
Clemson University
TigerPrints

All Dissertations Dissertations

12-2015

Designing Optical Properties in Infrared Glass
Benn Gleason
Clemson University, benn.gleason@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Materials Science and Engineering Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Gleason, Benn, "Designing Optical Properties in Infrared Glass" (2015). All Dissertations. 1568.
https://tigerprints.clemson.edu/all_dissertations/1568

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1568&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1568&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1568&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1568&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/1568?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1568&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


i 

 

 

 

DESIGNING OPTICAL PROPERTIES IN INFRARED GLASS 

 

A Dissertation 

Presented to 

the Graduate School of 

Clemson University 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy 

Materials Science and Engineering 

by 

Benn Gleason 

December 2015 

Accepted by: 

Dr. Igor Luzinov, Committee Chair 

Dr. Kathleen Richardson, Adviser, Co-Chair 

Dr. John Ballato 

Dr. Eric Johnson 

Dr. Konstantin Kornev 

  



ii 

 

ABSTRACT 

Chalcogenide glasses (ChGs) are well-known for their attractive optical properties, such as 

high refractive index and transparency in across infrared wavelengths. ChGs also possess 

the ability to compositionally tune properties such as the refractive index, the thermo-optic 

coefficient, and other non-optical properties. Chalcogenide glasses with compositionally 

tailored physical and optical properties will provide optical designers with new materials 

necessary to create novel infrared imaging systems requiring new or expanded 

functionality. 

This dissertation has evaluated the relationship between glass composition, the resulting 

atomic structure, and resulting optical and thermo-optical properties, with specific focus 

on the infrared refractive index and the thermo-optic coefficient (dn/dT). To create these 

linkages, a series of GeAsSe glasses with increasing Ge content were fabricated across 

three tielines, and evaluated for their chemical and physical attributes. A novel infrared 

refractometer was constructed to provide supplemental refractive index and dn/dT data. 

Findings in this dissertation showed a correlation between the Ge content of the glass 

composition and several non-optical properties. Namely, as the Ge content increases, the 

glass transition temperature and Vickers Hardness increase, while the coefficient of 

thermal expansion decreases. These physical changes are due to the cross-linking of the 

glassy network by the 4-coordinated Ge additions.  
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In contrast, optical property data showed a strong dependence on the appearance and/or 

disappearance of specific atomic structures within the glassy network as the glass 

composition changes. 

Overall, this study aimed to answer key questions that have not been systematically studied 

within multi-component chalcogenide glasses.  These questions include: 

 How will compositional variations for the sake of optical tunability affect the 

physical properties which dictate a materials’ response to manufacturing processes? 

 Are there links between optical properties, such as the index and dn/dT, and non-

optical properties that can allow for easier prediction of the difficult to measure 

optical properties?  

 Are there compositions within the GeAsSe ternary that can produce a zero dn/dT 

that will offer better thermo-mechanical stability to the current commercial 

options? 

Finally, this work presented a new phenomenon of a thermally-induced, sub-Tg index 

hysteresis and subsequent room temperature structural relaxation in chalcogenide glasses. 

This process resulted in a maximal change in the room temperature refractive index of 

0.0030. Over the course of 2 months the structural relaxations returned the refractive index 

to the initial state, with a characteristic relaxation time ranging from τ = 70,000s to τ = 

300,000s. 
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Chapter 1   

Materials for Infrared Optics 

The rapid growth of infrared (IR) imaging, sensing and detection systems deployed in 

diverse civilian and military applications within the past decade has come about largely 

due to advances in detector technologies that have dramatically reduced system size, 

weight and thereby the costs to produce such systems. Lagging behind these advances, has 

been the adoption of new materials to replace the legacy bulk (crystalline) optical materials 

largely developed for military systems in the 1960-1980 timeframe. Adoption of new 

materials in optical designs needed for these next-generation systems will be enhanced not 

only by the commercial availability of glassy alternatives to the legacy crystalline 

materials, but also with a recognition that infrared optical glass solutions can exploit 

specific physical property optimization through compositional tuning. While just a few 

commercial glass compositions are currently available, new glass solutions can be realized 

if a broader understanding of the inter-relationship between chemistry, structure and 

properties is known.   

This work aims to define such relationships using a ternary, multicomponent glass system 

as a model. As discussed herein, this representative glass system has been chosen to 

illustrate the power of engineering a glass system to attain desirable optical and thermo-

optical properties. While optical properties define the optical performance of the element 

in a system, an understanding of the inter-relationship of the material’s structure on other 

behavior important to its processing, optical fabrication and metrology and eventual 
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integration and performance in its environment of use, is also critical. This dissertation will 

connect these thoughts and illustrate how the design and test of such materials can provide 

key understanding critical for use of bulk infrared glasses in mid-wave transmitting 

systems.  

This chapter discusses the basic information needed to understand and approach the 

challenges associated with current infrared (IR) optics technology. Firstly, the necessary 

definitions relevant to the fields of IR optics, glassy materials, and specifically focus on IR 

optical materials will be presented. As the similarities between state of the art visible 

optical materials and IR optical materials are discussed, the chapter will highlight the 

shortcomings of IR materials in terms of both manufacturing and optical performance. 

The properties of commercially available IR materials, both crystalline and glassy, will be 

discussed further highlighting the need for a focused study to develop new materials. The 

chapter will also discuss reasoning behind selecting a specific chalcogenide glass forming 

ternary system for analysis, and discuss the current understandings of relevant physical and 

structural properties of these glasses. Finally, this chapter will establish the overreaching 

goals of this dissertation and the tasks that need to be completed and fundamental questions 

that need to be answered in order to achieve those goals.  

1.1 What is Infrared Optics? 

Infrared (IR) optics is a branch of optical science and engineering that focuses on 

wavelengths longer than visible light, typically as the wavelengths ranging from 750nm to 

~1,000 μm. Because of the wide range of wavelengths often included in this definition, IR 
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wavelengths are often further divided into sub-infrared regimes. These zones include the 

near-IR (NIR), ranging from ~750nm to ~1500nm; shortwave IR (SWIR), ranging from 

~1500nm to ~3000nm; the mid-wave IR (MWIR), ranging from ~3000nm to ~8000nm; 

the long-wave or thermal IR (LWIR / TIR), from ~6000nm to ~50µm; and finally the far 

infrared for wavelengths larger than 50µm. These transitions are not clearly defined across 

all users, and can change significantly depending on the author or application. For this 

work, the sub-infrared regimes are defined as mentioned above, and are highlighted in 

Figure 1.1. 

 

Figure 1.1 – Representation of the relevant sub-infrared regimes as a function of wavelength [1].   

Infrared (IR) wavelengths present different and unique challenges compared visible 

wavelengths, which have the advantage of long history of scientific and engineering 

advancements. The primary challenge of the IR lies in finding suitable materials to 

transmit, reflect, and refract incoming light. Optical systems in the visible wavelengths 

often rely on optical (oxide) glasses made of combinations of silicon and oxygen 
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(“silicates” in the form SiO2), phosphorus and oxygen (“phosphates” in the form P2O5), 

aluminum and oxygen (“aluminates” in the form Al2O3), and can include other elements 

such as boron and select alkali and alkaline earth to transmit the visible light. The optical 

properties of these glasses are characterized typically by their index (n) and dispersion 

/Abbe number (ν), in a figure known as an Abbe diagram as shown in Figure 1.2, which 

includes all available oxide glasses from glass manufacturer, Schott Glass, Inc. [2]. A 

glasses Abbe number is calculated through the following equation: 

𝜈 =
𝑛𝑑 − 1

𝑛𝑓 − 𝑛𝑐
  

Equation 1 

Where nd, nf, and nc are the refractive index measured at 589.3 nm, 486.1 nm, and 656.3 nm 

respectively. The Abbe number equation can also be used to characterize the dispersion in 

other spectral regimes, by changing the measurement wavelengths of the three refractive 

index points in the equation. Additionally, the Abbe number of non-traditional wavelength 

regimes can be calculated by changing the wavelengths of nd, nf, and nc. The requirement 

for appropriately changing the Abbe number wavelength regime is that the new nf stays the 

shorter wavelength, the new nd is the middle, and the new nc stays the longer wavelength. 

For example, the MWIR Abbe number could be calculated through changing nd to n4µm, nf 

to n3µm, and nc to n5µm. 

Available oxide glasses typically have a refractive index between 1.5 and 1.9, and have an 

Abbe number between 25 and 70. Schott’s N-KB7, a borosilicate glass, is perhaps the most 
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widely used oxide glass for optical applications, and its properties are frequently used as a 

representative values for oxide glasses. 

 

 

Figure 1.2 – Abbe diagram of oxide (visibly transparent) glasses available from Schott Glass, Inc. [2] 

 

The transmission of N-BK7, and a majority of other oxide glasses, ranges from 

approximately 350nm to 2500nm, and would not be suitable for any application for that 

extends beyond the NIR [2]. The long wavelength transmission cutoff is due to intrinsic 

modifier–Oxygen (M-O) vibrational mode absorptions of the glass constituents, known as 
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the multi-phonon edge. New materials are needed to shift the transmission window from 

visible and NIR wavelengths to cover a broader range of IR wavelengths. Ideally, as these 

materials transition further into the IR, optical designers would like an IR version of the 

Abbe diagram to aide in their design needs. A stylized version of an IR Abbe diagram is 

shown in Figure 1.3. Additionally a measure of the MWIR Abbe number and the MWIR 

partial dispersion was obtained from Schott Glass Inc. and is shown in Figure 1.4 [3]. In 

the partial dispersion equations shown used for calculating dispersion, the subscripts on 

the indices represent the wavelength (in ms). 

 

 

Figure 1.3 – Approximate index and dispersion values for IR transmitting materials.  
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Figure 1.4 – Chart of available IR materials, comparing the MWIR Abbe number (νMWIR) and the MWIR partial 

dispersion (PMWIR) [3]. 

In order to achieve IR transmission, the typical Si and O atoms of oxide glasses need to be 

replaced with heavier, larger atoms. The frequency of vibrational transitions between two 

elements, ν, can be modeled to a first order as a simple harmonic oscillator, as shown in 

Equation 2: 

𝑣 =
1

2𝜋
√

𝐾

𝑀
 

Equation 2 

where M is the effective mass of the atomic nuclei, K is the bond strength (spring constant). 

From this it is clear that as the mass of the atom increases (and coincidentally the effective 

bond strength decreases) the frequencies of vibrational transitions should shift to lower 
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frequencies. As a result, some of the preferred elements for IR transmission include: Si, S, 

Ga, Ge, As, Se, Pb, and Te.    

1.2 Commercially Available Infrared Materials 

Infrared-transparent materials are commercially available in two basic forms: crystalline 

or glassy. Crystalline materials have periodic, ordered structure that extends to medium 

(10s of nm) and long (μm to mm) length scales. Crystalline materials can contain a few as 

one crystal orientation (single crystal) or several crystallites in varying size and orientation 

(poly-crystalline). For IR applications there are a limited amount of viable crystalline 

materials with suitable optical and mechanical properties. Both Si and Ge are the two most 

widely used IR crystalline materials can be grown in single- and poly-crystalline forms. 

The properties and performance of both Si and Ge have been studied for several years and 

both are sold from numerous vendors. Both of these materials have a diamond cubic lattice 

with high hardness and modulus values, have a high refractive index and thermo-optic 

coefficient, and have a broad transmission window [4-11]. Extensive work has been 

performed to quantify the optical, mechanical, and thermal properties of these materials for 

both optical and semiconductor industries.  

For example, Figure 1.5 shows the refractive index of Ge as a function of both index and 

wavelength in a 3D contour plot, obtained from [8]. Figures such as this are extremely 

useful in determining the refractive index for systems wide tolerances on temperature or 

wavelength.  
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Figure 1.5 – Refractive index as a function of wavelength and temperature for single crystal Ge [8]. 

ZnSe and ZnS are two additional widely used IR transparent crystalline materials.  Both 

ZnSe and ZnS share a unique crystal lattice called zincblende [12]. Zincblende can be 

envisioned either as interpenetrating face-centered-cubic lattices (one lattice for each 

element), or as a diamond cubic lattice where the atoms alternate between Zn and S/Se. 

Both ZnS and ZnSe are typically polycrystalline materials, and are formed through a 

chemical vapor deposition process. Like Si and Ge, ZnS/Se has been studied extensively 

[13-22] and is available from numerous vendors. When ZnS is subjected to hot isostatic 

pressing (HIP), the optical and mechanical properties of the material are augmented, and 

the resulting material is trademarked under the Cleartran name [23,24].  

Similar to Ge and Si, ZnS/Se have broad transmission, and have favorable mechanical 

properties for fabrication. Unlike Si and Ge, ZnS/Se have comparatively low refractive 
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indices, low thermoptic coefficients, and a transmission window that extends to shorter 

wavelengths. A summary of relevant properties for Ge, Si, ZnS and ZnSe can be found in 

Table 1.1. These results are summarized in Table 1 and were obtained under specific 

experimental parameters.  These conditions are defined, where known, in the footnotes 

below the table.  

Table 1.1 – Mechanical, thermal, and optical property values of Ge, Si, ZnS, and ZnSe collected from literature. 

Experimental parameters and references are discussed below the table. 

 Mechanical Thermal Optical 

 
Hardness 

(GPa) 

Young’s Modulus 

(GPa) 

CTE 

(10-6 °C-1) 

Refractive index 

(n) 

dn/dT 

(10-6 °C-1) 

Ge 10 a  1.4 b 5.9 c 4.02051 d 420 d 

Si 13 a 1.7 b 2.57 c 3.42404 d 170 d 

ZnS 2.5 e 74 f  7.98 g 2.2002 h 3.87 i 

ZnSe 1 e 70 f 8.57 g 2.4065 h 6.42 j 

a Knoop Hardness measured at room temperature [25] 
b Measured at room temperature along the <1,0,0> plane [26] 
c Average of several compiled references at 300K [27] 
d Measured at 295K and 4.5µm [8] 
e Knoop hardness measured at room temperature [28] 
f Measured at room temperature [28] 
g Measured from 20°C – 600°C  [28] 
h measured at 10 µm [28] 
i Measured from 298K - 358K at 3.39 µm [23] 
j Measured at 295K and 4.5µm [29] 

 

1.2.1 Commercially Available Glassy Materials 

The main advantage of glassy materials over crystalline materials is that glasses are not 

locked in to a specific stoichiometry, and thus the composition can vary continuously to 

alter properties of the glass. The main type of glasses used for IR transmission are known 

as chalcogenide glasses (ChGs). Chalcogenide glasses consist of at least one chalcogen 

element (Group VI), with the exception of oxygen as it has strong vibrational absorptions 

in the IR. A stable glass can be formed when the chalcogen is combined with neighboring 
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elements from Group IV or V, such as Ge, As, Sb, Pb, or Bi. Most commercially available 

chalcogenide glasses include some combination of Ge and/or As with either S or Se.  

Despite the fact that the composition can be varied continuously to make a large number 

of glasses with unique properties, there are surprisingly few commercially available 

chalcogenide glasses. Shown in Table 1.2 are the primary commercially available ChGs, 

their compositions, and trade names.  

Table 1.2 – Compositions of commercially available chalcogenide glasses, and their respective trade names  

at% 

Ge 

at% 

As 

at% 

Sb 

at% 

S 

at% 

Se 

at% 

Te 

Schott Glass Inc. 

(VITRON GmbH) 

Trade name 

Amorphous 

Materials Inc. 

Trade name 

Umicore 

Trade 

name 

Ref 

33 12 - - 55 - IRG 22 (IG 2) AMTIR 1 - [30,31] 

30 13 - - 32 25 IRG 23 (IG 3) - - [32] 

10 40 - - 50 - IRG 24 (IG 4) - - [33] 

28 - 12 - 60 - IRG 25 (IG 5) AMTIR 3 - [31,34] 

- 40 - - 60 - IRG 26 (IG 6) AMTIR 2 - [31,35] 

- 28 - - 72 - - AMTIR 4 a - [31] 

- 34 - - 66 - - AMTIR 5 b - [31,36] 

- 40 - 60 - - - AMTIR 6* - [31] 

22 20 - - 58 - - - GASIR 1 [37] 

20 - 15 - 65 - - - GASIR 2 [37] 
a Specific composition not explicitly stated in manufacturer’s data sheet but assumed based on data sheet 

values for thermal expansion and glass transition temperature, and AsSe binary (As25Se75 and As30Se70) 

results from Musgraves et al. [38] 
b Specific composition not explicitly stated in manufacturer’s data sheet, but calculated from related patent 

data [36] 

1.2.2 Non-Commercial Chalcogenide Glasses  

The binary combination of As and either S or Se is one of the most basic glass forming 

structures that can be made. In academic settings, researchers can explore the limits of 

compositional regions and glasses along the AsSe binary have been reported with 

compositions ranging from pure amorphous Selenium to compositions with more than 50 

at% As [38-50]. This gives a very large compositional window for researchers to work with 

and allows for compositional dependency studies on a wide range of studies. Some of the 
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reported properties analyzed along the AsSe binary lines include, Tg [38,42,43,45-49], 

coefficient of thermal expansion [38,43,45,48], density [38,47,48,50], viscosity and 

fragility parameter [38,48], various hardness and moduli parameters [47,50-52], index of 

refraction [53-55] nonlinear refractive index [56], various energy gaps [40,47], and photo-

modification effects [57]. Additionally the structure itself is also studied as a function of 

the composition along the tie-line, through techniques such as Raman spectroscopy 

[48,58,59], nuclear magnetic resonance (NMR) [60], x-ray photoelectron spectroscopy 

(XPS) [61-65]. 

 

Figure 1.6 – a) Typical structures involving Ge, As, and Se: Se chains, AsSe3/2 pyramids, and GeSe4/2 tetrahedra, 

b) defect structures: As2Se4/2 and Ge2Se6/2 ethane-like modes, c) loosely bound AsSe structure with Se chains and 

AsSe pyramids, d) fully coordinated AsSe puckered layer structure observed at stoichiometry. 
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Sulfur and Selenium atoms are considered iso-structural atoms. That is, they serve the same 

role in a glass structure, and should behave similarly. The similar role of these two atoms 

allows for a general discussion of the structure for AsS and AsSe glasses. The chalcogen 

atoms (S/Se) belong to group VI and as such are able to form two bonds with neighboring 

atoms. Glass compositions that are heavily chalcogen excessive form long chains of S/Se 

of the form -S-S-S- or -Se-Se-Se- visualized as a “noodle-like” structure [48], and are 

visualized in Figure 1.6a and 5c. Additions of small amounts of As, a member of group V 

which can for 3 bonds with neighboring atoms, to S/Se creates pyramidal structures of the 

form AsS3/2 or AsSe3/2 [48,66], as shown in Figure 1.6a. These pyramidal structures 

connect the long S/Se chains in a process known as cross-linking or polymerizing 

[40,67,68]. Further additions of As to this network create more of the AsS/Se pyramidal 

units until the composition reaches the stoichiometric composition of As40S60 or 

As40Se60, also known as As2S3 and As2Se3 [47,48,59,69], as shown in Figure 1.6d.  

The stoichiometric compositions of As2S3 and As2Se3 should theoretically have only As-S 

and As-Se hetero-polar bonds, respectively. The glass network would therefore consist 

primarily of the AsS or AsSe pyramidal structures. In reality, there is usually a small 

percentage of ‘wrong’-bonding: homopolar bonds that form regardless of chemical order 

[63,70]. The AsS/Se structures connect to one another to form a single plane and the global 

structure is called a “puckered layer” structure shown in Figure 1.6d. These planes fold 

over themselves and are held together with weak van der Waals forces to create the 3D 

bulk glass structure [40,67,68]. Increasing the amount of As beyond 40 at% results in the 

expected formation of As-As homopolar bonds, due to the glass being chalcogen-deficient, 
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as depicted in Figure 1.6b. The structure becomes increasingly complex when As content 

increases beyond 40 at%, where molecular “cages” of As and Se that do not contribute to 

the overall network have been observed [71-74].  

Incrementally changing the glass composition along the binary As-S and As-Se tielines 

allows for the systematic study of property variations as a function of chemistry, network 

connectivity, and topology/structure [38,40,48,59,66,75-78]. As can be seen, binary 

systems have been well studied and are well understood in terms of the influence of 

composition on properties. Of the previously mentioned properties studied along the AsSe 

binary (such as Tg, CTE, hardness), most vary linearly or approximately linearly as a 

function of As content. A strong deviation from linearity has been observed at the 

stoichiometric composition (As40Se60) for several properties, and has been attributed to a 

percolation threshold of rigidity [67,68,79,80]. This threshold was first predicted and 

described mathematically by Philips by comparing the number of constraints and the 

degrees of freedom of bonding within a particular composition. In this analysis each 

element is assigned a coordination number according to its position in the periodic table 

through the 8-N rule, where N is the number of valence electrons in the element’s valence 

shell. Therefore As would have a coordination number (CN) of 3 (8 – 5 valence electrons), 

and S and Se would both have a CN of 2. The coordination of a glass composition is 

calculated by averaging the coordination numbers of all the constituents in their respective 

atomic percentages. For example a composition of As20Se80 would have a coordination 

number CN = 0.20*3 + 0.80*2 = 2.2 Increasing the As content to As40Se60 likewise results 

in a CN = 0.40*3+0.60*2 = 2.4. The work by Philips and Thorpe found that this threshold 
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should exist (seemingly regardless of actual chemistry) at a CN = 2.4 [67,68,80]. The 

prediction of this threshold holds true for binary glasses, but falls apart in ternary glass 

forming systems, as will be discussed in the following section.   

1.2.3 Ternary GeAsSe 

Moving from a binary glass system to a ternary or multicomponent glass system adds an 

extra degree of flexibility which usually leads to broader glass formation due to the mixing 

that occurs with more, dis-similar atoms. This compositional and property complexity also 

influences the compositionally-driven property changes described along the AsSe and AsS 

binaries, while generally adding enhanced stability to crystallization [81]. The additional 

constituents in the glass and the corresponding new bonding configurations make possible 

the ability to tailor specific properties required for specific applications. This lends the 

ternary glass system broader overall tunability of glass properties. For the specific 

application of infrared imaging, AsSe binary glasses can possess beneficial optical 

properties: high refractive index, broad transmission and low intrinsic absorptions, and low 

but varying thermoptic coefficients [31,35]. These same binary glasses however possess 

undesirable thermal/ mechanical characteristics such as low glass transition temperatures 

[38,82,83], high coefficients of thermal expansion (CTE) [38,66], poor photostability and 

photosensitivity [57,84-88], and poor hardness and chemical durability, particularly when 

compared to oxide glasses used for visible imaging systems [33,89]. In order to maintain 

the beneficial optical properties but overcome the undesirable thermal properties, 

compositional design with an additional constituent such as Germanium can be performed 

such that the properties can be tuned to meet specific design needs.  
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Germanium is a group IV element and is known to be glass network former in both oxide 

and chalcogenide glass systems. In chalcogenide glass (ChG) matrices it serves two 

functions; firstly, it enters the glass network in four-fold coordination and this additional 

bonding serves to increase connectivity of the structure. Addition of 4-fold Germanium to 

the lower coordinated As (3-fold) and Se (2-fold) atoms results in an increase in the glass’ 

mean coordination number (MCN) which can dramatically enhance both thermal stability 

and mechanical robustness [66]. Additionally, it reduces the average number of lone-pair 

(LP) electrons per unit volume of the glass thus affecting local polarizability and hence, 

optical properties. As arsenic (1 LP per atom) and selenium (2 LP per atom) are replaced 

with germanium (0 LP per atom), not only is network connectivity increased but 

polarizability is markedly modified. 

When Ge is added to binary AsSe glasses, the Ge additions preferentially form bonds with 

Se, as the electronegativity difference between Ge and Se is larger than As and Se [48]. 

The Ge will bond with 4 Se to create GeSe4/2 tetrahedral units, and will further cross-link 

the puckered layers of AsSe [47,58,59,69,90-92] as shown in Figure 1.6a and Figure 1.7a, 

respectively. The Se atoms will next seek to form As-Se bonds. If more than enough Se is 

available to satisfy all of the Ge-Se and As-Se bonds, the composition is considered “Se-

excessive”. If there is exactly enough Se to satisfy all the required Ge-Se and As-Se bonds, 

the glass is considered “stoichiometric”. Likewise, if there is not enough Se for the required 

bonds, the glass is “Se-deficient”. X-ray photoelectron spectroscopy (XPS) and nuclear 

magnetic resonance spectroscopy (NMR) results have shown that regardless of whether the 

glass is Se-excessive or Se-deficient, a small number of Se-Se homopolar bonds will still 
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be present [63,70]. Results from XPS AND NMR investigations also show that the 

coordination numbers of Ge, As, and Se do not, in general, change with composition and 

the structures that are formed maintain their normal coordination [48,61,63]. 

 

Figure 1.7 – a) Representation of how Ge additions cross-link the AsSe puckered layers, b) Stoichiometric 

structure with GeSe and AsSe structures, c) Se-poor network where As2Se4/2 defect structures are present, d) Se-

poor network where Ge2Se6/2 ethane-like modes appear 

When the compositions become increasingly Se-deficient, several studies have reported 

the formation of additional defect modes, such as Ge2Se6/2 ethane-like modes [58], Ge-Ge 

and As-As homo-nuclear (also called homopolar) bonds [70,93], shown in Figure 1.6b and 
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Figure 1.7d. It should also be noted that the presence of these defect states in Se excessive 

glasses have also been reported, but in significantly lower quantities [94].  

Prior studies on the GeAsSe ternary system have examined the effects of composition, or 

MCN, on several materials properties, including glass transition temperature (Tg) 

[64,82,83,95-97], viscosity and fragility [95,98], optical bandgap [40], thermal diffusivity 

[99], elastic properties [96,97], and refractive index of limited compositions in thin film 

form [100]. Despite these numerous investigations on GeAsSe glasses, a study that 

systematically explores the impact of Ge additions on thermal, mechanical, and optical 

properties of glasses specifically designed for optical imaging applications where the 

compositional role of constituents on both optical properties and those attributes that most 

dictate optical manufacturing response, has not been carried out. This systematic study 

forms the core focus of the present effort. 

1.2.4 Se-rich/-deficient compositions 

At this time it is beneficial to introduce a concept of Se-rich and Se-poor percentages 

(equivalently called Se-excess/Se-deficiency), where these attributes are referenced 

relative to the chalcogen content at stoichiometry. Specific to the GeAsSe ternary system, 

the stoichiometric tieline connects the binary As2Se3 to GeSe2 compositions. This concept 

is useful in ternary chalcogenide glasses as it is a method of determining the structures that 

should be present at a given chemistry (composition). As highlighted in this section, 

GeAsSe glasses can have multiple, unique structural units at the same time, and it is not 

feasible to investigate trends based on the amount of one structure, nor is it feasible to 
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include all of the structures in one coherent analysis. The Se rich/poor percentage can be 

calculated through: 

%𝑆𝑒 − 𝑟𝑖𝑐ℎ/−𝑝𝑜𝑜𝑟 = 100 − 3𝑥 − 2.5𝑦 

Equation 3 

where x and y represent the absolute amount of Ge and As in GexAsySe(100-x-y). This 

formulation can be used to assume what structures should be present, based on Se’s ability 

to fully form Se-Se chains, AsSe3/2 pyramidal, or GeSe4/2 tetrahedral structures [95]. Using 

the Se-rich/-poor percentage requires a prior knowledge of how constituents will bond 

together, which has been presented in this section, and is applied specifically for this case 

of the GeAsSe ternary.  

For GeAsSe chalcogenide glasses with excess Se (Se-rich) content, structures of GeSe4/2 

and AsSe3/2 are separated by chains of Se-Se bonds in what is referred to as the “chain-

crossing” model [48]. Decreasing the amount of Se relative to Ge and As will increase the 

amount of GeSe and AsSe structures in the network until no Se-Se chains or rings will be 

able to form in between these structures, and there will be only enough Se to form AsSe3/2 

and GeSe4/2. At this point the network is in stoichiometry and is considered neither Se-rich 

nor Se-poor (i.e. 0%).  

Further decreasing the amount of Se relative to Ge and As will result in Se preferentially 

forming bonds with Ge, as discussed in Section 1.2.3 [48], and results in a Se-poor network. 

The Se shortage will cause As to replace one of its Se bonds with a homopolar bonds 

between a neighboring As, in the form Se2/2 – As – As – Se2/2 [62,70]. The specific 



20 

  

condition of 0% in the Se-rich/-poor calculation results in a major shift in the structures 

and bonding arrangements of the GeAsSe ternary compositions.  

Another major shift in structure and bonding has also been observed as further reductions 

in the Se content lead to the formation of additional defect states, such as the formation of 

GeSe ethane-like structures, in the form Se3/2 – Ge – Ge – Se3/2 [62,70]. Recent XPS / NMR 

studies by the Luther-Davies group and has shown that the appearance of the GeSe ethane-

like structures only occur when the network is sufficiently low in Se content. Using 

Equation 3 shows the compositions with GeSe ethane-like modes typically arise at regions 

between 20 and 30% Se-poor [93].  

This background discussion on the inter-relationship of glass chemistry to structure will 

served to define the key optical properties that dictate material selection when considering 

materials for use in optical designs for specific components and systems.  How these 

properties influence the selection of that optical material and its fabrication into an optical 

component, is discussed in the next section. 

1.3 Manufacturing of Infrared Optical Elements  

In order for an optical material to be used in optical imaging systems it must first be shaped 

into the appropriate form of use. For lenses, this means the material must be shaped with a 

certain curvature to refract the wavelength of light desired. In addition to determining how 

the materials’ optical properties will affect its optical performance, the materials’ thermal 

and mechanical properties must also be considered to determine the viability for 

production.  
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Chalcogenide glasses offer new manufacturing challenges compared to traditional oxide 

glasses due to their poor thermal and mechanical properties, but these effects can be 

partially mitigated through compositional design [101]. Additionally the elements in 

chalcogenide glasses are often carcinogenic and require special handling and disposal 

procedures to avoid contamination. The main production methods of chalcogenide glasses 

remain the same as for oxide glasses (with some specific attention to slurry chemistry and 

pH), including traditional methods such as laborious and wasteful grinding and polishing, 

whereas newer manufacturing methods include single point diamond turning (SPDT) and 

precision glass molding (PGM). 

The traditional grinding and polishing techniques can fabricate spherical lens elements with 

tight tolerances, and in high volumes. However the performance of these spherical lens 

elements do not match that of aspherical lens elements. To meet the demands for lighter, 

cheaper, or more compact systems, design has shifted toward the use of aspheric or 

freeform optical elements [102-104]. While beneficial in terms of optical function in fewer 

components, manufacturing times and costs are usually larger. These elements present new 

fabrication challenges as one or both of their surfaces deviate from a spherical shape, and 

require non-traditional fabrication methods for production as well as more cumbersome 

metrology techniques to confirm accuracy to design target.  

Both SPDT and PGM can produce elements that meet or exceed the tolerances of 

traditional grinding and polishing, but have the added flexibility to tackle these newer 

geometries. Tool wear issues with diamond turning of brittle materials such as glass, can 

also be a limiting factor in the viability of SPDT for aspherical lens elements [105]. 
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Precision glass molding (PGM) machines work through a fairly simple process. Glass 

samples are placed in between two molds and heated to a temperature above their glass 

transition temperature, typically corresponding to a viscosity of 1010 Pa ∙s. A constant force 

is then applied to the molds to force the glass to take the mold’s negative shape. Glass 

samples are then cooled down to room temperature and removed from the molds. The 

resulting molded sample is typically a lens that requires no additional fabrication steps 

(aside from cleaning and/or optional coating) before sale or use. The process can be 

visualized in Figure 1.8, obtained from [106]. 

 

Figure 1.8 – Schematic of the precision glass molding (PGM) process: (a) heating, (b) pressing (or molding), (c.) 

annealing, and (d) cooling [106]. 

Precision glass molding (PGM) machines have been documented as a viable alternative for 

fabricating spherical and aspherical lenses as well as microlens arrays [107,108]. These 

PGM machines have shown the ability to mold large precision aspherical lenses with 

surface variations and irregularities comparable to or better than lenses produced using 
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convention methods [102]. Results on the importance of individual process parameters 

have been established by several other authors: including force-displacement relationships 

[109], cooling rate relationships to refractive index [110], and sticking between the glass 

and mold as a function of cooling times, pressing times, and pressing forces [111].  

In order to produce a high quality chalcogenide glass for infrared optical imaging systems, 

both the materials bulk properties as well as how that material responds to current 

fabrication techniques must be taken into account. A material that cannot be cost-

effectively fabricated into a practical shape is not useable no matter how superior the 

envisioned optical performance. 

1.4 Choice of GeAsSe Ternary 

The GeAsSe ternary glass forming system was chosen for target composition analysis for 

several practical reasons. Before detailing which specific compositions were chosen for 

this analysis, an overview of those justifications will be presented. 

The primary reason for selecting the GeAsSe ternary system is that it possesses a large, 

stable glass forming region. Along the AsSe binary, stable glasses have been reported from 

pure Se, up to compositions with more than 50 at% As [38-50]. Compositions with higher 

As content than this have been shown to crystallize or separate into multiple phases. 

Additionally along the GeSe binary, compositions have been reported beyond a maximum 

Ge content (atomic %) of Ge40Se60 [75,112,113]. For truly ternary compositions, those 

which contain Ge, As, and Se, the reported glass forming region has been compiled from 

several sources and can be approximated in Figure 1.9. When compositions are not along 
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the edges of the glass forming region, the resulting glass is expected to be a good glass 

former that is resistant to crystallization and only contain one homogeneous phase of glassy 

material.  

 

Figure 1.9 – Approximate glass forming region for GeAsSe ternary 

Another reason for the selection of this subset of glasses is their current availability as 

commercial glasses. As detailed in Section 1.2.1, there are a small number of AsSe or 

GeAsSe compositions commercially available from several manufacturers. While the 

nominally nine (9) commercially available compositions can be used to satisfy basic design 

criteria, the lack of available glasses with significant optical and non-optical property 

variation hinders development of novel optical systems and allows for development of 

novel compositions to fill the voids.  
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Both commercial data sheets and peer reviewed journal articles have reported the optical 

performance of AsSe binary and GeAsSe ternary glasses. In general, these glasses possess 

a broad transmission window extending from near- or short-wave infrared (NIR/SWIR) 

through mid-wave (MWIR) and long-wave infrared (LWIR) wavelengths, high linear and 

non-linear refractive indices, and a variation in index with temperature, dn/dT, that can 

vary over large values depending on the composition [30-35]. In fact in a small 

compositional region along the AsSe binary alone, glasses have been shown that exhibit a 

dn/dT that rapidly and linearly change from positive to negative [31,33]. Aside from 

commercial data sheets, there is definite lacking of refractive index data on these glasses, 

let alone the spectral and thermal derivatives of the index, as shown in Figure 1.5 for Ge 

(Section 1.2). This leaves open the possibility for research to inform the community on the 

optics of GeAsSe glasses.   

While these glasses exhibit extremely interesting optical properties (namely the zero or 

near zero dn/dT), their thermal and mechanical properties are markedly poor. Their low 

transition temperatures, high thermal expansions, and soft surfaces present many issues 

during the manufacturing and coating processes, and can also limit their potential use in 

optical systems. Thus it is important to understand how compositional variations in these 

GeAsSe glasses can influence the properties related to manufacturing as well as optical 

performance in the effort to design compositions with novel functionality.  

1.4.1 Selection of GeAsSe compositions 

The foundation for this study was to analyze how additions of Ge would simultaneously 

affect the optical properties of binary AsSe glasses, while also enhancing the thermo-
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mechanical stability of the glasses. As mentioned in Section 1.2.3, Ge has been shown to 

improve the thermal and mechanical properties of AsSe glasses [66]. While the thermal 

and mechanical properties of the glass have been analyzed in part, the effect of Ge on the 

optical properties had not been adequately studied.  

In an effort to improve upon the three commercially available binary glasses, three binary 

AsSe compositions were selected to serve as “analog” starting compositions. The three 

compositions are: As40Se60 (analog to Schott’s IRG 26 [35]), As35Se65 (analog to 

Amorphous Material’s AMTIR5 [31]), and As30Se70 (analog to Amorphous Material’s 

AMTIR4 [31]). The network-strengthening Ge was added to each of these three binary 

glasses without changing the As:Se ratio to create tielines of the form (As0.40Se0.60)100-xGex, 

(As0.35Se0.65)100-xGex, and (As0.30Se0.70)100-xGex  tielines where x={0, 5, 10, 15, 20} for the 

first tieline and x={0, 5, 10, 15, 20, 25} for the other two tielines. The compositions 

analyzed in this study are listed in Table 1.3, and shown on the GeAsSe ternary in Figure 

1.10. Because of the high number of unique compositions and the similarities between 

them, the compositions have been given short-hand Sample IDs, and the three tielines will 

also be color coded for easier analysis: black will correspond to the (As.40Se.60)100-xGex 

tieline, red for the (As.35Se.65)100-xGex tieline, and blue for the (As.30Se.70)100-xGex tieline. 

Table 1.3 – Compositions analyzed and their designated Sample IDs 

Ge  

(at %) 

as batched 

As  

(at %) 

as batched 

Se  

(at %) 

as batched 

Sample ID MCN 

(As0.40 Se0.60)100-xGex tieline   

0 40 60 40_60_0 2.40 

5 38 57 40_60_5 2.48 

10 36 54 40_60_10 2.56 

15 34 51 40_60_15 2.64 
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20 32 48 40_60_20 2.72 

(As0.35 Se0.65)100-xGex tieline   

0 35 65 35_65_0 2.35 

5 33.25 61.75 35_65_5 2.43 

10 31.5 58.5 35_65_10 2.52 

15 29.75 55.25 35_65_15 2.60 

20 28 52 35_65_20 2.68 

25 26.25 48.75 35_65_25 2.76 

(As0.30 Se0.70)100-xGex tieline   

0 30 70 30_70_0 2.30 

5 28.5 66.5 30_70_5 2.39 

10 27 63 30_70_10 2.47 

15 25.5 59.5 30_70_15 2.56 

20 24 56 30_70_20 2.64 

25 22.5 52.5 30_70_25 2.73 

 

The final endpoints of these three tielines were chosen so that the mean coordination 

number (MCN or <r>) of that glass was greater than 2.67. A glass’ average coordination is 

calculated through Equation 4: 

< 𝑟 > =  
4𝑥 + 3𝑦 + 2𝑧

100
 

Equation 4 

where x, y and z are the atomic percentages of Ge, As, and Se, respectively. The 

multiplicative weighting factors are representative of each constituent’s average number of 

bonds, relying on the assumption each Ge atom would have four (4) bonds, each As atom 

three (3), and each Se atom two (2) bonds. The basis for this stems from the 8-N rule, where 

N is the number of valence electrons in the atom.  

Several authors have documented a “percolation threshold” when the MCN = 2.4 that 

corresponds to a local maximum or minimum in certain properties in binary systems 

[67,68]. Additional authors have observed a second transition at a MCN = 2.67 [40], which 
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can also correspond to a local extrema or inflection point. The decision was made to 

increase the Ge content to a point where the MCN is past the potential transition at 2.67, a 

priori.  

 

Figure 1.10 – Selected GeAsSe compositions approximate glass forming region bolded. 

 

1.5 Goals for this Dissertation 

This chapter has introduced the current state of infrared (IR) materials, highlighted the lack 

of diversity in commercially available material types and properties, and highlighted some 

of the methods used to manufacture IR optical components. Compositional design of 

optical properties has been proposed as a suitable method to overcome the lack of diversity, 
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and a specific glass forming system (GeAsSe ternary) has been chosen to begin this 

investigation of compositional design. 

The overall goal for this dissertation is to develop a method of compositional design for 

the optical properties of chalcogenide glasses and to identify and evaluate novel 

compositions that may exhibit unique properties and are suitable for commercial 

production. It is hoped that this work will help to fill in some of the present gaps of 

commercially available IR materials and aide in the production of novel IR systems. While 

this work will specifically focus on the GeAsSe glass-forming system, the principles can 

be theoretically be adapted to additional glass-forming systems.  

There are two main tasks that must be accomplished along the way to achieving the overall 

goal of this dissertation. First, novel equipment must be designed, constructed, and 

characterized in order to provide the necessary optical property information for analysis. 

Then, glasses must be fabricated and characterized via optical and non-optical methods, 

and the data must be presented in a way that allows for coherent data analysis. 

After the completion of these two tasks, there are several questions which need to be 

answered during the analysis of the data: 

 Is there a link between optical properties, such as the index and dn/dT, and non-

optical properties that can allow for easier prediction of the difficult to measure 

optical properties?  

 How will compositional variations for the sake of optical tunability affect the 

physical properties which dictate a materials’ response to manufacturing processes? 
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 Are there compositions within the GeAsSe ternary that can produce a zero dn/dT 

that will offer better thermo-mechanical stability to the current commercial 

options? 

This dissertation will seek to accomplish these tasks and answer these questions in order 

to satisfy the overall goal of this dissertation: to develop a method of compositional design 

for the optical properties of chalcogenide glasses to aide in the creation of novel IR 

materials for IR optical systems. Specifically, Chapter 2 will present the necessary 

procedures and methodology for the fabrication and characterization of these materials, 

and Chapter 3 will present results obtained from the characterization methods. Chapter 4 

will present work done to construct and characterize novel metrology equipment and 

present results from said equipment. Finally Chapter 5 will present a unique, time-

dependent optical phenomenon observed in chalcogenide glasses.  
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Chapter 2  

Experimental Procedures and Methodology 

This chapter discusses the preparation, fabrication, and testing of the GeAsSe glasses 

defined and discussed in Chapter 1. Experimental methods for optical property 

measurements (specifically refractive index and thermo-optic coefficient) will be the focus 

of Chapter 4, and not discussed here. The non-optical methods discussed here are crucial 

to determining appropriate manufacturing practices and confirming glasses fabricated here 

fall within acceptable ranges established in literature. 

2.1 Preparation of the Bulk GeAsSe glass 

All materials investigated in this study were approached as if they were novel experimental 

materials. As such, each composition was subject to analysis to determine the relevant 

material, mechanical, and optical properties necessary for the overall characterization of a 

novel material. The specific criterion for a new material depends heavily on the application 

for which it is intended. When a new material is being designed to fill a specific need, one 

overarching question must be asked during analysis: does this material meet the numerous 

criteria necessary for the intended applications? 

2.1.1 Batching, melting, quenching, and annealing 

All previously mentioned glasses along the three tielines were fabricated using a standard 

chalcogenide melt-quench protocol [38]. Specific to this study, elemental Ge, As, and Se 

(Alfa Aesar, minimum 99.999% purity) were individually weighed out in their appropriate 
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ratios in a glovebox with a N2 atmosphere and placed in fused silica tubes (10 mm inner 

diameter) to create 25g batches. Few, select compositions were also melted in “large 

melts”, where the batch size is increased to 250 g and the inner diameter of the fused silica 

tubes is increased to 30 mm. The elemental starting materials were weighed out to an 

accuracy of ±0.005 mg, which translates to an approximate “batch sheet” error of 0.1 

atomic% for each element. After the raw materials have been placed in the silica ampule, 

a vacuum fixture was then placed on the end, and the “batch” was then heated to 90 °C and 

held under mild vacuum for ~30 min. The evacuated tube was sealed-off using an oxygen-

methane torch to create a sealed ampule for melting. The ampule was placed in a rocking 

furnace (Barnstead Thermolyne 21100) at room temperature. The rocking furnace was 

increased to a melting temperature of 750 °C, at a rate of 2.5 °C /min, and held for ~16 

hours. The following day, the rocking of the furnace was halted and the temperature of the 

furnace was decreased to 650 °C at a rate of 2.5 °C /min. The melt was then quenched to a 

temperature below Tg with forced air. The resulting glass was then placed in an annealing 

furnace (Barnstead, Termolyne 48000) for 24 hours at 40 °C below the corresponding glass 

transition temperature. Forced air was found to be necessary for several compositions to 

ensure the silica tube and chalcogenide glass inside would not crack during annealing. 

After annealing, the chalcogenide glass was removed from the silica tube. Several slices 

measuring between 2-4mm in thickness were cut from each glass “boule”, as well as one 

rod measuring 12-20mm in thickness, using a diamond tipped low-speed circular saw 

(Buehler Isomet Low Speed Saw). Additional pieces were set aside from each melt to be 
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ground into a fine powder using a mortar and pestle for differential scanning calorimetry 

(DSC) analysis.  

The small disks and were then polished by hand using a single sided polisher (Buehler 

Ecomet 250). First a coarse grit pad was used to quickly grind the samples to an 

approximate final thickness of 2mm, and to remove any cutting marks during the slicing 

process. The samples were then fine ground with subsequent steps, each consisting of 

smaller grit sizes than the last. After grinding, the samples were then polished using a cloth 

pad and an alumina slurry with a particle size of 0.3 µm. The same process was repeated 

for the longer rods of glass, save for the initial grinding step to reduce the total length.  

2.2 Material Characterization - Experimental Methods 

A summary of the properties investigated in this experimental section have been outlined 

in Table 2.1 along with the specific equipment being used, and any specific sample 

preparations and /or geometries needed for the analysis. The sections below can be referred 

to, to gain an understanding of the fundamentals of the experiment in question and to 

understand any other pertinent parameters that could not be contained in Table 2.1. 

 

 

 

 

Table 2.1 – Summary of the equipment used in this study, as well as pertinent information for sample fabrication 

and preparation.  
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Equipment 

Name 

Spectral or 

Temperature 

Range or 

Wavelengths 

Property 

Measured 

Sample 

Form 

Needed 

Amount of 

Sample 

Needed 

(per run) 

Sample 

Width 

Needed 

(mm) 

Sample 

Thickness 

Needed 

(mm) 

Bruker Senterra 

MicroRaman 
λexc = 785 nm 

Vibrational 

Energy 

Polished 

Slice 
1 Piece 

>2 

Typically 10 

>1 

Typically 2 

Metricon 

2010/M 

30°C – 90 °C 

PNNL: 

3.4µm, 4.5 µm, 

5.4 µm, 7.78 µm, 

10.6 µm 

UCF: 4.515 µm 

Refractive 

Index, dn/dT 

Polished 

Slice 
1 Piece 

>7 

Typically 10 

1 to 4 

Typically 2 

ZYGO 

NewView 8300 
 

Surface 

Roughness 

Polished 

Slice 
1 Piece 

>1 

Typically 10 

>1 

Typically 2 

TA Instruments 

SDT Q600 
 

Weight Loss, 

Tg 
Powder 

30-40 mg 

Typically -

125 mesh 

N/A N/A 

Thermtest 

TPS2200 
 

Thermal 

Conductivity 

Polished 

Slice 
2 Pieces 

>9 

Typically 10 

> 2.75 

Typically 3 

TA Instruments 

2940 TMA 
 

Thermal 

Expansion, 

Softening 

Temp 

Slice 1 Piece 
2 to 10 

Typically 3 

>5 

Typically 10 

AE Adams 

PGW Balance 
 Density Slice 1 Piece 

>5 

Typically 10 

>2 

Typically 2 

Shimadzu 

DUH-211S 
 

Vickers 

Hardness 

Polished 

Slice 
1 Piece 

>5 

Typically 10 

>1 

Typically 2 

2.2.1 Differential Scanning Calorimetry (DSC) and Simultaneous DSC/TGA (SDT) 

A differential scanning calorimeter (DSC) is an instrument that measures the heat flow into 

and out of a sample. Typically a DSC system design utilizes a cell with two sample pads: 

one for sample to be measured and another to serve as a reference. The system works by 

measuring the heat flow needed to keep the two samples at the same temperature during a 

ramp in temperature. The signals between the sample and reference are then compared to 

obtain material properties such as the glass transition temperature (Tg), crystallization 

growth (Tx) and melting (Tm) temperature(s), relative nucleation and crystallization rates 

(I, U) [114], as well as the material’s heat capacity (Cp).  
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One variant of the DSC also incorporates thermogravimetric analysis (TGA), which 

measures a sample’s weight during heating, to yield simultaneous results including the 

onset of volatilization or dehydration in bulk samples as well as solutions [84,115-117]. 

This system is often referred to as simultaneous DSC or DTA associated with the specific 

simultaneous differential thermal technique (SDT). This is particularly useful when 

considering use of a material in an extended temperature environment or in a 

manufacturing environment involving broad thermal excursions or cycling. Deviations 

beyond a thermal stability regime can lead to change in composition and thus, optical 

properties. 

A representative SDT thermogram is shown in Figure 2.1. The figure contains two distinct 

curves: the heat flow (green) into the sample and the derivative of the heat flow (blue) into 

the sample. The glass transition temperature of a glassy sample is defined as the inflection 

point of the first endothermic feature in the heat flow signal. This can also be calculated as 

the minimum of the derivative of the heat flow signal, and is noted in Figure 2.1 for 

reference.  
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Figure 2.1 – Standard DSC thermogram of a GeAsSe glass (30_70_25), including the measured heat flow into and 

out of the sample (green) and the derivative of this signal (blue). The Tg of the glass is noted in the figure and is 

calculated from the minimum of the derivative of the heat flow. 

Bulk samples for this study were crushed into powder and 15-25 mg of the sample power 

was weighed in an alumina pan. The sample was heated at a rate of 10°C·min-1 to Tg+25°C 

to maintain a similar thermal history for each sample. The sample was then cooled down 

to 50°C before heating again at a rate of 10°C·min-1 and continuing until 3% of the initial 

weight was lost through volatilization. Specific to this study, Tg was calculated as the 

temperature corresponding to the minimum in the first derivative of the heat flow for the 

first endothermic feature upon reheating.  
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Figure 2.2 – Measured weight of a GeAsSe sample (30_70_25) as a function of temperature, as measured by an 

SDT. The “upper use temperature” of a composition is defined as the temperature corresponding to 1% total 

weight loss.  

A representative plot of a samples weight during a temperature ramp up to its upper use 

temperature is shown in Figure 2.2, and is the same sample as previously shown in Figure 

2.1. The maximum upper use temperature was calculated as the temperature corresponding 

to 1% weight loss. The reported error on the Tg and upper use temperature was obtained 

through the standard deviation of 5 unique runs from of a representative bulk sample, and 

was found to be ±2°C in both cases. 

2.2.2 Thermo Mechanical Analyzer (TMA)  

A thermomechanical analyzer (TMA) is an instrument that measures relative and absolute 

changes in a sample’s length, typically as a function of temperature or time. The most 
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common information gathered from a TMA is a material’s coefficient of linear thermal 

expansion (CTE). The CTE (α) is obtained by taking the slope of the linear dimension 

change vs. temperature curve (
𝑑𝐿

𝑑𝑇
), and dividing by the initial length (Li) as shown in 

Equation 5. In addition to the CTE, a TMA can also be used to measure the dilatometric Tg 

of a glass, as well as the dilatometric softening point (Td). A TMA curve of a representative 

sample is shown in Figure 2.3.  

 

Figure 2.3 – Linear dimension change as a function of temperature for a sample of As40Se60 measured at 3°C·min-

1. The bold region signifies the region used in the calculation of the Coefficient of Thermal Expansion (CTE). 

For this study, cylindrical samples measuring 10 mm in diameter and approximately 15 

mm in height were used, and all heating rates for the experiments were held constant at 3 

°C·min-1. 
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𝛼 =  
1

𝐿𝑖

𝑑𝐿

𝑑𝑇
 

Equation 5 

The region used to calculate the CTE is shown in Figure 2.3 and is defined for this study 

as the range between 50 °C and 0.8*Tg, with the Tg being determined through DSC or SDT 

analysis. The maximum temperature for the TMA is typically set to Tg + 25 °C, so that the 

glass does not significantly deform, or slump, under its own weight. One run of room 

temperature up to Tg + 25 °C is used to reset the thermal history of the samples, and the 

reported CTE is taken as the average of the CTE from the next three consecutive runs up 

to the maximum temperature. The error was obtained by averaging the standard deviation 

of the linear fitting of these three runs from a representative sample and was found to be 

±1.0 ppm ·°C-1. 

The TMA can also be used to characterize micron-scale relaxations in chalcogenide glasses 

that occur at temperatures slightly below the Tg over the course of hours to days. These 

structural relaxations are pivotal in understanding how a chalcogenide glass may change 

shape after a fabrication process such as precision glass molding [1,118]. These specific 

processes will not be discussed in this analysis, but remain an important topic for IR glass 

manufacturers.   

2.2.3 Vickers Microhardness, HV (GPa) 

The Vickers Hardness of a material is a measure of that material’s ability to resist plastic 

deformation upon indentation of a Vickers indenter. The Vickers Indenter is made from 

diamond and has a pyramidal shape with a square base. The indenter is pushed into the 
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material’s surface, and held in contact with the surface for a set amount of time and with a 

constant force. The resulting indentation in the material surface is then measured under a 

microscope objective.  A typical Vickers indentation is shown in Figure 2.4.  

 

Figure 2.4 – Indentation of a Vickers Hardness indentor on a GeAsSe glass with an indentation force of 100mN.  

 

When measuring glassy materials, indenting the surface with too large of a load can cause 

in crack formation and propagation, potentially leading to incorrect measured hardness 

values [50]. A polished sample of As40Se60 was indented with increasing loads, and the 

hardness was measured to determine the appropriate load for analysis and to determine the 

threshold load for crack formation and propagation. Figure 2.5 shows the measured 

hardness for an As40Se60 sample as a function of indentation load, and highlights the 

threshold load for crack formation / propagation.  

5 µm 
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Figure 2.5 – Measured Vickers Hardness in GPa as a function of indentation force for a sample of As40Se60. Black 

data points indicate that no cracking occurred, while red data points indicate that cracking did occur. 

Based on these results all samples for this analysis were indented with a 100 mN load for 

a hold time of 10 seconds using a Shimadzu DUH-211S Dynamic Ultra Microhardness 

Tester with a Vickers indenter. The reported hardness values are obtained through 

averaging calculated hardness on ten unique indentations. The error is reported as the 

standard deviation of the same ten indentations and is uniquely obtained for sample 

measured for each sample. 
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2.2.4 Density 

Density is a measure of the mass occupying a unit volume of a material. The density of a 

material is mathematically defined as the mass of the material divided by the volume it 

occupies. The density of the glasses was determined using the Archimedes method on an 

Aaron Balance (AE Adams PGW Balance) utilizing deionized water as the immersion 

medium. A 1-inch single crystal silicon cube was used as reference to verify the accuracy 

and repeatability of the measurement technique. The samples previously described for 

thermal expansion measurements provided a large enough sample size to minimize the 

error. All density measurements were performed on samples prior to measuring the thermal 

expansion to avoid measuring the effect of thermal history changes in the process.  

2.2.5 Raman Spectroscopy 

Raman scattering is a type of inelastic scattering of monochromatic light that gives 

information to the types of vibrational modes within a material. During the scattering 

process, the vast majority of photons are elastically scattered, known as Rayleigh 

scattering, and only a small fraction of photons are inelastically scattered, meaning the 

scattered photon has a lower energy than the initial photon. Raman scattering was first 

experimentally observed by C.V. Raman, which later earned him the 1930 Nobel Prize in 

Physics.  

During the inelastic scattering process, a portion of the incident photon’s energy interacts 

with low frequency vibrational states between certain molecules within the sample. 

Different atoms / molecules have different characteristic vibrational states, and will “leech” 

different amounts of energy from the incident photon, referred to as the Raman shift. 



43 

  

Systematic experimental investigations coupled with computer simulations have produced 

a large database of characteristic Raman shifts for a wide variety of materials and 

vibrational states.  

The spectra of polished samples were collected using a Bruker Optics Senterra Raman 

Spectrometer with an excitation wavelength of 785 nm. The reported Raman spectrum for 

each sample is an average of data acquired from three spots; each measured using 5 co-

additions of 30 seconds.  

The data was then normalized by the total integrated area between 165 cm-1 and 400 cm-

1as described by Musgraves et al. [92]. The Raman spectrometer used in this analysis 

exhibited increased noise below 165 cm-1, and was filtered out for this reason.  The 

normalized data was then deconvolved using PeakFit software and Raman assignments 

from relevant literature sources.  

The Raman spectra of a representative GeAsSe glass is shown both prior-to and after 

normalization in Figure 2.6. Additionally an example of the deconvolution is shown in 

Figure 2.7. The individual bands, dashed lines in Figure 2.7, correspond to specific 

vibrational modes of As-Se or Ge-Se. Additional information of the specific bands used 

for deconvolving the signal can be found in Section 3.1. The information gathered from 

the deconvolved Raman specta will also be used in Section 3.4.3 to highlight the correlation 

between certain Raman-active bands and physical properties.  



44 

  

 

Figure 2.6 – Raman signal from a sample of (As.40Se.60)90Ge10 prior to normalization (top) and after normalizing 

to the total integrated area (bottom). 

 

Figure 2.7 – Normalized Raman signal from a sample of (As.40Se.60)90Ge10 (solid), shown with deconvolved bands 

(dashed). 
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2.2.6 Infrared Transmission (FTIR and UV-VIS) 

The most basic application of these GeAsSe glasses is transmission of light in bulk, fiber, 

or thin film form. The glasses in this analysis are largely novel glasses, with unknown 

transmission behavior. To determine the transmission of the new glasses Fourier Transform 

Infrared Spectroscopy (FTIR) was used. FTIR utilizes a broad spectral signal to 

simultaneously collect transmission and absorption data over an equally large spectral 

range. The broadband light is passed through a Michelson Interferometer where one of the 

mirrors is attached to a motor for lateral movement. Moving this mirror increases the path 

length of one of the interferometer’s arms and allows for constructive and destructive 

interference different wavelengths of light. The measured signal is collected in the spatial 

domain (as a function of lateral movement of the system mirror), then a Fourier transform 

is used to present the transmission data in the spatial frequency domain (cm-1). The data 

can them be converted to the wavelength relevant information for optical designers who 

often prefer to work with units in nm or µm form. This method works in contrast to an 

Ultraviolet-Visible (UV-VIS) Spectrometer which measures the transmission and 

absorption over a narrow spectral linewidth and incrementally constructs the transmission 

and absorption spectra.  

The transmission data from FTIR measurements can be used to check for absorptions from 

impurities and to determine the transmission window limits. Absorptions from impurities 

are typically present over narrow wavelength regions and decrease the transmission 

partially or fully.  The short-wave FTIR spectrum of the polished samples in this 

investigation was collected using an FTIR in transmission mode (Perkin Elmer FT-NIR 
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Spectrometer Frontier). Each sample was measured 5 times, and the signal was averaged 

across all measurement runs. The short-wave transmission cut-off wavelength (λc/o) was 

defined for this analysis as the wavelength corresponding to a 30% drop in transmission 

from the maximum measured transmission, i.e. 0.7∙Tmax. A typical transmission spectrum 

for a GeAsSe glass is shown in Figure 2.8, which has been corrected for Fresnel losses and 

normalized to the maximum transmission. Also highlighted in Figure 2.8 are the regions 

corresponding to typical absorption bands in GeAsSe glasses. 

 

Figure 2.8 – Fresnel corrected and normalized transmission spectrum of an As40Se60 sample measuring ~2mm in 

thickness as measured by an FTIR spectrometer. The highlighted band at ~2.8 µm corresponds to absorptions 

from O-H impurities [119,120]. 
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2.2.7 Surface Roughness 

White light interferometry (WLI) is a non-contact optical method of measuring surface 

heights of a sample, and is primarily used for obtaining surface roughness and dimensions 

of features present on a materials’ surface, intended or otherwise. As the name suggests, 

WLI interferometry uses a broadband visible source to create interference patterns on the 

surface being measured. In a method similar to FTIR spectroscopy, an interferometer with 

a movable mirror is used during the analysis. The similarities end there, as WLI utilizes a 

different type of interferometer and captures images of interference patterns projected on 

the surface of the material, rather than the spectral transmission or reflection of the material. 

The surface roughness of the polished samples was measured using a Zygo White Light 

Interferometer (NewView 8300). The reported surface roughness for each sample is the 

average of root mean square (RMS) roughness obtained from five measurement locations 

0.707 mm2 in area spread across the sample. A sample image of the white-light 

interferogram is shown in Figure 2.9, this figure shows the relative height of each “pixel” 

across the sample, then calculates the peak-to-valley (PV) roughness and root-mean-square 

(RMS) roughness. There are several lines (slightly different color/scale than immediate 

surroundings) that traverse the image from top left to bottom right of the image, these lines 

are scratches in the surface from the polishing process.  
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Figure 2.9 – Surface profile interferogram of a GeAsSe glass surface (over a 0.707 mm2 area) as measured by 

white light interferometry (WLI). The root mean square, and peak-to-valley roughness is shown in the upper left 

corner. 

2.3 Conclusions 

This chapter has discussed the necessary procedures to melt chalcogenide glasses, fabricate 

samples, and characterize these samples using well understood characterization techniques. 

The following chapter will present the results of the characterization techniques on the 

chalcogenide glasses outlined in Section 1.4.1, and provide analysis for the observed 

trends.  
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Chapter 3  

Material Characterization Results 

This chapter will discuss the results of the non-optical experimental procedures outlined in 

Chapter 2. Firstly, the structure of these glasses will be presented to establish a foundation 

on which to discuss the evolution of the optical properties. Then, with the structural 

evolutions in mind, the remaining properties will be investigated. Specific focus will be 

paid to the influence of these properties on manufacturing properties, and will be 

referenced to established results for oxide-based glasses. Finally the collected data in this 

investigation will be compared to prior literature results to verify the results obtained in 

this study conform to expected standards.  

3.1 Structural Analysis 

This section will describe the evolution of structural, physical, and thermal properties 

across the three tielines. The data throughout this dissertation will be presented in three 

slightly different methods, with each one highlighting a different aspect of the trends. The 

first method is based simply on the added Ge (in atomic percentage) to the base AsSe 

binary glass. This method looks solely on the chemistry of the compositions, i.e. X% Ge, 

Y% As, and Z% Se, but fails to emphasize the underlying structures and/or global network 

connectivity. The second method is through calculating the mean coordination number 

(MCN), which was mathematically described previously in Section 1.4.1. To reiterate, the 

MCN is a global measure of the network connectivity and is a calculation of the average 
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number of bonds (coordination) per atom. A considerable amount of work has been 

performed on characterizing ternary glasses as a function of MCN, and thresholds at certain 

MCN values (namely 2.4 and 2.67) have been well documented [40,67,68]. Within MCN 

analysis, two glasses with considerably different chemistry can have identical MCN values.  

The final method of characterizing trends along the tielines is through looking at the 

structures that should be present at a given chemistry (composition). Since GeAsSe glasses 

can have multiple structures at the same time, it is not feasible to investigate trends based 

on the amount of one structure, nor is it feasible to include all of the structures in one 

coherent analysis.  

In brief summary, the three methods for analyzing the tielines are as follows: 

1. Ge concentration – a measure of glass chemistry at a given composition 

2. Mean coordination number (MCN) – a measure of network connectivity at a given 

composition 

3. Se-rich/-poor percentage (or excess/deficiency) – a measure of the likely structures 

at a given composition 

Properties will be presented in one of these three methods to demonstrate how either the 

glass chemistry, the network connectivity, or how structures (types and/or relative 

amounts) dictate property trends across the tielines. The non-optical properties will be 

presented primarily in terms of the MCN or the absolute Ge concentration of the 

corresponding composition. This will be done to show correlation with previously 
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published data and to discuss relevant trends. Optical data in Chapter 4 will primarily be 

discussed in terms of the Se-rich/poor % to highlight new findings in the results.  

3.2 Structural Characterization - Results 

The manner in which the glass constituents (atoms) are arranged in the isotropic glass 

network gives rise to the resulting glass structure. This structure, which can be analyzed by 

a variety of tools, specifically using Raman spectroscopy in the present study, varies as the 

types and relative quantities of the respective constituents change in the glass. The resulting 

network structure is key to understanding the resulting material’s mechanical, thermal, and 

optical properties.  

Chalcogen-rich glasses, such as amorphous Se or binary AsSe with Se content >80 at%, 

contain extremely long Se chains. This 1D structure is a result of the selenium atom’s 

coordination number of 2, meaning that only two of its six outer shell electrons will 

participate in bonding, while the other four form two sets of lone pair electrons that do not 

contribute to the connectivity of the network [67,68]. If a three-coordinated As atom (three 

unbound valence electrons and one set of non-contributing lone pair electrons) were added 

to this chainlike structure, a pyramid type structure would form connecting three Se chains 

to one As, with the remaining lone pair electrons at the “apex” of the pyramid. The process 

of replacing Se with As (and thus Se chains with AsSe pyramids) gradually shifts the 

network from 1D to 2D, and once the composition reaches the stoichiometric As40Se60 a 

completely 2D structure of puckered layers held together by weak van der Waals forces is 

realized [40,67,68]. The three binary AsSe glasses selected for this study yield a structure 
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comprised primarily of these 2D puckered layers, as they are near stoichiometry, with 

As40Se60 being stoichiometric. 

The normalized Raman spectra of the three AsSe binary glasses are shown in Figure 3.1. 

Vibrational modes observed between 210 and 270 cm-1, relevant to these glasses, are listed 

in Table 3.1 along with their references. The Raman spectra of the three glasses are similar, 

showing broad signal response containing several AsSe vibrational modes, and is a direct 

result of the glasses’ structures also being similar. With this background, and prior 

systematic property changes shown for binary AsSe materials that show quantitative 

comparison of property changes across compositional tielines [38,40,47,48,83,121] the 

structural evolution in this glass system with Ge additions are discussed. 

 

Figure 3.1 – Normalized Raman spectra of the three AsSe binary glasses, measured with an excitation wavelength 

of 785nm. 
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The normalized Raman spectra of the three tielines, (As.40Se.60)100-xGex, (As.35Se.65)100-

xGex, and (As.30Se.70)100-xGex are shown in Figure 3.2, Figure 3.3, and Figure 3.4. Figure 

2.8 (found in Section 2.2.5) shows the normalized Raman spectrum of a representative 

glass, (As.40Se.60)90Ge10 (equivalently 40_60_10), with the individual deconvolved bands 

that create the overall spectrum. The deconvolved bands have been labeled for approximate 

center wavenumber, and have been labeled with the type of vibration that contributes. More 

information on the individual bands can be found in Table 3.1. 

According to Kaseman et al., the larger difference in electronegativity between Ge and Se, 

as compared to between As and Se, leads the Ge to preferentially seek bonding with Se 

[48]. This assertion is supported in Figure 3.5, which shows the change in the total relative 

contribution from AsSe, GeSe, and SeSe bands in the Raman spectra. The values reported 

are a summation of the deconvolved peak area of each individual AsSe, GeSe, or SeSe 

bands, respectively. As more Ge is added to the glass network, there is a steady increase in 

the contribution from GeSe bands, namely GeSe edge- and corner-shared tetrahedral units 

[58,122]. These GeSe bands grow at the expense of the AsSe bands as the GeSe units 

become a significant part of the glass network. The contribution of SeSe bands is also 

annihilated as the compositions move beyond stoichiometry to become Se deficient.  
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Figure 3.2 – Normalized Raman spectra of the (As.40 Se.60)100-xGex tieline, where x={0, 5, 10, 15, 20}, measured with 

an excitation wavelength of 785nm. 

 

 

Figure 3.3 – Normalized Raman spectra of the (As.35 Se.65)100-xGex tieline, where x={0, 5, 10, 15, 20, 25}, measured 

with an excitation wavelength of 785nm. 
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Figure 3.4 – Normalized Raman spectra of the (As.30 Se.70)100-xGex tieline, where x={0, 5, 10, 15, 20, 25}, measured 

with an excitation wavelength of 785nm. 

The newly formed GeSe4/2 tetrahedra and their extra, interlayer connectivity, will replace 

the weak van der Waals forces holding the puckered AsSe layers together with stronger, 

covalent, interlayer bonds.  The addition of Ge leads to more of these structural units which 

initiates the onset of a fully 3D glass network [40]. Germanium’s role in the process is 

often referred to as “cross-linking” or “polymerizing” the glass network. The simultaneous 

growth in GeSe bands and decline in AsSe bands shows the mechanism by which the 

network evolves to yield a more highly coordinated structure, with the addition of 4-

coordinated Ge.  
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Table 3.1 – Raman bands found in GeAsSe glasses, their center positions, and relevant reference information.  

Center peak position  

(cm-1) 

Peak assignment Reference 

 

 175  GeSe4/2 – ethanelike mode [122] 

195 GeSe4/2 – corner shared [58,122] 

205 GeSe4/2 – edge shared [58,122] 

212 Interaction of the AsSe3 pyramids [59] 

227 As-Se vibration within AsSe3 pyramidal units [58,69] 

241 As-Se vibration  [69] 

250 SeSe  [122] 

257 As-Se vibration [59] 

269 Interaction of the AsSe3 pyramids [59] 

300 GeSe4/2 – ethanelike mode [122] 

 

 

Figure 3.5 – Summation of the deconvolved GeSe bands (solid points), AsSe bands (hollow points), and SeSe bands 

(hollow points with cross) from Raman spectral analysis as a function of Ge. 
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3.3 Precursor to Manufacturability  

Traditional chalcogenide glass optical manufacturing involves tedious grinding and 

polishing of a bulk work-piece to remove material until the desired shape is met. Unlike 

oxide glass loose abrasive processes, fabrication of chalcogenide materials requires 

specialized handling protocols of slurries and waste, as well as more gradual heating and 

cooling procedures (i.e., during blocking/de-blocking or generation) where the glass’ 

high(er) coefficient of thermal expansion (CTE) can yield to thermal shock and fracture. 

While conventional optical fabrication techniques can produce high quality parts, final 

sample geometries are typically limited to planar or spherical elements. A relatively new 

method of production, single point diamond turning (SPDT), has been proven to be 

extremely useful for producing a high quantity of high quality optical elements in spherical, 

aspherical, and non-rotationally symmetric geometries [123,124]. Chalcogenides, due 

largely to their low glass transition temperatures lend themselves to hot forming techniques 

such as extrusion and precision glass molding (PGM) [125]. The latter method of molding, 

while studied extensively over the past decade are only now becoming commercially viable 

for making specialized parts (aspheres or diffractive optic elements) for optical systems 

[1,104,126-128].  

As both SPDT and conventional polishing rely on mechanical (and in some cases chemo-

mechanical) material removal, one important aspect to consider is the materials’ hardness. 

The relevance of this property in glass has been examined and established in work by 

Lambropolous and Puttick. Their study showed a favorable correlation between the 

hardness of oxide glasses and their final optical element surface roughness, for both 
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grinding and polishing [129] as well as SPDT [130]. Specifically, glasses with a lower 

inverse root of the hardness values (H-1/2), demonstrated lower final surface roughness 

[129,131,132]. While hardness has been explored, and specifically related to 

manufacturing processes, there are other important properties that have less of a defined 

relationship, which will be discussed in the present study. 

The material removal in the manufacturing processes results in the need to consider not 

only the final shape of the piece but any additional thermal aspects that may occur during 

processing. These thermal effects must also be considered due to the fact that interactions 

between the work-piece and the slurry/ diamond tip can result in localized heating [130]. 

As noted above, rapid heat accumulation occurring over short times can lead to thermal 

shock of the work-piece, resulting in cracking or work-piece failure [133]. Additionally, 

heat accumulation that occurs over longer time scales can cause the work-piece to deform 

due to thermal expansion. If the temperature that the glass reaches during processing is 

close to its specific Tg, then network structure changes through bond relaxation and 

rearrangement can occur [118]. To avoid these physical or structural changes in the work-

piece, the Tg of any candidate material should be above the maximum temperature reached 

during manufacturing, and the coefficient of thermal expansion should be kept as low as 

possible. 

The intrinsic material property consideration becomes particularly important when 

working with ChGs as compared to traditional oxide glasses [129,131,132]. Given that the 

hardness values of oxide glasses, such as Schott’s N-BK7 can reach up to 6 GPa, 2-4 times 

larger that typically reported for ChGs, it is expected that the resulting surface roughness 
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of chalcogenides will also be higher. This interrelationship has been experimentally 

verified on the shop floor as it much more difficult to achieve higher precision figure and 

finish on much softer ChGs. The glass transition temperatures, Tg, of chalcogenides can be 

as much as 200-350 °C lower than oxides. Similarly, the thermal expansion coefficient of 

ChGs is 2-5 times larger than the widely used N-BK7 from Schott Glass Inc. [89]. Although 

nearly all of the properties relevant to the optical manufacturing of ChGs are often deemed 

unfavorable compared to oxide counterparts, compositional tailoring of glass chemistry 

can be used to mitigate some of these property limitations. Efforts to minimize the 

unfavorable manufacturing aspects through compositional design should therefore focus 

on increasing the glass’ hardness and glass transition temperature both which would yield 

a more thermo-mechanically robust material, and simultaneously decreasing the coefficient 

of thermal expansion. Achieving these results through glass composition and structure 

modification to the glass network will yield a material with improved manufacturability by 

producing a glass that is better suited for production with both SPDT and conventional 

grinding polishing methods.  

For PGM applications the considerations of what makes a more manufacturable material 

are extremely different. In general a glass can be made into the negative shape of virtually 

any mold given the correct process parameters; viscosity, force, heating/cooling rates, etc. 

The factors for consideration of production through PGM of chalcogenide glasses are the 

temperature at which it must be molded, the glass’ viscosity temperature relationship, and 

the maximum temperature at which the glass can be elevated to safely as to avoid 

volatilization. The temperature should be kept low to minimize production time, the 
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viscosity should change slowly with temperature, and the maximum upper use temperature 

should be kept sufficiently higher than the maximum temperature reached during the 

molding process.  

During the PGM process, the glass material is a viscous material and thermal reflow will 

cause the surface roughness final molded optic to resemble the surface roughness of the 

mold, decreasing the importance for a glass to have a higher hardness. Additionally the 

thermal expansion of the material is not necessarily important as it can be predicted in 

computer simulations so that any shape changes due to expansion and/or contraction can 

be accounted for and “pre-designed” into the mold shapes [134,135]. 

3.4 Physical Property Characterization - Results 

3.4.1 Density 

The density of all the compositions along the three tielines was measured, and is presented 

in Figure 3.6 as a function of Se deficiency. There is an overall decrease in the density as 

the network becomes more Se deficient, and sharp transitions can be observed at the 

previously described locations where there is a shift in the types of available structures in 

the network. Namely, these transitions are present at either the location where the 

composition crosses stoichiometry, or at a higher level of Se deficiency where the GeSe 

ethane-like structures begin to appear. These transitions however, are not consistent across 

all tielines. 



61 

  

 

Figure 3.6 – Compositional variation of the density along the three tielines, as measured with the Archimedes 

Principle. 

3.4.2 Hardness 

The average hardness values for compositions along the three tielines are shown in Figure 

3.7, and listed in Table 3.2. Across all three tielines, there is a clear trend of increasing 

hardness with MCN, highlighting that the increased network connectivity gained through 

Ge additions is resulting in a physically stronger network that is more resistant to plastic 

deformation [136]. 
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Figure 3.7 – Compositional variation of Vickers Hardness along the three tielines measured with and indentation 

load of 100mN 

Mechanical properties such as the microhardness have a direct impact on crack initiation 

and fracture which accompany the mechanical processes in grinding. These processes are 

also impacted by chemical properties, which become more important during the polishing 

process. According to Fang et al. [137] and Lambropoulos et al. [129], there is a strong 

correlation between the post-production roughness for both bound and loose abrasive 

grinding, lapping, and polishing processes and the materials’ mechanical properties as 

observed in their work on over 60 oxide glasses from both Schott Glass Inc. and Hoya 

Corp. In these studies, variations in mechanical properties directly affected removal rates, 

as well as how removal occurred and the residual sub-surface damage that remained as a 

result of fracture processes during grinding/polishing. As mentioned in Section 3.2, the 

final roughness of these polished oxide glass samples increases proportional to the inverse 

root of the hardness (H-1/2) [129,131,132]. The relationship between the post-polish surface 
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roughness and the inverse root of the hardness of compositions along the (As.35Se.65)100-

xGex tieline is shown in Figure 3.8. Similar to the oxide glasses investigated by 

Lambropoulos et al., there is a correlation between the polished roughness of the samples 

and the inverse root of the hardness. 

Table 3.2 – Physical property values for all compositions investigated in this study. 

Composition 

Sample ID 

Tg 
Upper Use 

Temperature 

CTE 

(ppm/°C) 

(±1.0 ppm/°C) 

 

Heating Rate: 3 °C·min-1 

Temp range: (50 °C – 0.8*Tg) 

Hardness 

(GPa) 

(±0.09 GPa maximum) 

 

Indentation Force: 100 mN 

(°C ) 

(±2 °C) 

Heating Rate: 10 °C·min-1 

40_60_0 191 437 22.1 1.46 

40_60_5 215 447 21.1 1.62 

40_60_10 239 517 21.6 1.74 

40_60_15 274 533 19.1 1.99 

40_60_20 318 541 16.0 2.29 

     

35_65_0 159 432 25.6 1.36 

35_65_5 199 470 20.4 1.56 

35_65_10 235 514 20.8 1.71 

35_65_15 267 532 19.0 1.82 

35_65_20 306 559 16.2 2.13 

35_65_25 350 543 14.1 2.37 

     

30_70_0 134 435 28.8 1.25 

30_70_5 168 466 25.0 1.50 

30_70_10 225 500 20.5 1.64 

30_70_15 263 548 19.0 1.83 

30_70_20 299 557 17.4 1.99 

30_70_25 344 548 14.8 2.25 
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Figure 3.8 – Root-mean-square roughness in nm of (As.35 Se.65)100-xGex tieline shown as a function of the inverse 

root of the Vickers hardness. 

When looking at the effect of hardness on single point diamond turning (SPDT), there is a 

similar relation between final work-piece optical quality and the material hardness. 

According to Leung [138], there is a critical indentation depth for brittle materials that will 

lead to crack propagation. This critical indentation depth represents a transition from a 

ductile to a brittle material response, and is inversely related to the cube of the hardness of 

the material. This regime transition is measureable using a standard hardness tester, but can 

be related to the brittle-ductile modes in SPDT, where a lower surface roughness is created 

by operating in a ductile removal mode. Therefore, as the hardness of a material increases, 

the critical cutting depth necessary to stay within the ductile mode decreases, forcing lower 

removal rates and longer processing times. Leung also showed that lower cutting depths 

and lower feed rates result in a lower final surface roughness [138]. Therefore, as the 

hardness increases with added Ge, it should follow that lower cutting depths will be 
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required to maintain ductile material removal, but the decreased removal rates should lead 

to a lower final surface roughness.  

3.4.3 Thermal Properties 

Variations in the glass transition temperature for compositions along the three tielines are 

shown in Figure 3.9, and listed in Table 3.2. The entire data set was also fit with the 

modified Gibbs-DiMarzio equation, of the form: 

𝑇𝑔 =
𝑇0

[1 − 𝛽(𝑀𝐶𝑁 − 2)]
 

Equation 6 

Where T0 is the glass transition temperature of pure selenium (a fitting parameter here, not 

obtained from literature), β is a fitting parameter, and the MCN is calculated as previously 

described. The fitting of collected data resulted in a T0 of 351.77 K, β of 0.575, and an r2 

value of 0.964. The Gibbs-DiMarzio equation is based on a model of increasing cross-

linking of chains in a floppy network. While the assumption of increasing chain cross-

linking is only valid for Se deficient compositions, the Gibbs-DiMarzio equation still 

provides a good prediction of the glass transition temperature regardless of Se content. 

Increasing the MCN through additions of Ge increases the glass transition temperature in 

the same manner as the hardness. The increased network connectivity raises the thermal 

energy required to rearrange bonds within the network in the same manner that it also 

makes the glass more resistant to plastic deformation.  
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Figure 3.9 – Compositional variation of the glass transition temperature along the three tielines, measured at 

10°C∙min-1. Errors are within the size of the data points. 

The upper use temperatures for the investigated compositions were also measured and are 

shown in Figure 3.10, and listed in Table 3.2. Unlike the glass transition temperature and 

Vickers hardness, the upper use temperature did not increase monotonically with MCN. A 

maximum in upper use temperature was found in all three tielines at a Ge content of 20 

at%. Under conventional fabrication, glasses should never reach temperatures near the 

glass transition temperature, let alone the absolute upper use temperature. However, during 

processes such as fiber drawing and compression molding, where the glass is heated above 

the Tg, caution must be used to avoid working where these glasses can volatilize and release 

carcinogenic by products.  The maximum upper use temperature observed at 20 at% Ge 

suggests that there may a threshold in chemistry in this region of the ternary that lowers 

the thermal barrier for certain molecules to re-arrange. Theories as to which atoms or 

molecules are leaving the network can be confirmed with simultaneous thermal analysis – 
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mass spectrometry equipment, but remains an option for further studies in this ternary 

system. 

 

Figure 3.10 – Compositional variation of the upper use temperature along the three tielines, measured at 

10°C•min-1. Errors are within the size of the data points. 

 

The coefficient of thermal expansion (CTE) was measured for each of the glasses along 

the three tielines, and is presented in Figure 3.11 and listed in Table 3.2. In contrast to the 

hardness and Tg, which both increased monotonically with MCN, the CTE was found to 

decrease monotonically with MCN. While the trend in CTE is quite the opposite as for the 

trends in Tg and Vickers hardness, the fundamental origin is the same. The increased 

network connectivity realized through Ge additions is holding the glass together more 

strongly and thus lowering the glass’ response to thermal variations.  
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Shown in Figure 3.12 is a visualization of the effect of GeSe bonding on the properties 

along (As0.35Se0.65)100-xGex tieline. The figure simultaneously shows the relative 

contribution from GeSe bonds (as determined through Raman spectroscopy in Section 3.1) 

along with the hardness, CTE, and Tg. 

 

Figure 3.11 – Compositional variation of the coefficient of thermal expansion of along the three tielines, measured 

at a rate of 3°C·min-1 and between 50°C and 0.8 Tg. 
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Figure 3.12 – The hardness, coefficient of thermal expansion, and glass transition temperature of the (As0.35 

Se0.65)100-xGex tieline, compared with the total relative GeSe band height. 

 

3.5 Optical Property Characterization – Results 

3.5.1 Transmission Cutoff wavelength (λc/o) 

The IR transmission of all the compositions along the three tielines was measured and the 

calculated transmission cutoff wavelength (λc/o) is presented in Figure 3.6 as a function of 

Se deficiency. Please refer to Section 2.2.6 for specific information on the calculation of 

λc/o. From this figure, it should be immediately noticed that there are two significant 

transition points that occur as a function of the Se-rich/-poor %, and more importantly that 
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these two transitions occur at the same locations as previously described in Section 1.2.3 

and as seen with the density in Section 3.4.1. In the case of the λc/o, there is no noticeable 

change in values for compositions with a Se-excessive network. As soon as the glassy 

network transitions from Se-excessive to Se-deficient, the λc/o exhibits a strong blue-shift 

(shift toward shorter wavelengths). This trend continues until the compositions reach the 

level of Se-deficiency required to form the Ge-Se ethane-like modes. Here the λc/o exhibits 

a minimum, and as the network becomes more Se-deficient the λc/o experiences a redshift 

(shifts back toward longer wavelengths).  

For applications focused on the MWIR, ~3 - 8µm, the changes in λc/o will not alter the 

performance to any measureable degree. But as the spectral requirements for systems 

expand to include multiple bands such as NIR or SWIR, understanding the limitations of 

the optical material help in determining appropriate selection for the required application. 
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Figure 3.13 – Compositional variation in the transmission cutoff wavelength (λc/o), as a function of the Se-rich/-

poor %.  

3.6 Corroboration of Physical Properties with Prior Works 

Numerous compositions within the GeAsSe ternary have been subject to investigation over 

the years, and as previously mentioned properties and trends such as Tg, CTE, hardness, 

and density have been thoroughly studied. An online database known as SciGlass has been 

established to compile the results on these, and countless other, glasses to assist researchers 

in their investigations. From the numerous references found on SciGlass, two specific 

papers with a compilation of properties within the GeAsSe ternary have been chosen to 

serve as references: “Some physical properties of GeAsSe infrared optical glasses” by 

Webber et al. [66], and “Glass Formation and Properties of Glasses in the As–Ge–Se 

System” from Aio et al. [139]. Additional references from Aio [140] and Voronova [45] 

have been used to fill the missing data regions as needed. 
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To that end, the SciGlass database was used to gather the Vickers Hardness, density, glass 

transition temperature, and coefficients of thermal expansion of all previously studied and 

reported AsSe binary and GeAsSe ternary compositions. Since the majority of the trends 

discussed in this chapter are best explained through variations on the MCN, the compilation 

of results obtained from SciGlass will be presented in a similar fashion. For consistency, 

glass values collected from SciGlass along the AsSe binary will be presented as hollow 

data points, values from the GeAsSe ternary as filled data points, and values measured as 

part of this investigation will be presented as red circles. Where possible error bars on the 

presently measured compositions is given, else it is within the size of the data point.  

 

Figure 3.14 – Variations in Vickers hardness with mean coordination number, as collected from SciGlass and as 

measured here [66,139,140]. 
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The Vickers hardness, density, glass transition temperature, and coefficient of thermal 

expansion SciGlass compilations are shown in Figure 3.14, Figure 3.15, Figure 3.16, and 

Figure 3.17 respectively, along with the values obtained in this investigation. All four of 

the properties exhibit either a minimum or a maximum along the binary at a MCN of 2.4, 

which is equal to the coordination number As40Se60 as predicted by Philips [67,68]. Along 

the ternary however, not one of these four properties exhibit a min/max in the ternary at a 

MCN of 2.4. The binary glasses fabricated in this experimental investigation had a 

maximum MCN of 2.4, and thus could not confirm or deny the existence of maxima or 

minima at that location. Additionally only the density shows the possibility of a broad 

minimum near a MCN of 2.67, but the significant variations in reported values is enough 

to raise suspicions of this conclusion. Measured values of all four properties show overall 

good agreement with the compiled SciGlass data, confirming that the glasses manufactured 

here fall within the norms of previously published non-optical data.  
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Figure 3.15 – Variations in density with mean coordination number, as collected from SciGlass and as measured 

here [66,139,140]. 

 

Figure 3.16 – Variations in glass transition temperature with mean coordination number, as collected from 

SciGlass and as measured here [66]. 
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The entire CTE data set was fit with an exponential function of the form: 

𝐶𝑇𝐸 =  𝐴 + 𝐵 ∗ 𝑒(𝐶∗𝑀𝐶𝑁) 

Equation 7 

where A, B, and C are fitting parameters. The fitting of collected data yielded the following 

values for the fitting parameters: A of -9.91, B of 357.43, a C of -0.981 and an r2 value of 

0.902. This exponential fitting is also included in Figure 3.17.  

 

Figure 3.17 – Variations in coefficient of thermal expansion with mean coordination number, as collected from 

SciGlass and as measured here [45,66,139]. 

Similar efforts to compile the refractive index and thermo-optic coefficient of the GeAsSe 

glasses from SciGlass were also conducted. Of the previously investigated glasses, 

refractive index was found on a number of glasses, but nearly all were in the Se excessive 

region with much lower MCN values, and no thermo-optic coefficient data was found using 

SciGlass. Additionally, the experimental parameters of these investigations can vary in 
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both measurement wavelength and temperatures adding further ambiguity to external 

analysis. The lack of available data on this subset of leaves an opening for investigations 

on the index and its temperature derivative, as well as the fundamental origins of glass 

properties that dictate these property trends.  

3.7 Conclusions 

This chapter has presented the structural and material properties of the 17 GeAsSe glasses 

involved in this study. Structural analysis showed an increasing contribution of Ge-Se 

bonding, which serves to cross-link the puckered layers of AsSe and strengthen the 

network. The network strengthening effects of Ge additions were shown to be a driving 

force for increases in Tg and hardness, as well as decreases in CTE, all of which were 

shown to have a favorable impact on the manufacturing of chalcogenides on conventional 

fabrication techniques. The chapter has compared the results of the physical property 

measurements in this study to those seen in literature and shown good agreement between 

the two. Data presented in this chapter will be referenced to in the following chapters, as 

required for relevant analysis of optical properties.  
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Chapter 4  

Refractive Index Metrology 

This chapter discusses the decision to utilize the prism coupling method to characterize the 

refractive index and dn/dT, along with its fundamental theories and relative strengths and 

weaknesses. The necessary modifications to convert an “off the shelf” Metricon Prism 

Coupler to one that is fully capable of measuring refractive index and thermo-optic 

coefficient (dn/dT) in the infrared will also be presented. Modifications, construction, and 

calibration performed on two separate systems will be discussed. A detailed analysis of the 

error on the index and dn/dT will be presented, highlighting areas for improvement that 

will potentially decrease the error in one of both of these properties.  

Measurements of the refractive index and dn/dT for the GeAsSe glasses outlined in Chapter 

1 will be presented from Metricon systems located at both Pacific Northwest National 

Laboratory (PNNL) and University of Central Florida (UCF), along with an analysis of the 

“cross-calibration” between the two systems. Repeatability studies will also be presented 

to highlight the ability of the system to produce consistent data, and homogeneity data will 

be presented to highlight the ability of the material to do the same. The index and dn/dT of 

selected compositions will also be investigated in larger melt form, to assess their 

candidacy for potential commercial scale up.  

Ultimately, the trends in the index and dn/dT within the GeAsSe ternary will be analyzed 

in terms of the network coordination and the level of Se excess or deficiency (relative to 

stoichiometry), and the merits of each will be discussed. The index and dn/dT will be 
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further analyzed using established models for predicting property values, based on other 

physically measureable properties, such as those outlined in Chapter 2.  

4.1 Development and Construction of Infrared Prism Coupler 

 As part of a collaborative project with Clemson University (prior to relocation to 

University of Central Florida), Pacific Northwest National Laboratories (PNNL), and 

Edmund Optics, a prism coupler was purchased from Metricon Corporation (model 

2010M) for the purpose of measuring infrared refractive index and thermo-optic coefficient 

(dn/dT). The normal operation of the Metricon system only measures index at 632.8nm 

with a visible HeNe laser, and can be extended into the near infrared (NIR) without 

changing sources, detectors or prism material. In order to gain the ability to measure 

materials in the infrared, several modifications were implemented. The following sections 

describe, in detail, the initial modifications made to the 2010M Metricon system at PNNL, 

as well as modifications that were made to a second 2010M Metricon system in the labs at 

University of Central Florida (UCF). The system at University of Central Florida was setup 

to be able to reproduce the infrared index measurement capabilities at PNNL, as well as 

reproduce the results obtained at PNNL. 

One immediately necessary modification for IR measurements is a change of material for 

the measurement prism, and detector type, as well as a change of illumination source. The 

standard oxide prism material (rutile) transmits into the infrared, but the refractive index 

(~2.0) is far too low to measure chalcogenide glasses which with compositional variation 

can have indices as high as 3.4. Additionally, the standard Si detector has greatly 
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diminished responsivity beyond 1100 nm. Metricon Corporation offers several optional 

materials that transmit into the IR and allow for measurements of infrared materials. The 

available prism materials include Ge, Si, Rutile, and GaP. A Ge prism was chosen as the 

primary prism material for infrared measurements. The decision was based on the 

refractive index of the material, which determines the range of measurable sample index, 

as well as the material’s transmission window. Several detectors are available for infrared 

applications, and a liquid nitrogen cooled Mercury-Cadmium-Tellurium (MCT) detector 

was ultimately chosen for the system upgrades. Laser sources for infrared applications 

include quantum cascade lasers (QCLs) which can be manufactured to give several unique 

output wavelengths, optical parametric oscillators (OPOs) which offer tunability windows, 

as well as gas lasers such as HeNe, operating at 3.4µm and CO2, offering several excitation 

wavelengths between 9.2 and 10.9µm.  

4.2 Modifications to the system at PNNL 

The standard layout for the Metricon 2010M system is shown in cartoon form in Figure 

4.1. The first step in the modifications was to determine a way to combine the external 

infrared (IR) and the on-board visible HeNe beam into one collinear beam path. It is 

necessary to combine these to beams for two reasons. First general system alignment after 

the beams are collinear is much easier with light sources that are visible to the naked eye. 

Second, the system needs a visible light source for a self-referencing calibration that is 

performed with every measurement. It was determined that a wafer or thin window of Ge 

would act as a window for IR sources, while acting as a mirror for the visible HeNe laser 

source. A Ge window was added to the beam path, and the on-board HeNe source was 
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moved to the opposite side of the system to allow for beam combination. Both Figure 4.2 

and Figure 4.3 show the modified layout of the system with the Ge window and new 

placement of the HeNe laser. With these two modifications, and careful beam alignment, 

the HeNe beam and any external IR beam will hit the measurement prism at the same 

position and angle.  

 

Figure 4.1 – Top view of Metricon 2010M system, as received. 

 

The normal Si line detector for visible measurements is small and can be mounted directly 

on the rotation platform. When switching to an MCT detector for IR measurements, two 

modifications are necessary. First, since MCT detectors are not available as line detectors 

(or are extremely cost prohibitive), an infrared integrating sphere is needed to ensure that 

exiting light from the prism will reach the detector regardless of the exit angle. Second, 
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because of size of both the integrating sphere and MCT detector, an extra platform was 

needed to hold both the items. A close up of the layout of the prism, sample, and detector 

for both the visible and IR setups are shown in Figure 4.4. Additionally, a picture of the 

Metricon System (at UCF) is shown in Figure 4.5. 

  

Figure 4.2 – Top view of Metricon 2010M system, after modifications. 

 

 

Figure 4.3 – Side view of Metricon 2010M after modification 
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a)     b)  

Figure 4.4 – Close up of the prism, sample, and detecting optics, for a) the “stock” Metricon 2010M and b) after 

the necessary modifications for operation in the infrared. 

 

 

 

Figure 4.5 – Metricon System (UCF) after modifications to allow for IR measurements. 
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All external sources are laid out on an optical table to have semi-unique beam paths. That 

is, they have a unique beam path up until one common mirror, after which they share a 

similar beam path (but are not necessarily guaranteed to be collinear) with each other. 

When switching between IR sources, it is important to check alignment with the on-board 

HeNe source. Two adjustable mirrors are required for each source to grant both angular 

and positional freedom for alignment with the HeNe source. Figure 4.6 shows an 

approximate setup of the optical table used for the PNNL Metricon system, with a 

simplified schematic of the Metricon system [141]. Because of the noise associated with 

MCT detectors and IR measurements, a lock-in amplifier is necessary to improve the signal 

quality. An optical chopper operating at 1.5 kHz was added to the IR beam path before 

entering the Metricon and combining with the HeNe.  

 

Figure 4.6 – Schematic of optical table layout at PNNL, obtained from [141]. 
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4.2.1 Modifications to system at UCF 

The Metricon 2010M system at University of Central Florida (UCF) also underwent 

modifications to allow for IR index and dn/dT measurements. The modifications were 

intended to duplicate the system at PNNL, but not to mirror the exact design and 

functionality. The steps necessary for the modification of the PNNL Metricon system are 

the same for the UCF system: prism and detectors need to be switched out, external IR 

beams need to be aligned with the on-board HeNe through a Ge window, IR signal needs 

to be process through a lock-in amplifier, and a mount needs to be designed and 

manufactured to support the additional IR optics “behind” the prism. The UCF Metricon 

system differs from the PNNL Metricon system in the layout of the optical table, design of 

the platform supporting the optics, as well as the actual IR sources/wavelengths used for 

measurements.  

The UCF system uses three IR prisms: Ge for standard IR measurements, Si for high index 

measurements, and GaP for lower index measurements. The measureable index range for 

each of the three prisms is listed in Table 4.1. Two optical parametric oscillators (OPOs) 

were purchased from M2 Lasers (Firefly-IR) to serve as the mid-IR sources for 

measurements. The OPOs offer tunable wavelength selection in the ranging from 

approximately 1500nm to 4800 nm. The specific wavelengths of tunability for each output 

of the OPOs are shown in Table 4.2. The Ge window used to combine the IR and visible 

beams was purchased from Edmund Optics and is held at a 45° angle with respect to the 

propagation direction of both the IR and visible beams (as shown in Figure 4.2). The 
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integrating sphere (Lab Sphere 3P-LPM-020-IG) and detector (IR Associates MCT-13-

1.00) provide the same functionality as the versions in the PNNL system.  

The OPOs from M2 Lasers are pulsed lasers with a repetition rate of 150 kHz, which 

eliminates the need for optical chopping of the beam. The repetition rate of the laser was 

modified to 112 kHz with a signal generator (GwINSTEK SFG-1013) so that it could be 

amplified by a Princeton Applied Instruments lock-in amplifier (model 5209), which can 

only amplify signals up to a maximum repetition rate of 115 kHz. The signal generator was 

operating in square wave mode, and served as the external trigger for both the M2 lasers as 

well as for the lock-in amplifier. 

Table 4.1 – Approximate measureable index and wavelength ranges for the IR prisms 

Prism material GaP Ge Si 

Approximate Index Range 2.0-2.6 2.3-2.9 2.8-3.4 

 

Table 4.2 – Available sources for UCF Metricon system 

 Wavelength range 

(µm) 

Firefly 1 - Signal 1.48 – 1.88 

Firefly 1 - Idler 2.4 – 3.8 

Firefly 2 - Idler 3.2 – 4.6 

 

4.3 Measurement Protocol  

This section aims to provide a description of the measurement process employed when 

using the Metricon system, specifically while operating in the infrared.  

Firstly appropriate sample specifications need to be established. For bulk materials, the 

sample needs to meet the following criteria: at least one polished, flat optical surface, with 

a lower hardness than the measurement prism, thickness between 2mm and 3mm, and a 
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refractive index within the measurement prism’s measurable index range. If the sample is 

harder than the prism, the thickness is too large, or the sample is unpolished there will be 

weak or no optical contact between the sample and the prism. Having two polished sides 

does not necessarily increase the quality of the measurement, and in certain cases (thin 

samples relative to measurement wavelength) can actually exhibit interference fringes and 

degrade the measurement quality. The ideal sample size for chalcogenide glasses would be 

as follows: 10-25 mm diameter disks (or 10-25 mm long square) measuring 2-3 mm in 

thickness, parallelism within 100 arcmin, and a surface roughness less than 50 nm RMS 

on both sides.  

The first step in measurement is to turn on the infrared (IR) source and give it time to warm-

up and reach steady state operation. Depending on the laser in use this can take between 5 

minutes and 1 hour. The on-board HeNe laser should also be turned on at this time. While 

the laser is approaching steady state, the alignment and beam profile of the IR source should 

be monitored. During this warm-up time the system can be prepared for measurement, and 

the Mercury-Cadmium-Tellurium (MCT) detector should be filled with liquid nitrogen. 

Both the sample and prism faces should be cleaned with acetone or another organic solvent. 

While both the sample and measurement prism are at room temperature, the sample is held 

flat against the rear face of the measurement prism with a pair of wafer tweezers. A 

pneumatic actuator is switched on, and holds the sample against the prism while also 

creating a spot of optical contact between the two surfaces. Next, the temperature is set 

using two Omega temperature controllers (CL3515R) to the adjusted temperature set point 

(described later). After equilibrating for 15-30 minutes, the refractive index of this a strip 
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of IR thermal paper and an additional mirror are needed. Directly after the Ge window, 

place the IR thermal paper in the beam path. The visible HeNe spot should be immediately 

visible, and the IR beam should change to color of the thermal paper to indicate its location. 

Adjust one mirror so that the two beams overlap, this only ensures that the beams are 

aligned at on position in space. To ensure the two beams are aligned at all points after the 

Ge wafer, a second alignment position is needed. Place a mirror in the beam path of the 

IR/visible beams and direct to a far side of the room. Again place the thermal paper in the 

beam path (as far away as possible), and observe the location of the two beams. Adjust a 

second mirror so that the two beams again over lap at this second position. This process 

will need to be repeated several time, alternating near and far positions, to ensure the two 

beams are collinear at all points along the propagation axis. When the two beams are 

closely aligned using the thermal paper, a quadrant detector should be used to obtain 

numerical data on the alignment. A quadrant detector from Ophir Photonics (3A-Quad) 

was used for the alignment of the UCF system and the alignment between the visible and 

IR lasers was found to be better than 0.2 mrad. Analysis from Carlie et al. showed that a 

±0.4 mrad angular error produces a ±0.0004 absolute error on the index [142]. 

Once the two beams are properly aligned, the thermal paper and extra mirrors should be 

removed from the beam path. Using the HeNe beam as a visual guide, the two beams should 

be directed to the upper corner of the measurement prism. The system is designed so that 

the optical contact between the sample and the prism should occur in this location, but 

additional work may be needed to find the precise location of the coupling spot. The 

integrating sphere and detector should be positioned to give a stable signal near where the 
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“knee” of the index measurement is expected to occur. Both the integrating sphere and 

detector will need to be adjusted to achieve a flat, stable signal, and to produce a sharp knee 

for index measurements. The visual output of the software is shown in Figure 4.7. 

 

Figure 4.7 – Visual output of the Metricon software. The “knee” is indicated by the redline in the graph, and is 

used to calculate the refractive index. 

The glass samples should be measured at the following temperature intervals to obtain 

sufficient data for dn/dT fitting: 30 °C, 50 °C, 70 °C, and 90 °C. Most glasses exhibit a 

linear change in refractive index with temperature, and can be measured in ascending 

temperature intervals (30 °C first). However, as will be described in much further detail in 

Chapter 5, certain glasses exhibit a level of “room temperature relaxation” of the refractive 

index, and should be measured at temperature set points in descending order (90 °C first).  

This issue is extremely important in trying to quantify variations in properties with 

temperature (such as dn/dT measurements) or in attempting to quantify index changes 

following deviation from the as-annealed starting point (such as what is observed as an 

‘index-drop’ during precision glass molding where samples see thermal excursions beyond 

Tg). In these instances, the room temperature, ‘as-quenched/annealed free volume and 
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density’ has been changed and this network modification results in measurable changes to 

a range of physical properties, including optical properties. This is discussed in greater 

detail in Chapter 5. 

4.4 Calibration 

A general standard operating procedure (S.O.P.) for measuring the refractive index on the 

modified IR Metricon system used in this study can be found in Appendix A and may be 

useful for new users. The following section will describe the specific steps taken to 

calibrate and characterize a Metricon prism coupler. 

4.4.1 Thermal 

As part of the Metricon system design, both the pneumatic actuator and thermal clamp for 

the measurement prism have thermocouples embedded in their structure. The location of 

these thermocouples is close enough to control the temperature, but not close enough to 

precisely know the temperature at the point of measurement (i.e., where the laser beam hits 

the specimen). For the thermal calibration of the PNNL system, a thermistor (Omega 

44006) was epoxied to a small copper wafer with thermally conductive paste. The copper 

wafer and thermistor were held in place as a sample would be, with the thermistor head 

being as close to the measurement position as possible. The resistance of the thermistor 

was recorded and compared to the manufacturer’s data sheet to obtain an accurate 

temperature. For the thermal calibration of the UCF system, a thermocouple (Omega SC-

TT-K-30-36-PP) was used in a similar fashion. 
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Table 4.3 – Temperature set point and temperature at measurement location 

Temperature  

Set point 

(°C) 

Temperature at Measurement location 

PNNL System 

(°C) 

±0.3 °C 

Temperature at Measurement location 

UCF System 

(°C) 

±0.3 °C 

20 25.1 25.0 

30 29.6 29.9 

35 33.8 34.8 

40 38.3 39.5 

50 46.9 49.1 

60 55.5 58.9 

70 64.4 68.5 

80 72.9 78.1 

90 81.0 87.7 

100 90.0 97.5 

 

The temperature set point was then increased to 100 °C in 5-10 °C intervals, starting at 25 

°C to obtain an offset curve between the temperature set point and the temperature at the 

measurement position. The system was allowed to thermally equilibrate for 30 minutes 

before measuring the average temperature and the variation around the average. It was 

determined that the maximum variation in temperature was 0.3 °C for the PNNL system 

and 0.3 °C for the UCF system.  

Table 4.3 and Figure 4.8 show the temperature set points used, and the resulting 

temperature at the measurement location. The desired temperatures at the measurement 

location are 30, 50, 70, and 90 °C. Table 4.4 lists the required set points to obtain these 

specific temperatures for both systems. This process should be repeated for each individual 

prism to account for prism material differences or variations in the location of 

thermocouples or heaters with respect to the mounted prism.  
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Figure 4.8 – Thermal offset curve for PNNL_Ge prism (black squares) and the UCF_Ge prism (red circles) 

Table 4.4 – Required temperature set points for desired measurement temperatures 

Measurement  Temperature 

(°C) 

30 50 70 90 

Required temperature Set point - PNNL 

(°C) 

30.5 53.7 76.8 100 

Required temperature Set point - UCF 

(°C) 

30.2 51.0 71.6 92.3 

4.4.2 Refractive index (PNNL System) 

To start with the calibration, PNNL purchased a small boule of ZnSe (Crystaltechno Ltd.). 

From this boule, a minimum deviation prism was fabricated and sent to M3 Measurement 

Solutions Inc. (M3MSI) for minimum deviation refractometry. From the same boule, 10 

disks measuring 15 mm x 1 mm were also fabricated. These disks were assumed to have 

the same index as the minimum deviation prism as additional unpublished work at PNNL 

showed top-to-bottom variation and center-to-edge index variation of ZnSe boules to be 
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within the error of the measurement technique (<.0005 RIU) [143]. The data provided by 

M3MSI contains a Sellemeier fitting of the ZnSe at 20 °C as well as the measured dn/dT 

of several wavelengths, fit between 0 °C and 70 °C. The reported error on the ZnSe 

refractive index is ±0.0001 refractive index units (RIU). 

Using an approximate prism index (one or no decimal points) and the method as described 

previously, the refractive index of the ZnSe sample was measured. The prism index was 

adjusted so that the measured ZnSe index matched the data provided by M3MSI for that 

specific wavelength and temperature combination. The process of measuring the refractive 

index and adjusting prism index to have the results match the calibration data is repeated a 

minimum of 20 times. The reported refractive index for this specific wavelength and 

temperature combination is reported as the average of these points.  

 

Figure 4.9 – Calibrated index of PNNL Ge prism at 30 ⁰C 
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The refractive index for each prism is calculated at 30, 50, 70, and 90 °C for each necessary 

wavelength. Moving forward, this will be referred to as the calibrated prism index. The 

calibrated prism index at 30 °C for the PNNL Ge prism is shown in Figure 4.9. The data 

was fit with a standard Sellmeier equation of the form: 

𝑛2 = 𝐴 +
𝐵𝜆2

(𝜆2 − 𝐶2)
+

𝐷𝜆2

(𝜆2 − 𝐸2)
 

Equation 8 

where A, B, C, D, and E are all fitting parameters. The calibrated PNNL Ge prism index for all temperatures 

along with their respective Sellmeier fittings is shown in Figure 4.10 and listed in  

Table 4.5. The Sellmeier coefficients and individual r2 values for each fit is shown in Table 

4.6. 

 

Figure 4.10 – Calibrated Index of PNNL Ge prism at all measured temperatures 

 

Table 4.5 – Tabulated refractive index of PNNL Ge prism. Error on these measurements is ±0.0005 

Wavelength (µm) 30 °C  50 °C  70 °C  90 °C  
3.4 4.0430 4.0508 4.0609 4.0724 
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4.515 4.0273 4.0364 4.0452 4.0539 

5.348 4.0219 4.0303 4.0395 4.0478 

7.778 4.0143 4.0233 4.0315 4.0400 

10.591 4.0091 4.0183 - - 

 

Table 4.6 – Sellmeier coefficients and calculated r2 fitting values for Sellmeier fits 

Temperature (°C) A B C D E r2 

30 14.08 2.0 1.17 0.10 22.31 0.999 

50 14.10 1.99 1.13 2.00 73.66 0.999 

70 14.65 1.58 1.29 2.00 72.50 0.999 

90 15.42 0.88 1.70 2.00 85.92 0.999 

 

The refractive index can also be presented as it changes with temperature. Presented in 

Figure 4.11 is the change in index with temperature for all the measured wavelengths. 

There was an issue with the 10.591µm source at PNNL to prevented further measurements 

after the 30 °C and 50 °C data points were collected. When the data is plotted in this form, 

the materials dn/dT can be calculated as the slope of a linear best-fit line. Table 4.7 lists 

the dn/dT (slope) of each wavelength along with the calculated r2 values for those fits. Note 

that the r2 for the 10.591µm source was not calculated as there were only 2 data points. The 

values listed in Table 4.7 compare well with dn/dT values for single crystal Ge found 

elsewhere in the literature [5,8].  
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Figure 4.11 – PNNL_Ge prism index as a function of temperature for several wavelengths 

 

Table 4.7 – Calculated dn/dT of Ge and r2 values from linear fits 

Wavelength (µm) 
dn/dT 

±11.2 ppm/°C 
r2 of linear fit 

3.4 491.5 .996 

4.515 443.0 .999 

5.348 434.5 .999 

7.778 426.5 .999 

10.591 460.0 N/A 

 

4.4.3 Refractive index (UCF System) 

Initially for the UCF prism coupling system, only one wavelength (4.515 µm) was 

available for refractive index and thermo-optic coefficient measurements. This limits the 

ability to determine the dispersion of both the Ge measurement prism and any samples. 

The Ge prism for the UCF system, which will be referred to as UCF_Ge, was calibrated 

using the same general protocol as for the system at PNNL as well as the same ZnSe 

calibration wafers, initially measured by M3MSI. The calibrated index for the UCF_Ge 
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prism at 4.515 µm and various temperatures is shown in Figure 4.12, along with the 

calibrated index for the PNNL_Ge prism at 4.515 µm as well. The calibrated index for the 

two prisms correlates extremely well, and there is only a small offset between the two 

(approximately 0.0030 RIU), with the measured dn/dT also correlating well: 443 ±11.2 

ppm∙°C-1 for the PNNL_Ge and 445 ±11.2 ppm∙°C-1for the UCF_Ge prism. 

 

Figure 4.12 – Calibrated refractive index of the PNNL_Ge prism (black squares) and UCF_Ge prism (red circles) 

at 4.515µm for the four temperature set points. 

 

4.5 Error analysis 

4.5.1 Sources of Error (Absolute Error) 

The absolute error for index and dn/dT measurements obtained by a prism coupler is 

calculated by the equation first presented by Zhou et al. [144]: 
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∆
𝑑𝑛

𝑑𝑇
= ± [

2

(𝑇2 − 𝑇1)2
∆𝑛2 +

2(𝑛2 − 𝑛1)2

(𝑇2 − 𝑇1)4
∆𝑇2] 

Equation 9 

where Δn is the error associated with the measuring the index, ΔT the error associated with 

measuring the temperature, T1 and T2 are the initial and final temperatures, and n1 and n2 

are the index measured at T1 and T2. As stated previously, the error on measuring the 

temperature was determined to be 0.3 °C. The error on the index was calculated by 

assuming 𝑇2 − 𝑇1 = 0.3 ℃ ,  and propagating the error of this thermal stability throughout 

the measurement steps.  

A 0.3 °C temperature error combined with a ZnSe dn/dT of 6.1 ppm∙°C-1 (at 4.515 µm) 

corresponds to a “thermal system” error on the ZnSe index of ±0.00002, and the quoted 

error on the ZnSe index from M3MSI is ±0.0001. Combining these two error sources 

through a sum of the squares method results in an absolute ZnSe index error ±0.0001. This 

error is increased to ±0.0002 for the Ge measurement index (calibration index), as the small 

thermal error combined with the large dn/dT of Ge creates a larger uncertainty in the index. 

When adding in the systematic measurement errors associated with statistical repeatability, 

knee location identification, and knee quality, the total error on the index increases to 

±0.0004.  

Using the Ge prism index error of ±0.0004, and a thermal stability of 0.3 °C, the error of 

the samples measurements can be calculated. For the sample error, the individual errors 

from thermal stability, knee recognition / quality and statistical repeatability increase the 

sample index error to ±0.0005. There are two reasons the error on the measured sample 
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does not increase significantly compared to the Ge error. One is the fact that the knee 

quality was much higher for the glassy samples, as compared to the ZnSe samples. If the 

knee quality were to degrade with a poorly polished sample, the index would increase 

further. The second reason is that the dn/dT of the glass samples are much smaller than the 

dn/dT of Ge (~50 ppm ∙°C-1 vs ~450 ppm ∙°C-1) and thus don’t contribute to the error as 

much. It is important to also not that the error on the index, and later dn/dT, was found to 

not mathematically change if the dn/dT of the sample was allowed to vary anywhere 

between -150 and +150 ppm ∙°C-1. 

The error on the dn/dT was calculated by using the index error of ±0.0005, a thermal 

stability error of 0.3 °C, and a temperature window, 𝑇2 − 𝑇1 = 60℃. Substituting these 

values into Equation 9 yields an error on the dn/dT ±11.2 ppm∙°C-1 for both the Ge 

calibration prism and for the glass samples.  

Three methods have been identified to decrease the magnitude of the dn/dT error, based on 

analysis of Equation 9. These methods include improving the quality of the knee 

recognition and identification, decreasing the thermal fluctuations from 0.3 °C, and 

increasing the maximum temperature so that the temperature window is greater than 60 °C. 

It was calculated that solely decreasing the thermal fluctuations to within ± 0.1 °C would 

reduce the error on the dn/dT to 10.5 ppm∙°C-1. Likewise it was found that solely increasing 

the temperature window to 100 °C (30 – 130 °C) would decrease the error on the dn/dT to 

±6.7 ppm∙°C-1. Finally improving the knee recognition and identification so that the 

statistical error on the index was ±0.0002 would decrease the error on the dn/dT to ±8.3 

ppm∙°C-1. Combining all three of these effects simultaneously would result in an overall 
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decrease of the dn/dT error to ±4.7 ppm∙°C-1. Limitations on sample properties, such as Tg, 

hardness, or final polish can also hinder the ability to achieve lower values for the dn/dT 

error by introducing local material variation that translates to the region of measurement.  

The errors on the PNNL and UCF systems were deemed to be similar, as the two systems 

had the same thermal stability, and similar quality of knee recognition and repeatability. 

While reduction of the error on the dn/dT was not a focus of this project, Appendix B 

highlights some of the efforts to design thermal housing for the UCF system to decrease 

thermal fluctuations by an undergraduate student, Rebecca Whitsitt. Rebecca’s addition to 

the system was added at the end of the current study and thus was not fully evaluated for 

improvements to the data presented herein that were measured without the thermal housing 

in place. 

4.5.2 Repeatability of the UCF system (Relative Error) 

As a way to determine the absolute measurement error, reproducibility, and absolute offset 

of the UCF system from a known reference material, a sample of IG 6 (Vitron As40Se60) 

was measured on a frequent basis. A square “coupon” sample measuring ~25 mm x 25 mm 

x 3 mm was cut from the center of a large boule of IG 6, and polished. The refractive index 

of this sample has been determined from the Vitron IG 6 data sheet [35], which provides a 

detailed fitting of the index as a function of both temperature and wavelength. The index 

at 4.515 µm was determined from their fitting, and is shown in Table 4.9 for the appropriate 

temperature set points. The calculated dn/dT at 4.515µm for the IG 6 sample is 34.4 

ppm∙°C-1. The measured refractive index of the IG 6 sample is shown in Figure 4.13 along 

with the provided index from Vitron. There is an offset between the two data sets at 30 °C 
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and the dn/dT values are significantly different (34.4 ppm∙°C-1 from Vitron, and ~76.8 

ppm∙°C-1 measured at UCF). Additional samples of IG 5 (Ge28Sb12Se60) and IG 4 

(Ge10As40Se50), also from Vitron, were measured to determine the ability to reproduce 

published dn/dT data. Across all three IG samples, there was a consistent relative to the 

provided dn/dT data, averaging to 42.0 ppm∙°C-1. The measured values of dn/dT along with 

the datasheet values for dn/dT are shown in Table 4.8. As a result of this consistent offset, 

the decision was made to offset all values measured on the UCF system by the 42.0 ppm∙°C-

1. These changes will be applied in selected areas of Section 4.7 and Section 4.9, where the 

trends in dn/dT results are analyzed and discussed 

Table 4.8 – Offset between measured and datasheet values of dn/dT of IG samples. 

Glass 
Datasheet dn/dT 

(ppm∙°C-1) 

Measured dn/dT 

(ppm∙°C-1) 

Offset 

(ppm∙°C-1) 

Offset adjusted 

(ppm∙°C-1) 

IG 4 22.5 64.0 41.5 22.0 

IG 5 63.5 106.5 43.0 64.5 

IG 6 34.5 76.0 41.5 34.0 
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Figure 4.13 – Refractive index of IG 6 from Vitron (black) and measured refractive index at UCF (red). 

The index of this sample was measured at 30 °C on a consistent basis, while the dn/dT was 

measured at various time intervals. The reason for the differing intervals between the dn/dT 

measurements will be explained in Chapter 5, which investigates the effect of “room 

temperature ageing” on samples and a subsequent index relaxation upon heating the sample 

to temperatures near to, but below the glass transition temperature. On the days the dn/dT 

was measured, and more importantly the full thermal cycling was performed, the reported 

refractive index at 30 °C is recorded, and shown in Figure 4.14.  

Table 4.9 – Refractive index of the IG6 sample at the various temperature set points, as calculated from the Vitron 

data sheet 

Temperature  

(°C) 

Calculated Index 

(Vitron data sheet) 

30 2.7929 

50 2.7936 

70 2.7943 

90 2.7950 
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The measured refractive index of the IG 6 sample at 30 °C is shown in Figure 4.14, for 

each day the measurement was performed. There is little variance in the measured 

refractive index from day to day, and all of the measured index values are well within the 

errors of each other. The average measured index across 16 days of measurements is 2.7918 

and is within an envelope of Δn = 0.0006, resulting in a relative index error of ± 0.0003. 

The calculated dn/dT for each of these measurements is shown in Figure 4.15, for the days 

in which a full thermal cycling was actually performed. The measured dn/dT also agrees 

well from day to day, with variations remaining within the measurement error. The average 

dn/dT across 8 days is 76.0 ppm∙°C-1 and is within an envelope of Δdn/dT = 12.0 ppm∙°C-

1, resulting in a relative dn/dT error of ± 6.0 ppm∙°C-1. After applying the offset discussed 

previously, the average measured dn/dT for IG6 becomes 34.0 ± 6.0 ppm∙°C-1. 
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Figure 4.14 – Refractive index of the IG6 sample at 30⁰C for each of the measurement dates. 

 

Figure 4.15 – dn/dT of the IG6 sample for each of the measurement dates. 
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4.6 GeAsSe Results - Refractive Index 

4.6.1 PNNL results 

The refractive index of each glass of the study was measured using the calibrated PNNLGe 

prism at 4.515μm. In total there are 17 GeAsSe glasses divided across three tielines, each 

with a unique As:Se ratio. The error on the refractive index measurements is ±0.0005 and 

is either within the size of the data points or specifically shown for all of the following 

figures. 

First the refractive index for As40Se60 is shown in Figure 4.16, at 30, 50, 70, and 90 °C as 

a function of wavelength. This composition was measured at three additional wavelengths 

(3.39 μm, 5.4 μm, and 7.78 μm) to demonstrate that the GeAsSe glasses can also be fit with 

the same Sellmeier equation as the Ge measurement prism. The Sellmeier coefficients and 

the r2 fitting value are listed in Table 4.10. There is obvious issue with the fitting at shorter 

wavelengths (λ < 2.5 μm), as all temperature fits appear to converge to the same predicted 

refractive index. To obtain a more realistic fit of the refractive index, additional 

wavelengths on both the shortwave and longwave ends of the spectrum need to be added 

to the fit.  
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Figure 4.16 – As40Se60 refractive index vs wavelength at 30 °C, 50 °C, 70 °C, and 90 °C with corresponding 

Sellmeier fits. 

The source at 4.515 μm was selected as the primary wavelength for compositional analysis 

of refractive index and dn/dT. This decision to limit the scope to this source was made 

based on the quality of the available laser sources, the available equipment time at PNNL, 

and the usefulness of this data in related projects.  

 

 

Table 4.10 – Sellmeier coefficients and calculated r2 values for Sellmeier fits 

Temperature (°C) A B C D E r2 

30 6.99 0.78 1.01 0.10 15.87 0.999 

50 6.99 0.78 1.02 0.10 16.95 0.997 

70 7.00 0.78 0.99 0.10 16.99 0.997 

90 6.97 0.82 0.95 2.00 57.77 0.999 
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The trends in the refractive index can be presented a number of ways, each with their own 

merits. The refractive index for all three GeAsSe tielines is shown in Figure 4.17, Figure 

4.18, and Figure 4.19 as a function of added Ge to the starting AsSe binary composition. 

 

Figure 4.17 – Refractive index of the (As.40Se.60)100-xGex tieline at 4.515µm as a function of at% Ge 
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Figure 4.18 – Refractive index of the (As.35Se.65)100-xGex tieline at 4.515µm as a function of at% Ge 

 

Figure 4.19 – Refractive index of the (As.30Se.70)100-xGex tieline at 4.515µm as a function of at% Ge 
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4.6.2 UCF Results 

The goal for the construction of the UCF Metricon system was to replicate the ability of 

the PNNL Metricon system to measure both the refractive index and thermo-optic 

coefficient of samples at infrared (IR) wavelengths. To investigate the ability of the UCF 

prism to replicate IR index data, all of the aforementioned GeAsSe glasses that were 

measured on the PNNL system were also measured on the UCF system. Due to time 

constraints, the index and dn/dT measurements at UCF were also limited to one 

wavelength. The wavelength was specifically chosen to be the same as at PNNL: 4.515µm. 

The laser source used at UCF is a tunable optical parametric oscillator (OPO) from M2 

lasers (Firefly-IR). The tunability of the source allows for measurements of optical 

properties at additional wavelengths, with additional alignment and calibration, but the 

additional wavelengths were not the focus of these investigations.  

The refractive index values for all of the glasses along the three GeAsSe tielines as 

measured on the UCF Metricon system are shown at 30 °C and 4.515 µm in Figure 4.20, 

Figure 4.21, and Figure 4.22, along with the original index values measured at PNNL. 

Unfortunately two of the compositions (40_60_5 and 30_70_0) had all of the remaining 

samples fracture do to various reasons and were unable to be measured on the UCF 

Metricon system. The symbols for these two data points are left hollow to signify that while 

the data was still collected, the measurements were performed on newly melted samples 

rather than the originals that were also measured at PNNL. 
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Figure 4.20 – Refractive index of the (As.40Se.60)100-xGex tieline measured at UCF at 4.515µm as a function of at% 

Ge, with inset graph to highlight similarities of measurements between the two systems.  

The measurements show that the relative trends in refractive index observed with the 

PNNL system are preserved in UCF system as well. There is a consistent but small offset 

between the two measurement systems, with the PNNL system giving slightly higher index 

results (+0.0009 RIU). The difference in the refractive index, defined as the UCF-measured 

index subtracted from the PNNL-measured index, is shown in Figure 4.23 for all three 

tielines.  
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The offset in the measured index is believed to be a direct result of the unresolved Ge prism 

index offset observed between the PNNL and UCF systems. As previously stated, 

conversations with the manufacturer of the base system (Metricon Inc.) were unable to 

completely determine the origin of this offset.   

 

Figure 4.21 – Refractive index of the (As.35Se.65)100-xGex tieline measured at UCF at 4.515µm as a function of at% 

Ge 
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Figure 4.22 – Refractive index of the (As.30Se.70)100-xGex tieline measured at UCF at 4.515µm as a function of at% 

Ge 

 

 

Figure 4.23 – Difference between the refractive index measured on the PNNL and on the UCF systems at 4.515µm 
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4.7 GeAsSe Results – Thermo-optic Coefficient (dn/dT) 

4.7.1 PNNL Results 

The change in index with temperature is shown again for As40Se60 in Figure 4.24, here with 

the wavelengths separated and plotted as function of temperature. The dn/dT is calculated 

for this in the same manner as for the Ge measurement prism: the slope of the best fit line 

for the change in index with temperature is calculated and reported as the dn/dT. The 

calculated dn/dT values and the corresponding r2 values for the fits are listed in Table 4.11. 

 

Figure 4.24 – As40Se60 refractive index vs temperature for individual wavelengths 

Table 4.11 – Calculated dn/dT of As40Se60 and r2 values from linear fits 

Wavelength (µm) 
dn/dT 

±11.2 ppm∙°C-1 
r2 of linear fit 

3.4 50.0 0.959 

4.515 56.0 0.960 

5.348 57.5 0.961 

7.778 59.0 0.907 
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Figure 4.25 – dn/dT of (As.40Se.60)100-xGex tieline at 4.515µm as a function of at% Ge 

The dn/dT is shown in Figure 4.25, Figure 4.26, and Figure 4.27 for the three respective 

tielines as a function of added Ge to the starting AsSe binary compositions.  Along the 

AsSe binary, there is a large decrease in the dn/dT with increasing Se content. The dn/dT 

ranges from +56.0 ppm∙°C-1 for As40Se60 to -41.0 ppm∙°C-1 for As30Se70. Adding Ge to the 

two Se-excessive compositions results in a linear increase in dn/dT until stoichiometry is 

reached. After passing stoichiometry all three tielines exhibit either a plateau or a decrease 

in the dn/dT. As the compositions become more Se deficient, all three tielines exhibit a 

second change in their trends. From this point onward, the dn/dT increases with Ge 

additions. The two changes observed in the dn/dT trends of the three tielines is analogous 

to the changes observed in the refractive index. Remember that the (As.35Se.65)100-xGex and 

(As.30Se.70)100-xGex tielines showed only a small change in index with Ge while Se 
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excessive, and here these two tielines show an increase in dn/dT with Ge. Once all three 

tielines are in the Se deficient region, the rate of change of index and dn/dT of the 

(As.35Se.65)100-xGex and (As.30Se.70)100-xGex tielines resemble the (As.40Se.60)100-xGex tieline 

more closely. Finally once all three glasses have reached the level of Se deficiency 

necessary to promote formation of new structures, all tielines show a similar change in 

index and dn/dT trends. 

 

Figure 4.26 – dn/dT of (As.35Se.65)100-xGex tieline at 4.515µm as a function of at% Ge 
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Figure 4.27 – dn/dT of (As.30Se.70)100-xGex tieline at 4.515µm as a function of at% Ge 

 

4.7.2 UCF Results  

The dn/dT of the GeAsSe glass samples was also measured using the UCF Metricon 

system. The same procedure for measuring dn/dT that was developed at PNNL was 

followed.  The dn/dT values measured on both systems at 4.515 µm and calculated between 

30 °C and 90 °C for all three tielines are shown in Figure 4.28, Figure 4.29, and Figure 

4.30. Similar to the replication of the 30 °C index measurements, the compositional trends 

in dn/dT observed at PNNL are also observed with the UCF system.  
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Figure 4.28 – dn/dT of (As.40Se.60)100-xGex tieline measured at UCF at 4.515µm as a function of at% Ge 

The measured dn/dT of the GeAsSe glasses on the UCF was significantly higher than 

measured on the PNNL system. The difference between the two data sets, defined as the 

UCF dn/dT subtracted from the PNNL dn/dT, is shown in Figure 4.31 for all three tielines 

and averages to +30.2 ppm∙°C-1 t. The origin of this offset is believed to be a result of 

improper calibration of the Ge prisms. This could come from either a mis-calibration of 

the temperature and/or the refractive index. It is important to note that recalibrating the 

system would result in a nearly DC offset for both the refractive index and the dn/dT for 

all glasses.  
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Figure 4.29 – dn/dT of (As.35Se.65)100-xGex tieline measured at UCF at 4.515µm as a function of at% Ge 

 

Figure 4.30 – dn/dT of (As.30Se.70)100-xGex tieline measured at UCF at 4.515µm as a function of at% Ge 
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Figure 4.31 – Difference between the dn/dT measured on the PNNL and on the UCF systems at 4.515µm 

After applying the offset to the UCF system discussed in Section 4.5.2, the difference 

between the measured dn/dT on the UCF and PNNL systems decreases from +30.2 

ppm∙°C-1 to -11.8 ppm∙°C-1. With the offset applied, the average difference between the 

PNNL and UCF systems is slightly larger than the measurement error (±11.2 ppm∙°C-1). 

4.8 Melt Homogeneity  

Attempting to quantify sometime small variations in refractive index between different 

compositions requires confidence that such small variations are outside of the intrinsic 

variation in index seen within a given melt. Since large melts prepared by commercial 

chalcogenide glass manufacturers (typically > 3kgs) are considered large enough to 

average out melt inhomogeneities that arise from density fluctuations resulting from melt 

vessel size, shape and melt and annealing time, the small melts prepared in this academic 
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study are likely much less homogeneous than commercial material. Despite the small melts 

(typically 25g) efforts were made to assess variation both within melt and across varying 

melts to estimate such variation.  The results of these studies are discussed here. Note that 

the linear offset in the dn/dT presented in Section 4.5.2 (-40.2 ppm∙°C-1) is not accounted 

for here, as it would apply equally to all samples measured. 

4.8.1 Within melt refractive index uniformity 

The entire (As0.35Se0.65)100-xGex tieline was remelted in order to gain an understanding of 

the index homogeneity within melts, as well as the melt to melt reproducibility possible 

when melting an identical composition under identical conditions. From each of these 25g 

melts, fabricated following melt, quench, and annealing conditions discussed in Section 

2.1.1, slices were taken from the top, middle, and bottom of the boule for analysis. The 

approximate location of each of the samples is shown in Figure 4.32. The samples 

maintained the same geometry as the original melts, 10mm in diameter and ~2mm in 

thickness. The refractive index of three samples from each melt was measured using the 

same protocol as described before.  
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Figure 4.32 – Schematic of the glass boule showing the approximate location of the top, middle, and bottom 

samples. 

The refractive index for the top, middle, and bottom slices are shown for the additional 

melt of 35_65_10 in Figure 4.33 as a function of temperature. In this representative case, 

the measured index of the top and middle samples agree well for all temperatures, while 

the bottom slice consistently yields a higher refractive index.  
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Figure 4.33 – Refractive index at incremental temperatures of the top, middle, and bottom slices of a 

representative remelt along the 35_65_X tieline 

4.8.2 Melt-to-melt refractive index uniformity 

The refractive index of the top, middle, and bottom slices for all melts along the 35_65_X 

tieline is shown in Figure 4.34 along with the data from the original melts (as measured on 

the UCF Metricon system in Section 4.5.1). When viewing the changes in refractive index 

on the scale necessary for compositional analysis, the differences in index within the melt 

and from melt to melt appear to be minimal. The refractive index of the top, middle, and 

bottom samples for all melts along the 35_65_X tieline are listed in Table 4.12. Two 

additional values are also calculated in this table: the index difference between the top and 

bottom samples, and the difference between the averaged index for the three samples of 

the new melts and the original melts. 
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Figure 4.34 – Refractive index of the top, middle, and bottom slices of the remelts along the 35_65_X tieline, along 

with the data from the original melts, as measured on the UCF Metricon system. 

 

The dn/dT for each top, middle, and bottom slice was also calculated by taking a linear fit 

of the index data with temperature. The dn/dT for the three slices, along with the dn/dT 

from the original melts (as measured on the UCF system) is shown in Figure 4.35. As with 

the refractive index values at 30 °C, the dn/dT for the second melts of the 35_65_X tieline 

glasses are consistently lower than the original melts.  

The lower measured dn/dT and the higher measured index of the bottom samples is an 

interesting result. Given that compositions with lower Ge content (generally) have a higher 

index, and a lower dn/dT , the results from this homogeneity test suggests that during the 



123 

  

melting the heavier elements (Se and As) began to settle to the bottom of the tube. This 

could signify improper mixing (rocking) during the melting, or that the time in which the 

melt was left vertical (just prior to quench) is long enough for settling of heavier elements 

to occur.  

 

Figure 4.35 – dn/dT of the top, middle, and bottom slices of the remelts along the 35_65_X tieline, along with the 

data from the original melts, as measured on the UCF Metricon system. 

 

Table 4.12 – Refractive index of the top, middle, and bottom samples for the 35_65_X 

Composition Original 

melt data 

Second 

melt: 

Top 

Second 

melt: 

Middle 

Second 

melt: 

Bottom 

Index difference: 

top - bot 

Index difference 

between old melt and 

new melt 

35_65_0 2.7364 2.7311 2.7305 2.7325 0.0014 0.0050 

35_65_5 2.7017 2.7056 2.7050 2.7064 0.0008 0.0047 

35_65_10 2.6288 2.624 2.6242 2.6254 0.0014 0.0043 

35_65_15 2.5692 2.5679 2.568 2.5689 0.0010 0.0009 

35_65_20 2.5705 2.5693 2.5692 2.5694 0.0001 0.0012 

35_65_25 2.5426 2.5967 2.5971 2.5973 0.0006 -0.0544 
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Table 4.13 – dn/dT of the top, middle, and bottom samples for the 35_65_X tieline 

Composition Original 

melt data 

 

(ppm ⁰C-1) 

Second melt: 

Top 

 

(ppm ⁰C-1) 

Second melt: 

Middle 

 

(ppm ⁰C-1) 

Second melt: 

Bottom 

 

(ppm ⁰C-1) 

dn/dT difference: 

top – bot 

 

(ppm ⁰C-1) 

dn/dT difference between 

old melt and new melt 

 

(ppm ⁰C-1) 

35_65_0 35.5 34 34 38.5 4.5 0.0 

35_65_5 81 67.5 70.5 77 9.5 9.3 

35_65_10 71.5 61 61 58 3.0 11.5 

35_65_15 69 66.5 62.5 59.5 7.0 6.2 

35_65_20 98 70.5 79.5 85 14.5 19.7 

35_65_25 99 106 103.5 105.5 2.5 -6.0 

4.8.3 Scaling of melt size 

The target application for these glasses is in infrared imaging systems. In order for these 

glasses to potentially be used as potential new materials for target applications, they must 

be able to be produced on a large (or simply larger) scale than is typically done in a 

laboratory setting. Scaling up a melt size, say from 25g to 250g, can result in different 

properties within the glass and can require new melt-quench protocols to produce a 

uniform, homogeneous glass. To assess the ability of these glasses to be “scaled up” to 

larger melts, several compositions were selected and 250g batches were prepared in 30 mm 

diameter silica ampules. 

For this analysis, the melt-quench protocol was held the same, with the knowledge that this 

may not produce the most ideal glass at this specific melt size. The glasses were melted in 

a rocking furnace overnight at 750 °C, with a ramp rate of 2.5 °C min-1. The rocking is then 

stopped and the temperature is then dropped to 650 °C. The melt was removed and then 

then quenched to room temperature with forced air. The main difference between the 

quenching of the small melts (25g) and the large melts (250g) is the time needed to quench 

to room temperature, and the “aggressiveness” needed of the forced air. 
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The specific compositions that were chosen for further analysis are listed in Table 4.14. 

The two glasses along the 40_60_X tieline were initially melted for an analysis of viscosity, 

and as such were sliced “vertically” rather than “horizontally”. These two different sample 

orientations are shown in Figure 4.36. The advantage of cutting the slices “vertically” is 

that this sample geometry allows for a 2D mapping of both the refractive index and dn/dT 

of a cross-section of the melt. The main disadvantage of this sample geometry lies in the 

fabrication of these samples, where it is difficult to cut a large cross-section without 

damaging the sample, as was the case for the 40_60_10 sample.  

For the 40_60_10 and 40_60_20 samples, the measurement locations are also noted in 

Figure 4.36 by the red Xs. For the 35_65_10 and 35_65_20 samples, the standard disk 

forms, the index and dn/dT was measured at 5 locations across the diameter of the sample. 

The 2D mapping of the index and dn/dT of the 40_60_10 and 40_60_20 samples are shown 

in Figure 4.37 and Figure 4.38, respectively. 

The 2D mapping of the index reveals that the larger melts have a wide variability in the 

refractive index, ~0.0030 for 40_60_10 and ~0.0090 for 40_60_20. In both cases the higher 

refractive index was found in the lower part of the glass boule. A higher refractive index 

was also observed for the “bottom” samples in the 35_65_X small melts, but the magnitude 

was much larger for the large melts.  

Variations in the dn/dT were also observed in these two large melts, but did not show a 

gradient from top to bottom of the melt. A higher dn/dT was generally found in the center 

of the melt, but this was not always consistent. Relative to the error of the measurements 
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(index ± 0.0005, dn/dT ± 11.2 ppm∙°C-1) the variation in the dn/dT is much smaller when 

compared to the refractive index.  

The refractive index and dn/dT of the 35_65_10 and 35_65_20 samples are shown in 

Figure 4.39 and Figure 4.40, respectively. Again, these two samples were sliced differently, 

which prevents the 2D mapping presentation of the previous two glasses. The 35_65_10 

sample showed a very uniform refractive index profile, with all measurements being within 

the error of the average index. The 35_65_20 sample showed a higher refractive index at 

the bottom of the melt, as was observed in the first two large melts, as well as the smaller 

melts. The dn/dT for these two melts also showed a generally higher dn/dT in the center of 

the sample rather than along the edges of the sample. 

Overall, the average measured dn/dT of the large melts was within the established error of 

the corresponding average measured dn/dT of the small melts. The average refractive index 

of the large melts however, differed from the corresponding average index from the small 

melts by up to 0.0065, or approximately 13x the size of the index error. A listing of the 

average index and dn/dT for both the large and small melts is shown in Table 4.14. 

 

 

 

Table 4.14 – Refractive index and dn/dT values of 25g melts and 250g melts for selected compositions. 

Composition Sample 

orientation 

Small melt 

index – average 

Small melt 

dn/dT – average 

Large melt 

index – average 

Large melt 

dn/dT – average 

40_60_10 Vertical 2.6053 66.5 2.6063 72.7 
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40_60_20 Vertical 2.5939 100.5 2.6004 103.4 

35_65_10 Horizontal 2.6288 71.5 2.6231 69.5 

35_65_20 Horizontal 2.5705 98.0 2.5675 88.7 

 

 

Figure 4.36 – Cross section of the 40_60_10 (top left) and 40_60_20 (top right) large melt sample, which were sliced 

“vertically” and a representative sample (bottom) of the 35_65_10 and 35_65_20 melts which were cut 

“horizontally”. The 40_60_10 sample was damaged during fabrication, producing the irregular shape. The red X 

markers designate the approximate locations of measurements.  
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Figure 4.37 – Two-dimensional mapping of a) the index and b) the dn/dT of the 40_60_10 large melt cross-section, 

measured at 4.515 µm. 

 

 

 

 

Figure 4.38 – Two-dimensional mapping of the index of the 40_60_20 large melt cross-section, measured at 4.515 

µm and 30 °C 
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Figure 4.39 – The a) index and b) dn/dT of the 35_65_10 sample, measured at 4.515µm 

 

Figure 4.40 – The a) index and b) dn/dT of the 35_65_20 sample, measured at 4.515µm 

 

4.8.4 Annealing of large melts  

The large index variations in the 250g melts could potentially be a result of thermal history 

variations (uneven cooling), or variations in chemistry throughout the melt. In order to 

determine the origin of these variations, the large melt samples of 40_60_10 were annealed 

at a temperature 40 °C lower than Tg for 3 days. The assumption was that any thermal 

history variations would be sufficiently relaxed out of the glass during this exaggerated 
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annealing step. After slowly returning the sample to room temperature, the refractive index 

was measured again at 30 °C, in approximately the same locations as shown in Figure 4.36. 

The resulting index after the 3 day anneal is shown in Figure 4.41. The refractive index in 

the 40_60_10 sample became much more uniform after this secondary annealing step, 

decreasing the Δn from 0.0029 to 0.0016, a reduction of almost 50%.  

The drastic reduction in the Δn across the sample leads to two important observations. First, 

variations in thermal history and internal stresses are important in determining the 

refractive index of a chalcogenide glass. Second, either the overnight annealing of the glass 

is not sufficient to ensure a uniform thermal history, or the process “cross sectioning” the 

boule may impart additional stresses on the sample and lead to refractive index changes. 

Unlike typical slicing and polishing, cross-sectioning a glass boule requires mounting and 

unmounting of the glass using thermal wax, potentially altering the thermal history of the 

sample. For purposes of future examination of this compositional system, longer anneals 

with attention to the extent of heating (rate and upper temperature during mounting for 

fabrication) should be considered to realize high index homogeneity samples. 
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Figure 4.41 – Two-dimensional mapping of the refractive index of the 40_60_10 large melt cross-section after 

annealing, measured at 4.515 µm. 

 

4.9 Analysis and Modeling 

The analysis of the refractive index and thermo-optic coefficient in this section has been 

performed on values measured at UCF rather than at PNNL. Additionally, the values used 

for the (As0.35Se0.65)100-xGex tieline have been taken from the average values from the small-

melt homogeneity investigation detailed in Section 4.8.2. 

4.9.1 Refractive Index  

The (As.35Se.65)100-xGex and (As.30Se.70)100-xGex tielines each contain compositions that are 

in the Se-excessive region. The change in index with composition in this region is linear 

and approximately the same for both tielines. In the region with a weak Se deficiency, the 

change in index with composition for the three tielines is approximately three times larger 

than in the region with a Se excess. Another slope change is observed when the network 
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has reached approximately -20% Se-poor percentage, followed by a broad minimum when 

the network is between -20% and -30% Se-poor in all three tielines.  

As previously noted, at a Se-rich/-poor percentage of 0%, the composition is in 

stoichiometry and the structures in the network differ depending on which side of this 

transition point a composition may lie. Additionally, as noted in the introduction, when the 

network is sufficiently Se-poor, structures such as GeSe ethane-like modes become present. 

In the work of Xu et al., XPS/NMR studies showed the appearance of these specific 

structures on three compositions with a Se-rich/-poor percentage of approximately -30% 

[62].  

The refractive index of all three tielines is shown in Figure 4.42a and 4.42b, as a function 

of the MCN and the %Se rich/poor, respectively. Figure 4.42a contains two dashed lines, 

one at MCN = 2.4 and another at MCN = 2.67, signifying the two points where possible 

transitions have been predicted and observed in other works. Similarly Figure 4.42b 

contains a dashed line corresponding to the change in structures at stoichiometry (0% Se-

rich or Se-poor) and a shaded zone corresponding to the region where Ge2Se6/2 ethane-like 

modes are expected to appear (between approximately -20 and -30 % Se-poor). The fact 

that the changes experience an inflection at these points signifies that the index is extremely 

sensitive to the structures that are present in a given composition.  
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a)   b)  

Figure 4.42 – Thermo-optic coefficient of the three GeAsSe tielines as a function a) MCN and b) %Se rich/poor. 

Vertical lines and shaded regions are shown to highlight locations of theorized transitions along the tielines. 

4.9.2 Single Frequency Optical Model (Lorentz-Lorenz) 

The Lorentz-Lorenz (LL) equation allows calculation of a material’s polarizability (α), or 

molar refractivity (Rm) based on its molecular weight (M), density (ρ), and refractive index 

(n).  

4𝜋

3
𝑁𝛼 = 𝑅𝑚 =

𝑀

𝜌
 (

𝑛2 − 1

𝑛2 + 2
) 

Equation 10 

Expressing the mass as molar volume (Vm) and solving the above equation for the 

refractive index yields a relation of the index to the dimensionless ratio Rm/Vm. 
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𝑛 = √
2 (

𝑅𝑚

𝑉𝑚
) + 1

1 − (
𝑅𝑚

𝑉𝑚
)

 

Equation 11    

A multi linear regression was performed using index and density data to determine the 

refractivity values for Ge, As, and Se that would yield the best results for the LL model. 

The fitting resulted in a refractivity value for Se of 11.29 cm3/mol, a refractivity value for 

As of 12.13 cm3/mol, and a refractivity value for Ge of 9.59 cm3/mol. Comparing to 

previous values of refractivity published by Webber et al. [66], 11.26 cm3/mol for Se, 11.33 

cm3/mol for As, and 10.29 cm3/mol for Ge, the refractivity for Se remains essentially 

unchanged while the values for Ge and As differ significantly. The calculated index using 

the fitted refractivity values and Equation 11 is shown in Figure 4.43, Figure 4.44, and 

Figure 4.45 for each of the respective tielines.   

The refractivity values obtained here provide a reasonable estimate of a composition’s 

refractive index, and can be useful for preliminary steps in compositional design. The LL 

model however, does not consistently predict “knees” or extrema with composition, as has 

been noted by McCloy et al. [145]. The reasoning for this is likely due to the model only 

considering elemental refractivity contributions and ignoring contributions from specific 

structures or bond types.  
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Figure 4.43 – Measured refractive index values along with index values calculated from the Lorentz-Lorenz 

formulation. 

 

Figure 4.44 – Measured refractive index values along with index values calculated from the Lorentz-Lorenz 

formulation. 
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Figure 4.45 – Measured refractive index values along with index values calculated from the Lorentz-Lorenz 

formulation. 

 

4.9.3 Thermo-optic coefficient (dn/dT) 

Similar to the refractive index, the thermo-optic coefficient for the three tielines is 

presented in Figure 4.46a as a function of the MCN. Also similar to the refractive index, 

the dn/dT can be separated into three zones of common trends. The (As.35Se.65)100-xGex and 

(As.30Se.70)100-xGex tielines each show an increasing dn/dT until an MCN of ~2.45, then all 

three tielines exhibit a plateau between ~2.4-2.6, and then finally the dn/dT increases when 

MCN is greater than 2.6. The dn/dT is also shown in Figure 4.46b as a function of the Se-

rich/-poor%. 

In the case of the Se-rich/-poor%, the transitions between the zones are more pronounced 

than the MCN case, and correspond to the locations of the trend shifts observed in the 

refractive index. Specifically, the dn/dT changes linearly when the network is between 
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+30% and 0% Se-rich until compositions reach stoichiometry, the dn/dT then experiences 

a plateau while the network is between 0 and -20% Se-poor, and finally a second trend is 

observed when the network is between -20% and -30% Se-poor, the point at which Ge-Se 

ethane-like modes are expected to appear in the network. Inflections in dn/dT are linked 

with changes in structure signifying that the dn/dT also has a strong dependence on the 

structures present in the network. 

Neither the index nor the thermo-optic coefficient show clear, predictable trends at the key 

MCN values of 2.4 or 2.67, as has been predicted through constraint and topology 

arguments. Instead, viewing the changes in index and thermo-optic coefficient with respect 

to how Se-rich or how Se-poor the network is, and thus which structures are likely to be 

present in the network, gives a more complete idea of how compositional variations will 

affect optical properties.  

a)   b)  

Figure 4.46 – Thermo-optic coefficient of the three GeAsSe tielines as a function a) MCN and b) %Se rich/poor. 

Vertical lines and shaded regions are shown to highlight locations of theorized transitions along the tielines. 
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4.9.4 Thermal Lorentz-Lorenz models 

The primary formulation for modeling the change in the refractive index with temperature 

comes from a derivation of the LL model with respect to temperature, first presented by 

Prod’homme [146]: 

𝑑𝑛

𝑑𝑇
=

(𝑛2 − 1)(𝑛2 + 2)

6𝑛
(𝜑 − 𝛽) 

Equation 12 

where ϕ is related to the thermal polarization coefficient and β is related to the thermal 

expansion coefficient. This equation presents the thermo-optic coefficient as a competition 

between volumetric expansions with temperature (which lowers the index) and an increase 

in the electronic polarization of the atoms with temperature (which increases the index). 

Hilton [36,147] further simplified this relation by noting that the index ratio can 

approximated as n3. His adaptation of the equation becomes: 

1

𝑛3

𝑑𝑛

𝑑𝑇
=

1

6
(

1

𝑅𝑚

𝑑𝑅𝑚

𝑑𝑇
 − 3𝐶𝑇𝐸) 

Equation 13 

Using this Hilton approximation, the thermal polarizability coefficients (dRm/dT) of each 

glass was calculated. Trends in dRm/dT show a general decrease in the thermal 

polarizability coefficient with Ge content (or Se-deficiency), but vary too much to draw 

additional conclusions. Extrapolating the thermal polarizability coefficients across the 

tielines can theoretically yield thermal polarizability coefficients for the individual 

element, but the model results in a poor fitting. The fact that the LL model does not 
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accurately allow for bond or structure contributions carries forward as its temperature 

derivations also lack a contribution from these effects. 

Plotting the quantity (n-3∙dn/dT) against the CTE yields a marginal linear relation (r2 = 

0.84) and is shown in Figure 4.47. A similar linear fitting was unable to be obtained for the 

dn/dT versus dRm/dT data as there was too much variability in the calculated values. The 

linear relation between the two products indicates that knowing the both the coefficient of 

thermal expansion and refractive index is sufficient in reasonably predicting the dn/dT of 

a novel chalcogenide glass. 

 

Figure 4.47 – Correlation between the quantity (n-3∙dn/dT) and the coefficient of thermal expansion, with a linear 

fitting 

 

Solving the linear fit between (n-3∙dn/dT) and CTE for the zero dn/dT case give a solution 

of CTE = 24.5 ppm∙°C-1. Substituting this value into Equation 7, and taking into account 
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error from the dn/dT and CTE, yields an approximate MCN range of 2.3-2.4 that should 

provide the necessary CTE to produce a zero dn/dT. This range of binary and ternary 

glasses should provide IR optical designers with a starting point to develop novel 

compositions with a low or zero dn/dT. 

Figure 4.47 was recreated to include various commercial infrared and oxide (visible) 

materials [2], and is shown in Figure 48. Most infrared materials fall along the best fit line 

between (n-3∙dndT) and CTE. The only significant exception is crystalline Silicon, with an 

extremely low coefficient of thermal expansion relative to its dn/dT. Oxide glasses 

completely miss this line, suggesting that separate fittings may be required for separate 

material types.   

 

Figure 48 – Correlation between the quantity (n-3∙dn/dT) and the coefficient of thermal expansion for measured 

glasses, commercial infrared materials, and commercial oxide materials. 
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The knowledge of other chalcogenide glasses fitting the linear relation between (n-3∙dndT) 

and CTE will allow for prediction of zero dn/dT compositions in other glass forming 

systems. For example in the GeSbSe system, where Sb acts an iso-structural substitute for 

As, we can utilize CTE values obtained from SciGlass [148-151] to predict what 

compositions should give a zero dn/dT. Unfortunately, there is less data available for the 

GeSbSe ternary glass forming system, than the GeAsSe glass forming system. Despite the 

limited dataset, the CTE GeSbSe of glasses appear to follow a similar exponential-like 

relationship with the MCN as seen in GeAsSe glasses. Therefore, it is estimated that a 

GeSbSe glass with a MCN of approximately 2.35 – 2.45 will produce the necessary CTE 

to result in a zero dn/dT. 

4.10 Conclusions 

This chapter discussed two of the most important aspects of this dissertation: construction 

and characterization of an infrared (IR) index metrology tool, and the subsequent 

characterization/analysis of GeAsSe refractive index and thermo-optic coefficient (dn/dT).  

The unique index metrology system was created through significantly modifying an off the 

shelf Metricon prism coupler to operate in the IR. Two versions of this system were created, 

one at Pacific Northwest National Laboratory (PNNL) and the other at University of 

Central Florida (UCF). Thermal and index calibration was performed on both system prior 

to measurements. Measurements of the refractive index on GeAsSe glasses conducted on 

both systems showed good agreement with minimal offset, while dn/dT measurement 

showed a significant offset between the two systems.  
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To address the issue of the material homogeneity, this chapter showed minimal variation 

of optical properties (index dn/dT) within a single melt as well as from melt-to-melt. The 

chapter also showed a larger inhomogeneity for “large-melt” samples, but demonstrated 

the ability to reduce this inhomogeneity with subsequent annealing steps, signifying that 

the index variations are mostly due to thermal history variations in larger melts.  

The index and dn/dT results and analysis presented in this chapter constitute the main 

contribution for this body of work. Index metrology results showed an overall decrease in 

the index with Ge additions. Along each of the tielines investigated significant shifts in 

trends were observed at compositions corresponding to a change in the structure present in 

the glass. The first shift in trends was found to occur at compositions that are chemically 

stoichiometric: neither a net Se-excess nor a Se-deficiency. Se-Se bonds are only found in 

compositions with a Se-excess, but disappear once the composition becomes Se-deficiency 

resulting in the formations of As-As bonds. The second transition resulted in a minimum 

in refractive index and was found to occur at composition corresponding to the creation 

Ge-Se ethane-like structures, which only occur at higher levels of Se-deficiency.  

The compositional trends for the dn/dT were also linked to the same structural changes as 

observed in the index within the analysis of this chapter. The dn/dT was shown to increase 

rapidly with added Ge up until the composition reached stoichiometry. As the structures 

within the network changed the dn/dT was shown to nearly plateau with further 

compositional changes.  At the composition corresponding to the creation of Ge-Se ethane-

like structures, the dn/dT was shown to increase again. 
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A method of predicting the index using the Lorentz-Lorenz model was outlined through 

combining density data and fitted refractivity values for Ge, As, and Se. This method of 

predicting the index found to be appropriate for first order approximations of the index as 

it did not have ability to take into account the contributions from structures in a glass, but 

rather only considered the individual elements in the composition. A simplified version of 

the thermal derivations of the Lorentz-Lorenz model also demonstrated a strong linear 

relationship between the quantity (n-3∙dn/dT) and the coefficient of thermal expansion 

(CTE), demonstrating that the dn/dT can be roughly assumed knowing only the CTE and 

the refractive index.  
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Chapter 5  

Room Temperature Index Relaxations 

This chapter discusses a series of experiments that resulted after a sample exhibited a sharp 

change in refractive index with temperature during dn/dT measurements. The motivation 

for this chapter was to characterize and understand this phenomenon in chalcogenide 

glasses, how such an effect impacts the quality of measurements made (by our group and 

others), and to determine which compositions in the present effort might exhibit this 

feature. While this phenomenon was not initially planned as part of the investigation of this 

dissertation, it is vital to understand for any composition that may be a candidate for 

commercial production or detailed laboratory analysis. 

The chapter will first present a brief background to aid in the understanding of structural 

relaxations in chalcogenide glasses. This includes prior observations of index drop seen in 

analysis of ChGs such as those studied, widely used in the precision glass molding  

community [110,152]. The index drop and subsequent room temperature relaxation on a 

sample of commercial glass IG 6 is then presented for two different thermal conditions, 

highlighting the similarities between the two. The process is then repeated on a Se-

excessive glass, highlighting the role of the network structure in this phenomenon.  

The relaxations of both of these glasses will be fit with simple relaxation equations, in 

order to compare their relaxation times (τ) with the processes described in literature. 
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5.1 Background – Structural Relaxations 

Structural relaxations occur within a glass when it is in a state of thermodynamic dis-

equilibrium. This dis-equilibrium is most prevalent as a molten glass cools through the 

glass transition region, where the kinetics and thermodynamics are changing rapidly. The 

kinetics eventually slow relaxations enough to prevent the glass reaching a certain 

thermodynamic equilibrium before that equilibrium has changed, creating a deviation 

between the current thermodynamic state of the glass and the equilibrium state. The faster 

a glass is cooled through the Tg region, the more severe the deviation from equilibrium will 

be. Normally a glass will next be annealed isothermally at 40 °C below the Tg for several 

hours to several days or weeks. During the annealing step the kinetics are sufficient enough 

to allow relaxations within the glass so that the glass can approach the thermodynamic 

equilibrium state. The larger the difference between the isothermal holding temperature 

(either in annealing or storage) and the Tg a glass is, the longer it is expected for that glass 

to reach thermodynamic equilibrium, if they will reach at all. 

Structural relaxations have been observed in several types of glasses including oxides and 

chalcogenides [1,118,121,153-156]. In the chalcogenide glass family, glasses with 

excessive chalcogen content and a loosely bound network experience a larger effect from 

structural relaxations. In amorphous Se, which is essentially a 2D network, the structural 

relaxations are caused by compression of Se chains, and the Se switching between ring and 

chain configurations [153,155-161]. As the composition becomes less chalcogen excessive 

and the amount of Se chains are reduced, the network experiences a lesser degree of 

structural relaxations. 
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Structural relaxations within a glass can be characterized by a series of weighted 

exponential growth/decay functions, as shown in Equation 14. In this equation A is a fitting 

parameter, τi are the relaxation times, and Bi are weighting terms used to signify the 

strength of each relaxation. For simple relaxations, only one exponential may be needed, 

whereas complex relaxations may need several weighted exponentials to fully describe the 

relaxation. 

𝑦 = 𝐴 + Σi𝐵𝑖 ∗ 𝑒
−

𝑡
𝜏𝑖 

Equation 14 

Work by Koontz characterized the time scale of relaxations in (Ge)AsSe chalcogenide 

glasses as a function the difference between the isothermal hold temperature and the 

respective Tg, in the range of normal annealing temperatures using length dilatometery 

methods. This work showed that close to Tg the longest relaxations times are on the order 

of 10s of seconds, and decreasing the isothermal hold temperature relative to Tg will 

increase the longest relaxation times by three orders of magnitude, or a value of ~ 10,000s.  

Work on GeSe binary glasses by Bhosle et al. also studied the effect of ageing near Tg, and 

found a series of compositions along the binary which exhibited no ageing effects 

[162,163]. This region of compositions has been described in this binary tieline and within 

other ternary glass forming systems as the “Boolchand intermediate phase”, and is a region 

in which glasses exhibit a zero non-reversible heat flow in modulated DSC experiments. 

The work performed by Bhosle et al. did not specifically investigate the shape of the 
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relaxation “curves” but rather stated which sample did and did not experience ageing 

effects.  

Room temperature relaxations have also been observed in binary glasses AsSe with a Se 

content > 60 at% [121,153-156,161]. Golovchak et al. observed volumetric relaxations of 

As20Se80 and As30Se70 glasses stored at room temperature for 20+ years using calorimetric 

methods. The authors ascribed a τ ≈ 20 years or ~600,000,000 seconds to these relaxations. 

The authors described the processes as a physical ageing that is driven by volumetric 

contractions of Se-Se-Se polymeric chains, and noted that these relaxations take place 

“much more effectively at high temperatures” [155]. The range of compositions likely to 

undergo a long-term densification includes all Ge- and/or As-Se compositions with a Se-

rich network. The formulation presented by Golovchak does not expressly allow for room 

temperature relaxations in stoichiometric As40Se60, but work by others has shown the 

presence of a non-zero amount of homopolar bonds present in stoichiometric (Ge)AsSe 

glasses [63,70], allowing for the formation of Se chains and thus potential long term ageing.  

Combining the results of Koontz and Golovchak, it becomes clear that the further away 

from Tg a glass is isothermally held, the longer the relaxation time, or τ, needed for the 

glass to fully relax to the equilibrium, ranging from tens of seconds near Tg to hundreds of 

millions of seconds at room temperature.  

Hence, the importance of this effect on manufacturing of chalcogenides in bulk optical 

applications is significant, as variation in thermal history impacts bulk structure which 

affects resulting properties [110,152]. Specifically, thermal history induced index changes 
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can impact the actual refractive index, dispersion and thermo optic coefficients used by 

optical designers for modeling performance. Thus the role of considering the contributions 

of relaxation effects in measurement of these properties (for commercial and lab-scale 

investigations) is appropriate. 

5.2 Effect of Relaxation of GeAsSe Glass Structures 

Several of the GeAsSe glass samples investigated in the present study exhibited a non-

linear change in refractive index with temperature. Specifically, as certain samples were 

heated to the temperature set points of 30 °C, 50 °C, and 70 °C the measured refractive 

index would linearly change with temperature. Upon heating to the final temperature set 

point of 90 °C, the slope between the 70 °C and 90 °C set points was significantly different 

than between the other set points. An example of this is shown in Figure 5.1, for the 

composition 30_70_5, where and inflection can be seen at the 70 °C set point. The total 

time at the maximum temperature of 90 °C was approximately one hour.  
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Figure 5.1 – Measured Index vs. Temperature for the 30_70_5 sample as initially measured at PNNL  

 

It was also observed that upon cooling the sample to 70 °C, 50 °C, or 30 °C the newly 

measured index was lower than the initial measurements. This “index drop” occurred as a 

result of heating the sample to 90 °C during measurements. Given that the glass transition 

temperature (Tg) of all of these glasses is greater than 90 °C, this observation is therefore 

referred to as a “sub-Tg index change”. After the sub-Tg index change occurs in the sample 

at 90 °C, the change in measured refractive index with temperature is again linear. The 

refractive index for the complete thermal cycle for the 30_70_5 sample is shown in Figure 

5.2. The black data points represent the index before the sub-Tg relaxations have occurred, 

and the red data points represent the index after the glass has partially relaxed at 90 °C.  
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Figure 5.2 – Refractive index vs. Temperature for the 30_70_5 sample, showing the “sub-Tg index relaxation” at 

90 ⁰C, and the index drop at additional lower temperatures 

This effect was first observed in August 2014 on several GeAsSe samples investigated 

here, while conducting measurements at PNNL. In years prior to this observation, the index 

of all samples was only measured at 30 ⁰C and 90 ⁰C due to time constraints and was fully 

not observed. Measuring the sample in this manner masked the effects of the sub-Tg index 

relaxations. The samples sat at room temperature under ambient conditions (standard 

pressure, and shielded from illumination) for approximately one year at the time of the first 

observation in August 2014. The average change in index at 30 °C across all measured 

samples after thermally cycling up to a maximum temperature of 90 °C is listed in Table 

5.1 for each of the compositions investigated. If the average index change for a composition 

was less than the measurement error, ± 0.0003, the index change is listed as zero but is also 

noted with an asterisk.  
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After the construction of the Metricon system in the UCF laboratories, the same samples 

were re-measured using the same protocol to try to replicate the observed index drop at 

PNNL. The observed change in index measured at UCF at 30 °C is also shown in Table 

5.1 for comparison. The time between measurements at PNNL and UCF was 

approximately 7 months.  

Table 5.1 – Average measured change in index at 30 °C for all compositions at PNNL (small melts only) and at 

UCF (both small and large melts), approximately 7 months later. Compositions which exhibited a change in index 

less than the error, ±0.0003, are listed as zero index change and also noted with an asterisk.  

Glass Composition Index drop at PNNL Index drop at UCF 

(Small melt) 

Index drop at UCF 

(Large melt) 

40_60_0 0.0004 0.0007 X 

40_60_5 0.0005 0.0005 X 

40_60_10 0.0000 0.0000* 0.0004 

40_60_15 0.0000 0.0000* X 

40_60_20 0.0000 0.0000 0.0000 

    

35_65_0 0.0010 0.0005 X 

35_65_5 0.0004 0.0003 X 

35_65_10 0.0000* 0.0000* 0.0000 

35_65_15 0.0000 0.0000* X 

35_65_20 0.0000 0.0005 0.0000 

35_65_25 0.0000 0.0000* X 

    

30_70_0 0.0016 0.00020 X 

30_70_5 0.0004 0.0005 X 

30_70_10 0.0003 0.0004 X 

30_70_15 0.0000* 0.0000* X 

30_70_20 0.0000 0.0000* X 

30_70_25 0.0000 0.0000* X 

 

In general, the compositions with a Se-rich network exhibit a change in index at 30 °C, and 

glasses with a larger Se-rich%, such as 30_70_0 (As30Se70), exhibit the largest change 

(drop) in index. The exceptions to this are 40_60_0, which is stoichiometric. Note that 

40_60_10 only exhibited an index drop in the large melt, and 35_65_20, which is Se-poor 

and only exhibited an index drop at UCF. As discussed in Section 4.8.4, the 40_60_10 
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large melt sample exhibited a change in index after a secondary annealing step suggesting 

that the glass was not fully annealed, and is also thought to be a contributing factor to the 

observed “index drop”. Aside from these two outliers (40_60_10 and 35_65_20), it is 

believed that the observed index drop is primarily limited to compositions with a 

stoichiometric or Se-rich network. Additional work will be needed to confirm the 

boundaries of this phenomenon. Overall, there was good agreement between the measured 

index drop at PNNL and that (re-measured) at UCF. 

The act of heating the sample up to 90 °C for ~ 1 hour is enough to cause a slight change 

in the glass’ thermal history, and shifts the network to a slight disequilibrium state. The 

approximate 7 month gap between thermal cycling at PNNL and at UCF was enough time 

such that the room temperature relaxations could return the glass to the original equilibrium 

state. The next task was to determine exactly how the refractive index responds to the 

structural relaxations at room temperature, and to see if they can be characterized in similar 

methods to Golovchak and Koontz.  

5.3 Analysis of commercial sample: IG6 

Using the same experimental method as described previously in this Chapter, a sample of 

commercial glass, IG 6 from Vitron [35] was measured to include as a reference material 

with published index data.  It was found to also exhibit a negative Δn, an index drop, at 30 

°C after cycling to a maximum temperature of 90 °C. As discussed in Section 4.5.2, the 

sample of IG6 measures approximately 25mm x 25mm x 3mm and the refractive index 

was measured at 30 °C on a near-daily basis. Additionally, the sample was occasionally 
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thermally cycled up to 90 °C for dn/dT measurements. A representative refractive index 

profile of the IG6 sample before and after thermal cycling at 90 °C is shown in Figure 5.3. 

As with the (Ge)AsSe samples described previously, the samples was at 90 °C for 

approximately one hour. The initial Δn for the IG6 sample after thermal cycling was 0.0008 

±0.0003. 

 

Figure 5.3 – Refractive index of IG6 both before and after thermal cycling up to 90 °C.  

 

After this cycle the sample was stored at room-temperature (~20-24 °C) and measured at 

30 °C on the semi-daily basis. Over the course of the next several days, the measured index 

at 30 °C slowly reverted to the initial (or steady state) index. This process is shown in 

Figure 5.4, which shows the measured index as a function of the time left at room 

temperature, as measured in seconds.  
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Figure 5.4 – Refractive index recovery of IG 6 sample at 30 °C after being held at 90 °C for 1 hour during 

measurement. 

The same IG 6 sample was then placed in an annealing furnace at 90 °C  for 6 days, to 

investigate if prolonged exposure to the “soft-anneal” temperature would measurably alter 

the recovery of the refractive index as it was subsequently held at room temperature. The 

sample was again measured once daily over the course of several days to determine the 

room temperature recovery/relaxation profile. The refractive index recovery for this 

experiment is shown in Figure 5.5, as a function of the time at room temperature, in 

seconds.  
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Figure 5.5 – Refractive index recovery of IG 6 sample at 30 °C after being held in an annealing furnace at 90 °C 

for 6 days. 

Initial observations showed that indeed the behavior of the “index recovery” process is 

extremely similar to volumetric relaxations observed in chalcogenide glasses and explained 

in detail by Koontz [1] and Golovchak [155,156,161]. As noted, the recovery was related 

to the new thermal history, and not the long-standing prior manufacturing process’ thermal 

history. 

The index recovery data for each data set was then fit with a single exponential growth as 

shown in Equation 14. Fitting the initial data set, ~1 hour at 90 °C, to the exponential 

growth equation yielded a reasonable fit, with a relaxation time, τ = 287,000 seconds and 

an r2 = 0.92. The second data set, in which the IG6 sample was held for 6 days at  90 °C, 

resulted in a relaxation time of τ = 291,500 seconds and an r2 = 0.88. There is essentially 
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no change in the relaxation times for these two experiments, signifying that one hour at 90 

°C is enough time to completely, but temporarily, alter the thermal history of the IG6 

sample enough to impart temporary changes in the index. 

These two relaxation times are simultaneously much longer than relaxation times observed 

by Koontz [1,118], and much shorter than the relaxation times observed by Golovchak 

[155,156,161] for AsSe binary glasses with similar compositions. It is difficult to ascertain 

the reasoning the vast discrepancies between this result and the two external results, but it 

is extremely important to note that all three of the experiments are measuring relaxations 

using different techniques. Koontz obtained results through dilatometric measurements, 

Golovchak through calorimetric measurements, and results in this work were obtained 

through optical measurements. It is hypothesized that the (time-) scale length of the various 

measurement techniques may play a role in capturing the structure-sensitive attributes of 

the thermal history modified material and thus impacts the magnitude of the calculated 

relaxation times. This mechanism, while similar in structural origin is perhaps sensitive to 

the physical attribute being probed in the specific characterization method employed to 

observe the property change. Further experiments to systematically characterize the 

changes, with time and temperature, would provide further guidance on these hypotheses. 

5.4 Analysis of Se-rich Sample: As30Se70 

A sample of the composition 30_70_0 was also subjected to the same measurement 

protocol to determine how increasing the amount of Se-chains would affect the relaxation 

times. As listed in Table 5.1, the 30_70_0 sample exhibited the largest change in index at 
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30 °C after thermally cycling to a maximum temperature of 90 °C. The refractive index 

recovery of the 30_70_0 sample is shown in Figure 5.6. The measured index was fit with 

Equation 14, which resulted in a relaxation τ = 67,000 s and an r2 = 0.95. The relaxation 

time of the 30_70_0 (As30Se70) sample is significantly faster than that of the IG6 sample 

(As40Se60), by almost an order of magnitude. According to Golovchak, densification of the 

Se-chains are the driving for in this relaxation, and so it would logically follow that 

increasing the Se-chain concentration in a glassy network should cause larger total 

relaxations and also decrease time necessary to complete these relaxations. 

 

Figure 5.6 – Refractive index recovery of As30Se70 at 30 °C after being held in an annealing furnace at 90 °C for 1 

hour during measurement. 
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5.5 Conclusions 

This chapter has described a new phenomenon in chalcogenide glasses that has not been 

previously discussed in literature. While this work was not specifically designed to answer 

the fundamental questions of this dissertation, it was still deemed important to understand 

in the broad scope of chalcogenide optical properties and compositional design.  

Specifically this chapter has shown a drop in the refractive index after thermal cycling, and 

a subsequent recovery in the index while being held at room temperature for several days. 

The cause of the index drop is a “freezing-in” of a new, non-equilibrium, thermo-dynamic 

state. Over time the glassy structure returns to the initial equilibrium structure, 

demonstrating a “memory” of that thermodynamic state.  

The chapter quantified the index drop magnitude and recovery times for two AsSe binary 

glasses, and demonstrated that glasses with a Se-excessive network simultaneously have a 

larger index drop and faster recovery to a stoichiometric glass. Additional experiments 

noted that one hour at the elevated temperature was sufficient to fully, but temporarily 

impart the index drop.  

Other relaxation phenomena have been documented in chalcogenide glasses with both 

shorter and longer time scales. This work is intended primarily to document this 

phenomenon, as there is still a significant amount of work required to fully characterize 

the origins and determine if the relaxations seen here are indeed the same structural 

relaxations as described by other authors.  
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Chapter 6  

Conclusions 

Currently, the development of novel infrared (IR) optical systems is hindered by the lack 

of a wide variety of available IR materials. IR optical designers are limited to only a handful 

of IR crystals and glassy materials. The overall goal for this dissertation was to alleviate 

the stresses of this situation through developing a method to compositionally design optical 

properties in chalcogenide glasses. These novel glasses will be designed to meet specific 

property attributes and therefore able to fulfill specific roles in an IR imaging system. This 

dissertation has chosen to focus on the GeAsSe ternary glass-forming system to work 

toward this goal.  

In order to achieve this goal, two main tasks were identified. First it was realized that in 

order to characterize the optical properties (index and thermo-optic coefficient or dn/dT) 

of IR glasses, novel metrology equipment would need to be designed, constructed, and 

characterized. To accomplish this goal, several modifications were made to an “off the 

shelf” prism coupler from Metricon Corporation that allowed the system to measure index 

and dn/dT in the IR. Initial modifications were performed at Pacific Northwest National 

Laboratory (PNNL), and a mirror system was constructed at University of Central Florida 

(UCF). Error analysis of these systems revealed an absolute error on the index of ± 0.0005 

and ± 11.2 ppm∙°C-1 on the dn/dT, and outlined methods to decrease the error on the dn/dT 

to under ± 5.0 ppm∙°C-1. Repeatability experiments using the UCF system on a commercial 
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sample of IG 6 from Vitron showed a relative error on the refractive index and thermo-

optic coefficient of ±0.0003 and ±6.0 ppm∙°C-1, respectively.  

The second task to accomplish the overreaching goal of this dissertation was to melt and 

fabricate several chalcogenide glasses with unique compositions, then characterize the 

optical and non-optical properties of these glasses, and finally present the collected data in 

a manner that allows for meaningful analysis. This was by far the larger of the two tasks 

and resulted in a significant amount of data to be collected and analyzed.  

To accomplish this task, this work investigated the effects of adding Ge to three binary 

AsSe glasses, up to a maximum of 25 at % Ge, creating a total of 17 unique GeAsSe 

compositions. The structural, optical, and physical properties of each composition was 

measured and presented as a function of either the chemistry (composition), network 

connectivity (mean coordination number), or the inherent structural makeup of the network 

(Se excess or deficiency). These multiple data types and presentation methods form the 

basis for compositional design analysis and allow for the answering of several fundamental 

questions needed to address the overall goal of this dissertation. 

For example, one of the fundamental questions of this work was related the unknown 

effects of compositional design to the properties relevant to the manufacturing process. 

This study defined the material properties that dictate how a glass will respond to state of 

the art manufacturing processes and found that adding Ge increases the glass transition 

temperature (Tg), Vickers hardness (Hv), and decreases the coefficient of thermal expansion 

(CTE), all of which lead to a glass that is easier to manufacture into lens geometries through 
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conventional methods (grinding and polishing or diamond turning). This study also 

described the driving force behind these non-optical property changes as being the cross 

linking of AsSe puckered layers by Ge-Se bonds, which strengthens the network by 

replacing weak van der Waals forces with strong covalent bonds.  

Combining the optical data with structural information obtained both here and from prior 

literature led to new understanding to the posed question regarding the origins of variations 

in the index and dn/dT with composition. The results and analysis presented here showed 

a strong shift in index and dn/dT trends at compositions corresponding to appearance or 

disappearance of specific structures. The first transition along the tielines was found at the 

stoichiometric composition, which resulted in a sharp change in slope for the index and a 

pseudo-plateau for dn/dT. On the Se-rich side of stoichiometry, Se forms homopolar bonds 

with itself, while on the Se-poor side As forms homopolar bonds with itself. The second 

transition along the tielines was found at a composition corresponding to a high level of Se 

deficiency that leads to the formation of Ge2Se6/2 ethane-like modes. This transition 

resulted in a minimum in the index, and the end of the pseudo-plateau region of the dn/dT. 

Fitting the refractive index with the classical Lorentz-Lorenz model allowed for calculation 

of the polarizability of the individual constituents, and a reasonable prediction of the 

refractive index for a novel composition. Derivation of the L-L model with respect to 

temperature yields the Prod’homme equation, which relates the thermo-optic coefficient to 

the thermal expansion coefficient (CTE) and the thermal polarizability coefficient. Further 

simplification showed a linear relationship between the CTE and the quantity (n-3∙dn/dT). 

This simplification revealed that in order to reasonably predict the thermo-optic coefficient, 
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only the room temperature index and the CTE are needed. Additionally, if a system calls 

for a novel composition with a zero thermo-optic coefficient, this simplification reveals 

that only the CTE is necessary in finding a suitable composition. The refractive index will 

not play a significant role in determination of the thermo-optic coefficient, and therefore 

several novel compositions, each with unique index values, can all have a zero thermo-

optic coefficient.  

The modeling of the index and dn/dT addresses the two remaining questions proposed at 

the start of this work: is there a link between optical and non-optical properties that can be 

used to reasonably predict index and dn/dT without necessarily measuring them, and are 

the other compositions which may satisfy the unique requirement of a zero dn/dT that 

simultaneously have better thermo-mechanical stability to commercially available options?  

During measurements of the thermo-optic coefficient several samples exhibited hysteresis 

in the index at higher temperatures. This phenomenon was unexpected and certainly not 

part of the initial scope of this project. However it was decided that this observation 

deserved to be fully fleshed out in order to understand the ramifications of thermally-

induced sub-Tg index modifications. 

The initial index values at 30 °C were found to drop after cycling the sample to a maximum 

of 90 °C. This “index drop” was observed primarily in samples with a Se-rich composition, 

but not exclusively. One sample of IG6 (As40Se60) was then measured on a daily basis, and 

exhibited relaxations at room temperature, causing the index to slowly recover to the initial 

value. This “room temperature index recovery” took place over the course of 14 days, and 
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had a characteristic relaxation τ ≅290,000 s. The relaxation time was found to not shift 

significantly even when the sample was held at 90 °C for 6 days, signifying that 1 hour at 

°C is sufficient time to completely, but temporarily, alter the refractive index. 

A sample of As30Se70 was also subjected to the same thermal cycling and measurement 

protocol. Like the IG 6 sample, the As30Se70 sample exhibited a recovery of the refractive 

index over the course of several days. The magnitude of change in the index for this sample 

was much larger (~0.0024 compared to 0.0008) and the relaxation time for the recovery of 

this sample was much shorter (~50,000s compared to ~290,000s). Both glass 

manufacturers and optical designers need to understand this phenomenon to ensure optical 

performance of the glass meets operation standards and requirements. There is significant 

room for further research in this area as this phenomenon has not been documented before.  

The work and analysis presented here has addressed the required tasks and fundamental 

questions required to develop a method to compositionally design optical properties in 

chalcogenide glasses. It is believed that this work can serve as a good basis for the 

beginnings of compositional design for other unique optical property requirements, and 

also be extended into other glass forming systems with similarly understudied 

interrelationships between optical and material properties. 
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APPENDICES 
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APPENDIX – A 

This section describes the standard operating procedure (S.O.P.) for measuring the 

refractive index of a sample on the Metricon Prism Coupler. The S.O.P. has been separated 

into four main tasks: system check, source check, calibration, and measurements. 

1. System Check 

Before using the Metricon Prism Coupler (Metricon), the user must first inspect the 

functionality of the system and its individual parts. The list of parts and functions to 

investigate has been separated into four categories: optical, mechanical, sources, and 

electrical.  

Optical 

 Mirrors 

 Apertures 

 Power meter / quadrant detector 

Mechanical 

 Pneumatic actuator  

 Steering mirrors (tip/tilt dials) 

 Rotation stage 
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.Sources 

 See source check 

Electrical  

 Detector detects 

 Lock-in locks-in 

 Signal generator generates a signal 

 

2. Source Check 

This section will describe the proper procedure for turning on illumination sources for 

measurement purposes. At the time of writing the S.O.P. the only available sources are two 

optical parametric oscillators (OPOs) from M2 Lasers Inc. and the procedure will describe 

the procedures for these specific sources.  First turn on the power the all four of the control 

boxes for the M2 lasers using the provided turn-keys. Allow the lasers approximately 5 

minutes to reach their steady-state operating temperature.  

Open the Google Chrome browser on laptop computer connected to the four control boxes. 

The default home page will bring you to a page which will control laser operation. Click 

on the “Control” button at the top of the page. Enter the username “main” and the password 

“main”. Choose the wavelength of operation from the list provided, or input a new 

wavelength. Press the “Select” button next to the wavelength of choice. Allow time for the 

laser to reach this wavelength set point if it was not already set to this point. Click the 
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“Reset Interlock” button, and then the “Start” button near the bottom of the page. The laser 

will immediately begin to lase, so ensure the mechanical shutter at the exit of the laser is 

closed and safety goggles are worn.  

The next step is to check if the laser is operating at the correct wavelength, and if the output 

is stable in both wavelength and power. Align the laser source to the input of an optical 

spectrum analyzer, and verify the measured wavelength is same as the one selected on the 

M2 control page. Also verify the stability of the wavelength over time. Next redirect the 

laser source into power meter or quadrant detector to measure the power stability of the 

output.  

If the power and/or wavelength of the output are not behaving as expected, contact M2.  

Turn on the on-board HeNe laser using the turn-key power supply, ensure the HeNe source 

illuminates as usual. 

Alignment 

The next major objective is to assess the alignment of the system. Starting with the on-

board HeNe, trace the path of the beam with a business card. The beam should strike the 

upper left corner of the measurement prism’s entrance face.  If the beam is striking the 

prism’s entrance face but not the upper left corner, use the steering dials to redirect the 

beam to this corner. If the beam is obstructed or does not hit the measurement prism, a total 

realignment may be needed.  
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Using LCD paper, follow the beam path of the M2 IR laser. Ensure the beam is not clipped 

by any mirrors and passes through the center of any apertures used to decrease the beam 

power/diameter. Place a moveable mirror on the Metricon stage in the beam path of both 

the HeNe and M2 lasers, after the physical location where they have been combined. This 

will direct both beams off of the Metricon and allow for easier analysis of their alignment. 

Place either the LCD paper or the quadrant detector in new beam path, close to the newly 

placed mirror. Alternate blocking the visible and IR beams to determine if the centers of 

the two beams are striking the LCD paper / quadrant detector at the same point. Next move 

the LCD paper / quadrant detector further away from the moveable mirror but make sure 

it is still in the beam path. Again determine if the centers of the two beams are striking the 

LCD paper / quadrant detector at the same point. If the two beams are “overlapping” at 

both of these locations, the two beams are aligned. If they are not overlapping at both 

locations, the mirrors associated with that specific M2 laser will need to be adjusted until 

this condition is satisfied. Do not attempt to align the on-board mirrors to achieve “overlap” 

as this will cause a miss alignment in all other sources coupled into the Metricon.  

3. Calibration 

Now that the system has been inspected and the sources have been analyzed, the system 

must be calibrated. Calibration is not essential on a daily basis, but should be performed 

when any of the following conditions are met: 

 Measurements are being conducted on a new project 
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 Measurements are being conducted at a new temperature and/or wavelength set 

point 

 The last calibration was performed over 120 day ago 

 There is a major discrepancy in measured values for known reference standards 

 There have been modifications to the system, specifically the location of the 

thermocouples or heating elements.  

The calibration begins with the thermal aspect. Attach a representative sample to the 

Metricon as if it was going to be measured normally. Affix a thermocouple to the sample 

as close to the measurement location as possible (upper left corner) without risking damage 

to the prism or sample.  

Change the temperature set point for the two thermal controllers to 25 °C. After the system 

has had ample time to thermally equilibrate, record the temperature at the thermocouple 

location. Repeat this process in 5 – 10 °C intervals until you have reached or slightly 

exceeded your highest target temperature set point. Plot the measured temperature against 

the temperature set points. The shape of this curve should be linear, and can be easily fit 

with a linear function. Use this to determine the correct temperature set point to produce 

the desired temperature at the measurement location.  

Replace the representative sample with a ZnSe reference standard (or other standard if it is 

available). Set the thermal controllers to the set point which will result in a measurement 

temperature of 30 °C (or any other specific set point). Measure the refractive index of this 

ZnSe sample using the Metricon software. If the measured index of the ZnSe sample is 
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different than the provided index at that wavelength and temperature, change the refractive 

index of the prism using the “Recalculate” feature. Within this option, change the prism 

index until the measured ZnSe index matches the provided reference index, and note the 

prism index. Repeat this process a minimum of 15 times to obtain an average index of the 

measurement prism at this measurement temperature and wavelength. This process should 

be repeated for each temperature and wavelength set point that is needed for calibration. 

4. Measurements  

Clean the sample and the prism with cotton swab or Kim wipe doused with acetone or 

another organic solvent. Both surfaces should be free of debris to ensure a good optical 

contact. If the sample is smaller (~10mm in diameter), hold the sample against the prism 

with wafer tweezers and activate the pneumatic actuator to hold the sample in place. If the 

sample is larger, the sample can be held by hand (with gloves), knowing that any oils from 

handling will require extra cleaning. Additionally for larger samples, make sure the 

position you wish to measure corresponds the actual measurement location. With the 

sample in place, adjust the temperature to the appropriate set point, as determined by the 

temperature calibration.  

Within the Metricon software, set the refractive index of the prism to the calibrated index 

corresponding to the current measurement wavelength and temperature. Set the 

measurement window range so that the refractive index of the sample is approximately in 

the middle of the two boundaries, with a total range covering at least 1000 steps. If the 



171 

  

refractive index is not known, set the measurement range to a larger area, centered on an 

approximated value for the sample’s refractive index. 

To start the measurement press either the F1 key or click “Start New Measurement” within 

the Metricon software. The center column with the prism, sample, and detecting optics 

should begin to rotate and display the recorded intensity. The recorded intensity should be 

flat as the column rotates, until the angle of total internal reflection is reached. At this point 

the intensity will sharply decrease and there will be a “knee”, as shown in Figure A.1. 

 

 

Figure A.1 – Visual output of the Metricon software. The “knee” is indicated by the red line in the graph, and is 

used to calculate the refractive index. 

 

Select the index of the sample by clicking on knee location. Save the measurement and 

record the refractive index in an external Excel file. Repeat this process 5-15 times 

(depending on level of accuracy and confidence needed) to obtain an average index and 

error around that average. If a sample of unknown index does not exhibit a knee, adjust the 
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measurement window and range and repeat until the knee is found. After the knee is found, 

narrow the measurement window to decrease the time needed for measurements.  
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APPENDIX – B 

This section briefely describes the design of thermal and mechanical upgrades to Metricon 

system at University of Central Florida, performed by undergraduate student Rebecca 

Whitsitt. The entries in this section are taken from the final report of Ms. Whitsitt’s 

independent study class EMA 4912 Directed Research at UCF. 

Part Descriptions 

Rotating Stage 

The “rotating stage” is the platform that connects to the arm of the main rotating 

mechanism and upon which the detector and integrating sphere sit. The IS sits on the 

smaller, raised portion of the stage to allow it to move up to the prism coupler as far as 

possible. The two curved sections of the stage allow the detector and IS holders to be 

clamped at any orientation. Each of the main sections of the stage are 0.375” thick, 

providing adequate strength while reducing overall weight. 

Integrating Sphere Holder 

The IS sits inside the raised portion of the holder and can be rotated in place or across the 

main stage. It is secured in place by a set screw and a c-clamp, and the raised portion is 

screwed onto the base from underneath. 

Detector Holder 

The detector sits inside this raised portion, which is also bolted to the base. Again, there is 

a set screw and a c-clamp holding the detector in place atop the rotating stage. 
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Thermal Housing 

The thermal housing was designed to be placed on top of the sample-prism-actuator and 

accommodate the thermocouple and other wiring so that nothing need be changed or taken 

out in order to use the housing. Thus it was difficult to create a nearly enclosed space and 

removable inserts were employed as additional walls to be added to the main housing 

structure. Originally, the housing was designed as one piece, plus the inserts, but in order 

to simplify the machining process and cost, the structure was separated into 4 walls and an 

interior block permanently fastened together with screws. 

 

Figure B.1 – Metricon Upgrades – rotation platform for integrating sphere and detector 
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Figure B.2 – Metricon Upgrades – integrating sphere holder 

 

 

 

 

 

Figure B.3 – Metricon Upgrades – detector holder 
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Figure B.4 – Metricon Upgrades – thermal housings   

Walls 1-4 

Three of the four walls are 1/8” thick and the fourth is 1/16th of an inch. There are three 

slots going across the width of the structure for placement of the 3 inserts. There is also a 

window on either side through which the laser’s light can pass and space on top and on the 

sides for wiring.  

Removable Inserts 

Insert #1 is tightly fit through the prism coupler, aligned with insert # 3 (above the coupler) 

to form the rear wall of the enclosure and add support to the structure. Insert #2 slides in 

below the sample-prism-actuator and connects with the actuator’s support arm to complete 

the bottom enclosure. 



177 

  

Photographs 

 

 

Figure B.5 –Metricon Upgrades – finished assembly 

 

Figure B.6 – Metricon Upgrades – assembely showing the rotation platform, integrating sphere holder, and 

detector holder 
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Figure B.7 – Metricon Upgrades – rear view of the rotation platform and the detector holder 

 

 

 

 

Figure B.8 – Metricon Upgrades – thermal housing around measurement prism 
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