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Abstract

In the last few years, advances in micro-fabrication technologies have lead to the develop-

ment of low-power electronic devices spanning critical fields related to sensing, data transmission,

and medical implants. Unfortunately, effective utilization of these devices is currently hindered by

their reliance on batteries. In many of these applications, batteries may not be a viable choice as

they have a fixed storage capacity and need to be constantly replaced or recharged. In light of

such challenges, several novel concepts for micro-power generation have been recently introduced

to harness, otherwise, wasted ambient energy from the environment and maintain these low-power

devices. Vibratory energy harvesting is one such concept which has received significant attention in

recent years.

While linear vibratory energy harvesters have been well studied in the literature and their

performance metrics have been established, recent research has focused on deliberate introduction

of stiffness nonlinearities into the design of these devices. It has been shown that, nonlinear energy

harvesters have a wider steady-state frequency bandwidth as compared to their linear counterparts,

leading to the premise that they can used to improve performance, and decrease sensitivity to vari-

ations in the design and excitation parameters. This dissertation aims to investigate this premise

by developing an analytical framework to study the influence of stiffness nonlinearities on the per-

formance and effective bandwidth of nonlinear vibratory energy harvesters.

To achieve this goal, the dissertation is divided into three parts. The first part investigates

the performance of bi-stable energy harvesters possessing a symmetric quartic potential energy func-

tion under harmonic excitations and carries out a detailed analysis to define their effective frequency

bandwidth. The second part investigates the relative performance of mono- and bi-stable energy

harvesters under optimal electric loading conditions. The third part investigates the response and

performance of tri-stable energy harvesters possessing a symmetric hexic potential function under
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harmonic excitations and provides a detailed analysis to approximate their effective frequency band-

width. As a platform to achieve these objectives, a piezoelectric nonlinear energy harvester consisting

of a uni-morph cantilever beam is considered. Stiffness nonlinearities are introduced into the har-

vesters design by applying a static magnetic field near the tip of the beam. Experimental studies

performed on the proposed harvester are presented to validate some of the theoretical findings.

Since nonlinear energy harvesters exhibit complex and non-unique responses, it is demon-

strated that a careful choice of the design parameters namely, the shape of the potential function and

the electromechanical coupling is necessary to widen their effective frequency bandwidth. Specif-

ically, it is shown that, decreasing the electromechanical coupling and/or designing the potential

energy function to have shallow wells, widens the effective frequency bandwidth for a given exci-

tation level. However, this comes at the expense of the output power which decreases under these

design conditions. It is also shown that the ratio between the mechanical period and time con-

stant of the harvesting circuit has negligible influence on the effective frequency bandwidth but has

considerable effect on the associated magnitude of the output power.
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Chapter 1

Introduction

1.1 Motivations

Significant advances in electronics and related fields of technology has led to the development

of low cost and low power-consumption electonic devices. Structural health monitoring sensors

[9, 10], medical health monitoring devices such as pace makers [11], spinal stimulators [12], electric

pain relievers [13], wireless sensors [14, 15, 16], and micro-electromechanical systems [17, 18] are a

few examples among many other devices that can effectively function at power levels in the order

of micro-watts. For instance, Wireless Integrated Network Sensor (WINS) systems used in radio

communications, consist of distributed sensors and micro-controllers that have an average power

consumption of about 300 µW [19]. A wireless transponder for data transmission is capable of

operating efficiently with less than 1 mW of power [20, 21]. These devices and sensors, however,

rely on batteries as their primary power source, which inhibits their effective usage and operation.

Batteries are known to have a fixed storage capacity and low energy density [22]. Additionally, they

need to be replaced or recharged which can be very expensive and cumbersome.

In light of such challenges, many research studies have focused on the development of scalable

energy harvesters to power and maintain these devices. The primary objective of these devices is to

scavenge, otherwise wasted ambient energy to produce enough electrical power to replace or recharge

batteries in order to power sensors and systems deployed in remote and inaccessible locations.

Traditional sources of ambient energy such as solar, wind, thermal, etc., have been employed

extensively for various applications [23, 24, 25, 26]. In addition to these common sources, vibrations
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has recently flourished as a major source of energy for micro-power generation. Several novel devices

and ideas have been developed to transform ambient vibrations directly into electricity [14, 27, 28].

Vibratory energy harvesters (VEHs) exploit the ability of active materials (e.g., piezoelec-

tric and magnetostrictive) and electromechanical transduction mechanisms (e.g., electrostatic, and

electromagnetic) to generate electric potential in response to external vibrations and/or mechanical

stimuli [14, 27, 28, 29]. Vibratory energy harvesters are currently finding applications in different

critical areas, especially in health monitoring of structures, vehicles, and machines. For instance,

today, wireless health-monitoring sensor networks have become an integral part of systems deployed

to predict and prevent catastrophic failure in different structures because of their cost effectiveness

and efficiency [20]. These sensor networks require a constant source of power and it has been demon-

strated that, energy harvested from vibrations caused by traffic flow over bridges, motion of trains,

swaying of buildings among other mechanisms, is feasible to power such systems [30, 31, 32, 33].

With the critical advances in technologies pertaining to these sensor networks and other low-power

consumption devices, there is an ever increasing need to design compact and scalable VEHs that

can harvest minute amounts of energy to run and maintain them.

1.1.1 Vibratory Energy Harvesters: Basic Concept

The simplest and most commonly available VEH consists of a cantilever beam with piezo-

electric patches attached near its clamped end as shown in Fig. 1.1. When subjected to external

environmental excitations, ab(t), beam oscillations result in large strains near the clamped end,

thereby straining the piezoelectric patches and producing a voltage, V , across an electric load which

can be used to represent the device to be powered.

Figure 1.1: Schematic of a piezoelectric energy harvester.

In general, irrespective of the transduction mechanism, traditional VEHs including the one

2



shown in Fig. 1.1, have a critical drawback in their operating principle which limits their effi-

cacy. Specifically, these devices operate based on the principle of linear resonance, which results

in maximum energy transduction from the environment to the electric load in a narrow frequency

bandwidth around their natural frequency. Any deviations in the excitation frequency away from

the harvester’s fundamental frequency cause the already small energy output to drop significantly,

making the energy harvesting process highly inefficient.

The issue of frequency matching becomes even more pressing when one recognizes that most

external excitation sources have broadband or time-dependent frequency characteristics. As such,

most realistic excitation sources such as structural vibrations and swaying of buildings among others

have their energy distributed over a wide spectrum of frequencies or their amplitude and frequency

vary with time. Thus, tuning a linear VEH to an excitation frequency becomes challenging and

usually yields very low energy transduction efficiency.

Several research studies have focused on modeling and analyzing VEHs in response to har-

monic and random excitations in an attempt to improve their performance by maximizing the

output power and more importantly, achieve large output power levels over a broader frequency

range. Initial design approaches incorporated passive/active frequency tuning mechanisms in order

to alter the fundamental frequency of the harvester to match the dominant frequency of excitation

[34, 35, 36, 37]. However, it was demonstrated that, these tunable designs are not efficient under

random or rapidly varying frequency inputs [34]. Additionally, harvesters with tuning mechanisms

require external power or complex design means to function efficiently which outweighs their power

harvesting ability.

More recently, deliberate introduction of stiffness nonlinearities into the design of VEHs

has been a topic which received wide attention. Driven by the ability of the nonlinearity to extend

the coupling between the harvester’s response and the excitation to a wider range of frequencies,

many research studies have demonstrated that nonlinearities can be used to decrease sensitivity to

parameters’ uncertainties and to enhance performance under random and non-stationary excitations

commonly encountered in realistic environments [1, 3, 4, 5, 7, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,

48, 49]. The most common approach to the design of nonlinear VEHs is the introduction of a

nonlinear restoring force usually by an external means, using, for example, magnetic or mechanical

forces [2, 6, 50, 51]. Two classes of these nonlinear VEHs have been studied extensively. The first

class of VEHs exhibit hardening/softening type nonlinear resonant behavior similar to a mono-stable
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duffing oscillator. Such harvesters exhibit one stable equilibrium point also known as a node and

their oscillations are confined to single global potential well as shown in Fig.1.2(a). If the associated

restoring force increases with the displacement, it said to be of the hardening type. On the other

hand, if it decreases with an increase in displacement, it is said to be of the softening type as depicted

in Fig.1.2(b).

Potential Energy

Displacement
node

(a)

Restoring Force

Softening

Hardening

Displacement

(b)

Figure 1.2: Potential energy function and restoring force of nonlinear mono-stable VEHs

For such devices, the nonlinearity can be introduced using several design means [1, 2, 9].

For instance, Barton et. al [1] proposed an electromagnetic mono-stable VEH with a tip magnet

attached to the end of a cantilever beam, as shown in Fig. 1.3(a). The hardening type nonlinear

restoring force is created by the magnetic potential between the magnets and a ferrous stator.

When the beam is set into motion, the magnets move relative to the coil wound around an iron core

generating a current as per Faraday’s law. In another demonstration, Mann and Sims [2] proposed

a magnetically-levitated inductive energy harvester similar to the one shown in Fig. 1.3(b). The

harvester consists of a fluctuating central iron core that is levitated by two outer magnets. The

nonlinearity is introduced in the form of the magnetic restoring force. Energy is generated when

there is relative motion between the core and the coil. In a third demonstration of mono-stable

VEHs, Masana and Daqaq [6] proposed an axially-loaded clamped-clamped beam type piezoelectric

harvester. They showed that, when the axial load is below the critical buckling load, the harvester

exhibits a mono-stable Duffing type behavior with a cubic nonlinearity whose magnitude and nature

depends on the magnitude of the axial load.

The second class of nonlinear harvesters is designed to have a two-well potential energy
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Figure 1.3: Schematics of a mono-stable energy harvesters. (a) Inductive energy harvester by Barton
et. al [1], and (b) Inductive energy harvester proposed by Mann and Sims [2]

function and exhibits the response of a bi-stable duffing oscillator. In these devices, the nonlinearity

produces a potential energy function with two minima (stable nodes) separated by a local maximum

(unstable saddle) also known as a potential barrier as shown in Fig. 1.4(a). The depth and separation

distance between these potential wells depend on the degree of nonlinearity. In this case, the restoring

force increases with the displacement as shown in Fig.1.4(b).

Potential Energy

Displacement

node

saddle

(a)

Restoring Force

Displacement

(b)

Figure 1.4: Potential energy function and restoring force of bi-stable VEHs

The concept of bi-stable VEHs was initally introduced by Cottone et. al [40] and later

studied by several researchers [1, 3, 4, 5]. These initial designs were based on the bi-stable magneto-

elastic structure by Moon and Holmes [52] and their main concept of operation is very similar.

As shown in Fig. 1.5(a), the bi-stable harvester consists of piezoelectric cantilever beam with a

ferroelectric tip oscillating between two magnets. For a certain separation distance between the two

magnets, the system becomes bi-stable. More recently, Masana and Daqaq [6, 7] also proposed a bi-

stable harvester which consisted of a clamped-clamped piezoelectric beam subjected to an axial load,
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as shown in Fig. 1.5(b). When the axial load applied is larger than the critical buckling load of the

beam, the harvester becomes bi-stable in nature. It has been shown that, under certain conditions in

which the inter-well dynamics are activated, these types of harvesters can yield a broadband output

power under harmonic excitations [3, 5, 7].

(a)

P 

     

(b)

Figure 1.5: Schematic of bi-stable piezolectric energy harvesters using (a) Magnets as implemented
in Ref. [1, 3, 4, 5] and (b) Axial load as implemented in Ref. [6, 7].

More recently, the concept of incorporating higher-order nonlinearities into the design of

VEHs such that they possess a tri-stable potential energy function has been proposed [8, 53]. In their

demonstration, Zhou et.al [8] propose a piezoelectric energy harvester which consists of a cantilever

beam with a tip magnet oscillating between two stationary magnets as shown in Fig. 1.6(a). They

show that, at a certain angular orientation and separation distance between the stationary magnets,

the harvester possesses a tri-stable potential energy function with three minima that represent the

stable equilibria (nodes) and two local maxima (saddles) as shown in Fig. 1.6(b). Through numerical

simulations and preliminary experimental studies, they show that tristable VEHs produce higher

broadband output voltages in the low frequency range as compared to their bi-stable counterparts.

1.2 Performance of Nonlinear Vibratory Energy Harvesters

In general, introduction of nonlinearities has been shown to improve the broadband output

capabilities of energy harvesters and enhance their performance. Nonetheless, the complexity of the
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Figure 1.6: (a) Schematic of a tri-stable VEH [8]. (b) Associated potential energy function.

response behavior of nonlinear VEHs as compared to their linear counterparts introduces additional

challenges that complicates the full characterization of their response, thereby reducing our ability

to reap their full benefits. Nonlinear VEHs have been shown to exhibit different behaviors that

are not seen in linear systems including sub-harmonic, super-harmonic, quasi-periodic, and chaotic

responses. They can also undergo different bifurcations in the parameter space which yield sudden

jumps in the response amplitude and/or switching in its period (doubling/halving) [3, 4, 7, 40,

41, 42]. Mono-stable VEHs exhibit nonlinear (hardening/softening) hysteretic behavior and their

performance depends primarily on the excitation level and type of nonlinearity. On the other hand,

due to the presence of two or three potential wells, the performance of bi- and tri-stable VEHs

is dependent on the excitation’s level; if the excitation level is too small to activate the inter-well

oscillations, the dynamics remain confined to one potential well producing small-amplitude responses

that are not particularly favorable for energy harvesting. When the excitation is large enough to

allow the desired large-amplitude inter-well oscillations, the harvester can perform complex non-

unique dynamic responses including inter- and intra-well chaos as well as periodic responses at the

excitation frequency or fraction integers of it [54].

Due to these complex responses, many researchers have pointed to the difficulty of not only

achieving an optimal design of multi-stable VEHs [3, 55], but also comparing their relative perfor-

mance to mono-stable ones [7]. Firstly, without prior knowledge of the intensity of the excitation

source, the harvester potential can be designed to be too shallow for the multi-stability to be use-
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ful or too deep for the dynamic trajectories to escape a single potential well [7]. Secondly, even

when the potential function is properly designed for the excitation level, the large-orbit branch of

inter-well periodic motion is not always unique and can be accompanied by a chaotic attractor and

small branches of less desirable intra-well oscillations [5, 41, 49]. In fact, it has been demonstrated

through numerical simulations that the bandwidth of frequencies where the desirable large-orbit

branch of periodic solutions is unique has a complex dependence on the design parameters including

the potential shape, the electromechanical coupling, the effective damping, and most importantly

the level of excitation. This complex dependence cannot be resolved by depending solely on numer-

ical simulations or sets of experimental data. Analytical and semi-analytical approaches1 have been

recently proposed by [60, 61, 62, 63] in an attempt to delineate this dependence. However, there is a

need to construct more accurate analytical tools to capture the qualitative variations in the dynamics

and propose techniques to possibly expand this effective bandwidth.

Many studies have characterized the response behavior of the mono- and bi-stable type of

nonlinear VEHs separately, but very few of them have actually compared their performance relative

to one another. In one study, Masana and Daqaq [7] compared the output voltage of clamped-

clamped axially-loaded energy harvester in both configurations across an arbitrarily chosen electric

load and found that the output voltage depends on the magnitude of base acceleration and the

shape of the potential function. However, the choice of an arbitrary electric load in the comparative

performance analysis of nonlinear VEHs can yield inaccurate conclusions regarding their output

power. As such, it is essential to optimize the electric load in order to deduce accurate conclusions

about the relative performance. Some studies have already addressed maximization of output power

of VEHs by optimizing the electric load and/or the design parameters or by designing additional

circuits [64, 65, 66, 67, 68]. For the most part, however, the models considered for the optimization

problem are either linear, device specific, or do not draw a comparison of the relative power output

of mono- and bi-stable VEHs. As of today, there are no studies comparing the relative performance

of nonlinear VEHs under optimal loading conditions.

Despite novel ideas that have provided significant performance enhancements to nonlinear

VEHs, the complexity of their dynamic behavior poses a great challenge in achieving practical designs

for a more robust broadband performance, especially when the nature of excitation is unknown. This

1Approximate analytical methods for bi-stable systems outside the scope of energy harvesting were originally
established in [56, 57, 58, 59].
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has driven researchers to explore newer concepts in the design of VEHs to increase the transduction

efficiency and make them less sensitive to parameter and excitation uncertainties. Zhou et. al [8]

have demonstrated that the idea of tri-stability can be utilized to design VEHs with shallow enough

potential wells for low ambient excitation to activate large-amplitude output responses and sustain

these responses over a wide frequency range. However, as of today there are no analytical and/or

rigorous experimental studies to elucidate the role of the nonlinearities or design parameters on the

performance of such devices.

1.3 Dissertation Objectives

While significant strides have been taken to improve the performance of nonlinear VEHs,

some outstanding issues, as described in the previous section, particularly pertaining to the lack of

analytical tools to understand their effective bandwidth, relative performance under optimal loading

conditions and, more robust performance are yet to be resolved. The dissertation contributions

towards resolving the aforedescribed issues can be outlined as follows:

• Obtaining analytical solutions to define the effective frequency bandwidth of bi-

stable VEHs in response to harmonic base excitations. To achieve this goal, a nonlinear

lumped-parameter model of a generic nonlinear VEH capable of operating in mono- as well as

bi-stable configurations is used. By using perturbation methods, namely the method of multiple

scales, analytical expressions that describe the amplitude and stability of the intra- and inter-

well dynamics of the bi-stable configuration are constructed. Using these solutions, i) the

presence of non-unique electric responses with competing basins of attractions are highlighted,

ii) critical qualitative variations in the dynamics also known as bifurcations in the parameters’

space are identified and, iii) the loci of these bifurcations are used to define an effective

frequency bandwidth of a bi-stable VEH. iv) The influence of three critical design parameters,

namely, the time constant ratio (ratio between the period of the mechanical system and the

time constant of the harvesting circuit), the electromechanical coupling, and the shape of the

potential function, on the effective frequency bandwidth is analyzed. Results are presented to

elucidate the essential role which the design parameters, specifically the potential shape, and

the electromechanical coupling, and the forcing level play towards optimizing the design and

enhancing performance of bi-stable VEHs.
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• Comparing the relative performance of electrically optimized nonlinear energy

harvesters. Generally both mono- and bi-stable VEHs exhibit very complex dynamic re-

sponses which poses a great challenge when trying to accurately analyze their performance

relative to one another. This dissertation compares the performance of these two classes in

response to harmonic fixed-frequency excitations under optimal electric loading conditions.

Towards this end, the model used in the first task along with the solutions are used to ob-

tain analytical expressions for the steady-state output power. These expressions are utilized

to optimize the power (for both configurations) with respect to the time-constant ratio which

represents a direct measure of the electric load. The resulting expressions are then used to

delineate the influence of the potential shape and the magnitude of excitation on the relative

performance of the two configurations under optimal electric loading.

• Investigating the response of a tri-stable nonlinear VEH for energy harvesting

under harmonic base excitations. This task is very similar in structure to the first task

addressed in this dissertation with the main difference that the mathematical model used in

the first task is modified to include higher-order nonlinearities. Recent research on utilizing

a nonlinear oscillator with a three-well (tri-stable) potential function as a solution to further

enhancing the response bandwidth is limited to numerical simulations and some experimental

studies that do not provide a complete understanding of the qualitative dynamics and com-

plex responses involved. To fill this gap in the literature, the generic mathematical model

of a nonlinear VEH used in the first task is modified to incorporate quintic nonlinearities to

produce a tri-stable potential energy function. A numerical investigation is carried out to gain

a qualitative understanding of the effect of the higher order nonlinearities on the response

behavior. The method of multiple scales is then utilized to construct analytical expressions for

the steady-state periodic deflection and electric quantity of the harvester. These expressions

are utilized to assess the stability of the steady-state responses and identify key bifurcations in

the parameters space. The loci of these bifurcations are used to demarcate regions in the force-

frequency space facilitating the approximation of the effective bandwidth of tri-stable VEHs.

The influence of the electric parameters namely, the time constant ratio and the electromechan-

ical coupling on the bandwidth of the harvester are studied. Finally, an experimental study is

conducted to demonstrate the capability of the model to capture the qualitative behavior of
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tri-stable nonlinear VEHs.

1.4 Dissertation Outline

The rest of the manuscript is organized as follows: Chapter 2 proposes a lumped-parameter

nonlinear electromechanical model and uses it to classify the different types of nonlinear VEHs.

Chapter 3 presents analytical solutions that govern the steady-state intra- and inter-well oscillations

of a bi-stable VEH. Based on these solutions, key bifurcations are identified and several maps are

constructed to define the effective bandwidth. Chapter 4 presents analytical expressions for the

output power of mono- and bi-stable harvesters and compares their performance under optimal elec-

tric loading conditions. Chapter 5 investigates the response characteristics of a tri-stable VEH. A

lumped-parameters electromechanical model with cubic and quintic nonlinearities is considered and

used to obtain approximate analytical solutions governing the steady-state amplitude and electric

responses of the harvester. The solutions are validated against numerical findings and an experi-

mental case study is presented to validate the theoretical findings. Finally, Chapter 6 presents the

main conclusions of this research and directions for future work.
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Chapter 2

Nonlinear Energy Harvesters:

Classification and Modeling

In this chapter, a basic mathematical model of a generic nonlinear VEH is presented and a

classification of the various types of nonlinear VEHs is discussed.

2.1 Mathematical Model

Several lumped and distributed-parameter models have been developed to describe the dy-

namics of VEHs [6, 69]. For the most part, these models are device specific and not very well

suited to develop a qualitative understanding of the response behavior. In order to gain the insights

necessary for a more general understanding, we consider a canonical model consisting of a mechan-

ical oscillator coupled to an electric circuit through an electromechanical coupling mechanism as

shown in Fig. 2.1. The circuit can be a first order RC circuit representing a capacitive transduction

mechanism (e.g., piezoelectric harvester), Fig. 2.1 (a); or a first-order RL circuit representing an

inductive transduction mechanism (e.g., electromagnetic harvester), Fig. 2.1 (b). For both cases,

the equations governing the motion can be written in the following general form:

m¨̄x+ c ˙̄x+
dŪ(x̄)

dx̄
+ θȳ = F̄ cos(Ω̄τ), (2.1a)

Cp ˙̄y +
ȳ

R
= θ ˙̄x (piezoelectric), L ˙̄y +Rȳ = θ ˙̄x (inductive), (2.1b)
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where the overdot represents a derivative with respect to time, τ . The variable x̄ represents

Figure 2.1: A simplified representation of a generic vibratory energy harvester.

the displacement of the oscillator mass m; c is the linear viscous damping coefficient; θ is the

electromechanical coupling coefficient; Cp is the capacitance of the piezoelectric element; L is the

inductance of the harvesting coil; and ȳ is the electric quantity representing the induced voltage

in capacitive VEHs and the induced current in inductive ones. Here, R represents the equivalent

resistive load across which the electric quantity is measured. The term F̄ cos(Ω̄τ) represents the

external base excitation; where F̄ is the amplitude, and Ω̄ is the frequency. The function Ū(x̄) is

the potential energy of the mechanical subsystem and can be written in the the following general

form:

Ū(x̄) =
1

2
k1(1− r)x̄2 +

1

4
k2x̄

4 +
1

6
k3x̄

6, (2.2)

where k1, k2 and k3 represent the linear and nonlinear stiffness coefficients, and r is introduced to

allow for variations in the stiffness around its nominal value. In the analysis of physically realizable

nonlinear VEHs, the introduction of this constant is necessary to reflect the fact that the nonlinear

stiffness coefficients cannot be changed without altering the linear stiffness.

Equation (2.1) can be further non-dimensionalized by introducing the following dimension-

less quantities:

x =
x̄

lc
, t = τωn, y =

Cp
θlc

ȳ (piezoelectric), y =
L

θlc
ȳ (inductive), (2.3)

where lc is a length scale, and ωn =
√
k1/m is the nominal short-circuit frequency when r = 0. This
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yields the following nondimensional equations:

ẍ+ 2ζẋ+ (1− r)x+ δx3 + γx5 + κ2y = F cos(Ωt), (2.4a)

ẏ + αy = ẋ, (2.4b)

where,

ζ =
c

2
√
k1m

, δ =
k2l

2
c

k1
, γ =

k3l
4
c

k1
F =

F̄

k1lc
,

and

κ2 =
θ2

k1Cp
, α =

1

RCpωn
(piezolectric), κ2 =

θ2

k1L
, α =

R

Lωn
(inductive).

Here ζ represents the mechanical damping ratio, κ is a linear dimensionless electromechanical cou-

pling coefficient, δ is the coefficient of cubic nonlinearity, γ is the coefficient of quintic nonlinearity, α

is the ratio between the mechanical and electrical time constants of the harvester. For an inductive

circuit, the time constant is L/R and for a capacitive circuit, it is RC. Also, F cos(Ωt) represents the

non-dimensionalized external base excitation term where F is the amplitude, and Ω is the frequency

of excitation. The form of Equations (2.4) permits the classification of nonlinear VEHs into three

major categories as shown in Fig. 2.2:

• Mono-stable (r ≤ 1, δ 6= 0 and γ = 0): In this case, the harvester exhibits one stable

equilibrium point given by the trivial solution, xs = 0. The oscillations of the harvester

are confined to a single global potential as shown in Fig. 2.2(a). When δ > 0, the restoring

force increases with the displacement and is said to be of the hardening type. On the other

hand, when δ < 0, the restoring force decreases with displacement and is said to be of the

softening type.

• Bi-stable (r > 1, δ > 0 and γ = 0): In such a scenario, the trivial solution, (xs = 0), becomes an

unstable saddle and two nontrivial stable nodes, xs = ±
√

(r−1)
δ are born causing the harvester

to become of the bi-stable type as shown in Fig. 2.2(a). When δ is increased, the separation

distance between the wells which is defined by the location of the static equilibria, decreases.

• Tri-stable (r < 1, δ < 0 and γ > 0): In this configuration, the potential energy function consists
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of three stable nodes and two unstable saddles as shown in Fig. 2.2(a). These equilibria are

given by xs = 0 and xs = ±
√
−δ±
√
δ2−4(1−r)γ

2γ . Note that when δ2 − 4(1 − r)γ < 0, only the

trivial solution exists.
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Figure 2.2: Potential energies and restoring forces of different nonlinear VEHs.
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Chapter 3

Effective Frequency Bandwidth of

Bi-stable Vibratory Energy

Harvesters

Due to the double-well potential function, bi-stable VEHs exhibit complex non-unique dy-

namic responses which are dependent on the depth of the potential wells, level of excitation, fre-

quency of excitation and the design parameters. In this chapter, we aim to provide a basic qualitative

insight into the response behavior of bi-stable VEHs and quantify an effective frequency bandwidth

favorable for energy harvesting.

3.1 Model

Since this analysis is focused on determining the effective bandwidth of bi-stable harvesters,

we consider the case when γ = 0 in Equation (2.4) to obtain,

ẍ+ 2ζẋ+ (1− r)x+ δx3 + κ2y = F cos(Ωt), (3.1a)

ẏ + αy = ẋ, (3.1b)
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The constant terms in Equations (3.1) are as described in chapter 2. Since this study is focused on

the analysis of bi-stable VEHs, we limit our attention to the case when r > 1, and δ > 0. In such a

scenario, as shown in Fig. 3.1, the quartic potential energy function is bi-stable with the following

three extrema:

xs = 0, xs = ±
√

(r − 1)

δ
, (3.2)

where the maximum occurring at xs = 0, represents an unstable saddle, while the global minima,

xs = ±
√

(r−1)
δ , represent stable equilibrium solutions (nodes).

Potential Energy

x

r
r � 1

�
�
r

r � 1

�

saddle
node

Figure 3.1: Schematic of a bi-stable potential energy function.

3.2 Response to Harmonic Fixed-Frequency Excitations

Bi-stable VEHs are capable of producing large amplitude responses over certain frequency

ranges under harmonic excitations [3]. These responses occur when the excitation amplitude is large

enough to permit the dynamic trajectories to escape the basin of attraction of a single stable node

allowing the harvester to perform inter-well motions. Unfortunately, these desired motions cannot

be uniquely realized over a large frequency bandwidth and are often accompanied with other, less

desirable, small amplitude intra-well responses. To further illustrate this issue, Equations (3.1a) and

(3.1b) are numerically integrated to construct a bifurcation diagram of the frequency response for

different excitation amplitudes as depicted in Fig. 3.2.

When the normalized excitation amplitude is relatively small, F = 0.045, as shown in

Fig. 3.2(a), the dynamic trajectories remain confined to a single potential well because the excitation

is not large enough for them to overcome the potential barrier (the saddle) and escape from the well.

As such, the harvester cannot perform the large-amplitude inter-well oscillations desired for energy
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Figure 3.2: Frequency-response curves for a bi-stable harvester at three different excitation levels.
Results are obtained for Equation (3.1) with ζ = 0.05, δ = 0.5, r = 1.5, κ2 = 0.01, α = 0.1, and a
base excitation of normalized amplitude (a) F = 0.045, (b) F = 0.11 and (c) F = 0.165

harvesting. The frequency-response curve appears to be of the softening nature with the large

amplitude resonant oscillations, Br, occurring at frequencies smaller than the resonance frequency.

The response curve undergoes two bifurcations: The first occurs as the frequency is decreased and

the resonant branch, Br, loses stability through a cyclic-fold bifurcation, cfB, giving way to the

smaller non-resonant branch, Bn. The second occurs when the frequency is increased and the branch,

Bn, undergoes another cyclic-fold bifurcation, cfA, giving way to the resonant branch, Br.

As shown in Fig. 3.2(b), when the excitation is increased to F = 0.11, another large-

amplitude branch of solutions, BL, appears near the lower end of the frequency range. This branch

represents the large-amplitude periodic inter-well responses desirable for energy harvesting. It can

be clearly seen that, for the range of frequencies considered, this large amplitude branch quickly

disappears in a cyclic-fold bifurcation, cfL, and gives way to more complex 3 − period periodic

responses that represent a mixture of inter- and intra-well motions. On the other hand, as the

frequency is decreased from higher to lower values, it is noted that the cyclic fold bifurcation, cfB,

occurring on the resonant intra-well branch, Br, disappears and is replaced by the period doubling

bifurcation, pd. As the frequency is decreased further, a cascade of period doubling bifurcations
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occur leading to a window of inter-well chaotic motions, CH, which disappears in a boundary crisis

near cfA.

When the excitation is increased further to the higher level, F = 0.165, as observed in

Fig. 3.2(c), three distinct behaviors are noted. Firstly, the cfL bifurcation occurs at a higher value

of the excitation frequency meaning that the desired large-orbit inter-well oscillation branch now

extends over a wider frequency; secondly, the period doubling bifurcation, pd, of the resonant branch

is activated at a higher value of the frequency, meaning that complex responses can now be initiated

at larger excitation frequencies; and thirdly, the cyclic-fold bifurcation cfA occurs at lower values

of the frequency meaning that the jump to the desired large-amplitude oscillations can now occur

at lower frequency values.

The previous numerical analysis indicates that there are three critical bifurcations in the

frequency-response curves for the electric quantity, y, that can help better define the effective band-

width of bi-stable energy harvesters for a given forcing. These bifurcations are,

1. The cyclic fold bifurcation, cfL. This bifurcation defines how far the large amplitude inter-well

motion extends in the frequency domain. The larger the value of the frequency at which cfL

occurs, the further the large-amplitude branch of solutions extends. If the frequency at which

cfL occurs is smaller than that associated with cfA, the large amplitude inter-well responses

can never be unique in the frequency domain. Furthermore, if the frequency at which cfL

occurs is larger than pd, there is a larger chance that the harvester performs unique inter-well

motions, or inter-well motions accompanied by aperiodic motions.

2. The cyclic fold bifurcation, cfA. This bifurcation defines how far the small branch of non-

resonant intra-well motion, Bn, extends in the frequency domain. For energy harvesting ap-

plications, the smaller cfA is, the better.

3. The period-doubling bifurcation, pd. This bifurcation represents the minimum value of the

excitation frequency for which the resonant branch of intra-well solutions, Br is periodic. Below

this value, more complex inter-well dynamic responses can be initiated. The larger the value

of the frequency at which pd occurs, the larger the bandwidth of inter-well motions can be.

The loci of the aforementioned bifurcations in the force-frequency space can be used as an

approximate measure of the effective frequency bandwidth wherein the harvester can produce large

amplitude electric responses. As such, deriving approximate expressions for these bifurcations can
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serve as an initial step in the design of efficient bi-stable harvesters for a given excitation. In what

follows, we use perturbation methods to obtain several approximations for these bifurcations and

show how they can be utilized to define the effective bandwidth of bi-stable harvesters.

3.3 Approximate Analytical Solutions

We first analyze the local intra-well dynamics, i.e. within a single potential well and develop

analytical expressions to predict the occurrence of the cyclic-fold and period-doubling bifurcations

(cfA, cfB, and pd) of the harvester. We then consider the global inter-well oscillations and approx-

imate the cyclic-fold bifurcation point, cfL.

3.3.1 Intra-well Oscillations of the Bi-stable Harvester

To study the dynamics within a single potential well of the harvester, we expand the dy-

namics about the stable nodes by introducing xt = x−xs where xs = ±
√

(r−1)
δ in Equations (3.1a)

and (3.1b) and expanding up to cubic terms we obtain

ẍt + 2ζẋt + ω2
nxt + τx2

t + δx3
t + κ2y = F cos(Ωt), (3.3a)

ẏ + αy = ẋt, (3.3b)

where, ωn =
√

2(r − 1) represents the linearized oscillation frequency within a single potential

well, τ = 3
√

(r − 1)δ is the coefficient of quadratic nonlinearity, and xt represents the dynamic

trajectories around the non-trivial equilibria. It is worth noting that the expanded equations now

include a quadratic term to capture the asymmetric nature of the response within a single potential

well.

Utilizing the method of multiple scales [70], a uniform approximate analytical solution of

Equations (3.3a) and (3.3b) is obtained next. Towards that end, the time dependence is expanded

into multiple time scales in the form:

Tn = εnt, (3.4)

where ε is a book keeping parameter. With this definition of the time scales, the time derivative can
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be expressed as:

d

dt
=

m∑

n=0

εnDn, (3.5)

where Dn = ∂
∂Tn

. Furthermore, xt and y can be expanded in the following form:

xt(t, ε) =

m∑

n=0

εnxn(T0, T1, . . . , Tn), y(t, ε) =

m∑

n=0

εnyn(T0, T1, . . . , Tn) (3.6)

The constant parameters in the equations are also scaled such that the effect of viscous damp-

ing appears at the same order of the perturbation problem as the cubic nonlinearity, forcing, and

electromechanical coupling. In other words, we let

ζ = ε2ζ, F = ε2F , τ = ετ, δ = ε2δ, κ2 = ε2κ2. (3.7)

To express the nearness of the excitation frequency, Ω, to the first modal frequency of the harvester

within a single potential well, we let

Ω = ωn + ε2σ, (3.8)

where σ is a small detuning parameter. Substituting Equations (3.5)-(3.8) back into Equations (3.3a)

and (3.3b), truncating at order ε2 and collecting terms of equal powers of ε yields

O(ε0) :

D2
0x0 + ω2

nx0 = 0, (3.9a)

D0y0 + αy0 = D0x0. (3.9b)

O(ε1) :

D2
0x1 + ω2

nx1 = −2D0D1x0 − τx2
0, (3.10a)

D0y1 + αy1 = D0x1 +D1x0 −D1y0. (3.10b)
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O(ε2) :

D2
0x2 + ω2

nx2 = −2D0D1x1 −D2
1x0 − 2D0D2x0 − 2ζD0x0 − τx0x1 − δx3

0

−κ2y0 + F cos(Ωt), (3.11a)

D0y2 + αy2 = D0x2 +D1x1 +D2x0 −D1y1 −D2y0. (3.11b)

The solution of the zeroth order perturbation problem, Equations (3.9a) and (3.9b), can be written

as:

x0 = A(T1, T2)eiωnT0 + cc, (3.12a)

y0 = ZA(T1, T2)eiωnT0 + cc. (3.12b)

where cc is the complex conjugate, A(T1, T2) is a complex valued function to be determined at a

later stage of the analysis, and Z =
ω2

n+iωnα
α2+ω2

n
. Substituting Equations (3.12a) and (3.12b) into

Equations (3.10a) and (3.10b), and eliminating the secular terms, terms that have the coefficient

e±iωnT0 , yields,

D1A(T1, T2) = 0 =⇒ A = A(T2). (3.13)

With this result, the solution of the first order Equations (3.10a) and (3.10b) can be written as:

x1 = τ
ω2

n

(
1
3A

2ei2ωnT0 − 2AĀ

)
+ cc, (3.14a)

y1 = Z1
τ

3ω2
n
A2ei2ωnT0 + cc, (3.14b)

where Ā is the complex conjugate of A and Z1 =
4ω2

n+2iωnα
α2+4ω2

n
. Now, to obtain the unknown function

A, we substitute Equations (3.12a), (3.12b), and (3.14a) into Equation (3.11a), then eliminate the

secular terms to obtain the following nonlinear first order differential equation for the unknown A:

−2iωnD2A− iωn2ζA− Zκ2A+

[
10

3

(
τ

ωn

)2

− 3δ

]
A2Ā+

F
2
eiσT2 = 0. (3.15)

To find the solution of Equation (3.15), we express the complex valued function, A, in the polar

form

A(T2) =
1

2
a(T2)eiψ(T2), Ā(T2) =

1

2
a(T2)e−iψ(T2). (3.16)
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Substituting Equation (3.16) into Equation (3.15), and separating the real and imaginary parts of

the outcome, we obtain

D2a = −
(
ζ + ζe

)
a+ F

2ωn
sinβ, (3.17a)

aD2β = (σ − γs)a−Neffa3 + F
2ωn

cosβ, (3.17b)

where β = σT2−ψ, ζe = κ2α
2(α2+ω2

n) represents the electric damping, Neff = 1
ωn

[
3
8δ− 5

12
τ2

ω2
n

]
represents

the effective nonlinearity coefficient, and γs = κ2ωn

2(α2+ω2
n) represents a linear shift in the system’s

natural frequency as a result of the electric coupling.

In the case of energy harvesting, we are interested in investigating the steady-state response.

To that end, we set the time derivatives in Equations (3.17a) and (3.17b) to zero, square and add

the resulting equations to obtain

ζ2
effa

2
0+

[
(σ − γs)a0 −Neffa3

0

]2

=
F2

4ω2
n

. (3.18)

where ζeff = ζ + ζe represents the effective damping and a0 represents the steady-state amplitude.

Equation (3.18) is a nonlinear frequency-response equation, which can be solved analytically for

the steady-state amplitude for any given forcing, F . Depending on the forcing and the excitation

frequency, there exists one or three positive real valued solutions. The stability of these equilibria

can be determined by assessing the eigenvalues of the associated Jacobian matrix. The steady-state

solutions can then be expressed in the following form:

xt(t) = a0 cos(Ωt− β0) + τ
2ω2

n
(−a2

0 + 1
3a

2
0 cos(2Ωt− 2β0)) + δ

32ω2
n
a3

0 cos(3Ωt− 3β0), (3.19a)

y(t) = ωn√
α2+ω2

n

a0 cos(Ωt− β0 + ψ1) + τ

3ωn

√
α2+4ω2

n

a2
0 cos(2Ωt− 2β0 + ψ2)

+ 3δ

32ωn

√
α2+9ω2

n

a3
0 cos(3Ωt− 3β0 + ψ3), (3.19b)

where, β0 = tan−1

(
ζeff

(σ−γs)−Neffa20

)
, ψn = tan−1

(
α
nωn

)
.

23



3.3.2 Bifurcation Points

3.3.2.1 Cyclic-Fold Bifurcations

We are interested in determining the cyclic-fold bifurcations of the resonant and non-

resonant branches of intra-well oscillations. These points, also known as the turning points, represent

the value of frequency at which the slope of the frequency-response curve approaches infinity. This

yields the following relation for the loci of the bifurcation points in the space of σ and a:

a2
b =

2(σb − γs)±
√

(σb − γs)2 − ζ2
eff

3Neff
(3.20)

where ab and σb represent the amplitude of oscillation and detuning parameter values at the bi-

furcation point. Depending on the value of σb, Equation (3.20) can have two positive real-valued

solutions which represent the amplitudes at which the cyclic-fold bifurcations of the resonant and

non-resonant branch of intra-well oscillations occur. The loci of these bifurcations in the space of

F and normalized excitation frequency Ω/ωn, can then be obtained by substituting ab and σb in

Equation (3.18) and solving the resulting equations for F . A sample curve is shown in Fig. 3.3

illustrating how, below a critical forcing, the cyclic-fold bifurcations collide with each other and

disappear. In such a scenario, the harvester performs linear oscillations within a single well. As

the forcing amplitude is increased, the separation between the frequencies at which the cyclic-fold

bifurcations occur increases and the softening nonlinearity becomes more apparent in the frequency

response.

3.3.2.2 Period Doubling Bifurcation

To determine the points of period doubling bifurcation in the parameter space, we examine

the stability of the approximate steady-state periodic solutions for the deflection and electric quantity

by introducing small perturbations in the form,

x̃ = xt(t) + ν1(t), ỹ = y(t) + ν2(t). (3.21)

where ν1(t) and ν2(t) are time-dependent perturbations of the deflection and electric quantity, re-

spectively. Substituting Equation (3.21) in Equation (3.1a), then linearizing for small perturbations,
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Figure 3.3: Loci of the cyclic-fold bifurcations in the force frequency parameter space. Results are
obtained for ζ = 0.05, δ = 0.5, r = 1.5, κ2 = 0.01, and α = 0.1.

we obtain the following variational equations governing the evolution of the perturbation dynamics

ν̈1 + 2ζν̇1 + [λ0 + λ1 cos(θ) + λ2 cos(2θ) + λ3 cos(3θ)]ν1 + κ2ν2 = 0, (3.22a)

ν̇2 + αν2 = ν̇1, (3.22b)

where,

λ0 = ω2
n +

3δτ2a2
0

2ω2
n

[
ω2
n

τ2
− 2

3δ
+

a2
0

2ω2
n

(
a2

0τ
2

512

(
2

3ω2
n

+
δ

τ2

)2

+
19

18

)]
,

λ1 = 2τa0 +
δτa3

0

2ω2
n

[
a2

0

32ω2
n

(
2τ2

3ω2
n

+ δ

)
− 5

]
,

λ2 = τ2a2
0

[
1

3ω2
n

+ δ

(
3

2τ2
− 5a2

0

16ω4
n

+
3δa4

0

32ω2
nτ

2

)]
,

λ3 =
τ3a3

0

2ω2
n

[
1

12ω2
n

+
δ

τ2

(
9

8
− 3a2

0

16ω2
n

− a2
0τ

2

8ω4
n

)]
,

and θ = Ωt+β. Equation (3.22a) represents a Hill’s type differential equation with three parametric-

type excitations; λ1 cos(θ), λ2 cos(2θ), and λ3 cos(3θ) with the first being the most dominant. Each

of these terms produce parametric resonances at half their frequency components which translates

to a loss of stability of the solution in the frequency domain. Since the response exhibits frequency

components that are half of their existing values after a period-doubling bifurcation, we seek a
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particular solution of Equation (3.22a) in the form, [71]

ν1 = eεt
(
S1 cos

θ

2
+ S2 sin

θ

2

)
, ν2 = eεt

(
T1 cos

θ

2
+ T2 sin

θ

2

)
. (3.23)

where ε = 0 at the bifurcation point. Substituting Equation (3.23) into Equation (3.22a) and 3.22b),

then equating the coefficients of cos θ2 and sin θ
2 to zero separately yields four simultaneous algebraic

equations in the unknowns S1, S2, T1 and T2. Setting the characteristic determinant of these

equations to zero, yields the following polynomial equation for Ω at the period doubling bifurcation:

Ω6

64
+

(
α2 + 4ζ2 − 2κ2 − λ0

)
Ω4

16
+

(
16α2ζ2 + 16κ2αζ − 8α2λ0 + 8κ2λ0

+ 4κ2 + 4λ2
0 − λ2

1

)
Ω2

16
+ α2

(
λ2

0 −
λ2

1

4

)
= 0

(3.24)

For a given a0 associated with some excitation magnitude, Equation (3.24) can be solved for the
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Figure 3.4: (a) Intersection of the period-doubling instability curve with the frequency-response
curve. (b) Loci of the pd bifurcations in the force-frequency parameter space. Results are obtained
for ζ = 0.05, δ = 0.5, r = 1.5, κ2 = 0.01, and α = 0.1.

corresponding Ω at the pd bifurcation. Out of the resulting solutions, the one associated with

the principle resonance is used to approximate the pd bifurcation point. Figure 3.4(a) depicts the

period-doubling bifurcation which is defined by the intersection of the resonant branch of solution,

Br, obtained from Equation (3.18) with that obtained by solving Equation (3.24) for the excitation

frequency, Ω, at a given forcing, F , and for a given amplitude a0 (dashed lines represent unstable
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solutions). By repeating this process for different values of the forcing, loci of the pd bifurcations in

the force-frequency parameter space can be established as depicted in Fig. 3.4(b). Results clearly

illustrate how the frequency at which the pd bifurcation occurs, increases with the forcing level.

3.3.3 Inter-well Oscillations of the Bi-stable Harvester

Next, we analyze the global inter-well oscillations. Since, in this case, the effective local

stiffness about the unstable saddle is negative (r > 1), it is very difficult to implement perturbation

methods in the traditional sense. To overcome this issue, we first scale the damping, coupling, and

external excitation at order ε as implemented in [56]; this yields,

ẍ+ (1− r)x+ δx3 = O(ε), (3.25)

Next, we assume that the first order harmonic solution x = Ā cos(Ωt), is an approximate solution of

Equation (3.25), which upon substitution in Equation (3.25) yields

(−Ω2x+ (1− r)x+ δx3) = O(ε) (3.26)

This implies that the left-hand side of the previous equation can be scaled at order ε. Adding and

subtracting the term Ω2x to the left-hand side of Equation (3.1a) and using the scaling of Equation

(3.25), we can write

ẍ+ 2εζẋ+ Ω2x+ ε(−Ω2x+ (1− r)x+ δx3) + εκ2y = εF cos(Ωt),

ẏ + αy = ẋ.

(3.27)

Now the method of multiple scales can be implemented in the traditional way. Substituting Equa-

tions (3.5), (3.6) into Equation (3.27), truncating at the order of ε, and collecting terms of equal

powers of ε, we obtain

O(ε0) :

D2
0x0 + Ω2x0 = 0, (3.28a)

D0y0 + αy0 = D0x0, (3.28b)
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O(ε) :

D2
0x1 + Ω2x1 = −2D0D1x0 − 2ζD0x0 − (−Ω2x0 + (1− r)x0 + δx3

0)

+F cos(Ωt)− κ2y0, (3.29a)

D0y1 + αy1 = D0x1 +D1x0 −D1y0. (3.29b)

The solutions of Equations (3.28a) and (3.28b) can be written as

x0 = A(T1)eiΩT0 + cc,

y0 = ZA(T1)eiΩT0 + cc, where Z =
Ω2 + iαΩ

Ω2 + α2

(3.30)

Similar to the method employed in section (3.3.1), we substitute the solutions given by Equa-

tion (3.30) into Equation (3.29a), eliminate the secular terms, and express the complex valued

function, A, in the polar form which results in the response amplitude and phase modulation equa-

tions. These equations are then used to obtain the following nonlinear frequency response equation:

ζ2
effa

2
0+

[
(Ω2 − (1− r)− γs)

a0

2Ω
− 3δ

8Ω
a3

0

]2

=
F2

4Ω2
, (3.31)

where, ζeff = (ζ+ζe), ζe = κ2α/2(α2 +Ω2) and γs = κ2Ω2/(α2 +Ω2). Upon eliminating the secular

terms in Equation (3.29a), the equation becomes

D2
0x1 + Ω2x1 = −δa

3

8
e3i(ΩT0+φ) + cc, (3.32)

for which the particular solution can be written as

x1 =
δa3

64Ω2
e3i(ΩT0+φ) + cc, (3.33)

and

y1 = Z2
δa3

64Ω2
e3i(ΩT0+φ) + cc, where Z2 =

9Ω2 + 3iαΩ

α2 + 9Ω2
, (3.34)
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Substituting the zeroth and first-order solutions back into the assumed expansion, Equation (3.6), the

total analytical solution for the inter-well deflection and electric responses of the bi-stable harvester

can be written as

x(t) = a0 cos(Ωt+ φ0) +
δa30

32Ω2 cos(3Ωt+ 3φ0), (3.35a)

y(t) = a0Ω√
α2+Ω2

cos(Ωt+ φ0 + ψ1) +
3δa30

32Ω
√
α2+9Ω2

cos(3Ωt+ 3φ0 + ψ3), (3.35b)

where, φ0 = tan−1
(

8ζeffΩ

4(Ω2−(1−r)−γs)−3δa20

)
, ψn = tan−1(α/nΩ).

3.3.3.1 Cyclic-Fold Bifurcation

In the case of inter-well oscillations, we are interested in determining the cyclic-fold bifur-

cation point, cfL, which corresponds to the value of frequency at which the stable and unstable

large-orbit solutions coalesce. As shown in section 3.3.2.1, we find the cyclic-fold bifurcation point

by determining the value of frequency at which the slope of the frequency-response curve for inter-

well oscillations approaches infinity. Towards that end, we utilize the condition dΩ
da0

∣∣
ab,Ωb

= 0 in

Equation (3.31) to obtain

27δ2a4
b − 48δ(Ω2

b − (1− r)− γs)a2
b + 16(Ω2

b − (1− r)− γs)2 + 64Ω2
bζ

2
eff = 0 (3.36)

ab and Ωb represent the amplitude and frequency of the response at the bifurcation point. Depending

on the value of Ωb, Equation (3.36) has two positive real-valued solutions out of which the one with

the large amplitude represents inter-well oscillations. The locus of the cyclic fold bifurcation in the

F - Ω space is then obtained by substituting ab and the corresponding Ωb into Equation (3.31) and

solving the resulting equations for the critical forcing, F .

Figure 3.5 depicts the locus of the cyclic-fold bifurcation of the inter-well oscillation branch

in the force-frequency parameter space clearly illustrating how the frequency at which the cfL occurs

increases as the magnitude of the forcing increases, thereby extending the desirable bandwidth of

the harvester.

3.3.4 Asymptotic Responses

Equations (3.18) and (3.31) are used to analytically construct the frequency-response curves

of the system for two different forcing amplitudes as depicted in Fig. 3.6. As shown earlier in the
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numerical simulations of Fig. 3.2, Fig. 3.6 captures the three critical frequencies pd, cfL, and cfA and

their dependence on the excitation amplitude. A comparison between Fig. 3.6(a) and Fig. 3.6(b)

reveals that both of the cyclic fold bifurcation, cfL and the period doubling bifurcation, pd, are

shifted towards higher values of frequency as the magnitude of excitation is increased. On the other

hand, the cyclic-fold bifurcation cfA occurs at a lower value of the frequency demonstrating the

enhanced bandwidth of the harvester as the excitation amplitude is increased.
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Figure 3.6: Analytical frequency-response curves for a bi-stable harvester at two different excitation
levels. Dashed lines represent unstable solutions. Results are obtained for ζ = 0.05, δ = 0.5, r = 1.5,
κ2 = 0.01, α = 0.1, and a base excitation of normalized amplitude (a) F = 0.08, (b) F = 0.1

The analytical results are also compared to the stroboscopic bifurcation map obtained nu-

merically showing very good agreement and the ability of the analytical responses to predict the
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bifurcation points with relative accuracy as depicted in Fig. 3.7. A comparison of the results reveal

that the analytical solution overpredicts the frequency at which the period doubling bifurcation, pd

occurs. This can be attributed to the fact that the method utilized to predict the period doubling

bifurcation point involves approximating the loss of stability through variational equations that are

linearized assuming small perturbations. Furthermore, since the period doubling bifurcation invari-

ably precedes the onset of chaotic motions, the analytical predictions can be used as a threshold

while designing bi-stable energy harvesters.
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Figure 3.7: Comparison of numerical and analytical frequency responses. Light blue curves represent
numerical solutions. Results are obtained for normalized base excitation amplitudes (a) F = 0.11
and (b) F = 0.165.

3.3.5 Influence of the Electric Parameters on the Bifurcation Points

In this section, we study the influence of the important electric parameters namely, the

time constant ratio, α, and the electromechanical coupling, κ2 on the critical bifurcations. The time

constant ratio can be used as a measure of the influence of the electric load while κ2 represents

the strength of coupling between the mechanical and electrical subsystems. Figure 3.8 depicts the

effect of varying the time constant ratio on the loci of the bifurcations of the intra- and inter-well

oscillations in the forcing-frequency parameter space. A close inspection of the Figures. 3.8(a), 3.8(b)

and 3.8(c) reveals that the locations of the bifurcation points cfB and cfA, pd and cfL are nearly

the same for all values of α despite varying it by an order of magnitude from the nominal value

of 0.1. As such, the time constant ratio has very little influence on the effective bandwidth of the

harvester, but could influence the response amplitude. As a result, changing the electric load does

not significantly alter the loci of the bifurcation points.
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Figure 3.8: Effect of varying the time constant ratio, α on the loci of the (a) cyclic-fold bifurcation
points of the intra-well oscillations, cfB and cfA, (b) period-doubling bifurcation point of the intra-
well oscillations, pd and (c) cyclic-fold bifurcation point of the large-orbit inter-well oscillations, cfL.
Results are obtained for ζ = 0.05, δ = 0.5, r = 1.5, and κ2 = 0.01.

On the other hand, Fig. 3.9 shows that varying the coupling coefficient κ2 has a notable

impact on the critical forcing and frequency values at which the bifurcations of the oscillatory

responses of a bi-stable harvester occur. Figure 3.9(a) shows that, for a given forcing, the cyclic-

fold bifurcations of the resonant and non-resonant branch of intra-well oscillations, cfB and cfA

respectively, occur at higher frequency ratios as κ2 is increased from a nominal value of 0.01. This

implies that the intra-well motions exist over a wider range of frequencies for higher electromechanical

coupling due to the increase in the electric damping of the system. Figure 3.9(b) shows the effect of

the electromechanical coupling on the period-doubling bifurcation of the resonant branch of intra-

well oscillations, pd. Again, due to the increase in the electric damping, as κ2 is increased, a higher

forcing amplitude is required to initiate the period-doubling bifurcation. Figure 3.9(c) illustrates that

the locus of the cyclic-fold bifurcation of the large-orbit inter-well oscillations, cfL, shifts up in the
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forcing-frequency parameter space as the electromechanical coupling increases. As such, increasing

the electromechanical coupling shrinks the frequency range over which the large-orbit solution exists.
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Figure 3.9: Effect of varying the electromechanical coupling coefficient, κ2 on the loci of the (a)
cyclic-fold bifurcation points of intra-well oscillations, cfB and cfA, (b) period-doubling bifurcation
point of the intra-well oscillations, pd and (c) cyclic-fold bifurcation point of the large-orbit inter-well
oscillations, cfL. Results are obtained for ζ = 0.05, δ = 0.5, r = 1.5, and α = 0.1.

3.4 The Effective Bandwidth

We utilize the analytical expressions obtained in Section 3.3 to define an effective bandwidth

for the bi-stable harvester by characterizing the different boundaries for intra- versus inter-well re-

sponses in the forcing-frequency parameters space. Figure 3.10 depicts a set of curves that demarcate

three regions of particular importance. The first lies between three curves: the pd, the cfL, and the

cfA curves and is denoted by CH on the figure. Force-frequency combinations in this region result
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in either chaotic or n-period periodic motions where n > 1. The second region is located above the

cfA and cfL curves and contains the desirable large-orbit inter-well motions, BL. These motions

can be unique or accompanied by chaotic or n-period periodic motions, where n > 1. Finally, the

third region is located to the left of the cfA and cfL curves and contains the desirable large-orbit

inter-well motions, BL, always accompanied by the undesirable non-resonant intra-well motions, Bn.

As such, depending on the initial conditions, the harvester can operate on either the large or small

orbit branches of solution.

Figure 3.10 also shows three critical forcing levels. Any forcing magnitude below Fcr1

only leads to the resonant branch of small-amplitude intra-well motions. Below this forcing level, no

bifurcations occur and the voltage-frequency response exhibits the typical bell-shaped linear response

within a single potential well. Above this critical forcing, the voltage response curve bends to the

right as the bifurcations cfA and cfB appear. Above the critical forcing, Fcr2, the period-doubling

bifurcation exists and more complex aperiodic responses begin to appear. Finally, above the critical

forcing Fcr3, the large amplitude steady-state periodic inter-well motions begin to appear for the

range of frequencies considered in the analysis.

With this understanding, the map shown in Fig. 3.10 can be used to provide a rough estimate

of the effective bandwidth of the harvester. For a given set of design parameters it is possible to use

this map to identify the forcing level and frequency bandwidth for which large-amplitude inter-well

motions can be achieved either uniquely or with other less favorable motions.
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Figure 3.10: Bifurcation curves defining regions of intra- and inter-well responses. The curves are
obtained for ζ = 0.05, δ = 0.5, r = 1.5, κ2 = 0.01, α = 0.1, and ωn = 1.
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3.4.1 Influence of The Potential Shape

We use the understanding developed in this section to study the influence of the potential

shape on the effective bandwidth of the harvester. The three different potential functions shown

in Fig. 3.11 are considered. As shown in Fig. 3.12, in addition to the bifurcation curves obtained

analytically, we superimpose a numerically obtained curve to define the region where the large

amplitude inter-well periodic response, BL is unique. By increasing r, the depth and separation

distance between the potential wells increases requiring larger forcing magnitudes to initiate the

inter-well oscillations. For r = 1.1, a minimum forcing of F = 0.022 is necessary to achieve unique

inter-well oscillations near Ω/ωn = 0.62. When r is increased to r = 1.5, the minimum critical

forcing increases dramatically to around 0.16 near Ω/ωn = 0.72. Increasing r toward r = 2, further

increases the critical forcing to around 0.375. In all cases, the bandwidth of frequencies over which

the large inter-well oscillations branch uniquely exists increases as the forcing level is increased.
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Figure 3.11: Potential function of the harvester for different values of r and δ = 0.5.

By increasing the depth and separation distance between the potential wells, larger forc-

ing levels become necessary to excite the desired periodic inter-well motions. Furthermore, the

bandwidth of frequencies over which these solutions are unique shifts towards higher values making

the potential energy function with the shallower wells more suitable for low-frequency excitations.

Nevertheless, it should be borne in mind that, although the inter-well oscillations are activated at

lower forcing values for shallower potential wells, the associated electric responses are generally much

smaller relative to those obtained using deeper potential wells.

To illustrate this fact, the electric output obtained by operating the harvester on the large

orbit branch of solutions, BL, is compared for two different values of r, namely, r = 1.1 and r = 1.5

over the same range of forcing levels and frequency ratios. The comparison shown in Figures 3.13(a)

and 3.13(b) reveals that, the overall amplitude of the response, y, is significantly lower when r = 1.1.
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This result clearly demonstrates that, for a given forcing level, the improved bandwidth occurs at

the expense of the amplitude of the electric output.
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Figure 3.12: Comparison of bifurcation maps for different linear stiffness coefficients. BL represents
large orbit branch inter-well oscillations, Bn represents non-resonant intra-well oscillations, and CH
represents chaotic solutions. Results are obtained for ζ = 0.05, δ = 0.5, κ2 = 0.01, α = 0.1 and (a)
r = 1.1, (b) r = 1.5 and (c) r = 2.0.
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Figure 3.13: Comparison of electric outputs associated with the unique inter-well branch of solutions,
BL, for (a) r = 1.1 and (b) r = 1.5. Results are obtained for ζ = 0.05, δ = 0.5, κ2 = 0.01 and
α = 0.1.
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Chapter 4

Comparative Performance Analysis

of Electrically-Optimized Mono-

and Bi-stable Energy Harvesters

Unlike linear energy harvesters, where performance metrics have been established and are

being easily implemented, the analysis of the performance of nonlinear energy harvesters is very

difficult due to i) the presence of non-unique electric responses with competing basins of attractions,

ii) the aperiodic nature of the output signals, and iii) the various qualitative variations of the

dynamics, also knows as bifurcations, that can occur as one of the design parameters is varied as

discussed in the previous chapter. As a result, a large number of research studies have been devoted

to analyze the performance of these two classes of harvesters under various types of inputs including

harmonic, non-stationary, and random excitations. A summary of these research findings can be

found in [54].

Although many studies have characterized the response behavior of the mono- and bi-stable

type of nonlinear VEHs separately, very few of them have actually compared their performance

relative to one another. In one demonstration, Masana and Daqaq [7] considered a clamped-clamped

axially-loaded beam type piezoelectric energy harvester capable of operating in both of the mono-

stable (pre-buckling) and the bi-stable (post-buckling) configurations. They compared the output

voltage in both configurations across an arbitrarily chosen electric load and found that the output
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voltage has a complex dependence on the magnitude of base acceleration, the shape of the potential

energy function, and the frequency of excitation. Such findings have been shown to facilitate the

choice of the energy harvester configuration better suited for specific applications, especially when

the frequency and magnitude of the excitation source are known.

The choice of an arbitrary electric load in the comparative performance analysis can yield

inaccurate conclusions especially if the arbitrarily chosen load is close to the optimal load for some

configuration but away from it for the other. As such, optimizing the electric load is an essential first

step to deduce accurate conclusions about the relative performance. This can be very difficult for

nonlinear VEHs especially those involving strong nonlinearities as in the case of the bi-stable har-

vester. Several studies have already addressed maximization of output power of VEHs by optimizing

the electric load and/or the design parameters or by designing additional circuits [64, 65, 66, 67, 68].

For the most part, however, the models considered for the optimization problem are either linear,

device specific, or do not draw a comparison of the relative power output of mono- and bi-stable

VEHs.

This chapter compares the optimal power output of mono- and bi-stable energy harvesters

in response to harmonic fixed-frequency excitations at the optimal electric load. Towards that end,

a generic electromechanical model of a nonlinear VEH capable of operating in both configurations is

considered. By utilizing the solutions from Chapter 3, analytical expressions that govern the steady-

state periodic electric output responses for both configurations are obtained. Using these analytical

expressions, the output power is optimized with respect to the time constant ratio between the

mechanical and electrical subsystems. The resulting expressions are used to delineate the influence

of the potential shape and the magnitude of excitation on the relative performance of the two

configurations under optimal electric loading.

4.1 Basic Model

For the purpose of comparative performance analysis of mono- and bi-stable harvesters, we

again consider the case when γ = 0 in Equation (2.4) to obtain,

ẍ+ 2ζẋ+ (1− r)x+ δx3 + κ2y = F cos(Ωt), (4.1a)

ẏ + αy = ẋ, (4.1b)
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where the constant terms in Equation (4.1) are as described in Chapter 2. The harvester represented

by Equation (4.1) can operate in the mono- and bi-stable configurations by simply altering the

parameter r within the linear stiffness coefficient 1−r. When r < 1, the harvester exhibits one stable

equilibrium point given by the trivial solution, xs = 0. In such a scenario, the harvester’s oscillations

are confined to a single global potential (mono-stable configuration) as shown in Fig. 4.1(a). On the

other hand, as shown in Fig.4.1(b), when r > 1, the trivial solution (xs = 0) becomes an unstable

(saddle) and two nontrivial stable equilibria (nodes), xs = ±
√

(r−1)
δ are born causing the harvester

to become of the bi-stable type.

Potential Energy

Displacement
node

(a)

Potential Energy

Displacement

node

saddle

(b)

Figure 4.1: Schematic of potential energy functions of the harvester in (a) mono-stable configuration
and (b) bi-stable configuration.

The value of r not only affects the equilibrium solutions of the system but also influences

the oscillation frequency around them. In order to obtain an expression for the local frequency of

oscillation about a given equilibrium position, Equation (4.1) is linearized around the static equilibria

(xs, ys). This yields

ẍd + 2ζẋd +
[
(1− r) + 3δx2

s

]
xd + κ2yd = F cos(Ωt), (4.2a)

ẏd + αyd = ẋd, (4.2b)

where xd = x− xs and yd = y − ys. With that, the frequency of oscillations (short-circuit) around
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a given equilibrium can be written as

ωn =
√

(1− r) + 3δx2
s. (4.3)

Figure 4.2 depicts how the (short-circuit) frequency of oscillation varies with the parameter r. As

r is increased, the frequency decreases down to a theoretical value of 0 corresponding to the point

at which the potential function transforms from mono- to the bi-stable configuration. For values of

r beyond 1, the stiffness increases again, thereby increasing the frequency. This behavior permits

tuning the harvester at equal frequencies for different configurations.
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Figure 4.2: Variation of the (short circuit) oscillation frequency ωn with the parameter r.

4.2 Analytical Solutions

As described earlier, mono-stable VEHs perform oscillations that are confined to a single

potential well; while, bi-stable VEHs can perform intra-well (local) and inter-well (global) oscillations

depending on the level of excitation. In this chapter, we are interested in the output power associated

with the periodic responses of the harvester in both configurations. Towards that end, we use the

solutions from Section 3.3.3 of Chapter 3 to analyze the periodic responses within the single potential

well of the mono-stable configuration as well as the inter-well (global) oscillations of the bi-stable

configuration. Next, we use the solutions obtained in Section 3.3.1 to approximate the intra-well

(local) dynamics of the bi-stable configuration.
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4.2.1 Global dynamics

As shown in Section 3.3.3 of the previous chapter, we implement the method of multiple

scales on Equations (4.1)to obtain the second-order uniform approximate analytical solutions of the

form

x(t) = a0 cos(Ωt+ φ0) +
δa30

32Ω2 cos(3Ωt+ 3φ0) +O(ε2), (4.4a)

y(t) = a0Ω√
α2+Ω2

cos(Ωt+ φ0 + ψ1) +
3δa30

32Ω
√
α2+9Ω2

cos(3Ωt+ 3φ0 + ψ3) +O(ε2) (4.4b)

where the steady-state amplitude a0 is governed by the following nonlinear frequency-response

equation:

ζ2
effa

2
0+

[
(Ω2 − (1− p)− γs)

a0

2Ω
− 3δ

8Ω
a3

0

]2

=
F2

4Ω2
. (4.5)

Here γs = κ2Ω2/(α2 +Ω2), represents the linear shift in the system’s natural frequency as a result of

the electric coupling, ζeff = ζ+ ζe represents the effective damping, ζe = κ2α/2(α2 + Ω2) represents

the electric damping, and

φ0 = tan−1

(
8ζeffΩ

4(Ω2 − (1− r)− γs)− 3δa2
0

)
, ψn = tan−1(α/nΩ). (4.6)

Equation (4.5) can be solved analytically for the steady-state amplitude for any given forcing, F , and

frequency Ω. It is worth noting that the solutions obtained for r < 1 correspond to the harvester in

the mono-stable configuration while those obtained for r > 1 represent the large amplitude inter-well

oscillations in the bi-stable configuration.

4.2.2 Intra-well Dynamics

To study the responses within a single potential well of the bi-stable harvester (r > 1), we

expand the dynamics about the stable nodes, xs = ±
√

(r−1)
δ and obtain Equations 3.3 as shown

in the previous chapter. The solutions governing the steady-state periodic amplitude and electric

responses are given by:

xt(t) = a0 cos(Ωt− β0) + τ
2ω2

n
(−a2

0 + 1
3a

2
0 cos(2Ωt− 2β0)) + . . . (4.7a)

y(t) = ωn√
α2+ω2

n

a0 cos(Ωt− β0 + ψ1) + τ

3ωn

√
α2+4ω2

n

a2
0 cos(2Ωt− 2β0 + ψ2) + . . . , (4.7b)
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where the steady-state amplitude, a0, is obtained by solving the following nonlinear frequency-

response equation,

ζ2
effa

2
0+

[
(σ − γs)a0 −Neffa3

0

]2

=
F2

4ω2
n

. (4.8)

Here, ζe = κ2α
2(α2+ω2

n) represents the electric damping, Neff = 1
ωn

[
3
8δ− 5

12
τ2

ω2
n

]
represents the effective

nonlinearity coefficient, and γs = κ2ωn

2(α2+ω2
n) represents a linear shift in the system’s natural frequency

as a result of the electric coupling. The response phase can be written as

β0 = tan−1

(
ζ

(σ − γs)−Neffa2
0

)
, ψn = tan−1

(
α

nωn

)
. (4.9)

4.2.3 Asymptotic Responses

Equations (4.5) and (4.8) are utilized to analytically construct the frequency-response curves

of the harvester in the mono- and bi-stable configurations for two different forcing amplitudes.

Figure 4.3 shows a comparison of the analytical results with the numerically obtained stroboscopic

bifurcation maps for the mono-stable configuration. In general, results show very good agreement

and also demonstrate the ability of the analytical solutions to predict the response amplitude and

bifurcation points with relative accuracy.
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Figure 4.3: Comparison of numerical and analytical frequency responses of the mono-stable har-
vester. Gray curves represent numerical solutions and dashed lines represent unstable solutions.
Results are obtained for ζ = 0.05, δ = 0.5, r = 0.0, κ2 = 0.01, α = 0.1, and normalized base
excitation amplitudes (a) F = 0.11, (b) F = 0.165

Figure 4.3 further illustrates the traditional bending of the frequency-response curves (here
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Figure 4.4: Comparison of numerical and analytical frequency responses of the bi-stable harvester.
Gray curves represent numerical solutions and dashed lines represent unstable solutions. Results
are obtained for ζ = 0.05, δ = 0.5, r = 1.5, κ2 = 0.01, α = 0.1, and normalized base excitation
amplitudes (a) F = 0.11, (b) F = 0.165

to the right) because of the hardening type nonlinearity, δ > 0. The response now contains three

branches of solution: the resonant branch, Br, the non-resonant branch, Bn, and the unstable branch

(dashed lines). The resonant branch, Br, which is desirable for energy harvesting because it provides

larger amplitude voltages, is now accompanied by the non-resonant branch, Bn, for a portion of the

frequency range considered. In this range, the final steady-state electric output of the harvester

is determined by the initial conditions and the size of the competing basins of attraction for both

solutions.

For the bi-stable case, Figs. 4.4(a) and 4.4(b) reveal much more complex intra- and inter-well

responses. Here, in addition to the resonant and non-resonant branches of intra-well oscillations,

Br and Bn, respectively, a large-amplitude inter-well oscillations branch, denoted by BL, appears

in the lower range of frequencies. This branch, which is most desirable for energy harvesting, is

accompanied by cross-well chaotic motion, (CH), and n−period periodic motions (n > 1). By

comparing Figs. 4.4(a) and 4.4(b) it becomes evident that when the forcing amplitude is increased,

the desirable inter-well branch, BL, extends over a wider range of frequencies while the intra-well

branch, Bn, exists over a narrower band of frequencies. However, the BL branch is still accompanied

by less desirable responses over most of the frequency range considered.

4.3 Optimal Power

Using the expressions derived in the previous section, a general analytical expression for

the output power associated with the periodic responses can be defined for both of the mono- and
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bi-stable configurations as

P =
P̄

P0
= α |y|2 (4.10)

where |y| represents the steady-state amplitude of the electric output and P0 = k1ωnκ
2l2c . The power

can then be optimized with respect to the time constant ratio, α, which is used as a measure of the

influence of the electric load.

In the case of the global dynamics, the steady-state amplitude of the electric quantity y

is given by Equation (3.35b). Substituting only the amplitude of the fundamental harmonic from

Equation (3.35b) into Equation (4.10), the expression for the output power can be written as

P =
αΩ2

α2 + Ω2
a2

0, (4.11)

where a0 is the steady-state amplitude of the response obtained by solving Equation (3.31) analyt-

ically. Depending on the forcing and the excitation frequency, there exists one or three real valued

solutions. The stability of these solutions can be determined by assessing the sign of the real part

of the eigenvalues of the associated Jacobian matrix. It is evident from Equation (3.31) that, these

solutions depend on the time constant ratio, α, through the electric damping, ζe, and the linear

shift in the system’s oscillation frequency, γs. Consequently, the output power can be expressed in

terms of α by substituting the expression for a2
0 into Equation (4.11). Using the resulting analytical

expression, the optimal electric load, αopt, can then be obtained by utilizing the conditions for the

extremum, dP
dα |αopt

= 0, d2P
dα2 |αopt

< 0 . The corresponding theoretical maximum output power, P ∗,

is then given by

P ∗ =
αoptΩ

2

α2
opt + Ω2

a2
opt. (4.12)

where a2
opt is the steady-state amplitude at the optimal electric load, αopt. It is worth reiterating

that Equation (4.12) corresponds to the maximum power output associated with the oscillations

within a single global potential well of a mono-stable harvester (r < 1) or the maximum power

corresponding to the inter-well (global) oscillations of a bi-stable harvester (r > 1).

Next, we examine the maximum power attainable from the intra-well (local) oscillations

within a single potential well of a bi-stable harvester. Towards that end, the amplitude of the electric

quantity y from Equation (3.19b) is substituted into Equation (4.10) to obtain the expression of the
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output power as

P =
αω2

n

α2 + ω2
n

a2
0, (4.13)

where a0 is the steady-state amplitude obtained by solving Equation (3.18) analytically. Again,

depending on the excitation level and frequency, Equation (3.18) may have one or three positive real

valued solutions whose stability can be analyzed through the eigenvalues of the Jacobian matrix. The

optimal electric load, αopt, can be obtained by substituting the expression for a2
0 into Equation (4.13)

and finding the extremum of the resulting expression. This yields

P ∗ =
αoptω

2
n

α2
opt + ω2

n

a2
opt. (4.14)

where a2
opt is the steady-state amplitude within a single potential well at the optimal electric load,

αopt.

4.4 Comparative Investigation

In this section, the analytical expressions for optimal power obtained previously are used to

construct the optimal power versus frequency curves for both mono- and bi-stable configurations by

including only the periodic responses. For the purpose of comparison, the linear stiffness is tuned

by varying the parameter r such that the oscillation frequency in the mono-stable configuration is

the same as that within a single potential well of the bi-stable configuration. One could argue that

this is the ideal frequency to facilitate the transition of dynamic trajectories from a single well to

inter-well motion in the bi-stable case.

In the mono-stable case (r < 1), increasing r results in the potential well becoming flatter

and shallower. On the other hand, in the bi-stable case (values of r > 1), increasing r increases the

depth and separation distance between the potential wells. We consider three different oscillation

frequencies and their corresponding potential shapes for both configurations as shown in Fig. 4.5(a)

and Fig. 4.5(b). Considering these cases permits studying the influence of the potential shape on

the optimal output power, and, hence the relative performance in both configurations.
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Figure 4.5: Shape of the potential functions for δ = 0.5 and (a) r < 1 (mono-stable case) and (b)
r > 1 (bi-stable case).

Optimal Power

Figure 4.6 depicts variation of the optimal power with the excitation frequency for the low

stiffness scenario. Here, the values of the parameter r are chosen to be very close to the critical

value of 1, i.e. r = 0.8 and r = 1.1 such that they result in the same non-dimensionalized oscillation

frequency of 0.4472 for both configurations, see Fig. 4.2. For the purpose of comparison, the power

curves are constructed for the same range of forcing in both configurations.

In the mono-stable case, the response curves exhibit the typical hardening-type charac-

teristics with higher power levels occurring at frequency ratios larger than one. As the forcing is

increased, the magnitude of the optimal power increases and is accompanied by a further extension

of the resonant branch of solution towards higher frequency values. On the other hand, as shown

in Fig. 4.6(b), in the bi-stable case, higher optimal output power levels occur at the lower end

of the frequency range and extend up to the primary resonance region depending on the forcing

level. These large-amplitude responses are always accompanied by the smaller-amplitude intra-well

response branch which results in smaller output power level. However, as the forcing level is in-

creased, the desirable large-amplitude branch extends over a wider range of frequencies while the

less desirable intra-well branch shrinks.

A comparison between Figs. 4.6(a) and (b) illustrates that the power curves in both config-

urations are fairly similar as a result of the potential wells being similar in shape near the instability

point (r = 0.8 versus r = 1.1). The optimal power levels are fairly similar with the notable dif-
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Figure 4.6: Optimal power-frequency response curves when the oscillation frequency is tuned to a
non-dimensional value, ωn = 0.4472. Results are obtained for ζ = 0.05, δ = 0.5, κ2 = 0.01, and (a)
r = 0.8 (mono-stable), (b) r = 1.1 (bi-stable)

ference between the two configurations being in the slope of the power curves. As the frequency

is increased, the mono-stable optimal power curves show a more dramatic increase in amplitude in

the vicinity of the primary resonance while the bi-stable curves show relatively higher amplitudes

at low frequencies that steadily increase with an increase in frequency. It is also worth noting that

the forcing levels needed to activate large-amplitude inter-well responses in the bi-stable case are

relatively small owing to the shallow potential wells as shown in Fig. 4.5(b).
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Figure 4.7: Optimal power-frequency response curves when the oscillation frequency is tuned to a
non-dimensional value, ωn = 1. Results are obtained for ζ = 0.05, δ = 0.5, κ2 = 0.01, and (a)
r = 0.0 (mono-stable), (b) r = 1.5 (bi-stable)
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When the value of r is changed to r = 0.0 and r = 1.5 for the mono- and bi-stable con-

figurations, respectively, there is an increase in stiffness and a resulting increase in the oscillation

frequency of the harvester. As shown in Fig. 4.7(a) and Fig. 4.7(b), this increase in stiffness results

in an increase in the magnitude of the optimal output power. The behavior of the power curves

in the mono-stable case remains the same with the power increasing sharply around the frequency

ratio close to resonance (Ω/ωn = 1) and reaching its maximum magnitude slightly above resonance.

In comparison, the optimal power in the bi-stable configuration is larger in magnitude and the re-

sponse curves again indicate that maximum power levels occur near the lower end of the frequency

range considered (Ω/ωn ≈ 0.4). However, these desirable large-amplitude responses are always

accompanied by the small-amplitude intra-well power curves.
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Figure 4.8: Optimal power-frequency response curves when the oscillation frequency is tuned to a
non-dimensional value, ωn = 1.4142. Results are obtained for ζ = 0.05, δ = 0.5, κ2 = 0.01, and (a)
r = −1.0 (mono-stable), (b) r = 2.0 (bi-stable)

Figures 4.8(a) and (b) depict the optimal power curves when the stiffness is increased further

by using r = −1.0 for the mono-stable configuration and r = 2.0 for the bi-stable case. The response

behavior in both configurations remains largely the same with the only notable difference being

in the magnitude of the output power. Again, the bi-stable harvester shows significantly higher

magnitudes of power in the low frequency range when compared to the mono-stable one and this

extends to the region of the primary resonance depending on the forcing amplitude. On the other

hand, the mono-stable harvester exhibits the largest magnitude of optimal power at frequency ratios

much higher than the primary resonance owing to the hardening-type nonlinearity.
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The aforedescribed comparison suggests that, when optimized, the harvester in the bi-stable

configuration provides larger periodic steady-state voltages as compared to the mono-stable one for

the three different potential shapes considered. The optimal power output is relatively higher over a

wider range of frequencies in the bi-stable case as compared to the mono-stable one for the same range

of frequencies and forcing amplitudes. This can be attributed to the activation of the large-amplitude

inter-well responses in the bi-stable configuration and the optimization of the electric load which

results in higher power output in all cases. Nevertheless, it should be borne in mind that the these

inter-well responses are not unique and can coexist with the small-amplitude intra-well responses

and other aperiodic or chaotic oscillations not shown here. Depending on initial conditions, the

responses in the bi-stable configuration may be of the small-amplitude periodic, aperiodic or chaotic

type which can cause the output power to drop ([7]). It is observed that the dimensional power

versus frequency response curves in both configurations follow trends similar to those discussed in

this section for all cases of the potential shapes considered. This permits comparison of the power

output of mono- and bi-stable harvesters based on the trends of the non-dimensional power curves.

It is worth mentioning that the results presented here are valid for a constant value of the

electromechanical coupling coefficient (κ2 = 0.01). In general, for nonlinear VEHs, increasing the

coupling coefficient increases the electrically induced damping in these devices which reduces the

maximum amplitude of the response, thereby reducing their output power [54]. There exists an

optimal value of κ beyond which the electrical damping becomes too large and the power output of

the harvester drops. In this work, we limit the analysis to optimization of the power with respect

to the electrical load. Consequently, the effect of variation in the electromechanical coupling on the

output power is not considered.

Optimal Electric Load

Unlike linear energy harvesters that have a constant optimal electric load, the problem

of optimizing nonlinear energy harvesters yields an electric load which varies with the excitation

frequency. In this section, we study variation of the optimal load embedded within, αopt, at each

frequency for both of the mono- and bi-stable configurations. This permits drawing conclusions

regarding the magnitude of αopt and the feasibility of tuning the load more easily in one configuration

versus the other.

Figures 4.9(a) and 4.9(b) depict variation of αopt with the frequency of excitation for different
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Figure 4.9: Variation of the optimum electric load, αopt, with the ratio between the excitation
frequency and linear natural frequency, Ω/ωn. Results are obtained for ζ = 0.05, δ = 0.5, κ2 = 0.01,
and (a) r = 0.8 (mono-stable), (b) r = 1.1 (bi-stable)
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Figure 4.10: Variation of the optimum electric load, αopt, with the ratio between the excitation
frequency and linear natural frequency, Ω/ωn. Results are obtained for ζ = 0.05, δ = 0.5, κ2 = 0.01,
and (a) r = 0.0 (mono-stable), (b) r = 1.5 (bi-stable)
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Figure 4.11: Variation of the optimum electric load, αopt, with the ratio between the excitation
frequency and linear natural frequency, Ω/ωn. Results are obtained for ζ = 0.05, δ = 0.5, κ2 = 0.01,
and (a) r = −1.0 (mono-stable), (b) r = 2.0 (bi-stable)

forcing amplitudes. These curves correspond to the optimal power curves shown in Fig. 4.6, when the

harvester is tuned to have a relatively low oscillation frequency. For the mono-stable case, Fig. 4.9(a),

it can be seen that the optimal value of electric load increases linearly with the excitation frequency

for the resonant and the non-resonant branches of output power. Similarly, as shown in Fig. 4.9(b)

for the bi-stable case, the values of αopt corresponding to the large output power (due to inter-well

responses) also increase linearly with the frequency. As such, αopt associated with the optimal power

from the global oscillations of the harvester is equal to the excitation frequency, Ω. However, the

values of αopt corresponding to the intra-well branch do not vary appreciably with the excitation

frequency. This can be attributed to the fact that the value of the optimal electric load for the intra-

well branch is determined by utilizing Equation (4.13). This approximate analytical expression is

obtained considering the excitation frequency, Ω, to be very close to the local oscillation frequency,

ωn, which erroneously predicts that the maximum value of the power occurs when αopt is tuned to

the natural frequency. However, since from an energy harvesting perspective, it is more desirable to

operate on the inter-well branch of solutions, it is preferable to tune αopt to the excitation frequency.

Furthermore, it is evident from the figures that the forcing amplitude has very little influence on

the optimal value of the electric load in both cases.

Similar trends are observed for the two instances when the harvester is tuned to have higher

stiffness and, thereby, higher oscillation frequencies as seen in Figs. 4.10 and 4.11. Again, the

optimal electric load associated with the global dynamics increases linearly with frequency while
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that corresponding to the local dynamics is constant.

A comparative analysis of the αopt curves for of the both mono- and bi-stable configurations

does not indicate a clear advantage in the ability to tune the optimal electric load more easily in

one configuration versus the other. As such, for both configurations, the optimal time constant ratio

should be tuned such that it is close to the excitation frequency.
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Chapter 5

Investigation of a Tri-stable

Oscillator for Energy Harvesting

Under Harmonic Excitations

Although vibratory energy harvesting has taken significant strides in the last couple of years,

there are some limitations and issues particularly related to the performance of nonlinear VEHs. It

has been shown in the literature that nonlinear bi-stable VEHs can produce large output voltages

over a wide range of frequencies owing to the activation of the large-orbit inter-well oscillations

[3, 5, 7, 48]. However, as demonstrated in Chapter 3, depending on the shape of the potential

function, there is a threshold value of the excitation level below which is it is not possible to activate

the desirable inter-well dynamics. If the harvester is designed such that it possesses shallow potential

wells, there is a decrease in the excitation level necessary to activate oscillations desirable for energy

harvesting. Nevertheless, the associated electric output responses of the harvester are generally small

in amplitude. This poses a challenge in designing these devices, especially when the magnitude and

nature of excitation are unknown.

This has driven researchers to explore newer designs of nonlinear VEHs that are capable of

producing sustained large-amplitude electric responses. In one demonstration, Zhou et. al [8, 53, 72]

consider a tri-stable piezolectric energy harvester which consists of a cantilever beam with a tip mag-

net oscillating between two stationary magnets much like the earlier designs of the bi-stable VEHs
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adopted in [3, 5, 40]. However, they show that for a certain orientation and separation distance be-

tween the two stationary magnets, the harvester exhibits a tri-stable configuration. The preliminary

experiments and numerical simulations presented in their work illustrate that the tri-stable harvester

produces higher voltage outputs as compared to the bi-stable one over a wider frequency range even

for low-amplitude base excitations. However, their study is limited to numerical and experimental

investigations and does not include the effect of design parameters on the response of such devices.

Further, their study does not analyze the qualitative variations in the dynamic response characteris-

tics of tri-stable VEHs. In this chapter, the generic electromechanical model presented in Chapter 2

is used to model the dynamics of a tri-stable nonlinear VEH. Using perturbation techniques, namely,

the method of multiple scales, analytical expressions describing the steady-state periodic responses

of the tri-stable harvester to harmonic excitations are derived. These expressions are then used to

construct frequency-response curves that are validated against numerical findings. The analytical

solutions are also used to study key bifurcations that directly affect the effective frequency band-

width of tri-stable VEHs. An experimental study is carried out to investigate the validity of the

model in predicting the dynamic responses of the tri-stable system.

5.1 Basic Mathematical Model

To model the dynamics of a tri-stable VEH, we consider the case when γ > 0 in the generic

nonlinear electromechanical model given by Equation (2.4) to obtain,

ẍ+ 2ζẋ+ (1− r)x+ δx3 + γx5 + κ2y = F cos(Ωt), (5.1a)

ẏ + αy = ẋ, (5.1b)

where the constant terms are as described in Chapter 2. Since this analysis is focused on tri-stable

VEHs, we limit our attention to the case when r < 1, δ < 0 and γ > 0. In this scenario, the potential

energy function is tri-stable and exhibits the following equilibria as shown in Fig. 5.1

xs = 0, xs = ±
√
−δ ±

√
δ2 − 4(1− r)γ

2γ
. (5.2)
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When δ2 − 4(1− r)γ < 0 in Equation (5.2), only the trivial solution, xs = 0, exists and the system

is mono-stable. On the other hand, when δ2− 4(1− r)γ > 0, four non-trivial solutions are born. Of

the four solutions, two of them at xs = ±
√
−δ+
√
δ2−4(1−r)γ

2γ represent stable equilibrium solutions

(nodes) while the other two at xs = ±
√
−δ−
√
δ2−4(1−r)γ

2γ , represent unstable saddles.

node

Potential Energy

saddle

x

√

−δ+
√

δ2−4(1−r)γ

2γ

√

−δ−
√

δ2−4(1−r)γ

2γ

Figure 5.1: Tri-stable potential energy function.

It can be seen from Fig. 5.1 that, the two potential wells associated with the equilibria at

xs = ±
√
−δ+
√
δ2−4(1−r)γ

2γ are symmetric and separated by the potential well associated with the

trivial equilibrium, xs = 0. The depth and separation distance between the two symmetric potential

wells and the depth of the middle potential well can be varied by varying the linear and nonlinear

stiffness coefficients, namely, r, δ and γ. These coefficients not only affect the system’s equilibria

but also influence the frequency of oscillations around them.

In order to obtain an expression of the local oscillation frequency of the harvester around a

given equilibrium, Equation (5.1) is linearized around the static equilibria, (xs, ys), to obtain

ẍd + 2ζẋd +
[
(1− r) + 3δx2

s + 5γx4
s

]
xd + κ2yd = F cos(Ωt), (5.3a)

ẏd + αyd = ẋd, (5.3b)

where xd = x − xs and yd = y − ys. The frequency of oscillations (short-circuit) around a given

equilibrium can then be written as

ωn =
√

(1− r) + 3δx2
s + 5γx4

s. (5.4)
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When xs = 0, the above expression represents the oscillation frequency within the central potential

well. On the other hand, for the non-trivial solutions, Equation (5.4) represents the oscillation

frequency within one of the symmetric outer potential wells. As such, there are two local oscillation

frequencies for a symmetric tri-stable harvester associated with each of the trivial and non-trivial

equilibrium solutions.

5.2 Response to Harmonic Excitations

Nonlinear VEHs, particularly of the bi-stable type, exhibit large amplitude (inter-well)

responses under harmonic inputs depending on the frequency and amplitude of excitation [3, 6].

However, it is illustrated that these responses which are favorable for energy harvesting, cannot be

uniquely realized over a wide range of frequencies and are often accompanied by less desirable small

amplitude (intra-well), n−period, and chaotic responses [73]. In the case of a tri-stable VEH, the

higher-order nonlinearities result in more complex dynamic responses further exacerbating the prob-

lem of uniquely realizing large-amplitude responses. To further illustrate this issue, Equations (5.1a)

and (5.1b) are numerically integrated to construct bifurcation diagrams of the frequency-response of

the electric output for different excitation amplitudes as depicted in Fig. 5.2. As shown in Fig. 5.2(a),

for a small excitation amplitude, F = 0.025, depending on the initial conditions and the direction

of the frequency sweep, the dynamic trajectories remain confined to either one of the symmetric

outer potential wells or to the middle potential well because the excitation is not large enough for

them to overcome the potential barriers. There are four branches of solutions, namely Br1, Bn1,

Br2 and Bn2. The branches Br1 and Bn1 represent the resonant and the non-resonant branches

of solution within the middle potential well, respectively. Within this potential well, the frequency

response is of the softening nature with the large-amplitude resonant branch of oscillations, Br1,

occurring at frequencies smaller than the local resonance frequency, ω1 = 0.7071. The other two

branches of solutions, Br2 and Bn2, represent respectively, the resonant and non-resonant branches

of solution within one of the outer potential wells. Again, it is observed that the frequency response

is of the softening nature with large-amplitude responses occurring at lower frequencies than the

local resonance frequency, ω2 = 1.1412.

Figure 5.2(a) also illustrates that, the response curves undergo four bifurcations: the first

occurs as the frequency is increased and the non-resonant branch associated with the middle potential
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Figure 5.2: Frequency-response curves for a tri-stable harvester at three different excitation levels.
Results are obtained using Equation (5.1) with ζ = 0.05, r = 0.5, δ = −1.5, γ = 0.95, κ2 = 0.01,
α = 0.1, ω1 = 0.7071, ω2 = 1.1412 and base excitations of normalized amplitudes (a) F = 0.025, (b)
F = 0.08 and (c) F = 0.1

well, Bn1, loses stability through a cyclic-fold bifurcation, cf1, giving way to the resonant branch,

Br1. The second also occurs as the frequency is increased and branch Bn2 undergoes a cyclic-

fold bifurcation, cfA, giving way to the resonant branch of intra-well oscillations, Br2. The third

bifurcation occurs as the frequency is decreased and the resonant branch Br1 loses stability through

a cyclic-fold bifurcation cf2, giving way to either of the non-resonant branch of solutions, Bn1 or

Bn2. The final bifurcation occurs on the resonant branch of solution associated with the outer

potential well, Br2. As the frequency is decreased, this branch undergoes a cyclic-fold bifurcation,

cfB, giving way to either resonant solutions on branch, Br1, or to non-resonant solutions on branch,

Bn2. It is worth emphasizing that, depending on the initial conditions and the direction of sweep,

the harvester can exhibit any of the aforementioned periodic responses for a given frequency.
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As shown in Fig. 5.2(b), when the excitation amplitude is increased to F = 0.08, a large-

amplitude branch of solutions, BL, now appears at the lower end of the frequency range considered.

This branch represents the large-amplitude periodic inter-well responses that occur between the two

outer potential wells. As the frequency is increased, this large amplitude branch disappears in a

cyclic-fold bifurcation, cfL, and gives way to either the resonant branch within the middle potential

well, Br1 or the non-resonant branch of solution in the symmetric outer potential well, Bn2. It can

be clearly seen that, as with the bi-stable harvester, the BL branch of solution is not unique and

coexists with smaller (non-resonant) branches (Bn1 and Bn2) and a mixture of intra- and inter-well

chaotic motions CH at certain frequency values.

As the frequency is decreased from higher to lower values, the harvester exhibits periodic

responses that correspond to the resonant branches of solution, Br1 or Br2, again depending on

the initial conditions. It is noted that the cyclic fold bifurcation, cfB, occurring on the resonant

intra-well branch, Br2, disappears and is replaced by the period doubling bifurcation, pdB. As the

frequency is decreased, the period doubling causes the Br2 branch of solution to give way to the the

solution Br1. It is also noted that, the cyclic-fold bifurcation cf2 occurring on the resonant branch

Br1, is now replaced by a period-doubling bifurcation, pd2. Furthermore, the non-resonant branch

of solutions associated with the outer potential well, Bn2, undergoes a period doubling bifurcation,

pdA and when the frequency is decreased further, a cascade of period-doubling bifurcations occurs

resulting in a window of intra- and inter-well chaotic responses, CH, which disappears in a boundary

crisis.

When the amplitude of excitation is increased further to F = 0.1, as observed in Fig. 5.2(c),

several distinct behaviors are noted in the frequency response. It is observed that, i) The cfL

bifurcation occurs at a higher value of the excitation frequency implying that the desired large-

amplitude inter-well branch of oscillations extends over a wider frequency range; ii) the cyclic-fold

bifurcation, cf1 of the non-resonant branch, Bn1, occurs at a lower value of the frequency meaning

that the jump from the non-resonant branch to the desired large-amplitude oscillations can now occur

at lower frequency values, iii) the cyclic-fold bifurcation, cfA, and the period-doubling bifurcation,

pdA, of the non-resonant intra-well branch of oscillations, Bn2, occur at lower frequencies and at

values that are very close to each other. This implies that the range of frequencies over which the

non-resonant branch, Bn2, exists, shrinks, and iv) the period-doubling bifurcations, pd2 and pdB,

of the resonant branches of intra-well oscillations occur at higher frequency values, meaning that
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complex intra- and inter-well responses can now be initiated at larger excitation frequencies.

As in the case of bi-stable harvesters, the numerical analysis indicates that there are four

critical bifurcations in the frequency-response curves shown above, that can be used to approximate

the bandwidth of tri-stable energy harvesters for a given forcing. These bifurcations are,

1. The cyclic-fold bifurcation, cfL. As in the case of bi-stable VEHs, this bifurcation defines how

far the large amplitude inter-well branch of oscillations extends in the frequency domain. The

larger the value of the frequency at which cfL occurs, the larger the range of frequencies over

which this branch of solution extends. If the frequency at which cfL occurs is smaller than

that associated with cf1, the large amplitude inter-well responses can never be unique in the

frequency domain. Furthermore, if the frequency at which cfL occurs is larger than either

one of the period doubling bifurcations, pdA or pd2, there is a larger chance that the desired

large-amplitude inter-well oscillations are accompanied by aperiodic oscillations.

2. The cyclic-fold bifurcation, cf1. This bifurcation defines the range of frequencies over which

the non-resonant branch of intra-well oscillations (oscillations within the central potential well),

Bn1, exists in the frequency domain. The lower the frequency value at which cf1 occurs, the

better.

3. The period-doubling bifurcations, pd2 and pdA. The bifurcation pd2 represents the minimum

value of the excitation frequency for which the resonant branch of intra-well solutions (oscilla-

tions within the central potential well), Br1, is periodic. On the other hand, pdA represents the

value of frequency for which the non-resonant branch of intra-well solutions (oscillations within

the outer potential wells), Bn2. At excitation frequencies below these values, more complex

intra- and inter-well dynamic responses can be initiated. The larger the value of frequencies

at which the aforedescribed period-doubling bifurcations occur, the larger the bandwidth over

which the large-amplitude responses can be realized.

The numerical analysis also shows the cyclic-fold bifurcations, cfA and cfB, and the period-

doubling bifurcation pdB that define how far the resonant and non-resonant branch of oscillations,

Br2 and Bn2, extend in the frequency domain. These bifurcations also provide further insights into

the response behavior of the harvester, thereby facilitating efficient designs for a given forcing level.

In what follows, we obtain approximate solutions that govern the steady-state periodic responses of
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the tri-stable VEH described by Equation (5.1). Using these solutions, we derive expressions for the

aforementioned bifurcations and study how their loci vary in the force-frequency parameter space.

5.3 Approximate Analytical Solutions

We first derive analytical expressions for the steady-state periodic responses of the dis-

placement and electric output associated with the intra-well oscillations within the symmetric outer

potential wells. Subsequently, we obtain expressions that approximate the periodic responses associ-

ated with the large-orbit inter-well oscillations between the outer potential wells. Finally, we obtain

solutions to approximate the intra-well dynamics around the trivial equilibrium solution (oscillations

in the middle potential well).

5.3.1 Dynamics around the non-trivial equilibria

In this section, we are interested in finding expressions that govern the dynamics around the

non-trivial equilibria. To this end, we expand the dynamics about the stable nodes by introducing

xt = x− xs in Equations (5.1a) and (5.1b) and expanding up to quintic terms to obtain

ẍt + 2ζẋt + ω2
2xt + τx2

t + βx3
t + ηx4

t + γx5
t + κ2y = F cos(Ωt), (5.5a)

ẏ + αy = ẋt, (5.5b)

where, ω2 =
√

(1− r) + 3δx2
s + 5γx4

s represents the linearized oscillation frequency within a single

outer potential well, τ = 3δxs + 10γx3
s is the coefficient of quadratic nonlinearity, β = δ + 10γx2

s

is the coefficient of cubic nonlinearity, and η = 5γxs is the coefficient of quartic nonlinearity. It is

worth noting that the expanded equations now include the quadratic and quartic terms to capture

the asymmetric nature of the response within either one of the outer potential wells.

Again, we use the method of multiple scales to obtain uniform approximate analytical

solutions of Equations (5.5a) and (5.5b). Towards that end, the time dependence is expanded into

multiple time scales in the form:

Tn = εnt, (5.6)

where ε is a book keeping parameter. With this definition of the time scales, the time derivative can
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be expressed as:

d

dt
=

m∑

n=0

εnDn, (5.7)

where Dn = ∂
∂Tn

. Furthermore, xt and y can be expanded in the following form:

xt(t, ε) =

m∑

n=0

εnxn(T0, T1, . . . , Tn), y(t, ε) =

m∑

n=0

εnyn(T0, T1, . . . , Tn) (5.8)

The constant parameters in the equations are scaled such that the effect of viscous damping appears

at the same order of the perturbation problem as the nonlinearities, electromechanical coupling, and

the forcing. In other words, we let

ζ = ε2ζ, τ = ετ, β = ε2β, η = ε2η, γ = ε2γ, κ2 = ε2κ2, F = ε2F . (5.9)

To express the nearness of the excitation frequency, Ω, to the resonance frequency within a single

outer potential well, we let

Ω = ω2 + ε2σ, (5.10)

where σ is a small detuning parameter. Substituting Equations (5.7)-(5.10) back into Equations (5.5a)

and (5.5b), truncating at order ε2 and collecting terms of equal powers of ε yields

O(ε0) :

D2
0x0 + ω2

2x0 = 0, (5.11a)

D0y0 + αy0 = D0x0, (5.11b)

O(ε1) :

D2
0x1 + ω2

2x1 = −2D0D1x0 − τx2
0, (5.12a)

D0y1 + αy1 = D0x1 +D1x0 −D1y0, (5.12b)
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O(ε2) :

D2
0x2 + ω2

2x2 = −2D0D1x1 −D2
1x0 − 2D0D2x0 − 2ζD0x0 − 2τx0x1 − βx3

0

−ηx4
0 − γx5

0 − κ2y0 + F cos(Ωt), (5.13a)

D0y2 + αy2 = D0x2 +D1x1 +D2x0 −D1y1 −D2y0. (5.13b)

The solution of the zeroth-order perturbation problem, Equations (5.11a) and (5.11b), can be written

as:

x0 = A(T1, T2)eiω2T0 + cc, (5.14a)

y0 = Z0A(T1, T2)eiω2T0 + cc, (5.14b)

where cc is the complex conjugate of the preceding term, A(T1, T2) is a complex-valued function to

be determined at a later stage of the analysis, and Z0 =
ω2

2+iω2α

α2+ω2
2

. Substituting Equations (5.14a)

and (5.14b) into Equations (5.12a) and (5.12b), and eliminating the secular terms, terms that have

the coefficient e±iω2T0 , yields,

D1A(T1, T2) = 0 =⇒ A = A(T2). (5.15)

With this result, the solution of the first-order Equations (5.12a) and (5.12b) can be written as:

x1 = τ
ω2

2

(
1
3A

2ei2ω2T0 − 2AĀ

)
+ cc, (5.16a)

y1 = Z1
τ

3ω2
2
A2ei2ω2T0 + cc, (5.16b)

where Ā is the complex conjugate of A and Z1 =
4ω2

2+2iω2α

α2+4ω2
2

. Now, to obtain the unknown function

A, we substitute Equations (5.14a), (5.14b), and (5.16a) into Equation (5.13a), then eliminate the

secular terms to obtain the following nonlinear first order differential equation for the unknown A:

−2iω2D2A− 2iω2ζA+

[
10

3

(
τ

ω2

)2

− 3β

]
A2Ā− 10γA3Ā2 − κ2Z0A+

F
2
eiσT2 = 0. (5.17)

To find the solution of Equation (5.17), we express the complex-valued function, A, in the polar
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form

A(T2) =
1

2
a(T2)eiψ(T2), Ā(T2) =

1

2
a(T2)e−iψ(T2). (5.18)

Substituting Equation (5.18) into Equation (5.17), and separating the real and imaginary parts of

the outcome, we obtain

D2a = −
(
ζ + ζe

)
a+ F

2ω2
sinφ, (5.19a)

aD2β = (σ − γs)a−Neffa3 − 5
16
γa50
ω2

+ F
2ω2

cosφ, (5.19b)

where φ = σT2−ψ, ζe = κ2α
2(α2+ω2

2)
represents the electric damping, Neff = 1

ω2

[
3
8β− 5

12
τ2

ω2
2

]
represents

the effective cubic nonlinearity coefficient, and γs = κ2ω2

2(α2+ω2
2)

represents a linear shift in the local

natural frequency due to the electric coupling.

For energy harvesting, we are interested in investigating the steady-state response. To that

end, we set the time derivatives in Equations (5.19a) and (5.19b) to zero, square and add the resulting

equations to obtain

ζ2
effa

2
0+

[
(σ − γs)a0 −Neffa3

0 −
5

16

γ

ω2
a5

0

]2

=
F2

4ω2
2

. (5.20)

where ζeff = ζ + ζe represents the effective damping and a0 represents the steady-state amplitude.

Similar to bi-stable VEHs, Equation (5.20) represents a nonlinear frequency-response equation, which

can be solved analytically for the steady-state amplitude of a tri-stable VEH under harmonic inputs

for any given forcing amplitude, F . Depending on the forcing and the excitation frequency, there

exists one or three positive real valued solutions. The stability of these equilibria can be determined

by assessing the eigenvalues of the associated Jacobian matrix. The steady-state solutions for the
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deflection as well as the electric quantity can then be expressed in the following form:

xt(t) = 1
ω2

2

(
− τa

2
0

2 −
3ηa40

8

)
+ a0 cos(Ωt− φ0) + 1

6ω2
2
(τa2

0 + ηa4
0) cos(2Ωt− 2φ0)

+
a30

32ω2
2

(
2τ2

3ω2
2

+ β − 5
4γa

2
0

)
cos(3Ωt− 3φ0) +

ηa40
120ω2

2
cos(4Ωt− 4φ0)

+
γa50

384ω2
2

cos(5Ωt− 5φ0), (5.21a)

y(t) = ω2√
α2+ω2

2

a0 cos(Ωt− φ0 + ψ1) +
τ+a30η

6ω2

√
α2+4ω2

2

a0 cos(2Ωt− 2φ0 + ψ2)

+
3a30

64ω2

√
α2+9ω2

2

(
2τ2

3ω2
2

+ β + 5γa0
4

)
cos(3Ωt− 3φ0 + ψ3)

+
a40η

60ω2

√
α2+16ω2

2

cos(4Ωt− 4φ0 + ψ4) +
5a50γ

768ω2

√
α2+25ω2

2

cos(5Ωt− 5φ0 + ψ5). (5.21b)

where

β0 = tan−1

(
ζeff

Γa2
0 − (σ − γs)

)
, ψn = tan−1

(
α

nω2

)
, Γ = Neff +

5γa2
0

16ω2
. (5.22)

5.3.2 Solutions for symmetric oscillations

In this section, we derive expressions for the dynamics that govern the global inter-well

responses as well as the oscillations around the trivial equilibrium (xs = 0). Towards that end, we

express the deviation of the excitation frequency, Ω, from the resonance frequency in the middle

potential well, ω1, using a detuning parameter, σ, for the primary resonance case using [74]

Ω2 = ω2
1 + εσ (5.23)

where ε is a small book-keeping parameter and ω1 =
√

1− r is obtained by substituting xs =

0 into Equation (5.4). Next, we scale the constants in Equation (5.1a) such that the effect of

the viscous damping appears in the same order of the perturbation problem as the nonlinearities,

electromechanical coupling, and the forcing. To that end, we let,

ζ = εζ, δ = εδ, γ = εγ, κ2 = εκ2, F = εF (5.24)

Upon substituting Equations (5.23) and (5.24) into Equation (5.1a), we obtain

ẍ+ Ω2x− εσ + ε
[
2ζẋ+ δx3 + γx5 + κ2y

]
= εF cos(Ωt) (5.25)
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As shown in the previous section, we substitute the expansions for x and y from Equation (5.8) along

with the expansions for the time scales and derivatives into Equations (5.25) and (5.1b), truncate

the resulting equations at order ε, and collect terms of equal powers of ε to obtain,

O(ε0) :

D2
0x0 + Ω2x0 = 0, (5.26a)

D0y0 + αy0 = D0x0, (5.26b)

O(ε1) :

D2
0x1 + Ω2x1 = −2D0D1x0 − 2ζD0x0 − δx3

0 − γx5
0 + σx0 − κ2y0 + F cos(ΩT0), (5.27a)

D0y1 + αy1 = D0x1 +D1x0 −D1y0. (5.27b)

The solutions of the zeroth-order perturbation problem, Equations (5.26a) and (5.26b), can be

written as:

x0 = A(T1)eiΩT0 + cc,

y0 = Z0A(T1)eiΩT0 + cc, where Z0 =
Ω2 + iαΩ

α2 + Ω2

(5.28)

Similar to the method used in Section (5.3.1), we substitute the solutions of the zeroth-order per-

turbation problem given by Equation (5.28) into Equation (5.27a), eliminate the secular terms, and

express the complex-valued function, A, in the polar form. This results in the modulation equa-

tions for the response amplitude and phase. The modulation equations are then used to obtain the

following nonlinear frequency-response equation:

ζ2
effa

2
0+

[
a0

2Ω
(σ − γs)−

3δ

8Ω
a3

0 −
5γ

16Ω
a5

0

]2

=
F2

4Ω2
. (5.29)

where, ζeff = (ζ + ζe), ζe = κ2α/2(α2 + Ω2), and γs = κ2Ω2/(α2 + Ω2) represent, respectively, the

effective damping, electric damping, and the linear shift in the natural frequency due to the electric
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coupling. Upon eliminating secular terms from Equation (5.27a), we have

D2
0x1 + Ω2x1 = −

(
δa3

0

8
+

5γa5
0

32

)
e3i(ΩT0+φ) − γa5

0

32
e5i(ΩT0+φ) + cc, (5.30)

for which the particular solutions can be written as

x1 =

(
δa3

0

64Ω2
+

5γa5
0

256Ω2

)
e3i(ΩT0+φ) +

γa5
0

768Ω2
e5i(ΩT0+φ) + cc, (5.31)

and

y1 = Z1

(
δa3

0

64Ω2
+

5γa5
0

256Ω2

)
e3i(ΩT0+φ) + Z2

γa5
0

768Ω2
e5i(ΩT0+φ) + cc, (5.32)

where Z1 = 9Ω2+3iαΩ
α2+9Ω2 and Z2 = 25Ω2+5iαΩ

α2+25Ω2 . Substituting the zeroth and first-order solutions back

into the assumed expansion, the analytical solutions describing the deflections and electric outputs

associated with the large-amplitude inter-well oscillations as well as the intra-well oscillations around

the trivial equilibrium of a tri-stable harvester can be written as,

x(t) = a0 cos(Ωt+ φ0) +
(
δa30

32Ω2 +
5γa50

128Ω2

)
cos(3Ωt+ 3φ0) +

γa50
384Ω2 cos(5Ωt+ 5φ0), (5.33a)

y(t) = a0Ω√
α2+Ω2

cos(Ωt+ φ0 + ψ1) +
3a30

32Ω
√
α2+9Ω2

(
δ +

5γa20
4

)
cos(3Ωt+ 3φ0 + ψ3)

+
5γa50

384Ω
√
α2+25Ω2

cos(5Ωt+ 5φ0 + ψ5). (5.33b)

where

φ0 = tan−1

(
16ζeffΩ

8(σ − γs)− 6δa2
0 − 5γa4

0

)
, ψn = tan−1(α/nΩ). (5.34)

5.3.3 Bifurcation points

As shown in Chapter 3, we utilize the analytical expressions for the global as well as intra-

well periodic responses to analyze their stability and obtain approximate expressions for the key

bifurcations discussed in Section 5.2. Towards that end, we first analyze the cyclic-fold bifurcations

and then discuss the period-doubling bifurcations of a tri-stable VEH.
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5.3.3.1 Cyclic-Fold Bifurcations

There are two critical cyclic-fold bifurcations, cfL and cf1, that are of particular importance

in approximating the range of frequencies over which large-amplitude responses can be uniquely

realized. It is worth reiterating that the bifurcation cfL indicates how far the large-amplitude

(global) inter-well oscillations extend in the frequency domain while cf1 indicates the frequency at

which the non-resonant branch of intra-well oscillations associated with the central potential well

ceases to exist. In order to obtain the expressions that approximate these two bifurcations, we seek

the value of frequencies at which the slope of the frequency-response curves tend to infinity. Towards

this end, we set dΩ
da0

∣∣
ab,Ωb

= 0 in Equation (5.29) to obtain,

125γ2a8
b+240δγa6

b+
[
108δ2 − 240γ(σ − γs)

]
a4
b−192δ(σ−γs)a2

b+(σ−γs)2 +256Ω2
bζ

2
eff = 0, (5.35)

where ab and Ωb represent the amplitude and frequency of the response at the bifurcation point.

Depending on the value of Ωb, Equation (5.35) has four positive real-valued solutions, two of which

represent the amplitudes at which the bifurcations, cfL and cf1, occur. The third solution represents

the amplitude at which the resonant intra-well branch of solution, Br1, loses stability through the

cyclic-fold bifurcation, cf2. The loci of these cyclic-fold bifurcations in the F - Ω space are then

obtained by substituting these solutions and the corresponding values of Ωb into Equation (5.29)

and solving the resulting equations for the critical forcing, F .

Figure 5.3 depicts the loci of the cyclic-fold bifurcations of the solution branches within the

central potential well and that of the inter-well solution branch in the force-frequency parameter

space. It can be seen from the figure that the frequency at which the cfL occurs increases as the

magnitude of the forcing increases, thereby extending the desirable responses over a larger frequency

range. On the other hand, for the intra-well solutions, the figure illustrates that, below a critical

forcing amplitude, Fcr, the cyclic-fold bifurcations cf1 and cf2 collide and disappear. In this

scenario, the harvester performs linear oscillations that are confined to the middle potential well.

As the forcing is increased, there is a separation between the frequencies at which the bifurcations

cf1 and cf2 occur owing to the softening nonlinearity. As shown in the numerical analysis, the

resonant and non-resonant branches of intra-well oscillations associated with the symmetric outer

potential wells also undergo cyclic-fold bifurcations, cfA and cfB. In order to obtain the loci of

these bifurcations in the force-frequency domain, we follow the procedure outlined above and obtain
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Figure 5.3: Loci of the cyclic-fold bifurcations of the intra- and inter-well oscillations in the force-
frequency parameter space. Results are obtained for ζ = 0.05, r = 0.5, δ = −1.5, γ = 0.95,
κ2 = 0.01, and α = 0.1.

the value of frequencies at which the slope of the frequency-response curves associated with the

intra-well responses in the outer potential well using Equation (5.20). Figure 5.4 illustrates how

the loci of the bifurcations cfA and cfB are similar to the cyclic-fold bifurcations in the middle

potential well, cf1 and cf2, but occur at higher frequency values compared to them. Again, there

is a critical value of forcing below which the oscillations are linear and remain confined to the outer

potential well and the loci illustrate the softening nature of the nonlinearity.
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F cfA
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Figure 5.4: Loci of the cyclic-fold bifurcations of the intra-well oscillations in the force-frequency
parameter space. Results are obtained for ζ = 0.05, r = 0.5, δ = −1.5, γ = 0.95, κ2 = 0.01, and
α = 0.1.
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5.3.3.2 Period-Doubling Bifurcations

As described earlier, there are three period doubling bifurcations namely, pd2, pdA, and

pdB associated with the intra-well oscillations in the middle as well as the outer potential wells.

From the numerical analysis described earlier, it was shown that the bifurcations pd2 and pdA lead

to a window of aperiodic motions that coexist with the desired large amplitude motions. As such,

it is essential to determine the frequencies at which these bifurcations occur in order to identify

regions in the frequency domain where the harvester can uniquely produce large electric outputs.

To obtain analytical approximations of these bifurcations, we analyze the stability of steady-state

periodic solutions for the amplitude and electric quantity associated with the intra-well oscillations.

Towards that end, we introduce small time-dependent perturbations ν1(t) and ν2(t) to the solutions

given by Equations (5.21) and (5.33) in the form x̃ = xt(t) + ν1(t) and ỹ = y(t) + ν2(t) as shown

in Section 3.3.2.2 of Chapter 3. The resulting equations are linearized for small perturbations to

obtain variational equations of the form Equation (3.22). The method outlined in Section 3.3.2.2 is

used to solve the variational equations and obtain expressions that predict the values of frequency

and amplitude at the period doubling bifurcations. The loci of the bifurcations, pdB and pdA, of

the resonant and non-resonant branches of solution within the outer potential wells, are shown in

Fig. 5.5(a). The figure illustrates that, as the forcing level increases, the period-doubling bifurcation,

pdA, occurs at lower excitation frequencies, whereas the bifurcation pdB occurs at higher excitation

frequencies. The locus of the period-doubling bifurcation of the resonant intra-well oscillations

associated with the central potential well, pd2, in the F − Ω domain, is shown in Fig. 5.5(b). The

figure clearly illustrates how the frequency at which the pd2 bifurcation occurs, increases with the

forcing level.

5.3.4 Asymptotic Responses

Equations (5.20) and (5.29) are used to analytically construct the frequency-response curves

of the tri-stable VEH for three different forcing levels as depicted in Fig. 5.6. The figure captures

the amplitude of oscillation and the frequencies at which the cyclic-fold bifurcations cfL, cf1, cf2,

cfA and cfB and the period-doubling bifurcations pdA, pd2 and pdB occur in addition to outlining

their dependence on the excitation amplitude.

A comparison between the analytical results and the stroboscopic bifurcation maps obtained
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Figure 5.5: (a) Loci of the bifurcations pdA and pdB in the force-frequency parameter space (b) Loci
of the bifurcation pd2 in the force-frequency parameter space. Results are obtained for ζ = 0.05,
r = 0.5, δ = −1.5, γ = 0.95, κ2 = 0.01, and α = 0.1.

numerically show good agreement and the ability of the analytical responses to predict the bifurca-

tion points with relative accuracy as depicted in Fig. 5.7. A close inspection of the results reveal

that the analytical solutions over predict the frequencies at which the period-doubling bifurcations,

pdB and pdA, occur and under predict the frequencies at which the bifurcation pd2 occurs. This

can be explained by knowing that the method utilized to predict these bifurcation points involves

assessing stability of the periodic solutions with time-varying perturbations that are considered to be

small, thereby invoking linear assumptions while obtaining the regions of instability in the frequency

domain.

5.3.5 Influence of the Electric Parameters on the Bifurcation Points

In this section, we study the influence of the electric parameters namely, the time constant

ratio, α, and the electromechanical coupling, κ2 on the bifurcations of the tri-stable VEH. The time

constant ratio can be considered as a measure of the influence of the electric load while κ2 represents

the strength of coupling between the mechanical and electrical subsystems. Figure 5.8 depicts the

effect of varying the time constant ratio on the loci of the bifurcations discussed in Section 5.3.3,

in the forcing-frequency domain. A close inspection of the Figs. 5.8(a), 5.8(c), 5.8(b), and 5.8(d)

reveals that the locations of the cyclic-fold bifurcation points cfL, cf1, cf2, cfA, and cBA and

the period-doubling bifurcations pdA, pdB, and pd2 are nearly the same for all values of α despite

varying it by an order of magnitude from the nominal value of 0.1. As such, the time constant
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Figure 5.6: Analytical frequency-response curves for a tri-stable harvester at three different excita-
tion levels. Dashed lines represent unstable solutions. Results are obtained for ζ = 0.05, r = 0.5,
δ = −1.5, γ = 0.95, κ2 = 0.01, α = 0.1 and normalized base excitation amplitudes (a) F = 0.025,
(b) F = 0.08, and (c) F = 0.1

ratio has little to no influence on the bandwidth of tri-stable VEHs, which was observed in the

bi-stable case. However, this could influence the amplitude of the electric response. Consequently,

changing the electric load does not significantly alter the loci of the bifurcation points. On the

other hand, varying the electromechanical coupling, κ2, has a noticeable impact on the loci of the

intra- and inter-well bifurcation points as seen in Fig. 5.9. Figure 5.9(a) shows that the locus of the

cyclic-fold bifurcation of the large-orbit inter-well oscillations, cfL, shifts up in the force-frequency

parameter space with small increments in κ2, meaning that these desirable oscillations exist over

lower frequency range for the same forcing. Figure 5.9(a) also shows that, for a given forcing, the

cyclic-fold bifurcations of the resonant and non-resonant branches of oscillation associated with the

middle potential well, cf1 and cf2, respectively, occur at higher excitation frequencies as κ2 is
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Figure 5.7: Comparison of numerical and analytical frequency responses. Light blue curves represent
numerical solutions. Results are obtained for normalized base excitation amplitudes (a) F = 0.08
and (b) F = 0.1.

increased. This implies that the intra-well motions extend over a wider range of frequencies for

higher electromechanical coupling due to the increase in the electric damping of the system.

Figure 5.9(b) depicts the effect of the electromechanical coupling on the period-doubling

bifurcation of the resonant branch of oscillations in the middle potential well, pd2. Again, due to an

increase in the electric damping with small increments in κ2, the pd2 bifurcation occurs at higher

frequencies for a given forcing, implying that aperiodic responses caused by the pd2 bifurcation exist

over a larger frequency range. Figure 5.9(c) illustrates that the loci of the cyclic-fold bifurcations,

cfA and cfB, occur at higher frequencies as κ2 is increased. A similar trend is observed in Fig. 5.9(d)

with the locus of the period-doubling bifurcation, pdB, of the resonant branch of oscillations. It

can be seen that, while the locus of the pdA bifurcation does not vary significantly, the frequency

at which pdb occurs increases with an increase in κ2. As such, increasing the electromechanical

coupling shrinks the frequency range over which the large-orbit solution exists and increases the

frequency range over which the small-amplitude solutions exist for the tri-stable VEH. This trend

is very similar to that observed in the case of bi-stable VEHs.

5.4 Effective Bandwidth

By utilizing the analytical framework developed in this chapter, and following the analysis

outlined in Chapter 3, it is possible to identify and characterize boundaries for intra- versus inter-
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Figure 5.8: Effect of varying the time constant ratio, α, on the loci of the (a) cyclic-fold bifurcation
points, cfL, cf1 and cf2, (b) period-doubling bifurcation point of the intra-well oscillations in the
middle potential well, pd2, (c) intra-well cyclic-fold bifurcation points, cfA and cfB, and (d) period-
doubling bifurcation points of the intra-well oscillations in the outer potential wells, pdA and pdB.
Results are obtained for ζ = 0.05, r = 0.5, δ = −1.5, γ = 0.95, and κ2 = 0.01.

well responses in the force-frequency parameter space for a tri-stable VEH. Figure 5.10 depicts a

bifurcation map that delineates several regions, four of which are of particular importance and are

used to describe the response behavior of tri-stable VEHs for a given force-frequency combination.

The first lies between three curves cfL, cfA and pdB and is denoted by Br1. In this region, the

harvester exhibits small-amplitude intra-well responses that are confined to the middle potential

well. The second region is located between the cfL and pd2 curves and contains the large-amplitude

inter-well responses, BL. However, these responses are accompanied by the Br1 and by chaotic

(CH) or n−period periodic responses (n > 1) resulting from the period-doubling bifurcations, pdA.

The third region lies in the low frequency range, between the pd2 and cf1 curves and represents the

force-frequency combinations for which the harvester performs the large-orbit inter-well motions,
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Figure 5.9: Effect of varying the electromechanical coupling coefficient, κ2, on the loci of the (a)
cyclic-fold bifurcation points cfL, cf1 and cf2, (b) period-doubling bifurcation point of the intra-well
oscillations in the middle potential well, pd2, (c) intra-well cyclic-fold bifurcation points, cfA and
cfB, and (d) period-doubling bifurcation points of the intra-well oscillations in the outer potential
wells, pdA and pdB. Results are obtained for ζ = 0.05, r = 0.5, δ = −1.5, γ = 0.95, and α = 0.1.

BL. These motions can either be uniquely realized or can be accompanied by the complex CH-type

motions that result from the period-doubling bifurcations, pd2. Finally, the fourth region lies to the

left of the cf1 and cfL curves and depicts the range of frequencies wherein the inter-well responses,

BL, are always accompanied by the less desirable non-resonant branch of intra-well responses, Bn1.

As such, depending on the initial conditions, the harvester can operate on either the large or small

orbit branches of solution.

The map represented in Fig. 5.10 also permits identifying four critical forcing levels that

define the nature of the dynamic responses of the tri-stable VEH. Any forcing magnitude below Fcr1

only leads to small-amplitude intra-well motions. Below this forcing level, no bifurcations occur and

the voltage-frequency response is a nearly bell-shaped linear curve and represents oscillations that
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are confined to the middle potential well or either one of the outer potential wells. Above this critical

forcing, if the dynamic trajectories are confined to the outer potential wells, the voltage response

curve bends to the left and the bifurcations cfA and cfB appear.

Above the critical forcing, Fcr2, the period-doubling bifurcations, pdA and pdB, exist and

more complex aperiodic responses begin to appear. The critical forcing, Fcr3, indicates the threshold

value of forcing required to initiate the bifurcations cf1 and cf2 which represent the cyclic-fold

bifurcations within the middle potential well. It is worth noting that, the critical forcing values

required to initiate the bending of the frequency response curves are different for the middle potential

well and either of the two outer wells. This is due to the difference in depths between the central

and outer potential wells. Finally, above the critical forcing Fcr4, the large-amplitude steady-state

periodic inter-well motions cfL begin to appear for the range of frequencies considered in the analysis.
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Figure 5.10: Bifurcation map defining regions of intra- and inter-well responses. The map is obtained
for ζ = 0.05, r = 0.5, δ = −1.5, γ = 0.95, κ2 = 0.01, and α = 0.1.

With this understanding, the map shown in Fig. 5.10 can be used to provide a rough estimate

of the effective bandwidth of the tri-stable VEH. For a given set of design parameters, it is possible

to use this map to identify the forcing level and frequency bandwidth for which large-amplitude

inter-well motions can be achieved either uniquely or with other less favorable motions.
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5.5 Experimental Investigation

To demonstrate the ability of the model and the analytical solutions to accurately capture

the qualitative behavior, we consider the piezoelectric tri-stable VEH depicted in Fig. 5.11. The

harvester consists of a beam clamped at one end and free to oscillate at the other. A piezoelectric

Micro Fiber Composite (MFC) patch is attached at the fixed end of the beam and two cylindrical

tip magnets are attached at the free end. Two stationary magnets separated by a distance, d, are

aligned parallel to the plane of the beam and mounted on brackets such that the tip magnets are at

a height, h, from them. By varying d and h, the linear and nonlinear components of the restoring

force can be varied. Accordingly, the shape of the potential energy function of the system can be

altered such that it exhibits three minima (potential wells). Furthermore, the oscillation frequencies

within these potential wells can be tuned by varying d and h.

Figure 5.11: Schematic diagram of the tri-stable VEH used in the experiments.

The associated experimental setup, which is very similar to the one adopted by Zhou et. al

[8, 53], is shown in Fig. 5.12. It consists of a cantilever beam mounted on an L-shaped structure

such that its free end can oscillate in the horizontal direction. To create the tri-stable potential,

two cylindrical Neodymium (NdFeB) magnets are attached to the tip of the beam and allowed to

oscillate near two stationary NdFeB magnets mounted on brackets. The entire setup is placed on an

electrodynamic shaker which generates a harmonic excitation signal whose magnitude is monitored

using an accelerometer mounted on its base. For energy conversion, a piezoelectric MFC layer is

laminated near the fixed end of the beam. The mass of the magnets at the tip of the beam is
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measured to be 6 grams. The rest of the geometric and material properties of the structure are

listed in Table 5.1. We choose the distance between the stationary magnets, d = 11 mm and the

distance between the stationary and tip magnets, h = 18 mm. This results in the beam having three

stable static equilibria which are located at xs1 = 0 and xs2,3 = ±16.7 mm. The local oscillation

frequency around the trivial equilibrium, xs1, is found to be ω1 = 10.9 Hz, while the oscillation

frequency around the non-trivial equilibria, xs2,3, is found to be ω2 = 15.3 Hz.

Tip Magnets 

MFC patch 

Beam 

Shaker 

Accelerometer 

Stationary Magnets 

Figure 5.12: Experimental setup of a tri-stable VEH.

5.5.1 Static Analysis

We first perform a static experimental test to obtain the linear and nonlinear coefficients

of the restoring force and thereby establish the potential energy function for the tri-stable VEH

considered. Towards that end, we measure the force at the tip of the beam using a digital force

gauge at different known displacements. Figure 5.13(a) depicts how the restoring force varies with

the displacement of the beam tip. The figure also depicts a curve that is obtained by fitting a

constrained polynomial to the data. As shown, the data is best approximated by the following
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Table 5.1: Geometric and material properties of the tri-stable harvester.

Parameter (symbol) Value

Structural member

Young’s Modulus (Es) 200 GPa

Mass Density (ρs) 7500 Kg/m3

Length (Ls) 15.60 x 10−2 m

Width (bs) 1.42 x 10−2 m

Thickness (ts) 5.08 x 10−4 m

Piezoelectric member

Young’s Modulus (Ep) 15.86 GPa

Mass Density (ρp) 5440 Kg/m3

Length (Lp) 8.50 x 10−2 m

Width (bs) 1.40 x 10−2 m

Thickness (ts) 3.00 x 10−4 m

Piezoelectric constant (e31) -3.33 C/m2

polynomial approximation,

Fr = 26.2983 x− 5.2277 x 105 x3 + 1.6212 x 109x5, (5.36)

where Fr represents the restoring force, x is the tip deflection of the beam and the coefficients of

x, x3, and, x5 represent, respectively, the linear, cubic, and quintic nonlinear stiffness coefficients.

Using this expression, the potential energy of the system is obtained as shown in Fig. 5.13(b). The

figure clearly illustrates that the potential energy is symmetric about zero and exhibits minima

corresponding to the system’s stable equilibria at xs1, xs2, and xs3. It is clear that the outer

potential wells associated with the non-trivial equilibria are deeper than the one in the center. This

results in the local oscillation frequency, ω2, being higher than ω1.

5.5.2 Dynamic Analysis

In this section, we investigate the response behavior of the tri-stable VEH such that the

excitation frequency encompasses both of the local oscillation frequencies, ω1 = 10.9 Hz and ω2 =

15.3 Hz. Since the system is nonlinear and can exhibit a hysteretic behavior, the excitation frequency

is swept in the forward (low to high) and reverse (high to low) directions. Three different base
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Figure 5.13: (a) Variation of the restoring force with deflection. (b) Potential energy function of the
experimental system.

accelerations are considered, namely 2, 6, and 8 m/s2. Variation of the frequency was carried out at

a slow enough rate such that the resulting response curves can be considered to represent steady-

state behavior of the system. The harmonic excitation signal is generated at a workstation and fed

to the harvester via the electrodynamic shaker. The amplitude is of oscillation at the tip of the beam

is recorded using a laser vibrometer. The output voltage from the piezoelectric layer is measured

across a 300 kΩ purely resistive load. These two measurements along with the acceleration signal

are fed into the workstation via a data acquisition system.

Figure 5.14 depicts variation of the tip deflection and the output voltage with the frequency

for both the forward and reverse sweeps at a base acceleration of 2.5 m/s2 with the initial state of

the system being the trivial equilibrium, xs1 = 0. It can be observed that oscillations remain, for

the most part, confined within either the middle or the outer potential wells, implying that the base

acceleration is not large enough to activate large amplitude inter-well oscillations. However, in the

forward frequency sweep, in the vicinity of the local oscillation frequency, ω1 = 10 Hz, associated

with the central potential well, the dynamic trajectories overcome the potential barrier and escape

to the outer potential well associated with the static equilibrium xs3 = −0.0167 m as shown in

Fig. 5.14(a). We can also note that, as the frequency is increased further, an intra-well resonant

branch of oscillations appears at a frequency value of ≈ 13.5 Hz which is in the vicinity of the local

oscillation frequency, ω2 = 15.3 Hz, of the outer potential well (see Fig. 5.14(a)). In the reverse

frequency sweep, however, the oscillations remain centered around the initial displacement of zero
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and exhibit a steady increase in amplitude until a frequency value of about 9 Hz, where a jump

occurs to the outer potential well as seen in Fig.5.14(b). The figures clearly highlight the softening

nature of the response with the peak deflection/voltage amplitude occurring at a frequency value

lower than the resonant frequency.
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Figure 5.14: Experimental frequency-response curves for a base excitation of 2 m/s2 with zero initial
displacement: (a) forward sweep, and (b) reverse sweep. The solid horizontal (red) lines represent
the stable equilibria.

Similar behavior is observed with the forward and reverse frequency sweeps when the initial

position of the harvester is set to the non-trivial equilibrium, xs3, for the same base acceleration (2

m/s2) as seen in Fig. 5.15. In this scenario, the oscillations remain confined to the outer potential

well for the entire range of frequencies and cannot overcome the potential barrier owing to the

low base excitation level. A similar bend in the frequency-response curves is observed with the

jump from the intra-well resonant branch to the small-amplitude non-resonant branch occurring at

a smaller value of the excitation frequency ≈ 10 Hz as seen in Fig. 5.15(b). The frequency response

curves also capture the asymmetric nature of oscillations within the outer potential well with larger

deflections occuring on one side of the static equilibrium. These experimental trends emphasize the

fact that, at low base excitation levels, the harvester exhibits small-amplitude intra-well periodic

responses within the middle or the outer potential well depending on the direction of frequency

sweep and initial conditions. This qualitative behavior agrees well with our theoretical analysis from
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Fig. 5.2(a) in Section 5.2. Furthermore, it is worth mentioning that the jump phenomena observed

experimentally correspond to the cyclic fold bifurcations highlighted in Section 5.2.
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Figure 5.15: Experimental frequency-response curves for a base excitation of 2 m/s2 with a nonzero
static initial displacment: (a) forward sweep, and (b) reverse sweep. The solid horizontal (red) lines
represent the stable equilibria.

As shown in Fig. 5.16(a), when the amplitude of input acceleration is increased to 6 m/s2, a

forward frequency sweep now excites the periodic large-amplitude inter-well oscillations in the lower

end of the frequency range considered (6.2 - 10 Hz). These large-amplitude oscillations produce

large output voltages with the peak value reaching close to a 100V. As the frequency is increased,

this large-amplitude branch of oscillations ceases to exist and gives way to the small-amplitude

intra-well branch of periodic oscillations around the non-trivial equilibrium xs2 = 0.0167 m. As

seen in Fig. 5.16(a), further increase in the excitation frequency, results in a window of intra- and

inter-well chaotic responses causing an increase in the output voltage (between 13 and 14 Hz). These

chaotic responses quickly disappear to giving way to the intra-well oscillations around the trivial

equilibrium.

In the reverse sweep shown in Fig. 5.16(b), we observe that the region over which the

large-amplitude inter-well oscillations are activated is much smaller (between 6 and 7 Hz) and the

oscillations are mostly confined to either the middle or outer potential well. This experimental

behavior is in qualitative agreement with our theoretical observations depicted in Fig. 5.2(b) where
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it was shown that the desired large-amplitude branch of periodic solutions coexist with the small-

amplitude branches. The trend observed reiterates that, although higher base accelerations can

activate the desirable large-amplitude inter-well responses, they cannot be uniquely realized over a

wide range of frequencies.

When the harvester is subjected to the same base acceleration level with a non-trivial initial

displacement, the response of the harvester remains generally the same in the forward and reverse

sweeps as shown in Fig. 5.17. The only notable difference is shown in Fig. 5.17(b) for the reverse

sweep. Specifically, the amplitude of deflection and thereby the output voltage is larger in the higher

end of the frequency range (12-16 Hz) due to the harvester performing intra-well oscillations on the

resonant branch associated with the outer potential well.
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Figure 5.16: Experimental frequency-response curves for a base excitation of 6 m/s2 with zero initial
displacement: (a) forward sweep, and (b) reverse sweep. The solid horizontal (red) lines represent
the stable equilibria.

When the base acceleration amplitude is increased to 8 m/s2 and the initial displacement

is zero, the forward frequency sweep illustrates an increase in the amplitude of the deflection and

output voltage resulting from the large-amplitude periodic oscillations. The peak voltage exceeds

100 V near an excitation frequency of 10 Hz (see Fig. 5.18(a)). We also observe that, there is no

significant increase in the range of frequencies over which the large-amplitude oscillations extend

as compared to the case when the base acceleration is 6 m/s2. However, one notable difference, as
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Figure 5.17: Experimental frequency-response curves for a base excitation of 6 m/s2 with a nonzero
static initial displacment: (a) forward sweep, and (b) reverse sweep. The solid horizontal (red) lines
represent the stable equilibria.

shown in Fig. 5.18(b) is that, for the reverse sweep, the inter-well branch of oscillations exists over a

wider range of frequencies (6-8 Hz). Again, this experimental behavior corroborates our theoretical

findings which indicated that, as the forcing level is increased, the less desirable small-amplitude

intra-well branch of solutions exist over a smaller range of frequencies.

As seen in Fig. 5.19, no notable differences in the response are observed when the initial

condition is shifted to coincide with the non-trivial static equilibrium. The only exception is that

the intra- and inter-well chaotic oscillations extend over a slightly larger frequency range as shown

in Fig. 5.19(a) and 5.19(b).

The experimental results presented in this section capture the complex dynamic (periodic

and aperiodic) responses associated with a tri-stable VEH. It is shown that, tri-stable VEHs can

produce large output voltages owing to the excitation of the inter-well oscillations but they are sen-

sitive to the direction of frequency sweeps and initial conditions. This poses a challenge in efficiently

designing these devices such that they can produce the desired large output voltages uniquely over a

broadband frequency range when subjected to harmonic base excitations. Consequently, this neces-

sitates the theoretical (numerical and analytical) analysis presented in this work to obtain a better

qualitative understanding of their response for a given set of design parameters.
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Figure 5.18: Experimental frequency-response curves for a base excitation of 8 m/s2 with zero initial
displacement: (a) forward sweep, and (b) reverse sweep. The solid horizontal (red) lines represent
the stable equilibria.

6 8 10 12 14 16 18

−5

0

5

D
e
fl
e
c
ti
o
n
[m

]

×10−2

6 8 10 12 14 16 18
0

50

100

150

V
o
lt
a
g
e
[V

]

Frequency [Hz]

(a)

6 8 10 12 14 16 18

−5

0

5

D
e
fl
e
c
ti
o
n
[m

]

×10−2

6 8 10 12 14 16 18
0

20

40

60

80

V
o
lt
a
g
e
[V

]

Frequency [Hz]

(b)

Figure 5.19: Experimental frequency-response curves for a base excitation of 8 m/s2 with a nonzero
static initial displacment: (a) forward sweep, and (b) reverse sweep. The solid horizontal (red) lines
represent the stable equilibria.
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Chapter 6

Discussions and Conclusions

This chapter presents the main conclusions for this dissertation and briefly discusses poten-

tial future research. In general, the research presented in this dissertation is focused on developing

an analytical framework to better understand the influence of nonlinearities on the performance

and particularly, the effective bandwidth of nonlinear VEHs under harmonic excitations. Towards

achieving the dissertation objectives, three categories of nonlinear VEHs are considered namely, the

mono-, bi- and tri-stable. In the first part of the dissertation, analytical solutions approximating the

response characteristics and the bandwidth of bi-stable VEHs are developed. In the next part, the

analysis is extended to compare the performance of mono- and bi-stable harvesters under optimal

electric loading conditions. In the final part of this work, the dynamic responses of tri-stable VEHs

under harmonic inputs are studied through a numerical, analytical, and experimental investigation

and a framework for defining the effective bandwidth of these devices is discussed. The following

sections summarize the tasks accomplished and conclusions drawn from each case.

6.1 Effective Bandwidth of Bi-stable Harvesters

For this task, we used analytical techniques to predict the oscillatory response character-

istics of bi-stable VEHs that possess a symmetric quartic potential function. A canonical model

describing the dynamics of a typical bi-stable VEH which consists of a mechanical oscillator coupled

to an electric circuit was considered. Using the method of multiple scales, analytical solutions char-

acterizing the steady-state intra- and inter-well vibratory responses of the harvester were obtained.
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These solutions were utilized to identify the critical bifurcations in the parameter’s space. The loci

of these bifurcations were used to define an effective frequency bandwidth over which it is possible to

obtain oscillations desirable for energy harvesting. The influence of three critical design parameters,

namely, the time constant ratio, the electromechanical coupling, and the potential shape on the

effective bandwidth were analyzed and the following observations were made:

• Although numerical analyses suggest that the effective frequency bandwidth can be increased

by simply increasing the amplitude of excitation, the analytical methods adopted in this work

elucidate that the design parameters play a significant role in defining the effective bandwidth

of bi-stable VEHs.

• Varying the time constant ratio (ratio between the period of the mechanical system and the

time constant of the harvesting circuit) has very little influence on the effective bandwidth,

but influences the amplitude of the electric response of a bi-stable VEH.

• The electromechanical coupling plays a significant role in defining the effective bandwidth of

a bi-stable harvester as it directly influences the electric damping in the system. As such,

increasing the electromechanical coupling results in the narrowing of the effective frequency

bandwidth of the harvester.

• Decreasing the depth of the potential wells associated with a bi-stable VEH, increases the

effective frequency bandwidth and decreases the excitation level necessary to activate oscilla-

tions desirable for energy harvesting. Nevertheless, the associated electric output responses

are generally small in amplitude. On the other hand, increasing the depth of the potential

wells serves to shrink the effective frequency bandwidth, but it is accompanied by an increase

in the electric output of the harvester.

With these observations, it is possible to conclude that an appropriate choice of parameters,

specifically the potential shape and the electromechanical coupling along with the forcing level are

essential towards optimizing the design and enhancing performance of bi-stable VEHs.
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6.2 Comparative Performance Analysis of Electrically-Optimized

Mono- and Bi-stable Energy Harvesters

In this chapter, we compared the optimal power output of mono- and bi-stable energy

harvesters subjected to harmonic excitations of similar magnitudes and frequencies. A canonical

model of a VEH which can operate in both of the mono- and bi-stable configurations was considered.

Analytical expressions characterizing the steady-state output power associated with the global and

the local periodic responses of the VEH were obtained. These solutions were then used to optimize

the output power with respect to the time constant ratio (ratio between the period of the mechanical

system and the time constant of the harvesting circuit) which represents a measure of the electric

load. The resulting expressions were used to obtain the optimal output power in both configurations

for different potential shapes and excitation levels resulting in the following observations:

• When the harvester is tuned such that the natural frequency is relatively low, the bi-stable

configuration outperforms the mono-stable one over most of the frequency range under optimal

electric loading conditions. In this scenario, the bi-stable configuration possesses relatively

shallow potential wells which permits the activation of the large-amplitude inter-well responses

at relatively lower forcing levels, thereby resulting in larger output power. Although the

enhancement is more pronounced in the lower end of the frequency range, it can be extended

to the region of primary resonance (tuned-frequency) with sufficient forcing levels.

• When the harvester is tuned such that it has a relatively higher natural frequency, the bi-stable

configuration again exhibits higher output power when compared to the mono-stable one over

most of the frequency range. However, another branch of solution which results in small power

levels always accompanies the desired higher power branch. This highlights the dependence of

the bi-stable harvester response on the initial conditions. Similar trends are observed as the

natural frequency is increased further.

• The optimal time constant ratio associated with the large-amplitude power in both of the

mono- and bi-stable configurations varies linearly with the excitation frequency and is close to

the value of the frequency itself.

With these observations, it is possible to conclude that the relative magnitude of output

power in mono- and bi-stable harvesters exhibits complex dependence on the shape of the potential
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function, level of excitation, and the value of electric load. Bi-stable harvesters produce higher power

levels under their optimal loading conditions for all shapes of the potential functions considered.

Even when the excitation levels are not very high, as long as an optimal electric load is chosen, it is

possible to design a bi-stable harvester with shallow enough potential wells to produce higher power

levels as compared to a mono-stable one albeit at lower frequencies.

6.3 Investigation of a Tri-stable Nonlinear Oscillator for En-

ergy Harvesting Under Harmonic Excitations

In this chapter, we considered a lumped-parameter electromechanical model of a tri-stable

VEH which includes a restoring force with cubic and quintic nonlinearities. An initial numerical

investigation of the harvester response to harmonic quasi-statically varied frequency excitations

revealed complex dynamic responses including large-amplitude (inter-well), small-amplitude (intra-

well) and aperiodic responses. The numerical analysis also served to help identify key bifurcations

that govern the loss of stability of the various branches of periodic solutions. Again, using the

method of multiple scales, analytical expressions for the steady-state periodic deflections and electric

quantities associated with the intra- and inter-well oscillations of the harvester were derived. These

expressions were utilized to obtain approximations for the loci of the various bifurcations in the force-

frequency parameter space. The loci of these bifurcations were then used to construct a map which

outlines the regions of qualitatively different responses in the parameters’ space, thereby providing

a rough estimate of the effective frequency bandwidth of tri-stable VEHs. The influence of the time

constant ratio and electromechanical coupling on the bandwidth of the harvester are studied. An

experimental case study is carried out and the following observations were made:

• Similar to their bi-stable counterparts, tri-stable VEHs perform large-amplitude inter-well

oscillations at low-frequencies making them a viable option for harvesting energy from low

frequency excitations, especially when the nature of excitation is known.

• Owing to the presence of three potential wells, it can be surmised that there is an improvement

in the response bandwidth of tri-stable VEHs as compared to bi-stable ones, even when the

excitation amplitude is not large enough to initiate large-amplitude inter-well oscillations. This

can be attributed to the fact that the harvester has two resonant frequencies: one around the
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trivial equilibrium and the second, around the static equilibrium. Consequently, the harvester

can perform resonant oscillations when the excitation frequency is close to either of these

local oscillation frequencies, thereby producing large electric outputs over a wider range of

frequencies. An experimental investigation reinforced this hypothesis by clearly showing that

resonant intra-well oscillations can be realized over a wider range of frequencies.

• Similar to the trends observed in bi-stable VEHs, the time constant ratio (ratio between the

period of the mechanical system and the time constant of the harvesting circuit) has negligible

influence on the effective bandwidth of tri-stable VEHs. However, it significantly influences

the amplitude of the electric responses.

• Increasing the electromechanical coupling results in the shrinking of the effective frequency

bandwidth of a tri-stable VEH. This can be attributed to an increase in the electric damping

in the system due to increased energy dissipation.

With these observations, it can be concluded that tri-stable VEHs can provide improvement

in bandwidth over bi-stable counterparts. However, the analysis in this study reiterates the

fact that a careful choice of parameters is essential towards designing efficient tri-stable VEHs

that can provide significant improvements in bandwidth.

6.4 Directions for future research

The research in this dissertation focused on the importance of using analytical tools towards

understanding the influence of nonlinearities and design parameters on the effective frequency band-

width of nonlinear VEHs namely mono-, bi- and tri-stable ones when subjected to harmonic inputs.

It was established that, bi-stable and tri-stable VEHs exhibit similar qualitative performance en-

hancement characteristics since both of these harvesters can produce large electric responses at low

frequencies. Nevertheless, tri-stable VEHs exhibit additional complexities which make it difficult to

fully characterize their benefits. For instance, bi-stable harvesters have potential wells, the shape of

which can be altered by simply changing the linear stiffness coefficient. Tri-stable VEHs, on the other

hand, have three potential wells whose shape depends on a combination of the linear and nonlinear

stiffness coefficients. Hence, investigating the relative performance of these two classes of nonlinear

VEHS presents an interesting topic for future research. This can be achieved by comparing the
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output power of both harvesters under optimal electric loading conditions similar to the comparison

performed in this dissertation between mono- and bi-stable harvesters. The work can be extended

to a comprehensive relative performance study which compares all three classes of nonlinear VEHs

under similar loading conditions.

Throughout this research, we established an analytical framework to delineate the combi-

nation of design parameters that would not only result in large electric outputs but also improve the

bandwidth of three types of nonlinear VEHs subjected to fixed-frequency excitations. The results

presented can be used as effective guidelines in the efficient design of these VEHs, especially when

the nature of excitation is known to be harmonic. Unfortunately, most ambient sources of excitation

have time-varying frequency characteristics or are random in nature. Although several studies have

been directed towards studying the response characteristics of mono- and bi-stable VEHs under ran-

dom inputs, characterizing responses of tri-stable VEHs subject to random excitations represents an

interesting topic of future research.

Most of the previous research efforts, including ours, have mainly focused characterizing

performance of VEHS that incorporate nonlinearities in the mechanical subsystem while using simple

linear circuit models. Incorporating nonlinear energy harvesting circuits that resonate internally

with the mechanical subsystem might provide effective mechanisms for broadband and improved

transduction. Such concepts have been effectively utilized for vibration absorption and might be

adapted to vibratory energy harvesting [75]. Inclusion of more complex conditioning circuits that

involve nonlinear circuit elements and battery models could provide new insights into the design of

VEHs. This might permit reaping the full benefits of the nonlinearities.
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