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Abstract

Robot controller design is usually hierarchical with both high-level task and motion

planning and low-level control law design. In the presented works, we investigate methods

for low-level and high-level control designs to guarantee joint performance of human-robot

interaction (HRI). In the first work, a low-level method using the switched linear quadratic

regulator (SLQR), an optimal control policy based on a quadratic cost function, is used. By

incorporating measures of robot performance and human workload, it can be determined

when to utilize the human operator in a method that improves overall task performance

while reducing operator workload. This method is demonstrated via simulation using the

complex dynamics of an autonomous underwater vehicle (AUV), showing this method can

successfully overcome such scenarios while maintaining reduced workload. An extension

of this work to path planning is also presented for the purposes of obstacle avoidance with

simulation showing human planning successfully guiding the AUV around obstacles to

reach its goals. In the high-level approach, formal methods are applied to a scenario where

an operator oversees a group of mobile robots as they navigate an unknown environment.

Autonomy in this scenario uses specifications written in linear temporal logic (LTL) to con-

duct symbolic motion planning in a guaranteed safe, though very conservative, approach.

A human operator, using gathered environmental data, is able to produce a more efficient

path. To aid in task decomposition and real-time switching, a dynamic human trust model

is used. Simulations are given showing the successful implementation of this method.
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Chapter 1

Introduction

Autonomy has made great strides over the history of robotics, dramatically decreas-

ing physical and cognitive workload of operators and increasing task performance. This is

especially prevalent in long-duration tasks such as search-and-rescue and reconnaissance.

Despite these advances, however, automation has yet to surpass the adaptability and high-

level cognitive reasoning of a human operator. A human operator can adapt and devise

plans that are too complex or computationally expensive for autonomy to develop alone.

However, as the human operator becomes fatigued, he or she is prone to mistakes. It is

therefore desirable to devise novel methods of effective human-robot interaction (HRI) that

take into account the strength of both autonomy (consistent and precise low-level control)

and human operation (high-level cognitive planning and adaptability) by detecting scenar-

ios difficult for autonomy and weighting that difficulty against an operator’s abilities.

1.1 HRI in Control

There has been much work showing the benefits of HRI. For instance, [11, 39] show

the benefit a human operator maintaining and assistively teleoperating a team of mobile
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robots. Specifically in the case of [39] where human-robot teams are used to search for

survivors in a search and rescue scenario, when the human operator assisted autonomy in

low-level tasks such as teleoperation and identification, more survivors were found than

in autonomy or manual control alone. In [31], an autonomous underwater vehicle (AUV)

is used to search for mines. By having the operator take direct control only in navigation

tasks too complex for autonomy, the operator could focus his or her attention on the data

collection aspect, resulting in improved overall task performance. In [7], an HRI scheme

is used in the control of a powered wheelchair where an autonomous system performed

collision detection and avoidance, allowing the operator to solely focus on navigation.

HRI has not only shown benefits in low-level tasks. Robot controller design is

usually hierarchical in nature with both high-level task and motion planning and low-level

control law design. In [33], the authors study the effect of human involvement in operat-

ing teams of unmanned air vehicles (UAVs). Having the operator directly participate in all

low-level tasks is shown to greatly increase operator workload when working with multiple

robots. Removing the operator from the task completely, however, leads to poorer perfor-

mance during automation failures. Having the operator actively give consent in a high-level

supervisory role led to increased task performance and overall better workload levels of the

operator. In [10], the authors give the scenario of an operator interacting with a swarm of

autonomous vehicles in a patrol scenario. The authors present an adaptive control scheme

where the level of interaction between human and swarm changes depending on the sce-

nario, from defining search behaviors and locations during routine patrol tasks (high-level

HRI) to controlling the swarm directly when an intruder is detected (low-level HRI).

Despite such interest in HRI for controlling autonomous robots, there appears to be

a lack of work in incorporating human factors directly into the control scheme itself. In this

body of works, novel control schemes are presented that incorporate not only the use of a

human operator but also means of incorporating human factors (e.g. workload, trust, etc.)
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into the controller itself. Doing so not only takes advantage of the performance aspects of

autonomy and human control but considers when and how to best implement these aspects.

1.2 Trust in HRI

Human trust is an important factor to consider when designing and incorporating

HRI. Trust is influenced by a variety of factors [19] that include robot performance char-

acteristics, environmental characteristics, and human-related factors such as workload and

prior experience. Trust is also highly influential in a human’s acceptance and use of a

robotic system. For example, [37] found that as trust in an adaptive cruise control system

increased, brought about by the autonomy sharing its goals with the driver, acceptance of

the autonomous system also increased. However, case studies have been conducted study-

ing the misuse of automation, either through under-reliance or over-reliance, in railway

and aircraft accidents [29]. From these studies it was found that trust in automation proved

a major contributer to the human’s decision to use (over-rely) or not use (under-rely) the

automation in these accident scenarios. This, understandably, has led to an interest in

quantifying trust and determining appropriate levels of trust for particular applications. For

instance [8] uses trust as a variable in human-robot scheduling of multiple unmanned vehi-

cles. In [32], operator’s trust is determined by a function of prior reliability of the automa-

tion and is used to determine how much autonomy the system should implement. Trust has

also been shown to be dynamic in nature and can change over the course of the interaction

[42], leading to much interest in modeling this trust [42, 41] and using this dynamic trust

to actively influence the interaction between the human and robot. By considering trust

in HRI, especially in the case of interacting with multiple robots, the control scheme can

better predict how a human operator will interact with the autonomy and assign tasks.
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1.3 Overview

The works presented here provide novel additions to HRI at different levels of the

controller hierarchy. Chapter 21 outlines a low-level HRI scheme where an optimal control

policy is adapted to treat a human operator as a secondary mode to autonomy, embedding

the human directly into the control scheme to determine when it is best to request human

teleoperation in areas of difficult environmental disturbances. An extension of this work

is given in Chapter 3 where the same optimal control policy is modified to incorporate

sensor information to detect obstacles. Using the optimal control policy, the proposed

method can determine when and if an operator needs to be notified to provide an updated

path for high-level control to avoid the obstacle. Chapter 42 introduces a high-level HRI

approach involving symbolic motion planning. Here, HRI is to switch between “safe”,

guaranteed, but inefficient autonomous motion planning and efficient, yet risky, human

motion planning, demonstrated using a reconnaissance scenario. Trust is incorporated into

the control scheme to aid in task assignment and decision making. Finally, conclusions

regarding the work as a whole are presented in Chapter 5.

1This work has been accepted by the 2015 American Control Conference
2This work is currently under review for the 2016 IEEE Int. Conf. on Robotics and Automation
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Chapter 2

SLQR Suboptimal Human-Robot

Collaborative Guidance and Navigation

for Autonomous Underwater Vehicles

2.1 Introduction

Despite advances in autonomous technology, humans and robots are often needed

to collaborate and interact with each other in missions. For example, in [11] and [39], robot

teams are maintained by a human operator with a focus on overall team performance. It

is pointed out in [39] that the robot teams are able to search a wider area and identify a

higher number of survivors when control is shared between robot and human in a search

and rescue scenario than either full autonomous or full manual control alone. Often, the

benefit of human-robot collaboration is an increase in task performance and a reduction of

the human workload. In [7], Carlson et al. propose a collaborative control mechanism for a

powered wheelchair that will help conduct collision avoidance, freeing up the operator for

the more cognitive task of path planning. Extensions are also made for manual control of
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Autonomous Underwater Vehicles (AUVs). In [31], AUVs are used to inspect harbors for

mines. It is observed in [31] that by allowing the AUV to control movement the operator

can focus on data processing. By only requiring operator input only when navigation tasks

are difficult, the cognitive workload of the operator is decreased.

To tackle the issue of determining when a human operator should take control in

collaborative human and robot navigation, we propose a control scheme based around the

Switched Linear Quadratic Regulator (SLQR). The SLQR is an extension of the traditional

Linear Quadratic Regular (LQR) problem that allows for the regulation of systems with

multiple modes characterized by different dynamics or control inputs. One example of

such a system is an automobile as it shifts between multiple gears. Research in the area of

optimal control of systems with switchable modes using SLQR has achieved much atten-

tion [27, 46, 45, 47]. As compared to traditional LQR, SLQR finds the optimal control and

switching sequence simultaneously. The primary issue in calculating the optimal solution

to the SLQR problem is the need to account for every possible switching sequence, result-

ing in a control law that is very computationally heavy as the calculations of the Riccati

equation grow exponentially. In [27], an offline method for calculating the optimal switch-

ing sequence and control input is proposed using a method that removes switching paths

that are clearly suboptimal. In [46], Zhang et. al. introduce a method of reducing computa-

tional complexity of the discrete-time SLQR by removing branches of the Riccati mapping

and keeping only solutions of the dynamic Riccati equation (DRE) that are significant. This

is expounded upon in their later work [45] to produce a suboptimal, online method that can

be extended into infinite horizon problems by repeatedly solving for reduced “equivalent”

solution sets of the DRE. The SLQR has also been studied with regards to stochastic sys-

tems [47] and probabilistic switching [36] but such a case will not be considered here. In

this paper, we use a modified version of the SLQR framework proposed by [45] as a means

of optimal control that will produce switching between autonomous control and a manual
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control model such that the design task is accomplished despite unexpected conditions with

minimal human workload.

The organization of the rest of the chapter is as follows. Section 2.2 describes the

derivation of the discrete-time linear dynamic model of the AUV. Section 2.3 outlines the

control scheme implemented in this paper. Section 2.4 describes the simulations conducted

in this paper and outlines the results with concluding remarks given in Section 2.5.

2.2 AUV Dynamic Modeling

The dynamics of an AUV can be described by the following form

MV̇ +C(V )V +D(V )V = τ(u,α,β ,rpm)

η̇ = T (η)V
, (2.1)

where M is the inertia matrix, V = [u,v,w, p,q,r]T are the linear and angular velocities,

C(V ) is the matrix of Coriolis and centripetal terms, D(V ) is the damping matrix, τ is the

vector of external forces and moments, u is the linear forward velocity of the AUV from

V , α , β , and rpm are the horizontal and vertical fin angles and motor speed, respectively,

η = [x,y,z,φ ,θ ,ψ]T are the inertia frame position and Euler angles, and T (η) is a transfor-

mation matrix from the body-fixed frame to the inertia frame. The dynamics of the AUV

were derived in the seminal paper [17] and have been utilized widely in robotics and control

fields [44]. The equations provided in Eq (2.1), however, are highly nonlinear and coupled.

Linearized equations of motion of AUVs are usually obtained for performance analysis and

controller design [6]. Discretized linear models are also used [16].

Our objective is to guide the AUV through predesigned waypoints chosen for path

planning. We assume that the AUV cruises between waypoints while maintaining a con-

stant depth between each two waypoints. The AUV will adjust its yaw and depth after
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reaching a waypoint to align with the next waypoint and depth requirement. Applications

of such operations include maintaining a particular distance from the sea floor or taking

samples at multiple depths between waypoints. Extension to varying depth between way-

points can be achieved simply by allowing the goal depth to be adjusted independently of

the waypoints. Due to this style of guidance we can assume that the motion of the AUV

consists of small deviations from a reference condition of steady cruise at a constant depth

between every two waypoints. Therefore, the state variables are replaced by the refer-

ence states plus some small perturbations around the reference states, i.e., η = η0 +∆η ,

V =V0 +∆V .

The model is now linearized using small perturbation theory and Taylor series ex-

pansion neglecting terms with order greater than one. We choose the reference states as an

equilibrium state of steady cruise, and hence the nominal accelerations u̇0, v̇0, ẇ0, ṗ0, q̇0, ṙ0

and the nominal angular velocities p0,q0,r0 are zero. Likewise, we set φ0 = v0 = β0 = 0

because the desired equilibrium state is to follow a straight forward path, and hence no

lateral motion is expected. For the sake of simplicity the reference depth z0 and yaw ψ0 are

also set to zero. Note that other nonzero values can be set and the rest of the analysis in

the paper still holds. Finally, the values for u0,w0,θ0,α0, and rpm0 were chosen such that

the remaining constants are cancelled and the reference state trajectory can be obtained. In

this paper, we consider an EcoMapper AUV model [38] and a nominal velocity u0 is set to

2 m/s which is close to the maximum speed of the device. The equations of motion for the

EcoMapper are given in Appendix A.

The linearized model of the AUV can now be described in the following discretized

form

Xk+1 = AXk +BUk (2.2)

where A and B are the discretized state and input dynamics matrices, which can be found
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in Appendix B, X = [∆z,∆θ ,∆ψ,∆u,∆v,∆w,∆q,∆r] and U = [∆α,∆β ,∆rpm]. The states

x and y are removed due to the ability to be controlled through the yaw angle ψ . The roll

angle φ and roll velocity p are removed due to the EcoMapper’s ability to self-stabilize its

roll angle [38]. The choice of using the discrete-time model mainly arises from the digital

nature of computer control as well as the means through which the control law will be

derived. For this paper a time increment of 10 ms is used. The corresponding numerical

values for the discretized state and input dynamics matrices are as follows

A =



1 −.02 0 2.66∗10−5 0 .01 0 0

0 1 0 0 0 0 0.1 0

0 0 1 0 0 0 0 0.1

0 0 0 0.99 0 0 7.34∗10−6 0

0 0 0 0 0.32 0 0 −0.15

0 0 0 5.45∗10−2 0 0.32 0.15 0

0 0 0 1.84∗10−1 0 −0.51 .036 0

0 0 0 0 1.83 0 0 0.42



B =



0 0 0

0 0 0

0 0 0

−6.18∗10−4 0 2.06∗10−5

0 −0.15 0

−0.23 0 0

−0.52 0 0

0 −0.32 0



(2.3)
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2.3 Collaborative Manual & Autonomous Motion Guid-

ance Strategy

𝑥, 𝑦, 𝑧 𝑔𝑜𝑎𝑙
𝑇 𝐺𝑜𝑎𝑙

𝑈𝑝𝑑𝑎𝑡𝑒
𝐸𝑞. (2.4)

𝑥, 𝑦, 𝑧 𝑘
𝑇

𝑧′
𝜓′ 𝑔𝑜𝑎𝑙

Σ
𝑋𝑘

𝑋𝑘
′

𝑆𝐿𝑄𝑅
𝑀𝑎𝑛𝑢𝑎𝑙
𝑀𝑜𝑑𝑒

𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟
𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠

𝑈𝑘
𝐴𝑢𝑡𝑜𝑛𝑜𝑚𝑜𝑢𝑠

𝑀𝑜𝑑𝑒
2

𝜎

1

𝜂
𝑉 𝑘+1

𝐸𝑟𝑟𝑜𝑟 𝑆𝑡𝑎𝑡𝑒
𝑈𝑝𝑑𝑎𝑡𝑒 𝐸𝑞. (2.6)

+

−

Σ
𝜂𝑇 , 𝑉𝑇

0
𝑇

+

Δ𝜂𝑇 , Δ𝑉𝑇 𝑇
−

Figure 2.1: Collaborative Control Scheme for the AUV.

In this section, we propose a collaborative manual and autonomous motion guid-

ance and navigation strategy in order to guide the AUV to desired waypoints while re-

ducing human workload. We will design a suboptimal, online SLQR which will drive

the linearized error system (2.2) to the goal state. The goal depth and heading can be al-

tered by simply subtracting the goal depth and heading from the current depth and heading

perceived by the AUV such that the desired state, [z′,ψ ′]Tgoal , is the new zero state. As

shown in Fig. 2.1, this is accomplished by inputting the error signal
[

∆ηT ,∆V T

]T

, as

defined by Eq. (2.5), into the error state update equation (Eq. (2.6)) to produce the state

Xk. This state is then adjusted using Eq. (2.4) to align the zero state with the goal state,

i.e X ′k = Xk− [z′goal,0,ψ
′
goal,0,0,0,0,0]

T . The SLQR is now implemented according to the

dynamic equation given by Eq. (2.7) where A and B are the same as those used in Eq.

(2.2). This holds since A and B are not dependent on the values of z and ψ . Depending on

whether the manual or autonomous mode is chosen, the corresponding control law Uk will

be calculated and substituted into the nonlinear dynamics (2.1) of the AUV to determine

the states at the next time step k+1.

[z′,ψ ′]Tgoal = [zgoal, tan−1 ((xgoal− xk)/(ygoal− yk)
)
]T (2.4)
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[∆η ,∆V ] = [ηT
k ,V

T
k ]T − [ηT

0 −V T
0 ]T (2.5)

Xk =
[
∆η(3),∆η(5),∆η(6),∆V (1 : 3)T ,∆V (5 : 6)T ]T (2.6)

X ′k+1 = AX ′k +BUk (2.7)

2.3.1 Linear Quadratic Regulator (LQR) for Nonlinear AUV Dynam-

ics

To validate and study the effect of the SLQR control law for collaborative manual

and autonomous strategy, as well as test the merits of the linearization, we first derive a

suboptimal autonomous control scheme based on the traditional linear quadratic regulator

(LQR). The goal is to have the AUV travel through multiple sets of complicated waypoints

and depths autonomously. This scenario happens when there is no/little environmental

disturbances and hence no need for human intervention. The LQR problem is solved using

the typical discrete DRE with A and B, i.e., the state and input matrices, given by Eq. (2.3).

The optimal input, Uk, as solved by the discrete LQR problem, is then fed back into the

nonlinear AUV model (2.1) to calculate the actual change in state.

The results of the model verification are shown in Fig. 2.2 - 2.3a with subop-

timal inputs given in Fig. 2.3b. The state and input weight matrices are set as Q =

diag([10,0,10,1,1,1,1,1]) and R = diag([1000,500,1]). This choice of weights places

the most emphasis on the depth and direction of the AUV while disregarding non-zero

pitch angles, which would penalize the AUV changing depth.

Figure 2.2 shows the AUV trajectory as it moves in a three-dimensional figure 8
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Figure 2.2: 3D results of autonomous LQR model verification
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Figure 2.3: (a) AUV depth change under the LQR controller and (b) inputs α , β calculated
by LQR.
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pattern from the starting point (marked by a circle) to the end point (marked by a square)

while passing through the desired waypoints (marked by x’s). The depth profile z is shown

in Figure 2.3a. The fin angles α and β (Figure 2.3b.) are the inputs into the AUV for

controlling heading.

As shown in Fig. 2.2 and 2.3, the autonomous LQR control law derived from the

linear model (Eq. (2.2)) is able to successfully drive the nonlinear dynamics (Eq. (2.1))

of the AUV to the desired waypoints while maintaining desired depths z (Fig. 2.3a) with

forward velocity u = 2m/s under the fin angles α,β Fig. (2.3b) and motor speed rpm =

1593rpm. For the purposes of this paper, the AUV is assumed to have successfully reached

its goal if the AUV moves within a 5m radius of the desired waypoint.

2.3.2 Modeling Human System and Workload

The primary challenge with the utilization of a fully autonomous mode is that it

lacks the capacity to accommodate higher level tasks that exceed the design expectations.

Therefore, this paper proposes utilizing manual control as an ulterior “system” to which the

autonomous mode can switch in situations beyond the autonomous controller’s capability.

To remain in this manual controlled mode, however, increases an operator’s workload by

requiring the operator to dedicate valuable man-hours to a single task. This can also cause

cognitive fatigue if the operator must directly control the device for extended periods of

time. Based on the LQR suboptimal control for autonomous mode developed in Section

2.3.1, here we propose a “switchable” human-robot collaborative system for the AUV guid-

ance and navigation. The AUV will request human intervention only when higher level task

management is required. This collaborative scheme will allow the AUV to achieve its task

while minimizing the amount of operator workload as well as the total amount of time an

operator must be dedicated to the control of one machine. This, in turn, allows the operator

13



to attend to multiple tasks, such as the monitoring of multiple robots in a similar method.

In order to utilize the SLQR problem for the control, the manual mode must first

be modeled in a fashion similar to an LQR while maintaining the characteristics of a

manual controller. To model the manual mode, the weights to the AUV system are first

chosen as in the AUV LQR problem with Q1 = diag([10,0,10,1,1,1,1,1]) and R1 =

diag([1250,100,10]). This reduces the cost on yaw input, representing a human opera-

tor’s tendency to produce comparatively larger inputs to reach the goal state. Maintaining

a precise depth and speed, however, would be difficult for a manual controller, suggesting

an increase in cost for depth control, α , and motor speed, rpm.

To model the human workload the concept of the utilization ratio is used [35]. The

utilization ratio, γ , is a numerical representation of perceived operator workload based

on recent usage history. The value can range between zero, representing no recent usage

and hence low workload, and one, representing complete usage and high workload of the

operator. The dynamics of the utilization ratio is given by the discrete-time equation

γk+1 =

(
1− ∆t

τγ

)
γk +

∆t
τγ

bσ (2.8)

where bσ is either 1 or 0 depending on if the operator is or is not being utilized, respec-

tively, ∆t is the time step of discretization, and τγ represents sensitivity of the operator to

the recent history with smaller values corresponding to an increased rate of change of γ .

For the purposes of simulation, a value of τγ = 500 was chosen as it will reach full uti-

lization in approximately 1000 sec. Actual implementation can customize this value to a

specific user. This equation corresponds to an increase in the utilization ratio during oper-

ator control and a decrease during autonomous control. In this work, the utilization ratio

will be added to the cost function as part of the overall system dynamics to allow large op-

erator workload, indicated by a high utilization ratio, to influence the switching dynamics
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by correspondingly increasing the cost of manual mode. The dynamics of the utilization

used in conjunction with the AUV dynamics are hereby represented in discrete linear form

as follows γk+1

1

=


(

1− dt
τγ

)
dt
τγ

bσ

0 1


γk

1

 (2.9)

2.3.3 Switched Linear Quadratic Regulator (SLQR) for Human-Robot

Collaborative AUV Guidance and Navigation

To model this “switched” human-robot collaborative operation of the AUV, a mod-

ification of the Switched Linear Quadratic Regulator (SLQR) will be implemented. SLQR

is an expansion of the traditional LQR problem [36] that accounts for systems that con-

tain multiple modes. The SLQR control law to be developed in this paper differs from

the online SLQR problem presented by [45] in that our goal is to minimize a cost func-

tion around dynamics involving non-switching AUV dynamics, as opposed to the general

switching dynamics in [45], as well as the addition of an operator workload parameter γ

that influences the switching between manual and autonomous controllers. We also seek

to use the SLQR to find a compromise between the workload of the operator, as defined

above, while still completing the navigation task. As such, switching will be dictated by

the AUV’s effectiveness to complete a task autonomously, invoking a request for manual

control when the controller deems it optimal to do so.

We associate the SLQR collaborative problem with the following quadratic cost

function:

J(Z,U,σ) = ZT
NQ f ZN +

N−1

∑
k=0

ZT
k Qσ(k)Zk +UT

k Rσ(k)Uk (2.10)

where Zk =
[
XT

k ,γk,1
]T is the compound state vector, σ = 1 denotes the manual control

mode and σ = 2 denotes the autonomous mode (as shown in Fig. 2.1), Q f is the terminal
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state cost weighting matrix and Qσ � 0 and Rσ � 0 are the chosen symmetric state and

input cost weighting matrices respectively. As shown by [45] the solution can be found by

applying the well-known discrete DRE, denoted here as ρσ (P) : Rnxn→ Rnxn, recursively

in time with regards to the optimal mode σ . The mapping is shown in Eq. (2.11).

ρσ (P) = Qσ +AT
σ PAσ −AT

σ PBσ (Rσ +BT
σ PBσ )

−1BT
σ PAσ (2.11)

Due to the recursive nature of solving for the Ricatti mappings it is unknown prior

to implementation which switching sequence will produce the optimal control sequence.

Therefore, every possible switching sequence must be considered in the calculation of the

Riccati mappings prior to actual implementation of the control scheme. To accommodate

this uncertainty in switching, denote the set of all Riccati mappings moving from time k+1

to time k as Hk, called the Switched Riccati Set (SRS) at time k. The sequence of these

sets {Hk}0
k=N are generated iteratively backwards in time in accordance to Eq. (2.12)

Hk = ρM(Hk+1) = {ρσ (P) : for σ = 1,2 and P ∈Hk+1}. (2.12)

where ρσ is the discrete DRE defined in Eq. (2.11).

Once all the Riccati sets have been computed offline and before implementation, the

optimal mode and Riccati mapping can be determined online by solving the value function

for the SLQR problem at each time step k according to the following equation.

Vk(Zk) = min
P∈Hk

ZT
k PZk. (2.13)

From Eq. (2.13), the optimal mode, σ , associated with the optimal mapping, P ∈Hk, can

be determined. If the optimal mode is such that σ = 1, the control law will then make a

request to the operator to engage in manual control. Otherwise, the AUV will continue in
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autonomous control with the optimal input determined by the equation

Uk =−
(
Rσ +BT

σ PBσ

)−1
BT

σ PAσ Zk =−KkZk (2.14)

One noteworthy issue with this method is that when Eq. (2.13) reaches a value

such that the control method deems it optimal to switch, the possibility exists that the value

function will cause the mode to switch multiple times rapidly before settling on the true

optimal mode. This type of switching may be acceptable in some completely autonomous

systems, but systems requiring human interaction require human response time to be taken

into account. To counteract this, an additional term Qξ ξ is added to the cost function of

the opposing mode where Qξ is a predetermined gain. Let ξ be a number between 0 and 1

with dynamics described by the equation

ξk = 1− ∆t
Tξ

(2.15)

where ∆t ∈ [0,Tξ ] represents the time elapsed since the last mode switch and Tξ is a pre-

determined time before allowing ξ to equal zero. This latter term should be chosen large

enough such that rapid switching should be negated. This method was chosen over a strict

time requirement as this method will still allow switching to manual mode in cases where

the cost to stay in autonomous mode far outweighs the cost of manual mode.

A second issue with this approach can be clearly seen from the fact that the sets

defined in Eq. (2.12) grow exponentially in size. To make the calculations computationally

feasible, all matrices that can be considered algebraically redundant according to Lemma

1 in [45] can be removed during the computing of these sets without affecting the value

function. Furthermore, Zhang, et al. show that an error term ε can be added to the tested

matrix to further increase computational feasibility while proving that the effect on the
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optimality of the solution is bounded.

The above mentioned Lemma can be solved using convex optimization algorithms.

For the purposes of this paper, we utilize the DSDP semidefinite programming solver [4]

offered through the free OPTimization Interface (OPTI) Toolbox for MATLAB [12] with an

ε− redundancy value of ε = 0.1. For the following simulation, this resulted in the offline

calculations of the SRSs being reduced to approximately 30 matrices at each time step. For

instances where the reduced set is large, or for very large horizons, N, [45] shows that a

“divide-and-conquer” approach can be used while still achieving an arbitrary suboptimal

performance. The control method can now be summarized in Algorithm 1.

Compute SRSs offline according to Eq. (2.12) ;
while AUV is operating do

Compare Current State with Goal State;
Determine P ∈Hk and σ that solves Eq. (2.13);
if σ = 1 then

Send request for manual input from operator;
else

Calculate input according to Eq. (2.14);
end
Implement control;

end
Algorithm 1: Implementation of SLQR-based collaborative optimal control

2.4 Simulations Results

Matlab simulations are now conducted to test the performance of the human-robot

collaborative guidance and navigation strategy (the codes used for this simulation can be

found at http://people.clemson.edu/~yue6/papers/thesis/DAS_Thesis_Codes.

pdf). The simulations consist of the AUV following a set of 8 waypoints spaced 75m apart

along the x-axis and arranged in a semi-circular path of radius 300m, as shown in Fig. 2.4.

The AUV will start at the position (−300,0) with u = 0 m/s and ψ facing along the y-axis.

18

http://people.clemson.edu/~yue6/papers/thesis/DAS_Thesis_Codes.pdf
http://people.clemson.edu/~yue6/papers/thesis/DAS_Thesis_Codes.pdf


Table 2.1: Deviation from desired waypoints in meters

Mode Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8 Avg.
Autonomous 0.16 m 1.78 m 3.33 m 5.84 m NA NA NA NA 2.78 m∗

Manual 0.19 m 1.20 m 3.14 m 4.89 m 2.93 m 0.58 m 0.66 m 4.97 m 2.32 m
Collaborative 0.18 m 1.79 m 3.24 m 4.89 m 2.90 m 0.83 m 0.65 m 4.97 m 2.43 m

∗Average of autonomous mode includes the first four points only.

Table 2.2: Statistical results of varying disturbance parameters

Mode Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8
Mean 0.54 m 2.71 m 1.61 m 2.04 m 1.69 m 1.74 m 1.11 m 4.97 m

St. Dev. 0.58 m 1.49 m 1.25 m 1.51 m 1.37 m 1.37 m 0.78 m 0.01 m

The AUV must come within a radius of 5m of the desired waypoint before it is allowed to

move to the next waypoint. The simulation environment consists of a nominal, still body

of water for which the autonomous controller was designed. In the center of the simulation

environment, a cross current of 0.3 m/s along the positive y-axis is introduced across a

span of 200 m. This current simulates an unexpected change in the conditions that would

benefit from operator intervention. The three scenarios that will be tested and compared are

autonomous mode, manual mode, and human-robot collaborative mode where the AUV is

controlled autonomously until conditions are such that human intervention is determined

by the cost function as optimal.

The results of the simulations for the autonomous mode and the human-robot col-

laborative mode are shown in Figs. 2.4 and 2.5 respectively. From Fig. 2.4, it can be seen

that the autonomous mode is not sufficient to successfully reach point 4 in the midst of the

cross current, causing the AUV to become stuck around this point. As expected, this issue

is not present under fully manual control. This manual control scenario, however, is labor

intensive, requiring 470 sec of the operator’s full attention for the entire duration of the task

and a final utility ratio of 0.61 under an operator sensitivity of τγ = 500.
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Figure 2.4: Results of simulation under autonomous mode

The simulation results of the cooperative control scheme are shown in Fig. 2.5

with the resulting mode switching scheme shown in Fig. 2.6 against both time (a) and

position (b). Viewing Fig. 2.6b in conjunction with Fig. 2.5 it can be seen that the AUV

begins in manual mode due to the large deviation from the direct path at the beginning

of the simulation. As the AUV progresses and the path converges autonomous is deemed

optimal, leading the AUV to switch modes. Almost immediately after reaching waypoint

1, however, the AUV shoots past the waypoint, causing a large deviation in the path. This

overrides the switching buffer, outlined by Eq. (2.15) leading to a brief change in mode to

compensate for the overshoot. The AUV then returns to autonomous mode until entering

the disturbance region. Inside this region, the cost function dictates manual operation to

be optimal, as desired, until just before the end of the disturbance region. The AUV then

returns to autonomous mode until shooting past the next to last waypoint, leading to a

switch to manual mode before finishing in autonomy.

The collaborative control method successfully navigated the AUV through the se-

ries of waypoints in 471 sec, of which the operator was engaged for 268 sec. This corre-

sponds to a 43% reduction in engagement time. The maximum utilization ratio reached by
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Figure 2.5: Results of simulation under collaborative mode
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Figure 2.6: Control mode according to time (a) and position (b). The solid bars represent
the region of current while the dashed bars represent the location of waypoints
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the operator at any time during the simulation is also 0.34, much less than that of the fully

manual mode. From Table 2.1 it can be seen that the collaborative control scheme achieved

performance comparable to the fully manual mode despite the decrease in utilization time.

To test robustness of this method, further tests were conducted using variations of

the disturbance parameters. The cross current was implemented using varying widths of

100m, 200m, and 300m centered around -150m, 0m, or 150m on the x-axis. The strength of

the current was varied as 0.1m/s, 0.2m/s, or 0.3 m/s along the positive y-axis. The average

distance and standard deviation of each point for the 27 simulations is listed in Table 2.2

with the averages comparable to the fully manual mode. The method also has an average

57% operator engagement time with standard deviation of 3.4% engagement time and an

average maximum utilization ratio of 0.36 with standard deviation as 0.02. This shows

this method has comparable performance for total average deviation to fully manual mode

while reducing workload, despite the variation in the unknown disturbance. It can be seen

that in Table 2.2 the mean deviation about point 3 is much lower than point 2, which is the

opposite of what is seen in Table 2.1. This is likely due to the scenario in Table 2.1 having

waypoint 3 almost immediately at the beginning of the cross current, allowing less time to

correct the path. In the variations method in Table 2.2, waypoint 2 is inside the disturbance

region more often than waypoint 3 as a result of one of the variations being the current

centered about -150m, leading to a greater tendency to deviate from the intended path.

2.5 Conclusions

In this paper, a SLQR based optimal controller has been designed for human-robot

collaborative tasks. A linearized model of the highly nonlinear dynamics of an AUV has

been created and used in simulations to characterize the performance of this new collabo-

rative control scheme. It was found that under the simulation environment the autonomous
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LQR was unable to guide the AUV successfully to each waypoint under conditions be-

yond the design of the controller. By implementing the SLQR based control scheme the

controller successfully guided the AUV to each waypoint while under the control of the

operator 57% of the total time. The proposed controller also significantly reduced the

workload experienced by the operator compared to the scenario of the AUV being guided

manually for the entire mission.
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Chapter 3

AUV Suboptimal Switching Between

Waypoint Following and Obstacle

Avoidance in Human-Robot

Collaborative Guidance and Navigation

3.1 Introduction

There are many applications that involve autonomous underwater vehicles (AUVs)

exploring unknown environments, such as data collection, surveying, shipwreck explo-

ration, and mine detection. Autonomous control has made great strides in allowing au-

tonomous vehicles to conduct these types of missions without the need of human interac-

tion. However, in complex, dynamic, and uncertain environments, it is very likely there

will be scenarios where the autonomy is unable to accommodate. In such uncertain envi-

ronments, humans still have the advantage over autonomy via adaptability and higher level

cognitive reasoning. One such scenario, the case of unknown environmental disturbances,
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was explored in Chapter 2. There, the SLQR optimal control policy was used as a means of

determining when it is best to request manual control to overcome such disturbances in a

way that balances mission effectiveness and operator workload. While the work in Section

2 provides a novel way of using human-robot interaction (HRI) to overcome disturbances,

there are scenarios that that method still cannot overcome.

In the normal situation, an AUV follows waypoints that are predefined to finish the

navigation task. However, many of the before-mentioned applications involve scenarios

where obstacles can block an AUV’s designated path, especially in mine detection and

shipwreck exploration where discovery of such obstacles is the goal. In such scenarios it is

required that the AUV navigates around such obstacles while still making progress towards

its remaining search waypoints. Despite advances in autonomous guidance mechanisms,

however, such operations, especially in the presence of complex and uncertain environ-

ments, are still better suited for human guidance due to human adaptability and response

flexibility [28]. For example, [28] emphasizes that it is common for rotorcraft to operate

in terrain that lacks obvious structure and a priori knowledge, making it difficult for au-

tonomous systems to plan and navigate. A skilled operator is able to study the environment

while simultaneously flying the aircraft and planning his or her course of action, though at

the cost of increased workload. Therefore, it is desired to devise a means of incorporating

these abilities into the control of an AUV and to determine in a real-time fashion when it is

best to utilize the human operator.

To incorporate human path planning abilities we expand upon the work presented

in Chapter 2, creating a modification of the SLQR suboptimal human-robot collaborative

control scheme to accommodate the scenarios where path changes are required. In this

scenario, an LQR provides the optimal input for the AUV under its normal operating con-

dition. Should an unexpected obstacle appear along the path, the SLQR will use sensor

information to determine when it is best to stop and request operator assistance in the form
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of path replanning. The operator will then assess the scenario, provide a revised path that

efficiently circumvents the obstacle and allow the AUV to resume its task.

3.2 Modification of SLQR
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Figure 3.1: Collaborative Control Scheme for the AUV.

In order to integrate a human operator’s path planning abilities, we first need to

incorporate obstacle detection into the control scheme. To begin, the control scheme pre-

sented in Section 2.3 is modified to include the sensor reading r. This sensor reading detects

and measures the distance of obstacles in front of the AUV within some specified sensing

range rS. When there are no obstacles within sensing range, an autonomous LQR controller

is used to navigate the AUV. If an obstacle is detected, the updated control scheme, shown

in Fig. 3.1, is engaged. The new error state update equation is now given as Eq. (3.1) with

added sensor dynamics given in Eq. (3.2).

Zk =
[
XT

k ,rk
]T

=
[
∆η(3),∆η(5),∆η(6),∆V (1 : 3)T ,∆V (5 : 6)T ,rk

]T
(3.1)

rk+1 = rk +uk∆t (3.2)
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where ∆η , ∆V , and Xk are defined as in Chapter 2. Here, r represents the sensor reading

of the negative distance (rk ≤ 0) between the AUV and the detected obstacle. The sensor

dynamics for autonomy when an obstacle is detected within its sensing range are modeled

intuitively as approaching zero at the rate of forward velocity, uk. The dynamic system is

now given as

Z′k+1 = AZ′k +BUk (3.3)

with A and B being the combined AUV and sensor state and input matrices, respectively,

and Z′ being the AUV states and sensor reading shifted according to the goal depth, head-

ing, and sensor range, i.e. Z′k = Zk− [z′goal,0,ψ
′
goal,0,0,0,0,0,−rS]

T with z′goal and ψ ′goal

as defined in Chapter 2.

The cost function, set up similarly as in Chapter 2 using the new dynamics, is now

given as

J(Z′,U,σ) = Z′TNQ f Z′N +
N−1

∑
k=0

Z′Tk Qσ(k)Z
′
k +UT

k Rσ(k)Uk (3.4)

where σ = 1 denotes the manual control mode and σ = 2 denotes the autonomous mode

(as shown in Fig. 3.1), Q f is the terminal state cost weighting matrix and Qσ � 0 and

Rσ � 0 are the chosen symmetric state and input cost weighting matrices respectively for

the corresponding mode. This cost function differs from that in Chapter 2 by the addition

of the sensor reading. The additional cost can be explicitly stated as

Jrk = Qrσ
r′2k = Qrσ

(rk + rS)
2 (3.5)

where r′ is the shifted sensor reading in Z′ and Qrσ
is the portion of Qσ assigning weight

to the sensor reading. This equation assigns added cost to moving closer to an obstacle

via a positive finite weight with the goal being to have no obstacles within sensing range.

27



Therefore as rk approaches zero, cost increases.

It is important to note from Eq. (3.3) that since the sensor and AUV dynamics are

the same for manual and autonomy, the dynamics of the system is non-switching. There-

fore, the weights Qσ and Rσ must be chosen as representative of the advantages given by

the two control modes for effective switching to occur. To begin, as the difference between

the two modes is characterized by the detection of an obstacle, the weights on the AUV

states, QX , is chosen to be the same for both manual and autonomous modes. To character-

ize the difference between manual and autonomy, different weights are given to Qrσ
. For

autonomy, this weight is chosen as a finite positive gain determined by assessing the trade-

offs between the risk of colliding with the obstacle and reaching the next waypoint without

detour; e.g., mine detection will have a higher value for Qrσ
than shipwreck exploration.

For manual, this weight is set to zero to represent the operators ability to plan around the

obstacle. The final state weight matrices used in this work are now given as

QX = diag([10,0,10,1,1,1,1,1]) (3.6)

Qrσ
=


0 σ = 1

10 σ = 2
(3.7)

Qσ =

QX 0

0 Qrσ

 (3.8)

To characterize the two modes regarding the input weights, weights are first chosen for

autonomy. For this application, we chose R2 = diag([50,50,1]). Unlike in Chapter 2,

the operator does not directly control the AUV, but instead provides a replanned path. To

characterize this, added weight is assigned to the inputs for manual mode, representing the
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AUV having to stop while it waits for an updated path. For this work, this added weight

was chosen as R1 = 10R2.

The derivation of the SLQR is the same as in Chapter 2. Like in the previous

method, U in autonomy (σ = 2) is calculated using the optimal input. In this case, however,

manual mode does not constitute a request for operator control, but for the operator to give

planning assistance. Therefore, when manual mode is chosen by the SLQR, the AUV

will stop and send the information to the operator, who will process the information and

provide the AUV with an updated path. Once the AUV receives the updated plan, it returns

to autonomy and implements that plan until a new obstacle is sensed or all objectives are

met. The new scheme can now be summarized in Algorithm 2.

Uk =


0, Request path update, σ = 1

−
(
Rσ +BT PB

)−1 BT PAZk =−KkZk, σ = 2
(3.9)

Compute SRSs offline according to Eq. (2.12) ;
while AUV is operating do

Compare Current State and Sensor Data with Goal State;
Determine P ∈Hk and σ that solves Eq. (2.13);
if σ = 1 then

Stop motion and send request for path update from operator;
Operator sends updated path;
Return to Autonomous mode (σ = 2);

else
Calculate input according to Eq. (2.14);
Implement control input;

end
end
Algorithm 2: Extension of SLQR-based collaborative optimal control
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3.3 Simulation

A Matlab simulation is now conducted to demonstrate the performance of the mod-

ified human-robot guidance and navigation strategy (the codes used for this simulation

can be found at http://people.clemson.edu/~yue6/papers/thesis/DAS_Thesis_

Codes.pdf). The simulation consists of the AUV following a set of 4 waypoints spaced

150m apart along the x-axis and arranged in a semi-circular path of radius 300m, as shown

in Fig. 3.2a. The AUV will start at the position (-300,0) with u = 0m/s and ψ facing

along the y-axis. The AUV must come within a radius of 5m of the desired waypoint be-

fore it is allowed to move to the next waypoint. the simulation environment consists of a

nominal, still body of water for which the autonomous controller was designed. However,

throughout the environment are obstacles that are unknown before deployment and must

be circumvented for the AUV to successfully complete its mission. These obstacles are

indicated by the boxes shown in Fig. 3.2. To detect these obstacles, the AUV is equipped

with a front facing sensor with range of rS = 25m. The goal of the autonomy is to drive

the AUV to the desired waypoints while maintaining distance between the AUV and any

sensed obstacles.

The simulation results of this control scheme are shown in Fig. 3.2a-d. The AUV

begins in autonomy heading towards waypoint 1. However, as the AUV progresses it senses

an obstacle in the path. This sensor value is now provided to the SLQR to make the decision

using the given weights to determine if and when the operator should be notified and a path

update be requested. Here, the sensor determines to send the request approximately 20m

from the obstacle, at which point the AUV stops its motion and requests an updated path

from the operator. The operator supplies an additional waypoint to the AUV marked by the

triangle in Fig. 3.2. This process is repeated in Fig. 3.2b. as the AUV detects a second

obstacle after waypoint 2. The operator returns a new path denoted by the triangle and
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Figure 3.2: Results of simulation

the AUV successfully uses this new waypoint to circumvent the obstacle. In Fig. 3.2c.

the AUV detects a third obstacle very close to the desired waypoint. To ensure the AUV

reaches the desired waypoint while simultaneously avoiding the obstacle, the operator gives

a series of waypoints to ensure the AUV can maneuver around the obstacle without missing

the waypoint. The AUV then executes this path and finishes the route successfully in Fig.

3.2d.

3.4 Conclusion

In this work, a modification of the SLQR-based human-robot collaborative control

scheme was created for the objective of obstacle avoidance. By using sensor readings

and modifying the cost function, this method was able to take advantage of autonomy’s

low-level task performance and an operator’s higher level path planning capabilities. The

method was successfully applied to the highly nonlinear dynamics of an AUV and was
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shown through simulation to successful accomplish the overall task with minimal human

input.
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Chapter 4

Trust-Based Human-Robot Interaction

for Safe and Scalable Multi-Robot

Symbolic Motion Planning

4.1 Introduction

Despite advances in autonomy for robotic systems, human collaboration is often

still necessary to ensure safe and efficient operation. When designing robotic systems, it is

thus important to consider factors related to human-robot interaction (HRI) [18]. However,

development of effective schemes for HRI remains a challenge, especially for systems in

which a single human must interact with multiple robots.

An important factor to consider with respect to HRI is human trust. Trust is a

dynamic feature of HRI [26] that heavily affects a human’s acceptance and use of a robotic

system [19]. Consideration of trust is especially important in systems that require human

supervisory control of multiple robots, since supervisory tasks must be carefully allocated

to ensure time-critical issues are addressed while human workload is kept within acceptable
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bounds [33].

Other important factors to consider include safety and performance. While many

advances have been made in HRI, extant works in this area often lack quantitative models

and analytical approaches that could be used to provide safety and performance guaran-

tees. Some progress in addressing this deficiency has been made through the application

of formal methods – i.e. mathematically-based tools and techniques for system specifica-

tion, design, and verification [2] – to problems involving HRI [5], including symbolic robot

motion planning [3]. In symbolic motion planning, a set of specifications for the robots is

given, e.g. “go to locations A and B while avoiding obstacles,” and plans are generated in

a discretized representation of the workspace. These plans are then converted to reference

trajectories and control laws in the continuous workspace such that the specification is sat-

isfied in the discrete workspace. Though advances have been made in this area, challenges

remain in addressing the scalability of these approaches for multi-robot systems and in

incorporating models of human behavior to improve joint human-robot performance [14].

Here, we investigate methods for improving the scalability, safety, and performance

of symbolic motion planning for multi-robot systems, taking into account the effects of hu-

man trust. Specifically, we explore (1) trust-based specification decomposition to address

scalability, and (2) real-time trust-based switching between human and robot motion plan-

ning to address other concerns related to safety and performance. We explore these meth-

ods in the context of a multi-robot intelligence, surveillance, and reconnaissance (ISR)

scenario.

The remainder of this chapter is organized as follows. Section 4.2 introduces sym-

bolic motion planning and a computational model of dynamic trust. Section 4.3 outlines the

method for trust-based specification decomposition, and Section 4.4 describes the method

for implementing switching between human and robot control during plan execution. A

simulation that demonstrates these methods is presented in Section 4.5, with concluding
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remarks given in Section 4.6.

4.2 Human-Robot Interaction for Symbolic Motion Plan-

ning

Obstacle

Destination

Figure 4.1: Multiple robots must reach a set of destinations while avoiding obstacles and
collisions with other robots, taking “riskier” paths between obstacles with human oversight
when trusted to do so.

We consider an ISR scenario in which a team of robots, supervised and potentially

assisted by a human operator, must reach a set of goal destinations while avoiding colli-

sions with stationary obstacles and with each other, as shown in Fig. 4.1. As is standard

in symbolic motion planning problems, the workspace is discretized into polytopic regions

that are labeled with relevant properties, e.g. whether they contain an obstacle or goal.

Note this discretization can be performed to an arbitrary degree of accuracy; however,

increasing the number of regions significantly increases the computational complexity of

the planning problem. Most discretizations therefore significantly overapproximate certain

features of the workspace, e.g. an obstacle may only take up a small portion of an “obsta-

cle” region. The result is that planning through the workspace may be overly conservative,

since “risker” paths that go through regions containing obstacles might be feasible in the

continuous workspace.
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In this scenario, we assume a set of goal destinations is given at the start, and each

goal must be reached by at least one robot while collisions with obstacles and between

robots are avoided. This set of requirements forms a formal specification for the scenario.

To reduce computational complexity of the multi-robot planning problem, compositional

reasoning approaches are used to decompose this specification. More specifically, the spec-

ification is decomposed such that each robot is assigned a subset of the goal destinations

and individually synthesizes a plan to reach its assigned goals. Potential collisions are

then handled locally as they are detected, with the involved robots implementing a col-

lision avoidance protocol that requires synthesizing modified plans through collaboration

between the robots. In this sense, the proposed planning scheme is implemented in a dis-

tributed manner. In addition, we assume obstacle locations are not known a priori; there-

fore, robots also synthesize new plans when they encounter obstacles, whose locations are

shared with other robots when they come into communication range.

Throughout the scenario, a quantitative and dynamic trust model based on robot

performance, human performance, and the environment is used to estimate human trust in

each of the robots [34, 40]. This estimate of trust affects the specification decomposition,

with more trusted robots assigned more destinations. Trust is also used to determine when

the robot should suggest navigating between obstacles, as this requires real-time switching

between human and robot motion planning, with the human planning the path between

obstacles. Human consent for this switching is assumed to depend on current trust as well

as whether or not the human is currently occupied with other tasks. Each robot is assumed

to follow a simple first-order kinematic equation of motion

ẋi = ui, i = 1,2, · · · ,N (4.1)

where N is the total number of robots.
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4.2.1 Symbolic Motion Planning

In symbolic motion planning, the workspace is discretized into a set of regions

or states S. This discretized workspace is often represented as a transition system. The

definition of a transition system is as follows.

Definition 1 (Labeled Transition System) A finite labeled transition system is a tuple

T S = (S,R,s0,Π,L) consisting of (i) a finite set of states S, (ii) a transition relation R ⊆

S× S, (iii) an initial state s0 ∈ S, (iv) a set of atomic propositions Π, (v) and a labeling

function L : S→ 2Π.

Let us define each robot’s motion be described by the transition system T S = (S,R,s0,Π,L)

and having a path as an infinite sequence of states σ = s0s1s2 . . ., where si ∈ S is the robot’s

state at time i = 0,1, . . . and pairs of sequential states (si → si+1 ∈ R) represent feasible

transitions between states, i.e. direct transitions between states that are achievable in the

continuous workspace. Each state will be labeled with all atomic propositions from the set

Π that are currently true. For each path, a trace is then a corresponding infinite sequence of

labels L(σ) = L(s0)L(s1)L(s2) . . ., where L : S→ 2Π is the mapping from states to atomic

propositions.

Discretization of the workspace enables formalization of plan specifications in dis-

crete logics such as linear temporal logic (LTL) [2]. LTL extends propositional logic –

which has operators ∧ “and,” ¬ “not,” ∨ “or,”→ “implies,” etc. – with temporal operators

such as ♦ “eventually” and � “always.” With respect to temporal operators, we restrict

our attention to terms of the form �p, ♦p, and ♦�p. The term �p is true for a trace if

propositional formula p is true in every state of the trace, ♦p is true if p is true in some state

of the trace, and ♦�p is true if p is true in some state of the trace and all states thereafter.

Given an LTL plan specification ϕ and a transition system T S that encodes all pos-

sible state transitions in the workspace, a plan that satisfies the specifications can be syn-
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thesized using a model checking approach. Traditionally, a model checker verifies whether

a system T S satisfies a specification ϕ , written T S |= ϕ . If not, it returns a counterexam-

ple trace L(σ) ∈ traces(T S) that does not satisfy the specification, i.e. L(σ) 2 ϕ . Model

checking T S against the negation of the specifications returns a trace that satisfies the spec-

ifications, since L(σ) 2 ¬ϕ → L(σ) |= ϕ . For symbolic motion planning, this approach

generally produces short paths relatively quickly [21]. Here, we generate plans using this

approach with the NuSMV model checker [1].

For the ISR scenario illustrated in Fig. 4.1, we are interested in specifications of the

form

ϕ =
∧

j∈Goals

♦π j∧
∧

j∈Final Goals

♦�π j︸ ︷︷ ︸
Reachability

∧

∧
j∈Obs

�¬π j︸ ︷︷ ︸
Obstacle Avoidance

∧
N∧

i=1

(πc
i ∧π

o
i →¬π

u
i )︸ ︷︷ ︸

Robot Collision Avoidance

(4.2)

where propositions of the form π j label regions containing Goals, Final Goals, and Ob-

stacles. Propositions of the form πc
i , πo

i , and πu
i for Robot Collision Avoidance are further

explained in Section 4.3.1.

4.2.2 Trust Model

Based on previous research in human-robot trust [19, 25, 20], we use the following

time-series model to capture the dynamic evolution of trust:

Ti(k) = ATi(k−1)+B1PRi(k)−B2PRi(k−1)+

C1PH(k)−C2PH(k−1)+D1Fi(k)−D2Fi(k−1) (4.3)
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where Ti(k) represents human trust in a robot i for i ∈ {1, . . . ,N} at time step k, PRi repre-

sents robot performance, PH represents human performance, and Fi represents faults made

in the joint human-robot system. The coefficients A,B1,B2,C1,C2,D1,D2 can be deter-

mined by human subject testing. In this scenario, robot performance PRi is modeled as a

function of “rewards” the robot receives when it identifies an obstacle or reaches a goal

destination

PRi(k) =CONOi(k)+CGNGi(k) (4.4)

where NOi and NGi are the number of obstacles detected and goals reached by the robot i

up to time step k, and CO and CG are corresponding positive rewards. This allows the robot

to earn trust as it learns details of the environment.

Human performance is calculated based on workload and the complexity of the

environment surrounding the robot with which the human is currently collaborating. The

concept of the utilization ratio, γ , is used to measure workload based on recent usage history

γ(k) = γ(k−1)+
∑

N
i=1 mi(k)− γ(k−1)

τ
(4.5)

where mi(k) = 1 if the human is collaborating with robot i and 0 otherwise, and where τ can

be thought of as the sensitivity of the operator. Assuming a human can only collaborate with

one robot at a time, (4.5) allows workload to grow or decay between 0 and 1. Complexity

of the environment is based on the number of obstacles that lie within sensing range ri of

collaborating robot i at time step k. A human is able to create more detailed paths in more

complex environments, leading to increased performance in the presence of more obstacles,

so that PH(k) is modeled as

PH(k) =

 1− γ(k)Soi(k)+1 if mi(k) = 1

1− γ(k) if mi(k) = 0
(4.6)
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Figure 4.2: Plot of human performance when collaborating with a robot i.

where Soi is the number of obstacles within sensing range of collaborating robot i. Fig.

4.2 shows the change of human performance with respect to workload γ and environmental

complexity Soi .

Faults in the system are modeled as

Fi(k) =CHNHi(k) (4.7)

where NHi is the total number of obstacle regions robot i has entered before sensing the

corresponding obstacle up to time k, and CH is the corresponding negative penalty. Note

that faults can originate from both the robot and the human, i.e. human trust in a robot will

decrease even if the robot enters an obstacle region under human planning.

4.3 Trust-Based Specification Decomposition

Available methods for multi-robot symbolic motion planning have mainly focused

on fully autonomous systems and can be summarized into two types: centralized and de-
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centralized solution approaches. Centralized solutions treat the robot team as a whole and

have a large global state space formed by taking the product of the state spaces of all the

robots [24, 23], resulting in a state space that is too large to handle in practice. Decen-

tralized solutions tend to give local specifications to individual robots, which results in a

smaller state space but often sacrifices guarantees on global performance [15], unless none

of the specified tasks require direct collaboration between robots [30, 13]. Here, we propose

a distributed solution for human-robot symbolic motion planning in which we separately

address tasks that do not need direct collaboration between robots, i.e. Reachability and

Obstacle Avoidance, and tasks that do need collaboration, i.e. Robot Collision Avoidance.

We first present a method for addressing the collision avoidance task in Section 4.3.1 and

then a method for decomposing the specification for individual tasks in Section 4.3.2

4.3.1 Specification Updates Based on Atomic Propositions for Com-

munication, Observation, and Control

Here we consider robot collision avoidance tasks. This requires defining the atomic

propositions πc
i , πo

i , and πu
i in (4.2), which correspond to communication, observation, and

control. A similar approach has been used in decentralized multi-robot tasking in [15],

and here we extend the results to distributed multi-robot systems that must meet a global

specification. The communication proposition πc
i for robot i is true if another robot j is

within its communication range ρi and false otherwise:

π
c
i (k) =

 ‖xi(k)− x j(k)‖ ≤ ρi true

‖xi(k)− x j(k)‖> ρi false
(4.8)

j 6= i, = 1,2, · · · ,N.
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When πc
i is true, robots i and j can communicate with each other to exchange sensing

and path information, allowing them to learn features of the environment they have not

yet explored themselves and resynthesize their plans to avoid obstacles if necessary. This

information can also be used to detect possible collisions between the two robots, expressed

in the proposition πo
i . If it is observed that the current robot’s motion plan will cause an

immanent collision with the second robot, then πo
i is true; otherwise πo

i is false.

We next introduce the control proposition πu
i for robot i. When πu

i is true, robot i

is executing a nominal linear quadratic regulator (LQR) control law; when false, the robot

pauses or replans its path:

π
u
i (k) =

 LQR true

wait or replan false
. (4.9)

We utilize an LQR control law to drive the robot to the midpoint of the next adjacent

region in discrete path. This in conjunction with the simple first-order kinematic equation

of motion given in Eq. (4.1) guarantees the robot will never enter an unplanned region

while moving between sequential regions in the planned path, allowing us to establish a

bisimulation relation between the continuous state space used for control of the robot and

the discretized state space used for planning. That is, any paths planned in the discrete

space will be guaranteed to be followed by the robots.

When both the communication and the observation propositions are true, i.e. πc
i ∧

πo
i , robot i has detected a potential collision and communicates its path with involved robot

j. At this moment, the control proposition πu
i is set to false, so that robot i either waits

or replans depending on the collision type. If robot i’s path is perpendicular to j’s path,

robot i waits until robot j passes. If robot i and j’s paths are opposite to and coincide

with each other, one of these robots will replan its path according to a prioritization policy.
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While these two plans are able to resolve most intervehicle reactions, there still exists the

possibility for a scenario to arise such that the vehicles cannot generate a successful plan

or become stuck in a replanning loop. Should such a situation appear, the supervisor can

intervene and use his or her higher level planning skills to resolve the conflict, lending to

another advantage of including a human in a supervisory roll.

At each time step, the propositions are checked, and local specifications are dynam-

ically updated. Through these propositions πc
i , πo

i , and πu
i , we are able to decompose the

robot collision avoidance task and guarantee there is no collision between the robots.

4.3.2 Compositional Reasoning Based on Assume-Guarantee (A-G)

Contracts

Compositional reasoning based on A-G contracts formalizes the guarantees a sys-

tem component can make given a set of assumptions about its environment – including

other system components – in order to prove properties of the system as a whole in a com-

putationally efficient manner [9]. We use the example shown in Fig. 4.3 to illustrate the

use of A-G contracts to decompose a task specification for a two-robot team [30]. Assume

that Robot 1 starts in region 2 and Robot 2 starts in region 6. Let the global specification

be ϕ = “One robot reaches region 4, one robot reaches region 8, and all robots avoid the

obstacle in region 5.” Without task decomposition, each individual robot needs to find a

path that satisfies the whole specification ϕ . Instead, the specification can be decomposed

by imposing an A-G contract on each robot. Let ϕ1 = “Robot 1 reaches region 4 and avoids

region 5” and ϕ2 = “Robot 2 reaches region 8 and avoids region 5.” Symbolically, the A-G
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Figure 4.3: Specification decomposition for two robots using A-G contracts.

reasoning states that

〈ϕ2〉R1〈ϕ1〉

〈ϕ1〉R2〈ϕ2〉

〈true〉R1‖R2〈ϕ1∧ϕ2〉

(4.10)

Here, R1‖R2 denotes the composition of Robot 1 and Robot 2’s transition systems, and ϕ1∧

ϕ2⇒ ϕ . Formulas of the form 〈ϕ2〉R1〈ϕ1〉 assert that R1 guarantees ϕ1 on the assumption

that R2 satisfies ϕ2 and vice versa for R2, so that R1‖R2 guarantees ϕ unconditionally. This

allows us to deduce properties about R1‖R2 while reasoning about R1 and R2 separately,

reducing the state space and making paths easier to compute and verify.

For the example in Fig. 4.3, one can verify the global specification ϕ = ϕ1 ∧ϕ2

using model checking with LTL with ϕ1 = ♦region 4∧�¬region 5 and ϕ2 = ♦region 8∧

�¬region 5. Using model checking, it can be seen that a path exists such that R1 satisfies

ϕ1. However, proving this also requires proving the remainder of the system cannot violate

ϕ1. Let E1 = R2 represent the environment of Robot 1. Therefore, to prove R1 satisfies ϕ1,

we must also show R2, or in the case of multiple robots that the combination of all additional

robots, does not violate ϕ1. Since Robot 1 can be proven to reach region 4 individually, this

proof entails showing no other robot enters region 5. Conducting model checking on Robot

2 shows it can satisfy ϕ2, thereby proving it does not enter region 5. Therefore, it is shown

〈True〉E1〈�¬region 5〉 and sequentially 〈¬region 5〉R1〈ϕ1〉. Repeating this process for R2

likewise shows 〈True〉E2〈�¬region 5〉 and 〈¬region 5〉R2〈ϕ2〉, proving the composition of

44



R1 and R2 always satisfies ϕ1∧ϕ2 = ϕ .

Based on A-G contracts we can decompose the goal reaching and obstacle avoid-

ance aspects of (4.2) into local subspecifications. First, each destination(s) in the set of

Goals and Final Goals is assigned to one robot. Each robot then guarantees its assigned

destinations are reached while avoiding all obstacles. This is specified by the following

Lemma

Lemma 1 Given the assumption that there exists at least one path to reach each goal, the

robots are guaranteed to eventually generate a successful path to their goals individually

provided there is no collision between individual robots.

Proof Using the symbolic motion planning method outlined in section 4.2.1, every path

generated by an individual robot will end in either reaching its goal or detecting an obstacle

along the path. As this process is repeated, eventually the robot will gather a full map of the

environment, meaning the final generated path will guarantee reaching its goal, provided

there is no collision with another robot.

This combined with the collision avoidance method in Section 4.3.1 ensures that the Reach-

ability and Obstacle Avoidance portions of the global specification are met.

4.4 Real-Time Trust-Based Switching Between Human and

Robot Motion Planning

In this section, we use trust in a real-time switching framework to switch between

human and robot motion planning. Recall from Section 4.2 that although robot motion

planning is guaranteed to be correct, it is usually conservative due to overapproximation of

the environment. So while robot motion planning is safe, more efficient but riskier paths –
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in this case, paths between obstacles in adjacent regions – may exist. If the human trusts a

robot’s ability to navigate between two obstacles, the human can choose to construct a more

efficient path between the obstacles based on, e.g., sensory information about the obstacles

supplied by the robot.

Fig. 4.4 shows an example simulation of how trust can benefit the path planning of

an autonomous robot, generated by integrating the NuSMV model checker [1] with Matlab.

The robot begins in region 5, represented by the circle, and must reach the goal in region

15, represented by the diamond. This must be done while avoiding obstacles, represented

in the continuous space by filled polygons and represented in the discrete space by regions

marked with “X”s. The robot planning mode plans safe paths that avoid regions marked

by Xs, whereas the human planning mode can plan more efficient paths that go between

obstacles. This tradeoff between safety and efficiency motivates the use of trust-based

switching between human and robot motion planning.

As Fig. 4.4a shows, the robot motion planner generates a safe but lengthy path to

the goal; while there is a gap between the two obstacles through region 10, the overap-

proximation prevents the robot from generating a path through this region. If the human

operator trusts the robot’s ability to follow a path between the obstacles and the human is

not overloaded, the human planning mode will be activated and the benefits can clearly be

seen in Fig. 4.4b.

a b
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 9 10 11 12

13 14 15 16
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 5  6  7  8

 9 10 11 12

13 14 15 16

Figure 4.4: (a) Safe robot motion planning in low trust scenario, and (b) advanced human
motion planning in high trust scenario.
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This high trust path, however, is inherently risky since information regarding the

environment in a typical scenario is limited to what the robot has sensed. It is therefore

necessary to have an additional condition by which the robot will release the human plan

should the robot detect that it is about to collide with an obstacle. The release condition here

is represented by ‖xi− xO‖ ≤ rO, where xi and xO are the robot and obstacle positions and

rO is some minimally acceptable distance between them. Should the robot come within

this distance, it will go back to the previous region and return to robot planning mode,

triggering a fault. According to the trust equation (4.3), this lowers trust in the robot,

leading to a re-evaluation of the assigned tasks. The result is that other more trusted robots

may be re-assigned some of the destinations that were originally assigned to the robot that

generated the fault. Once this re-evaluation is performed, the operator is free to continue

working with the same or another robot depending on current levels of trust.

Theorem 2 Given Lemma 1, the robot collision avoidance method detailed in Section

4.3.1, and the trust-based switching scheme detailed here, the human-robot team is guar-

anteed to satisfy global specifications of the type given in Eq. (4.2)

Proof From the proof of Lemma 1 it is shown that given no collision between robots, each

robot will generate a path that will eventually guarantee reaching its goal, with the bisimu-

lation property given in 4.3.1 guaranteeing the robot will follow this path correctly. Section

4.3.1 outlines a scheme that guarantees there is no collision between robots, satisfying the

condition in Lemma 1. The human generated plans provide a more efficient way of reach-

ing goals, but can be risky if there is incomplete environmental information. However,

using the release condition outlined above, the robot is guaranteed to never collide with an

obstacle and will return to the proven safe method. This switching will continue until all

goals are reached or a complete obstacle map is generated, at which time the human a path

that is efficient and safe.
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4.5 Simulation

In this section, a simulation of the ISR scenario of Section 4.2 is used to demonstrate

the methods described in the previous sections. The simulation is conducted in Matlab with

model checking being computed using NuSMV, as mentioned previously, with the simu-

lation codes provided at http://people.clemson.edu/~yue6/papers/thesis/DAS_

Thesis_Codes.pdf. The environment is shown in Fig. 4.7 and consists of three robots,

marked by numbered circles, and six goals, marked by diamonds. There are 16 obstacles in

the environment, marked by “X”s, which are initially unknown by the robots until they are

sensed. The sensor range of a robot is marked by a dashed circle around the robot. Once

an obstacle is sensed, its position becomes known to that individual robot; it is commu-

nicated with other robots when they come within communication range. The goal of the

human-robot team is to successfully reach each goal destination while avoiding all colli-

sions, meeting the global specification (4.2). To address computational complexity, A-G

contracts are used to decompose (4.2) into local subspecifications as described in Section

4.3.2. For this scenario, trust levels are assumed to be equivalent at the start of the simula-

tion, leading each robot to be assigned an equal number of goals. In practice, initial trust

levels can vary according to factors such as prior experience with a robot.

To find a path such that the local subspecification is satisfied, the model checking

approach described in Section 4.2.1 is used by each individual robot. To further reduce

computational complexity, each robot only computes its path over a local subspace. This

subspace is determined using the robot’s knowledge of its assigned goals and the location of

obstacles that have been sensed. Using this method, every path generated by an individual

robot will end in either reaching its goals or detecting an obstacle and will continue until all

obstacles are detected. Therefore, the robots are guaranteed to eventually reach their goals

as outlined in Lemma 1
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To prevent collisions between the robots, the communication method detailed in

Section 4.3.1 is used with the communication range ρi set as equal to the sensor range. An

example scenario is outlined in Fig. 4.5 with the arrows representing the path information

communicated between the robots. Here, all three robots are in collision scenarios. Robot

2 sees that it can avoid collision by simply waiting for robot 1 to pass. Robots 1 and 3

however must replan to avoid collision. Should a situation arise as described in Section

4.3.1 where conflict between two robots are not immediately solved, an additional option

for πu
i is interaction from the human supervisor whereby he or she generates a plan for

the affected robots, guaranteeing the robots are able to navigate around each other without

colliding.

31
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Figure 4.5: Collision avoidance scenario.

The results of the simulation can be seen in Fig. 4.7, with 4.6 showing key moments

during the simulation and 4.8 showing the evolution of trust. From Fig. 4.8, it can be seen

that both robots 1 and 2 quickly gain trust due to discovering an obstacle, but robot 2 gains

the definitive lead in trust due to quickly observing two additional obstacles and having a

relatively complex immediate environment when it reaches region (3,10) (Fig. 4.6 f). The

operator is therefore paired with robot 2 and then designs a path through the two obstacles,

through the first goal, and continues up and right towards robot 2’s second goal (Fig. 4.6 b).

Robot 2 follows this path until nearly colliding with the obstacle in region (4,10) (Fig. 4.6

g). This creates a fault, releasing the operator’s plan and starting a return to robot control.

49



The fault causes a significant drop in trust, as can be seen in Fig. 4.8 around time step 300.

As a result of this drop in trust, a reallocation of tasks is initiated. Robot 2 has its task load

decreased, meaning it no longer has any more tasks to complete, and robot 1, which has

the highest trust value, has its task load increased. Robot 1 is then paired with the operator

since it has the highest trust and then finishes the task following the operator’s plan (Fig.

4.6 d). Robot 3 also successfully completes its task using the safe control scheme, leading

to the global specification being satisfied.
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Figure 4.6: Progression of simulation (e - h) with corresponding path plans (a - d).

4.6 Conclusions

In this paper, we have explored methods to address scalability and safety of sym-

bolic motion planning for multi-robot systems that interact with a human operator, with

interactions affected by human trust. Scalability is addressed by decomposing portions of

the global symbolic motion planning specification that do not require inter-robot collabo-
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ration using A-G contracts, while portions that require collaboration are addressed through

a protocol that relies on local communication, observation, and control to modify plans

as needed during execution. Trust affects this decomposition, with more trusted robots

assigned more destinations, and with trust changing as robots generate faults by coming

too close to obstacles. In addition to implementing methods for obstacle and collision

avoidance, safety versus efficienty of planning is addressed by switching between a safe

but conservative robot motion planning mode that avoids obstacles based on an overap-

proximation of the environment and a riskier but more efficient human planning mode that

allows paths between obstacles, with switching mediated by human trust.

In the future, there are several other areas that could be explored. For instance,

other human trust models could be used in this framework. The trust model we use here

assumes trust in a specific robot evolves independently of all other robots, when in actuality,

evolution of trust for each robot might be interdependent [22]. More complex probabilistic

models of trust [43] could also be used. In addition, further proofs of correctness for the A-

G contracts and robot collision avoidance protocols in more complex environments could

be developed. Here, we have assumed that obstacles are placed such that all destinations

are reachable by all robots, which would not be true in all environments and would require

more careful assignment of destinations. In some cases, certain destinations might not

be reachable by any robot, which would require revising the specification. We have also

assumed that there is sufficient room for the robots to manuever when implementing the

protocol for robot collision avoidance, and that it is unlikely for more than two robots to

encounter each other a time. Collision avoidance protocols in complex environments with

arbitrary numbers of robots is a challenging area of research that could be further developed

within this framework.
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Chapter 5

Conclusions

5.1 Discussion

Despite advances in autonomy, humans still offer invaluable input in many aspects

of control. This has been shown by implementing HRI in the control of autonomous robots

at varying levels in the control hierarchy. Implementation of HRI within the control scheme

for low-level operations, such as the direct control of the AUV, has shown that a human

can assess a scenario and compensate for autonomy’s navigational shortcomings, while

the operator benefits from a reduced workload during scenarios within the autonomy’s

capabilities. The SLQR has also been shown to be an effective tool, offering the ability to

determine this switching scenario using optimal control policies not just at the low-level

but for high-level as well. This was shown using the SLQR as a tool for HRI in obstacle

avoidance with an AUV. By using the SLQR, autonomy is controlled via an optimal control

policy until it encounters an obstacle along its planned path. Once the operator replans the

path, he or she can return to the more important task of data processing.

HRI was also shown to provide useful advantages even for guaranteed and safe

high-level symbolic motion planning operations. By incorporating a human operator, the

53



safe but inefficient symbolic motion planning can incorporate riskier paths only devisable

by the operator. The operator also has the benefit of knowing that if his or her plan fails,

the system will always fall back on a guaranteed autonomous method. The operator also

provided the advantage of resolving conflict between multiple robots in cases that are too

complex for decentralized motion planning. The conclusion of these works shows the

advantages of not only using HRI, but of also incorporating it directly into the control

schemes themselves, offering a way to take advantage of human factors to best incorporate

the advantages of both human and autonomy.

5.2 Future Works

The works presented here show the beginning of promising topics of research and

offer many paths for future work on the subject. Currently, the methods presented here are

implemented individually with high-level and low-level control schemes separated. One

major desire is to incorporate these concepts into the development of a comprehensive

control scheme that takes advantage of HRI at all control levels simultaneously. Work is

also currently underway to implement the trust-based HRI for multi-robot symbolic motion

planning using real mobile robots. Future work will also incorporate larger teams, includ-

ing multiple operators, and determine how trust plays a role in multi-operator control. It

is also desired to extend this work to heterogeneous robot groups with different sensing

and motion capabilities. Finally, with the current interest in dynamic trust modeling, the

trust model used in this work will be constantly improved and refined. As shown in the

introduction, correctly predicting and identifying the level of trust in automation can have

a significant impact on proper use of autonomy and can even allow the autonomy itself

adjust to this trust.

54



Appendices

55



Appendix A AUV Equations of Motion

ẋ = w(sin(φ)sin(ψ)+ cos(φ)cos(ψ)sin(θ))− v(cos(φ)sin(ψ)− cos(ψ)sin(φ)sin(θ))+ucos(ψ)cos(θ)

ẏ = v(cos(φ)cos(ψ)+ sin(φ)sin(ψ)sin(θ))−w(cos(ψ)sin(φ)− cos(φ)sin(ψ)sin(θ))+ucos(θ)sin(ψ)

ż = wcos(φ)cos(θ)−usin(θ)+ vcos(θ)sin(φ)

φ̇ = p+ r cos(φ) tan(θ)+qsin(φ) tan(θ)

θ̇ = qcos(φ)− r sin(φ)

ψ̇ =
r cos(φ)
cos(θ)

+
qsin(φ)
cos(θ)

D1u− rv(Ẏv +m)+qw(Żw +m)+ u̇(Ẋu +m) =

bx7α2u2 +bx4α2u+bx8β 2u2 +bx5β 2u+Cproprpm2 +bx6u4 +bx3u3 +bx2u2 +bx1u

D2v+ ru(Ẋu +m)− pw(Żw +m)+ v̇(Ẏv +m) = by2β
3u+by4βu3 +by3βu2 +by1βu

D3w−qu(Ẋu+m)− pv(Ẏv−m)+ẇ(Żw+m)= bz3α
3u+bz7αu3+bz5αu2+bz2αu+bz8u4+bz6u3+bz4u2+bz1u

D4 p− rq(Iy− Ṁq)+qr(Iz− Ṅr)−wv(Ẏv +m)+ vw(Żw +m)+ ṗ(Ix + K̇p) = 0

D5q+ rp(Ix− K̇p)− pr(Iz− Ṅr)+wu(Ẋu +m)−uw(Żw +m)+ q̇(Iy + Ṁq) =

bθ3α3u+bθ7αu3 +bθ5αu2 +bθ2αu+bθ8u4 +bθ6u3 +bθ4u2 +bθ1u

D6r+qp(Ix+K̇p)+ pq(Iy−Ṁq)−vu(Ẋu+m)−uv(Ẏv−m)+ ṙ(Iz+Ṅr)= bψ2β
3u+bψ4βu3+bψ3βu2+bψ1βu

Here, I is the moment of inertia in the specified direction, D is an entry in the damping matrix, Ẋ , Ẏ , Ż, K̇, Ṁ,

and Ṅ are entries corresponding to the hydrodynamic added inertia matrix, Cprop is the propeller coefficient,

and b are coefficients corresponding to the torque inputs of the system.
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Appendix B Linearized Dynamic Matrices

A =



1 −∆tu0 cosθ0−∆tw0 sinθ0 0 −∆t sinθ0 0 ∆t cosθ0 0 0
0 1 0 0 0 0 ∆t 0
0 0 1 0 0 0 0 ∆t 1

cosθ0

0 0 0 1+∆t Cuu
Ẋu+m 0 0 −∆t Żw+m

Ẋu+m w0 0

0 0 0 0 1−∆t D2
Ẏv+m 0 0 −∆t Ẋu+m

Ẏv+m u0

0 0 0 ∆t Cwu
Żw+m 0 1−∆t D3

Żw+m ∆t Ẋu+m
Żw+mu0 0

0 0 0 ∆t Cqu
Iy+Mq

0 ∆t Żw−Ẋu
Iy+Mq

u0 1−∆t D5
Iy+Mq

0

0 0 0 0 ∆t Ẋu+Ẏv
Iz+Ṅr

u0 0 0 1−∆t D6
Iz+Ṅr



B =



0 0 0
0 0 0
0 0 0

∆t 2bx7α0u2
0+2bx4α0u0

Ẋu+m 0 ∆t 2Cproprpm0
Ẋu+m

0 ∆t by4u3
0+by3u2

0+by1u0
Ẏv+m 0

∆t 3bz3α2
0 u0+bz7u3

0+bz5u2
0+bz2u0

Żw+m 0 0

∆t 3bθ3α2
0 u0+bθ7u3

0+bθ5u2
0+bθ2u0

Iy+Mq
0 0

0 ∆t bψ4u3
0+bψ3u2

0+bψ1u0
Iz+Ṅr

0


(1)

where
Cuu =−D1 +2bx7α

2
0 u2

0 +bx4α
2
0 +4bx6u3

0 +3bx7u2
0 +2bx2u0 +bx1 (2)

Cwu = bz3α
3
0 +3bz7α0u2

0 +2bz5α0u0 +bz2α0 +4bz8u3
0 +3bz6u2

0 +2bz4u0 +bz1 (3)

Cqu =(Żw−Ẋu)w0+bθ3α
3
0 +3bθ7α0u2

0+2bθ5α0u0+bθ2α0+4bθ8u3
0+3bθ6u2

0+2bθ4u0+bθ1
(4)

Here, ∆t is the discrete time increment, m is the mass of the AUV, I is the moment of
inertia in the specified direction, D is an entry in the damping matrix, Ẋ , Ẏ , Ż, K̇, Ṁ, and Ṅ
are entries corresponding to the hydrodynamic added inertia matrix, Cprop is the propeller
coefficient, and b are coefficients corresponding to the torque inputs of the system.
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