
Clemson University
TigerPrints

All Theses Theses

12-2015

A novel approach to evaluating compact finite
differences and similar tridiagonal schemes on
GPU-accelerated clusters
Ashwin Trikuta Srinath
Clemson University, atrikut@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Trikuta Srinath, Ashwin, "A novel approach to evaluating compact finite differences and similar tridiagonal schemes on GPU-
accelerated clusters" (2015). All Theses. 2283.
https://tigerprints.clemson.edu/all_theses/2283

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268638743?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2283&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2283&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2283&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2283&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2283&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/2283?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2283&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

A novel approach to evaluating compact finite
differences and similar tridiagonal schemes on

GPU-accelerated clusters

A Master’s Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Mechanical Engineering

by

Ashwin Srinath

December 2015

Accepted by:

Dr. Richard S. Miller, Committee Chair

Dr. Gang Li

Dr. Lonny L. Thompson

Abstract

Compact finite difference schemes are widely used in the direct numerical sim-

ulation of fluid flows for their ability to better resolve the small scales of turbulence.

However, they can be expensive to evaluate and difficult to parallelize. In this work,

we present an approach for the computation of compact finite differences and similar

tridiagonal schemes on graphics processing units (GPUs). We present a variant of

the cyclic reduction algorithm for solving the tridiagonal linear systems that arise in

such numerical schemes. We study the impact of the matrix structure on the cyclic

reduction algorithm and show that precomputing forward reduction coefficients can

be especially effective for obtaining good performance. Our tridiagonal solver is able

to outperform the NVIDIA CUSPARSE and the multithreaded Intel MKL tridiago-

nal solvers on GPU and CPU respectively. In addition, we present a parallelization

strategy for GPU-accelerated clusters, and show scalabality of a 3-D compact finite

difference application for up to 64 GPUs on Clemson’s Palmetto cluster.

ii

Dedication

I dedicate this work to my parents, and to my brother, Akhil, who pushes me

always to be a better example.

iii

Acknowledgments

I owe my deepest thanks to my advisor, Dr. Richard S. Miller, for his immense

guidance and support; and the members of my committee, Dr. Gang Li and Dr.

Lonny Thompson for their valuable time. I would like to acknowledge Dr. Daniel

Livescu at Los Alamos National Lab for introducing us to this interesting problem,

for his helpful comments, and for generous funding. I also thank Dr. Melissa Smith

and Karan Sapra for their helpful guidance, and for organizing an excellent course on

GPU computing. I owe a great deal of gratitude to Dr. Christopher Cox at Clemson

University for his guidance on a range of topics and for many interesting conversations.

I would like to thank the staff of the Cyberinfrastructure Technology Integration

group at Clemson, and especially Dr. Galen Collier and Dr. Marcin Ziolkowski for

their valuable comments and support. I owe thanks to Clemson University for the

generous allocation of compute time on the Palmetto cluster. I acknowledge Dr. K.

N. Seetharamu and Dr. V. Krishna, my advisors at PES Institute of Technology

for inspiring in me a passion for scientific research. I am indebted to Dr. Anush

Krishnan for introducing me to the fascinating field of scientific computing. I owe a

special thanks to the Software Carpentry Foundation and its members, for helping

me be a more productive programmer, a more deliberate learner, a more effective

teacher, and a better person.

Finally, I thank my family and friends for everything they have done for me.

iv

Table of Contents

Title Page . i

Abstract . ii

Dedication . iii

Acknowledgments . iv

List of Tables . vii

List of Figures . viii

1 Introduction and Background . 1
1.1 Motivation . 1
1.2 Compact finite differences . 3

1.2.1 General form of compact finite difference schemes 4
1.2.2 Wavenumber analysis of finite difference methods 4
1.2.3 Boundary conditions . 6
1.2.4 Tridiagonal compact schemes 6

1.3 Graphics processing units . 8
1.3.1 The CUDA Programming model 9
1.3.2 CUDA architecture and memory model 10
1.3.3 Considerations to be made while programming for GPUs . . . 15
1.3.4 Software for programming NVIDIA GPUs 16

1.4 Tridiagonal solvers for compact finite difference evaluation 16
1.4.1 Thomas algorithm . 17
1.4.2 Cyclic reduction . 18
1.4.3 Parallel cyclic reduction . 20
1.4.4 Cyclic reduction implementation on GPUs 21

2 Proposed tridiagonal algorithm . 24
2.1 Modified cyclic reduction for near-Toeplitz systems 24

2.1.1 Forward reduction . 25
2.1.2 Backward substitution . 27

v

2.2 Implementation . 27
2.2.1 Precomputing forward reduction coefficients 28
2.2.2 Global memory implementation 29
2.2.3 Shared memory implementation 31

3 Application to compact finite difference evaluation 33
3.1 Introduction . 33
3.2 Compact finite difference evaluation on parallel GPU systems 34

3.2.1 Single GPU . 35
3.2.2 Multiple GPUs on a single node 36
3.2.3 Distributed GPUs - restricted in one direction 38
3.2.4 Distributed GPUs in all directions 38

3.3 Distributed tridiagonal solver . 41
3.3.1 General algorithm . 41
3.3.2 Specialization for compact finite difference evaluations 43

3.4 GPU implementation . 44

4 Results . 49
4.1 Performance of GPU tridiagonal solver 49

4.1.1 NEATO: global memory v/s shared memory performance . . . 50
4.1.2 Comparison of NEATO with Intel MKL and CUSPARSE solvers 51

4.2 Performance of compact finite difference application 53
4.2.1 Performance profiling . 55
4.2.2 Strong and weak scaling . 56
4.2.3 Comparison with a CPU-only approach 59

5 Conclusions and Future Work . 60

Appendix . 61

Bibliography . 67

vi

List of Tables

3.1 Purpose of kernels and MPI calls in compact finite difference application 46

4.1 Performance of Intel MKL, CUSPARSE and NEATO solvers. 54
4.2 Time (ms) to compute derivatives in the fastest coordinate direction -

comparison with reference implementation [19] 58

vii

List of Figures

1.1 Modified wavenumbers for different finite difference schemes. k′ is the
wavenumber of the approximated derivative, while k is wavenumber
of the exact derivative. h represents the spacing between two grid
points. The compact schemes better estimate the derivative for higher
wavenumbers. 5

1.2 Scheduling of blocks to streaming microprocessors—GPUs with more
SMs are able to execute more blocks concurrently. (CUDA Program-
ming Guide [22]) . 11

1.3 (a) Organization of shared memory as 4 byte words organized into 32
banks. Each cell (square) is a word. (b) Bank conflict free access by a
warp. Each warp accesses a word from a different bank. (c) 2-way bank
conflicts arising from successive threads accessing alternating words. . 13

1.4 Cyclic reduction. 19
1.5 Mapping work to blocks and threads: systems are mapped to blocks

and indices are mapped to individual threads. 21
1.6 Updating b in the first forward reduction step. 22

2.1 Maximum storage required for forward reduction coefficients at all
steps m = 1, 2, ...log2(n)− 1 . 28

2.2 Storing right hand sides and mapping to thread blocks. 29
2.3 Thread activity in shared memory (top) and global memory (bottom)

implementations. 30

3.1 Computational domain in 3-D. 34
3.2 Compact finite differences - single GPU 35
3.3 Compact finite differences - multiple GPUs on same node 36
3.4 Compact finite differences - distributed GPUs and restricted in one

direction . 37
3.5 Compact finite difference evaluation in both coordinate directions . . 38
3.6 Compact finite differences - distributed GPUs in all directions 40
3.7 Algorithm for evaluating compact finite differences on multiple GPUs,

(right: CUDA kernels and MPI calls used) 45
3.8 Construction of the reduced system and scattering of parameters. . . 47

viii

4.1 Comparison of global memory and shared memory implementations of
NEATO (2D problems). 50

4.2 Comparison of global memory and shared memory implementations of
NEATO (3D problems). 51

4.3 Relative solver performance for 2-D problems. Relative time defined as: 52
4.4 Relative solver performance for 3-D problems. Relative time defined as: 52
4.5 Solving problem sized 10243 on 64 GPUs 55
4.6 Solving problem sized 20483 on 64 GPUs 55
4.7 Strong scaling for multi-GPU compact finite difference, problem size:

2563. 56
4.8 Strong scaling for multi-GPU compact finite difference, problem size:

5123. 57
4.9 Weak scaling for multi-GPU compact finite difference, problem size:

1283 per process. 57
4.10 Weak scaling for multi-GPU compact finite difference, problem size:

2563 per process. 58
4.11 Speedups over reference implementation for computing derivative in

the fastest coordinate direction . 59

ix

Chapter 1

Introduction and Background

1.1 Motivation

In the direct numerical simulation (DNS) of fluid systems, the aim is to resolve

the smallest features of the flow without resorting to any modeling of the turbulence.

This involves the use of extremely fine computational grids to discretize the flow

domain, and some numerical method for solving the flow equations on this grid.

Among the most popular numerical approaches for solving the flow equations is the

finite difference method. The finite difference method approximates the spatial and

temporal derivatives appearing in the partial differential equations that describe the

flow using finite difference schemes. Compact finite difference schemes are a class

of finite difference schemes that have found widespread adoption in DNS codes for

their high order of accuracy and small stencil widths. The evaluation of compact finite

differences requires the repeated solution of banded linear systems, making them fairly

complex and expensive computationally.

When solving for flows numerically, at each of the grid points in the compu-

tational domain, various data about the flow must be stored—for example, the geo-

1

metric coordinates (x, y and z), pressure, temperature and velocities at that point.

For even small problem sizes, the amount of memory required to store this data can

quickly exceed the capacity of modern workstations/PCs. Thus, a distributed mem-

ory parallel system is generally required for performing DNS. Here, the traditional

approach has been to distribute parallel tasks among individual CPU cores, or groups

of CPU cores that share common memory spaces. In the latter case, each group of

cores constitutes a shared memory system, and the overall system is referred to as a

hybrid system.

The workhorse for computation in the above described parallel systems is the

CPU core, however, more recently, Graphics Processing Units (GPUs) are being used

for performing intensive calculations. GPUs, while themselves being highly parallel

processors, can also function as accelerators in distributed memory systems (GPU

clusters). However, applications that exploit such systems need careful redesign of

algorithms—and sometimes, substantial changes to code—to see significant perfor-

mance improvements. This is because the CPU and GPU have very different archi-

tectures, and any näıve “parallelization” of algorithms designed for the CPU is likely

not take full advantage of the GPU’s memory hierarchy and compute ability.

The objective of this work is to develop an approach for evaluating compact

finite differences—and other numerical schemes leading to tridiagonal systems—on

multiple GPUs in a distributed system. This is of interest because the evaluation of

spatial derivatives using compact finite difference schemes is one of the most expensive

tasks in DNS. But perhaps more significantly, it encompasses several computational

patterns such as pointwise updates, stencil evaluations, and solutions of distributed

tridiagonal systems. Efficient implementation of these computational patterns on

GPUs is of interest in other areas of CFD, and scientific computation in general.

2

1.2 Compact finite differences

Numerical evaluation of derivatives is a central component in scientific com-

puting. The simplest and most widely-used approach for numerical differentiation

is the finite difference approximation, wherein the numerical approximation of the

derivative is expressed as a difference equation. A key application of the finite dif-

ference approximation is in finite difference methods, a family of numerical methods

for solving differential equations in which the derivatives are approximated using fi-

nite difference approximations. For example, we may consider a uniformly sampled

function f(x), sampled at points x1, x2, x3, . . . xn. At each sample point i, we may

approximate the derivative as a combination of the function values at i, and its neigh-

bouring points:

1. When the derivative at i is expressed as some combination of the function values

at i, i+ 1, i+ 2, . . ., we refer to the approximation as a forward difference.

2. When the derivative is expressed as some combination of the function values at

i, i− 1, i− 2, . . ., we refer to the approximation as a backward difference.

3. When the derivative is expressed as some combination of the function values

on both sides of i, i.e, at . . ., i − 2, i − 1, i, i − 1, i − 2, . . ., we refer to the

approximation as a central difference.

The approximation of higher order derivatives generally requires inclusion of a larger

number of points in the finite difference approximation (referred to as the finite dif-

ference stencil). For a given order of derivative, finite difference approximation of

arbitrary stencil widths may be derived, with larger stencils associated with higher

accuracy [10]. In the evaluation of spatial derivatives, the above schemes are referred

3

to as explicit schemes, as the derivative at each point can be expressed as some explicit

combination of function values.

1.2.1 General form of compact finite difference schemes

Compact schemes express the derivative at a point i in terms of function values

and derivatives at neighbouring points, i.e., the derivative is expressed implicitly. For

example, if fi represents the value of a uniformly sampled function evaluated at the

ith sample point, the first derivative f ′i can be approximated from a relation of the

form:

f ′i + α(f ′i−1 + f ′i+1) + β(f ′i−2 + f ′i+2) + . . . = a
fi+1 − fi−1

h
+ b

fi+2 − fi−2
h

+

c
fi+3 − fi−3

h
+ . . .

(1.1)

where α, β, a, b, c, etc., are parameters that must satisfy certain constraints [12, 16],

and h is the space between two grid points. We note that for equations of the form

in Eq. (1.1), the derivative at any points i cannot be computed explicitly. Instead,

we must write similar equations for all points i in the range. This results in a system

of linear equations with unknowns {f ′1, f ′2, . . ., f ′n}, which may be represented by the

matrix system Ax = d, where x is the vector {f ′1, f ′2, . . ., f ′n}, d is a vector of right

hand sides [Eq. (1.1)], and A is, in general, a banded matrix.

1.2.2 Wavenumber analysis of finite difference methods

For DNS applications, the relevant measure of accuracy of a finite difference

scheme is obtained from the so-called modified wavenumber approach. Here, we test

the scheme’s ability to accurately estimate the derivative of sinusoidal functions with

increasing wavenumbers (frequencies), given a specified grid size. We expect that

4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

hk

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

h
k

′

2nd order central
4th order central
4th order, compact tridiagonal
6th order, compact tridiagonal
exact

Figure 1.1: Modified wavenumbers for different finite difference schemes. k′ is the
wavenumber of the approximated derivative, while k is wavenumber of the exact
derivative. h represents the spacing between two grid points. The compact schemes
better estimate the derivative for higher wavenumbers.

the approximation of the derivative becomes more difficult with increasing wavenum-

bers, as the function value varies more rapidly. The wavenumber of the approximate

derivative as given by the finite difference scheme is compared with the wavenumber

of the exact derivative. The result for different schemes is shown in Fig. 1.1.

The ability of a finite difference scheme to accommodate large wavenumbers

is extremely relevant in computational fluid dynamics applications [15]. In DNS, the

scheme must capture the rapidly varying characteristics of the flow associated with the

turbulence. For this purpose, higher order explicit schemes may be considered. While

they are straightforward to compute, they are associated with large stencil widths. In

most applications, large stencil widths are undesirable. This is because the arithmetic

intensity increases with stencil size, i.e., a larger number of computations must be

5

performed per grid point. Further, the amount of boundary information that must

be exchanged between parallel processes increases, which can seriously affect overall

performance.

From Fig. 1.1, it is clear that the compact schemes are better able to com-

pute derivatives for larger wavenumbers for a given stencil width. This makes them

the superior choice for DNS, in which the flow quantities exhibit spatial variation

associated with high wavenumbers.

1.2.3 Boundary conditions

One of the advantages of the compact finite difference approach is that it ac-

commodates non-periodic boundary conditions. This is in contrast to other methods

used in DNS, such as spectral methods. We note that the Eq. (1.1) cannot be applied

near the boundary points. At the boundaries, non-centered or one-sided finite differ-

ence approximations are required. Some considerations are made in choosing these

approximations: firstly, the bandwidth of the resulting banded matrix must be pre-

served. Secondly, the width of the boundary stencils must be lower than the interior

stencils, as higher order boundary stencils are unstable [12]. In general, boundary

equations for the first derivative are of the following form [16]:

f ′1 + α′f ′2 =
1

h
(a′f1 + b′f2 + c′f3 + d′f4) (1.2)

1.2.4 Tridiagonal compact schemes

As mentioned in Sec. 1.2.1, compact finite difference schemes lead to banded

linear systems. The simplest classes of banded matrix include diagonal, tridiagonal

and pentadiagonal matrices. When α = β = . . . = 0, A is a diagonal matrix. In this

6

case, the scheme is explicit and the derivatives are straightforward to evaluate: this

simply involves the application of the right-hand side stencil at each point. When

α 6= 0, β = . . . = 0, A is tridiagonal. The evaluation of the derivatives requires the

solution of the resulting tridiagonal system. When α 6= 0 and β 6= 0, pentadiagonal

systems arise. These can be more expensive and difficult to evaluate than tridiagonal

systems using a direct method.

This work will focus on compact finite difference schemes that lead to tridi-

agonal systems. An example of such a scheme is obtained by substituting β = 0,

α = 1
4

and a = 3
4

in Eq. (1.1) (all other coefficients are set to zero). This leads to a

fourth-order accurate tridiagonal compact finite difference scheme, known also as the

Padé scheme. At the boundaries, the following third-order accurate approximations

are used:

f ′1 + 2f ′2 =
−5f1 + 4f2 + f3

dx
(1.3)

f ′n + 2f ′n−1 =
5fn − 4fn−2 − fn−1

dx
(1.4)

7

The resulting tridiagonal system is then:

1 2

1/4 1 1/4

1/4 1 1/4

1/4 1 1/4

1/4 1 1/4

. . .

. . .

. . .

2 1

f ′1

f ′2

f ′3
...

...

...

...

f ′n−1

f ′n

=

−5f1+4f2+f3
2dx

3(f3−f1)
4dx

3(f4−f2)
4dx

...

...

...

...

3(fn−fn−2)
4dx

5fn−4fn−1−fn−2

2dx

(1.5)

Similar tridiagonal schemes are available to evaluate higher order derivatives. Com-

pact schemes for second, third and fourth derivatives are derived in [16].

1.3 Graphics processing units

The evolution of graphics processing units (GPUs) has traditionally been

guided by the requirements of graphics applications such as video gaming. In general,

these graphics computations involve manipulations and calculations with pixel data.

Because these calculations are largely independent, the GPU hardware is specialized

to perform several of them in parallel. Therefore, the GPU may be regarded as a

highly multithreaded processor. Initially, programming GPUs for scientific computa-

tion tasks was a cumbersome process, as the programming interfaces were designed for

graphics computations, and attempts to use them for other purposes were essentially

“hacks”. Moreover, there was little support for double precision arithmetic, which is

8

critical for many applications. But with the introduction of the NVIDIA Compute

Unified Device Architecture (CUDA) parallel computing platform and programming

model, CUDA-enabled GPUs have come into the mainstream in high-performance

computing. A history of the development of GPUs for general purpose computation,

and of CUDA specifically is available in [13]. We provide the essential and relevant

details about CUDA here, and refer to the CUDA Programming Guide [22] for a

detailed outlook.

1.3.1 The CUDA Programming model

CUDA is the name for the parallel computing platform developed by NVIDIA,

as well as the application programming interface for programming their GPUs. CUDA

allows general-purpose applications to be more easily programmed for the GPU. Two

essential features of the CUDA programming model are kernels and thread organiza-

tion.

Kernels

The CUDA application programming interface (API) is available as an exten-

sion to a programming languages (C, C++, Fortran, etc.), allowing certain portions

of code to execute on the GPU. The rest of the code is executed as usual on the CPU.

In CUDA terminology, the CPU is referred to as the host, and the GPU is referred to

as the device. The special pieces of code that execute on the GPU are known as ker-

nels. Kernels have similar syntax as “host code”, but in general, are more restricted

in the features of the underlying language they can use. In C, for example, kernels

are written as functions, and are called by the host code using (almost) the same con-

ventions. Thus, a C program that uses the GPU looks and behaves very much like a

9

normal C program, but includes special calls to these kernels. When the application

is launched, a CPU thread executes the host-code as usual, but upon encountering

a call to the kernel, it passes program control over to the GPU. After the kernel is

finished executing, control is passed back to the CPU, and this process may repeat

when another kernel call is encountered. The CPU and GPU may also operate asyn-

chronously, i.e., control may be passed back to the CPU before kernel completion, in

which case explicit synchronization between the host and device may be necessary.

Apart from kernel calls, the host code can also call functions to allocate and deallocate

device memory, query device information, perform device synchronization, etc.

Thread organization

A kernel is executed in parallel by several lightweight threads. Threads are

organized into groups called thread blocks, or just blocks, and the different blocks

constitute a grid of blocks. In many cases, the GPU is used to process array data,

and each thread is mapped to a single array element. In most applications, the array

is logically 1-, 2- or 3-dimensional. Thus, for convenience, the grid and block sizes

can be 1-, 2- or 3-dimensional (hence the terminology grid and blocks). This kind of

thread organization is optional, and n-dimensional arrays can be processed using just

1-dimensional grids and blocks.

1.3.2 CUDA architecture and memory model

From the hardware perspective, an NVIDIA GPU may be viewed primarily as

a collection of so-called Streaming Microprocessors (SMs). When a kernel is launched

with specified grid size (number of blocks) and block size (threads per block), each

block is assigned to an SM. Threads within a thread block can execute concurrently

10

Figure 1.2: Scheduling of blocks to streaming microprocessors—GPUs with more SMs
are able to execute more blocks concurrently. (CUDA Programming Guide [22])

on the SM, and an SM can execute several thread blocks concurrently. It is imperative

that blocks are able to run independently, in series or in parallel. This feature gives

CUDA programs their scalability (Fig. 1.2). The same program runs faster on a GPU

with a larger number of SMs, simply because more blocks may run concurrently.

The number of thread blocks that an SM can execute concurrently is limited by

a number of factors, and maximizing this number is often key to obtaining good

performance. Another key consideration in the implementation of algorithms on

GPUs is the available memory hierarchy. Threads executing a kernel can read and

write to several different memory spaces, each with different capacity, latency and

bandwidth.

11

Global memory

Data from the host is first read into the device’s global memory. Similarly,

data from the device is read back into the host from global memory. This is done

in the host-code using special functions provided by the CUDA API. Data transfer

between the host and the device is extremely slow relative to data access within the

device. This data transfer rate is limited by the bandwidth of the PCI-e bus between

the host and device. All threads executing a kernel can read and write to locations

in global memory, and it is the largest memory space that is writable by the device.

For example, the current NVIDIA Tesla K20 accelerator has about 4 Gigabytes of

usable global memory. Thread access to global memory has a long latency and it is

especially inefficient when successive threads in a block access memory locations that

are far apart. Data in global memory remains persistent throughout the execution of

the program.

Shared memory

Threads within a block have access to a common, fast shared memory. All

threads within a block can read and write to the block’s shared memory, but they

may not access shared memory of another block. Thread access to shared memory

can be expected to be much faster than access to global memory. Data that may

be repeatedly used in a kernel are good candidates for placement in shared memory

The contents of shared memory are managed by the kernel code, and for this reason,

shared memory is often viewed as explicitly managed cache. Data in shared memory

does not persist after kernel execution.

Shared memory is organized as a collection of 4 byte “words”. Each consec-

utive word in shared memory belongs to a different bank - modern GPUs have 32

12

Bank 1 Bank 2 Bank 32

(a)

(b)

(c)

Figure 1.3: (a) Organization of shared memory as 4 byte words organized into 32
banks. Each cell (square) is a word. (b) Bank conflict free access by a warp. Each
warp accesses a word from a different bank. (c) 2-way bank conflicts arising from
successive threads accessing alternating words.

13

banks. The GPU schedules thread execution within a block in groups of 32 (termed

as thread warps). Ideally, these 32 threads can access shared memory locations con-

currently. However, when two or more threads in a warp access words from the same

bank, a bank conflict is said to occur, and the access is serialized. Thus, a warp of 32

threads reading 32 successive floats (4 bytes) in a shared memory array is perfectly

parallelized. But a warp of 32 threads reading 32 alternating floats in a shared

memory array leads to bank conflicts (Fig. 1.3). Because the floats are placed in

consecutive banks, the 1st and 17th threads will access floats from the same bank,

as will the 2nd and 18th threads, and so on. This specific kind of bank conflict is

termed a two-way bank conflict - threads access two words from the same bank. It

is observed that higher-order bank conflicts may occur, if threads in a warp access

floats in strides of 4, a four-way bank conflict can occur. In the worst case, succes-

sive threads may access floats in strides of 32, in which case all threads in the warp

request memory from the same bank: a 32-way bank conflict.

Registers and local memory

Each thread also has private local memory, and access to extremely fast reg-

isters. Unlike CPUs, the GPU has a large number of registers—a thread executing

a kernel will typically attempt to store non-array variables defined in the kernel in

registers. Thread access to registers has the lowest latency compared to all other

memory spaces. The number of registers available to each thread is limited, and if

exceeded, data is instead stored in the thread’s local memory. Access to local memory

is much slower than registers, so this is typically avoided.

14

Limiting shared memory and register usage

While shared memory and registers can service memory requests much faster

than global memory, their overuse can lead to performance degradation. The amount

of shared memory per SM and the number of registers per SM is limited. For the

current NVIDIA Tesla K20 accelerator, the amount of shared memory per SM is

limited to 48 KiB, and the number of registers per SM is limited to 65536. These

are also the limits on the resources that can be allocated for each block. However,

allocating 48 KiB shared memory or using 65536 registers for each block is ill-advised,

as this effectively restricts the number of blocks that each SM can run at any given

time to 1. If each block allocates 24 KiB of shared memory, then an SM can run

only 2 blocks concurrently. Thus, the resources allocated per-block affects the overall

parallelism that can be exploited from the GPU.

1.3.3 Considerations to be made while programming for GPUs

As seen in the previous sections, several factors must be considered while

designing and implementing algorithms for GPUs. Failure to include these consider-

ations can easily lead to poor performance, and no significant speedup may be noted

over CPUs. In fact, one may even note performance degradation. We list the primary

considerations here:

• In any application, the data transfers between the host and device must be

minimized. Ideally, data is read into the device from the host once and from

the device to the host once.

• Thread access to global memory must be coalesced, i.e., successive threads must

read successive locations in global memory.

15

• Shared memory access must be free of bank conflicts as much as possible—in

general, this means avoiding strided shared memory access.

• The amount of shared memory and registers allocated for each block is kept

minimum.

1.3.4 Software for programming NVIDIA GPUs

As described, the CUDA programming interface allows developing general-

purpose GPU applications—however, there are other options. The OpenCL frame-

work [26] is used to write applications that can be ported across a variety architectures

including NVIDIA GPUs. and introduces almost no extra code. Several GPU ac-

celerated libraries [1] allow existing applications to be ported to GPUs by offering

compatibility with industry standard CPU libraries. The OpenACC [2] toolkit allows

portions of code to be offloaded to GPU accelerators simply by use of compiler direc-

tives, similar to OpenMP. This makes porting existing applications extremely easy.

Many frameworks for scientific computing such at PETSc [3] also allow the use of

GPUs for most of their functionality.

We use the CUDA interface because it fully exposes the features of the un-

derlying architecture that can be exploited. This is especially important due to the

complex computational and memory access patterns involved in our algorithms.

1.4 Tridiagonal solvers for compact finite differ-

ence evaluation

As mentioned in 1.2.4, this work is concerned with tridiagonal compact finite

differences for their relative ease in evaluation. The resulting tridiagonal system must

16

be solved repeatedly for all lines of grid points in the computational grid. For a regular

Cartesian grid (generally employed in DNS), the coefficients of the tridiagonal systems

are the same for each grid line, and only the right hand sides are different. Thus, the

compact finite difference evaluation effectively requires the solution of a tridiagonal

system for several right hand sides. In this section, we describe the applicability of

some algorithms for solving this problem on the GPU. We refer to [6] for a more

comprehensive list of algorithms, along with details of their GPU implementation.

1.4.1 Thomas algorithm

b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4

. . .

. . .

an bn

x1

x2

x3

x4
...

...

xn

=

d1

d2

d3

d4
...

...

dn

(1.6)

Traditionally, the Thomas algorithm is employed for solving general linear

systems of the form Ax = d, where A is a tridiagonal matrix with diagonals a, b and c

[Eq. (1.6)]. The algorithm is derived from the more general Gaussian (LU) algorithm

applied to tridiagonal matrices. Implementations of this algorithm are relatively

straightforward and compact [24]. Only the non-zero diagonals of the tridiagonal

matrix are stored, and the algorithm performs 2N steps to solve the system. It is also

stable for diagonally dominant matrices. The Thomas algorithm has an algorithmic

complexity of O(N), and is the fastest serial solver for tridiagonal systems. It is

17

thus well suited to solution by a single CPU thread. While the algorithm itself is

sequential, in a multithreaded environment, the different CPU threads may be used

to solve the different independent tridiagonal systems simultaneously.

A similar parallelization strategy may be extended to GPUs, where each GPU

thread solves an independent tridiagonal system. The coefficient right hand sides are

assumed to be stored contiguously as a single array in memory. If each thread works

entirely with global memory, uncoalesced memory access is observed. This cost may

be amortized for a large enough number of systems, as is the case for 3-D problems

[25]. If shared memory is used, then low parallelism is exhibited, as the amount

shared memory allocated by each thread is relatively high (4N). An approach that

uses the parallel Thomas algorithm effectively is described by Chang et al. [5]. Here,

a parallel cyclic reduction algorithm is first used to reduce a tridiagonal system into

several smaller tridiagonal system, and the parallel Thomas algorithm is then used

to solve the smaller systems in parallel.

1.4.2 Cyclic reduction

Two other popular algorithms for solving tridiagonal systems are the cyclic

reduction (CR) and the related parallel cyclic reduction (PCR) algorithms.

The cyclic reduction algorithm consists of two phases: forward reduction and

backward substitution (Fig. 1.4). In the forward reduction phase, every even-indexed

equation i is expressed as a linear combination of equations i, i−1 and i+ 1, yielding

a new tridiagonal system of n/2 equations in n/2 unknowns [Eqs. (1.7) - (1.10)]. The

process is repeated until a system of 2 equations in 2 unknowns is left.

18

.

.

.

.

.

.

.

.

Figure 1.4: Cyclic reduction.

a′i = −ai−1k1 (1.7)

b′i = bi − ci−1k1 − ai+1k2 (1.8)

c′i = −ci+1k2 (1.9)

d′i = di − di−1k1 − di+1k2 (1.10)

where,

k1 =
ai
bi−1

(1.11)

k2 =
ci
bi+1

(1.12)

19

The 2-by-2 system of equations is solved trivially, yielding xn and xn/2. In

the backward substitution phase, every odd-indexed unknown xi is solved for by

substituting the known values of xi−1 and xi+1 [Eq. (1.13)].

xi =
d′i − a′ixi−1 − c′ixi+1

b′i
(1.13)

For the last index i = n, the forward reduction step is instead:

a′n = −an−1k1 (1.14)

b′n = bn − cn−1k1 (1.15)

d′n = dn − dn−1k1 (1.16)

And for i = 1, the backward substitution step is instead:

x1 =
d′1 − c′1x2

b′1
(1.17)

In practice, the right-hand side vector can be safely overwritten with the solution

values in backward substitution.

Thus, in the best case (n parallel processors), cyclic reduction requires 2log2(n)−

1 steps. For even moderately large n, this is significantly smaller than the 2n steps re-

quired by the Thomas algorithm. This makes cyclic reduction a good fit for massively

parallel architectures like GPUs.

1.4.3 Parallel cyclic reduction

The parallel cyclic reduction (PCR) algorithm has only the forward reduction

phase. The first forward reduction step is applied to the odd and even indexed

equations seperately, yielding two reduced systems of size n/2. Forward reduction

20

GPU

Tridiagonal system with multiple RHS

Thread block

Threads within

block

Figure 1.5: Mapping work to blocks and threads: systems are mapped to blocks and
indices are mapped to individual threads.

applied to both of these systems then yields four reduced systems of size n/4. The

process is repeated till n/2 2-by-2 systems are left, all of which can be solved trivially.

The PCR algorithm requires half the number of steps required by CR (log2(n)),

but does significantly more computation per-step. Further, unlike CR, PCR can be

implemented free of bank conflicts [30].

1.4.4 Cyclic reduction implementation on GPUs

The algorithm proposed in this work is based on cyclic reduction, so it is

pertinent to discuss the implementation of cyclic reduction on GPUs, the associated

issues, and the relevant literature.

In the GPU implementation of cyclic reduction, blocks are assigned to tridiag-

onal systems (when solving multiple systems), and threads within a block are assigned

to equations, or indices (Fig. 1.5). In this way, several grid lines are solved concur-

rently by the GPU. During the forward reduction phase, the threads assigned to each

21

Figure 1.6: Updating b in the first forward reduction step.

even index i compute the coefficients and right hand side for the reduced tridiago-

nal system a′i, b
′
i and c′i and d′i. In practice, the coefficients and right hand side are

updated in-place. Figure 1.6 shows the updates to the coefficient array b in the first

forward reduction step, a similar pattern is seen for the arrays a, c and d. In each

step of forward reduction, a thread accesses values from the coefficient arrays and

right hand side in a strided fashion. At every subsequent step, this stride is doubled,

while the number of active threads is halved 1.4. In the backward substitution phase,

the strides are halved at each step, while the number of active threads is doubled.

Several issues are encountered in the GPU implementation:

1. GPU utilization is low towards the end of forward reduction, and in the begin-

ning of backward substitution.

2. Because coefficients and right hand sides are updated in-place, synchronization

between the blocks is required at the end of each step.

3. If the threads work entirely with global memory, memory accesses are increas-

22

ingly uncoalesced in the forward reduction phase (and become increasingly co-

alesced in the backward substitution phase).

4. The use of shared memory prevents uncoalesced global memory access. Un-

fortunately, the power-of-two strides at each successive leads to bank conflicts,

as described in Sec. 1.3.2. The bank conflicts become increasingly severe at

each forward reduction phase, and decreasingly so during the back substitution

phase.

5. The limited amount of shared memory places restrictions on the size of tridiag-

onal systems that can be solved, and also on the number of systems that can

be solved concurrently.

Despite these issues, cyclic reduction remains an attractive algorithm for GPUs,

for its low algorithmic complexity, and lower work per step compared to PCR. Much

work has been done on addressing these problems and optimizing cyclic reduction

performance on GPUs. Zhang et al. [30] propose a hybrid solver that uses both

cyclic reduction and parallel cyclic reduction to reduce the number and severity of

bank conflicts, and also to have better thread activity overall. Göddeke et al. [11]

use a method of separately storing the even and odd indexed equations to arrive at

a bank-conflict free solver at the cost of additional shared memory usage. Davidson

et al. [8] describe the method of register packing—performing more computations

on registers, rather than shared memory—as a means to reduce shared memory us-

age in cyclic reduction. Esfahanian et al. [9] avoid shared memory (and associated

bank conflicts entirely) using a data rearrangement scheme to improve global mem-

ory access. Our approach takes a different route, and is focused on exploiting the

specific matrix structure to reduce the number of computations and memory accesses

performed by each thread at every cyclic reduction step.

23

Chapter 2

Proposed tridiagonal algorithm

2.1 Modified cyclic reduction for near-Toeplitz sys-

tems

Here, we explore the idea of exploiting the relatively simple matrix structure

of the coefficient matrix appearing in tridiagonal compact finite difference schemes.

The coefficient matrix A for tridiagonal schemes has the following general form:

A =

b1 c1

a0 b0 c0

a0 b0 c0

a0 b0 c

. . .

. . .

an bn

(2.1)

24

where, in general

a0 6= an

b1 6= b0 6= bn

c1 6= c0

We refer to matrices with this specific structure as near-Toeplitz tridiagonal matrices,

and the corresponding linear systems as near-Toeplitz tridiagonal systems. These ma-

trices appear in a wide range of applications [27] such as alternating direction implicit

methods, line relaxation methods, and numerical solutions to one-dimensional differ-

ential equations. We describe an approach for solving such near-Toeplitz tridiagonal

systems efficiently on GPUs.

Below, we present the effect of the matrix structure [Eq. (2.1)] on the forward

reduction and backward substitution phases of the cyclic reduction algorithm.

2.1.1 Forward reduction

The forward reduction phase reduces a n − by − n system of equations to a

2− by− 2 system of equations in log2(n)− 1 steps, by applying Eqs. (1.7) - (1.10) to

every even-indexed equation at each step. When solving the tridiagonal systems with

the same coefficient matrix, but repeatedly for different right hand sides, we note that

the results of Eqs. (1.7) - (1.9) remain unchanged for the different right hand sides.

These results correspond to the coefficients of the tridiagonal system produced at each

forward reduction step. Thus, given a tridiagonal system, we may precompute the

coefficients of all the reduced systems appearing in the forward reduction steps, and

reuse them for each right-hand side. We note that for a general tridiagonal system,

25

this requires storage for 3.(2n − 2) coefficients, in addition to the 3n coefficients for

the original tridiagonal system.

Let us consider the case when the tridiagonal system is near-Toeplitz, i.e.,

when the coefficient matrix is of the form A in Eq. (2.1). We examine the effect of

the first forward reduction step by making the following substitutions in Eqs. (1.7) -

(1.9):

a2 = a3 = a4 = . . . ≡ a0

b2 = b3 = b4 = . . . ≡ b0

c2 = c3 = c4 = . . . ≡ c0

We observe that the resulting coefficients a′i, b
′
i and c′i correspond to the coefficients

of a tridiagonal matrix with exactly the near-Toeplitz structure of A. This form-

preserving property of cyclic reduction has been reported for block Toeplitz tridiag-

onal systems by Bini et al. [4].

The fact that the reduced system at each step is near-Toeplitz can be exploited

to reduce the cost of precomputing and storing the coefficients. Each near-Toeplitz

matrix is completely defined by only a handful of coefficients: {b1, c1, a0, b0, c0, an, bn},

making its storage extremely compact compared to the case of general tridiagonal sys-

tems. In addition, it is advantageous to precompute and store the auxiliary variables

k1 and k2, which can similarly be stored compactly. With all the forward reduction

coefficient matrices and auxiliary variables precomputed and stored, the mth forward

reduction step for equation i is reduced only to the right hand side update:

d′i = di − di−1km1 − di+1k
m
2 (2.2)

26

where km1 and km2 are precomputed values of k1 and k2 for all “inner” equations at

the mth step. For the “outer” equations i = 2 and i = n, we have instead:

d′2 = d2 − d1km1,1 − d3km2 (2.3)

d′n = dn − dn−1km1,n (2.4)

here km1,2 and km1,n are precomputed values of k1 for the “outer” equations at the mth

step.

2.1.2 Backward substitution

The backward substitution step for all equations i > 1 is

xi =
d′i − amxi−1 − cmxi+1

bm
(2.5)

where am, bm and cm are the precomputed coefficients for i > 1 at the step m. For

the first equation, we have instead:

x1 =
d′1 − cmx2

bm1
(2.6)

where bm1 is the coefficient computed for i = 1 at step m.

2.2 Implementation

In this section, we describe the implementation of a GPU solver for solving a

given near-Toeplitz tridiagonal system for multiple right hand sides. Our implemen-

tation uses the NVIDIA CUDA platform for programming the GPU, but is easily

translated to OpenCL. The Python programming language is used to interface with

27

Figure 2.1: Maximum storage required for forward reduction coefficients at all steps
m = 1, 2, ...log2(n)− 1

CUDA, by use of the PyCUDA [14] library. We develop two approaches based on

the common idea of precomputed forward reduction coefficients—one that leverages

the GPU’s shared memory, and the other working directly with global memory. The

GPU kernels for both implementations are relatively straightforward and compact,

spanning no more than 100 lines of code (see Appendix).

2.2.1 Precomputing forward reduction coefficients

Figure 2.1 shows the maximum amount of storage required for storing each

of the coefficients {b1, c1, a0, b0, c0, an, bn}, or auxiliary variables k1 and k2. A careful

analysis of the forward reduction and backward substitution equations reveals that

the actual amount of storage is somewhat less. For instance, the values bmn are unused

in Eqs (2.2) - (2.6). The values amn and bmn are required only for solving the 2− by− 2

28

Tridiagonal system with multiple RHS

Right hand sides stored

contiguously in GPU memory

Each block works one one region

of the contiguous array

Figure 2.2: Storing right hand sides and mapping to thread blocks.

system at the end of the forward reduction phase, i.e., for m = log2(n)− 1, and they

are not stored for the previous steps. Similarly, the values cm1 are equal to cm0 , and

do not require separate storage. The set of precomputed coefficients required to be

stored is then {am0 , bm0 , cm0 , km1 , km2 , bm1 , km1,1, km1,n}. Each of these “coefficient arrays”

are computed on the CPU and transferred to the GPU. Additionally, the two scalars

a
log2(n)−1
n and b

log2(n)−1
n are required for the 2-by-2 solve. The right hand sides that the

system must be solved for are stored in a single contiguous array in GPU memory 2.2.

The precomputed coefficient arrays and the right hand side array are passed as inputs

to the compute kernels that implement the modified cyclic reduction. We describe

two implementations of the kernels, the first works entirely with global memory, and

the second leverages the GPU’s shared memory.

2.2.2 Global memory implementation

This implementation works entirely on the GPU’s global memory, Here, we

define two kernels - one for the forward reduction step, and the other for the backward

29

Global memory Global memory

Shared memory

Global memory

 multiple kernel launches

single kernel launch

Figure 2.3: Thread activity in shared memory (top) and global memory (bottom)
implementations.

30

substitution step. Each kernel is called log2(n)−1 times. An extra call to the forward

reduction kernel performs the two-by-two solve. At each step, the size of the thread

blocks is determined by the stride between elements accessed at that step. For the

forward reduction phase, we use n/2 threads per block for the first step, n/4 threads

for the second step, and so on. The pattern is reversed for the backward substitution

phase, beginning with 2 threads per block for the first step. Although this ensures

that there are no inactive threads at any stage, the occupancy of the GPU is still very

low during the end of forward reduction and the end of backward substitution. The

precomputed coefficient arrays and right hand are accessed by the kernels from global

memory. The kernel suffers from strided memory access for the right-hand side, but

the precomputed coefficient values are accessed without major coalescing problems.

Further, by precomputing the forward reduction coefficients, we greatly reduce the

number of computations (and thus the number of uncoalesced memory accesses).

2.2.3 Shared memory implementation

In the shared memory approach (Fig. 2.3), we launch a single kernel to perform

the entire cyclic reduction solve. The kernel is launched with n/2 threads per block.

Each thread block is allocated a block of shared memory of size n/2. Each thread of a

block performs the first reduction step [Eq. (2.2)] by accessing the required values di,

di−1 and di+1 from global memory, storing the result in shared memory. In subsequent

reduction steps, di, di−1 and di+1 are accessed from shared memory, avoiding the un-

coalesced global memory accesses seen in the global memory implementation. In each

back substitution step, threads overwrite the existing values in shared memory with

the values of the solution. In the final step, shared memory is filled completely with

the even-indexed solution values. Each thread then computes an odd-indexed solution

31

value, storing it directly in global memory and copies the even-indexed solution value

from shared memory to global memory. The entire solution is done in a single kernel

launch to hide the latency of memory transfers between global and shared memory.

Explicit synchronization between the threads of a block is required within the kernel

at the end of each step.

The shared memory implementation suffers from two major issues: first, the

number of active threads is halved at each forward reduction step, (and subsequently

doubled at each backward reduction step). Synchronization between threads of a

block is necessary at each step. Thus, a significant portion of the kernel execu-

tion time is spent by idle threads waiting for active threads to complete execution.

Secondly, the strided access to the right-hand side values leads to bank-conflicts.

However, the number of bank conflicts is significantly smaller than in cyclic reduc-

tion implementations for general tridiagonal systems, due to the reduced number of

computations performed.

32

Chapter 3

Application to compact finite

difference evaluation

3.1 Introduction

Here, we discuss the application of the tridiagonal solver developed in the pre-

vious section to the evaluation of compact finite differences—which are used widely

in the direct numerical simulation of fluid flows. In typical DNS applications, the

computational domain considered is a 3-dimensional, regular, Cartesian grid with

nx, ny and nz grid points and grid spacing of dx, dy and dz in the respective coor-

dinate directions (Fig. 3.1). Structured grids such as these are widely used because

they lend themselves naturally to finite-difference methods. To resolve all the spatial

features of the flow, the grid spacing is kept very small. Consequently, to simulate

flows of practical sizes, the number of grid points must be very large. Because of the

high computational cost and memory requirements associated with the large number

of grid points parallelism becomes mandatory. We have spoken so far of GPUs as

massively parallel systems. However, each GPU has a very limited amount of global

33

z
x

y

dx

nz

ny

nx

Figure 3.1: Computational domain in 3-D.

memory: current NVIDIA Tesla K20 GPUs have about 4 Gigabytes. Thus, to accom-

modate the larger problem sizes in DNS, the use of multiple GPUs is necessary, which

introduces a second level of parallelism. In the next section, we describe strategies to

distribute the problem domain among the GPUs in such dual-level parallel systems.

3.2 Compact finite difference evaluation on paral-

lel GPU systems

The computation of derivatives using compact finite differences involves two

primary steps:

1. The evaluation of the right hand sides of Eq. (1.1) at each grid point.

2. The solution of the tridiagonal system [Eq. (1.1)] for each line of grid points.

Both of these operations are amenable to parallel operations. The right hand

side calculation is a pointwise stencil operation, i.e., at every point in the domain,

the value of the right hand side is computed as a combination of function values at

that point and its neighbouring points. The stencil operations at individual points

34

Block 2

Direction of derivative evalutaion

Block 1

Block 3

Block 4

GPU 1

Figure 3.2: Compact finite differences - single GPU

are independent, making the overall calculation highly parallelizable. The solution of

the tridiagonal systems is of course parallelizable, as has been discussed in previous

sections.

Without loss of generality, we consider the parallelization of compact finite

difference evaluations for 2-dimensional problems. We assume that the derivative is

being calulated for the coordinate direction along which elements are stored contigu-

ously in memory, i.e., the “fastest” coordinate direction.

3.2.1 Single GPU

For a single GPU (Fig. 3.2), when calculating the right hand sides, each

point in the grid is mapped to a single thread, and each thread applies the required

stencil operation to compute the right hand side at that point. We note that threads

near the left and right boundaries apply a different stencil from the interior threads.

The implementation of GPU kernels for stencil operations such as these is a topic of

wide study. The most important considerations were brought out in the paper by

Micikevicius et al. [18]. For solving the tridiagonal systems, each thread block of the

GPU is mapped to a different grid line aligned along the direction the derivatives are

35

Direction of derivative evalutaion

GPU 1

GPU 2

GPU 3

GPU 4

Block 2

Block 1

Block 3

Block 4

Block 2

Block 1

Block 3

Block 4

Block 2

Block 1

Block 3

Block 4

Block 2

Block 1

Block 3

Block 4

No inter-GPU communication

required

Figure 3.3: Compact finite differences - multiple GPUs on same node

being calculated. The right hand sides are stored contiguously along these grid lines

(as in Fig. 2.2), and the modified cyclic reduction algorithm developed can be used

to solve for the derivatives.

3.2.2 Multiple GPUs on a single node

Here, we consider the case of multiple GPUs on a single shared memory node,

i.e., multiple GPUs attached to the same PCI-e bus. In this case, every GPU is visible

36

GPU 4

Direction of derivative evalutaion

GPU 1

GPU 2

GPU 3

No inter-GPU communication

required

Figure 3.4: Compact finite differences - distributed GPUs and restricted in one di-
rection

to the host, and the GPUs read from and write into the same host memory space.

The domain is divided into a number of “subdomains,” as shown in 3.3. The domain

decomposition is done such that only a single subdomain is used along the coordinate

direction of the derivatives. This is the method presented by Sakharnykh et al. [25],

and it has the advantage that no coordination between GPUs is required: each GPU

is assigned an independent set of grid lines to solve.

37

GPU 4

Direction of derivative evalutaion

GPU 1

GPU 2

GPU 3

GPU 1 GPU 2 GPU 3 GPU 4

Direction of derivative evalutaion

Figure 3.5: Compact finite difference evaluation in both coordinate directions

3.2.3 Distributed GPUs - restricted in one direction

For larger problems, a distributed system is nearly always required. Here, the

simplest strategy is to use a domain decomposition as shown in Fig. 3.4. Here again,

no inter-GPU communication is required. By restricting the distribution along one

coordinate direction, the ease of solution of the tridiagonal systems is maintained.

3.2.4 Distributed GPUs in all directions

The above domain decomposition strategies are convenient, but can be im-

practical for some cases. For instance, let us consider the evaluation of derivatives in

the other coordinate direction (Fig. 3.5). Because the grid lines aligned along this

direction must reside on the same GPU, it follows that:

1. A global transposition or rearrangement of the data is required, such that each

38

GPU now contains data for grid lines aligned in the direction orthogonal to

the previous direction. For distributed systems, this transposition can be an

extremely expensive process.

2. For domains that are much longer along one coordinate direction compared to

the other(s), the subdomains may become impractically slender.

Such decomposition strategies are therefore, generally applicable when compact fi-

nite difference schemes are used only in a single direction. For the other coordinate

directions, explicit finite difference schemes may be used, which have the disadvan-

tages discussed earlier. To accommodate compact finite difference schemes in all the

coordinate directions, the domain decomposition generally must be performed in all

directions, as shown in Fig. 3.6. In this strategy, the grid lines in all coordinate

directions are interrupted by the subdomain boundaries. Thus, inter-GPU communi-

cation is required. For the right hand sides evaluation, each GPU must communicate

information at the subdomain boundaries with neighbouring GPUs. For example, in

Fig. 3.6, the right-most grid points in the subdomain of GPU 2 require data from

the left-most grid points in the subdomain of GPU 6 when evaluating derivatives

in the horizontal direction. Similarly, the left-most grid points in the subdomain of

GPU 6 require data from the right-most grid points in the subdomain of GPU 2.

Thus, a “swapping” of the boundary information is required at each of the subdo-

main boundaries. The solution of the distributed tridiagonal systems involves much

more complexity, and is discussed in detail in the next section.

39

GPU 8

GPU 5

GPU 6

GPU 7

GPU 4

GPU 1

GPU 2

GPU 3

Distributed GPUs -

inter-GPU communiction:

via interconnect (MPI)

Figure 3.6: Compact finite differences - distributed GPUs in all directions

40

3.3 Distributed tridiagonal solver

3.3.1 General algorithm

We use the algorithm proposed by Mattor et al. [17] for solving the distributed

tridiagonal systems. For a general tridiagonal system Ax = r, the algorithm begins

by partitioning the matrix and right-hand side among the P processes. Each process

p is then associated with the following subsystems

Apup = rp
u (3.1)

Aplp = rp
l (3.2)

Apxp
r = rp (3.3)

expanded as:

bp1 cp1

ap2 bp2 cp2

ap3 bp3 cp3

ap4 bp4 cp4
. . . cpm−1

apm bpm

xpr,1

xpr,2

xpr,3

xpr,4
...

xpr,m

=

rp1

rp2

rp3

rp4
...

rpm

(3.4)

(3.5)

41

bp1 cp1

ap2 bp2 cp2

ap3 bp3 cp3

ap4 bp4 cp4
. . . cpm−1

apm bpm

up1

up2

up3

up4
...

upm

=

−ap1

0

0

0

...

0

(3.6)

bp1 cp1

ap2 bp2 cp2

ap3 bp3 cp3

ap4 bp4 cp4
. . . cpm−1

apm bpm

lp1

lp2

lp3

lp4
...

lpm

=

0

0

0

0

...

−cpm

(3.7)

We refer to the subsystem in Eq. (3.4) as the “primary” system, and the subsystems

in Eqs. (3.6) and (3.7) as the “secondary” systems. Additionally, the following

“reduced” system must be constructed andsolved:

42

l1m −1

−1 u21 l21

u2m l2m −1

−1 u31 l31

u3m l3m −1

.

−1 uP1

β1

α2

β2

α3

β3

...

αP

=

x1r,m

x2r,1

x2r,m

x3r,1

x3r,m
...

xPr,1

(3.8)

The local part of the solution is obtained as a linear combination of the solutions to

the primary and secondary systems:

xp = xp
r + αpup + βplp (3.9)

where αp and βp are obtained from the solution of the reduced system.

3.3.2 Specialization for compact finite difference evaluations

The algorithm described in Sec. 3.3.1 is applicable to a single tridiagonal

system distributed across several processors. When solving a distributed tridiagonal

system for several distributed grid lines, we note that the secondary systems [Eq.

(3.6) and Eq. (3.7)] are dependent only on a, b and c, the tridiagonal coefficients

of the global tridiagonal system. These are the same for all local grid lines, so they

are solved for a single local grid line in each subdomain. Only the system in Eq.

(3.4) is solved for all the grid lines in a subdomain. For a single tridiagonal system,

the reduced system requires global communication of the values {up1, upm l
p
1, l

p
m x

p
r,1x

p
r,m}

from each process p. When solving for several grid lines, the left hand side may be

43

assembled for a single grid line. The right hand sides, however, must be assembled

for every grid line, and the system is solved for each right hand side.

3.4 GPU implementation

The algorithm for our distributed nearo-Toeplitz solver (NEATO) is outlined

in Fig. 3.7, and is described for the case of evaluating derivatives in the direction

along which successive function values in a subdomain are stored contiguously in

memory, i.e., the “fastest” coordinate direction. Each step of the algorithm must

be implemented on the GPU to avoid data transfer to and from the CPU, which is

prohibitively expensive for large problems. Thus, we have several kernels to implement

the algorithm. For communication of data between processes, we use the Message

Passing Interface (MPI), and leverage the NVIDIA GPUDirect Technology for GPU-

GPU communication. MPI is interfaced via the mpi4py [7] Python library. The

purpose of each CUDA kernel and MPI call used is described in Table 3.1.

The secondary systems [Eq. (3.6) and Eq. (3.7)] are solved on the CPU, and

the results are transferred to the GPU. The primary system [Eq. (3.4)] must be solved

for each of the local grid lines in a subdomain, as the right hand sides are different at

each of the local grid lines. The evaluation of the right hand sides are pointwise stencil

computations, which require communication of the function values at the boundaries

of the subdomains. This is achieved using a halo-swapping technique with dedicated

contiguous halo arrays for each subdomain, as communication of non-contiguous MPI

data types is expensive on the GPU. The primary system is solved for all the local grid

lines using the NEATO solver. The set up and solution of the reduced system requires

global communication of the boundary information from the solutions up, lp and xp
r.

The tridiagonal coefficients of the reduced system are set up easily, by communicating

44

Figure 3.7: Algorithm for evaluating compact finite differences on multiple GPUs,
(right: CUDA kernels and MPI calls used)

45

Table 3.1: Purpose of kernels and MPI calls in compact finite difference application

Memcpy3d Copy noncontiguous boundary
information of the function val-
ues to and from contiguous halo
arrays

ISend, IRecv Perform halo swaps with i-1 and
i+1 processes

computeRHSKernel Apply pointwise stencil operator
to compute RHS at each grid
point in the subdomain, using the
halo values near the boundaries

NEATO Solve the primary near-Toeplitz
tridiagonal systems for the com-
puted right hand sides, giving xr

copyFacesKernel Copy the left and right faces of xr
into a single contiguous array

MPI Gather Gather the data required to as-
semble the reduced system at
rank 0

reducedSolverKernel Solve the reduced systems for pa-
rameters αp and βp for each grid
line

MPI Scatter Scatter the parameters αp and βp

from rank 0 to all the processes
sumSolutionsKernel Sum the primary and secondary

solutions to compute the local
part of the solution

46

Figure 3.8: Construction of the reduced system and scattering of parameters.

the boundary elements from up and lp, which are the same for every local grid line

in each subdomain. The right hand sides require significantly more communication,

as they are assembled from the boundary elements of xp
r, which are different for each

local grid line in each subdomain. Thus, the boundary “faces” of each subdomain need

to be communicated. These faces are first copied into a contiguous array, and these

arrays are gathered at rank 0 to assemble the right-hand sides of the reduced system

(Fig. 3.8). This communication strategy has the effect of producing interleaved right

hand sides aligned along the “slowest” co-ordinate direction, i.e., the right hand side

values for neighbouring grid points are located far apart in memory. As the reduced

47

systems are quite small relative to the primary systems,, we use the convenient,

but rather inefficient p-Thomas algorithm to solve the systems. The solution of the

reduced systems produces the parameters αp and βp, which are scattered back to the

respective processes, p. Finally, the summing of the solutions is a pointwise operation

that is easily implemented on the GPU. For evaluation of compact finite differences

in other coordinate directions, a local permutation of the data is performed on the

input data (function values) before applying the above algorithm. and again on the

output data (derivative values).

48

Chapter 4

Results

4.1 Performance of GPU tridiagonal solver

In this section we present a performance overview of our NEATO solver against

a multi-threaded Intel MKL solver and the CUSPARSE GPU solver (dgtsv and

dgtsvStridedBatch respectively). The MKL solver uses Gaussian elimination with

partial pivoting, and the CUSPARSE solver uses a combination of Cyclic Reduction

and Parallel Cyclic Reduction as described by Zhang et al. [30]. These solvers

represent the most straightforward way to compute solutions for tridiagonal systems

and are highly optimized for performance on underlying architectures. boundary

conditions may prevent the matrix from being symmetric and/or diagonally dominant,

precluding the use of more specialized tridiagonal solvers.

The CPU code is compiled with the Intel C compiler (version 15.0), and run

(with OpenMP support) on up to 16 independent cores of the the same shared-

memory node (one thread per core). The CPU is an Intel Xeon Processor E5-2670

v2 (2.50 GHz, 25 MB Smart Cache). GPU code is compiled with the CUDA toolkit

(version 6.5.14), and run on the NVIDIA Tesla K20 Accelerator. When measuring

49

GPU performance (both CUSPARSE and NEATO), we do not include the cost of

data transfer between the CPU and GPU. This is because the tridiagonal solver

is expected to be part of a larger application. This is in keeping with the timing

strategies in related literature.

The -O2 level compiler optimizations are turned on for both CPU and GPU

code; no further optimization options are enabled in either case. Of course, we use

double precision for all solvers. The timings reported are kernel execution times, i.e.,

the time for all kernel(s) to execute completely before returning the program control

to the CPU. All timings are averaged over 100 tridiagonal solves.

4.1.1 NEATO: global memory v/s shared memory perfor-

mance

32 64 128 256 512 1024 2048

System size (Number of systems = system size)

0.02 0.02

0.03 0.03

0.06 0.06

0.12 0.12

0.25 0.25

0.50 0.50

1.00 1.00

2.00 2.00

4.00 4.00

8.00 8.00

16.00 16.00

Ti
m

e
 t
o
 s

o
lv

e
 s

y
st

e
m

s
(m

s)

NEATO (global memory)

NEATO (shared memory)

Figure 4.1: Comparison of global memory and shared memory implementations of
NEATO (2D problems).

In Figs. 4.1 and 4.2, we report the performance of the two solvers for the case

50

32 64 128 256 512

System size (Number of systems = system size2)

0.06 0.06

0.12 0.12

0.25 0.25

0.50 0.50

1.00 1.00

2.00 2.00

4.00 4.00

8.00 8.00

16.00 16.00

32.00 32.00

64.00 64.00

128.00 128.00

256.00 256.00

Ti
m

e
 t
o
 s

o
lv

e
 s

y
st

e
m

s
(m

s)

NEATO (global memory)

NEATO (shared memory)

Figure 4.2: Comparison of global memory and shared memory implementations of
NEATO (3D problems).

Nrhs = n and Nrhs = n2. These cases correspond to tridiagonal systems arising in 2-

D and 3-D problems respectively. We note that the shared memory implementation

offers better performance in nearly all cases. However, the relative speedup from

using shared memory diminishes with increasing problem size. For larger problem

sizes, the synchronization costs associated with inactive threads leads to poor shared

memory performance.

4.1.2 Comparison of NEATO with Intel MKL and CUSPARSE

solvers

In Fig. 4.3 and 4.4, we provide the relative performance of Intel MKL and

CUSPARSE solvers and compare against the NEATO shared memory implementa-

tion. The relative performance for each problem size is obtained by normalizing the

solver timings by the timing for the NEATO solver for that problem size. Table 4.1

51

32 64 128 256 512 1024 2048

System size (Number of systems = system size)

0 0

2 2

4 4

6 6

8 8

10 10

12 12

R
e

la
ti

v
e

 t
im

e
 t

o
 s

o
lv

e
 s

y
st

e
m

s

Intel MKL 1 core

Intel MKL 2 cores

Intel MKL 4 cores

Intel MKL 8 cores

Intel MKL 16 cores

CUSPARSE

NEATO solver

Figure 4.3: Relative solver performance for 2-D problems. Relative time defined as:
Time taken by solver/Time taken by NEATO solver

32 64 128 256 512

System size (Number of systems = system size2)

0 0

1 1

2 2

3 3

4 4

5 5

6 6

R
e

la
ti

v
e

 t
im

e
 t

o
 s

o
lv

e
 s

y
st

e
m

s

Intel MKL 1 core

Intel MKL 2 cores

Intel MKL 4 cores

Intel MKL 8 cores

Intel MKL 16 cores

CUSPARSE

NEATO solver

Figure 4.4: Relative solver performance for 3-D problems. Relative time defined as:
Time taken by solver/Time taken by NEATO solver

52

shows the timings of the various solvers to solve different problem sizes. Note that

data is missing for the CUSPARSE solver for the 5123 3-D case, as the GPU was

unable to accomodate this problem size—this is due to the large amount of scratch

space required by the CUSPARSE implementation.

4.2 Performance of compact finite difference ap-

plication

The timings for the compact finite difference application were measured on

the Clemson University Palmetto Cluster, using NVIDIA Tesla K20 and K40 GPUs.

The K40 GPUs were used for the largest problem sizes. Each compute node on the

cluster is equipped with up to 2 GPUs, and nodes are connected by 56 Gbps Infiniband

interconnect. We use Open MPI 1.8.1 configured with OpenFabrics support.

The timings reported are wall clock times with global synchronization between

processes performed before and after evaluation of the derivatives. All timings are

averaged over 100 evaluations of the function derivatives in each coordinate direction.

We make it clear that our reported problem sizes represent the actual size of problem

data. Although it may be considered sufficient to run tests on a single line of processes

for measuring the compact finite difference solver performance, we set up and solve the

problem for the entire computational domain. In the context of a larger simulation,

global synchronization between the processes is typically performed before and after

the evaluation of derivatives, and it is important to consider the related overhead.

53

T
ab

le
4.

1:
P

er
fo

rm
an

ce
of

In
te

l
M

K
L

,
C

U
S
P

A
R

S
E

an
d

N
E

A
T

O
so

lv
er

s.

T
im

e
to

so
lv
e
(m

s)
S
y
st
em

si
ze

N
u
m
b
er

o
f
sy
st
em

s
M
K
L

1
co

re
M
K
L

8
co

re
s

C
U
S
P
A
R
S
E

N
E
A
T
O

(g
lo
b
a
l)

N
E
A
T
O

(s
h
a
re
d
)

3
2

3
2

0
.0
4
5

0
.0
4
2

0
.2
7
3

0
.2
0
1

0
.0
2
4

6
4

6
4

0
.0
4
8

0
.0
4
8

0
.2
7
1

0
.2
4
7

0
.0
2
5

1
2
8

1
2
8

0
.0
8
9

0
.0
8
4

0
.2
7
1

0
.2
8
4

0
.0
3
2

2
5
6

2
5
6

0
.2
6
3

0
.1
0
7

0
.3
0
5

0
.3
2
6

0
.0
6
6

5
1
2

5
1
2

0
.9
5
9

0
.2
9
9

0
.6
2
9

0
.4
0
3

0
.2
7
2

1
0
2
4

1
0
2
4

3
.7
7
5

1
.0
2
3

1
.9
3
9

1
.3
7
5

1
.2
5
2

2
0
4
8

2
0
4
8

1
6
.2
7
2

4
.8
2
3

7
.6
0
7

5
.8
1
1

1
0
.4
0
7

3
2

1
0
2
4

0
.1
5
2

0
.0
9
4

0
.3
1

0
.2
0
7

0
.0
9
2

6
4

4
0
9
6

0
.8
7
9

0
.3
0
6

0
.5
5
6

0
.7
5
1

0
.4
0
9

1
2
8

1
6
3
8
4

7
.0
5
2

2
.5
5
3

3
.1
2
8

3
.6
6
9

2
.2
2
5

2
5
6

6
5
5
3
6

6
3
.8
5
8

1
8
.7
9
2

2
8
.4
9
5

2
1
.1
4
8

1
2
.5
6
5

5
1
2

2
6
2
1
4
4

5
1
5
.7
9
2

1
9
6
.7
4
8

1
4
5
.3
4

1
2
5
.3
1
1

54

dfdx dfdy dfdz
0

5

10

15

20

25

30

35

40

Ti
m
e
 t
a
ke
n
 (
m
s) Halo swaps

RHS
Primary systems
Reduced systems
Summing solutions
Permutations

Figure 4.5: Solving problem sized 10243 on 64 GPUs

dfdx dfdy dfdz
0

50

100

150

200

250

Ti
m
e
 t
a
ke

n
 (
m
s) Halo swaps

RHS
Primary systems
Reduced systems
Summing solutions
Permutations

Figure 4.6: Solving problem sized 20483 on 64 GPUs

4.2.1 Performance profiling

Figures 4.5 - 4.6 show the time taken by the different steps of the compact

finite difference solver. We note that for the larger problem size, the evaluation of the

primary systems (using the NEATO solver) constitutes a larger majority of the total

runtime, which justifies our efforts in optimizing the tridiagonal solver. For evaluation

of the derivatives in the y− and z− directions, we note that a significant portion of

the runtime is dedicated to performing permutations of the input and output data.

55

1 8 64

Number of GPUs

1

10

100

Ti
m
e
 t
o
 s
o
lv
e
 i
n
 m

s

dfdx
dfdy
dfdz

Figure 4.7: Strong scaling for multi-GPU compact finite difference, problem size:
2563.

We attribute this to our näıve implementation of the permutation kernels (no shared

memory usage).

4.2.2 Strong and weak scaling

Figures 4.7 - 4.10 show the strong and weak scaling of the compact finite

difference solver for evaluating derivatives in all three coordinate directions. For the

strong scaling measurement, we keep the problem size fixed and increase the number

of GPUs used to solve the problem. For the weak scaling measurement, we keep the

problem size per GPU fixed, and increase the number of GPUs used. The strong

scaling for larger problems is somewhat better as the GPU is kept more busy.

56

1 8 64

Number of GPUs

1

10

100

1000

Ti
m
e
 t
o
 s
o
lv
e
 i
n
 m

s

dfdx
dfdy
dfdz

Figure 4.8: Strong scaling for multi-GPU compact finite difference, problem size:
5123.

1 8 27 64

Number of GPUs

1

10

Ti
m
e
 t
o
 s
o
lv
e
 i
n
 m

s

dfdx
dfdy
dfdz

Figure 4.9: Weak scaling for multi-GPU compact finite difference, problem size: 1283

per process.

57

1 8 64

Number of GPUs

10

100

Ti
m
e
 t
o
 s
o
lv
e
 i
n
 m

s
dfdx
dfdy
dfdz

Figure 4.10: Weak scaling for multi-GPU compact finite difference, problem size:
2563 per process.

Table 4.2: Time (ms) to compute derivatives in the fastest coordinate direction -
comparison with reference implementation [19]

Size
Ref. impl, #CPU cores NEATO-based, #GPUs
8 64 512 1 8 64

2563 79.5 20.8 11.1 19.9 5.17 2.79
5123 556.8 146.5 29.2 164.5 23.24 5.62
10243 5188 1092 223.7 - 174.9 24.49
20483 - - 1741 - - 297.07

58

2563 5123 10243 20483

Problem size

0

2

4

6

8

10

S
p
e
e
d
u
p
 o
v
e
r
re
fe
re
n
ce

 i
m
p
le
m
e
n
ta
ti
o
n

1 socket

8 sockets

64 sockets

Figure 4.11: Speedups over reference implementation for computing derivative in the
fastest coordinate direction

4.2.3 Comparison with a CPU-only approach

We also compare the performance of our compact finite difference solver with

the approach described by Mohd-Yusof et al. [19], implemented for CPUs. The ap-

proach uses a distributed tridiagonal solver based on the LU decomposition specialized

for tridiagonal systems. The problem is divided among individual CPU cores, com-

municating via MPI. For comparing timings, we use the number of CPU sockets as

the basis. Each CPU socket uses 8 CPU cores and 1 GPU. Thus, we maintain a ratio

of 1:8 between GPUs and CPU cores in our comparison. Table 4.2 shows timings

for computing derivatives in the fastest coordinate direction for problems sized up to

20483, and Fig. 4.11 shows the respective speedup using our implementation.

59

Chapter 5

Conclusions and Future Work

We have presented an efficient approach for evaluating compact finite differ-

ences on GPU-accelerated clusters. At the core of our approach is a fast tridiagonal

solver for the resulting linear systems. Here, we make use of the simple matrix struc-

ture to obtain better performance. The applicability of this strategy to the parallel

cyclic reduction (PCR) algorithm, and to other hybrid approaches is yet to be studied.

The integration of this approach to our current DNS codes is yet to be per-

formed. To ameliorate the cost of host-device transfers, it is likely that other portions

of the code will also need to be ported to GPUs. However, most of the computational

patterns followed in the rest of the code have been covered in the current work, and

fewer challenges are likely to be faced in this process. Strategies for the evaluation of

compact finite differences on other parallel architectures is of great interest, especially

for the Intel Many Integrated Core (MIC) architectures.

60

Appendix

Here, we include the CUDA kernels for both the global memory and shared

memory based implementations of the NEATO algorithm.

1 __global__ void forwardReductionKernel(const double *a_d,

2 const double *b_d,

3 const double *c_d,

4 double *d_d,

5 const double *k1_d,

6 const double *k2_d,

7 const double *b_first_d,

8 const double *k1_first_d,

9 const double *k1_last_d,

10 const int n,

11 int stride)

12 {

13 int tix = threadIdx.x;

14 int offset = blockIdx.x*n;

15 int i;

16 int j, k;

17 int idx;

18 double x_j, x_k;

19

20 // forward reduction

21 if (stride == n)

22 {

23 stride /= 2;

24 j = log2((float)stride) - 1;

25 k = log2((float)stride); // the last element

26 x_j = (d_d[offset+stride-1]*b_d[k] - c_d[j]*d_d[offset+2*stride-1])/ \

27 (b_first_d[j]*b_d[k] - c_d[j]*a_d[k]);

61

28

29 x_k = (b_first_d[j]*d_d[offset+2*stride-1] - d_d[offset+stride-1]*a_d[k])/ \

30 (b_first_d[j]*b_d[k] - c_d[j]*a_d[k]);

31 d_d[offset+stride-1] = x_j;

32 d_d[offset+2*stride-1] = x_k;

33 }

34 else

35 {

36 i = (stride-1) + tix*stride;

37 idx = log2((float)stride) - 1;

38 if (tix == 0)

39 {

40 d_d[offset+i] = d_d[offset+i] - \

41 d_d[offset+i-stride/2]*k1_first_d[idx] - \

42 d_d[offset+i+stride/2]*k2_d[idx];

43 }

44 else if (i == (n-1))

45 {

46 d_d[offset+i] = d_d[offset+i] - d_d[offset+i-stride/2]*k1_last_d[idx];

47 }

48 else

49 {

50 d_d[offset+i] = d_d[offset+i] - \

51 d_d[offset+i-stride/2]*k1_d[idx] - \

52 d_d[offset+i+stride/2]*k2_d[idx];

53 }

54 }

55 }

1 __global__ void backwardSubstitutionKernel(const double *a_d,

2 const double *b_d,

3 const double *c_d,

4 double *d_d,

5 const double *b_first_d,

6 const double b1,

7 const double c1,

8 const double ai,

9 const double bi,

10 const double ci,

11 const int n,

12 const int stride)

13

62

14 {

15 int tix = threadIdx.x;

16 int offset = blockIdx.x*n;

17 int i;

18 int idx;

19

20 i = (stride/2-1) + tix*stride;

21

22 if (stride == 2)

23 {

24 if (i == 0)

25 {

26 d_d[offset+i] = (d_d[offset+i] - c1*d_d[offset+i+1])/b1;

27 }

28 else

29 {

30 d_d[offset+i] = (d_d[offset+i] - (ai)*d_d[offset+i-1] - \

31 (ci)*d_d[offset+i+1])/bi;

32 }

33 }

34 else

35 {

36 // rint rounds to the nearest integer

37 idx = rint(log2((double)stride)) - 2;

38 if (tix == 0)

39 {

40 d_d[offset+i] = (d_d[offset+i] - \

41 c_d[idx]*d_d[offset+i+stride/2])/b_first_d[idx];

42 }

43 else

44 {

45 d_d[offset+i] = (d_d[offset+i] - \

46 a_d[idx]*d_d[offset+i-stride/2] - \

47 c_d[idx]*d_d[offset+i+stride/2])/b_d[idx];

48 }

49 }

50 }

1 __global__ void shmemCyclicReductionKernel(double *a_d,

2 double *b_d,

3 double *c_d,

4 double *d_d,

63

5 double *k1_d,

6 double *k2_d,

7 double *b_first_d,

8 double *k1_first_d,

9 double *k1_last_d,

10 const double b1,

11 const double c1,

12 const double ai,

13 const double bi,

14 const double ci)

15 {

16 /*

17

18 */

19 __shared__ double d_l[{{shared_size | int}}];

20

21 int tix = threadIdx.x;

22 int offset = blockIdx.x*{{n}};

23 int i, j, k;

24 int idx;

25 double d_j, d_k;

26

27 /* When loading to shared memory, perform the first

28 reduction step */

29 idx = 0;

30 if (tix == 0) {

31 d_l[tix] = d_d[offset+2*tix+1] - \

32 d_d[offset+2*tix]*k1_first_d[idx] - \

33 d_d[offset+2*tix+2]*k2_d[idx];

34 }

35 else if (tix == ({{(n/2) | int}}-1)) {

36 d_l[tix] = d_d[offset+2*tix+1] - \

37 d_d[offset+2*tix]*k1_last_d[idx];

38 }

39 else {

40 d_l[tix] = d_d[offset+2*tix+1] - \

41 d_d[offset+2*tix]*k1_d[idx] - \

42 d_d[offset+2*tix+2]*k2_d[idx];

43 }

44 __syncthreads();

45

46 /* First step of reduction is complete and

64

47 the coefficients are in shared memory */

48

49 /* Do the remaining forward reduction steps: */

50 for (int stride=2; stride<{{(n/2) | int}}; stride=stride*2) {

51 idx = idx + 1;

52 i = (stride-1) + tix*stride;

53 if (tix < {{n}}/(2*stride)) {

54 if (tix == 0) {

55 d_l[i] = d_l[i] - \

56 d_l[i-stride/2]*k1_first_d[idx] - \

57 d_l[i+stride/2]*k2_d[idx];

58 }

59 else if (i == ({{n}}/2-1)) {

60 d_l[i] = d_l[i] - \

61 d_l[i-stride/2]*k1_last_d[idx];

62 }

63 else {

64 d_l[i] = d_l[i] - d_l[i-stride/2]*k1_d[idx] - \

65 d_l[i+stride/2]*k2_d[idx];

66 }

67 }

68 __syncthreads();

69 }

70

71 if (tix == 0) {

72 j = rint(log2((float) {{(n/2) | int}})) - 1;

73 k = rint(log2((float) {{(n/2) | int}}));

74

75 d_j = (d_l[{{n}}/4-1]*b_d[k] - \

76 c_d[j]*d_l[{{n}}/2-1])/ \

77 (b_first_d[j]*b_d[k] - c_d[j]*a_d[k]);

78

79 d_k = (b_first_d[j]*d_l[{{n}}/2-1] - \

80 d_l[{{n}}/4-1]*a_d[k])/ \

81 (b_first_d[j]*b_d[k] - c_d[j]*a_d[k]);

82

83 d_l[{{n}}/4-1] = d_j;

84 d_l[{{n}}/2-1] = d_k;

85 }

86 __syncthreads();

87

88 idx = rint(log2((float) {{n}}))-2;

65

89 for (int stride={{n}}/4; stride>1; stride=stride/2) {

90 idx = idx - 1;

91 i = (stride/2-1) + tix*stride;

92 if (tix < {{n}}/(2*stride)){

93 if (tix == 0) {

94 d_l[i] = (d_l[i] - c_d[idx]*d_l[i+stride/2])/\

95 b_first_d[idx];

96 }

97 else {

98 d_l[i] = (d_l[i] - a_d[idx]*d_l[i-stride/2] -\

99 c_d[idx]*d_l[i+stride/2])/b_d[idx];

100 }

101 }

102 __syncthreads();

103 }

104

105 //When writing from shared memory, perform the last

106 //substitution step

107 if (tix == 0) {

108 d_d[offset+2*tix] = (d_d[offset+2*tix] - c1*d_l[tix])/b1;

109 d_d[offset+2*tix+1] = d_l[tix];

110 }

111 else {

112 d_d[offset+2*tix] = (d_d[offset+2*tix] - \

113 ai*d_l[tix-1] - ci*d_l[tix])/bi;

114 d_d[offset+2*tix+1] = d_l[tix];

115 }

116

117 __syncthreads();

118 }

66

Bibliography

[1] NVIDIA GPU accelerated libraries. https://developer.nvidia.com/

gpu-accelerated-libraries.

[2] OpenACC Web page. http://www.openacc.org/.

[3] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune,
Kris Buschelman, Lisandro Dalcin, Victor Eijkhout, William D. Gropp, Dinesh
Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Karl Rupp, Barry F.
Smith, Stefano Zampini, and Hong Zhang. PETSc Web page. http://www.

mcs.anl.gov/petsc, 2015.

[4] Dario Bini and Beatrice Meini. On cyclic reduction applied to a class of Toeplitz-
like matrices arising in queueing problems. In WilliamJ. Stewart, editor, Com-
putations with Markov Chains, pages 21–38. Springer US, 1995.

[5] Li-Wen Chang, John A Stratton, Hee-Seok Kim, and Wen-Mei W Hwu. A
scalable, numerically stable, high-performance tridiagonal solver using GPUs. In
Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, page 27. IEEE Computer Society Press, 2012.

[6] Li-Wen Chang and W Hwu Wen-mei. A guide for implementing tridiagonal
solvers on GPUs. In Numerical Computations with GPUs, pages 29–44. Springer,
2014.

[7] Lisandro Dalćın, Rodrigo Paz, and Mario Storti. MPI for Python. Journal of
Parallel and Distributed Computing, 65(9):1108–1115, 2005.

[8] Andrew Davidson and John D. Owens. Register packing for cyclic reduction: A
case study. In in Workshop on General Purpose Processing on Graphics Process-
ing Units, pages 1–6, 2011.

[9] Vahid Esfahanian, Behzad Baghapour, Mohammad Torabzadeh, and Hossain
Chizari. An efficient GPU implementation of cyclic reduction solver for high-
order compressible viscous flow simulations. Computers & Fluids, 92:160–171,
2014.

67

https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
http://www.openacc.org/
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc

[10] Bengt Fornberg. Generation of finite difference formulas on arbitrarily spaced
grids. Mathematics of computation, 51(184):699–706, 1988.

[11] Dominik Göddeke and Robert Strzodka. Cyclic reduction tridiagonal solvers on
GPUs applied to mixed precision multigrid. IEEE Transactions on Parallel and
Distributed Systems (TPDS), Special Issue: High Performance Computing with
Accelerators, 22(1):22–32, January 2011.

[12] Christopher A Kennedy and Mark H Carpenter. Several new numerical meth-
ods for compressible shear-layer simulations. Applied Numerical Mathematics,
14(4):397–433, 1994.

[13] David B Kirk and W Hwu Wen-mei. Programming massively parallel processors:
a hands-on approach. Newnes, 2012.

[14] Andreas Klöckner, Nicolas Pinto, Yunsup Lee, B. Catanzaro, Paul Ivanov, and
Ahmed Fasih. PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU
Run-Time Code Generation. Parallel Computing, 38(3):157–174, 2012.

[15] A.G. Kravchenko and P. Moin. On the effect of numerical errors in large eddy
simulations of turbulent flows. Journal of Computational Physics, 131(2):310 –
322, 1997.

[16] Sanjiva K Lele. Compact finite difference schemes with spectral-like resolution.
Journal of Computational Physics, 103(1):16–42, 1992.

[17] Nathan Mattor, Timothy J Williams, and Dennis W Hewett. Algorithm for
solving tridiagonal matrix problems in parallel. Parallel Computing, 21(11):1769–
1782, 1995.

[18] Paulius Micikevicius. 3d finite difference computation on GPUs using CUDA. In
Proceedings of 2nd workshop on general purpose processing on graphics processing
units, pages 79–84. ACM, 2009.

[19] J Mohd-Yusof, D Livescu, and T Kelley. Adapting the CFDNS Compressible
Navier-Stokes Solver to the Roadrunner Hybrid Supercomputer. DEStech Publi-
cations, Inc, 2010.

[20] J. Nickolls and W.J. Dally. The GPU computing era. Micro, IEEE, 30(2):56–69,
March 2010.

[21] NVIDIA. NVIDIAs next generation CUDA compute architecture: Kepler
GK110. 2011.

[22] NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture
Programming Guide. NVIDIA Corporation, 2007.

68

[23] D. W. Peaceman and Jr. Rachford, H. H. The numerical solution of parabolic and
elliptic differential equations. Journal of the Society for Industrial and Applied
Mathematics, 3(1):pp. 28–41, 1955.

[24] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cam-
bridge University Press, New York, NY, USA, 2007.

[25] N. Sakharnykh. Efficient tridiagonal solvers for adi methods and fluid simulation.
NVIDIA GPU Technology Conference, September 2012.

[26] John E. Stone, David Gohara, and Guochun Shi. Opencl: A parallel program-
ming standard for heterogeneous computing systems. IEEE Des. Test, 12(3):66–
73, May 2010.

[27] Xian-He Sun. Application and accuracy of the parallel diagonal dominant algo-
rithm. Parallel Computing, 21(8):1241–1267, 1995.

[28] Bulent Tutkun and Firat Oguz Edis. A GPU application for high-order compact
finite difference scheme. Computers & Fluids, 55:29–35, 2012.

[29] Zhangping Wei, Byunghyun Jang, Yaoxin Zhang, and Yafei Jia. Parallelizing al-
ternating direction implicit solver on GPUs. Procedia Computer Science, 18:389–
398, 2013.

[30] Yao Zhang, Jonathan Cohen, and John D. Owens. Fast tridiagonal solvers on
the GPU. SIGPLAN Not., 45(5):127–136, January 2010.

69

	Clemson University
	TigerPrints
	12-2015

	A novel approach to evaluating compact finite differences and similar tridiagonal schemes on GPU-accelerated clusters
	Ashwin Trikuta Srinath
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction and Background
	Motivation
	Compact finite differences
	General form of compact finite difference schemes
	Wavenumber analysis of finite difference methods
	Boundary conditions
	Tridiagonal compact schemes

	Graphics processing units
	The CUDA Programming model
	CUDA architecture and memory model
	Considerations to be made while programming for GPUs
	Software for programming NVIDIA GPUs

	Tridiagonal solvers for compact finite difference evaluation
	Thomas algorithm
	Cyclic reduction
	Parallel cyclic reduction
	Cyclic reduction implementation on GPUs

	Proposed tridiagonal algorithm
	Modified cyclic reduction for near-Toeplitz systems
	Forward reduction
	Backward substitution

	Implementation
	Precomputing forward reduction coefficients
	Global memory implementation
	Shared memory implementation

	Application to compact finite difference evaluation
	Introduction
	Compact finite difference evaluation on parallel GPU systems
	Single GPU
	Multiple GPUs on a single node
	Distributed GPUs - restricted in one direction
	Distributed GPUs in all directions

	Distributed tridiagonal solver
	General algorithm
	Specialization for compact finite difference evaluations

	GPU implementation

	Results
	Performance of GPU tridiagonal solver
	NEATO: global memory v/s shared memory performance
	Comparison of NEATO with Intel MKL and CUSPARSE solvers

	Performance of compact finite difference application
	Performance profiling
	Strong and weak scaling
	Comparison with a CPU-only approach

	Conclusions and Future Work
	Appendix
	Bibliography

