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Abstract

This dissertation develops a minimum description length (MDL) multiple

changepoint detection procedure that allows for prior distributions. MDL methods,

which are penalized likelihood techniques with penalties based on data description-

length information principles, have been successfully applied to many recent multiple

changepoint problems. This work shows how to modify the MDL penalty to account

for various prior knowledge.

Our motivation lies in climatology. Here, a metadata record, which is a file

listing times when a recording station physically moved, instrumentation was changed,

etc., sometimes exists. While metadata records are notoriously incomplete, they

permit the construct a prior distribution that helps detect changepoints. This allows

both documented and undocumented changepoints to be analyzed in tandem. The

method developed here takes into account 1) metadata, 2) reference series, 3) seasonal

means, and 4) autocorrelations. Asymptotically, our estimated multiple changepoint

configuration of monthly data is shown to be consistent. The methods are illustrated

in the analysis of 114 years of monthly temperatures from Tuscaloosa, Alabama. The

multivariate aspect of the methods allow maximum and minimum temperatures to

be jointly studied.

A method for homogenizing daily temperature series is also developed. While

daily temperatures have a complex structure, statistical techniques have been accu-
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mulating that can now accommodate all of the salient characteristics of daily tem-

peratures. The goal here is to combine these techniques in a reasonable manner for

multiple changepoint identification in daily series; computational speed is key as a

century of daily data has over 36,000 data points. Autocorrelation aspects are impor-

tant since correlation can destroy changepoint techniques and sample correlations of

day-to-day temperature anomalies are often as large as 0.7. While homogenized daily

temperatures may not be as useful as homogenized monthly or yearly temperatures,

homogenization done on a daily scale affords one greater statistical precision. It is

relatively easy to visually discern two changepoints (breakpoints) two years apart

with daily data, but virtually impossible to see them in annual series. The methods

are applied to 46 years of daily data at South Haven, Michigan.
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Chapter 1

Introduction

1.1 General Introduction

Climate time series often display artificial discontinuities induced by station

relocations, gauge changes, observer changes, etc. Such times may induce statisti-

cal discontinuities in the record and are called changepoints (breakpoints). While

changepoints can alter series variabilities, marginal distributions, or autocovariances,

our focus here is on mean shifts. Mitchell (1953) estimates that US temperature series

experience about six significant changes per century on average. Some, but not nec-

essarily all, of these change times may induce mean shifts in the series. While some

gauge change times, station relocation dates, and other events are written down (doc-

umented) in station history logs called metadata, these records are often incomplete

— many changepoints are undocumented.

Undocumented changepoint identification is crucial in climate analysis (Pot-

ter (1981); Vincent (1998); Caussinus and Mestre (2004); Menne and Williams Jr.

(2005, 2009)). The changepoint locations and mean shift sizes are essential aspects

for making accurate inferences; in fact, Lund et al. (2001) show that changepoint
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information is the most important issue to consider in realistically estimating a tem-

perature trend at a fixed US station. Also, Lu and Lund (2007) and the references

therein show that trends estimated from temperature series can be misleading when

changepoint features are ignored. Once the changepoint times are identified, most

statistical inference procedures are relatively straightforward.

Common methods to identify changepoints are segmentation and at most one

changepoint (AMOC) methods. Workhorse AMOC procedures include the standard

normal homogeneity (SNH) test, the nonparametric SNH test, and the two phase

regression of Lund and Reeves (2002) and are reviewed in Reeves et al. (2007). Those

procedures rely on the assumptions that the underlying regression form of the series

is known and that the error terms are independent and identically distributed normal

random variables. These assumptions are unrealistic for monthly or daily temperature

series.

Any AMOC procedure can be turned into a multiple changepoint estimator

via segmentation. In segmentation techniques, the time series is first classified as

changepoint free or having a single changepoint. If one changepoint is declared, then

the series is partitioned into two series about the changepoint time. Next, AMOC

methods are applied to the two shorter series to examine for further changepoints.

This procedure is repeated until all segments are changepoint free. The performance

of segmentation techniques are often questionable. Li and Lund (2012) show that

segmentation techniques fails to detect two changepoints that are located closely in

time.

In the multiple changepoint literature, penalized likelihood techniques are

ubiquitous. Caussinus and Mestre (2004) use a BIC-based penalized log-likelihood

model to estimate the number of changepoints, their locations, and any outliers. Davis

et al. (2006) propose an automatic procedure to segment non-stationary time series
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into blocks of different autoregressive (AR) processes. The number of changepoints,

their locations, and the orders of the AR models are found by optimizing a minimum

description length (MDL) via a genetic algorithm. Lu et al. (2010) and Li and Lund

(2012) develop MDL techniques to locate mean shifts in annual and monthly tem-

perature series following Davis et al. (2006). Unlike AIC and BIC penalties, MDL

penalties are not a multiple of the number of model parameters, but consider fea-

tures of the changepoint configuration such as the number of changepoints and how

far apart they are. Bayesian procedures can be viewed as penalized likelihoods: in

the posterior distribution, the prior density acts as the penalty. Bayesian multiple

changepoint authors include Carlin et al. (1992); Barry and Hartigan (1993); Chib

(1998); Ray and Tsay (2002); Fearnhead (2006); Giordani and Kohn (2008); Hannart

and Naveau (2009); Beaulieu et al. (2010); Lai and Xing (2011); Eckley et al. (2011);

Fearnhead and Liu (2011); Hannart and Naveau (2012); Ko et al. (2015); Du et al.

(2015).

This research seeks to identify all changepoint times in monthly and daily

temperature records while accounting for the following four statistical features: cor-

relation, a seasonal cycle, a reference series, and metadata. The only paper that

consider all four aforementioned features in tandem are Li and Lund (2015). It is

imperative to consider these features in the analysis of daily/monthly temperature

series. Autocorrelation aspects are crucial in analyzing monthly and daily tempera-

ture series. For daily data, sample correlations of day-to-day temperatures are often

as large as 0.7. Periodic mean cycles are clearly visible in both monthly and daily se-

ries. Since seasonal mean cycles add additional parameters to estimate, changepoint

detection is harder in periodic series.

Li and Lund (2015) examine multiple changepoint detection using metadata,

applying Bayesian statistical methods to detect changepoints in annual precipitation
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data. Prior distributions for the number of changepoints and their locations are

constructed from the metadata records. The prior distribution specifies that all times

listed in the metadata are equally likely to be changepoints and that all times not

listed in the metadata are equally likely to be changepoints. Also, metadata times

are more likely to induce mean shifts than non-metadata times. This criteria allows

to analyze documented and undocumented changepoints in tandem. We will expand

on these techniques to handle metadata and correlation aspects.

Relative homogenization; that is, analyzing a target series minus reference

series, is a common technique in climate homogenization (Menne and Williams Jr.

(2005, 2009)). A reference series is a record from a station near to the target series,

which is expected to be highly correlated with the target series. The idea is that both

series should experience similar weather. Hence, subtracting the reference series from

the target series helps reduce seasonal means and trends and illuminates artificial

discontinuities. Changepoints are easier to see in target minus reference comparisons.

We will be analyzing target minus reference series of monthly and daily temperatures.

In addition to univariate multiple changepoint detection, this work also con-

siders joint changepoint detection in maximum (Tmax) and minimum (Tmin) tem-

peratures. Daily temperatures are often defined as the average of Tmax and Tmin

values. This enables use of spring-loaded thermometers. Such gages push high and

low needles on the thermometer to daily extremes, hence reducing observer burdens

to a daily task (monthly temperatures are the average of all daily temperatures within

the month). Changepoint aspects in bivariate Tmax and Tmin series are consider-

ably complex. Specifically, a station relocation might move the temperature gauge

to a more sheltered location, where nighttime lows do not change but daytime highs

decrease. A station relocation to a drier location can simultaneously increase daytime

highs and reduce nighttime lows.
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In this research, a bivariate autoregressive time series model for Tmax and

Tmin is used to account for month-to-month autocorrelation. Changepoints are al-

lowed to occur in either the Tmax or Tmin series by themselves, or in both series

at the same time (these are called concurrent shifts). For concurrent shifts, the two

means need not shift in the same direction. As concurrent changes are thought to oc-

cur more often than non-concurrent changes, our prior distributions are constructed

to reflect this belief.

1.2 Daily Series

The aforementioned literature narrates changepoint methods for monthly and

annual series. This dissertation presents a method to analyze daily temperature series.

The changepoint literature for daily temperature data is less developed. Homogenized

daily data is useful in trend, extremes and climate variability studies. Since a daily

series contains many more points than a monthly or annual series, analysis using daily

data should have a greater precision. On the other hand, analysis of daily data is

more challenging due to the long series lengths and the number of parameters in the

model. In fact, a simple model for daily temperature series contains more than 1095

(365× 3) parameters.

Vincent and Zhang (2002) present a method to homogenize daily maximum

and minimum temperatures over Canada. Their method homogenizes daily data

based on the changepoints and subsequent adjustments found in monthly data. Daily

temperature adjustments incorporate a linear interpolation, which preserve the long-

term trend and variations present in monthly series. Della-Marta and Wanner (2006)

propose a method to homogenize daily data, which is capable of adjusting the mean

and higher order moments. Their method incorporates a non-linear model to estimate
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the relationship between a target and reference series. Kuglitsch et al. (2009) present

a quality control based homogenization method based on a penalized log-likelihood

procedure and a non linear model. The break detection and correction methods there

depend on the existence of a highly correlated reference series. The breakpoints are

identified by applying Caussinus and Mestre (2004) methods to annually differenced

series. The homogenization methods of Vincent and Zhang (2002), Della-Marta and

Wanner (2006), and Kuglitsch et al. (2009) are based on the changepoints identified

in corresponding annual or monthly series.

Climate series homogenization consists of two processes: 1) detect artificial

inhomogeneities, and 2) adjust the data for inhomogeneities. Our work here focus on

the first process: detection of artificial inhomogeneities. Our aim is to find the best

changepoint model (number of changepoints and their locations) for a given series.

This can be viewed as a model selection problem. Here, our model selection criteria

is based on a modified MDL, which is refereed to as a Bayesian MDL.

1.3 Bayesian MDL

Our research develops a novel changepoint MDL method to detect multiple

changepoints. MDL methods were introduced by Rissanen (1989) and are based

on Kolmogorov’s complexity theory and Shannon’s work on coding (Hansen and Yu,

2001). Among a class of plausible models, the MDL principle seeks the model with the

shortest so-called description length. The description length is the number of digits in

a binary string used to encode the model (and data) for transmission. Better models

should have shorter description lengths. For more background, the interested reader

is referred to Hansen and Yu (2001) and Grünwald et al. (2005).

Our modified MDL is called a Bayesian MDL because (1) it accommodates
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subjective knowledge from domain experts via prior specification and straightforward

hyper-parameter elicitation, (2) it is essentially an empirical Bayes approach, which

enjoys asymptotic model selection consistency and exhibits good performance in finite

samples, and (3) it permits the use of stochastic model search algorithms from the

Bayesian model selection literature to achieve efficient computation. Derivation of

our Bayesian MDL is presented in Chapter 2.

The optimal changepoint model has the minimal Bayesian MDL. A naive ap-

proach to this minimization is to compute the Bayesian MDL for each possible model.

Since this is not viable, an efficient optimization technique is required. Here, Bayesian

model search algorithms (Garćıa-Donato and Mart́ınez-Beneito, 2013) such as Markov

chain Monte-Carlo approach or genetic algorithms (Goldberg and Holland, 1988) can

be implemented to optimize Bayesian MDL. More details on these algorithms are in

chapter 2 and 3.

This dissertation is organized as follows. Chapter 2 introduces Bayesian MDL

techniques for univariate and bivariate monthly temperature series. Chapter 3 modi-

fies the Bayesian MDL to accommodate daily temperature series. A simulation study

and real temperature series analyses are included in both chapters.
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Chapter 2

Bayesian MDL for Monthly Series

2.1 Data and Model

2.1.1 The Tuscaloosa data

Figure 2.1 plots a monthly Tmax and Tmin series from Tuscaloosa, Alabama

(the target station) over the 114 year period January, 1901 — December, 2014. Lu

et al. (2010) study average values of the series from 1901-2000. In Section 2.6, the

Tmax and Tmin series will be analyzed from univariate and bivariate perspectives.

The Tuscaloosa metadata list station relocations in November 1921, March 1939,

June 1956, and May 1987; November 1956 and May 1987 are listed as instrumenta-

tion change times. While Lu et al. (2010) use the metadata to justify changepoint

conclusions in hindsight, the metadata will be used in our detection procedure here,

which substantially boosts detection power.

Our estimated changepoint configuration (justified in Section 2.6) is revealed

in Figure 2.1. Estimated changepoint times are marked with vertical dashed lines.

Mean shifts are difficult to see in series with large seasonal cycles, which are on the
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Figure 2.1: Tuscaloosa monthly Tmax (top panel) and Tmin (bottom panel) series.
Metadata times are marked with crosses on the axis. Vertical dashed lines show
estimated changepoint times from our methods.

order of 40 degrees Fahrenheit here. Each metadata time is marked by an X on the

axis. Observe that all three of the identified changepoints occur at metadata times,

and that all of them occur in both Tmax and Tmin series.

Following Lu et al. (2010), our reference is obtained by averaging three nearby

stations: Aberdeen, MS; Greensboro, AL; and Selma, AL. By averaging multiple

reference series (this is called a composite reference), impacts of mean shifts in any of

the individual stations in the composite reference are minimized. Figure 2.2 plots the

monthly target minus reference series and its estimated changepoint configuration.

Now, 12 changepoint times, all of which are concurrent (occur at the same time

in both Tmax and Tmin), emerge. In particular, the November 1956 changepoint

shifts the Tmax series upwards and the Tmin series downwards. This configuration

is examined further in Section 7.
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Figure 2.2: Target minus reference Tmax (top panel) and Tmin (bottom panel) series.
Metadata times for Tuscaloosa are marked with crosses on the axis. Vertical dashed
lines show estimated changepoint times from our methods.

2.1.2 A univariate model

Consider a univariate time series with data X1:N = (X1, X2, . . . , XN)′, where

t ∈ {1, 2, . . . , N} denotes time. As our data is monthly, periodicities will be repre-

sented by writing time t as t = (u−1)T+v, where u denotes the year of the observation

and v ∈ {1, . . . , 12} is the month of the observation. Here, the fundamental period is

T = 12.

Suppose m changepoints partition the timeline t ∈ {1, 2, . . . , N} into m + 1

distinct regimes (segments). During the rth regime, r ∈ {1, 2, . . . ,m + 1}, the series

has mean µr (neglecting the seasonal cycle). A model with autocorrelated errors
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describing this situation is

Xt = sv(t) + µr(t) + εt, (2.1)

εt =

p∑
j=1

φjεt−j + Zt, Zt
iid∼ N(0, σ2). (2.2)

Here, v(t) = t − T b(t − 1)/T c is the season corresponding to time t, where bxc is

the largest integer less than or equal to x. The monthly means are s1, s2, . . . , sT , the

regime means are µ1, µ2, . . . , µm+1, and the regression errors {εt}Nt=1 are stationary but

autocorrelated. In particular, {εt}Nt=1 is assumed to be a causal zero mean autoregres-

sion of order p driven by the independent and identically distributed noise {Zt}Nt=1.

The parameters φ1, φ2, . . . , φp are autoregressive coefficients and Var(Zt) = σ2. In

climate applications, monthly averaged temperatures and the logarithm of annual pre-

cipitation are approximately normally distributed (Wilks, 2011). Hence, in further

likelihood computations, Gaussianity is assumed.

Suppose that the m changepoints are located at the times τ1 < τ2 < · · · <

τm. To avoid trite work with edge effects of the autoregression, we assume that no

changepoints occur during the first p observations. For notation, let τ0 = 1 and

τm+1 = N + 1. Then the regime indicator r(t) in (2.1) has r(t) = r when τr−1 ≤

t < τr. To ensure parameter identifiability, µ1 is taken as zero; hence, E[Xt] = sv(t)

when t lies in the first regime. The model in (2.1) and (2.2) contains the following

unknown parameters: the number of changepoints m, the changepoint location times

τ = (τ1, τ2, . . . , τm)′, the seasonal means s = (s1, s2, . . . , sT )′, the regime means µ =

(µ2, µ3, . . . , µm+1)′, the AR parameters φ = (φ1, φ2, . . . , φp)
′, and the white noise

variance σ2.

Following Li and Lund (2015), we denote the multiple changepoint configura-

tion (m; τ ) as an (N−p)-dimensional vector of zero/one indicators: η = (ηp+1, ηp+2, . . . , ηN)′,
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where ηt ∈ {0, 1} for t ∈ {p + 1, . . . , N}. In this notation, ηt = 1 means that time t

is a changepoint; ηt = 0 means that time t is not a changepoint.

The data likelihood given a changepoint configuration η is now developed.

Suppose that the changepoint configuration η contains m =
∑N

t=p+1 ηt changepoints.

Equation (2.1) has the regression representation

X1:N = A1:Ns + D1:Nµ + ε1:N , (2.3)

where A1:N ∈ RN×T and D1:N ∈ RN×m are seasonal and regime indicators:

[A1:N ]t,v = 1(time t is in season v), v ∈ {1, 2, . . . , T},

[D1:N ]t,r−1 = 1(time t is in regime r), r ∈ {2, 3, . . . ,m+ 1},

and 1(A) denotes the indicator of the event A. In (2.3), the subscript 1 : N , or in

general t1 : t2, signifies that only rows t1 through t2 are used in the quantities. The

first τ1 − 1 rows of D1:N are taken as zero for parameter identifiability. The white

noise process {Zt} driving ε1:N is assumed independent and Gaussian with variance

σ2. This yields the distributional result

ε(p+1):N −
p∑
j=1

φjε(p+1−j):(N−j) ∼ N(0, σ2IN−p), (2.4)
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where Ik denotes the k × k identity matrix. Now define

X̃ = X(p+1):N −
p∑
j=1

φjX(p+1−j):(N−j), (2.5)

Ã = A(p+1):N −
p∑
j=1

φjA(p+1−j):(N−j), (2.6)

D̃ = D(p+1):N −
p∑
j=1

φjD(p+1−j):(N−j), (2.7)

and observe that (2.4) becomes

X̃− Ãs− D̃µ ∼ N(0, σ2IN−p). (2.8)

Note that all terms superscripted with ∼ depend on the unknown AR param-

eter φ. To avoid trite work with autoregressive edge effects, a likelihood conditional

on Xt for t ∈ {1, 2, . . . , p} is used. In the change of variable computations, the Jaco-

bian |∂(X̃− Ãs− D̃µ)/∂X(p+1):N | = 1 and hence the likelihood has the multivariate

normal form

f
(
X(p+1):N | µ, s, σ2,φ,η,X1:p

)
=
(
2πσ2

)−N−p
2 e−

1
2σ2

(X̃−Ãs−D̃µ)′(X̃−Ãs−D̃µ).

Innovations forms of the likelihood (Brockwell and Davis (1991)) could be used if one

wants a moving-average or long-memory component in {εt}.

2.1.3 A bivariate model for Tmax and Tmin series

To model the Tmax and Tmin series jointly, concatenate them via X1:N =

(X′1:N,1,X
′
1:N,2)′ ∈ R2N , where X1:N,i = (X1,i, . . . , XN,i)

′ is the observed record for

Tmax (i = 1) or Tmin (i = 2). Each time in {p + 1, p + 2, . . . , N} is allowed to
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be a changepoint in the Tmax or Tmin series, or both. A multiple changepoint

configuration is denoted by η = (η′1,η
′
2)′, where ηi = (ηp+1,i, . . . , ηN,i)

′ ∈ {0, 1}N−p is

defined as in the univariate case.

Given a bivariate changepoint configuration η, series i has mi =
∑N

t=p+1 ηt,i

changepoints. As in the univariate case, the seasonal means are denoted by si =

(s1,i, s2,i, . . . , sT,i)
′ ∈ RT ; regime means are denoted by µi = (µ2,i, µ3,i, . . . , µmi+1,i)

′ ∈

Rmi . The seasonal indicator matrix A1:N,i ∈ RN×T and the regime indicator matrix

D1:N,i ∈ RN×mi are constructed analogously to their univariate counterparts.

The regression representation (2.3) holds for the bivariate case, with s =

(s′1, s
′
2)′, µ = (µ′1,µ

′
2)′, ε1:N = (ε′1:N,1, ε

′
1:N,2)′ denoting the concatenated seasonal

means, regime means, and regression errors, respectively. The seasonal and regime

indicator matrices have the block diagonal forms

A1:N =

 A1:N,1 0

0 A1:N,2

 , D1:N =

 D1:N,1 0

0 D1:N,2

 . (2.9)

Note that the seasonal indicators for Tmax and Tmin coincide, i.e., A1:N,1 = A1:N,2,

while D1:N,1 and D1:N,2 differ unless all changepoints are concurrent.

As the Tmax and Tmin data tend to fluctuate about the mean in tandem

(positive correlation), the errors {εt} need to be correlated. For this, a Gaussian

vector autoregression (VAR) model of order p is employed:

εt =

p∑
j=1

Φjεt−j + Zt, Zt
iid∼ N(0,Σ), (2.10)

where t ∈ {p+ 1, p+ 2, · · · , N}. Here, Φ1, . . . ,Φp are 2× 2 VAR coefficient matrices.

The VAR model allows for correlation both in time and between components.

To simplify calculations, a conditional likelihood given X1:p is used to avoid
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edge effects of the autoregression. As (2.8) holds after replacing σ2IN−p with Σ⊗IN−p,

the likelihood of X(p+1):N , conditional on the initial observations X1:p and model

parameters, is (to a multiplicative constant)

f(X(p+1):N | s,µ,Σ,Φ1, · · · ,Φp,η,X1:p) (2.11)

∝ |Σ|−
N−p

2 exp

[
−1

2
(X̃− Ãs− D̃µ)′(Σ−1 ⊗ IN−p)(X̃− Ãs− D̃µ)

]
.

Here, ⊗ denotes a Kronecker product and the terms X̃, Ã, D̃ are modified by replacing

φj with Φj ⊗ IN−p in (2.5), (2.6), and (2.7) for j ∈ {1, 2, . . . , p}. In the rest of the

paper, the edge variables X1:p are omitted in notation.

2.2 A Brief MDL Review

Multiple changepoint problems can be viewed from a model selection perspec-

tive, where each changepoint configuration η being a candidate model. Among all

2N−p (univariate) or 22(N−p) (bivariate) changepoint configurations, our objective is

to identify the configuration that optimizes a certain objective function. The objec-

tive function used here is a Bayesian MDL. According to MDL principle, competing

probability models can be compared by their description lengths; the true data gener-

ating distribution (i.e., the true model) should have the shortest expected description

length.

For a discrete random variable X taking values in X with probability mass

function f(x) = P (X = x), Shannon’s Source Coding Theorem (Shannon, 1948)

states that the encoding with code length

L(X) = − log2[f(X)] (2.12)
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has the shortest expected description length. For example, if X is uniformly dis-

tributed over X = {1, 2, . . . , n}, then its MDL is L(X) = − log2(1/n) = log2(n). If

X is a continuous variable in a k-dimensional space with density function f(·), then

after discretizing each dimension into equal cells of size δ (often viewed as the machine

precision), mimicking (2.12) gives the MDL

L(X) = − log2[f(X)δk] = − log2[f(X)]− k log2(δ). (2.13)

Because k and δ do not vary with X, the term −k log2(δ) does not affect comparison

between different X and is often omitted. One can substitute the natural-based

logarithm for the base two logarithm — this does not affect model comparisons since

log2(x)/ log(x) is constant.

Now suppose that a dataset X = (X1, X2, . . . , XN)′, believed to be generated

from a certain parametric model M with density f(X | θ,M), is to be transmitted

along with a possibly unknown parameter θ ∈ Θ. To transmit the data, two types of

MDL approaches, the two-part MDL and the mixture MDL, are discussed in Hansen

and Yu (2001).

2.2.1 Two-part MDLs

The two-part MDL (also called a two-stage MDL) considers the transmission

of X and θ in two steps. If both the sender and receiver know θ, the MDL of X is

L(X | θ,M) = − log[f(X | θ,M)].

Here, notations such as L(· | ·) are adopted and are analogous to conditional distri-

bution notations; this notation emphasizes dependence on M and θ. Should θ also
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be unknown to the receiver, an additional cost of L(θ | M) is incurred transmitting

it. Hence, the two-part MDL becomes

L(X, θ | M) = L(X | θ,M) + L(θ | M). (2.14)

Suppose that the MDL in (2.14) is minimized at θ̂, an estimator of θ based on X. If

θ is a k-dimensional continuous parameter and θ̂ is a
√
n-consistent estimator of θ,

then one can view the machine precision as δ = c/
√
n, where c is a positive constant.

Under a uniform encoder π(θ | M) ∝ 1, the MDL in (2.13) needed to transmit θ

(including θ̂) is hence

L(θ | M) = − log[π(θ | M)]− k log

(
c√
n

)
=
k

2
log(n)− k log(c), (2.15)

which does not depend on θ. Hence, the maximum likelihood estimator (MLE) min-

imizes (2.14) and the two-part MDL coincides with the classic Bayesian Information

Criteria (BIC) (Schwarz (1978)). Note that θ̂ need not be the MLE. In fact, any

√
n-consistent estimator θ̂ is justifiable.

Suppose there is a discrete set of candidate models. To account for model

uncertainty, the two-part MDL can be modified to include an additional description

length for the model, i.e.,

L(X, θ̂,M) = L(X, θ̂ | M) + L(M), (2.16)

where L(M) = − log[π(M)], and π(M) denotes the prior distribution over the model

space. The model with the smallest MDL in (2.16) is selected as the optimal model.

Here, θ̂ is model dependent.

Two-part MDLs have been used in time series changepoint problems (Davis
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et al., 2006, 2008; Lu et al., 2010; Li and Lund, 2012). However, for a finite sample

size n, a drawback exists when the dimension of θ changes with the model, as is

the multiple changepoint case. Consider a setting of two competing models M1 and

M2, whose parameters θj are kj-dimensional continuous parameters, respectively, for

j ∈ {1, 2}. Model M1 is favored if L(X, θ̂1,M1) − L(X, θ̂2,M2) is negative; else,

modelM2 is favored. From (2.14) and (2.16), L(X, θ̂1,M1)−L(X, θ̂2,M2) contains

the term

L(θ̂1 | M1)− L(θ̂2 | M2) = log[π(θ̂2 | M2)]− log[π(θ̂1 | M1)] (2.17)

+
k1 − k2

2
[log(n)− 2 log(c)].

When k1 6= k2, this term depends on c, which is problematic as L(X, θ̂1,M1) −

L(X, θ̂2,M2) could be either positive or negative depending on the values of n and

c. In this case, one cannot judge one model superior without knowledge of c. Thus,

when the dimension of θ changes with M, the two-part MDL in (2.16) has issues.

This issue does not conflict with the asymptotic consistency of BIC or modified BIC

(Zhang and Siegmund, 2007): as n increases, log(n) dominates the fixed constant

log(c) in (2.17). We now consider mixture MDLs, which do not suffer from such

problems.

2.2.2 Mixture MDLs

Suppose that θ for the model M is believed to have a prior distribution with

density π(θ | M). The marginal likelihood of X averages the likelihood f(X | θ,M)

under the prior distribution of θ:

f(X | M) =

∫
Θ

f(X | θ,M)π(θ | M)dθ. (2.18)
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The mixture MDL is the negative logarithm of the marginal likelihood:

L(X | M) = − log f(X | M) = − log

∫
Θ

f(X | θ,M)π(θ | M)dθ. (2.19)

If the prior for θ depends on an unknown hyper-parameter τ , then a two-part MDL

can be used to account for the additional description length needed to transmit τ . In

this case, the overall mixture MDL, for any
√
n-consistent estimator of τ , is

L(X, τ̂ | M) = − log

∫
Θ

f(X | θ,M)π(θ | τ̂ ,M)dθ + L(τ̂ | M). (2.20)

The mixture MDL for the model M based on (2.16) and (2.20) is

L(X, τ̂ ,M) = L(X, τ̂ | M) + L(M).

This is related to empirical Bayes (EB) approaches. If the prior probabilities of two

models are the same, i.e., π(M1) = π(M2), and the hyper-parameter τ is transmitted

under a uniform encoder π(τ | Mj) ∝ 1 for j ∈ {1, 2}, then the negative logarithm

of their Bayes factor (Kass and Raftery, 1995) equals the difference of their mixture

MDLs L(X, τ̂1,M1)−L(X, τ̂2,M2). Similarly, in EB settings, although the estimator

τ̂ is often chosen to maximize the marginal likelihood f(X | τ,M), other estimators

can be used (Carlin and Louis, 2000).

2.3 Bayesian MDLs (BMDLs)

Our main idea is to apply the mixture MDL to parameters such as µ whose

dimensions vary across models, and use the two-part MDL for other parameters. This

section first introduces our prior choices on η and µ, derives our BMDL criterion,
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and then discusses computational strategies.

2.3.1 The prior distribution of changepoint configurations

Our prior distribution for the changepoint configuration π(η) in the univariate

case assumes that, in the absence of metadata, each time t has an equal probability

ρ of being a changepoint, independently of other times, i.e.,

ηt | ρ
iid∼ Bernoulli(ρ), t ∈ {p+ 1, p+ 2, . . . , N}. (2.21)

Chernoff and Zacks (1964), Yao (1984), and Barry and Hartigan (1993) use this prior;

it is a reasonable choice in climate time series applications where knowledge beyond

metadata is generally unavailable. For other applications, π(η) can have different

success probabilities during different regimes (Chib, 1998); correlation across different

changepoint times can also be achieved (Li and Zhang, 2010).

As estimated changepoint configurations are sensitive to ρ, a hyper-prior is

placed on it. Barry and Hartigan (1993) let ρ have a uniform prior on (0, ρ0), where

ρ0 < 1. For additional flexibility, the Beta distribution ρ ∼ Beta(a, b) will be used

here. Due to Beta-Binomial conjugacy, the marginal prior density of η has the closed

form

π(η) =

∫ 1

0

[
N∏

t=p+1

π(ηt | ρ)

]
π(ρ)dρ =

β(a+m, b+N − p−m)

β(a, b)
, (2.22)

where π(ηt | ρ) = ρηt(1− ρ)1−ηt for ηt ∈ {0, 1} and β(·, ·) denotes the Beta function.

Beta-Binomial priors are common in the Bayesian model selection literature (Scott

and Berger, 2010).

The Beta-Binomial prior can be tuned to accommodate subjective knowl-
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edge from domain experts. For example, Mitchell (1953) estimates an average of

six changes per century for United States temperature series; this long-term rate is

0.005 changepoints per month and can be produced with a = 1 and b = 199; with

these parameters, E(ρ) = a/(a+ b) = 0.005.

This prior can be modified to accommodate metadata. Suppose that during

the times {p+1, p+2, . . . , N}, there are N (2) documented times in the metadata and

N (1) = N − p−N (2) undocumented times. For notation, all quantities superscripted

with (1) refer to undocumented times; quantities superscripted with (2) refer to docu-

mented times. Following Li and Lund (2015), we posit that the undocumented times

have a Beta-Binomial(a, b(1)) prior distribution, and independently, the documented

times have a Beta-Binomial(a, b(2)) prior. To make the metadata times more likely

to induce true mean shift, we impose

E[ρ(1)] =
a

a+ b(1)
<

a

a+ b(2)
= E[ρ(2)].

Here, the parameter a is common to both documented and undocumented times. For

monthly data, default values are a = 1, b(1) = 239, and b(2) = 47, making E(ρ(1)) =

0.0042 and E(ρ(2)) = 0.0208; a priori, a documented time is roughly five times as

likely to be a changepoint as an undocumented time.

Arguing akin to (2.22), a changepoint configuration η with m(2) documented

changepoints and m(1) undocumented changepoints (m = m(1) + m(2)) has marginal

prior distribution (up to a normalizing constant)

π(η) ∝
2∏

k=1

Γ
(
a+m(k)

)
Γ
(
b(k) +N (k) −m(k)

)
(2.23)

after the Beta functions are written in their Gamma representations.
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For the bivariate case, a hierarchical prior is put on η that encourages both

documented changes and concurrent changes. For t ∈ {p + 1, p + 2, . . . , N}, the

indicator ηt = (ηt,1, ηt,2)′ takes values in one of the four categories: (1, 1), mean shifts

in both Tmax and Tmin; (1, 0), a mean shift in Tmax but not in Tmin; (0, 1), a mean

shift in Tmin but not in Tmax; and (0, 0), no mean shifts. A Dirichlet-Multinomial

prior is put on ηt:

ηt | ρ
iid∼ Multinomial(1;ρ), ρ ∼ Dirichlet(α), (2.24)

where ρ = (ρ1, ρ2, ρ3, ρ4)′ are the probabilities of the four categories, such that 0 <

ρ` < 1 for ` ∈ {1, 2, 3, 4}, and
∑4

`=1 ρ` = 1; α = (α1, α2, α3, α4)′ are the Dirichlet

parameters; α` > 0 for each `.

Suppose that the changepoint configuration η has m` times in category `. Due

to the Dirichlet-multinomial conjugacy, the marginal prior of η has a closed form after

integrating ρ(1) and ρ(2) out:

π(η) ∝
2∏

k=1

4∏
`=1

Γ
(
α

(k)
` +m

(k)
`

)
. (2.25)

Our choice of the hyper-parameter α reflects our belief that concurrent change-

points are more likely to occur than an independent scenario. By (2.24), the ratios be-

tween the prior expectations satisfy E(ρ1) : E(ρ2) : E(ρ3) : E(ρ4) = α1 : α2 : α3 : α4.

If changepoints in the Tmax and Tmin series at time t are independent events, then

ρ1 = P (ηt,1 = 1, ηt,2 = 1) = P (ηt,1 = 1)P (ηt,2 = 1) = (ρ1 + ρ2)(ρ1 + ρ3). Hence, to

encourage concurrent shifts, it is assumed that concurrent changepoints occur more
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often than in independent settings. This is done by choosing α such that

E[ρ1] =
α1∑4
`=1 α`

>
α1 + α2∑4

`=1 α`

α1 + α3∑4
`=1 α`

= E[ρ1 + ρ2]E[ρ1 + ρ3].

In addition, between the univariate and bivariate models, we match the prior means

of the probabilities of no changepoints, i.e.,

b

a+ b
=

α4∑4
`=1 α`

.

After consulting climatologists, default hyper-parameters are set to α(1) = (3/7, 2/7, 2/7, 239)′

and α(2) = (3/7, 2/7, 2/7, 47)′ for monthly data.

2.3.2 The prior distribution of regime means

For a changepoint configuration with m > 0 changepoints, the regime means

µ are posited to have independent normal prior distributions. For the univariate

model, this is

µ | σ2,η ∼ N(0, νσ2Im); (2.26)

for the bivariate model, distributions obey

µ | Σ,η ∼ N(0,Ω), Ω = ν diag

σ2
1, . . . , σ

2
1︸ ︷︷ ︸

m1

, σ2
2, . . . , σ

2
2︸ ︷︷ ︸

m2

 , (2.27)

where σ2
1 and σ2

2 are the diagonal entries of the white noise covariance Σ. Here, ν is a

pre-specified non-negative parameter that is relatively large so that the variances of

the regime means are large multiples of the white noise variances. As in the sensitivity

analysis in Du et al. (2015), our experience suggests that model selection results are

stable under a wide range of ν. Our default takes ν = 5.
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In fact, π(µ) can be any continuous distribution. For example, if mean shifts

can be large, heavy-tailed distributions such as Student-t may be preferable. When

µ cannot be tractably integrated out, inferences can be based on posterior samples,

drawn by trans-dimensional MCMC algorithms such as the reversible-jump (Green,

1995). In the rest of the paper, for computational efficiency, the conjugate priors in

(2.26) and (2.27) are used, under which the (conditional) marginal likelihoods have

closed forms.

2.3.3 The BMDL expressions

We now obtain a BMDL for each changepoint model η. As derivations for the

univariate and bivariate cases are similar, work is shown only for the univariate model.

Recall that the mixture MDL is applied to the dimensionally varying parameter µ,

and the two-part MDL is applied to the other model parameters.

For a changepoint configuration η with m > 0, the conditional marginal like-

lihood has the closed form

f(X(p+1):N | s, σ2,φ,η) =

∫
Rm

f
(
X(p+1):N | µ, s, σ2,φ,η

)
π(µ | σ2,η)dµ

= (2πσ2)−
N−p

2 ν−
m
2

∣∣∣∣D̃′D̃ +
Im
ν

∣∣∣∣− 1
2

e−
1

2σ2
(X̃−Ãs)′B̃(X̃−Ãs),

where the notation has

B̃ = IN−p − D̃

(
D̃′D̃ +

Im
ν

)−1

D̃′. (2.28)

If s, σ2,φ, and η are known, the mixture MDL in (2.19) is simply

L(X(p+1):N | s, σ2,φ,η) = − log[f(X(p+1):N | s, σ2,φ,η)]. (2.29)
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A two-part MDL will be used to quantify the cost of transmitting s, σ2,φ, and

the model η. The optimal s and σ2 have closed forms:

ŝ = arg min
s
L(X(p+1):N | s, σ2,φ,η) = (Ã′B̃Ã)−1(Ã′B̃X̃), (2.30)

σ̂2 = arg min
σ2
L(X(p+1):N | ŝ, σ2,φ,η) (2.31)

=
1

N − p
X̃′
[
B̃− B̃Ã

(
Ã′B̃Ã

)−1

Ã′B̃

]
X̃.

These estimators depend on φ. After plugging (2.30) and (2.31) into (2.29), the φ that

minimizes L(X(p+1):N | ŝ, σ̂2,φ,η) is intractable. In general, likelihood estimators for

autoregressive models do not have closed forms. Hence, simple Yule-Walker moment

estimators, which are asymptotically most efficient and
√
n-consistent under the true

changepoint model, are used. There is little difference between moment and likelihood

estimators for autoregressions; Brockwell and Davis (1991) discuss this issue in detail.

In the linear model (2.3), the ordinary least squares residuals are

εols
1:N = (IN − P[A1:N D1:N ])X1:N , (2.32)

where P[A1:N D1:N ] is the orthogonal projection matrix onto the linear space spanned

by the columns of A1:N and D1:N . The sample autocovariance of the residuals at lag

h ∈ {0, 1, . . . , p} are

γ̂(h) =
1

N

N∑
t=h+1

εols
t ε

ols
t−h. (2.33)

The Yule-Walker estimator of φ is

φ̂ = Γ̂
−1

p γ̂p, (2.34)

where γ̂p = (γ̂(1), γ̂(2), . . . , γ̂(p))′ and Γ̂p is a p × p matrix whose (i, j)th entry is

25



γ̂(|i − j|). This matrix is invertible whenever the data are non-constant (Brockwell

and Davis, 1991). Next, the Yule-Walker estimator φ̂ is substituted for φ in (2.5),

(2.6), (2.7), and (2.28). The resulting quantities are denoted by X̂, Â, D̂, and B̂,

respectively. In particular, X̂ contains estimated one-step-ahead prediction residuals

(innovations). Hence, up to a constant, (2.29) is

L(X(p+1):N | ŝ, σ̂2, φ̂,η) =
N − p

2
log

(
X̂′
[
B̂− B̂Â

(
Â′B̂Â

)−1

Â′B̂

]
X̂

)
+
m

2
log(ν) +

1

2
log

(∣∣∣∣D̂′D̂ +
Im
ν

∣∣∣∣) .
By (2.15), under the uniform encoder, the additional costs to transmit ŝ, σ̂2,

and φ̂ are (up to constants)

L(ŝ | η) =
T

2
log(N−p), L(σ̂2 | η) =

1

2
log(N−p), L(φ̂ | η) =

p

2
log(N−p). (2.35)

These costs are constant across models and hence can be omitted from the MDL.

Furthermore, based on (2.23), the MDL of η is

L(η) = − log[π(η)] = −
2∑

k=1

log
[
Γ
(
a+m(k)

)
Γ
(
b(k) +N (k) −m(k)

)]
.

Using (2.14) and (2.16) and omitting the terms in (2.35), the BMDL to trans-

mit the data X(p+1):N , the model η, and its parameters is

BMDL(η) = L(X(p+1):N | ŝ, σ̂2, φ̂,η) + L(η). (2.36)
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For a model with m > 0 changepoints, its BMDL is hence

BMDL(η) =
N − p

2
log

{
X̂′
[
B̂− B̂Â

(
Â′B̂Â

)−1

Â′B̂

]
X̂

}
+
m

2
log(ν) (2.37)

+
1

2
log

(∣∣∣∣D̂′D̂ +
Im
ν

∣∣∣∣)− 2∑
k=1

log
[
Γ
(
a+m(k)

)
Γ
(
b(k) +N (k) −m(k)

)]
.

For the no changepoint model (m = 0), denoted by ηø, the above needs

modification since it does not involve µ. Skipping the mixture MDL step and arguing

as above produce

L(X(p+1):N | ŝ, σ̂2, φ̂,ηø) =
N − p

2
log

{
X̂′
[
IN−p − Â

(
Â′Â

)−1

Â′
]

X̂

}
.

Hence, the BMDL for the model ηø is

BMDL(ηø) =
N − p

2
log

{
X̂′
[
In − Â

(
Â′Â

)−1

Â′
]

X̂

}
(2.38)

−
2∑

k=1

log
[
Γ (a) Γ

(
b(k) +N (k)

)]
.

Past MDL authors (Davis et al., 2006; Lu et al., 2010) use formulas containing the

term log(m), which is problematic for the null model ηø where m = 0. The BMDL

in (2.38) resolves this issue.

For the bivariate case where m1 +m2 > 0, the conditional marginal likelihood,

after integrating µ out, retains a closed form:

f(X(p+1):N | s,Σ,Φ1:p,η) (2.39)

∝ |Σ|−
N−p

2 |Ω|−
1
2

∣∣∣D̃′(Σ−1 ⊗ IN−p)D̃ + Ω−1
∣∣∣− 1

2
e−

1
2

(X̃−Ãs)′B̃(X̃−Ãs),
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where B̃ is modified to

B̃ =(Σ−1 ⊗ IN−p)×{
I2(N−p) − D̃

[
D̃′(Σ−1 ⊗ IN−p)D̃ + Ω−1

]−1

D̃′(Σ−1 ⊗ IN−p)

}
.

The least squares estimator of s̃ that optimizes (2.39) is unaltered from (2.30).

However, after plugging ŝ back in (2.39), the maximum likelihood estimators of Σ

and Φ1, . . . ,Φp again do not have closed forms. Therefore, Yule-Walker estimators

are used.

To find Yule-Walker estimators for the the time series regression in (2.3)

and (2.9), generalized least squares residuals of the mean fit, denoted by εgls
1:N =

((εgls
1:N,1)′, (εgls

1:N,2)′)′ ∈ R2N , are computed via

εgls
1:N =

{
I2N −G

[
G′
(
Γ̂

ols
(0)−1 ⊗ IN

)
G
]−1

G′
(
Γ̂

ols
(0)−1 ⊗ IN

)}
X1:N , (2.40)

where the design matrix is

G =

 A1:N,1 D1:N,1 0 0

0 0 A1:N,2 D1:N,2

 .

Here Γ̂
ols

(0) = N−1
∑N

t=1 ε
ols
t (εols

t )′ is a 2 × 2 covariance matrix of the ordinary (un-

weighted) least squares residuals εols
t = (εols

t,1, ε
ols
t,2)′, where εols

t,1 and εols
t,2 are computed

analogously to (2.32) with the design matrices [A1:N,1 D1:N,1] and [A1:N,2 D1:N,2],

respectively.

The sample autocovariances at lag h ∈ {0, 1, . . . , p} of the generalized least
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squares residuals εgls
t = (εgls

t,1, ε
gls
t,2)′, t ∈ {1, 2, . . . , N} are computed as:

Γ̂(h) =
1

N

N∑
t=h+1

εgls
t (εgls

t−h)
′.

The Yule-Walker estimators in the bivariate setting are

(
Φ̂1, . . . , Φ̂p

)
=
(
Γ̂(1), . . . , Γ̂(p)

)


Γ̂(0) Γ̂(1) · · · Γ̂(p− 1)

Γ̂(1)′ Γ̂(0) · · · Γ̂(p− 2)

...
...

. . .
...

Γ̂(p− 1)′ Γ̂(p− 2)′ · · · Γ̂(0)



−1

,

Σ̂ = Γ̂(0)−
p∑
j=1

Φ̂jΓ̂(j)′.

After plugging Σ̂ and Φ̂1, . . . , Φ̂p back into the likelihood, the terms X̃, Ã, D̃, B̃,Ω,

which depend on Σ and Φ1, · · · ,Φp are denoted by X̂, Â, D̂, B̂, Ω̂. Hence, the

Bayesian MDL for η is (up to a constant)

BMDL(η) (2.41)

= −
2∑

k=1

4∑
`=1

log
[
Γ
(
α

(k)
` +m

(k)
`

)]
+
N − p

2
log
(∣∣∣Σ̂∣∣∣)+

1

2

2∑
i=1

mi log(νσ̂2
i )

+
1

2
log
(∣∣∣D̂′(Σ̂−1

⊗ IN−p)D̂ + Ω̂
−1
∣∣∣)+

1

2
X̂′
[
B̂− B̂Â

(
Â′B̂Â

)−1

Â′B̂

]
X̂.
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The null model ηø has BMDL

BMDL(ηø) (2.42)

= −
2∑

k=1

4∑
`=1

log
[
Γ
(
α

(k)
`

)]
+
N − p

2
log
(∣∣∣Σ̂∣∣∣)+

1

2
X̂′(Σ̂

−1
⊗ IN−p)X̂

− 1

2
X̂′
{

(Σ̂
−1
⊗ IN−p)Â

[
Â′(Σ̂

−1
⊗ IN−p)Â

]−1

Â′(Σ̂
−1
⊗ IN−p)

}
X̂.

2.3.4 BMDL optimization

The optimal changepoint model η̂ has the smallest BMDL score. If a BMDL

for each model can be computed, one selects the model with the smallest BMDL.

However, exhaustively searching the changepoint configuration space is formidable.

Even in the univariate case, the total number of models, 2N−p, is extremely large.

Genetic algorithms are used by Davis et al. (2006) and Lu et al. (2010) to overcome

this hurdle. Here, a Markov chain Monte Carlo approach is developed.

Connections between BMDL and empirical Bayes (EB) allow us to efficiently

explore the model space by visiting a relatively small number of promising models.

The univariate BMDL in (2.36) is equivalent to the negative logarithm of an EB

estimator of the posterior probability of η under the prior distributions in (2.23) and

(2.26):

pEB(η | X(p+1):N) ∝ π(η)

∫
Rm

f
(
X(p+1):N | µ, ŝ, σ̂2, φ̂,η

)
π(µ | σ̂2,η)dµ.

A similar result holds in bivariate cases. As a BMDL approach is tractable, Bayesian

stochastic model search algorithms can be used; see Garćıa-Donato and Mart́ınez-

Beneito (2013) and the references therein.

Here, the Metropolis-Hastings algorithm in George and McCulloch (1997) is
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modified by intertwining two types of proposals: a component-wise flipping at a

random location and a simple random swapping between a changepoint and a non-

changepoint. This algorithm is described in detail in Li and Lund (2015) and is

implemented by the R package BayesMDL in the supplementary material.

2.4 Asymptotic Consistency of the BMDL

This section shows that in univariate cases, the true changepoint model has

the smallest BMDL under infill asymptotics as N → ∞. Infill asymptotics assume

that the number of observations between all changepoints tends to infinity and have

been previously studied in the multiple changepoint detection literature. For exam-

ple, Davis et al. (2006) prove that when the true value of m is known, their MDL

for piecewise autoregressive processes is a consistent model selector. Du et al. (2015)

prove a similar result for their marginal likelihood maximizer under independent ob-

servations, while relaxing the condition that the true m is known. Here, an analogous

result for our BMDL is proven, which allows autocorrelation, seasonality, and an

unknown true value of m.

A relative changepoint configuration of m changepoints is denoted by λ =

(λ1, λ2, . . . , λm)′, where 0 < λ1 < λ2 < · · · < λm < 1. Here, time is scaled to [0, 1]

by mapping time t to t/N . For example, λ1 = 0.1 means the first changepoint occurs

10% into the data record. For the edges, set λ0 = 0 and λm+1 = 1. For a fixed

N , the rth changepoint location τr can be recovered from λ via τr = bλrNc. For

r ∈ {1, 2, . . . ,m+ 1}, the length of the rth regime Nr = bλrNc − bλr−1Nc satisfies

lim
N→∞

Nr

N
= λr − λr−1. (2.43)
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For any λ, no changepoints occur in t ∈ {1, 2, . . . , p} when N is large.

Suppose, the relative changepoint configuration is λ0 = (λ0
1, λ

0
2, . . . , λ

0
m0)′ in

truth. True parameter values are superscripted with zero. Our goal is to identify

λ0 over many models. In fact, for a (fixed) large integer M , all relative changepoint

configurations in

Λ = {λ : 0 ≤ m ≤M, min
r=1,2,...,m+1

λr − λr−1 ≥ d}

are considered, where d is a small positive constant, smaller than λ0
r − λ0

r−1 for all

r ∈ {1, 2, . . . ,m0 + 1}. We assume that m0 ≤ M ; hence, λ0 ∈ Λ. Between the true

model λ0 and any other model λ ∈ Λ, the pairwise difference of their BMDLs in

(2.37) or (2.38) is used to decide which model is favorable.

Theorem 2.4.1. In the univariate case, for any relative changepoint configuration

λ ∈ Λ, if λ 6= λ0, then as N →∞,

BMDL (λ)− BMDL
(
λ0
) P−→∞. (2.44)

More specifically, if all relative changepoints in λ0 are contained in λ, then the BMDL

difference in (2.44) is OP (logN); otherwise, it is OP (N).

A proof of Theorem 2.4.1 is provided in Appendix A. This theorem shows that

asymptotically, the true relative changepoint model λ0 achieves the smallest BMDL

in probability among all competing models in Λ. An implication of the result is

that it is possible to consistently identify the true changepoint configuration in the

limit. While this result is proven for the univariate case, a similar bivariate result is

expected.
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2.5 A Simulation Study

This section studies the BMDL’s changepoint detection performance under

finite samples via simulation. Our simulation parameters are selected to roughly

mimic the Tuscaloosa data. Specifically, the bivariate error series {εt} follows a zero

mean Gaussian VAR model with p = 3. The VAR parameters are taken as

Φ1 =

 0.2 0.02

0.02 0.2

 ,Φ2 =

 0.1 0.01

0.01 0.1

 ,Φ3 =

 0.05 0.005

0.005 0.05

 ,

and

Σ =

 9 2

2 9

 .

In each of 1000 independent runs, 50 year monthly Tmax and Tmin series

(N = 600) are simulated with m = 3 changepoints in each series. For the Tmax

series, mean shifts are placed at times 150, 300, and 450. The regime means have form

µ1 = (0,∆, 2∆, 3∆)′ where ∆ > 0 will be varied. For the Tmin series, mean shifts are

placed at times 150, 300, and 375. The regime means are µ2 = (0,−∆,∆, 0)′. Here,

Tmax has monotonic “up, up, up” shifts of equal shift magnitudes; Tmin shifts in

a “down, up, down” fashion and the second shift is twice as large as the other two

shifts. The shifts at times 150 and 300 are concurrent in both series; the shift at time

150 moves Tmax upwards and Tmin downwards.

Seasonal means are set to s = (0, 3, 10, 18, 26, 33, 36, 36, 31, 20, 8, 2)′ in both

series. Seasonal mean parameters are not critical, but the ∆ parameter controlling

the mean shift size is. Our detection powers will be reported under different signal

to noise ratios, which is defined as κ = ∆/σ. We will examine κ ∈ {1, 1.5, 2}, where

σ = 3. For metadata, a record containing four documented changes at the times
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Figure 2.3: A simulated dataset with three changepoints in Tmax (top panel) and
three changepoints in Tmin (bottom panel). Vertical dashed lines mark the true
changepoint times.

75, 150, 250, and 550 is posited. Among the documented times, only time 150 is a

true changepoint. A simulated series with κ = 1.5 is shown in Figures 2.3. Figure

2.4 shows the same series after subtraction of sample monthly means.

2.5.1 Univariate simulations

Each Tmax and Tmin series is fitted via univariate BMDL methods, once

without metadata and once with it. In each fit, a Metropolis-Hastings chain of 100,000

iterations is generated. The optimal multiple changepoint model is taken as the one

with the smallest BMDL. All hyper-parameters are set to default values.

For Tmax series, empirical detection percentages (at their exact times) are

reported in the top half of Table 2.1. Since the three shifts are of equal size ∆,

the detection rates should be similar, as the top panel in Figure 2.5 confirms. The
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Figure 2.4: The Figure 3 series after subtracting sample monthly means. Vertical
dashed lines mark the true changepoint times.

average false detection rate of non-changepoint times is very low; when κ = 1, this

false positive rate is only 0.4%.

Use of metadata substantially increases detection power. In Figure 2.5, the

true documented change at time 150 is detected 76.2% of the time when metadata

is used, more than twice as high (36.1%) when metadata is eschewed. Moreover,

times near the changepoint at time 150 are less likely to be flagged as changepoints.

Our prior belief that metadata times are more likely to be changepoints is important,

especially when the mean shift is small: when κ = 1, using metadata increases the

detection rate of the time 150 changepoint from 15.2% to 57.4%. On the other hand,

Figure 2.5 shows that using metadata does not substantially increase false positives

(the prior distribution likely does not overwhelm the data). Table 2.1 shows that the

average detection rates of the three metadata times that do not induce mean shifts
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Figure 2.5: Detection times and percentage of changepoints in Tmax series using
univariate BMDL methods. The top panel ignores the four metadata times; the
bottom panel uses the metadata. Metadata times are marked as crosses on the axis.
The results are aggregated from 1000 independent simulated Tmax series simulated
with κ = 1.5.

— times 75, 250, and 550 — are similar to the overall false positive rates; the latter

even drop after using metadata.

The number of estimated changepoints is also studied. Table 2.2 reports, with

or without metadata, the correct number of changepoints (m = 3) is estimated in

more than 60% of the runs when κ = 1, and in more than 98% of the runs when

κ = 1.5 and κ = 2. Metadata use slightly increases accuracy.

For Tmin series, the non-monotonic shift aspect (down, up, down) that trouble

AMOC binary segmentation approaches (Li and Lund, 2012) is well handled by our

BMDL method. The top half of Table 2.3 shows that when metadata is ignored, the

larger shift at time 300 is more easily detected than the two smaller shifts at times

150 and 375. When metadata is used, the detection rate of the shift at time 150 is
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Table 2.1: Changepoint detection percentage for Tmax, aggregated from 1000 simu-
lated series.

True positive False positive
κ Metadata t = 150 t = 300 t = 450 average avg(meta) t = 375

Univariate

1.0
no 15.2 15.5 16.4 0.4 0.0 0.1
yes 57.4 17.4 15.3 0.3 0.4 0.0

1.5
no 36.1 41.4 37.7 0.3 0.0 0.0
yes 76.2 41.1 37.4 0.2 0.1 0.0

2.0
no 54.3 59.5 57.4 0.2 0.0 0.0
yes 84.1 59.1 57.6 0.2 0.0 0.0

Bivariate

1.0
no 36.5 55.2 11.4 0.4 0.0 8.3
yes 60.7 54.5 11.5 0.3 0.0 6.8

1.5
no 66.7 82.9 33.9 0.2 0.0 10.8
yes 81.1 82.2 34.2 0.2 0.0 7.3

2.0
no 84.7 94.8 55.6 0.1 0.0 6.2
yes 92.1 93.5 55.9 0.1 0.0 3.7

comparable to the detection rate of the mean shift at time 300, which is twice as

large, but is not a metadata time. False positive rates are uniformly low. Table 2.4

shows that when κ = 1, the correct number of changepoints (m = 3) is estimated

over 76% of the time; when κ = 1.5 and κ = 2, this rate increases to over 98%.

2.5.2 Bivariate fits

Each bivariate series is fitted by a MCMC chain of 50,000 iterations — once

without metadata, and once with metadata. Metadata impacts are similar to the

univariate case, increasing the detection rates of the true metadata times and also

slightly decreasing overall false positive rates (see the bottoms of Tables 2.1 and 2.3).

As concurrent shifts are believed more likely to occur, bivariate methods should

enhance detection power of concurrent changepoints. Figure 2.6 shows the bivariate

detection rates when κ = 1.5. At time 150, where Tmax (Tmin) shifts ∆ (−∆),
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Table 2.2: Empirical percentage of estimated number of changepoints m for Tmax,
aggregated from 1000 independent simulated series.

κ Metadata 0 1 2 3 4 5 ≥ 6
Univariate

1.0
no 0.0 4.4 33.0 60.0 2.5 0.1 0.0
yes 0.0 2.7 32.6 62.8 1.9 0.0 0.0

1.5
no 0.0 0.0 0.0 98.0 2.0 0.0 0.0
yes 0.0 0.0 0.0 98.4 1.6 0.0 0.0

2.0
no 0.0 0.0 0.0 98.2 1.8 0.0 0.0
yes 0.0 0.0 0.0 98.3 1.6 0.1 0.0

Bivariate

1.0
no 0.0 0.2 1.9 78.0 18.7 1.2 0.0
yes 0.0 0.0 4.1 80.2 14.9 0.8 0.0

1.5
no 0.0 0.0 0.0 71.3 27.9 0.8 0.0
yes 0.0 0.0 0.0 83.0 16.0 0.7 0.3

2.0
no 0.0 0.0 0.0 87.9 11.6 0.5 0.0
yes 0.0 0.0 0.0 93.4 6.1 0.5 0.0

the bivariate BMDL increases the univariate detection rate from about 77% to above

81%. At time 300, where Tmax (Tmin) shifts by ∆ (2∆), the detection rate for Tmax

increases from 41.1% to 82.2%. Tables 2.1 and 2.3 show that detection power gains

under the bivariate approach are greater for small κ: when κ = 1, without metadata,

the bivariate BMDL increases detection rates at time 150 from 15.2% to 36.5% for

Tmax, and from 18.8% to 36.2% for Tmin. Furthermore, the detection rate at time

300 for Tmax increases from 15.5% to 52.2%.

An interesting phenomenon is observed: bivariate methods improve univariate

methods more when the concurrent shifts move the series in opposite directions. For

example, at time 150, where the mean of Tmax rises and the mean of Tmin drops,

the bivariate approach increases the detection rates for both Tmax and Tmin. In

contrast, at time 300, where Tmax and Tmin both shift upwards, bivariate meth-

ods substantially improve Tmax detection, whose absolute shift size is ∆; however,

it hardly improves Tmin detection, where the mean shift is larger (2∆). This phe-
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Table 2.3: Changepoint detection percentage for Tmin, aggregated from 1000 simu-
lated series.

True positive False positive
κ Metadata t = 150 t = 300 t = 375 average avg(meta) t = 450

Univariate

1.0
no 18.8 52.3 14.3 0.3 0.0 0.0
yes 61.3 52.8 14.1 0.2 0.1 0.0

1.5
no 36.7 84.3 39.2 0.2 0.0 0.0
yes 77.3 84.6 38.2 0.2 0.0 0.0

2.0
no 58.3 95.4 56.4 0.2 0.0 0.0
yes 85.3 95.4 56.1 0.1 0.0 0.0

Bivariate

1.0
no 36.2 55.3 10.2 0.4 0.0 9.6
yes 60.1 54.9 9.5 0.3 0.0 8.7

1.5
no 66.4 83.4 34.2 0.3 0.0 21.3
yes 81.2 83.0 33.0 0.2 0.0 15.2

2.0
no 84.8 95.1 54.9 0.2 0.0 32.1
yes 92.0 94.8 57.8 0.1 0.0 16.2

nomenon is explainable: Tmax and Tmin are positively correlated series. Hence,

concurrent shifts in the same direction may be misattributed to positively correlated

errors; this cannot happen when the the two series shift in opposite directions.

Overall, while bivariate detection does not induce more false positives, it tends

to flag more false positives at locations where the mean in the other series shifts.

Figure 2.6 shows that at time 375, a changepoint time in Tmin but not in Tmax,

a false detection rate of 7.3% for Tmax is obtained. At time 450, a changepoint in

Tmax but not Tmin, a false detection rate of 15.2% is obtained for Tmin. These

false positive rates likely degrade inferences at nearby changepoints; for example, at

time 450 for Tmax and time 375 for Tmin, detection rates are 34.2% and 33.0%,

respectively, slightly lower than the 37.4% and 38.2% reported in the univariate case.

Finally, the bottom halves of Tables 2.2 and 2.4 show that bivariate approaches tend

to overestimate m, which differs from univariate methods.
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Table 2.4: Empirical percentage of estimated number of changepoints m for Tmin,
aggregated from 1000 independent simulated series.

κ Metadata 0 1 2 3 4 5 ≥ 6
Univariate

1.0
no 6.5 1.8 14.0 76.3 1.2 0.2 0.0
yes 5.7 0.9 14.7 78.1 0.5 0.1 0.0

1.5
no 0.0 0.0 0.0 98.1 1.6 0.3 0.0
yes 0.0 0.0 0.2 98.4 1.2 0.2 0.0

2.0
no 0.0 0.0 0.0 98.5 1.4 0.1 0.0
yes 0.0 0.0 0.0 98.8 1.1 0.1 0.0

Bivariate

1.0
no 0.8 0.0 2.2 76.3 19.6 1.1 0.0
yes 1.0 0.2 3.9 78.2 15.6 1.1 0.0

1.5
no 0.0 0.0 0.0 41.2 56.6 2.1 0.1
yes 0.0 0.0 0.0 63.9 34.5 1.1 0.5

2.0
no 0.0 0.0 0.0 42.5 56.2 1.1 0.2
yes 0.0 0.0 0.0 72.8 26.5 0.7 0.0

2.6 The Tuscaloosa Data

The monthly Tuscaloosa data in Section 2.1.1 will now be analyzed. Results

for univariate and bivariate BMDLs, with and without metadata, will be reported. All

hyper-parameters are set to default values and p = 2 is judged appropriate. Justifying

the AR order further, Figure 2.7 plots sample autocorrelation of residuals fitted by

univariate BMDL methods with p = 2 with pointwise 95% confidence bands. Almost

all residual autocorrelations lie inside the confidence bands.

To ensure MCMC convergence in the search algorithm, for each fit, 50 Markov

chains are generated from different starting points, each containing one million (uni-

variate) or 100,000 (bivariate) iterations. Among all changepoint models visited by

the 50 Markov chains, the one with the smallest BMDL is reported as the optimal

model.
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Figure 2.6: Detection percentages of Tmax (top panel) and Tmin (bottom panel)
using bivariate BMDL methods with metadata (metadata times are marked as crosses
on the axis). Numerical percentages on the graphic are for detection at “their exact
time”. The results are aggregated from 1000 independent Tmax series simulations
with κ = 1.5.

2.6.1 Univariate fits

The top half of Table 2.5 displays detected changepoints for the univariate

series without using our reference series. When metadata is ignored, Tmax has two

estimated changepoints and Tmin has three; of these, only January 1990 is a con-

current change. Another changepoint is approximately concurrent — March 1957

for Tmax and July 1957 for Tmin. The 1918 changepoint flagged for Tmin is close

to the station relocation in November 1921; the station relocation in June 1956 and

the equipment change in November 1956 are near the two estimated changepoints

in 1957. The metadata time in May 1987 is about three years from the concur-

rent changepoints flagged in January 1990. Of course, when metadata is ignored,
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Figure 2.7: Sample model residual autocorrelations for Tmax (top panel) and Tmin
(bottom panel), fitted using the univariate BMDL with metadata and p = 2.

estimated changepoint times may not coincide (exactly) with metadata times.

Repeating the above analysis with metadata (this still ignores our reference

series), two changepoints are found in Tmax and three in Tmin. The estimated

changepoint times now coincide with metadata times. Only the May 1987 changepoint

is concurrent. Between Tmax and Tmin, the two estimated changepoints in 1956 (i.e.,

the two metadata times in 1956) are just a few months apart. As parameter estimates

are similar with or without metadata, only estimates for the optimal changepoint

model using metadata are reported. For Tmax, estimated regime means are (standard

errors in parentheses) µ̂2 = −1.50 (0.24) and µ̂3 = 0.66 (0.25) (recall that µ1 = 0);

estimated AR(2) coefficients are φ̂1 = 0.21, φ̂2 = 0.05, and σ̂2 = 11.59. For Tmin, the

estimated parameters are µ̂2 = 1.76 (0.21), µ̂3 = −1.06 (0.22), µ̂4 = 2.35 (0.24), φ̂1 =

0.18, φ̂2 = 0.05, and σ̂2 = 10.81. The concurrent May 1987 changepoint shifts both
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Table 2.5: Estimated changepoints for the Tuscaloosa data.
Metadata Series Estimated changepoints

Univariate

no
Tmax 1957 Mar, 1990 Jan
Tmin 1918 Feb, 1957 Jul, 1990 Jan

yes
Tmax 1956 Nov, 1987 May
Tmin 1921 Nov, 1956 Jun, 1987 May

Bivariate

no
Tmax 1918 Feb, 1957 Jul, 1988 Jul
Tmin 1918 Feb, 1957 Jul, 1988 Jul

yes
Tmax 1921 Nov, 1956 Jun, 1987 May
Tmin 1921 Nov, 1956 Jun, 1987 May

series to warmer regimes.

2.6.2 Bivariate fits

The analyses are repeated using both series in tandem. Three changepoints

are detected in both series, with or without metadata, and all are concurrent (see the

bottom half of Table 2.5). Figure 2.1 shows the optimal bivariate BMDL changepoint

configuration. When metadata is used, all estimated changepoint times migrate to

metadata times. Comparing to the univariate results, the bivariate approach yields

the same changepoint configuration for Tmin; for Tmax, a new changepoint in Novem-

ber 1921 is flagged and the November 1956 changepoint moves to June 1956, thus

becoming a concurrent change. For this changepoint configuration, the estimated

VAR parameters are

Φ̂1 =

 0.21 −0.01

−0.02 0.20

 , Φ̂2 =

 0.06 −0.02

−0.04 0.08

 ,
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and

Σ̂ =

 11.56 8.13

8.13 10.81

 .

Finally, the target minus reference series are analyzed using the bivariate

BMDL and Tuscaloosa’s metadata record. Climatologists trust target minus ref-

erence analyses more than target analyses alone because the target minus reference

comparison reduces variabilities and trends. As shown in Figure 2.2, the optimal

changepoint configuration for the difference series contains 12 concurrent changes:

June 1914, January 1919, July 1933, July 1937, August 1937, October 1938, De-

cember 1938, June 1946, July 1946, November 1956, May 1987, and October 1996.

Among them, the 1956 and 1987 changepoints are in the metadata; the two change-

points in 1938 are close to the 1939 station relocation. The changepoints in 1919,

1933, and 1990 are also flagged by Lu et al. (2010). One of the shifts, November 1956,

moves the Tmax series warmer and the Tmin series colder.

Some of the changepoints may be due to typos in the raw record. Specifically,

the October and December 1938 changepoints are likely a recording error, whereby

the October and November 1938 Tmin values in the target minus reference series

appear to be abnormally high. While these series have been quality checked, some

errors still occur. This conjecture is made because the three references stations lie in

various directions from Tuscaloosa; climatologically, series to the north and west of

Tuscaloosa should be cooler and those to the south and east should be warmer. In this

case, Tuscaloosa was significantly warmer than all references. Similar statements may

apply to the two “outlier” changepoints in 1937, and the two changepoints in 1946,

where the Tmin records for Tuscaloosa are lower than those for all three reference

stations. It is interesting that MDL methods pick up these outliers.

It is natural to flag more changepoints in the target minus reference series
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than the target series alone. An ideal reference series should have the same trend and

seasonal cycles as the target series and be free of artificial mean shifts. This said,

we do not assume that the target minus reference comparison completely removes

the monthly mean cycle; indeed, Liu et al. (2015) shows that this is seldom the case.

Reference series selection is a problem currently studied by climatologists. As our

reference series averages three neighbor stations, mean shifts in any of the reference

records may induce shifts in the target minus reference series. For example, the

estimated changepoint in 1914 is close to the 1915 metadata time of the Aberdeen

reference. This said, averaging three neighbors should help mitigate the effects of

changepoints in any individual reference series.

2.7 Discussion

This chapter developed a multiple changepoint detection approach amenable

to metadata. MDL penalization methods were modified to accommodate various

prior distributional specifications. The theory was used to detect mean shifts in uni-

variate autoregressive processes with seasonal means, and then extended to bivariate

VAR settings. The methods have several advantages, including simple parameter

elicitation, asymptotic consistency, and efficient computation.

The approach can be extended to accommodate more flexible error structures

including moving averages, periodic autoregressions, and more than two series. The

methods could also be tailored to categorical data. With count data, the likelihood

could be Poisson-based. With a conjugate Gamma prior, the resulting marginal

likelihoods will again have closed forms. There is no technical difficulty in allowing a

background linear trend, or even piecewise linear trends. This said, linear trends can

be mistaken for multiple mean shifts should trends be present and ignored (Li and
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Lund, 2015).

Non-MCMC stochastic search methods are possible. The genetic algorithms

popular in multiple changepoint MDL optimizations can also be used to minimize the

BMDL. When no global parameters exist in the likelihood (i.e., independent obser-

vations, no seasonal cycle, error variance known), dynamic programming techniques

can further accelerate computational speed.
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Chapter 3

Homogenization of Daily

Temperature Series

3.1 Multiple Changepoint Models for Daily Data

Our object of interest is a daily temperature series. Such series display auto-

correlation, seasonal means, trends, and possible multiple mean shifts at changepoint

times. A model that captures the above features will now be devised. We consider

data X = (X1, . . . , XN)′ recorded daily. Here, N = dT , where T = 365 is the period

of the series and d is the number of years of data. We assume data for d complete

years to avoid trite work. The season (day of year) is indexed by ν ∈ {1, 2, . . . , T}.

The notation XnT+ν refers to the observation during the νth day of the nth year,

for years n = 0, 1, . . . , d − 1. With daily data, leap year observations are omitted to

enforce the period T = 365.

Our fundamental model is a linear regression with seasonality, trends, multiple
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possible mean shifts, and periodic random errors:

XnT+ν = µν + α(nT + ν) + δnT+ν + εnT+ν . (3.1)

Here, µν is the mean temperature on day ν (neglecting the trend and mean shifts).

We assume that the linear trend parameter, α, is time-homogeneous; other trend

structures can be accommodated, but this is seldom necessary when examining target

minus reference series as the subtraction greatly reduces any trends. The time-ordered

changepoints are denoted by τ1 < τ2 < · · · < τm, where m is the unknown number

of changepoints. The changepoint structure can be described by a binary indicator

vector η = (η2, . . . , ηN)′, with

ηt =


1, if time t is a changepoint

0, otherwise

.

This model enables 2n−1 distinct changepoint models.

The m changepoints in η partition the series into m+ 1 distinct regimes. The

kth regime consists of the observations from the times t with τk−1 ≤ t < τk for

k = 1, 2, . . . ,m+ 1. We take τ0 = 0 and τm+1 = N + 1 for edge notations. In regime

j ≥ 2, ∆j is how much the mean has shifted relative to the first regime (neglecting

the seasonal cycle and the trend). For parameter identifiability, ∆1 = 0 is imposed.

Define a vector ∆ = (∆2, . . . ,∆m+1)′ whose entries are the mean shift pa-

rameters that need to be estimated. The component {δnT+ν} in (3.1) has the shift

structure
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δt =



∆1 = 0, τ0 ≤ t < τ1

∆2, τ1 ≤ t < τ2

...

∆m+1, τm ≤ t < τm+1

.

The shift from regime j to regime j + 1 changes mean temperatures by ∆j+1 − ∆j

degrees.

The model errors {εnT+ν} have zero mean and are correlated. Daily tempera-

tures are in fact heavily correlated, with consecutive days often having correlation on

the order of 0.7. As winter temperatures are some 2 to 5 times more variable than

summer temperatures in the United States (as measured by standard deviation), a

first order periodic autoregressive time series (PAR(1)) (Lund et al. (1995)) will be

used for the regression errors. A PAR(1) time series indeed has autocorrelation and

periodic variances. A time series {εt} is said to be a PAR(1) series with zero mean if

it satisfies the seasonal difference equation

εnT+ν = φ(ν)εnT+ν−1 + ZnT+ν . (3.2)

Here, φ(ν) is the autoregressive parameter during day ν. In (3.2), {ZnT+ν} is zero

mean periodic white noise with variance σ2(ν) = Var(ZnT+ν).

Our model has the changepoint parametersm; τ1, τ2, . . . , τm, the seasonal means

µ1, . . . , µT , the linear trend α, the mean shifts ∆2, . . . ,∆m+1 and the time series

PAR(1) parameters φ(1), . . . , φ(T ) and σ2(1), . . . , σ2(T ). In next section, we intro-

duce a Bayesian MDL objective function, which is subsequently minimized to estimate

an optimal configuration.
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3.2 Bayesian Minimum Description Lengths (BMDLs)

This section develops an objective function that can be minimized to obtain

an estimate of the unknown changepoint configuration η. The task is similar to the

derivation in Li et al. (2015) for monthly data; however, because such derivations are

lengthy, we will only list the end objective function. This said, the derivation needed

is slightly different from Li et al. (2015) since {εt} has periodic components here.

The MDL principle will be used as our model selection criteria. An MDL objec-

tive function is a penalized likelihood with a smart penalty tailored to the changepoint

problem. The MDL penalty has an analogous role to Akaike Information Criterion

(AIC) and the Bayesian information criterion (BIC) penalties, but differs from them

in that it is more than a simple multiple of the number of changepoint parameters. In

fact, the MDL penalty depends on how far the changepoints lie from one and other.

The MDL penalty was developed in Rissanen (1989) from information theory. Among

a class of plausible models, the MDL principle seeks the model with the shortest so-

called description length. Better models should have shorter description lengths. For

more background, see Hansen and Yu (2001) and Grünwald et al. (2005). The MDL

principle has been utilized in climate changepoint detection (Davis et al. (2006); Li

and Lund (2012); Lu et al. (2010)). In fact, Li et al. (2015) developed a new MDL

technique (a Bayesian MDL) that uses metadata. Here, these methods are modified

for daily data.

For a given changepoint configuration η with at least one changepoint, the

Bayesian MDL objective function is
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BMDL(η) =
m

2
log(κg2) +

1

2

N∑
t=1

log(σ2(t)) +
1

2
log(|B|) +

1

2

N∑
t=1

Y 2
t

σ2(t)
− 1

2
b′B−1b

− log [Γ(1 +m1)Γ(β1 + n1 −m1)Γ(1 +m2)Γ(β2 + n2 −m2)] . (3.3)

In the above, Γ(x) is the Gamma function at the argument x, the logarithm is natural-

based, and |B| is the determinant of the matrix B. The optimal changepoint configu-

ration is obtained as the η that minimizes BMDL(η). For each candidate changepoint

configuration η, the mean shift, trend, and time series parameters are not too difficult

to optimally estimate. That this procedure works will be shown in our forthcoming

simulation section.

Our next objective is to explain what the parameters in (3.3) represent. To-

ward this, the prediction residuals {Yt}Nt=1 are computed from

Yt = [Xt − µt − αt]− φ(t)[Xt−1 − µt−1 − α(t− 1)],

with the convention that Y1 = X1 − µ1 − α. During the jth regime,

aj =

τj−1∑
t=τj−1

1

σ2(t)
+

τj−1∑
t=τj−1

φ2(t+ 1)

σ2(t+ 1)
− 2

τj−1∑
t=τj−1+1

φ(t)

σ2(t)
,

bj =

τj−1∑
t=τj−1

Y (t)

σ2(t)
−

τj−1∑
t=τj−1

Yt+1φ(t+ 1)

σ2(t+ 1)
,

and cj = φ(τj−1)/σ2(τj−1). Also, b = (b2, . . . , bm+1), and B is an m ×m symmetric

matrix with form
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B =



a2 + 1
κg2

−c3 0 · · · 0

−c3 a3 + 1
κg2

−c4 · · · 0

...
...

. . .
...

...

0 0 · · · −cm+1 am+1 + 1
κg2


.

Finally, m1 and m2 are the number of undocumented and documented changepoints,

respectively. Thus, the total number of changepoints is m = m1 +m2. Moreover, n2

is the number of metadata points and n1 = N−n2. The parameter κ > 0 is any large

constant; it is thought of in units of standard deviation. Our default takes κ = 5.

Li et al. (2015) show that the MDL in (3.3) can be written as BMDL(η) =

L(X | η)+L(η). The first five terms in (3.3) are L(X | η), and the last term is L(η):

L(X | η) =
m

2
log(κg2) +

1

2

N∑
t=1

log(σ2(t)) +
1

2
log |B|+ 1

2

N∑
t=1

Y 2
t

σ2(t)
− 1

2
b′B−1b,

L(η) = − log [Γ(1 +m1)Γ(β1 + n1 −m1)Γ(1 +m2)Γ(β2 + n2 −m2)] .

In these equations, means shifts are assumed normal and independent: ∆ ∼

N(0, κg2Im), where g2 = [
∏T

ν=1 σ
2(ν)]

1
T is the geometric mean of σ2(1), . . . , σ2(T ).

The description length of the changepoint configuration η is L(η). This is where

metadata is used. Elaborating, a beta-binomial prior is put on η. This prior assumes

that 1) each undocumented time is a changepoint with probability ρ1, that 2) each

documented time is a changepoint with probability ρ2, and 3) documented times are

more likely than undocumented times to be changepoints: ρ2 > ρ1. In the absence

of information beyond the metadata record, changepoints declarations at all distinct

time points are assumed to be statistically independent. In a Bayesian hierarchical

fashion, the parameter ρ1 is modeled as Beta(1,β1) random variate; ρ2 is modeled as
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a Beta(1,β2) variate. Our default values take β1 = 365/.06 and β2 = 4. This makes

E[ρ1] = 1/(1 + 365/.06) ≈ .06/365 (approximately six changepoints per century) and

E[ρ2] = 1/(1 + 4) = 0.2 (one out of every five metadata times induces a true mean

shift). As one will see in our next simulation section, it is not important to specify

these parameters exactly.

The BMDL for the changepoint configuration with no changepoints, denoted

by η0, is

BMDL(η0) =
1

2

N∑
t=1

log(σ2(t)) +
1

2

N∑
t=1

Y 2
t

σ2(t)
− log [Γ(β1 + n1)Γ(β2 + n2)] . (3.4)

This allows one to compare models with changepoints to models with no changepoints

and fixes an issue with the methods in Davis et al. (2006); Li and Lund (2012), where

the term ln(m) arises (this is undefined for the no changepoint configuration when

m = 0). The first two terms in (3.4) are the description length of the data and the

last term is the description length of the changepoint configuration. In next section,

we discuss minimizing the BMDL over all possible changepoint configurations, which

yields our estimated changepoint model.

When computing a BMDL for changepoint configuration, φ(ν) and σ2(ν) are

replaced by their Yule-Walker estimators (Lund et al., 1995). The seasonal means

µ1, . . . , µT and the linear trend α are also replaced by their estimates, which are

computed via ordinary least squares.
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3.3 BMDL Minimization

The best changepoint configuration is the one(s) that minimizes the BMDL

score. A naive approach to finding this configuration is to perform an exhaustive

search. Such an approach requires
(
N−1
m

)
BMDL model fits when η has m change-

points at unknown locations. Summing this count over m = 0, 1, . . . , N − 1 and

applying the binomial theorem shows that there are 2N−1 distinct BMDL evaluations

to perform in an exhaustive search. Thus, for a century of daily data, 236500 BMDL

evaluations need to be conducted, an impossible task on even the world’s fastest com-

puters. Hence, an efficient optimization algorithm is needed to find the best model.

For this, a genetic algorithm (GA), which is an intelligent random walk search that

is unlikely to visit suboptimal changepoint configurations, is devised to perform the

minimization.

GAs are popular optimization tools (Goldberg and Holland (1988)), inspired

by natural selection and genetics. Like Darwin’s theory of evolution, GAs have aspects

of genetic evolution that allow the fittest models to survive in a stochastic random

walk search. GAs usually converge to global optimums. Beasley et al. (1993) compares

GAs to traditional optimization methods such as gradient step and search methods

and simulated annealing.

GAs encode each model as a chromosome. Here, a chromosome is repre-

sented by a binary indicator vector η = (η2, . . . , ηN) as in Section 2. The number of

changepoints is m =
∑N

t=2 ηt and the changepoint locations τ1, . . . , τm are the non-

zero positions in η. The GA begins with a randomly generated initial population

of chromosomes (as described below) and evaluates the BMDL score at each gen-

erated chromosome. The GA then simulates successive generations of chromosomes

via a series of operations: parent selection, crossover, and mutation. Chromosomes

54



with smaller BMDLs are viewed as fitter and are more likely to bear children. From

each generation, two chromosomes (parent chromosomes) are selected. These parent

chromosomes are combined (crossover) in a manner described below to form a new

chromosome called a child. The child’s chromosome is allowed to mutate (in a manner

described below) before joining the next generation. This process is repeated until a

preset number of children are produced for the generation. The resulting population

of children is referred to as the next generation. A pre-specified number of generations

are often simulated. If done right, the overall fitness of the population, which is the

BMDL score of the fittest individual in the generation, converges to the best possible

model. Details to implement this algorithm are now given.

Initial Generation

An initial population often simply simulates a set of chromosomes at random.

Here, each position in a chromosome is allowed to be a changepoint with some preset

probability. For daily data, this probability is set to be 6/36500 (following Mitchell

(1953), this is 6 changepoints per century). While small generation sizes could induce

premature convergence, larger generation sizes slow the algorithm down. After some

experimentation, a generation size of 150 was used here.

Parent Selection

Once the initial generation is simulated, parent (mother and father chromo-

somes) are selected to breed. To generate fitter offspring, a parent selection technique

is needed. Such a technique should be more likely to choose the fitter individuals to

breed children. Several selection mechanisms are listed in Beasley et al. (1993). Here,

a linear ranking is used to select the parents from the 150 chromosomes. First, the 150
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chromosomes’ BMDL score is ranked in descending order; the chromosome with the

highest BMDL has rank 1 and the chromosome with the smallest BMDL has rank 150.

Parents are chosen with probabilities proportional to their ranks: if the rank of the ith

chromosome is Ri, it is selected as a father with probability Ri/
∑150

j=1Rj = Ri/11, 325.

The most fit chromosome has a 0.1324 chance of being selected as father; the least

fit chromosome has a 0.00008809 chance. Mothers are then selected in the same way

from all non-father chromosomes.

Crossover

Crossover mechanisms combine mother and the father chromosomes in a ran-

dom manner to generate a child chromosome. The child chromosome ideally contains

changepoint characteristics of both parents. Our crossover mechanism allows change-

points in either parent to be changepoints of the child. The general idea is best

illustrated with an example: suppose the mother chromosome is η1 = (0, 1, 0, 1, 0, 0)

and the father chromosome is η2 = (0, 0, 0, 1, 0, 1). Here, N = 6, the mother has

changepoints at times 2 and 4, and the father has changepoints at times 4 and 6.

The child chromosome is first set to have changepoints of either mother or father:

(0, 1, 0, 1, 0, 1). At this point the child can have more chromosomes than the mother

or father. Hence, some of the child’s chromosomes are randomly discarded. With

the aforementioned child chromosome, a fair coin is flipped three times (one at each

of the three changepoint times) and all changepoints with tails are discarded. If the

resulting sequence is heads, tails, heads, then the second changepoint at time 4 is

discarded and the resulting chromosome becomes (0, 1, 0, 0, 0, 1).

Since the number of distinct changepoint configurations is enormous, change-

point locations are perturbed to speed algorithm convergence. Here, the location of
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any changepoint is shifted via an integer-valued random variable with zero mean. To

execute this, two independent Poisson random numbers D1 and D2 are generated at

each changepoint time; the changepoint’s location is shifted D1 −D2 time units. For

example, a chromosome containing three changepoints might see Poisson differences

of −1, 0, and 3, respectively. Then the first changepoint is shifted downward one day,

the second changepoint time is not shifted, and the third changepoint time is shifted

upward three days. Should any of the shifted times be less than day 1 or more than

day N , the changepoint is eliminated. Choosing the best Poisson parameter (λ) is

tricky. In early generations, a larger λ is needed to explore new changepoint locations;

in later generations, a smaller value of λ is preferred to slightly tune the likely good

changepoint configurations being explored in the current models. The λ parameter

is described further below.

Mutation

Each child is allowed to mutate after crossover. Mutation changes randomly

selected bits of each chromosome. If mutation is not allowed, the GA can hone

in to a local BMDL minimum; with mutation, radically different chromosomes are

continually explored. Mutation essentially ensures the exploration of whole change-

point configuration space, maintaining a diversity of the chromosome population and

preventing pre-mature algorithmic convergence. Our mutation mechanism selects a

random number of locations and flips the changepoint of the child at each of these

selected locations. For example, if position 100 is chosen for mutation and is not

a changepoint in the child, it is flipped to a changepoint; should time 100 already

be a changepoint, it is flipped to a non-changepoint. In our algorithm, each time is

allowed to mutate independently with very small probability (described below). In
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many chromosomes, no mutation occurs.

Islands and Migration

There are 2N−1 (day one cannot be a changepoint) distinct changepoint con-

figurations in a daily series of length N . Hence, the performance of a conventional

GA is relatively slow. To speed the convergence, we implement an island GA (Davis

(1991)) that allows some of the fitter chromosomes to migrate between islands. In

an island GA, populations are divided into several subpopulations, called islands.

GAs are run simultaneously on every island. The islands are largely isolated, but

migrations occur between islands every periodic now and again. This allows very

fit chromosomes to change islands. Migration increases chromosome diversity and

prevents the algorithm from converging to a local BMDL minimums. The migration

policy depends the number of islands, the migration rate (number of individuals to

migrate), and the migration interval (the frequency of migrations). Similar to Lu

et al. (2010), our migration policy replaces the least-fit individual on each island by

the best-fit individual of a randomly selected other island, once every five generations.

The GA is terminated when a prescribed stopping criteria is reached. The

most frequently used stopping criteria are that a pre-specified maximum number

of generations are reached, or the lack of improvement in the most fit member of

successive generations. The most fit chromosome of the last generation (among all

islands) is taken as the estimated changepoint configuration.

GA convergence depends on parameters such as the number of islands, the

generation size of each island, the mutation probability, and the Poisson parameter

λ. One does not have to tune these parameters optimally to get good results; however,

an efficient algorithm is usually appreciated. In our work in the next sections, the
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following parameter settings were used: 1) with 46 years of daily data, two islands

of size 75 were used, the mutation probability was set to 0.0001 and λ = 50. For 10

years of daily data, two islands of size 25 were used, the mutation probability was set

to 0.001, and λ = 10.

3.4 A Simulation Study

This section presents a simulation study to assess the performance of our

methods. We simulated one thousand series, each containing 10 years of daily data

(N = 3650). For application realism, the daily means and linear trend were set to

be those estimated values of the South Haven, Michigan daily temperature series

analyzed in the next section. The parameters of the PAR(1) model were set to those

estimated in the target minus reference series of the next section. Smooth sine curves

were then fitted to these seasonal parameters. Figure 3.1 graphically displays these

parameters. In each simulated series, the metadata record is posited changes at the

five times 456, 913, 1521, 3194 and 3346.

As a control run, one thousand series were simulated with no changepoints

and our methods were applied. An island GA with two islands was used to optimize

the BMDL. The results estimate 962 series with no changepoints, 33 series with one

changepoint, and five series with two changepoints. The false-alarm rate (3.8%) is

reasonably low.

Next, one thousand series were simulated with three true changepoints at

times τ1 = 913 (03-July-year 3), τ2 = 1825 (01-January-year 5), and τ3 = 2700 (26-

May-year 8). Here, the first changepoint is also a metadata point. The mean shifts

by 1.5, 2 and 3 degrees F at the three changepoint times, respectively. Figure 3.2

displays a simulated series and its corresponding seasonally adjusted series, where
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Figure 3.1: Autoregressive coefficients and periodic variances of the target-reference
series.

daily means are subtracted. The metadata points are marked as crosses on the axis.

Detection percentages are displayed in Figure 3.3. As expected, larger mean shifts

make changepoint detection easier: the third changepoint has the largest detection

count. Although the shift at τ2 is larger than the shift at τ1, the detection counts

are not considerably different. This is attributed to two reasons. First, since τ1 is

a metadata point, τ1 will be easier to flag as a changepoint, all other things being

equal. Second, τ1 occurs during summer, which is a season with less variability than

τ2 (a winter temperature). The higher winter variability makes changepoints harder

to detect (this scenario is explored further below). Among the 1000 simulated series,

the GA estimates the true number of changepoints correctly in 800 of the series. In

the remaining 200 cases, 152 of the series were estimated to have 2 changepoints, 36

series to have one changepoint, and 12 series to have 4 changepoints.

Finally, one thousand series with two changepoints at τ1 = 749 (January 20th-
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Figure 3.2: A simulated daily temperature series with three changepoints. The bot-
tom plot shows the same series with the daily sample mean subtracted. Vertical
dashed demarcate the three mean shift at times 913, 1825, and 2700.

year 3) and τ2 = 2755 (July 20th-year 3) were simulated. Both changepoints are

posited to be undocumented and shift the mean 1.5◦F upwards. Figure 3.4 displays

a simulated series and corresponding seasonally adjusted series. The histogram of

detection percentages is displayed in Figure 3.5. The detection rate of the January

changepoint is indeed 13% lower than the detection rate of the July changepoint.

Thus, winter changepoint detection is harder than summer changepoint detection.

The true number of changepoints (two) were correctly estimated in 797 runs; 104

series were estimated with one changepoint, 12 series to have 3 changepoints, and

87 series to have no changepoints. Again, the true number of changepoints were

estimated in about 80% of the runs.

In all simulation, an island GA with two islands of size 25 was applied to each
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Figure 3.3: Detection rates. The true mean shifts are at times 913, 1825, and 2700.
The detection rates spike around the true mean shift times, implying effective detec-
tion.

simulated series. Island GA conveged in less than 200 generations. For 200 iterations,

the computational time was about 9 minutes.

3.5 South Haven, Michigan Analysis

Figure 3.6 depicts average daily temperatures at South Haven, Michigan from

1953-01-01 to 1998-12-31 (46 years). The bottom plots shows seasonally adjusted

temperatures where a daily mean has been subtracted. Leap year data was omitted;

hence, there are 365 × 46 (16, 790) data points. The periodic mean cycle of the

daily temperatures in Figure 3.6 is evident; however, it is difficult to visually see

changepoints in these plots. To illuminate mean shifts and to lessen trends and

seasonal cycles, a reference series is often used (Menne and Williams Jr., 2005, 2009).
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Figure 3.4: A simulated temperature series with two changepoints. The bottom plot
shows the same series with daily mean subtracted. Vertical dashed lines demarcate
the two mean shifts at times 749 and 2755.

For the South Haven target series, reference series are available from the nearby

stations at Shelby, Benton Harbor, and Pellston Regional Airport. We use Benton

Harbor series as our reference since it is located on the eastern coast of Lake Michigan,

like South Haven. Figure 3.7 shows average daily temperature series and seasonally

adjusted temperatures at Benton Harbor.

The records at South Haven and Benton Harbor are mostly complete, but do

have a few sporadic missing data points (less than 1.3 % of the total record). For

simplicity, missing data was infilled in our four series (maximums and minimums at

the target and reference stations). To do this, a first-order vector autoregressive was

fitted to the four series in tandem. Missing data were infilled as the best one-step

ahead linear predictor. For example, if the maximum temperature of the reference
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Figure 3.5: Detection rates. The true mean shifts are at times 749 and 2755. The
detection rates spike around the true mean shift times, implying effective detection.

series at time t was missing, this point was estimated by its best one-step-ahead linear

predictor from all non-missing observations of the other three series at times t, t− 1,

and t+ 1. Runs of missing values were infilled one at a time.

Figure 3.8 plots the difference of daily average temperatures (daily average

temperatures are the average of maximum and minimum temperatures during the

day) at South Haven and Benton Harbor. The graph appears to have some mean

shifts, possibly attributable to either station. The metadata record of South Haven

lists a change in equipment on 1990-08-22; the metadata record of Benton Harbor doc-

uments two station relocations in 1993-12-08 and 1996-06-19. These three times were

used as metadata times in the analysis. The island GA algorithm with two islands,

75 changepoint models on each island, and 2000 generation iterations converged to a

changepoint configuration with 13 changepoints. The run time of this was about 19
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Figure 3.6: The South Haven daily average temperature series.

hours. The changepoint times and corresponding mean shifts are displayed in Table

1; figure 3.8 displays the fitted mean shift structure of the target minus reference

series. Among the 13 flagged changepoints, only the 1993-12-26 changepoint is close

to a metadata time (1993-12-08). Other metadata points have seemingly not induced

significant mean shifts. The estimated PAR(1) autoregressive coefficients and their

periodic variances are displayed in Figure 3.1. The estimated linear trend parameter

is −0.2208◦F per century. Seven of the shift move the series to colder regimes and

six to warmer regimes.

To complement the daily analysis, the annual target minus reference tem-

peratures in Figure 3.9 were analyzed. Here, a multiple changepoint model with

time-homogeneous autoregressive errors of order 1 was fitted to the data. A GA

was used to minimize the annual BMDL score and revealed six changepoints at

1955, 1956, 1992, 1994, 1995, and 1997. Figure 3.9 shows the changepoints of the an-
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Figure 3.7: The Benton Harbor daily average temperature series.

nual target-reference series. While 13 changepoints were found in the daily series,

only 6 changepoints were flagged in the annual analysis. One sees the extra precision

induced by examining daily series.

3.6 Comments

This paper modified the Bayesian MDL techniques of Li et al. (2015) to accom-

modate daily temperature series. A Bayesian MDL score was minimized to estimate

the best changepoint configuration. An island version of a GA was used as an nu-

merical optimization tool. The MDL score here accounts for trends, seasonal means,

autocorrelation, and seasonal variabilities. Identifying changepoints in daily data is

challenging due to the long series length and the large number of model parameters.

The mean shift magnitudes in our model are non-seasonal — the mean shift
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Figure 3.8: The South Haven minus the Benton Harbor series. The estimated change-
point structure is superimposed on the graph and reveals 13 mean shifts of interest.

changes temperature on all days the same amount. Should one expect a seasonal

mean shift structure (say with winter shifts being larger than summer shift), this

could be allowed in the modeling procedure, although it would take significant work

to accommodate such a structure.

While our study examined temperature series, our methods can be applied

to other climatic series with a non-Gaussian likelihood. For example, Poisson-based

likelihoods could be used for count series such as the monthly number of snow or

thunderstorm days. While this research only considers univariate series, the methods

could be modified to analyze multiple daily series as in Li et al. (2015).

Further improvements in computational speed of the algorithm are possible

by further tinkering with the GA parameters. Such methods would be desirable to

apply the methods to all
(
n
2

)
pairwise differences in a network of n temperature series.

67



Year
1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

A
ve

ra
ge

 T
em

pe
ra

tu
re

 (
°  F

)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 3.9: Annual South Haven minus Benton Harbor series with optimal change-
point configuration superimposed.

Markov Chain Monte Carlo methods could also be used to help identify the optimal

model; these techniques are developed in Li et al. (2015).
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Appendix A Proof of Theorem 2.4.1

A.1 Asymptotic behavior of the Yule-Walker estimator φ̂

To prove Theorem 2.4.1, the asymptotic limit of the Yule-Walker estimator in

(2.34) is needed. For a sample size N , the observations obey the true changepoint

model λ0 in (2.3):

X = As + D0µ0 + ε. (5)

For notation, the symbols s, σ2,φ refer to the true parameters in λ0. Moreover, the

subscript 1 : N is omitted wherever there is no ambiguity. In (5), ε is a zero-mean

causal AR(p) series as formulated in (2.4).

For any relative changepoint configuration (model) λ, suppose that η is the

corresponding changepoint configuration under the sample size N . From (2.32), the

ordinary least squares residual vector εols of the linear model in (2.3) is

εols = (IN − P[A D])X (6)

= (IN − P[A D])(As + D0µ0 + ε)

= (IN − P[A D])(D
0µ0 + ε).

Here, the regime matrix D depends on η and may not necessarily equal D0.

Lemma A.1. For each relative changepoint configuration λ ∈ Λ and t ∈ {1, 2, . . . , N},

when N is large, each entry of εols can be expressed as εolst = δt +Wt, where

δt = µ0
r0(t) − µ̄0

r(t), Wt = εt − ε̄r(t) − ε̄v(t) + ε̄. (7)
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Here, in regime ` of the changepoint configuration λ, µ̄0
` = (N`)

−1
∑

t∈R` µ
0
t is the

average of the true mean parameters, N` is the number of time points in this regime,

and R` is the set of all time points in this regime. Likewise, ε̄` is the average of errors

in regime `, ε̄v is the average of errors in season v, and ε̄ is the average of all errors.

Proof. Because of (6), our main effort is to study the projection residual IN −P[A D]

under large N . Since the two column spaces spanned by (IN − PD)A and D are

perpendicular, Theorem B.45 in Christensen (2002, pp. 411) gives P[(IN−PD)A D] =

P(IN−PD)A + PD. Therefore,

IN − P[A D] = IN − P[(IN−PD)A D] = IN − P(IN−PD)A − PD. (8)

Here, the term P(IN−PD)A is expanded as

P(IN−PD)A = (IN − PD)A [A′(IN − PD)A]
−1

A′(IN − PD). (9)

For any n ∈ N, let 0n be the n-dimensional vector containing all zero entries, 1n be

the n-dimensional vector containing whose entries are all unity, and Jn as the n× n

matrix whose entries are all unity, i.e., Jn = 1n1
′
n.

For v ∈ {1, 2, . . . , T}, suppose there are k(v, `) time points in regime ` that are

also in season v. Equation (2.43) shows that N` increases linearly with N ; hence, so

does k(v, `). Moreover, when N is large, inside each regime, the seasonal counts k(v, `)

are equal except for edge effects, i.e., k(v, `)/N` ≈ 1/T for all seasons v. We will ignore

these edge effects in the ensuing calculations. Proceeding under this simplification,
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the vth column in A, denoted by Av, under the projection PD, becomes

PDAv =

(
0′N1

,
k(v, 2)

N2

1′N2
, . . . ,

k(v,m+ 1)

Nm+1

1′Nm+1

)′
=

(
0′N1

,
1

T
1′N−N1

)′
. (10)

We can now obtain an expression for A′(IN − PD)A. To do this, for u,w ∈

{1, 2, . . . , T},

[A′(IN − PD)A]u,w = A′uAw − (PDAu)
′(PDAw)

=


N
T 2 (T − (1− λ1)), if u = w,

− N
T 2 (1− λ1), if u 6= w,

and it follows that A′(IN − PD)A = NT−2(T IT − (1 − λ1)JT ). The inverse of this

matrix can be verified as

[A′(IN − PD)A]
−1

=
1

N

(
T IT +

1− λ1

λ1

JT

)
.

Plugging the inverse into (9) and denoting QD = IN − PD give

P(IN−PD)A =
1

N
(QDA)

(
T IT +

1− λ1

λ1

JT

)
(QDA)′ (11)

=
T

N
(QDA)(QDA)′ +

1− λ1

Nλ1

(QDA1T )(QDA1T )′.

For simplicity, we assume that regime ` starts with season 1, ends with season T , and

contains n` full cycles. Using n =
∑m+1

r=1 nr and (10) gives
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QDA =

 1n1 ⊗ IT

1n−n1 ⊗
(
IT − 1

T
JT
)
 , QDA1T =

 1N1

0N−N1

 .

Hence, quadratic forms of these matrices are

(QDA)(QDA)′ =

 Jn1 ⊗ IT Jn1×(n−n1) ⊗
(
IT − 1

T
JT
)

J(n−n1)×n1 ⊗
(
IT − 1

T
JT
)

Jn−n1 ⊗
(
IT − 1

T
JT
)

 ,

and

(QDA1T )(QDA1T )′ =

 JN1 0

0 0

 .

Plugging these into (11) produces

P(IN−PD)A =
1

N1

 JN1 0

0 0

+
T

N
Jn ⊗ IT −

1

N
JN .

Since PD is block-diagonal of form

PD = diag

(
0N1×N1 ,

JN2

N2

, . . . ,
JNm+1

Nm+1

)
,

we have

IN − P[A D] = IN − diag

(
JN1

N1

,
JN2

N2

, . . . ,
JNm+1

Nm+1

)
− T

N
Jn ⊗ IT +

1

N
JN .
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Therefore, for t ∈ {1, 2, . . . , N}, the tth entries of the vectors in (6) are

Wt = [(IN − P[A D])ε]t = εt − ε̄r(t) − ε̄v(t) + ε̄,

δt = [(IN − P[A D])D
0µ0]t = µ0

r0(t) − µ̄0
r(t).

It is not hard to see that δt = 0 for all t = 1, 2, . . . , N if and only if all relative

changepoints in λ0 are contained in λ (denoted by λ ⊃ λ0). For any changepoint

configuration λ, as N tends to infinity, the average N−1
∑N

t=h+1 δtδt−h converges to a

constant that does not depend on the lag h ∈ {0, 1, . . . , p}. This is because for any

lag h, δt = δt−h for all t ∈ {1, 2, . . . , N}, except for at most (m+m0)h ≤ (m+m0)p

times near the changepoints in λ and λ0. Hence, as N → ∞, N−1
∑N

t=h+1 δtδt−h

converges to its limit at rate O (1/N). We denote this limit as

δ2 def
= lim

N→∞

1

N

N∑
t=h+1

δtδt−h. (12)

Since (12) holds for h = 0, δ2 ≥ 0.

To quantify the asymptotic limit of the Yule-Walker estimator φ̂, let γp =

(γ(1), γ(2), . . . , γ(p))′ and Γp be a p× p matrix with (i, j)th entry γ(|i− j|).

Proposition A.1. Under the relative changepoint configuration λ ∈ Λ (which may

or may not be the true changepoint configuration), for h ∈ {0, 1, . . . , p}, as N →∞,

the lag-h sample autocovariance obeys

γ̂(h) = γ(h) + δ2 +OP

(
1

N

)
, (13)
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and the Yule-Walker estimator φ̂ = Γ̂
−1

p γ̂p obeys

φ̂ =
(
Γp + δ2Jp

)−1 (
γp + δ21p

)
+OP

(
1

N

)
. (14)

Moreover, if and only if λ ⊃ λ0, δ2 = 0 and φ̂→ φ as N →∞.

Proof. Since the AR(p) errors are assumed causal, we may write

εt =
∞∑
j=0

ψjZt−j (15)

for some weights {ψj}∞j=0, where
∑∞

j=0 |ψj| <∞. Since Wt = εt − ε̄r(t) − ε̄v(t) + ε̄, one

can write Wt as a linear combination of all Zts up to and before time N :

Wt =
∞∑

j=−∞

ψ
(t)
j Zt−j,

where

ψ
(t)
j = ψj −

∑
k:r(k)=r(t) ψk−t+j

Nr(t)

−
∑

l:v(l)=v(t) ψl−t+j

N/T
+

∑N
u=1 ψu−t+j
N

. (16)

Here, ψj = 0 when j < 0, implying that ψ
(t)
j = 0 if j < t−N .

The asymptotic limit of the sample autocovariances can now be derived:
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γ̂(h) =
1

N

N∑
t=h+1

εols
t ε

ols
t−h (17)

=
1

N

N∑
t=h+1

(Wt + δt)(Wt−h + δt−h)

=
1

N

N∑
t=h+1

(WtWt−h + δt−hWt + δtWt−h + δtδt−h).

Arguing as in Proposition 7.3.5 of Brockwell and Davis (1991, pp. 232) gives

1

N

N∑
t=h+1

WtWt−h =
1

N

N∑
t=h+1

∞∑
j=−∞

ψ
(t)
j ψ

(t−h)
j−h Z2

t−j +OP

(
1

N

)
. (18)

From
∑∞

j=0 |ψj| < ∞ and (16), it is not hard to show that
{
ψ

(t)
j ψ

(t−h)
j−h

}∞
j=−∞

is

absolutely convergent for each t and h. Since {Zt} is IID, with E[Z2
t ] = σ2, the weak

law of large numbers (WLLN) for linear processes (Brockwell and Davis, 1991, pp.

208, Proposition 6.3.10) gives

1

N

N∑
t=h+1

WtWt−h =
1

N

N∑
t=h+1

∞∑
j=−∞

ψ
(t)
j ψ

(t−h)
j−h σ2 +OP

(
1

N

)
.

From (16), one can show that

sup
t

∞∑
`=−∞

|ψ(t−h)
` − ψ(t)

` | <∞.

Hence,

1

N

N∑
t=h+1

WtWt−h =
1

N

N∑
t=h+1

∞∑
j=−∞

ψjψj−hσ
2 +OP

(
1

N

)
.

Now using that γ(h) = σ2
∑∞

`=−∞ ψ`ψ`−h gives
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1

N

N∑
t=h+1

WtWt−h =
N − h
N

γ(h) +OP

(
1

N

)
= γ(h) +OP

(
1

N

)
.

This identifies the limit of the first term in the bottom line of (17). For the second

and third terms, apply the WLLN again to see that these terms converge to zero in

probability at rate OP (1/N). Hence, as N →∞,

γ̂(h) = γ(h) +
1

N

N∑
t=h+1

δtδt−h +OP

(
1

N

)
= γ(h) + δ2 +OP

(
1

N

)
,

which proves (14).

A.2 Proof of asymptotic consistency of the univariate BMDL

To simplify the BMDL formulae in (2.37) and (2.38), we first establish some

asymptotic results for its terms.

Lemma A.2. Under any changepoint configuration λ ∈ Λ with m > 0, as N →∞,

1

N
X̂′
[
B̂− B̂Â

(
Â′B̂Â

)−1

Â′B̂

]
X̂ =

1

N
X̂′
(
IN − P[Â D̂]

)
X̂ +OP

(
1

N

)
; (19)

for the model with m = 0,

1

N
X̂′
[
IN − Â

(
Â′Â

)−1

Â′
]

X̂ =
1

N
X̂′
(
IN − P[Â D̂]

)
X̂. (20)
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Furthermore, under any changepoint model λ ∈ Λ,

1

N
X̂′
(
IN − P[Â D̂]

)
X̂ = γ̂(0)− γ̂ ′pΓ̂

−1

p γ̂p +OP

(
1

N

)
. (21)

Finally, as a function of δ2,

f(δ2)
def
= γ̂(0)− γ̂ ′pΓ̂

−1

p γ̂p (22)

is strictly increasing.

Proof. Under any changepoint configuration λ with m > 0, we will first show that

(19) holds. Since φ̂ has the limit in (14), it is not hard to show that as N tends to

infinity, D̂′D̂/N and D̂′X̂/N converges in probability to a m × m positive definite

matrix and an m-dimensional vector, respectively, both at rates OP (1/N). In the

prior of µ, the parameter ν is a constant; hence,

1

N
X̂′B̂X̂ =

1

N
X̂′

[
IN−p − D̂

(
D̂′D̂ +

Im
ν

)−1

D̂′

]
X̂

=
X̂′X̂

N
− X̂′D̂

N

(
D̂′D̂

N
+

Im
Nν

)−1
D̂′X̂

N

=
X̂′X̂

N
− X̂′D̂

N

(
D̂′D̂

N

)−1
D̂′X̂

N
+OP

(
1

N

)
=

1

N
X̂′
[
IN−p − D̂

(
D̂′D̂

)−1

D̂′
]

X̂ +OP

(
1

N

)
=

1

N
X̂′
(
IN−p − PD̂

)
X̂ +OP

(
1

N

)
.

Similar arguments give
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1

N
X̂′B̂Â =

1

N
X̂′
(
IN−p − PD̂

)
Â +OP

(
1

N

)
,

1

N
Â′B̂Â =

1

N
Â′
(
IN−p − PD̂

)
Â +OP

(
1

N

)
.

Hence, the left hand side of (19) has the limit

1

N
X̂′
[
B̂− B̂Â

(
Â′B̂Â

)−1

Â′B̂

]
X̂

=
1

N
X̂′
[
I− PD̂ − P(IN−p−PD̂)Â

]
X̂ +OP

(
1

N

)
=

1

N
X̂′
(
IN−p − P[Â D̂]

)
X̂ +OP

(
1

N

)
,

where the last equality follows from (8).

Next, we will show that (21) holds for any λ with m > 0. For notational

simplicity, for any j ∈ {0, 1, . . . , p}, matrices formed by the rows of A and D are

denoted by

Aj
def
= A(p+1−j):(N−j), Dj

def
= D(p+1−j):(N−j).

Since both Â and Aj are (N − p)×T matrices and each column in Â can be written

as a linear combination of the columns in Aj, the corresponding column spaces agree:

C(Â) = C(Aj). Therefore, PÂ = PAj
for j ∈ {1, . . . , p}. Now define

∆j = Dj −
D̂

1− φ̂1 − φ̂2 − · · · − φ̂p
. (23)

The denominator in (23) cannot be zero since a1−
∑p

k=1 φ̂k 6= 0 for any Yule-Walker
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estimates (Brockwell and Davis, 1991).

Since there are at most 2m(p + h) non-zero entries in ∆j, and none of these

entries depend on N , ∆′j∆j = OP (1). In addition, for any N -dimensional vectors α

whose entries do not depend on N , α′∆j = OP (1). Using (23),

D̂′
(
IN − PÂ

)
D̂

N
(

1−
∑p

k=1 φ̂k

)2 =
1

N
(Dj −∆j)

′ (IN − PÂ

)
(Dj −∆j)

=
D′j
(
IN − PÂ

)
Dj

N
+OP

(
1

N

)
,

and

α′
(
IN − PÂ

)
D̂

N
(

1−
∑p

k=1 φ̂k

) =
1

N
α′
(
IN − PÂ

)
(Dj −∆j)

=
α′
(
IN − PÂ

)
Dj

N
+OP

(
1

N

)
.

Therefore, for any α,β ∈ RN whose entries do not depend on N ,

1

N
α′P(IN−PÂ)D̂β

=
α′
(
IN − PÂ

)
D̂

N
(

1−
∑p

k=1 φ̂k

)
 D̂′

(
IN − PÂ

)
D̂

N
(

1−
∑p

k=1 φ̂k

)2


−1

D̂′
(
IN − PÂ

)
β

N
(

1−
∑p

k=1 φ̂k

)
=

1

N
α′
[(

IN − PÂ

)
Dj

(
D′j
(
IN − PÂ

)
Dj

)−1
D′j
(
IN − PÂ

)]
β +OP

(
1

N

)
=

1

N
α′P(IN−PÂ)Dj

β +OP

(
1

N

)
.
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Hence, from (8),

1

N
α′P[Â D̂]β =

1

N
α′P[Aj Dj ]β +OP

(
1

N

)
. (24)

Since X̂ = X(p+1):N −
∑p

j=1 φ̂jX(p+1−j):(N−j), for any j, k ∈ {0, 1, . . . , p}, (24) shows

that

1

N
X′(p+1−j):(N−j)

(
IN − P[Â D̂]

)
X(p+1−k):(N−k)

=
1

N

[(
IN − P[Aj Dj ]

)
X(p+1−j):(N−j)

]′ [(
IN − P[Ak Dk]

)
X(p+1−k):(N−k)

]
+ OP

(
1

N

)
=

1

N

(
εols

(p+1−j):(N−j)
)′
εols

(p+1−k):(N−k) +OP

(
1

N

)
.

Therefore, (21) can be further simplified as

1

N
X̂′
(
IN − P[Â D̂]

)
X̂

=
1

N

[
εols

(p+1):N −
p∑
j=1

φ̂jε
ols
(p+1−j):(N−j)

]′ [
εols

(p+1):N −
p∑

k=1

φ̂kε
ols
(p+1−k):(N−k)

]

+ OP

(
1

N

)
= γ̂(0)− 2

p∑
j=1

φ̂j γ̂(j) +

p∑
j=1

p∑
k=1

φ̂jφ̂kγ̂(|j − k|) +OP

(
1

N

)
= γ̂(0)− 2γ̂ ′pφ̂ + φ̂

′
Γ̂pφ̂ +OP

(
1

N

)
= γ̂(0)− γ̂ ′pΓ̂

−1

p γ̂p +OP

(
1

N

)
.

It is not hard to show that under the model λø (m = 0), because C(D̂) is the null
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space, (21) also holds.

Lastly, we show that f(δ2) in (22) satisfies

f(δ2) = γ̂(0)− γ̂ ′pΓ̂
−1

p γ̂p

= γ(0) + δ2 −
(
γp + δ21p

)′ (
Γp + δ2Jp

)−1 (
γp + δ21p

)
and is strictly increasing in δ2.

If δ2 > 0, according to (2.22) in Harville (2008, pp. 428), for any matrices

R ∈ Rr×r,S ∈ Rr×l,T ∈ Rl×l,U ∈ Rl×r with R,U non-singular,

(R + STU)−1 = R−1 −R−1S(T−1 + UR−1S)−1UR−1,

Hence,

(
Γp + δ2Jp

)−1
=
(
Γp + 1pδ

21′p
)−1

(25)

= Γ−1
p − Γ−1

p 1p

(
1

δ2
+ 1′pΓ

−1
p 1p

)−1

1′pΓ
−1
p .

For notational simplicity, denote the following scalars by

a
def
= 1′pΓ

−1
p 1p, b

def
= 1′pΓ

−1
p γp. (26)

Then f(δ2) can be expanded as

f(δ2) = γ(0) + δ2 − γ ′pΓ
−1
p γp − 2bδ2 − a(δ2)2 +

b2

1
δ2

+ a
+

2abδ2

1
δ2

+ a
+
a2(δ2)2

1
δ2

+ a
.
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Differentiation of f(δ2) with respect to δ2 gives

f ′(δ2) = 1− 2b− 2aδ2 +
b2 1

(δ2)2(
1
δ2

+ a
)2 +

2ab
(

2
δ2

+ a
)(

1
δ2

+ a
)2 +

a2 (3 + 2aδ2)(
1
δ2

+ a
)2

=
(b− 1)2

(1 + aδ2)2
> 0.

The last inequality follows since {εt}Nt=1 is causal, which implies that b =
∑p

k=1 φk > 1.

Therefore, f(δ2) is strictly increasing in δ2.

The asymptotic consistency of the BMDL can now be proven.

Proof of Theorem 2.4.1. For any changepoint model λ (including the true model λ0),

the proof of Lemma A.2 shows that as N →∞,

D̂′D̂

N
+

Im
Nν

=
D̂′D̂

N
+O

(
1

N

)
=

D′D

N
(

1−
∑p

k=1 φ̂k

)2 +OP

(
1

N

)
.

As the matrices are m×m (of finite dimension), the determinant of the limit converges

to a number c:

∣∣∣∣∣D̂′D̂N +
Im
Nν

∣∣∣∣∣ = c+OP

(
1

N

)
.

Here, c may depend on the model λ. The c for the true model λ0 is denoted by c0.

Therefore, the asymptotic BMDL in (2.37) for the changepoint configuration λ with

m > 0 is
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BMDL(λ) =
N − p

2

{
logN + log

[
1

N
X̂′
(
IN − P[Â D̂]

)
X̂ +OP

(
1

N

)]}
+
m

2
log ν +

1

2
log

{
Nm

[
c+OP

(
1

N

)]}
−

2∑
k=1

log
[
Γ
(
a+m(k)

)
Γ
(
b(k) +N (k) −m(k)

)]
.

This convergence also holds for the null model λø in (2.38) (here, c = 1).

By (21) and (22), it now follows that the difference between BMDLs in a

(non-true) model λ and the true model λ0 is asymptotically

BMDL (λ)− BMDL
(
λ0
)

(27)

=
N − p

2
log

[
f(δ2) +OP

(
1
N

)
f(0) +OP

(
1
N

) ]+
m−m0

2
(log ν + logN) +

1

2
log
( c
c0

)
+

2∑
k=1

log

[
Γ
(
a+m0(k)

)
Γ
(
b(k) +N (k) −m0(k)

)
Γ (a+m(k)) Γ (b(k) +N (k) −m(k))

]
+OP

(
1

N

)
.

Since δ2 = 0 if and only if λ ⊃ λ0, as N →∞, the first term of (27) is

N − p
2

log

[
f(δ2) +OP

(
1
N

)
f(0) +OP

(
1
N

) ] =


OP (N) > 0, if λ 6⊃ λ0,

OP (1), if λ ⊃ λ0.

Without loss of generality, the number of documented and undocumented

changepoint times can be assumed to be increasing linearly with N — say N (k) =

O(N), for k ∈ {1, 2}. Stirling’s formula allows us to find the asymptotic limit of

Gamma function ratios:
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Γ
(
b(k) +N (k) −m0(k)

)
Γ (b(k) +N (k) −m(k))

≈ em
0(k)−m(k)

(
b(k) +N (k) −m0(k) − 1

)b(k)+N(k)−m0(k)−1/2

(b(k) +N (k) −m(k) − 1)
b(k)+N(k)−m(k)−1/2

= O
(
Nm(k)−m0(k)

)
.

Therefore, the last term of (27) is

2∑
k=1

log

[
Γ
(
a+m0(k)

)
Γ
(
b(k) +N (k) −m0(k)

)
Γ (a+m(k)) Γ (b(k) +N (k) −m(k))

]
= (m−m0) logN + Const.

If λ 6⊃ λ0, the first term in (27) is asymptotically dominant:

BMDL (λ)− BMDL
(
λ0
)

= OP (N) + (m−m0) logN = OP (N) > 0.

In contrast, if λ ⊃ λ0, then since m > m0,

BMDL (λ)− BMDL
(
λ0
)

= OP (1) + (m−m0) logN = OP (logN) > 0.
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Table 1: Changepoints times and corresponding mean shifts.

Changepoint(τj) Mean Shift at τj
1954-11-11 -1.9756
1955-09-14 2.5941
1960-09-13 -0.81925
1963-03-10 1.2962
1965-09-11 0.95114
1966-08-06 -3.6765
1967-01-16 2.2279
1971-06-22 0.51685
1981-04-25 -1.6267
1987-07-24 -1.40932
1993-12-26 1.77702
1995-05-06 -1.54974
1997-04-18 -1.18564
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