k=1

[
λi,k

∑∞
t=1 f

t
GD

t
p&t (ni,k)

]
∑K
k=1 λi,k

(4.28)

where ni = [ni,1 ni,2 ... ni,K ]. The average queuing delay of the packet stream in vi can be derived

from Equ. (4.24):

Dq (ni) =

∑P
p=1

∑K
k=1 λ

p
i,k (ni,k)×Wque (ni)∑K

k=1 λ
1
i,k (ni,k)

(4.29)

By minimizing the above Dq (ni) and Dp&t (ni), we retrieve two propositions presented below.

1) Minimizing Queuing Delay

Proposition 4.3.1 Suppose V = {v1, v2, ..., vN} and R = {r1, r2, ..., rK} with total arrival rate∑K
k=1 λk = λtotal, each packet is required to be decoded once in its route, and each node can decode

the packet in any route, and also n1 = n2 = ... = nN . To minimize the total queueing delay for all

the packets, the packet rate each node is responsible for should be the same. That is:

λi =
λtotal

N
(i = 1, 2, 3, ..., N) (4.30)

Proof According to Equ. (4.16), Equ. (4.17), Equ. (4.19) and (4.21), the queuing delay of packets

decoded at vi can be derived as:

Di
q (ni) =

ρ (ni)

1− ρ (ni)

∑P
l=1

∑B
k=1 λ

l
k (ni,k)∑B

k=l λ
1
k

W0 (4.31)

=
AJλi

2

1− Jλi
(4.32)

where A and J are invariants figured by Equ. (4.21), Equ. (4.16) and Equ. (4.15). Then, the following
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equation can be derived:

N∑
i=1

AJλi
2

1− Jλi
= −ACλtotal +

AN

J
+
A

J

N∑
i=1

1(
1− Jλi

) (4.33)

Let Hi = 1 − Jλi and then
∑N
i=1Hi = N − Jλtotal. According to Cauchy−Schwarz inequality [8],

we find that:

N∑
i=1

N − Jλtotal

Hi
=

N∑
i=1

1

Hi

N∑
i=1

Hi (4.34)

=

N∑
i=1

1(√
Hi

)2 N∑
i=1

(√
Hi

)2

(4.35)

≥

(
N∑
i=1

√
1

Hi

√
Hi

)2

(4.36)

= N2 (4.37)

from which, we can derive that

N∑
i=1

1(
1− Jλi

) =

N∑
i=1

1

Hi
(4.38)

≥ N2

N − Jλtotal
(4.39)

and

N∑
i=1

AJλi
2

1− Jλi
≥ −Aλtotal +

AN

J
+

AN2

J (N − λtotal)
(4.40)

which reaches its minimum value when 1 − Jλ1 = 1 − Jλ2 = ... = 1 − JλN , or the values of λi

(i = 1, 2, .., N) are equal to each other.

According to Proposition 4.3.1, given several packet streams and number of nodes required

to decode these packets, we need to balance the en/decoding load for all of these nodes. For example,

in Fig. 4.6, three packet streams λ1, λ2 and λ3 are transmitted through the 1st route, the 2nd route

and the 3rd route, respectively. The 2nd route chose v2 as the key node, and the 3rd route chose v4

as the key node. For the 1st route, v1 is the packet source (sender) and v5 is the packet destination

(receiver). It needs to choose one node among intermediate nodes v2, v3 and v4 to decode packets.
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Figure 4.5: Route segment. Figure 4.6: Example of balancing en/decoding load.

To achieve load balance and hence reduce queuing delay, its best choice should be v3 since v2 and

v4 are already responsible for en/decoding for the 2nd and 3rd routes, respectively.

2) Minimizing Prop&Tran Delay

Consider a route with n hops that is not affected by the interference from any other routes.

Our objective is to divide it into several route segments with the size n1, n2, ..., ne respectively in

order to minimize the total delay of packet stream transmission. We consider one of these route

segment that has nk hops, and use Dave
p&t to denote the average prop&tran delay for each hop in this

route segment. That is:

Dave
p&t (ni) =

Dp&t (ni)

ni
(i = 1, 2, 3, ..., e) (4.41)

where Dave
p&t (ni) is a function of ni. We use Dave

p&t,min to represent the minimized value of Dave
p&t (ni),

and we need to search nopt that satisfies Dave
p&t (nopt) = Dave

p&t,min,

Proposition 4.3.2 To divide one route into several route segments, the optimal length for each

route segment should be nopt in order to minimize the prop&tran delay for the packet delivery.

Proof The sum of prop&tran delay for the e route segments equals:

e∑
i=1

Dp&t (ni) =

e∑
i=1

Dp&t (ni)

ni
× ni (4.42)

≥ Dave
p&t,min ×

e∑
i=1

ni (4.43)

= Dave
p&t,min × n (4.44)

When n1 = ... = ne = nopt,
∑e
i=1Dp&t (ni) reaches its minimum value.
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4.4 Balancing of En/decoding Load

In some wireless network applications (e.g., wireless sensor networks), balanced en/decoding

load distribution among all nodes greatly affects the network performance including the connectivity

and lifetime of the network. Thus, besides minimizing the total packet delay of the system, we have

the secondary objective, which is to minimize the difference of the en/decoding load of all the nodes.

Recall that “en/decoding load” of a node, say vi, is defined as the number of packets vi need to

en/decode in a time unit. According to the queuing model built in the Section 4.2, vi needs to

en/decode all the packets waiting the priority queue from different routes, we can derive the value

of L(ni) from Equ. (4.15):

L(ni) =

K∑
k=1

P∑
p=1

λpi,k (ni,k) (4.45)

=

K∑
k=1

P∑
p=1

λ1
i,k

p−1∏
t=1

(1− Fα (ni,k,mt)) (4.46)

We use L (N) =

∑N

i=1
L(ni)

N to represent the average en/decoding load of all the nodes in V. Since

standard deviation [8] of en/decoding load (represented by σ(N)) shows how much variation or

“dispersion” exists from the average L (N), we use σ(N) to measure the fairness of en/decoding

load of all the nodes: the lower value of σ(N), the higher fairness of the en/decoding load of all the

nodes. σ(N) is defined by

σ(N) =

√√√√ N∑
i=1

(
L(ni)− L(N)

)2

(4.47)

Then, the objective is to minimize σ(N).

Proposition 4.4.1 Suppose there are N nodes and B routes with total arrival rate λtotal and each

packet is required to be decoded once in its route, and each node can decode the packet in any route

with n1 = n2 = n3 = ... = nN . To minimize σ(N), the en/decoding load of each node should be the

same.

Proof When the packet arrival rate that each node vi is responsible for is λi = λtotal

N , according

to Equ. (4.45), we can derive that L(n1) = ... = L(nN ) = L(N). which indicates that σ(N) = 0.

Because σ(N) ≥ 0, we can conclude that when the en/decoding load of each node is same, the value

of σ(N) is minimized.
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Proposition 4.3.1 and Proposition 4.4.1 imply that minimizing the queuing delay and balancing

en/decoding load distribution among decoding nodes in the network can be achieved simultaneously.

4.5 Scalable and Distributed Scheme

The objective function of CEDAR in Formula (3.16) is a non-linear integer programming

problem. Solving this problem leads to minimizing the total delay for all the packets in the network.

This, however, requires each node to collect a global knowledge of the network including the routes

and the arrival rate for each traffic stream, which is nearly impractical in wireless applications such

as wireless ad hoc networks. Even though the global knowledge is available, the problem is NP-hard

as it is a nonlinear integer programming problem [58]. Thus, we need to design a scalable and

distributed scheme for identifying the key nodes for each route.

Simply put, Proposition 4.3.1 and Proposition 4.4.1 indicate that the scheme should try to

balance the en/decoding load of each node to minimize the queuing delay; and Proposition 4.3.2 indi-

cates the optimal route segment length (i.e., the positions of key nodes) to minimize the prop&tran

delay. If both requirements can be satisfied simultaneously, the scheme will satisfy the objective

function. However, these two requirements may conflict with each other. We identify different net-

work traffic load situations that each proposition should be primarily considered, and also propose

a method to coordinately consider these two propositions when choosing key nodes.

Case I (light traffic): When a wireless network has light traffic, because the influence

from queuing delay is much less significant, and on average en/decoding load of each node is low,

we mainly consider the prop&tran delay. As Proposition 4.3.2 indicates, we first search the value of

nopt and then set OPT HOP = nopt, and set FLAG = OPT HOP. In a routing algorithm [51], every

node keeps a routing table, and a source node sends out a message to find the route to a destination

for transmitting a packet stream. After a source-destination route has been discovered, each node

in the route determines whether it is a key node in a distributed manner by executing the key node

identification algorithm. Algorithm 1 presents the pseudo code of this algorithm executed by every

node (except source node and destination node), say v, in a route r in the case of light network

traffic. Basically, the source node sends a packet (OPT HOP, FLAG) through the route and nodes.

FLAG is decreased by one in each hop and the node receiving the packet with FLAG = 0 is a key
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node. This node then restores FLAG = OPT HOP before forwarding the packet to the next node.

Here, SEN FIN presents whether v has received ACK from the next node in r; REC FIN presents

whether v has received (OPT HOP, FLAG) from the previous node in r; DEC presents whether v

is responsible for en/decoding;

Algorithm 1: Identify key nodes in route r executed by each node in r in a light-traffic
network.

begin
Set SEN FIN, REC FIN and DEC to 0 ;
while SEN FIN = 0 or REC FIN = 0 do

Listen to other nodes;
if it has received ACK REC from the next node in r then

SEN FIN ← 1;

if it receives (OPT HOP, FLAG) from the previous node in r then
REC FIN ← 1;
Send ACK REC to the previous node;
if FLAG = 0 then

DEC ← 1 // It is a key node;

FLAG ← OPT HOP;

else
FLAG ← FLAG - 1;

Case II (heavy traffic): When a wireless network has heavy traffic, we aim to reduce

queuing delay while reducing the prop&tran delay. Also, we need to decrease the difference of

en/decoding load overall the network. Fortunately, according to Proposition 4.3.1 and Proposi-

tion 4.4.1, decreasing queuing delay and increasing load balancing of the network can be achieved

simultaneously.

When a new route is built, the CEDAR scheme first executes Algorithm 1. When executing

the algorithm, each node along the route piggybacks its en/decoding load to the packet, and the last

node sends the collected en/decoding load information to the source node. The source node then

knows the series of nodes identified as “potential key nodes” and their en/decoding load, and calcu-

lates the average en/decoding load through the route, denoted as AVE LOAD. It then checks whether

the en/decoding load of each identified key node is larger than a pre-defined threshold (AVE LOAD

+ BOUND), where BOUND is a predetermined value. An overloaded potential key node is replaced

by the node closest to itself in the route that has load below the threshold. We use LOADi to

denote the en/decoding load of ith node in the route. If LOADi > (AVE LOAD + BOUND), then

the source node compares LOADi−1 and LOADi+1; and chooses the node with smaller en/decoding
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load if the en/decoding load is smaller than the threshold. If both LOADi−1 and LOADi+1 are

larger than the threshold, the source node compares LOADi−2 and LOADi+2. The source node

repeats this process until finding a node with load below the threshold or the next two nodes needs

to be compared are out of the range of [i− bOPT HOP/2c, i+ bOPT HOP/2c]th. The pseudo code

of this algorithm is presented in Algorithm 2. In order to release the key node selection load on the

source node, this algorithm can be easily extended to a fully decentralized algorithm. Specifically,

the destination node calculates the AVE LOAD and forwards it back to the source node along the

route. Each node checks whether its own load is beyond the threshold. If so, it probes its near-

by nodes sequentially until finding a node with load within the threshold or meeting an identified

potential key node.

Algorithm 2: Select key nodes with consideration of load balance in a heavy-traffic or
normal-traffic network.

begin
Use Algorithm 1 to get the “potential key nodes” in route r;
Let node i be one node selected as the “potential key node”;
j = 0;
while j ≤ bOPT HOP/2c do

if LOADi+j ≤ LOADi−j then
if LOADi+j ≤ (BOUND + AVE LOAD) then

return i+ j;

else
if LOADi−j ≤ (BOUND + AVE LOAD) then

return i− j;

j = j + 1;

return 0;

In dynamic wireless networks, the network topology and the packet arrival rates change

over time, which require nodes to recalculate the key nodes periodically. Based on Algorithm 1 and

Algorithm 2, we see that such dynamics only affect the route length and the en/decoding load of

each node in the route that are needed in key node calculation. Thus, to deal with the dynamics,

we let the sender periodically send a packet through the route to probe this information. As a

result, the key nodes calculated by a packet sender are the correct key nodes for the current network

environment and CEDAR is adaptive to the network dynamics.
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Chapter 5

Link Scheduling

In this chapter, we will introduce how to solve the different link scheduling problems in-

troduced in Section 3.2.2. In particular, in Section 5.1, we propose two centralized algorithms (the

Link Diversity Partition method and the Recursive Link Elimination method) and one decentral-

ized algorithm (the Decentralized Link Scheduling method) for the fading-resistant link scheduling

problem. In Section 5.2, we propose two Link Length Diversity based algorithms for CLS and O-

CLS, respectively. In Section 5.3, we propose a decentralized algorithm (the Fast and Lightweight

Autonomous link scheduling algorithm) for the cooperative communication link scheduling problem.

5.1 Fading Resistant Link Scheduling

Since Fading-R-LS is a NP-hard problem, there are no polynomial time solutions to deter-

mine the optimal schedule. To solve this problem, in this section, we propose the Link Diversity

Partition algorithm (LDP) (Section 5.1.1). We further propose a constant approximation ratio al-

gorithm, namely Recursive Link Elimination algorithm (RLE) (Section 5.1.2) for the case when the

data rate of each link is the same.

5.1.1 Link Diversity Partition Algorithm

The LDP algorithm is developed based on the approximation algorithm using the signal

to interference ratio (SIR) model proposed in [18], where the SIR model neglects the noise power

compared with the SINR model. As previously explained, the deterministic SIR model does not
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consider the fluctuating fading in transmissions, which makes the algorithm susceptible to fading

environment. Instead, LDP is advantageous by taking into account Rayleigh fading, which howev-

er is a non-trivial task. Below, we first briefly introduce the algorithm in [18], explain the faced

challenge and advantages of the LDP design, and then present LDP.

The algorithm in [18] builds disjoint link classes by classifying the links with similar lengths

to one class. For each link class, it partitions the entire network region into squares and set neigh-

boring squares to different colors (Figure 5.5(a)). Such color setting makes the transmissions in the

same-color squares always have a certain distance between each other. The size of the squares is

calculated based on the SIR model to ensure the successful transmissions of a selected link from

each same-color square when all these selected links transmit simultaneously. Then, all the selected

links from the same-color squares form a feasible schedule. This algorithm selects the schedule with

the highest data rate among all the feasible schedules.

To extend this algorithm for the Rayleigh fading model is challenging because calculating

the closed form of successful transmission probability in Rayleigh fading model is much more com-

plex than that in the deterministic SIR model, which makes the size of each square in the grid

difficult to estimate. Fortunately, in Corollary 3.2.1, we have derived a linear formula (Formula

(3.35)) to judge a successful transmission under Rayleigh fading model. Also, this previous algo-

rithm sets both upper and lower bounds for the link length of each class when building link classes.

We further improve this algorithm by only upper bounding the link length of each class, since the

transmission of a shorter-length link will be successful if the transmission of a longer-length link in

the same square area is successful. This improvement enhances the throughput as there are more

link candidates possibly with higher data rates for a schedule.

Algorithm 3: Pseudo-code for LDP.

input : S1, ..., Sg(L);
output: Pldp;
for each k ← 1 to g(L) do

Partition the region into squares with side-length βk;
while inactive sender exist in Sk do

Pick up the sender si that has the maximum data rate in Sk and add it to Pkldp;

Remove each sj in the squares surrounding the square that ri is positioned;

Pldp ← arg max{U(Pkldp)|Pkldp,∀k};
return P;
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Definition 5.1.1 ( Length diversity [18]) Length diversity set of a set of links L, denoted by G(L),

is defined by

G(L) = {h|∃l, l′ ∈ L : blog(d(l)/d(l′))c = h} (5.1)

and the link length diversity is defined by

g(L) = |G(L)|. (5.2)

G(L) lists the magnitudes of transmission link lengths, and g(L) represent the number of these

magnitudes. In real applications, g(L) is usually a small constant [18].

For example, suppose link set L = {(s1, r1), (s2, r3), (s3, r3)}, with link lengths 1, 2, and 4,

respectively. Because blog
ds2,r2
ds1,r1

c = 1, blog
ds3,r3
ds1,r1

c = 2, and blog
ds3,r3
ds2,r2

c = 1, then the length diversity

set of L is G(L) = {1, 2} and the link length diversity of L is g(L) = |G(L)| = 2.

In the following, we introduce LDP in detail: LDP starts by building g(L) disjoint sender

classes S1, ..., Sg(L) from S, s.t. Sk = {si ∈ S|δk ≤ dsi,ri < δk+1}, where δk = 2hkδ and δ is the

length of the shortest link in L. That is, each class includes the senders whose links’ lengths are no

larger than a specific magnitude. Then, the desired signal power from each sender class has a lower

bound. Next, for each sender class Sk, LDP constructs a feasible schedule. The pseudocode of this

procedure is shown in Algorithm 4. When scheduling Sk, the entire network region is partitioned

into a set of squares Ak = {Aka,b} (a, b = 1, 2, ...), where (a, b) represents the location of the square

in the grid. Each square has side-length βk = βδk, where

β = (12ζ(α− 1)γth/γε)
1
α + 1, (5.3)

where ζ(α − 1) is the Riemann zeta function and ζ(α − 1) is a constant for α > 2. Then, LDP

iteratively picks the inactive sender that has the largest data rate and eliminates all the inactive

senders in the 9 squares surrounding the selected sender’s receiver (see Fig. 5.1). By eliminating

these inactive senders, LDP guarantees that the distances between the active senders to each active

receiver is lower bounded by βk, and hence the interference is upper bounded. The above process is

repeated until no active sender exists. Because there are g(L) classes we can finally get g(L) feasible

schedules: Pkldp (k = 1, ..., g(L)). As the objective of this link scheduling problem is to maximize the
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Figure 5.1: Elimination process in each iteration.

Figure 5.2: Proof of Theorem 5.1.1.

throughput, the schedule with the largest data rate is chosen from these schedules finally:

Pldp = arg max{U(Pkldp)|Pkldp,∀k}, (5.4)

where U(P) denotes the data rate transmitted by sender set P.

Algorithm 4: Pseudo-code for LDP.

input : S1, ..., Sg(L);
output: Pldp;
for each k ← 1 to g(L) do

Partition the region into squares with side-length βk;
while inactive sender exist in Sk do

Pick up the sender si that has the maximum data rate in Sk and add it to Pkldp;

Remove each sj in the squares surrounding the square that ri is positioned;

Pldp ← arg max{U(Pkldp)|Pkldp,∀k};
return P;

Theorem 5.1.1 LDP provides a feasible schedule.
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Proof Without loss of generality, we examine whether each rj can successfully receive the packet

from sj (sj ∈ Sk) if sj is activated by LDP. We partition the entire network region into squares with

side-length χk = (βk − δk)/
√

2, where rj is positioned at the corner of four squares (see Fig. 5.2).

Based on triangular inequality, the distance between any two senders si, sj ∈ Pkldp cannot be smaller

than βk − δk, because

dsi,sj ≥ dsi,rj − dsj ,rj ≥ dsi,rj − δk ≥ βk − δk, (5.5)

from which we can derive that any two senders in Lk cannot be located in the same square. We use

Qkq to denote the set of senders in the squares that is qχk away from ri. Then, there are at most

4(2q+1) senders in Qkq . According to the design of LDP, for each si ∈ Pkldp\sj , the distance between

si and rj is at least βk, which is larger than (βk − δk)/
√

2. Therefore, there is no sender in the four

squares around ri, i.e., Qk0 = φ. When q ≥ 1, the distance between the senders in Qkq and rj is at

least qχk, hence the interference factor of any sender si ∈ Qkq on rj is upper bounded by

fi,j = ln

(
1 +

d−αsi,rjγth

d−αsj ,rj

)
≤
d−αsi,rjγth

d−αsj ,rj
≤ (qχk)−αγth

δ−αk
, (5.6)

and then the interference factor of Qkq on rj is upper bounded by

fQkq ,rj =
∑
si∈Qkq

fi,j ≤
4(2q + 1)(qχk)−αγth

δ−αk
. (5.7)

Consequently, the interference factor of all senders in P\sj on rj is upper bounded by

fP\sj =

∞∑
q=0

fQkq ,rj ≤
∞∑
q=1

4(2q + 1)q−αχ−αk γth

δ−αk
(5.8)

≤
∞∑
q=1

12q · q−αχ−αk γth

δ−αk
≤

12χ−αk γth

δ−αk
ζ(α− 1) (5.9)

= 12(βk/δk − 1)−αγthζ(α− 1) (5.10)

= 12(β − 1)−αγthζ(α− 1) (5.11)

= γε (5.12)

which implies that rj can be informed.
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In the following, we analyze the efficiency of LDP (Theorem 5.1.2). We start by defining

Popt to be the optimum schedule and defining Pkopt to be the optimum schedule comprised by the

senders in Sk. Then we have

U(Popt) =

g(L)∑
k=1

U(Pkopt). (5.13)

In addition, we define Bkopt(a, b) as the subset of Pkopt with the receivers located in Aka,b and define

skopt(a, b) as the sender that has the maximum data rate in Bkopt(a, b):

skopt(a, b) = arg max
s∈Bkopt(a,b)

U(s) (5.14)

Finally, we represent the active sender selected by LDP in Aka,b by skldp(a, b) and denote the sender

that has the maximum data rate in the nine squares around Aka,b (also including Aka,b) by

ŝkldp(a, b) = arg max
c,d∈{0,±1}

U(skldp(a+ c, b+ d)). (5.15)

If there is no sender activated by LDP in Aka,b, then we define skldp(a, b) = φ and U(skldp(a, b)) = 0.

Before proving Theorem 5.1.2, we first derive Lemma 5.1.1 and Lemma 5.1.2.

Lemma 5.1.1 Given a link set L′ ⊆ L and a square with side-length no more than gδ′, where δ′ is

the length of the shortest link in L′, then the number of active links in L′ with the senders in the

square cannot exceed eg2 in any feasible schedule, where e = 2/
((

1−ε
ε γth

) 1
α − 1

)2

is a constant.

Proof Suppose (si, ri), (sj , rj) ∈ L′ are the two active links in a feasible schedule. For each sender

si ∈ P\sj , its interference factor on rj (fi,j) cannot be larger than γε. Accordingly,
(
dsj,ri
dsi,ri

)−α
≤

eγε − 1. Since ln(1 + x) ≥ γεx
eγε−1 when x ∈ [0, eγε − 1], the interference factor of si on rj (fi,j) is

lower bounded by

fi,j = ln

(
1 +

d−αsi,rjγth

d−αsj ,rj

)
(5.16)

≥ γε
eγε − 1

d−αsi,rjγth

d−αsj ,rj
(5.17)

≥ γεγth

eγε − 1

(dsj ,rj + dsi,sj )
−α

d−αsj ,rj
(5.18)

≥
(
1 + dsi,sj/δ

′)−α γεγth

eγε − 1
. (5.19)
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Since fi,j cannot exceed γε, we have
(1+dsi,sj /δ

′)
−α
γεγth

eγε−1 ≤ γε, which implies that

dsi,sj ≥

((
1− ε
ε

γth

) 1
α

− 1

)
δ′. (5.20)

Then, any two active senders cannot be located in a square with size
((

1−ε
ε γth

) 1
α − 1

)
δ′√

2
, which

also implies at most 2g2(
( 1−ε

ε γth)
1
α−1

)2 active senders can be located in a square with side-length gδ′.

Lemma 5.1.2 For any square Aka,b ∈ Ak, there must exist a LDP’s sender that is in the nine

squares surrounding Aka,b, such that the sender’s data rate is no smaller than the data rate of all the

senders in Aka,b selected by the optimal schedule.

arg max
s∈Bkopt(a,b)

U(s) ≤ arg max
c,d∈{0,±1}

U(skldp(a+ c, b+ d)) (5.21)

Proof For the sake of contradiction, we assume that

arg max
s∈Bkopt(a,b)

U(s) > arg max
c,d∈{0,±1}

U(skldp(a+ c, b+ d)) (5.22)

Then LDP would select skopt(a, b) as an active sender, because all the senders in the squares around

Aka,b (also including Aka,b) selected by LDP have lower data rate than skopt(a, b), which is a contra-

diction.

Theorem 5.1.2 The approximation ratio of LDP is O(g(L)).

Proof According to Lemma 5.1.1, given an optimal schedule Popt, the maximum number of senders

in a square with side-length βk in Pkopt cannot exceed eβ2, then the following bound holds

U(Pkopt) =
∑
a,b

U(Bkopt(a, b)) ≤ eβ2
∑
a,b

U(skopt(a, b)) (5.23)

By Lemma 5.1.2, Equ. (5.14), and Equ. (5.15), ∀Aka,b ∈ Ak we have U(skopt(a, b)) ≤ U(ŝkldp(a, b)),

then

eβ2
∑
a,b

U(skopt(a, b)) ≤ eβ2
∑
a,b

U(ŝkldp(a, b)). (5.24)

Here, notice that ŝkldp(a, b) with different locations (a, b) may be the same sender in Pldp, which can
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be repeatedly counted by Equ. (5.24) at most nine times. Then, we have

∑
a,b

U(ŝkldp(a, b)) ≤ 9
∑
a,b

U(skldp(a, b)) = 9U(Pkldp). (5.25)

According to Equ. (5.23), (5.24) and (5.25), we have

U(Pkopt) ≤ 9eβ2U(Pkldp). (5.26)

And consequently, we can obtain that

U(Pldp) ≥
∑g(L)
k=1 U(Pkldp)

g(L)
≥
∑g(L)
k=1 U(Pkopt)

9eβ2g(L)
=

U(Popt)

9eβ2g(L)
(5.27)

which implies that
U(Popt)
U(Pldp) ≤ 9eβ2g(L).

5.1.2 Recursive Link Elimination Algorithm

In this part, we consider a special case of Fading-R-LS, in which the transmission rate of

each link is the same, i.e., λi = λ, ∀1 ≤ i ≤ N . We propose a greedy algorithm, namely recursive link

elimination algorithm (RLE), for this special case. Algorithm 8 shows the pseudocode for RLE. In

each iteration, the algorithm first greedily selects the unpicked sender with the shortest link length,

say si. The rationale of this strategy is that the signal power received by the receiver with a shorter

link is always stronger, and hence the receiver is more likely to successfully receive the packet. Then,

all links whose senders are within the radius c1dsi,ri of the receiver ri are removed from L, where

c1 is a constant to be set later on (in Formula (5.42)). Second, all senders whose receivers have

interference factors above c2 from the selected senders are removed, where c2 is a constant smaller

than 1. This process is repeated until all links in L have been either active or deleted. Note that

though this algorithm has a number of iterations, all identified active links conduct transmissions in

one time slot simultaneously.

Below, we prove that the schedule obtained by RLE is both feasible (Theorem 5.1.3) and

efficient, i.e., only a constant factor away from the optimal (Theorem 5.1.4). We use ri to represent

a receiver whose desired sender is selected in Algorithm 8, and use P−i and P+
i to denote the set of

senders added after and before si is selected, respectively.
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Algorithm 5: Pseudo-code for Recursive Link Elimination algorithm (RLE).

input : S = {s1, ..., sN}
output: P
P ← φ;
while S 6= P do

Pick up the sender si that has the shortest link length in L and add it to P;
Remove each sender sj , s.t. dsj ,ri < c1dsi,ri from S;
Remove each sender sj , s.t. fP,rj > c2γε from S;

return P;

Figure 5.3: Proof of Theorem 5.1.3.

s1

s2

s3

s4

s5

s6

s7 s8

s9

s10

s11

Figure 5.4: z-blue-dominant.

Lemma 5.1.3 The distance between any two senders in P+
i is lower bounded by (c1 − 1)dsi,ri .

Proof For any receiver rj whose desired sender sj is in P+
i , there is no other sender, say sl, in P+

i

that has distance smaller than c1dsj ,rj from rj . Based on this and the triangular inequality, we can

calculate the lower bound of the distance between any two senders in P+
i :

dsl,sj ≥ dsl,rj − dsj ,rj (5.28)

≥ c1dsj ,rj − dsj ,rj (5.29)

≥ d(sl, rj)− dsj ,sj (5.30)

≥ (c1 − 1)dsj ,rj (5.31)

≥ (c1 − 1)dsi,ri . (5.32)

Theorem 5.1.3 In the link elimination algorithm (RLE), all the senders in the active link set P

can successfully transmit the packet.

Proof When sender si is added to the schedule, the interference factor of P−i on ri must be no larger

than c2γε; otherwise it has been deleted in a previous step. Therefore, the interference factor on ri

from concurrent active link set P−i is fP−
i
,ri
≤ c2γε. It remains to show that fP+

i
,ri
≤ (1− c2)γε.
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We partition the entire network region into squares with size χi × χi (see Fig. 5.3), where

χi = (c1 − 1)dsi,ri/
√

2. According to Lemma 5.1.3, any two senders in P+
i cannot be located in the

same square because the distance between the senders in P+
i is at least (c1−1)dsi,ri , and the size of

square is (c1 − 1)dsi,ri/
√

2. We use Qiq to denote the set of senders in the squares that is qχi away

from ri. Then, there are at most 4(2q + 1) senders in Qiq. The distance between the senders in Qiq

and ri is at least qχi, hence the interference factor of any sender sj ∈ Qiq on ri is at most

fj,i = ln

(
1 +

d−αj,i γth

d−αi,i

)
(5.33)

≤
d−αj,i γth

d−αi,i
(5.34)

≤ (qχi)
−αγth

d−αi,i
. (5.35)

The interference factor of Qiq on ri is then upper bounded by

fQiq,ri =
∑
sj∈Qiq

fj,i (5.36)

≤ 4(2q + 1)(qχi)
−αγth

d−αi,i
, (5.37)

and the interference factor of all active links P+
i = ∪qQiq on ri is upper bounded by

fP+
i
,ri

=

∞∑
q=1

fQiq,ri (5.38)

≤
∞∑
q=1

4(2q + 1)q−αχ−αi γth

d−αi,i
(5.39)

≤
∞∑
q=1

12q · q−αχ−αi · γth

d−αi,i
(5.40)

≤ 12χ−αi · γth

d−αi,i
ζ(α− 1). (5.41)

We set c1 by (to make fP+
i
,ri
≤ (1− c2)γε)

c1 =
√

2 (12ζ(α− 1)γth/(γε(1− c2)))
1
α + 1, (5.42)

we can get that fP+
i
,ri
≤ 12χ−α

i
ζ(α−1)γth

d−αsi,ri
= (1− c2)γε,
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In the following, we then analyze the efficiency of RLE. We first derive Lemmas 5.1.4 - 5.1.6,

based on which we prove Theorem 5.1.4.

Lemma 5.1.4 Let P be a feasible solution and let si ∈ P. The number of senders in P\si with

distance kdsi,ri from si is at most eγε−1
γth

(1 + k)α.

Proof For each sender sj ∈ P\si, its interference factor on ri (fj,i) cannot be larger than γε.

Accordingly,
(
dj,i
di,i

)−α
≤ eγε − 1. Since ln(1 +x) ≥ γεx

eγε−1 when x ∈ [0, eγε − 1], fj,i is lower bounded

by

fj,i = ln

(
1 +

d−αj,i γth

d−αi,i

)
(5.43)

≥ γε
eγε − 1

d−αj,i γth

d−αi,i
(5.44)

≥ γε
eγε − 1

(di,i + dj,i)
−α

d−αi,i
γth (5.45)

≥ γε (1 + k)
−α

eγε − 1
γth. (5.46)

Since the interference factor of P\si on ri cannot exceed γε, there are at most eγε−1
γth

(1 + k)α =

ε
(1−ε)γth (1 + k)α such senders.

Definition 5.1.2 (z-blue-dominant [20]) Let Nr and Nb be two disjoint sets of points in a 2D

Euclidean space, namely red and blue points, respectively. Let circle Bd(sb) be the set of points p

such that d(p, sb) ≤ d. Then, for any positive integer z, a point sb ∈ Nb is z-blue-dominant if every

circle Bd(sb) contains z times more blue than red points, or formally

|Bd(sb) ∩Nb| > z|Bd(sb) ∩Nr| ∀d ∈ R+. (5.47)

Fig. 5.4 gives an example for this definition: Nr = {s4, s7, s11} andNb = {s1, s2, s3, s5, s6, s8, s9, s10}.

Because every circle centered at s1 contains 2 times more blue points than red points, s1 is a 2-blue-

dominant.

Lemma 5.1.5 (Blue-dominant centers lemma [20]) For any positive integer z, if |Nb| > 5z|Nr| then

there exists at least one z-blue-dominant point sb in Nb. In addition, given a z-blue-dominant point

sb, for each point sr in Nr, there exists a subset of Nb corresponding to sr, denoted by G(sr), s.t.,
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1) any point in G(sr) is farther from sr than from sb; 2) for any pair of points sr, s
′
r ∈ Nr, G(sr)

and G(s′r) are disjoint; and 3) the number of points in each subset G(sr) is no smaller than z.

Proof See the proof in Lemma 4.4 in [20].

Lemma 5.1.6 Denote the set of all senders in the optimal schedule and RLE by Popt and Prle,

respectively. Then, |Popt\Prle| ≤ 3α×5ε
c2(1−ε)γth |Prle|.

Proof For the sake of contradiction, we assume that |Popt\Prle| > 3α×5ε
c2(1−ε)γth |Prle|. We label the set

of senders in Popt\Prle by blue (Nb = Popt\Prle) and those in Prle by red (Nr = Prle). By Lemma

5.1.5, there is a z-blue-dominant point (sender) si ∈ Nb, where z = 3αε
c2(1−ε)γth . We shall argue that

the sender si would have been picked by RLE, leading to a contradiction.

According to Lemma 5.1.5, for any red point sj ∈ Nr, there exists a subset of blue points

G(sj) such that all the points in G(sj) are closer to si than to sj and |G(sj)| ≥ z (z = 3αε
(1−ε)γth ).

We can derive that dsi,sj > 2dsi,ri ; otherwise the number of senders within distance 2dsi,ri from si

would be larger than (2+1)αε
c2(1−ε)γth ≥

3αε
(1−ε)γth , which contradicts with the conclusion in Lemma 5.1.4.

Based on the triangle inequality, dsj ,ri ≥ dsi,sj − dsi,ri > dsi,sj/2. For any point sl ∈ G(sj),

dsl,ri ≤ dsl,si + dsi,ri (5.48)

< dsj ,si + dsi,ri (5.49)

< dsj ,si + dsj ,si/2 (5.50)

= 3dsj ,si/2. (5.51)

Hence, the sum interference factor of the blue senders in G(sj) on ri is lower bounded

∑
sl∈G(sj)

fl,i =
∑

sl∈G(sj)

ln

(
1 +

d−αl,i γth

d−αi,i

)
(5.52)

≥
∑

sl∈G(sj)

γεd
−α
l,i γth

(eγε − 1)d−αi,i
(5.53)

>
γε

eγε − 1

eγε − 1

c2γth
3α

3−α

2−α
d−αj,i γth

d−αi,i
(5.54)

=
d−αj,i

2−αd−αi,i

γε
c2

(5.55)

>
d−αj,i

d−αi,i

γε
c2

(5.56)
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≥ γε
c2

ln

(
1 +

d−αj,i γth

d−αi,i

)
(5.57)

=
γεfj,i
c2

. (5.58)

This relationship holds for any sj ∈ Nr, and G(sj) and G(sl) are disjoint ∀sj , sl ∈ Nr, then the total

interference factor that ri receives from the senders in Popt\Prle (blue points) is at least γε
c2

times as

high as the interference factor it would receive from the senders in RLE (red points). Because the

interference factor of Nb on ri is at most γε. Therefore, we have fNr,ri <
fNb,ri
γε
c2

≤ γε
γε
c2

= c2, which

implies that si should not have been deleted by RLE, which establishes the contradiction.

Theorem 5.1.4 The approximation ratio of the link elimination algorithm (RLE) is O(1).

Proof Denote the number of receivers informed by RLE and the optimal schedule by Urle and Uopt,

respectively. Then, according to Lemma 5.1.6,

Uopt

Urle
≤ |Popt|
|Prle|

=
|Popt\Prle|
|Prle|

+ 1 ≤ 3α × 5ε

c2(1− ε)γthγε
+ 1 = O(1). (5.59)

5.1.3 Decentralized Link Scheduling

The approximation algorithms described previously are centralized. In this section, we pro-

pose a decentralized algorithm, named decentralized link scheduling (DLS), that allows each sender

to make its own decision based on limited local information. We assume that receivers periodically

provide the SIR information to their senders. A natural way of viewing this setting is as a game,

where the senders are the players and they need to determine whether to send a packet. We will

define such a mixed game and show that every Nash equilibrium results in an expected number of

successful transmissions that is close to the optimal. In the game, each sender is a player and its

strategy is either transmitting (represented by 1) or not transmitting (represented by 0). Let qi

denote the probability that sender si transmits. A sender receives payoff 0 if it does not transmit,

payoff 1 if it transmits and its receiver receives the packet, and payoff −1 if it transmits but its

receiver does not successfully receive the packet.

We then show that any mixed Nash equilibrium has the expected throughtput close to the

optimal solution. We begin with a few lemmas. For each sender si, let pi be the probability that si

would be successful if it were to transmit. Then, M =
∑
i qipi is the expected number of successful
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transmissions. Let Q =
∑
si∈S qi be the expected number of transmissions.

Lemma 5.1.7 For any Nash equilibrium, for any sender si, if qi < 1 then pi ≤ 1/2, and if qi > 0

then pi ≥ 1/2.

Proof Suppose qi < 1 and pi > 1/2. Then, the expected payoff to si is Esi =qi (pi − (1 − pi) =

qi(2pi − 1). Since 2pi − 1 > 0, si’s payoff is maximized by setting qi = 1, which contradicts our

assumption that qi < 1 is an equilibrium. Similarly, suppose qi > 0 and pi ≤ 1/2. Then, when

si transmits, the probability that its transmission fails is more than 1/2. Subsequently, si receives

negative expected payoff Esi < 0 and it will choose not to transmit (i.e., qi = 0), which contradicts

our assumption that qi > 0 is an equilibrium.

By Lemma 5.1.7, we can derive that Q =
∑
si∈S qi = 2

∑
si∈S

1
2qi ≤ 2

∑
si∈S piqi = 2M .

Lemma 5.1.8 In any feasible schedule, the number of active senders in a ball with radius kδ is no

more than ek2, where e = 4
√

2(
( 1−ε

ε γth)
1
α−1

)
δ

and δ is the length of the shortest link in L.

Proof Suppose si and sj are two active senders in a feasible schedule, then the interference factor

of si on rj (fi,j) is lower bounded by

fi,j = ln

(
1 +

d−αi,j γth

d−αj,j

)
(5.60)

≥ γε
eγε − 1

d−αi,j γth

d−αsj ,rj
(5.61)

≥ γε
eγε − 1

(dj,j + di,j)
−α

d−αj,j
(5.62)

≥ (1 + di,j/δ)
−α

γεγth

eγε − 1
. (5.63)

Since fi,j cannot be larger than γε, we have

(1 + di,j/δ)
−α

γεγth

eγε − 1
≤ γε (5.64)

and hence we can get the upper bound of the distance between si and sj , say di,j ≤
((

1−ε
ε γth

) 1
α − 1

)
δ.

Then, any two active senders cannot be located in a square with size
((

1−ε
ε γth

) 1
α − 1

)
δ√
2
, which

also implies at most 4
√

2k2(
( 1−ε

ε γth)
1
α−1

)
δ

active senders can be located in a square with side-length 2kδ.
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Finally, Lemma 5.1.8 follows immediately from the fact that any ball with radius kδ is contained in

a square with side-length 2kδ. Accordingly,
(
dsi,rj
dsj,rj

)−α
≤ eγε − 1. Since ln(1 + x) ≥ γεx

eγε−1 when

x ∈ [0, eγε − 1], fi,j is lower bounded by

Let Ropt be the set of receivers that achieve their SIR requirements in the optimal solution.

We then prove the approximation ratio of DLS.

Theorem 5.1.5 Any Nash equilibrium has an expected number of successful transmissions at least

Ω(
|Ropt|

∆α ), where ∆ is the ratio between the maximum and the minimum distances between nodes.

Proof Let R be the set of receivers whose senders are active with probability 1. Each receiver

rj ∈ Ropt\R has a variable bj (initialized to 0) to record the sum probability of its nearby senders that

are active. For each si, let Ri be the b |Ropt\R|−η
ηQ c closest receivers in Ropt\R to si such that bj < 1,

where η = 4/γε. Then, we increase the b value of each receiver in Ri by qi. Since Q =
∑
si∈S qi and

each sender si increases the sum of b values of all receivers by at most qib |Ropt\R|−η
ηQ c, we can derive

that

∑
rj∈R

bj ≤
∑
si∈S

qib
|Ropt\R| − η

ηQ
c (5.65)

≤ |Ropt\R| − η
η

(5.66)

<
|Ropt|
η

, (5.67)

which implies that there is a receiver rj ∈ Ropt\R such that the sum probability from nearby senders

is less than 1/η. Let Mj be the set of senders that have contributed to bj , and Mc
j be the set of

all other senders. Then,
∑
si∈Mj

qi ≤ 1/η. For every distance d, let z(rj , d) =
∑
si∈Mc

j
:dsi,rj≤d

qi

be the sum probability from Mc
j located inside B(rj , d) to rj . Since rj /∈ Ri, any receiver rk ∈ Ri

must have dsi,rk ≤ dsi,rj , or else rj would be in Ri. Then, for some sender si ∈Mc
j , by the triangle

inequality we know that

drk,rj ≤ dsi,rk + dsi,rj ≤ 2dsi,rj . (5.68)

Thus, any sender si at distance at most d from rj must have its entire Ri at distance at most 2d

from rj .

We then calculate the upper bound of z(rj , d). Since each sender si in Mj ∩ B(rj , d)

contributes qib |Ropt\R|−η
ηQ c probability mass, and each receiver that si contributes to must be in
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B(rj , 2d), the sum probability mass of receivers in B(rj , 2d) is at least z(rj , d)b |Ropt\R|−η
ηQ c. Since

a receiver’s b value increases only when b < 1 by at most 1, we know that the b value is at most

2. Thus, the number of receivers from Ropt in B(rj , 2d) is at least
z(rj ,d)

2 b |Ropt\R|−η
ηQ c. By Lemma

5.1.8, we get ek2 ≥ z(rj ,kδ)
2 b |Ropt\R|−η

ηQ c and hence

z(rj , kδ) ≤
2ek2⌊

|Ropt\R|−η
ηQ

⌋ . (5.69)

Now that we have a bound on the probability mass inside a circle around rj , we want to bound the

probability mass in an annulus of thickness δ around rj . To do this, we note that the interference at

rj is maximized if every circle around rj actually meets the above bound. We aim to calculate the

upper bound of the total interference, which needs to calculate the upper bound of each circle that

is shown in Formula (5.69). It implies that the sum of the probability mass of the senders between

distance kδ and (k+ 1)δ from rj is at most 2e((k+ 1)2− k2)/b |Ropt\R|−η
ηQ c ≤ 6ke/b |Ropt\R|−η

ηQ c. For

a sender at distance kδ from rj , its interference factor is upper bounded by

fi,j = ln

(
1 +

(kδ)−αγth

d−αsj ,rj

)
(5.70)

≤ (kδ)−αγth

d−αsj ,rj
(5.71)

≤ γth∆α

kα
. (5.72)

It implies that the expected interference factor at rj caused by senders at distance between kδ and

(k+ 1)δ from rj is at most 6e∆αk1−αγth

b |Ropt\R|−η
ηQ c

. Using linearity of expectations, we can sum over the annuli

to get that the expected interference factor of the senders with distance larger than δ from rj inMj

is at most 6eζ(α−1)∆αγth

b |Ropt\R|−η
ηQ c

. For the senders between distances 0 and δ from rj , since the interference

factor caused by each sender si is at most fi,j = ln
(

1 + d−αsi,rjγth/d
−α
sj ,rj

)
≤ d−αsi,rjγth/d

−α
sj ,rj ≤ ∆αγth,

their expected interference factor on rj is at most 2e∆αγth

b |Ropt\R|−η
ηQ c

. Since
∑
ri∈Mc

j
pi ≤ 1/η, we get

that they cause at most 1/η expected interference. Thus, the total expected interference is upper

bounded by 8eζ(α−1)∆αγth

b |Ropt\R|−η
ηQ c

+ 1
η .

We now have a bound on the expected interference. By using Markov’s inequality, we get

that the probability that rj hears interference at least twice the expected interference is at most

1/2. Since each rj has qj < 1, and Lemma 5.1.7 implies that pj ≤ 1/2, then 16eζ(α−1)∆αγth

b |Ropt\R|−η
ηQ c

+ 2
η
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must be no smaller than γε. Accordingly, we can get Q ≥ Ω(
|Ropt\R|

∆α ), and hence M ≥ Ω(
|Ropt\R|

∆α .

If |Ropt\R| = o(|Ropt|), then a constant fraction of senders transmit with probability 1, which

implies that the expected number of successful transmissions in the Nash is at least Ω(|Ropt|). If

|Ropt\R| = Ω(|Ropt|), then the above relationship implies M ≥ Ω(
|Ropt|

∆α ), which proves the theorem.

5.2 Cooperative Communication Link Scheduling

In this section, we propose a Link Length Diversity (LLD) based algorithm for both CLS

(Section 5.2.2) and OCLS (Section 5.2.3), with a bounded performance guarantee O(g(K)). In

addition, we propose a constant approximation ratio algorithm for OCLS, when the link set size for

each request is upper bounded by a constant (Section 5.2.4). Before presenting these algorithms, we

first introduce some definitions and notations (Section 5.2.1).

5.2.1 Definitions And Notations

Definition 5.2.1 ( Relative interference (RI)) Given a receiver ri and its active desired link set Ii,

the RI of link ls,r (r 6= ri) on ri is the increase caused by ls,r in the inverse of the SIR at ri, scaled

by γth

RIls,r (ri, Ii) = γth

d−αs,ri∑
l∈Ii d(l)−α

. (5.73)

Similarly, the RI of a set of links I ′ (I ′ ∩ Ii = φ) on ri is the sum RI of the links in I ′ on ri

RII′(ri, Ii) =
∑
l∈I′

RIl(ri, Ii). (5.74)

Property 5.2.1 Suppose all links in a link set I ′ are activated simultaneously, then a receiver ri,

with active desired link set Ii, can be informed iff RII′(ri, Ii) ≤ 1.

Lemma 5.2.1 Given a set of disjoint link sets I1, ..., In and a receiver ri, which has active desired

link set Ii (Ii ∩ Ij = φ, ∀1 ≤ j ≤ n), the RI of the union I = ∪nj=1Ij on a receiver ri is the sum RI

of all link sets I1, ..., In on ri:

RII(ri, Ii) =

n∑
j=1

RIIj (ri, Ii). (5.75)
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Proof By Definition 5.2.1,

RII(ri, Ii) =

n∑
j=1

∑
l∈Ij

RIl(ri, Ii) (5.76)

=

n∑
j=1

RIIj (ri, Ii). (5.77)

Definition 5.2.2 ( Key link) Given a receiver ri and its link set Ii. The key link of ri, denoted by

κ(ri), is defined as the shortest link in Ii:

k(ri) = arg min{d(l)|l ∈ Ii}. (5.78)

In the following, we use K = {κ(r1), ..., κ(rN )} to denote the set of all key links.

Definition 5.2.3 ( Receiver density) Given a set of receivers R and an area A ( e.g., a square), the

receiver density of R in A is defined as the number of receivers in R that reside in A.

5.2.2 LLD Based Algorithm For CLS

The LLD based algorithm for CLS (LLD-CLS for short) consists of three steps: 1) Calculate

the key link for each receiver; 2) Build disjoint link classes according to the links’ length; 3) For each

link class, construct a feasible schedule using a greedy strategy. In the following we introduce this

algorithm in detail.

As we stated in the introduction part, CC can help each receiver decode the message from

its desired link set. However, it also generates more interference to other links that transmit the

message simultaneously. Hence, we set a link size constraint ∆ for each request in LLD-CLS. The

algorithm starts by calculating the key link set K and its link length set G(K) = {h1, ..., hg(K)}.

Then, we build g(K) disjoint link classes L1, ..., Lg(K) from L, s.t.

Lk = {l ∈ L|2hk · σ ≤ d(l) < 2hk+1 · σ} (5.79)

where σ is the length of the shortest link in L. Next, each link set Lk is scheduled separately (see

Algorithm 6). When scheduling Lk, the whole region is partitioned into a set of squares Ak = {Aka,b},

where (a, b) represents the location of the square in the grid and each square has size βk = 2hk+1 ·σβ,
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(a) Partition and coloring (b) Proof of Theorem 5.2.1

Figure 5.5: LLD based algorithm for CLS.

where

β =

(
8∆(α− 1)γth

α− 2

) 1
α

. (5.80)

Then, all the squares in Ak are colored regularly with 4 colors (see Fig. 5.5 (a)). Links whose

receivers belong to different cells of the same color are scheduled simultaneously (lines 6-12).

Notice that each receiver’s key link must be in one of these classes. Hence, we can partition

the receiver set R into g(K) disjoint receiver classes R1, ..., Rg(K) based on the link classes the

receivers’ key links belong to, i.e.,

Rk = {ri|κ(ri) ∈ Lk, ri ∈ R}. (5.81)

In Algorithm 6, the goal of scheduling each link class Lk is actually to make all receivers in Rk be

informed. In Theorem 5.2.1, we show that the schedule calculated by LLD-CLS is feasible, i.e., any

receiver ri ∈ Rk can be informed by the active links in Lk.

Theorem 5.2.1 ( Feasibility) LLD-CLS provide a feasible schedule.

Proof Without loss of generality, we examine any receiver ri ∈ Rk. Because κ(ri) ∈ Lk, 2hkσ ≤

κ(ri) < 2hk+1σ, which implies that the signal power received at ri from its active desired link set Ii

is at least

PIi,ri ≥
P

2α(hk+1) · σα
. (5.82)

Now, we consider the interference caused by the transmission from other requests. Suppose ri is

located in square Aka,b, since links are scheduled concurrently iff their receivers reside in the square
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with the same color, the interference can only be caused by the senders whose receivers are in

Aka±2q,b±2q, A
k
a±2q,b∓2q, A

k
a,b±2q, and Aka±2q,b, where q ∈ N (see Fig. 5.5 (b)). We represent the set

of all active links whose receivers are in the 8q squares by Qkq . For any link l ∈ Qkq , because the

distance between ri and l’s sender is at least 2qβk − 2hk+1σ, the RI of l on ri is at most

RIl(ri, Ii) ≤ P × (2qβk − 2hk+1σ)−α

PIi,ri
· γth (5.83)

≤ (2qβk − 2hk+1σ)−α

2−α(hk+1)σ−α
· γth (5.84)

= (2qβ − 1)−α · γth. (5.85)

Since there are at most 8q∆ links in Qkq , the RI of Qkq on ri is upper bounded by

RIQkq (ri, Ii) =
∑
l∈Qkq

RIl(ri, Ii) (5.86)

≤ 8q∆ · γth

(2qβ − 1)α
, (5.87)

and the RI of all active links Qk = ∪qQkq on ri is upper bounded by

RIQk(ri, Ii) =

∞∑
q=1

RIQkq (ri, Ii) (By Lemma 5.2.1) (5.88)

≤
∞∑
q=1

8q∆γth

(2qβ − 1)α
(5.89)

≤
∞∑
q=1

8q∆γth

qαβα
(5.90)

≤ 8∆γth

βα
· α− 1

α− 2
= 1, (5.91)

which implies that ri can be informed.

Now, we turn our attention to the approximation ratio of LLD-CLS (Theorem 5.2.2). To

prepare the proof of Theorem 5.2.2, we first introduce the following two Lemmas. Table 5.1 lists

some notations used in the proofs.

Lemma 5.2.2 The number of time slots calculated by LLD-CLS, denoted by Tlld, is upper bounded

by

Tlld ≤ 4 · ρ(Awmax) · g(K). (5.92)
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Table 5.1: Notations.

Notation Description
ρ(Aka,b) The receiver density of Rk in Aka,b.

Akmax The square that has the highest ρ(Aka,b) in Ak.

Awmax The square that has the highest ρ(Akmax) over all

A1
max, ..., A

g(K)+1
max . Without loss of generality

we assume that Awmax is in Aw.

Proof Our first observation is that when the link set Lk are scheduled (the loop in lines 4-8 in

Algorithm 6), only the receivers in Rk are newly informed in this loop. Otherwise, the receiver

must have been informed in some previous loop. It implies that there are at most ρ(Akmax) receivers

required to be informed in each square in this loop. Then, the inner repeat loop (lines 7-10) can be

repeated at most ρ(Akmax) times. Given that there are 4 colors and g(K) link classes, the number of

time slots Tlld used in this algorithm is upper bounded by

Tlld ≤
g(K)∑
k=1

4 · ρ(Akmax) (5.93)

≤ 4 · ρ(Awmax) · g(K). (5.94)

Algorithm 6: Pseudo code for LLD-CLS.

input : {L1, ..., Lg(K)}, {R1, ..., Rg(K)};
output: Icls = {I1, I2, ...It};
t← 0;
for k ← 1 to g(K) do

Partition the region into squares Ak = {Aka,b} of size βk × βk;
Color the squares with {1, 2, 3, 4} s.t. no two adjacent squares have the same color
(see Fig. 5.5 (a));
for j ← 1 to 4 do

while Rk has receivers located in squares in j do
t← t+ 1;
for each square in j that has receivers in Rk do

Pick one receiver ri in the square;
if |Ii| > ∆ then

Add the shortest ∆ links in Ii to It;
else

Add all the links in Ii to It;
Remove ri from Rk;

return Icls = {I1, I2, ...It};
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Lemma 5.2.3 Given a pair of receivers r1, r2 ∈ Rk that are located in a square Aka,b. Represent

the active desired link sets of r1 and r2 by I1 and I2, respectively. The RI of I2 on r1 is then lower

bounded by

RII2(r1, I1) ≥ ηγth ·
PI2,r2
PI1,r1

, (5.95)

where η is a constant η =
(
1 + 2

√
2β
)−α

, and PI1,r1 and PI2,r2 are the signal powers that r1 and r2

receive from their active desired link sets I1 and I2, respectively

Proof Because both r1 and r2 reside in the same square Aka,b, the distance between r1 and r2,

denoted by dr1,r2 , is upper bounded by
√

2βk. For any link ls,r2 ∈ I2, we have ds,r1 ≤ d(ls,r2)+dr1,r2

(triangular inequality) and d(ls,r2) ≥ 2hk · σ, then we can derive

d(ls,r1)−α

d(ls,r2)−α
≥

(
d(ls,r2) + dr1,r2

d(ls,r2)

)−α
(5.96)

=

(
1 +

dr1,r2
d(ls,r2)

)−α
(5.97)

≥

(
1 +

√
2βk

2hk · σ

)−α
(5.98)

=
(

1 + 2
√

2β
)−α

. (5.99)

Hence, we can get that

PI2,r1
PI2,r2

=

∑
ls,r∈I2 P · d

−α
s,r1∑

ls,r2∈I2
P · d(ls,r2)−α

(5.100)

≥
(

1 + 2
√

2β
)−α

(5.101)

= η.

Consequently, we can derive

RII2(r1, I1) = γth ·
PI2,r1
PI1,r1

(5.102)

= γth ·
PI2,r1
PI2,r2

· PI2,r2
PI1,r1

(5.103)

≥ ηγth ·
PI2,r2
PI1,r1

. (5.104)

Theorem 5.2.2 The approximation ratio of LLD-CLS is O(g(K)).
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Proof We proceed by showing that an optimum solution OPT can inform all the receivers in Rw

in Awmax using at least Tw = dρ(Awmax)/me time slots, where m is a constant

m = d(ηγth)−1 + 1e. (5.105)

For the sake of contradiction, assume that OPT informsRw using less than Topt time slots. Therefore,

there must exist a time slot t, 1 ≤ t ≤ Tw, such that at least m+ 1 receivers in Rw located in Awmax

are informed simultaneously. Without loss of generality, let r1, r2,..., rm+1 be the m + 1 receivers

informed at this time slot, which have the active desired link sets I1, ..., Im+1, respectively, and let

PI1,r1 = min{PIi,ri |k = 1, 2, ...,m+ 1} (5.106)

where PIi,ri represents the signal power ri receives from Ii (i = 1, 2, ...,m + 1). Hence, the RI of

I = ∪m+1
i=2 Ii on r1 is given by

RII(r1, I1) =

m+1∑
i=2

RIIi(r1, I1) (By Lemma 5.2.1) (5.107)

≥
m+1∑
i=2

ηγth ·
PIi,ri
PI1,r1

(By Lemma 5.2.3) (5.108)

≥ mηγth > 1 (5.109)

which implies r1 cannot be informed. Hence, it needs at least dρ(Awmax/m)e time slots for OPT to

inform all the receivers in Rw in Awmax. On the other hand, LLD-CLS can inform all receivers within

Tlld ≤ 4 · ρ(Awmax) · g(K) time slots (by Lemma 5.2.2). Therefore the approximation ratio follows

Tlld

Topt
≤ Tlld

Tw
≤ 4m · g(K) = O(g(K)), (5.110)

where Topt denotes the number of time slots that the optimal solution OPT needs to inform all the

receivers.

5.2.3 LLD Based Algorithm For OCLS

Similar to LLD-CLS, in the LLD based algorithm for OCLS (or LLD-OCLS for short), we

construct g(K) disjoint link classes L1, L2, ..., Lg(K) according to Equ. (5.79) and schedule each link
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class separately (Algorithm 7). For each link class Lk we partition the whole network region into a

set of squares Ak = {Aka,b} and color these squares with 4 colors j ∈ {1, 2, 3, 4}, where each square

has size βk×βk. Then, we pick up one receiver for each square of color j (if the square has receivers

in Rk) and add the receiver’s active desired link set to I(k, j). Note that if the size of desired link

set is larger than ∆, we pick the shortest ∆ links from the link set. Consequently, we can get 4g(K)

feasible schedules: I(k, j) (k = 1, ..., N, j = 1, 2, 3, 4). Finally, the schedule with most receivers

informed is determined (line 12):

Iocls = arg max{U(I(k, j))|I(k, j),∀k, j} (5.111)

where U(I ′) denotes the number of receivers informed by link set I ′. Since we pick one receiver

per selected square, the feasibility of the schedule constructed by Algorithm 7 has been proved in

Theorem 5.2.1. In the next theorem, we calculate the approximation ratio of this algorithm.

Algorithm 7: Pseudo code for LLD-OCLS.

input : {L1, ..., Lg(K)}, {R1, ..., Rg(K)};
output: Iocls;
for k ← 1 to g(K) do

Partition the region into squares Ak = {Aka,b} of size βk × βk;
Color the squares with {1, 2, 3, 4} s.t. no two adjacent squares have the same color
(see Fig. 5.5 (a));
for j ← 1 to 4 do

for each square in j that has receivers in Rk do
Pick one receiver ri in the square;
if |Ii| > ∆ then

Add the shortest ∆ links in Ii to I(k, j);

else
Add all the links in Ii to I(k, j);

Remove ri from Rk;

Iocls ← arg max{U(I(k, j))|I(k, j),∀k, j};
return Iocls;

Theorem 5.2.3 The approximation ratio of LLD-OCLS is O(g(K)).

Proof We start the proof by defining Imax(k) by

Imax(k) = argmax{U(I(k, j))|I(k, j), j = 1, 2, 3, 4}. (5.112)
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Since Algorithm 7 returns the schedule of the maximum number of informed receivers over all length

classes and colorings, the number of receivers informed by LLD-OCLS is given by

Ulld = max{U(Imax(k)), k = 1, 2, ..., g(K)}. (5.113)

We use Uopt to represent the number of receivers informed by the optimal solution OPT. Also, we

use Ukopt to denote the number of receivers in Rk informed by OPT. Then, we have

Uopt =

g(K)∑
k=1

Ukopt. (5.114)

In Theorem 5.2.2 we have showed that any feasible schedule can inform at most m (defined in Equ.

(5.105)) receivers in each square in Ak at each time slot. Then, the following bound holds:

Ukopt

U(Imax(k))
≤ 4m· (5.115)

and the approximation ratio follows:

Uopt

Ulld
=

g(K)∑
k=1

Ukopt

Ulld
≤
g(K)∑
k=1

Ukopt

U(Imax(k))
≤ 4m · g(K) = O(g(K)). (5.116)

5.2.4 A Greedy Algorithm For OCLS

In this section, we present a greedy algorithm (see Algorithm 8) for a special case of OCLS,

in which the desired link set of each receiver is upper bounded by a constant Ω (Ω ≥ 2). For example,

three-node model for CC [54] assumes that there are at most two senders for each receiver. In each

iteration, the algorithm greedily selects the uninformed receiver with the shortest key link in K, say

ri, and activates all the links with lengths no larger than ξ · d(κ(ri)) in Ii, where ξ is a constant set

by the algorithm. To guarantee that ri is informed, the algorithm deletes the links that may conflict

with the selected links. First, all links whose senders are within the radius c ·d(κ(ri)) of the receiver

ri are removed from L, where c is a constant

c =
√

2

(
10Ω · (α− 1) · γth

α− 2

) 1
α

+ ξ. (5.117)
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(a) Proof in Lemma 5.2.4 (b) Proof in Theorem 5.2.4

Figure 5.6: Proof of the approximation ratio of the greedy algorithm.

Second, for any link set Ij , such that the RI of the selected links on rj rose above 1/2, is removed.

This process (lines 3-7) is repeated until all links in L have been either active or deleted. Next, we

prove that the obtained schedule from the OCLS algorithm is both feasible (Theorem 5.2.4) and

competitive, i.e., is only a constant factor away from the optimum (Theorem 5.2.5).

Algorithm 8: Pseudo code for OCLS’s greedy algorithm.

input : L = {I1, ..., IN}
output: Iocls

Iocls ← φ;
while L 6= Iocls do

Pick up the receiver ri that has the shortest link in L;
Add the link set Ii = {l ∈ Ii|d(l) < ξ · d(κ(ri))} to Iocls;
Remove Ii\Ii from L;
Remove all the links ls,r, s.t. ds,r < c · d(κ(ri)) from L;
Remove any link set Ij , s.t. RIIocls(rj , Ij) > 1/2;

return Iocls;

Let ri be any receiver selected in Algorithm 8, which has active desired link set Ii, and let

I−i and I+
i be the set of links added after and before Ii, respectively.

Lemma 5.2.4 The distance between the senders for different receivers in I+
i is lower bounded by

(c− ξ)d(κ(ri)).

Proof For any receiver rj whose active desired links are in I+
i , there is no sender (in different

request with rj) in I+
i that has distance smaller than c · d(κ(rj)) from rj . Using this fact and the

triangular inequality (see Fig. 5.6 (a)), we can lower bound the distance between two senders in

different requests in I+
i

ds,s′ ≥ ds′,rj − ds,rj (5.118)
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≥ ds′,rj − ξ · d(κ(rj)) (5.119)

≥ c · d(κ(rj))− ξ · d(κ(rj)) (5.120)

≥ (c− ξ)d(κ(ri)). (5.121)

Theorem 5.2.4 ( Feasibility) LLD-OCLS provide a feasible schedule.

Proof When a link set Ii of ri is added to the schedule, the RI of I−i on ri must be no larger

than 1/2; otherwise, it has already been deleted in a previous step. Therefore, the RI on ri by

concurrently active link set I−i is RII−
i

(ri, Ii) ≤ 1/2. It remains to show that RII+
i

(ri, Ii) ≤ 1/2.

The transmission power received at ri from its active link set Ii is at least

PIi,ri ≥
P

d(κ(ri))α
. (5.122)

We partition the whole network region into squares with size χri × χri (see Fig. 5.6 (b)), where

χri =

√
2

2
(c− ξ)d(κ(ri)). (5.123)

According to Lemma 5.2.4, any two senders for different receivers in I+
i cannot be located in the

same square. We use Qiq to denote the set of links whose senders are in the squares that are q · χri

away from ri. Then, there are at most 4(q+ 1) ·Ω links in Qiq. The distance between the senders in

Qiq and ri is at least q · χri , so the RI of l on ri is at most

RIl(ri, Ii) ≤
P × χ−αri
PIi,ri

(5.124)

≤
(q ·

√
2

2 (c− ξ)d(κ(ri)))
−α

d(κ(ri))−α
(5.125)

=

(
q ·
√

2

2
(c− ξ)

)−α
. (5.126)

The RI of Qiq on ri is then upper bounded by

RIQiq (r, Ii) =
∑
l∈Qiq

RIl(ri, Ii) ≤
4(q + 1) · Ω

(q ·
√

2
2 (c− ξ))α

, (5.127)
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and the RI of all active links I+
i = ∪qQiq on ri is upper bounded by

RII+
i

(ri, Ii) =

∞∑
q=1

RIQiq (ri, Ii) (By Lemma 5.2.1) (5.128)

≤
∞∑
q=1

4(q + 1)Ω · γth

(q ·
√

2
2 (c− ξ))α

(5.129)

≤
∞∑
q=1

5qΩ · γth

(q ·
√

2
2 (c− ξ))α

(5.130)

=
5Ω · γth

(
√

2
2 (c− ξ))α

1

qα−1
(5.131)

≤ 5Ω · γth

(
√

2
2 (c− ξ))α

· α− 1

α− 2
(5.132)

=
1

2
. (5.133)

which implies that ri can be informed.

Lemma 5.2.5 Let Iocls be a feasible solution and let ri be an informed receiver, which has key link

ls,ri . Denote the active desired link set of ri by Ii. The number of senders in Iocls\Ii with distance

k · d(κ(ri)) from s is at most (k + 1)αΩ/γth.

Proof The RI of each link ls′,r′ ∈ Iocls\Ii on ri is lower bounded by

RIls′,r′ (ri, Ii) =
d−αs′,ri · γth∑
l∈Iocls d(l)−α

(5.134)

≥ (ds,ri + ds′,s)
−α · γth∑

l∈Iocls d
−α
s,ri

(5.135)

≥ (d(ls,r) + ds′,s)
−α · γth

|Ii| · d(ls,r)−α
(5.136)

=
γth

|Ii|

(
1 +

ds,s′

d(ls,r)

)−α
(5.137)

≥ (1 + k)−αγth

Ω
(5.138)

Since the RI of Iocls\Ii on ri cannot exceed one, there are at most (k+ 1)α ·Ω such senders senders

with distance no larger than k · d(κ(ri)) from s.

Definition 5.2.4 ( Blue and red points [20]) Let Sr and Sb be two disjoint sets of points ( red and

blue) in a 2D Euclidean space. For any z ∈ N , a point sb ∈ Sb is z-blue-dominant if every circle
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Bδ(sb) around sb, comprised by points p such that d(p, sb) ≤ δ, contains z times more blue than red

points, or formally

|Bδ(sb) ∩ Sb| > z · |Bδ(sb) ∩ Sr| ∀δ ∈ R+. (5.139)

Lemma 5.2.6 ( Blue-dominant centers lemma [20]) For any z ∈ N , if |Sb| > 5z · |Sr|, then there

exists at least one z-blue-dominant point sb in Sb. In addition, given a z-blue-dominant point sb,

for each point sr in Sr, there exists a subset of Sb corresponding to sr, denoted by G(sr), s.t.,

• any point in G(sr) is farther from sr than from sb: ∀s ∈ G(sr), dsr,s > dsb,s;

• for any pair of points sr, s
′
r ∈ Sr, G(sr) ∩G(s′r) = φ;

• the number of points in each subset G(sr) is no smaller than z: |G(sr)| ≥ z ∀sr ∈ Sr.

Proof See the proof in Lemma 4.4 in [20].

Lemma 5.2.7 Denote the set of all senders in the optimal schedule and the greedy algorithm by

Sopt and Sgre, respectively. Then, |Sopt\Sgre| ≤ 3α × 5Ω · |Sgre|.

Proof For the sake of contradiction, assume that |Sopt\Sgre| > 3α · 5Ω × |Sgre|. Label the set of

senders in Sopt by blue (Sb = Sopt) and Sgre by red (Sr = Sgre). By Lemma 5.2.6, there is a z-blue-

dominant point (sender) s∗ ∈ Sb with sender set S∗, where z = 3α×Ω. We shall argue that the link

ls∗,r∗ (or l∗ for simplicity) would have been picked by our algorithm, which leads to a contradiction.

According to Lemma 5.2.6, for any red point sr ∈ Sr, there exists a subset of blue points

G(sr) such that all the points in G(sr) are closer to s∗ than to sr and |G(sr)| ≥ z (z = 3α×Ω). We

can derive that ds∗,sr > 2 · d(l∗); otherwise, the number of senders within distance 2 · d(l∗) from s∗

would be larger than (2 + 1)α ·Ω ≥ 3α · |S∗|, which contradicts with the conclusion in Lemma 5.2.5.

Based on triangle inequality, dsr,r∗ ≥ ds∗,sr − d(l∗) > ds∗,sr/2. Denote the sum signal power that

r∗ receives from S∗ by P ∗. The RI of the red sender sr on r∗ is then upper bounded by

RIsr (r
∗,S∗) =

d−αsr,r∗P

P ∗
· γth ≤

d−αsr,s∗P

2−αP ∗
· γth. (5.140)

Also, for any point sb ∈ G(sr),

dsb,r∗ ≤ dsb,s∗ + ds∗,r∗ (5.141)
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< dsr,s∗ + ds∗,r∗ (5.142)

< dsr,s∗ +
dsr,s∗

2
(5.143)

=
3dsr,s∗

2
. (5.144)

Hence, the sum RI of the blue senders in G(sr) on r∗ is lower bounded

∑
sb∈G(sr)

RIsb(r
∗,S∗) =

∑
sb∈G(sr)

d−αsb,r∗P

P ∗
· γth (5.145)

> 3α · Ω ·
(

3

2

)−α
·
d−αsr,s∗P

P ∗
· γth (5.146)

≥ Ω ·RIsr (r∗,S∗). (5.147)

This relationship holds for any sr ∈ Sr, and G(sr) and G(s′r) are disjoint ∀sr, s′r ∈ Sr, then the total

RI that r∗ receives from the senders in OPT (blue points) is at least Ω times as high as the RI it

would receive from the senders in the greedy algorithm (red points). Because s∗ is in Sb, its RI on

r is at most 1. Therefore, we have

RISr (r
∗,S∗) < 1

Ω
·RISb(r∗,S∗) ≤

1

2
. (5.148)

Since RISr (r
∗,S∗) is less than 1/2, it would not have been deleted by the greedy algorithm, which

establishes the contradiction.

Theorem 5.2.5 The approximation ratio of the greedy algorithm is O(1).

Proof Denote the number of receivers informed by the greedy algorithm and the optimal schedule

by Ugre and Uopt, respectively. Then, according to Lemma 5.2.7,

Uopt

Ugre
≤ Ω · |Sopt|

|Sgre|
(5.149)

=
Ω · (|Sopt\Sgre|+ |Sgre|)

|Sgre|
(5.150)

≤ (3α × 5Ω + 1) Ω (5.151)

= O(1). (5.152)
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(a) Proof in Lemma 5.2.4

Figure 5.7: Link scheduling.

5.3 Vehicle Link Scheduling

In this part, we introduce how to solve the vehicle link scheduling problem introduced in

Section 3.2.2.3 using a greed method in the platoon network, called Fast and Lightweight Autonomous

link scheduling algorithm (FLA), where each vehicle autonomously determines the time slot for

transmission solely based on its distance from the leader vehicle, without the need to collect the

location information of other vehicles. The idea of FLA is based on the platoon feature that the

distance between vehicles equals the safety distance. Based on this feature, we can conduct the link

scheduling to ensure that the distance between vehicles using the same channel is lower bounded by

the interference range. Also, each vehicle can autonomously decide which time slots it should use

solely based on its distance from the leader vehicle, where the distance with the location of the leader

vehicle is broadcasted from the leader vehicle. Here, the leader vehicle needs to periodically broadcast

its location to the following vehicles. According to this information and its own location, each

following vehicle can derive its distance from the leader vehicle. As Fig. 5.7 shows, we geometrically

split the platoon to g segments with length equal to δ so that each segment contains at most one

vehicle. Then, we consider every g consecutive segments as a group. Next, we allocate g channels

to g segments in each group, and the vehicle in a segment chooses the channel allocated to this

segment. As a result, at most one vehicle is contained in each segment and the vehicles sharing the

same channel must have distance no less than the interference range, (i.e., kgδ, k = 1, 2, ...), which

avoids the interference. In the following, we will introduce how to determine g which is the minimum

number of channels to avoid interference (Section 5.3.1) and how each node determines its channel

in FLA (Section 5.3.2) in detail.

78



5.3.1 The Minimum Number of Time Slots

Now, we need to determine g, which denotes the least number of channels used to overcome

interference. For any segment l, the distance between segment l and each segment that has the

same channel as segment l is kgδ (k = 1, 2, ...). If the distance between two segments is kgδ, then

the safety distance between the vehicles in the two segments is kgδ − δ, which implies that the

interference generated from the vehicle in one segment to the vehicle in the other segment is at most

P (kgδ − δ)−α. Consequently, the sum interference received by each vehicle is upper bounded by

∞∑
k=1

P (gkδ − δ)−α ≤ P

∞∑
k=1

((g − 1)kδ)
−α

(5.153)

≤ P (g − 1)−αδ−α
∞∑
k=1

k−α (5.154)

= P (g − 1)−αδ−αζ(α) (5.155)

where ζ(α) =
∑∞
k=1 k

−α.

By definition, SIR is actually the quotient of the useful signal power to the sum interference.

Because the distance between each pair of sender and receiver, say vehicles si and ri, is upper

bounded by the communication range R, the useful signal power received at vehicle ri (Pd−αsi,ri) is

lower bounded by PR−α, i.e., Pd−αsi,ri ≥ PR−α. To guarantee that ri can successfully receive a

packet from si, we need to ensure that SIRsi,ri ≥ γth. That is, we need to find a channel for si to

upper bound the sum interference from the senders with the same channel with si by PR−α

γth
. Then,

according to Equ. (5.153), we need to ensure

P (g − 1)−αδ−αζ(α) ≤ PR−α

γth
(5.156)

from which we derive that

g ≥ d
(
Rαδ−αζ(α)γth

) 1
α + 1e (5.157)

We hope we can use as smaller number of channels as possible, then:

g = d
(
Rαδ−αζ(α)γth

) 1
α + 1e (5.158)

That is, g can be pre-defined based on the transmission range of vehicles (R), path loss exponent
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(α), decoding threshold γth, and segment distance δ.

Theorem 5.3.1 (Feasibility) By setting the number of channels g by Equ. (5.158), the SIR received

by each receivers is higher than the decoding threshold γth.

Proof Without loss of generality, we examine any vehicle receiver ri of which (si, ri) ∈ Lk. Because

(si, ri) ∈ Lk, 2k−1δ ≤ dsi,ri < 2kδ, the signal power received at ri from its desired sender si is at

least

Psi,ri ≥
P

2αkδα
. (5.159)

Now we consider the interference caused by the transmission from other requests. Suppose ri is

located in square Segkm, since links are scheduled concurrently iff their receivers reside in the segment

with the same color, the interference can only be caused by the links whose receivers are in Segkm±2q,

where q = 1, 2, 3, .... We represent the set of links whose receivers are in the two segments by Qkq .

For any link (sj , rj) ∈ Qkq , because the distance between ri and sj is at least (2q(gk − 1)− 2k)δ, the

useful signal on ri is at most

Psi,ri ≤
P

(2q(gk − 1)− 2k)αδα
. (5.160)

and

∑
sj :(sj ,rj)∈Lk\(si,ri)

Psj ,ri =

∞∑
q=1

∑
j:(sj ,rj)∈Qkq

Psj ,ri (5.161)

=

∞∑
q=1

2P

(2q(gk − 1)− 2k)αδα
(5.162)

≤
∞∑
q=1

2P

qα(gk − 1)αδα
(5.163)

=
2Pζ(α)

(gk − 1)αδα
. (5.164)

Then,

SIRsi,ri =
Psi,ri∑

sj :(sj ,rj)∈Lk\(si,ri) Psj ,ri
(5.165)

≥ (gk − 1)α

2αk+1ζ(α)
≥ γth. (5.166)

which implies that ri can successfully receive the packet.
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Theorem 5.3.2 The approximation ratio of FLA is O(gK), where g = maxk=1,...,K{gk}.

Proof Now we show that any optimal solution needs at least TFLA

gu channels, where u is a constant:

u =

⌈
2α

γth

⌉
(5.167)

and TFLA is the number of channels required by the FLA algorithm. For the sake of contradiction,

we assume that the optimal solution uses less than ug · TFLA channels. Then, there must exists a

segment containing more than u receivers in the same link class in one channel. We pick any link

receiver ri in the same segment and the same channel, and calculate its SIR:

d−αsi,ri∑
sj :(sj ,rj)∈Lk\(si,ri) d

−α
sj ,ri

≤
(
2hkδ

)−α
u (2hk+1δ)

−α =
1

u2−α
< γth (5.168)

which is a contradiction.

5.3.2 Autonomous Channel Determination

In one segment group, as shown in Figure 5.7, each segment has a segment ID ranging from

1 to g. Vehicles in the segment with ID i choose to use channel i among g channels. Below, we

introduce our FLA algorithm in which each vehicle autonomously determines its segment ID and

then the channel to use.

Definition 5.3.1 (Distance offset). The distance offset of a follower vehicle receiver ri, denoted by

∆i, is defined as the remainder of its distance from the leader vehicle (r1) divided by gδ:

∆i = dri,r1 mod gδ (5.169)

Property 5.3.1 Given the distance offset of a receiver ri, ∆i, the segment ID of this vehicle is⌈
∆i

gδ

⌉
.

Table 5.2: The FLA table.

∆i [0, δ) [δ, 2δ) ... [(k − 1)δ, kδ)
Channel 1 2 ... g

According to Property 5.3.1, each vehicle’s distance offset determines its segment ID, and

then determines its channel. Hence, we can build a table (Table 5.2), namely the FLA table, which
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associates each distance offset with each channel in g channels. A vehicle receives this table from

its preceding vehicle after it joins the platoon. This table is kept in each vehicle’s storage. Since

the partition is static over time, once the table is built, each vehicle does not need to change the

FLA table anymore. Using the FLA table, each vehicle only needs to know its distance from the

leader vehicle to determine its channel without the need to collect location information of other

follower vehicles. To let all the follower vehicles know the leader vehicle’s location, the leader

vehicle’s current location is periodically propagated to all the follower vehicles by piggybacking

the location information on the packet periodically sent from a preceding vehicle to its succeeding

vehicle. According to the leader vehicle’s location, each follower vehicle can calculate its distance

from the leader vehicle.

To implement FLA, each vehicle only needs to calculate the distance offset based on its

current distance from the leader vehicle by Equ. (5.169). Then, it checks the FLA table by the

calculated distance offset, and finds the corresponding channel. For example, suppose the safety

distance is 30 meters, and the number of channels is g = 5. Vehicle i estimates that the distance

between the leader vehicle and itself is 195 meters. Using Equ. (5.169), vehicle i’s distance offset

equals 195 mod (30 × 5) = 45 meters. Since 45 ∈ [30, 60), it chooses channel 2 based on the FLA

table.
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Chapter 6

Performance Evaluation

In this chapter, we will evaluate the performance of our relay selection methods (Section

6.1) and link scheduling methods (Section 6.2).

6.1 Relay Selection

This section presents the experimental results of the relay selection methods on NESTbed

[12] and simulation with MATLAB. We compared CEDAR with the global optimal solution (OPTI-

MAL), the traditional link-layer protocols, where packet is decoded hop by hop [43,55] (HBH), and

with another solution where packet is only decoded at the destination (DEST). In order to evaluate

the effect of the load balancing algorithm (Algorithm 2) in CEDAR, we also test the performance

of CEDAR without this algorithm denoted by CEDAR*. We measured the following metrics: 1)

Packet delay : the time interval from the time a packet is generated by the source node to the time

that the packet is successfully decoded at the destination node. 2) Throughput : the total number

of data bits successfully decoded at the destinations per time unit (msec) in the entire network. 3)

En/Decoding load : the number of packets a node en/decodes. 4) Number of probing messages: the

total number of messages used for probing.

6.1.1 Experiments on Real-World NESTbed

NESTbed is an open testbed for developing wireless sensor systems [12]. It is a collection of

80 TELOSB sensors that are arranged in a grid. The sensors have CC2420 Chip and communicate
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using the IEEE 802.15.4 standard. We verify our mathematical models and evaluate the performance

of CEDAR on NESTbed. We created a multi-hop network of TELOSB sensors running Tiny-OS

2.1.0 written in NESC. We use Reed-Solomon codes to detect and fix errors in a packet, if the

number of error bits exceeds the capability of Reed-Solomon codes for correction, the receiver ask

for retransmission.

Mathematical model verification. We measured BER after the packet traveled for different

numbers of hops in two scenarios, common and noises. Fig. 6.1 (a) shows BER versus the number of

hops. We see that BER increases as the number of hops increases in both scenarios. This is because

as the number of hops increases, more flipped bits are generated and errors tend to be cumulative

and propagated along a routing path in the multi-hop network. Also, common produces much lower

BER than noises as more noises increase BER.

We then measured the probability of successful decoding when the error correction node

(responsible of Error Correction Code (ECC)) is away from the source node by different number

of hops and when the parity symbols have different lengths. Fig. 6.1 (b) shows the probability of

successful decoding in a multi-hop network with varying parity symbol lengths and the number of

hops between the error correction node and the source node. The figure illustrates that if the error

correction node is further away from the source, the probability of a packet drop increases. Also,

when the length of parity symbols increases, the probability of successful decoding increases, which

is consistent with Formula (4.2) (Fig. (a)). Further, when the number of hops is large, increasing the

length of parity symbols will not guarantee the successful decoding of a packet. The experimental

results indicate that in order to maintain a high throughput and low packet drop rate, it is necessary

to fix errors in the packet as soon as possible. Thus, arranging the destination to decode the packets

is not an effective method. However, performing retransmission or ECC at every hop is not efficient

due to queuing delays. An effective method to decode packet is to fix errors in the intermediate

nodes, which can successfully decode the packet while increasing the efficiency.

Scheme performance evaluation. In the experiments on NESTbed, we chose 8 sources and 8

destinations and the source-destination path length was 75 hops. Given that data rate R = 250kbps,

average BER ≈ 0.001 (common scenario in Fig. 6.1 (a)), Lpac = 50 bytes, LACK = 28 bytes, we

calculate the optimal number of hops one packet should be decoded once is 9 and 10.

Each source node generated 500 packets at a time interval varying from 80ms to 160ms.

We measured the delay of transmissions and the throughput, which is defined as the total size of
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Figure 6.1: Comparison of real-world NESTbed results.
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Figure 6.2: Experimental results on real-world NESTbed.
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Figure 6.3: Comparing prop&tran delay and queuing delay.
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Figure 6.4: Queuing delay with and without using EEC.

all the packets divided by the total time used for transmitting all the packets. The packet error

rate is defined as the average percent of unsuccessfully transmitted packets in each hop. To test

the performance of the three schemes in different environments, we manually changed the packet

error rate from 1/15 to 1/33. Fig. 6.2 (a) shows the packet delay of CEDAR, DEST and HBH.

We find that the average packet delay of CEDAR is much lower than that of DEST and HBH.

DEST has the highest delay because it assigns the decoding work to each packet’s destination rather

than the intermediate nodes, which generates much higher probability of packet re-decoding due

to higher probability of packet errors, thus increasing the delay. The delay of HBH is higher than

that of CEDAR because HBH requires packets to be en/decoded in each hop, which generates high

en/decoding load on intermediate nodes, leading to high queuing delay. Fig. 6.2 (b) shows the

throughput of three schemes. From the figure, we can find that the throughput follows CEDAR >

HBH > DEST. This is because lower packet transmission delay usually leads to higher throughput

in the network.

6.1.2 Simulation on Matlab

We conducted simulation on Matlab to evaluate the performance of CEDAR. We built a

9× 9 grid network with each node located in one grid and randomly selected 16 pairs of source node
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Figure 6.5: Packet delay and throughput (with OPTIMAL).

and destination node. Each packet contains 20 data symbols, 5 type-I parity symbols and 5 type-II

parity symbols. Each symbol has 5 bits. For the scheme using EEC code, there are blog2 30c = 4

levels of EEC bits in each packet, with 5 EEC bits in each level. Also, we randomly chose nodes

connecting each pair of source node and destination node as the route. We use Low Density Parity

Check (LDPC) code [14] for en/decoding packets.

Fig. 6.3 (a), (b), (c) and (d) compare prop&tran delay and queuing delay computed by

HBH, DEST, CEDAR* and CEDAR respectively. From the figures we can find that: (1) the

queuing delay increases as the generating rate of each data stream increases but the prop&tran

delay remains nearly constant; (2) the queuing delay increases more significantly in HBH than in

DEST and CEDAR (i.e., it follows CEDAR < DEST < HBH); (3) for prop&tran delay it follows

HBH < CEDAR < DEST, (4) CEDAR generates the same prop&tran delay but lower queuing delay

than CEDAR*, and (5) the total packet delay follows CEDAR < CEDAR* < DEST < HBH. For

(1), this is because queuing delay is determined by the generating rate of the source node but the

prop&tran delay is independent of it. For (2), (4) and (5), HBH has higher queuing delay since it

generates more en/decoding load on intermediate nodes. In contrast to HBH, DEST only assigns

the decoding work to each packet’s destination, which increases both prop&tran delay and queuing

delay due to higher probability of packet redecoding (as Equ. (4.2) shows). Instead of accumulating

decoding work on the destinations, CEDAR* and CEDAR chooses a number of intermediate nodes to

be responsible for the en/decoding work to reduce the probability of redecoding. CEDAR performs

better than CEDAR* because CEDAR distributes the en/decoding load of the intermediate nodes

more evenly, which reduces the queuing delay as indicated in Proposition 4.3.1.

Fig. 6.4 (a), (b), (c) and (d) compare the queuing delays of the four schemes with and with-

out using EEC versus different packet arrival rates. From the figures, we see that using EEC, the
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Figure 6.6: RS vs. LDPC.

queuing delays of the four schemes are reduced significantly. This result is caused by two reasons.

First, EEC decreases the number of retransmissions by estimating BER of the packets. Second,

the computing time of EEC is much less than erasure code (e.g., Reed-Solomon code [9]) according

to Equ. (4.24) and Equ. (4.26). These experimental results confirm the effectiveness of EEC in

enhancing the performance of CEDAR. Fig. 6.5 (a) and (b) compare OPTIMAL with CEDAR,

CEDAR*, DEST and HBH in terms of packet delay and throughput. Considering NP-hard feature

of the problem, we only set a small scale network (6 source nodes and 6 destination nodes). The re-

sults demonstrate that CEDAR can achieve almost the “best” performance in terms of packet delay

even in the distributed manner. Fig 6.6 compares the queuing delay of CEDAR and CEDAR* using

Low Density Parity Check (LDPC) code and Reed-Solomon code [14], which is also a widely used

code for HARQ protocol. From the figures, we find that the schemes using LDPC has much smaller

queuing delay than those using Reed-Solomon code. Though LDPC has a chance of failure, LDPC

is much faster than Reed-Solomon code for en/decoding packet (in our simulation on Matlab, to

en/decoding a packet, LDPC code is about 1.8 times faster than Reed-Solomon code). Accordingly,

the en/decoding time (service time) for LDPC is smaller, which leads the queuing delay of LDPC

is smaller (according to Equ. (4.24)).

Fig. 6.7 (a) and (b) compare the packet delay of CEDAR* and CEDAR in the static and

dynamic scenarios, respectively. In the dynamic scenario, due to the network topology change, the

nodes in a route of each sender were changed to other randomly selected nodes once per second,

i.e., dynamic rate was set to 1 times/s. The sender probing frequency was equal to the dynamic

rate. From both figures, we find that CEDAR* and CEDAR achieve almost the same performance

in static scenario and dynamic scenario. This is because that in both CEDAR* and CEDAR, the

senders periodically send the packet to probe the information through the routes, so they always
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Figure 6.7: Effect of dynamics with different arrival rates.
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Figure 6.8: Effect of dynamics with different dynamic rates.

know the most updated information to determine the en/decoding routing nodes even in the dynamic

network. Fig. 6.8 (a) and (b) show the packet delay and the number of probing messages versus

the dynamic rate, respectively. From Fig. 6.8 (a), we find that the packet delays of both CEDAR

and CEDAR* remain at the same level as the dynamic rate increases. Fig. 6.8 (b) shows that the

number of probing messages increases as the dynamic rate increases, since each sender must update

information more frequently when the dynamic rate becomes higher.

6.1.3 Load Balancing

Fig. 6.9 (a), (b), (c) and (d) show the en/decoding load of each node in HBH, DEST,

CEDAR* and CEDAR, respectively. The coordinate (x, y) (1 ≤ x ≤ 9, 1 ≤ y ≤ 9) in the figures

shows the position of each node in the network grid. We observe that most nodes in HBH have high

decoding load, and the decoding loads among nodes vary greatly. DEST generates lower decoding

load on nodes and move balance load distribution than HBH. Most nodes in CEDAR have much

lower decoding load than nodes in HBH and DEST. From our experimental result data, we find that

the average en/decoding load of HBH, DEST and CEDAR per node is approximately 90, 32, 24 and
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(d) CEDAR

Figure 6.9: En/decoding load distribution of all the nodes.

24. (HBH > DEST > CEDAR* ≈ CEDAR), respectively, and their standard deviation are 78, 49, 28

and 24 (HBH > DEST > CEDAR* > CEDAR), respectively. Thus, CEDAR can better balance the

en/decoding load among nodes compared to the other two schemes and CEDAR*, and also decreases

the average decoding load on a node compared to DEST and HBH. The better performance of

CEDAR* than HBH and DEST confirms the effectiveness of CEDAR’s intermediate node selection

algorithm in distributing load among partial intermediate nodes rather than all intermediate nodes

or only the destination nodes. The better performance of CEDAR over CEDAR* confirms the

effectiveness of CEDAR’s load balancing algorithm in balance the en/decoding load among nodes

and hence reducing the queuing delay. Unlike HBH that arranges every node through a route to

conduce en/decoding regardless of its current en/decoding load, DEST only assigns the destination

for decoding, thus reducing decoding load on nodes. CEDAR only arranges the intermediate nodes

in a route that have available en/decoding capacity to be decoders, which constrains the en/decoding

load of intermediate nodes. CEDAR performs better than DEST in terms of the assigned decoding

load per node and load balance. Recall that Equation (4.3) indicates the probability of successful

decoding decreases very rapidly if the number of hops between a decoding node and its previous

decoding node increases. More decoding failures for a packet in DEST lead to more decoding

operations hence higher decoding load. Unlike DEST that biases on the destinations for the decoding
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Figure 6.10: Distribution.

operations, CEDAR distributes the decoding load among intermediate nodes that have available

capacity for decoding, achieving more balanced load distribution. Actually, CEDAR overcomes the

shortcomings of HBH and DEST by decreasing the re-decoding operations via assigning intermediate

nodes as en/decoding nodes, and decrease the traffic jam by only selecting the intermediate nodes

that have capacity of en/decoding.

Fig. 6.10 shows the Probability Density Function (PDF) of nodes based on en/decoding

load in CEDAR, DEST, CEDAR* and HBH. We see that the en/decoding load of nodes in HBH

is higher and more unevenly distributed than DEST and CEDAR. The reason for HBH’s inferior

performance is that it makes all the intermediate nodes be responsible for en/decoding all the packets

going through them, which generates high en/decoding load on these nodes and also greatly increases

the en/decoding load in the network. Though the mean value of the en/decoding load of DEST is

not very high, the load among nodes is not distributed in balance and some nodes have en/decoding

load larger than 250. By always conducting decoding in the destination nodes that are randomly

selected from the network, DEST distributes the load more evenly than HBH. However, the longer

distance between the decoding node and encoding node increases the probability of packet errors

and recovery failures, leading to more re-decoding operations. Therefore, DEST generates more

en/decoding load than CEDAR.

91



6.2 Link Scheduling

6.2.1 Fading Resistant Link Scheduling

In this section, we present experimental results to better illustrate the practical appeal of the

fading resistant scheduling algorithms. In the experiment, each sender was given a random location

in a 500× 500 square, and each receiver was located from its sender with a distance randomly and

uniformly selected from [5, 20] in a random direction. The accepted error rate was set to 0.01, the

decoding threshold was set to 1, and the data rate of every link was set to 1. We measured the

following two metrics: (1) throughput (or the total data rate successfully received by receivers) and

(2) the number of failed transmissions. We compare our algorithms with two other link scheduling

algorithms: ApproxLogN [18] and ApproxDiversity [20]. ApproxLogN partitions the link set into

disjoint link classes and schedules the links in each class separately. ApproxDiversity always picks

up the shortest link and excludes links conflicted with the picked links in each iteration. Unlike

our algorithms, ApproxLogN and ApproxDiversity are not fading-resistant although they are also

polynomial time algorithms based on the SIR model.

Fig. 6.11(a) and Fig. 6.11(b) show the number of failed transmissions of different algorithms

versus the number of links and path loss exponent (α), respectively. Here, we call a transmission

is failed if the received SIR is lower than the decoding threshold. We see that LDP and RLE have

almost no failed transmissions, because they always select the links that can guarantee successful

transmissions with high probability 1 − ε with fading consideration. ApproxLogN and ApproxDi-

versity assume that the channel is non-fading, which makes them fading-susceptible. Fig. 6.11(a)

shows that the number of failed transmissions increases as the number of nodes increases. This is

because more nodes cause more transmissions hence severer interference, thus increasing the prob-

ability of a transmission failure. An interesting observation from Fig. 6.11(b) is that the number

of failed transmissions decreases as α increases. This is because when fading is more severe, the

interference factors from all undesired remote nodes are smaller (by Formula (3.33)), which reduces

the probability of a transmission failure.

We then measure the performance of the decentralized algorithm DLS and centralized al-

gorithms LDP and RLE. In DLS, we randomly selected 6% links, and let each link conduct trans-

missions for 200 times. Fig. 6.12 shows that the throughput follows RLE>DLS>LDP with different

number of links or different α values. This is because decentralized DLS makes scheduling decision
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Figure 6.11: Fading-resistant vs. fading-susceptible algorithms: the number of failed transmissions
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Figure 6.12: Centralized vs. decentralized algorithms: the number of links scheduled

based on local information while RLE is based on all system information. Though LDP is a central-

ized algorithm, only the links in the same class with the same color can be scheduled at the same

time. Though such a mechanism can prevent the conflict among the links, it reduces the number of

links that can be scheduled simultaneously. Fig, 6.12(a) shows that the throughput increases as the

number of links increases since more transmissions lead to higher throughput. From Fig. 6.12(b),

we find that the throughput increases as α increases. For LDP, it is because when α increases, the

partitioned square size decreases (by Formula (5.80)), which leads to more partitioned squares and

hence more links to be scheduled. For RLE, it is because smaller α makes few nodes eliminated in

each iteration (by Formula (5.42)). In DLS, each sender makes the decision based on its historical

transmission results, i.e., a higher transmission success probability leads to higher likelihood it will

send a packet at the current time slot. Fig. 6.11(b) indicates that higher α value leads to higher

transmission success probability, and hence more links are likely to be scheduled in DLS. Fig. 6.13

shows DLS has a larger number of failed transmissions than LDP and RLE. This is because in DLS,

each sender makes its strategy only based on the SIR received from its receiver without knowing the

decision of its nearby senders.
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Figure 6.13: Centralized vs. decentralized algorithms: the number of failed transmissions

6.2.2 CC Link Scheduling

In this section, we present simulation results of LLD-CLS, LLD-OCLS, and the greedy

algorithm (CC-Greed). All nodes were distributed uniformly at random on a plane field of size

100× 100. In the experiment, we measured the following two metrics: (1) maximum delay, which is

defined as the number of time slots used to inform all receivers, and (2) throughput, which is defined

as the number of receivers informed in a single time slot. We compared these two metrics of our

algorithms with two smart non-cooperative link scheduling algorithms:

• ApproxDiversity [18]. It is a LLD based algorithm, which partitions the link set into disjoint

link classes and schedules the links in each class separately.

• ApproxLogN [20]. It is a greedy algorithm, which always picks up the shortest link and excludes

links conflicted with the picked-up links in each iteration. ApproxLogN is particularly efficient

for the one-shot scheduling problem.

Like ours, both ApproxLogN and ApproxDiversity are polynomial time algorithms for the SIR model.

The main difference is that ApproxLogN and ApproxDiversity do not allow CC in transmission.

Since ApproxLogN is particularly efficient for the one-shot scheduling problem, we only compare

ApproxLogN with our algorithms in terms of throughput.

First, we evaluate the performance of three LLD based algorithms: LLD-CLS, LLD-OCLS,

and ApproxDiversity. In Fig. 6.14 (a) and Fig. 6.14 (b), we vary the number of receivers from 10 to

100 with 10 increase in each step, and compare the maximum delay and throughput, respectively.

We set the number of senders to 200. As expected, LLD-CLS outperforms ApproxDiversity in

maximum delay and LLD-OCLS outperforms ApproxDiversity in throughput. This is becasue LLD-
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CLS (LLD-OCLS) allows receivers to combine weak signal powers from senders, which helps increase

the opportunities for receivers to recover their messages. In addition, we have two observations from

the figures: (1) the maximum delay increases as the LLD increases, and (2) the maximum delay

increases as the number of receivers increases. These two observations are caused by the LLD-

based algorithms’ mechanism, which first partitions the link set into disjoint link classes, and then

separately schedules the links in each class in squares. For (1), higher LLD always generates more

link classes, leading to more time slots to schedule the whole link set. As for (2), higher receiver

density causes more nodes to be in each square, and hence more time slots to schedule each link

class.

In Fig. 6.15 (a) and Fig. 6.15 (b), we compare different algorithms when the path loss

exponent α was varied from 2.5 to 6 with 0.5 increase in each step. The number of senders and

receivers are set to be 1000 and 100, respectively. Similar to Fig. 6.14, both figures demonstrate that

LLD-CLS and LLD-OCLS outperform ApproxDiversity in terms of maximum delay and throughput,

respectively, because of the benefit of CC. Another interesting observation is that with the increase of

α, the maximum delay decreases and the throughput increases for both algorithms. This is because

when α is smaller, the size of the squares partitioned by the LLD-based algorithms is larger (by Equ.

(5.80)), which leads to more receivers located in each square and hence more time slots to schedule

each link class.

We then compare the throughput of CC-Greed, LLD-OCLS, ApproxDiversity, and Approx-

LogN. In Fig. 6.16 (a), we varied the number of receivers from 40 to 400 and set α to 3. In Fig.

6.16 (b), we varied α from 2.5 to 6 and set the number of receivers to 400. In both figures, each

request has exactly two links. From both figures, we can find that CC-Greed is always better than

ApproxLogN. Furthermore, we observe that when the number of receivers is low, CC-Greed has

no significant better performance than LLD-OCLS and ApproxDiversity. However, as the density

of receivers increases, CC-Greed presents increasingly better relative performance. This is because

that CC-Greed can achieve constant approximation ratio in throughput (according to the analysis in

Section 5.2.4), which enables it to achieve higher throughput than LLD-OCLS and ApproxDiversity

when the receiver density of the network is high.
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Figure 6.14: Different number of receivers.
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Figure 6.15: Different pass loss exponent.

6.2.3 Vehicle Link Scheduling

Finally, we evaluate the performance of the vehicle link scheduling method. We define packet

delivery ratio as the percentage of the packets successfully delivered to their destination vehicles in

al the packets sent out during the whole simulation time (i.e, 15 minutes). We define communication

cost as the total number of packets sent out during the whole simulation time. In both the graph-

based and SINR-based methods, the communication cost includes 1) the packets that all the vehicles

send to the leader vehicle to inform their initial locations, 2) the packets that the leader vehicle sends

to notify each follower vehicle its allocated time slots, and 3) the packets that each vehicle sends

to the leader vehicle when its location changes. In FLA, the communication cost only refers to the

number of packets that the leader vehicle sends to notify each vehicle the leader vehicle’s updated

location. For each packet, we define the packet delay as the time duration from the packet being

sent to the packet being successfully delivered. And then, we calculate the average packet delay of

all the packets sent during the simulation. In this test, in every minute, there is one vehicle entering

the platoon and one vehicle leaving the platoon.

Fig. 6.17(a),(b), and (c) compare the packet delivery ratio, the communication cost, and

the average packet delay of the three link scheduling methods with different number of vehicles.
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Figure 6.16: Throughput of GREEDY, ApproxLogN, CoopDiversity, and ApproxDiversity .
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Figure 6.17: Comparison of different link scheduling methods.

Comparing the four figures, we find that FLA 1) produces the average packet delivery ratio almost

the same as the SINR-based method but higher than the graph-based method, and 2) generates lower

communication cost and average packet delay than both graph-based and SINR-based methods. FLA

has much lower communication cost because when the relative location of a vehicle in the platoon

changes so that its segment changes, the vehicle can change its own time slots based on its scored

FLA table without communicating with the leader vehicle. However, both graph-based and SINR-

based methods require all vehicles to send to the leader vehicle their locations. Also, when a vehicle

changes its relative location, it needs to send a notification to the leader vehicle. Then, the leader

vehicle recalculates the time slots and sends the new time slots to all the follower vehicles, which

significantly increases the communication cost. More packets generate more interference and hence
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lower packet delivery ratio. Furthermore, when more packets are transmitted, each packet needs

to wait longer time before other packets finish, leading to higher packet delay. Vehicles are less

likely to adjust their velocities in time with higher packet delay when their neighboring vehicles’

relative locations are changed in the platoon, leading to more safety violations. Hence, both graph-

based method and SINR based method have higher packet delay an more safety violations than

our method. As a result, compared to the SINR-based method, FLA has lower communication

cost, average packet delay and lager number of safety violations without compromising the packet

delivery ratio, while compared to the graph-based method, our method has better performance in

all aspects of communication cost, average packet delay, packet delivery ratio, and total number of

safety violations.
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Chapter 7

Conclusion

In this dissertation, we propose four methods to solve the challenges in realizing efficient

data searching and routing in mobile opportunistic networks.

First, our objective is to find an optimal solution to choose immediate nodes in transmission

routes for en/decoding packets in wireless networks in order to minimize the packet delay and increase

the throughput. We mathematically analyze the packet delay and model the problem as an integer

programming problem, which helps to discover a globally optimal solution. Taking into account the

scalability of the network and limitation of the information that each node can collect, we propose a

distributed scheme that can achieve performance comparable to the globally optimal solution. The

simulation results in MATLAB demonstrates that our scheme performs better than previous packet

recovery schemes. Since CEDAR does not have to be tied up with any specific error estimator,

e.g., EEC, in our future work, we will try different error estimation codes for CEDAR. Also, we

will further consider how to design the method to settle the problem that data rate may vary in

each hop for transmissions. Finally, we will combine opportunistic routing with CEDAR to further

reduce decoding delay hence packet delay. That is, when a key node overheard a packet, it directly

forwards it rather than waiting for the packet sent by its previous receiver to decode it.

Second, by incorporating Rayleigh fading model into the link scheduling problem, we for-

mulated a Fading-Resistant Link Scheduling problem (Fading-R-LS) with the objective to maximize

the network throughput. The challenge for this problem is its complicated judgement for a suc-

cessful transmission. As a solution, we derived the closed form of the probability distribution of

the SIR received by each receiver, and found that checking transmission success is equivalent to
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checking whether the sum interference factor from all the senders to this receiver is lower than a

threshold. Based on this finding, we proved Fading-R-LS to be NP-hard and proposed two central-

ized algorithms (LDP and RLE) and one decentralized algorithm (DLS). Both theoretical analysis

and experimental results demonstrate that LDP and RLE can substantially improve packet delivery

ratio in fading environments compared to previous algorithms.

Third, to study the link scheduling problem in CC networks, we have formulated two prob-

lems, namely the CLS problem and the OCLS problem. The goal of CLS is to inform all receivers

using as few time slots as possible, while the goal of OCLS is to maximize the number of informed

receivers in one time slot. We have proved that both problems are NP-hard. As a solution, we

have proposed a link length diversity (LLD) based algorithm for both CLS and OCLS problems,

with g(K) performance guarantee. Further, we have proposed an algorithm with O(1) approxima-

tion guarantee for OCLS in the case that the number of senders in each request is upper bounded

by a constant. The experimental results indicate that our cooperative link scheduling algorithms

outperform non-cooperative algorithms.

Finally, we applied the link scheduling method to the vehicle platoon network. In particular,

we designed the Fast and Lightweight Autonomous channel selection algorithm (FLA), in which each

vehicle determines its time slots only based on its distance from the leader vehicle. Our simulation

results show that the decentralized platoon network can scale out well with low packet drop rate,

low packet delay, and low safety violation. Also, FLA outperforms the previous channel allocation

methods for platoons in terms of packet delivery ratio, packet delay, communication cost, and safety

violation.

The future work will be four-fold. For the relay selection problem:

1) We will consider how to settle the problem that data rate may vary in each hop for transmission;

2) We will combine opportunistic routing with CEDAR to further reduce packet latency. That is,

when a key node overhears a packet, it directly forwards it rather than waiting for the packet

sent by its previous receiver to decode it.

For the link scheduling problem:

3) We will take into account more fading models such as the Rician fading models;

4) In our current cooperative link scheduling method, we did not take into account the correlation

and interference among different channels for cooperative communication. In our next step,
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we will address this shortcoming and reformulate the cooperative link scheduling problem

by considering the spatially-correlated interference across channels. We also need to analyze

the difficulty of the new problem and propose time-efficient algorithms. Finally, we plan to

implement our cooperative link scheduling method in a real testbed..
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[46] Sarah M Loos, André Platzer, and Ligia Nistor. Adaptive cruise control: Hybrid, distributed,
and now formally verified. In Proc. of Formal Methods, pages 42–56. Springer, 2011.

[47] M. Mandelbaum, M. Hlynka, and P. H. Brill. Nonhomogeneous geometric distributions with
relations to birth and death processes. Springer J. TOP Business Econ., 2007.

[48] I. Maric and R. D. Yates. Cooperative multicast for maximum network lifetime. IEEE J. Sel.
Areas Commun., 2005.

[49] Michael J. Neely. Delay analysis for maximal scheduling with flow control in wireless networks
with bursty traffic? Transaction on Networking, 2009.

[50] Guanhong Pei and V.S. Anil Kumar. Low-complexity scheduling for wireless networks. In Proc.
of Mobihoc, 2012.

[51] Larry L. Peterson and Bruce S. Davie. Computer network: a system approach. Morgan Kauf-
mann, 2007.

[52] A. Reddy, S. Sanghavi, and S. Shakkottai. On the effect of channel fading on greedy scheduling.
In Proc. of INFOCOM, 2012.

[53] G. Sharma, N. B. Shroff, and R. R. Mazumdar. On the complexity of scheduling in wireless
networks. In Proc. of Mobicom, 2006.

104



[54] Sushant Sharma, Yi Shi, Y. Thomas Hou, Hanif D. Sherali, and Sastry Kompella. Cooperative
communications in multi-hop wireless networks: Joint flow routing and relay node assignment.
In Proc. of Infocom, 2010.

[55] S. Soltani, K. Misra, and H. Radha. On link-layer reliability and stability for wireless commu-
nication. In Proc. of MOBICOM, 2008.

[56] Sohraab Soltani, Kiran Misra, and Hayder Radha. Delay constraint error control protocol for
real-time video communication. IEEE Transaction on Multimedia, 2009.

[57] E. C. Strinati, S. Simoens, and J. Boutros. Performance evaluation of some hybrid ARQ schemes
in IEEE 802.11a networks. In Proc. of VTS, 2003.

[58] Peng Tian, Jian Ma, and Dong-Mo Zhang. Non-linear integer programming by darwin and
boltzmann mixed strategy. European Journal of Operational Research, 1996.

[59] Hong Shen Wang and Nader Moayeri. Finite-state markov channel - a useful model for radio
communication channels. IEEE Transactions on vehicular technolgoy, 1995.

[60] Liaoruo Wang, Benyuan Liu, Dennis Goeckel, Don Towsley, and Cedric Westphal. Connectivity
in cooperative wireless ad hoc networks. In Proc. of MobiHoc, 2008.

[61] W. Wang, Y. Wang, X. Li, W. Song, and O. Frieder. Efficient interferenceaware tdma link
scheduling for static wireless networks. In Proc. of Mobicom, 2006.

[62] X. Wang, Z. Li, and J. Wu. Joint TCP congestion control and csma scheduling without message
passing. TWC, 2013.

[63] S.B. Wicker and V.K. Bhargava. Reed-Solomon Codes and Their Applications. Wiley-IEEE
Press, 1994.

[64] Grace Woo, Pouya Kheradpour, Dawei Shen, and Dina Katabi. Beyond the bits: Cooperative
packet recovery using physical layer information. In Proc. of MOBICOM, 2007.

[65] X. Xu, X. Li, P. Wan, and S. Tang. Efficient scheduling for periodic aggregation queries in
multihop sensor networks. Tran. on Networking, 2012.

[66] Kyongsu Yi and Young Do Kwon. Vehicle-to-vehicle distance and speed control using an
electronic-vacuum booster. JSAE review, 22(4):403–412, 2001.

[67] H. Yomo, S. S. Chakraborty, and R. Prasad. PHY and MAC performance evaluation of IEEE
802.11a WLAN over fading channels. IEEE Transaction on Multimedia, 2009.

105


	Clemson University
	TigerPrints
	12-2015

	A Time-Efficient Strategy For Relay Selection and Link Scheduling In Wireless Communication Networks
	Chenxi Qiu
	Recommended Citation


	Title Page
	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Research Approach
	Contributions
	Dissertation Organization

	Related Work
	Relay Selection
	Link Scheduling

	Problem Statement
	System Model
	Problem formulation

	Relay Selection for Packet Recovery
	Probability of Successful Decoding
	Queuing Delay
	Minimizing the Delays
	Balancing of En/decoding Load
	Scalable and Distributed Scheme

	Link Scheduling
	Fading Resistant Link Scheduling
	Cooperative Communication Link Scheduling
	Vehicle Link Scheduling

	Performance Evaluation
	Relay Selection
	Link Scheduling

	Conclusion
	Bibliography

