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ABSTRACT 

 

 Heat sealing is one of several methods used to weld thermoplastic materials in 

packaging. Heat seals were made between Dow 501i LDPE and DuPont Nucrel 1202HC poly 

(ethylene co-methacrylic acid).  The seals were exposed to sodium hydroxide solution so that 

the methacrylic acid sites of the DuPont Nucrel 1202HC were neutralized with a sodium ion.  

This was done to make diffusion measurements.  Two side heated tooling sealing was used to 

make seals at 40 psi (276kPa), 1.0 second dwell, and temperatures ranging from 200oF (93.3oC) 

to 300oF (148.9oC).  Energy dispersive x-ray spectroscopy, a function of scanning electron 

microscopy, was used to measure the presence of sodium and therefore diffusion of the 

methacrylic acid sites.  The methacrylic sites are part of the polymer chain, and were tagged 

from the sodium hydroxide.  It was possible to estimate polymer chain diffusion distance based 

on a sodium trace, as well as an oxygen trace. 

 Then this method was used to measure diffusion on samples of 501i and 1202HC sealed 

at various temperatures.  Diffusion was compared to seal temperature and to seal strength.  The 

results of this study are different from previous findings.  It was found that with this system 

diffusion distance is not correlated to seal strength.  It was also found that for this system 

diffusion distance is not correlated with sealing temperature.  However, it was found that both 

sodium and oxygen can be used to estimate diffusion in this polymer system.  
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INTRODUCTION 

 
 Plastics are a versatile type of packaging which are new to the market as of the last 100 

years.  Depending on the physical properties and chemical structure, plastics can be rigid or 

flexible, clear or opaque, a good barrier or a poor barrier.  A commonly used type of flexible 

packaging is film.  In order for this film to become a useful package, it needs to assume some 

sort of form. One way to form plastic films is the heat seal. 

 One way that packaging experts classify seals is into categories of fusion seals and 

peelable seals.  Fusion seals are stronger than the sum of their parts, the materials making the 

fusion seal will break before the seal does.  Peelable seals are designed to come apart before 

the material does.  Many seal structures can be made into either peelable seals or fusion seals 

depending on the process conditions. 

 An area of interest is diffusion at the seal interface.  The seal interface is the area of the 

seal where the polymers are brought into contact.  When the sealable polymer system is 

homogeneous, the seal interface should be indistinguishable from the bulk.  If the polymers in a 

seal are chosen carefully, then it may be possible to quantify the diffusion or mixing at the seal 

interface.  Since many polymer types used in packaging are chemically similar to each other, 

choosing a polymer system which is similar enough to seal yet is dissimilar enough to be 

differentiated is challenging.  This choice becomes even more important since polymer diffusion 

at the seal interface is estimated to be less than 10 microns. If this diffusion distance could be 

reliably quantified, then it may be possible to correlate seal strength and seal temperature. 

 A previous study done by (Cooper, 2014) showed that the diffusion distance at the seal 

interface could be reliably quantified.  These data were correlated to seal strength and seal 
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temperature.  The current research sought to address several of the questions left unanswered 

at the conclusion of the previous research. 

 There were five primary goals of this research.  The first goal was to further the 

understanding of heat sealing.  The second goal was to eliminate the possibility of ion hopping.  

Ion hopping is a phenomenon which may occur when sealing ionomers.  In such systems, the 

ionic bonds may dissociate during sealing, allowing the ions to “hop” from one polymer chain to 

another.  The third goal was to eliminate the possibility of material extension during seal testing.  

The fourth goal was to explain the transition from peelable to fusion seal with diffusion based 

data.  The fifth goal was to improve the scanning electron microscope technique for examining 

non-conductive, low density samples like polymers.  All but one of the goals was accomplished, 

the fourth goal.  The polymer system was not compatible enough to form fusion seals, so no 

transition from peelable to fusion seals could be studied. 
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LITERATURE SEARCH  

 It is likely that packaging has been used since humans began to use tools.  It has been 

hypothesized that the first package used was a wrapping of leaves (Emblem & Emblem, 2012).  

When the need to store larger quantities of food came about after the rise of agriculture, clay 

jars began to appear.  Clay jars or clay pots have been dated to 8,000 B.C.  Glass packaging was 

developed several millennia later, around 1,500 B.C.  Packaging, until the industrial revolution, 

was based on the bulk storage of goods, as the predominant lifestyle of the time was farming.  

During the industrial revolution, people began to move into cities where space was limited.  A 

shift began towards smaller packages.  Rather than the consumer bringing large quantities of 

goods to their home, the consumer would take a container to the store where it would be filled 

by the store keeper.  When this method became too cumbersome for the consumer, the stores 

began to pre-package goods for the convenience of the consumer.  When pre-packaging goods 

became too cumbersome for the store, items were packaged at their point of production.  

Brand names began to develop after items were packaged at the point of production (Emblem & 

Emblem, 2012).  

 Shifts in consumer behavior prompted changes to packaging in the mid to late 1900’s.  

The average family size declined, leading to smaller food packages (Emblem & Emblem, 2012).  

Single parent households, and households where both parents worked led to the development 

of foods which could be ready to eat quickly.  Freezers and refrigerators became common in the 

home, so food could be preserved longer.  Microwave ovens were developed, which opened a 

market for microwave safe packaging.  A smaller portion of total income was spent on food in 

the United States in the mid to late 1900’s than in previous centuries, allowing for some luxury 
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food purchases.  It became common to manufacture or produce goods internationally.  

Internationally produced products need to survive distribution through a more complex supply 

chain.  As the population began to live longer, a market sector was created with easy open 

features in mind.  The proliferation of the modern supermarket led to a need for product 

differentiation.  Finally, there was a move from rigid glass or rigid metal containers to flexible 

plastic or rigid plastic containers (Emblem & Emblem, 2012). 

 The accumulation of these changes during the mid to late 1900’s necessitated that the 

modern package perform many functions.  The modern package must contain, protect, 

preserve, provide convenience, inform, and be designed for a specific point of sale (Soroka, 

2009).   

 The function of containment means that the product must stay in the package until the 

intended end user interacts with the product.  The product must not come out of the package 

until it is intended to do so.  Product spills can have economic and environmental costs.  Product 

leaking from the package can also pose a food safety hazard.  The severity of cost associated 

with a leaking product depends on the product, but it is best practice to avoid leaking 

containers.   

 The package must protect the product from a variety of hazards from the point of origin 

to the point of use by the consumer.  The product should arrive to the consumer in an 

undamaged condition.  Protection can be required from one or a combination of: shock, 

vibration, compression, changing atmospheric conditions, exposure to light, pests, theft, and 

various other hazards.    
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 Preservation provides the function of extending the shelf life of the product.  A well-

designed preservation technique allows the product to withstand a longer (less expensive) 

distribution cycle, as well as allowing the consumer to keep the product longer after purchase.  

An example of a well-designed preservation technique is a bag of potato chips.  Exposed to light 

or oxygen, potato chips will go rancid in a matter of days.  However, when the light blocking and 

low oxygen permeability potato chip package is filled with potato chips and nitrogen, the potato 

chips can stay fresh over several weeks.   

 Packaging needs to provide the consumer with convenience.  For the consumer, it is 

convenient to have an easy open container, closing feature, portion control, and microwavable 

products.  It is also convenient to have a package designed for dispensing the product it is 

intended to contain.  Both the physical form (liquid, solid, gas, paste) and the nature of the 

product (sticky, fragile, perishable) must be considered when choosing the dispensing 

mechanism of a package (Soroka, 2009).   

 It is essential the package provides the consumer with information.  The consumer 

needs to know nutrition facts, usage instructions, and what the package contains.  Before the 

product reaches the consumer, anyone handling the package needs to know the identity of the 

item inside the package, any special handling considerations, or how to put the product on 

display.  The producer should also put information on the package to track it if there are any 

issues with a particular product, or if a product recall needs to be initiated.   

 The modern package must sell itself on the store shelf.  The package needs to be well 

designed and correctly labeled.  The package also must arrive at the point of sale (or directly to 

the consumer in the case of online shopping) in an acceptable condition.  A modern consumer is 
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faced with a myriad of choices; part of the decision of what product to buy is based on the 

packaging (Hurley, 2014).   

 Many packages employ flexible packaging, which is often made from thermoplastic 

materials.  One of the ways to seal a flexible package is with a heat seal, or other energy based 

seal which causes a seal interface to be created.  Heat sealing is a process which only works with 

thermoplastic materials.  Thermoplastic materials become fluid with the addition of energy 

(Soroka, 2009).  These materials can undergo the process of softening and hardening many 

times.  This process allows for the repeated use of the same polymer, such as when a film is 

made and then sealed. Both the making of a thermoplastic film and the sealing of a 

thermoplastic film require the plastic to soften and harden. 

 Thermoset materials are different from thermoplastic materials in that they cannot be 

shaped more than once (Soroka, 2009).  The polymerization process of thermoset materials can 

be brought on by the mixing of two components, the addition of heat energy, or exposure to a 

high energy source (such as an electron beam or an ultraviolet light source).  Thermoset 

polymers cannot be heat sealed, but they offer the advantage of high chemical and heat 

resistance when compared to thermoplastic materials (Soroka, 2009). 
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OVERVIEW OF SEALING TECHNOLOGIES 

 A seal is a method of closing a package using the flow and adhesion/cohesion properties 

of at least one plastic material (Darby, 2015).  A seal is a type of polymer welding.  If a seal is 

made with thermoplastic materials (a heat seal), energy needs to be applied to the seal 

interface.  Cold seals, such as those used for chocolate bars, do not require energy to be added 

to the system for a weld.  

 When a seal between two polymers is made, the polymers are welded together at the 

polymer seal interface.  The polymers diffuse into each other partially because of energy added 

into the system.  A simplified diagram of diffusion at the seal interface is shown in Figure 1. 

 

Figure 1: Diffusion at the Seal Interface  

 The reason to seal packages is to enable the package to perform its function to contain, 

protect, transport, inform, and dispense (Soroka, 2009).  Most flexible and semi-rigid packages 

employ some type of seal.  Examples of packages where seals are used include: lidding, blister 

packs, shrink wraps, flow wraps, bags, stand up pouches, stick packs, pillow pouches, four side 

seal pouches, retort pouches, tubes, and skin packaging.   

 There are many polymers used for heat sealing.  Heat seals are often made between 

two surfaces of the same polymer.  Dissimilar polymer heat seal compatibility is limited.  Some 

of the many polymers which are used in a heat sealing process include: high density 

polyethylene (HDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), 

polypropylene (PP), oriented polypropylene (OPP), polystyrene (PS), polyethylene terephthalate 
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(PET), amorphous polyethylene terephthalate (APET), ethylene acrylic acid (EAA), ethylene 

methacrylic acid (EMAA), ethylene vinyl alcohol (EVA), and Ionomer (Darby, 2015).  

 Different polymers are chosen for their various material and processing characteristics.  

For example, PP, with its high melting point, is often chosen as the sealant layer in retort pouch 

structures because of the high temperatures in the retort chamber.  Retort is a process which 

uses high temperature to sterilize the product contained in the package (Soroka, 2009). 

 In order to make a heat seal, there are three variables which are considered in most 

systems: time, pressure, and energy.  Time is dependent upon the rate determining step in the 

process.  The slower the process, the longer the cycle time of the machine.  Pressure is required 

for intimate contact between the sealing surfaces.  Without adequate pressure, the sealing 

surfaces (which are rough on a microscopic scale) would not be in intimate contact.  Energy is 

often supplied as heat.  However, heat is not the only form of energy which can set the chains of 

a polymer into motion to form a seal.   

 To define the strength of a seal, a test is performed. A seal strength test is when a 

known width of a seal is tested for strength using a programmable mechanical separation 

method with a load cell. 

Time  

 Time is of importance in a converting operation.  The shorter the time required for a 

seal, the higher the potential productivity of a given piece of equipment.  Cycle time is often not 

as fast as desired because of the mechanical motion of the machine, the thermal resistance of 

the polymer being sealed, and any hot tack requirements of the system.   

 Hot tack is a measure of seal strength just after the seal has been made.  If the hot tack 

is too low, then the speed of a machine must be reduced until the fresh seal can withstand the 
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next step in processing.  Hot tack is especially important in systems where a product “lands” on 

the seal just after the seal is made.  One such system is a vertical form fill and seal (VFFS) 

machine as shown in Figure 2. A form, fill, and seal process is a type of packaging process where 

the package is formed, filled, and sealed in one machine (Emblem & Emblem, 2012).  The 

packaging material is supplied as a formable web on a roll.  The machine is described as a VFFS 

machine if the forming, filling, and sealing process happens in a top down orientation.   

 In quick succession, the seal is made between the seal jaws (item 7) then the product 

drops down the filling tube (item 4) onto the still warm seal.  With inadequate hot tack, the seal 

would break and productivity would be lost. 

 

Figure 2: Simplified Representation of a Vertical Form, Fill, and Seal System (Emblem & Emblem, 2012) 
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 Time is also required for polymer flow to occur.  Simply heating the seal interface to an 

appropriate sealing temperature is often not enough; the seal interface needs to be held under 

pressure for polymer flow to occur.  When the seal interface is given adequate energy, the 

sealable polymer becomes liquid.  A liquid under pressure will flow.  If the two polymers are 

miscible (soluble) in each other, they typically form a seal.   

 An important consideration related to sealing time is the chain length of the polymers 

being sealed.  A polymer chain is a molecule within monomeric components linked together.  

Polymeric chains can be several thousand monomers in length (Soroka, 2009).  The polymer 

chains which make up a free radical polymerized polymer, such as low density polyethylene 

(LDPE), vary in length.  Because of energetic considerations nature tends to have the short 

chains of the polymer at the surface and the longer chains of the polymer in the bulk of the 

polymer.  The reason that short chains are at the surface of the polymer is because of entropy 

and enthalpy.  Enthalpy “seeks” to be low, as it is the sum of internal energy of a system.  

Entropy “seeks” to be high, as it is a measure of disorder.  Having the short chains near the 

surface lowers enthalpy and raises entropy (Qureshi, Stepanov, Capaccio, Hiltner, & Baer, 2001).  

In order to form a strong seal, the long chains in the bulk of the polymer may need to diffuse 

through the short chains at the surface of the polymer and into the seal interface. 

Pressure 

 Pressure is the second variable required for a heat seal.  Pressure during a seal causes 

an intimate contact between the sealant surfaces, and often intimate contact between the 

sealing jaws and the polymer.  Some literature indicates there is no relation between pressure 

used to make the seal and seal strength (Theller, 1989).  However, there is also evidence that 

there is a correlation between seal strength and the pressure used to make the seal 



11 

(Najarzadeh, 2014).  The evidence points to a minimum necessary pressure needed to make the 

seal.  After the minimum pressure has been achieved there is minimal dependence of the seal 

strength on pressure (Najarzadeh, 2014).  In a manufacturing setting, pressure can also be 

important to achieve seals in the presence of film thickness inconsistencies 

Energy  

 Energy, often heat, is another parameter in the heat sealing process.  Thermal energy 

can be supplied to the seal interface externally or internally.  An external supply of energy is 

from a heated platen, or a heated sealing jaw.  Internally supplied energy is energy which has 

been supplied directly to the seal interface by mechanical means or an electromagnetic wave.  

An important consideration in external energy supply is the size of the heated sealing jaw.  If the 

jaw is too small, then it will not be able to store enough heat to operate expeditiously.  Unless 

mentioned otherwise, the sealer being discussed is a two side heated tool sealer with the option 

to adjust the dwell time, the temperature of the tool (also called the seal jaw), and the pressure 

at which the seal is made.  Dwell time is the amount of time that energy is delivered to the 

polymer interface. 

 There are three main types of seals which can be made when heat sealing (Darby, 2015).  

They are: mechanical, chain entanglement, and intermolecular.  A mechanical seal is a physical 

bond.  A mechanical seal can also be made between two non-polymeric materials.  A chain 

entanglement seal is made between two polymer materials when both materials are miscible in 

each other.  An intermolecular seal is a type of bond which is chemical in nature, specifically 

secondary molecular bonds (Darby, 2015).  No chain entanglement occurs in an intermolecular 

seal. 
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 A mechanical seal is a physical bond between a porous material and a material which 

will flow (Darby, 2015).  An example is a polymer sealed to a porous paper.  The polymer, while 

molten, flows into the pores of the paper.  When the polymer hardens after the energy source is 

removed from the system, the polymer is sealed to the paper by being stuck within the pores of 

the paper.  Another type of mechanical seal is made with two layers of paper.  Paper drinking 

straw wrappings are sealed mechanically without the use of heat.  Mechanical seals can also 

occur between a non-woven polymeric material and a polymeric material if the melting points 

are sufficiently different.  The molten polymer flows into the pores of the non-woven material 

just as it flows into the pores of a paper.  It is advantageous to have a porous material sealed to 

a non-porous material in the case of ethylene oxide gas sterilizable medical packaging.  In the 

case of sterilizable medical packaging, the ethylene oxide gas needs to pass into the package 

through the permeable layer before sterilization can occur.  The ethylene oxide gas is then 

removed before the packaging is handled (STERIS Isomedix Services, 2015). 

 A chain entanglement bond is common when heat sealing.  This occurs when the 

polymers in both interfaces are miscible in each other, and the polymer chains from the two 

layers become entangled across the seal interface.  Chain entanglement means the polymer 

chains from one polymer in the system crossed into another polymer in the system (Si, Massa, 

Dalnoki-Veress, Brown, & Jones, 2005).  When the chains at the surface of one polymer achieve 

a high enough energy state, they can move around and interact with the chains at the surface of 

the other polymer in the system.  To achieve miscibility, it is best if the polymers being sealed 

together are the same.  However, in some cases, the polymers do not have to be completely 

identical.  For example, when one polymer is LDPE and the other polymer is a copolymer of 



13 

88.5% LDPE and 11.5% methacrylic acid it is thought that the chains entangle.  This specific 

example will be discussed at length in the following sections.   

 When a chain entanglement seal is being made under pressure, air and other 

contaminants can be pushed out of the seal area.  After the energy source is taken out of the 

system, the newly entangled chains cool in an entangled state.  This causes a bond to form.  The 

bond can be either a peelable seal or a fusion seal.  In the case of a peelable seal, only limited 

entanglement has occurred, and the material is stronger than the seal.  In the case of a fusion 

seal, more entanglement has occurred, and the seal is stronger than the materials of which it is 

made.   

 Intermolecular bonding is another type of bonding possible when sealing.  This is a 

secondary chemical bond made under heated conditions.  A specific example of this type of 

bond is polyethylene co-ethylene acrylic acid (EAA) sealed to aluminum foil.  The aluminum foil 

cannot flow at temperatures accessible to polymer processing nor is it porous, so a mechanical 

seal is impossible.  The bond in this case is caused by intermolecular forces.  This type of bond 

isn’t particularly strong; however, it can be advantageous because no adhesive is required to 

bond a polymeric material to another surface.  It can also be advantageous for peelability.  

 Application of heat transfer theory helps to determine the amount of time it takes to 

raise the temperature of the polymer to the point where it can achieve a bond (Darby, 2015).  

Some heat transfer models are limited by the assumptions necessary to make the related 

equations solvable with calculus.  Some of these assumptions include a constant heat capacity 

through a phase change, and that no energy is released during crystallization.  Another 

assumption made in some models is that the polymer system is comprised of one layer when, in 

fact, many polymer systems have other layers besides the sealant layer.  Even though models 
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are limited by assumptions, the equations can still provide useful insight.  One of the insights 

which models bring is that the seal interface in a heat sealer with two heated plates will reach 

an equilibrium temperature much faster than the same polymer system in heat sealer with one 

heated plate (Darby, 2015). 

 Heat transfer models also helps to explain why a seal cools more slowly than it is 

heated.  This is important to understand because hot tack is often a limiting factor in machine 

speed.  If the hot tack strength is too low, then the machine needs to be run more slowly until 

the seal strength is high enough to run appropriately.  The most common reason that the seal 

cools more slowly than it heats is because it is in direct contact (conduction) with the heated 

seal bars when it is heating, but it is in contact with air when it is cooling (convection). 

 When a chain entanglement seal or mechanical adhesion seal has occurred, there are 

two main types of seals which can occur.  One is a fusion seal.  The fusion seal is a strong seal 

which, in a package, is designed to stay sealed.  The second type of seal is a peelable seal.  The 

peelable seal is designed to open when incorporated into a package, and is sometimes part of 

an easy open feature.   

 Fusion seals are strong seals; the strength of the seal is often stronger than the strength 

of the material.  When a seal strength test is performed on a fusion seal, the material will likely 

break before the seal breaks.  A fusion seal, when used in consumer packaging, often requires 

some type of opening feature.  Opening features which are common to packages with a fusion 

seal are notched tear initiation points, tear strips, and zippers.  A fusion seal is desired in retort 

packages.  A fusion seal is also desired in hot fill packages.  Hot filling is a filling technique that 

keeps the product at temperatures up to 212oF to maintain sterility in a range of products 

(Soroka, 2009).  The package into which the product is hot filled can be sterilized by the heat of 
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the product.  Another use of fusion seals is tamper evidence. When a package sealed by a fusion 

seal is opened, it readily evident that the package has been opened. 

 Peelable seals are weaker than fusion seals.  Peelable seals are designed to open.  When 

a seal strength test is performed on a peelable seal, the seal will somehow break before the 

material breaks.  Peelable seals are common on flexible lid on rigid cup packages, senior friendly 

packages, and other easy open items.  Peelable seals can fail in a number of ways.  An adhesive 

split is a failure which is clean in appearance where the sealant separates from the surface to 

which it was sealed.  A cohesive failure leaves residue behind when the sealant layer breaks 

internally.   

 When the seal strength is tested, the strength is usually measured by a relatively simple 

device with a load cell.  The device has means with which to hold the two “legs” of the seal 

sample.  An example of a jaw system holding a polymer sample is shown in Figure 3.  Once the 

sample is in place, the machine pulls the “legs” of the sample apart at a constant speed.  The 

machine has a load cell to record the force it encounters while pulling the sample apart.  This 

machine can then relate the force the load cell recorded to the relative position of the seal jaws.  

This is the basis of a seal testing machine.   
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Figure 3: Seal Sample in the Jaws of the Satec Instron 

 When a seal test is performed, it is testing both the strength of the material making the 

seal and the seal itself.  If an attempt to isolate the seal is made by laminating the structure to a 

relatively inextensible layer, then the strength of the seal will measure higher (Darby, 2015).  

This will be discussed later in detail.   

 A seal initiation peak is often present when a seal test is performed on a peelable seal 

interface.  A seal initiation peak is visible in Figure 4 from approximately 0.05 inches to 0.11 

inches of seal extension.  The maximum of the seal initiation peak is marked by a triangle.  A seal 

end peak is also sometimes present in a seal curve result, which is visible in Figure 4 from 

approximately 0.36 inches to 0.40 inches of seal extension.  The top of the seal end peak is 

marked by a triangle.  This can be due to a number of reasons.  One reason is that it often takes 

more energy to initiate a tear than it takes to propagate a tear.  Another potential reason that a 
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seal initiation peak is present in many seal curves is that the initial seal area could be thicker due 

to squeeze out.  When the seal is formed, the polymer in the seal area is a liquid under pressure.  

A liquid under pressure flows, and can cause a thicker area to form at the edge of a seal 

interface.   

 Seal tests are performed because seal strengths vary with sealer conditions.  Energy 

applied to the seal, the time the energy was applied to the seal, and the pressure at which the 

energy was applied will change the strength of a seal.  The failure mode of a seal will also often 

change with conditions.  When a fusion seal is measured, the maximum strength is the strength 

recorded for the seal curve as shown in Figure 5.  The small triangle at the top of the curve at 

approximately 0.21 inches of peel extension represents the maximum recorded strength for the 

seal.  When a peelable seal is measured, the average sustained seal strength is measured as 

shown in Figure 4.  The seal strength was determined to be flat from approximately 0.11 inches 

to 0.36 inches.  The seal initiation peak is sometimes ignored in the case of a peelable seal.   

 

 

Figure 4: Example of a Peel Seal Curve 
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Figure 5: Example of a Fusion Seal Curve 

 

 There are three main types of seal curves when dealing with heated tool sealing (Darby, 

2015).  Seal strength vs. Temperature is the most common seal curve.  This curve is used to 

answer the question of how seal strength varies with changes in sealing temperature.  Seal 

strength vs. Time is another less common seal curve.  This seal curve can be used to answer the 

question of how quickly a seal of appropriate strength can be made.  Seal strength vs. pressure 

curves are also less common.  However, they can be useful to find the minimum pressure 

required for an acceptable seal.   

 Transferring the data from a seal curve made in the laboratory into a manufacturing 

environment can be a challenge.  Lab scale sealers behave differently than sealers on the 

manufacturing floor.  A specific example is how the dwell is timed.  There are two ways to 

measure dwell.  The first, and less desirable way, is additive.  The time it takes for the seal bar to 

move from its home position to the polymer being sealed, the time of dwell at the seal, and the 

time it takes for the seal bar to move back to the home position are added to make the “seal” 
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time.  The second way is for the dwell to be timed is to neglect platen travel time and to 

measure the time the platen is in contact with the material to be sealed.  The sealer is able to 

time how long the seal bar is in contact with the polymer.  The second way is a more reliable 

measure since it is more consistent from machine to machine.   

 Other challenges arise when applying seal curve data from a lab sealer to a 

manufacturing process.  Temperature control can be an issue.  It is not likely the manufacturing 

machine and the lab equipment have the same quality of temperature control.  Pressure control 

can be another issue.  It is easier to troubleshoot a lab scale sealer than it is to troubleshoot an 

entire packaging machine. 

Types of sealing 

 The discussion of methods to seal polymer films will be broken up into two sections.  

The first section will deal with external heating of the seal interface.  External heating is when 

energy is supplied to the seal interface externally by direct or indirect contact. The entire 

structure being sealed is often heated as a result.  Figure 6: Diagram Representing External 

Heating is a representative diagram of external heating.  The structure between the heated jaws 

is a structure of research interest.  The 1.00 mil PET is a 1/1000” thick polyethylene 

terephthalate film.  The 2.74 mil Nucrel is a cast film that is a copolymer of polyethylene and 

methacrylic acid.  The 2.57 mil LDPE (low density polyethylene) is a cast film.  The zoom view on 

the right side of Figure 6 is an expanded view of the seal interface.  The seal interface of the 2.74 

mil Nucrel has diffused into the seal interface of the 2.54 mil LDPE.   

 The second section will deal with internal heating of the seal interface.  Internal heating 

is when the energy required for the seal is delivered directly to the seal interface.  Figure 7 is a 

representative diagram of internal heating.  The structure between the jaws is the same as the 
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structure in Figure 6.  The small arrows in the zoom view represent the microscopic motion of 

the polymer interface when energy is applied.  With enough motion, heat is developed from 

friction.  With enough heat, the seal interface of the 2.74 mil Nucrel will diffuse into the seal 

interface of the 2.54 mil LDPE. 

 

Figure 6: Diagram Representing External Heating 

 

Figure 7: Diagram Representing Internal Heating 

 

 Heated tooling sealing is a type of external heating.  The tool (often referred to as the 

seal jaw) is heated.  When the heated tool is brought into contact with the polymer film to be 
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sealed, heat is conducted to the seal interface and a seal is formed.  Most thermoplastic 

materials can be sealed with heated tool sealing.  This common method is easy to understand, 

inexpensive, and cheap to maintain.  However, there are also some disadvantages to heated 

tool sealing.  Hot tack can be an issue for some processes, especially vertical form fill and seal 

(VFFS).  On a VFFS machine, the weight of the product rests on a freshly made seal as part of the 

filling process.  Time is needed for the heated tool to come up to the desired temperature and 

stabilize at that temperature.  Time is also needed for the heat energy to be conducted through 

the polymer structure to the seal interface.  Also, the pressure necessary for the seal interface 

to have intimate contact can cause squeeze out, also called a seal bead.   

 Squeeze out can occur at the edge of the seal interface when the polymer is molten.  

The molten polymer moves from an area of high pressure (in the seal jaws) to an area of low 

pressure (outside of the seal jaws) (Darby, 2015).  Squeeze out is unsightly, and can weaken the 

seal in severe cases.  Heated platen sealing is a type of sealing which is similar to heated tooling 

sealing, except that a distinction is sometimes drawn in that the platen is larger or the platen 

seals several packages at once (Darby, 2015). 

  Impulse sealing is a type of external heating with additional options for control of the 

seal parameters.  With this method, the material enters the seal jaws while the jaws are cool, 

the jaws heat while holding the material under pressure, cool while holding the material under 

pressure, then release the material.  It is possible to control the heating rate, the final 

temperature, the cooling rate, and the end cooling temperature with impulse sealing.  Since 

cooling is part of the sealing cycle, hot tack is less important because the material is at least 

partially cooled when it leaves the seal jaws.  The system is fairly easy to understand, and it is 

able to seal a broad range of thermoplastic polymers.  However, the system also has a higher 
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maintenance cost associated with the heating element burning out.  The high temperature can 

also burn through some materials.  Because of the short time in which the system sustains a 

high temperature, accurate temperature measurements can also be challenging to acquire.  The 

seal made with this system is aesthetically pleasing, but because it is often thin, it can have 

issues with package integrity.  With impulse sealing, it is easier to control the current going into 

the heating element rather than the temperature of the heating element.  The correct current 

setting can vary between systems, making troubleshooting challenging (Darby, 2015).   

 Hot gas sealing is a type of external heating where the material to be sealed is heated by 

a flow of hot gas, then pressed together to form a seal.  The gas used to heat the material can 

be inert (nitrogen), non-oxidizing (carbon dioxide), or atmospheric air depending on the 

requirements of the system (Darby, 2015).  This system is appropriate for use where the product 

being sealed into the package could damage a system with heating jaws.  This system is also 

appropriate where it is impractical to heat the entire structure to make a seal, as the hot gas can 

be directed at the seal interface.  It is impractical to heat the entire structure if the structure is 

thick, does not conduct heat well, or could be damaged by heated jaws.  This method can work 

for any polymer which is heat sealable.  However, due to the heating nature of the system, the 

flow of hot gas can oxidize the surface of the polymer that will become the seal interface.  

Oxidized seal interfaces do not seal well.  The system also does not heat the seal interface as 

quickly as a system with direct contact.  This is because indirect contact (convection) does not 

heat as efficiently as direct contact (conduction).   

 Radiant heating is a type of external heating.  Radiant heating is an indirect contact 

based method where the seal interface is heated before the seal interface has pressure applied.  

This system allows for high line speeds because the heated element in the system does not have 
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to move in order to make the seal.  This system is useful when it is impossible to use a direct 

contact heating system.  An example of a process which uses radiant heating is the bottom seal 

on a bundle of paper towels.  Due to the nature of the processing with some types of 

equipment, a radiant heat seal is sometimes not aesthetically pleasing.  Also, radiant heating has 

limited utility because of the high temperatures required to effectively operate.  By the nature 

of the operation, excess heat is applied to the area around the heat seal.  This makes the use of 

oriented films, or films which tend to distort when heated, challenging. 

 Induction sealing is a type of internal heating.  Induction is: “the production of an 

electric or magnetic state by the proximity (without contact) of an electrified or magnetized 

body” (Merriam-Webster, Incorporated, 2015).  When the alternating magnetic field is rapidly 

alternated, certain metals in the field will heat.  If such a metal is laminated to sealant layer, a 

seal can form (Selke, Culter, & Hernandez, 2004).  Induction sealing is used in the medical 

industry and food industry for sealing lidding to bottles for tamper evidence.  In this process, 

pressure is applied to the seal interface by the force of the cap screwed onto the bottle.  

Heating is controlled by the length of the magnetic field along the line, the line speed, and the 

strength of the magnetic field.  This type of system is simple to set up, and the strength of the 

seal can be controlled by varying the power the magnetic field generator.  However, only 

structures containing metal can be used with this sealing system as the heating of the seal layer 

is based on the heating of an adjacent metal layer.  The presence of metal in the package can 

make metal detection (an important final process in the food and pharmaceutical industry 

before the product is distributed to the consumer) challenging.  Also, the location of metal in 

the vicinity of the inductive field generator needs to be considered.  Any ferrous or aluminum 
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metal too close to the inductive field generator will be heated.  For this reason, the conveyor 

beneath the inductive field generator is often non-metallic.   

 Dielectric sealing is a type of internal heating.  This system uses an oscillating high 

frequency electric field to transmit energy to the seal interface without the use of a metal 

element in the field (Selke, Culter, & Hernandez, 2004).  This system requires the polymer being 

sealed to be polar.  Common polar polymers include: ethylene-vinyl acetate (EVA), nylon, glycol 

modified polyethylene terephthalate (PETG), polyvinyl chloride (PVC), and polyvinylidene 

chloride (PVDC).  Non-polar polymers which will not seal with a dielectric system include: all 

types of polyethylene (PE), crystalline polyethylene terephthalate (CPET), polypropylene (PP), 

and polystyrene (PS), as well as others.  This system is common in non-packaging applications 

where the material to be sealed is susceptible to deformation under the high heat of an external 

sealing method.  This system affords for a good seal appearance since the seal can be cooled 

under pressure.  However, this system has limited application because it can only seal polymers 

which have a certain set of electric qualities including polarity.   

 Ultrasonic sealing is a type of sealing which uses ultrasonic frequencies to direct energy 

to the seal interface.  Ultrasonic is defined as: “having a frequency above the human ear's 

audibility limit of about 20,000 hertz” (Merriam-Webster, Incorporated, 2015).  Ultrasonic 

sealers usually operate in the range from 20,000 hertz (20 kHz) to 40,000 hertz (40 kHz) (Darby, 

2015).  This method of sealing is common with thick structures, which would take too long to 

heat to the appropriate temperature.  Such structures include thick tubes intended for some 

cosmetics, and some retort structures.  The ultrasonic energy causes the two polymer layers 

being sealed together at the interface to rub together rapidly and melt.  The energy is applied 

when the structure is under pressure, so a seal is formed.  This method is useful when the 
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material to be sealed is sensitive to excess heat, or the seal interface is contaminated.  The 

process is high speed, does not form debris, and adaptable to many shapes.  However, an 

ultrasonic sealing system is costly and easy to damage.  Also, certain materials respond better to 

certain frequencies.  So, a change in material may have to result in a change in the tooling on 

the ultrasonic sealer. 

 There are several more technologies also used for heat sealing.  These include: spin 

welding, laser welding, cohesive sealing (also called cold sealing), solvent welding, and 

ultraviolet (UV) sealing.    

 In the research to be conducted for this thesis, the point of interest was to determine 

how far polymer chains move during sealing. When a heat seal is made, it is thought that the 

polymer chains of the seal diffuse into each other across the seal interface. It was previously 

found that diffusion in heat seals is traceable. Diffusion can be defined as: “Movement of a fluid 

from an area of higher concentration to an area of lower concentration” (about.com, 2015). 

When poly(ethylene-co-acrylic acid) was heat sealed to a zinc neutralized ionomer, energy 

dispersive x-ray spectrography (EDX) could be used to trace the diffusion of the zinc ion across 

the heat seal. All tracing was done after the heat seal had been allowed to cool for a minimum 

of 24 hours (Cooper, 2014). 

 When measuring ion diffusion via EDX, some predictions can be made related to the 

accuracy of the measurement. The Anderson-Hasler X-Ray Range is used to predict the depth of 

penetration of an x-ray into the sample. The spatial resolution of the x-ray analysis can also be 

predicted. These predictions are discussed in the materials and methods section and applied in 

the results section. 
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 In previous work, both the slope of the diffusion and the diffusion distance showed a 

strong correlation to seal strength. A steeper slope relates to a more abrupt transition between 

bulk materials.  Slope can be defined as a measure of steepness of a line, or a section of line, 

connecting two points (Study.com, 2015). Increasing the seal temperature caused the slopes of 

diffusion to decrease. A decreased slope was related to an increased diffusion distance. 

Diffusion was measured by ion concentration in the previous study. 

 However, it was unknown based on the findings of a previous study if the diffusion of 

the polymer was traced or if the diffusion of the zinc ion was traced. This is because of a 

phenomenon known as ion hopping. When ion hopping occurs, the ion travels a different 

distance than the bulk of the sample (Cooper, 2014). If the trace ion is added to the heat seal 

after the seal is made, there is not a possibility for ion hopping to occur. 

 Previous work quantifying ion hopping was done on a time scale longer than that of a 

heat seal. The shortest time used where ion hopping was quantifiable was 5 hours at 150oC 

(302oF) (Register & Tierney, 2002).  It was also found that no appreciable ion hopping occurred 

at room temperature over a span of four months. The ions used in the ion hopping study were 

sodium, magnesium, lithium, and calcium. 

 Previous research into diffusion at the heat seal is limited. More research has been 

focused on bonding between dissimilar materials. It is recommended by Grewell that ultrasonic 

sealing be used to bond dissimilar materials (Benatar & Grewell, 2007). Research has been done 

where the adhesion strength of dissimilar polymers was measured. Adhesion strength can be 

defined as the measurement of adhesion, or the attachment between adhesive and substrate 

(Janalta Interactive Inc., 2015).  The research points to the conclusion that a greater number of 
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chain entanglements across a seal interface lead to a higher bond strength (Cole, Cook, & 

Macosko, 2003). In the adhesion strength of dissimilar polymer study, the adhesion strength 

was measured via a crack propagation test. The number of chain entanglements across the seal 

interface was estimated based on a model.  

 Research has been conducted where the mixing of HDPE and LLDPE was studied while 

the materials were kept at molten conditions. The researchers cast a series of microlayers 

(layers less than 50μm thick) of alternating LLDPE and HDPE. When this structure was heated to 

200oC (392oF), diffusion was apparent after 600 minutes when the structure was examined with 

optical microscopy (Baer, et al., 1998).  
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OVERVIEW OF SCANNING ELECTRON MICROSCOPY  

 Scanning Electron Microscopy, or SEM, is an analytical technique based on principles 

similar to light microscopy.  A light microscope, or LM, is the simplest and most common type of 

microscope.  A SEM is similar to a LM as shown in Figure 8.  Both have a sources of illumination, 

lenses, a place upon which to put the specimen, and a detector.  In light microscopy, the source 

of illumination is a light in the visible range.  The condenser lens focuses light onto the 

specimen, the objective lens magnifies the image, and the projection lens further adjusts the 

image to make it suitable for human observation (Spring & Davidson, 2015).  In scanning 

electron microscopy the source of illumination is an electron source, the lenses are 

electromagnetic, and the resultant electrons are detected with an electron detector (Australian 

Centre for Microscopy & Microanalysis, 2014).  It is important to note that in SEM the electrons 

are reflected off of the surface, while in LM the photons are transmitted through the object of 

interest. 
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Figure 8: Comparison of LM to SEM, (Australian Centre for Microscopy & Microanalysis, 2014) 

 

 The resolution of a light microscope is limited by the relatively long wavelengths of 

visible light.  Resolution can be defined as being able to distinguish two points as separate 

entities (Australian Centre for Microscopy & Microanalysis, 2014).  The best resolution 

achievable with light microscopy is approximately 200nm.  To be able to view images at higher 

resolution, a system which utilizes some type of detectable particle with shorter wavelengths is 

needed.  In advanced SEM systems, electrons can be produced so that images recorded from a 

SEM can have resolution as high as 5nm.   

 Other advantages of SEM include high depth of field, the ability to identify and quantify 

elements present in a sample, and high magnification.  Depth of field can be defined as: “the 

range of distance in front of and behind an object focused by an optical instrument, such as a 
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camera or microscope, within which other objects will also appear clear and sharply defined in 

the resulting image” (Dictionary.com,LLC., 2015).  High depth of field means that many parts of a 

sample are able to be viewed at once as a large depth of the image is in focus. 

 The ability to identify and quantify elements present in a sample is called energy 

dispersive x-ray spectrography (EDX).  This technique is rooted in the principle that elements 

give off unique x-ray signatures when they interact with ionizing radiation.  Ionizing radiation 

can be defined as: “radiation with enough energy so that during an interaction with an atom, it 

can remove tightly bound electrons from the orbit of an atom, causing the atom to become 

charged or ionized” (WHO, 2015).  High magnification means up to approximately 1,000,000x 

specimen magnification on some SEM systems as opposed to up to 1,500x specimen 

magnification with LM.  High magnification without high resolution can enlarge microscopic 

features.  However, it is desirable to have high resolution as well as high magnification in order 

to increase the amount of detail visible in a microscopic sample (Science Learning Hub, The 

University of Waikato, 2015).   

 There are also drawbacks to using an SEM system when compared to LM.  SEM images 

are produced in grayscale.  This is because the wavelengths of the collected electrons do not 

directly correlate with the wavelengths of visible light.  The most common types of SEM images 

are akin to intensity maps, things which appear lighter in an unedited SEM image “reflect” 

electrons more efficiently.  Another drawback to using an SEM is that the chamber where the 

electron beam interacts with the sample is in a vacuum.  The sample chamber is held at a 

vacuum because the electron beam must pass through the chamber before it interacts with the 

sample.  If there is atmosphere (nitrogen, oxygen, water vapor, and argon) in the chamber, then 
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the electron beam will interact with the atmosphere before it interacts with the sample.  For 

this reason, atmosphere in the chamber will cause erroneous results.  This means that samples 

must be free of water, do not off-gas under vacuum, and maintain their structural integrity 

under vacuum.  It is best when materials which are examined under an SEM are conductive.  

Since a high voltage electron beam is directed at the sample during analysis, the sample will 

build up charge if it is not grounded.  There are steps to examine non-conductive samples such 

as keeping a minimum atmosphere of approximately 50pa (0.000493 atm) in the sample 

chamber, but resolution is sacrificed. 

 In a SEM, there is a variety of ways to collect information once the electrons interact 

with the surface of the specimen.  To view topographical information of a sample, a detector 

called a secondary electron detector is used.  Secondary electrons are low energy electrons 

emitted from near the surface of a sample, they are ideal to view topographical information on 

the sample (Australian Centre for Microscopy & Microanalysis, 2014).  To view general 

information on the sample, a backscattered electron detector is used.  Backscattered electrons 

“result from elastic interactions between the incident electrons and the target specimen” 

(Bordeaux, 2011).  Backscattered electrons detectors are useful for viewing contrast based on 

elemental composition, as heavier elements appear brighter in the image.  Heavier elements are 

more efficient at back scattering electrons.  For quantitative elemental analysis an energy 

dispersive x-ray spectrography detector, or EDX detector, is used.  X-rays are generated from 

deeper within the sample than backscattered electrons or secondary electrons as shown in 

Figure 9.  For this reason, they are valuable for quantifying the elements in the sample.  In Figure 
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9, the area of the sample being evaluated has been shaded light gray. The sample being 

evaluated is below the heaviest black horizontal line near the top of the figure. 

 

Figure 9: Origin of Detectable Electrons and X-rays after Interaction with Electron Beam (Hafner, 2015) 

When examining sodium concentrations on a sample with low voltage, the x-ray emission of 

interest is a characteristic x-ray called a kβ1 emission.  The naming system will be discussed later 

in this section.   

 For x-ray microanalysis, it is necessary to generate x-rays from the sample.  All elements 

have a critical ionization energy (Ec).  An understanding of the critical ionization energy is 

necessary to the understanding of x-ray microanalysis.  Two definitions of Ec follow. 

Critical Ionization Energy Definitions: 
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“Because the energy of each shell and subshell is sharply defined, the minimum energy 

necessary to remove an electron from a specific shell has a sharply defined value as well.  This 

energy is called the critical ionization or excitation energy EC, also known as the excitation 

potential or x-ray absorption edge energy for example, EK and EL.  Each shell and subshell of an 

atom requires a different critical ionization energy for electron removal…..  The critical 

ionization energy is an important parameter in calculating characteristic x-ray intensities.  As 

discussed in following chapters, for x-ray microanalysis we typically operate the SEM at energies 

two to three times the critical ionization energies of the elements of interest.”(Goldstein, et al., 

2003) 

“Critical Ionization Energy: The electron beam has to transfer an amount of energy greater than 

a critical value to the inner shell electron to ionize the atom.  This energy is called the critical 

ionization energy (Ec); if we’re going to generate X-rays, then the beam energy E0 must be 

greater than Ec.  The value of Ec increases as electrons are more tightly bound to the nucleus, so 

the innermost shell (K) has a higher Ec than the L shell, and so on.” (Williams & Carter, 1996) The 

Ec of each ionized atom is unique and can be quantified.   (Williams & Carter, 1996) 

 Characteristic x-ray measurements can be taken individually, or several can be taken in 

close proximity.  If several hundred are taken in close proximity, meaningful data can be 

collected.  This is called a line scan.  A line scan is an analysis technique on a SEM which moves 

the electron beam probe along a pre-defined line on the sample (Centre for Imaging and 

Analysis, 2015).  The x-ray count rate is correlated to the probe position. If the scan is taken 

across an interface, meaningful concentration data can be collected. It is important to note that 

the spatial resolution of such points can be calculated.  
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 If a line scan is 50μm in length, there are 500 data points collected if each point is 

100nm apart. With a 1.02μm spatial resolution, each point can be envisioned as a circle with a 

radius of 0.51μm.  Each circle overlaps 87.6% with the neighboring circle.  The center of each 

circle is the data collection point.  The centers are 0.1μm apart.  Two circles next to each other 

with the same diameter, and offset a known distance can be referred to as a symmetric lens.  

The area of the symmetric lens can be calculated with trigonometry as shown in Equation 1.  A 

visualization of the area calculated is shown in yellow in Figure 10.  Figure 11 shows the overlap 

of the data points drawn to scale.  The overlap of the points is shown in purple.    

Equation 1: Area of a Symmetric Lens 

𝐴𝑟𝑒𝑎 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝐿𝑒𝑛𝑠 = −
1

2
𝑑√4𝑎2 − 𝑑2 − 2𝑎2 tan−1(

𝑑

√4𝑎2−𝑑2) + 𝜋𝑎2  

 

a= the radius of the circle, 0.51μm 

d= the offset of the circles, 0.1μm 

 

 The area of the circle is 0.817μm2, the area of the symmetric lens is 0.715μm2.  There is 

a 87.6% overlap between sampling areas with a 0.1μm spacing between data points with a 3.00 

keV electron beam examining sodium with a critical ionization energy of 1.07 keV.  This 

calculation is important because it illustrates how smoothing occurs in the original data.  EDX is 

a “noisy” technique which generated data that can be partially smoothed during collection.  

Because EDX is a “noisy” technique, it also is important to use a data analysis method which is 

able to manage the “noise”. A SAS® program was written as a raw data analysis technique.  The 

use of the SAS® program will be discussed later.  The program was written to work with 

averages, so it managed the inherently “noisy” data well.  
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Figure 10: Visualization of a Symmetric Lens, (Wolfram Alpha LLC, 2015) 

 

 

Figure 11: Spatial Resolution Visualization to Scale 

 It is known whether or not the point of interest on the spectra is from sodium because 

of how the electrons move within the electron shell configuration when they are struck with 

ionizing radiation.  When sodium is exposed to ionizing radiation with enough energy, it emits 

an x-ray with 1,071.1 eV of energy (Bearden, 1967).  The x-ray signal for sodium which is being 
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detected is called the kβ1 line.  The “k” denotes the K shell, where the initial ionization took 

place.  An electron from the MIII subshell then fills the vacancy in the K shell.  This electron drop 

releases energy which corresponds to the kβ1 characteristic X-Ray emission.  Figure 12 has been 

highlighted to show the transition important to the kβ1 characteristic X-ray emission.   

 

Figure 12: Electron Shell Ionization Nomenclature, (Woldseth, 1973) 

 The electron beam voltage is chosen because of many factors.  If a sample is non-

conductive, a lower electron beam voltage is chosen to reduce charging of the sample.  Charging 

is when the sample builds up undesirable charge, and the reading of the sample becomes 

unusable.  The buildup of charge renders the samples unusable because of the negative charge 
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of electrons.  Both the electrons building up on the surface of the sample and the electrons from 

the electron beam have a negative charge.  Because like charges repel, the negatively charged 

surface acts as a mirror to the negatively charged electron beam.  In x-ray microanalysis, when a 

higher electron beam voltage is used, the electron beam penetrates farther into the sample.  If 

the sample is homogeneous, this is acceptable.  However, a non-homogeneous sample can pose 

a problem.  In x-ray microanalysis, a higher voltage corresponds to a larger x-ray interaction 

volume.  This larger interaction volume decreases spatial resolution, which is highlighted in 

Figure 9.   

 The optimum x-ray collection conditions exist at approximately 2 times to 3 times the 

voltage of the desired characteristic x-ray emission, a term called overvoltage (Goldstein, et al., 

2003).  Exciting the sodium in the sample with exactly 1071.1 ev would not produce a desirable 

result.  Sodium was chosen specifically as the target element because of its low Ec.  This means 

that sodium can be detected with a low electron beam energy.   
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MATERIALS AND METHODS 

 

Dow 501i LDPE 

 Dow 501i LDPE (The Dow Chemical Company, Midland, Michigan) was chosen for its 

chemical inertness and for its ready availability.  The polymer was cast using a Killion (Killion, 

Cedar Grove, New Jersey) lab scale extruder, which is shown in Figure 13.  The film was chilled, 

transported, and rewound with the assembly shown in Figure 14.  The extruder had a 2.54 cm 

(1” screw), a 20.3 cm (8”) wide coat hanger die, and the die gap was set to 0.76 mm (0.030”).  

Table 1 shows the extruder settings for casting the 501i LDPE used in the experiments.  The 

thermocouple for the melt was not functioning.    

Table 1: 501i LDPE Extrusion Settings 

501i LDPE Extrusion Settings   

Zone 1 Temperature  121C (250 F) 

Zone 2 Temperature 182 C (360 F) 

Zone 3 Temperature 196 C (385 F) 

Adaptor Temperature 196 C (385 F) 

Die Temperature 196 C (385 F) 

Melt Temperature 188 C (371 F) 

Screw RPMs 39.5 RPM 

Back Pressure 3034 kPa (440 psi) 

Air Gap 3.5 cm (1.375")  

Rewind Speed 4.6 mpm (15 fpm) 

Chill Roll Temperature 38 C (100 F) 

Rewinder Tension Setting 60/100 
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Figure 13: The Killion Cast Film Extruder 

 

 

Figure 14: The Chill Roll, Nip Roll, and Rewinder 
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 The desired sample of film was cut in the machine direction 5.1 cm (2 inches) from the 

edge of the film.  The sample was cut to be 3.8 cm (1.5 inches) in the cross/transverse direction, 

and 5.1 cm (2 inches) in the machine direction.  The section was chosen to get consistent 

thickness and to avoid the edge bead.  A specification sheet for Dow 501i LDPE has been 

included in the appendix. 

Nucrel®1202HC 

 Nucrel®1202HC (DuPont, Wilmington, Delaware) was chosen for its reactivity.  The 

polymer is 11.5% by weight methacrylic acid monomers.  This means that 88.5% of the weight of 

the polymer is LDPE monomers.  The HC stands for high clarity.  When this polymer is 

submerged in a bath of sodium hydroxide (NaOH), the methacrylic acid groups react to form a 

polymer which is neutralized on the surface.  The neutralized acid groups at the surface became 

a salt, specifically a sodium neutralized ionomer.  This reactivity is of paramount importance to 

the study.  Nucrel®1202HC processes in conventional extrusion equipment.  Table 2 shows the 

extrusion settings used for the Nucrel®1202HC used in the experiments.  The thermocouple for 

the melt temperature was loose, so that particular measurement was unreliable.  *The chill roll 

temperature is a missing data point from this set.  It is reasonable to assume the chill roll was 

approximately 38oC (100oF) since the rewind conditions were similar to the LDPE run in table 1.   

Table 2: Nucrel®1202HC Extrusion Settings 

Nucrel®1202HC Extrusion 
Settings   

Zone 1 Temperature  121 C (250 F) 

Zone 2 Temperature 196 C (385 F) 

Zone 3 Temperature 216 C (420 F) 

Adaptor Temperature 216 C (420 F) 

Die Temperature 196 C (385 F) 

Melt Temperature 202 C (396 F) 
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Screw RPMs 35.0 RPM 

Back Pressure 1379 kPa (200 psi) 

Air Gap 3.2 cm (1.25") 

Rewind Speed 15 fpm 

Chill Roll Temperature 38 C (100 F*) 

Rewinder Tension Setting 70/100 

  

 The desired section of the film was cut 6.4 cm (2.5”) from the edge of the film.  The 

sample size was cut to 3.8 cm (1.5”) in the machine direction, and 5.1 cm (2”) in the cross 

direction.  This section was chosen to get consistent thickness and to avoid the edge bead.  A 

spec sheet has been included for Nucrel®1202 HC in the appendix.      

 Acid copolymers, such as Nucrel® 1202HC, require special consideration when running 

in a conventional extruder.  The extruder was brought up to temperature with Dow 501i LDPE.  

Once the machine was warm, and gels were no longer an issue, the hopper was temporarily 

removed from the extruder.  After the screw became visible, a 50% Nucrel®1202HC and 50% 

Dow 501i LDPE mix was introduced into the hopper and extruder.  After a five minute wait to 

ensure the 50%-50% mixture had passed through the extruder, the hopper on the extruder was 

once again closed.  Once the screw was visible, 100% Nucrel®1202HC was introduced into the 

extruder.  Another five minutes passed before the material was considered to be 100% 

Nucrel®1202HC.  Once enough film was made from the Nucrel®1202HC, the hopper was closed.  

Dow 501i LDPE was then introduced to the extruder to begin the purge cycle.   

 It is important to purge the extruder of any acid copolymer before the extruder is shut 

down.  If the extruder is shut down with acid copolymer in the system, the internal components 

can be attacked by the acid component of the polymer.  To prevent damaging the internal 

components of the extruder, a “Disco” style purge was run.  A Disco style purge involves varying 
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the screw speed widely. The screw speed is held at each set point for approximately one minute, 

and then changed.  The exact particularities of screw speed are not important.  Varying the 

screw speed widely is the important aspect of a “Disco” style purge (Stoner, 2015).   

Sealing Samples 

 Samples were sealed on a Sentinel lab scale heat sealer (Sentinel Packaging Industries, 

Hayannis, Massachusetts).  An image of the heat sealer is shown in Figure 15.  The guard on the 

sealer was temporarly held up with tape to facilitate photography.  Both the top and the bottom 

jaw were heated.  Both the top and the bottom jaw were coated with PTFE to prevent sticking 

to the jaw.  The samples were made with a 1.0s dwell time, a 0.95 cm (3/8”) seal bar, and 

276kPa (40 psi) sealing pressure.  276kPa (40 psi) at the sealing jaw corresponded to 139.3 line 

kPa (20.2 line psi) coming into the machine.   

 The 1.0 second dwell time was determined to be appropriate because of previous 

research done to determine the time needed for a seal interface to reach the same temperature 

as the seal jaws.  A portion of the research was done with films 50.8 microns (2.0 mil thick), 

sealed in a PET sleeve to prevent sticking.  There was no PTFE/fiberglass cloth cover on the seal 

jaws.  The research states: “…the interfacial temperature achieves a value within 5oC (9oF) of the 

set platen temperature in approximately 0.5 s and that about 1 s is required to approach the set 

platen temperature to within 1-2oC (1.8oF-3.6oF).” (Meka & Stehling, 1994).   

 The 276 kPa (40 psi) jaw pressure was determined to be sufficient because of previous 

research done.  The research states: “The minimum pressure required under ideal sealing 

conditions… is probably substantially smaller than the smallest pressure used in our 

experiments: 15N/cm2.  Under practical operating conditions, pressures of about 5N/cm2 or 
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more are probably desirable to bring the opposing film surfaces into contact.” (Meka & Stehling, 

1994).  15N/cm2 corresponds to 150 kPa (21.8 psi).  5N/cm2 corresponds to 50 kPa (7.3 psi).   

 The temperature control system on the heat sealer exhibits offset from the set point, so 

a supplemental thermocouple system was used to verify temperatures.  The supplemental 

thermocouple system was a Digi-Sense Dual J,T,E,K thermocouple thermometer (Eutech 

Instruments, Ayer Rajah Crescent, Singapore).  An image of the supplemental thermocouple 

system is shown in Figure 16.  Over the range of the seal temperatures tested, the supplemental 

thermocouple ranges in accuracy from ±0.5oC (±0.9oF) to ±0.56oC (±1.0oF) (Cole-Parmer, 2015).  

The top number corresponds to the top jaw, the bottom number corresponds to the bottom 

jaw.  The leads for the thermocouple thermometer were inserted into the seal jaws as shown in 

Figure 17.  The small holes are present in the sealing jaws on the Sentinel heat sealer because of 

their manufacturing process. 

  

Figure 15:  Sentinel Lab Scale Heat Sealer 
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Figure 16: The Digi-Sense JTEK Thermocouple 

 

 

Figure 17: The Thermocouple Leads from the Top and Bottom Seal Jaws 

 When creating seals for testing the sealer jaws were cycled several times to bring the 

jaws to a stable reading.  After the jaws had reached a stable reading, sealing could begin.  The 

jaws were kept within 1.1oC (2oF) of each other while sealing.  As long as the average of the two 

jaws was within 0.56oC (1oF) of the desired set point, this was considered acceptable.  The 
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temperature control unit in the heat sealer is capable of holding the temperature to ±1.1oC 

(±2oF).   

 The seals were made in the same location on the heat sealer jaws to mitigate any 

temperature or pressure profile present across the width of the seal jaw.  The thermocouple 

leads in Figure 15 Figure 17 were used as a reference point to ensure that each seal was made in 

the same spot on the seal jaws.  This location also helped to ensure the reading on the 

supplemental thermocouple unit corresponded to the utilized portion of the seal jaws.   

 All seals were made inside of a 92ga PET sleeve.  This technique was used to eliminate 

the possibility of sticking the test materials to the seal jaws.  Nucrel®1202HC is a tacky polymer 

which has a tendency to stick to the PTFE coating on the seal jaws.  The seals were exposed to 

the radiant heat of the seal jaws for as little time as possible to ensure consistency between 

samples.   

 Twenty two seals were made for each temperature.  Twelve of the seals were intended 

for seal strength testing.  Ten of the seals were intended for diffusion measurement.  The time 

between the creation of the seal and the testing of the seal strength was approximately 30 

minutes.  In preliminary testing, longer wait times between creating the seal and testing the seal 

strength resulted in inconsistencies.  Figure 18 shows the structure which went into the heat 

sealer.  The image has been drawn to scale.  The PET was not a part of the seal strength testing, 

it was present to prevent the Nucrel® or the LDPE from adhering to the seal jaws. 
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Figure 18: Sealed Structure to Scale 

Sample Prep for Instron T10000 with 500lb Load Cell 

 Before the strength of the seals were tested, the seals were manually laminated to 

precut rectangles of 3M 3381 Metal Repair Tape (3M, Minneapolis, MN).  Manual lamination 

refers to carefully adhering the precut rectangles of pressure sensitive tape to the seal samples.  

After the tape was adhered to the samples, it was pressed down to ensure the tape was in full 

contact with the sample.  Automatic roll to roll lamination was not an option due to material 

quantity restraints. 

 The tape was laminated to both sides of the seals to prevent extensibility in the polymer 

films from affecting the seal strength test results.  The tape was cut to be 3.2 cm (1.25 inches) in 

the machine direction and 5.1 cm (2.0 inches) in the cross direction.  The tape was shown to 

have minimal extensibility and high tensile strength when compared to the seal structure.  The 

tape was cut to match the CD of the tape to the MD of the seal samples.  This was acceptable 

due to the tensile properties of the tape.  When 2.54 cm (1.00 inches) wide samples were 

tested, the CD of the tape experienced a brittle failure at 1.02 mm (0.04 inches) of extension 
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with 6854 grams force average.  The MD of the tape experienced a brittle failure at 1.27 mm 

(0.05 inches) of extension with 6955 grams force average.   

 Figure 19 shows a seal between LDPE and Nucrel®1202HC before it was adhered to the 

tape.  For scale, the grid in the background is approximately 5.1 cm (2”) square.  Figure 20 shows 

a seal after the metal tape has been applied to one side.  The orange dot denotes the location of 

the seal as well as denoting the side of the seal; which is LDPE.  Figure 21 shows the opposite 

side of the seal as Figure 20.  There is no dot on the tape for the Nucrel®1202HC side of the seal.  

Figure 22 shows the taped seal before it was sized to 2.54 cm (1.00 inch) for with a JDC precision 

sample cutter (Thwing-Albert Instrument Company, Philadelphia, Pennsylvania) for testing on 

the Satec Instron.  The cutter is specifically designed to cut samples to be 2.54 cm (1.00 inch) 

wide.  Figure 23 shows the sample after it was cut.  Between each trial temperature, the cutting 

surfaces of the 2.54 cm (1.00 inches) wide cutter were cleaned with ethyl acetate.  An 

unacceptable amount of adhesive from the metallized tape accumulated on the cutting surfaces 

after a full set of samples was cut.  Between each sample set, the cutter was cleaned thoroughly 

with ethyl acetate to remove any accumulated adhesive.  The sample in Figure 23 lines up with 

the edge of the cutting platform, indicating that it is a 2.54 cm (1.00 inch) wide cut.  After the 

samples were cut to 2.54 cm (1.00 inches) wide, they were fully prepared to be mounted into 

the Satec Instron. 
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Figure 19: Seal Sample before Modification 

 

 

Figure 20: Seal Sample with One Side Taped 
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Figure 21: Seal Sample with Two Sides Taped 

 

Figure 22: Taped Seal Sample in Cutter before Cutting 
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Figure 23: Taped Seal Sample in Cutter after Sizing to 2.54cm (1.00") 

Satec Instron Testing 

 The prepared samples were placed into the jaws of the Satec Instron T10000 (Instron, 

Norwood, Massachusetts) with minimal slack.  The load cell is a 500lb Omega Dyne LCHD-500 

load cell (Omega Dyne, INC., Sunbury, Ohio.) The seal of each sample was placed perpendicular 

to the direction of pull to maintain consistency between samples.  Samples were loaded into the 

middle of the jaws in relation to the forward and back position.  The gap between the seal jaws 

was set to 1.27 cm (0.5 inches) to minimize any effect of extensibility of the materials.  The seal 

tail of the sample was placed in between the two jaws, (0.64 cm) 0.25 inches from each jaw.  

Before each sample was tested, the load cell was zeroed.  The seals were pulled at a rate of 

10.00 inches/minute. 
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 Sample slip was not encountered with this system for several reasons.  Tacky silicon 

rubber was used in the jaws of the T10000.  The structure tested was relatively thick, and the 

peel strength is relatively weak. 

 The software used to control the Satec Instron was Instron Bluehill 2 (Instron, Norwood, 

MA).  Figure 24 shows the entire frame of the Satec Instron with the pneumatic jaws in place.  

Figure 25 shows a side view of a sample in the jaws ready to be pulled.  The tail of the sample 

remained perpendicular to the direction of tension until the seal was pulled because of the dead 

fold property of aluminum foil.   

 Figure 26 shows a seal in the process of being pulled.  It is important to note that the 

seal is separating slightly from the tape, and the material is exhibiting some extensibility during 

the seal pulling process.  At elevated sealing temperatures, associated with a stronger seal, the 

materials pulled away from the tape.  The LDPE 501i exhibited more tendency to pull away from 

the tape than did the Nucrel®1202HC at all temperatures.  All results were interpreted using the 

Bluehill 2 software to yield a numerical result.  After a numerical result was achieved, analysis 

was moved to Microsoft Excel 2013.  Mode of failure, any points of fusion, and if the tape was 

pulled from the sample during testing were recorded for further analysis.   
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Figure 24: The Satec Instron when set to a 0.5" Jaw Opening 
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Figure 25: A Seal Sample Ready to be Pulled in the Satec Instron Jaws 
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Figure 26: A Seal Sample While it is Being Pulled 

Differential Scanning Calorimetry (DSC) Analysis 

 DSC analysis was performed on both final polymer types used in the study.  The DSC 

used was a 2920 MDSC (TA Instruments, New Castle, DE).  This DSC functions best with a sample 

size between 5.0 mg and 10.0 mg.  Polymer samples were cut to size and weight specification 

for use in a non-hermetic aluminum pans using a clean razor.  The weight of the polymer 

samples was collected with an Ohaus Explorer E00640 scale (Ohaus Corporation, Parsippany, 

N.J.).  After the sample was placed into the DSC, a temperature control program was made in 

Thermal Advantage Version 1.1A (TA Instruments, New Castle, DE).  The temperature control 

program heated and cooled the sample at 10oC/min.  The temperature began at 0oC, heated to 

195oC, cooled to 0oC, heated to 195oC, and then ended.  The second heating of the sample was 

to examine the properties of the polymer after the thermal processing history had been erased.  
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After testing was complete, the data were analyzed with Universal Analysis 2000, Version 4.2E 

(TA Instruments, New Castle, DE). 

Sample Prep for Scanning Electron Microscope (SEM) 

 A cross section of the seal was created to facilitate analysis using the scanning electron 

microscope.  Cross sections for electron microscopy are usually made with a microtome blade at 

room temperature conditions.  However, when considering the properties of the polymers in 

the study, room temperature cross section preparation could cause smearing of the seal 

interface.  To avoid smearing the polymer samples, a technique called cryo-sectioning was used.  

This technique brings both polymers below their glass transition temperatures (Tg) before 

cutting.  When a polymer is below its glass transition temperature, it behaves in a brittle 

manner. 

 The technique of cryo-sectioning involves cutting the samples in a liquid nitrogen bath.  

The temperature of liquid nitrogen is -196oC (-321oF) (Cryogenics at NASA, 2015).  This is below 

the Tg
 of LDPE, which is -125oC (-193oF) (dos Santos, de Sousa, & Gregorio Jr., 2013).  Several 

other aspects of cryo-sectioning needed to be considered as well.  Microtome blades come 

coated in a light oil, this was removed to prevent contamination of the sample.  The microtome 

blade also needed to be held in a locking jaw needle nose plier during cutting, as the brittle 

polymer samples offered significant resistance at liquid nitrogen temperatures.  After the 

samples were cross sectioned, the samples were placed on low lint Kimwipes (Kimberly-Clark 

Worldwide, Inc., Dallas, Texas) to dry.  The samples were wet because the temperature change 

from liquid nitrogen temperature to room temperature caused condensation which needed to 

be removed.  Touching the seal interface was avoided after cutting to prevent contamination.  
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Figure 27 shows an example of two seals after cryo-sectioning.  The sample on the left was cut 

cleanly, and is appropriate for further analysis.  The sample on the right was sectioned roughly, 

and is not appropriate for further analysis.  Note the location of the seal interface at the tips of 

the arrow, the darker region in both samples near the bottom of the image.   

 It is important to note that the samples used for SEM analysis were separate from the 

samples used for seal strength analysis.  For each seal temperature, approximately 20 seals were 

made. Twelve to thirteen of these seals were destroyed during seal testing.  Six of the remaining 

samples were cryo sectioned.  This is an un-paired sample preparation technique.  

 

Figure 27: Example of a Good Shatter (Left) and a Bad Shatter (Right) 

Tagging the Nucrel®1202HC with Sodium Ions 

 Nucrel® is a reactive polymer due to the methacrylic acid copolymer content.  This 

copolymer content can be utilized to attach reactants to the surface of the polymer.  One 
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technique which has been established is placing sodium ions on the surface of an acid 

copolymer using sodium hydroxide (NaOH) (Cooper, 2014).  Sodium Hydroxide is a base which 

reacts with the acid copolymer content on the surface of the Nucrel.  The acid copolymer 

content in the Nucrel® is randomly distributed, there is no bias as to where it is within the film.  

Because only the seal area is of interest, only the seal area was reacted with NaOH.  This 

reaction effectively “tags” the reactive portions of the seal with sodium ions.  Figure 28 shows 

the chemical structure of the poly (ethylene-co-methacrylic acid), such as Nucrel®1202HC.  The 

bracketed “X” shows the ethylene portion of the polymer, which is 88.5% the weight of the 

polymer.  The bracketed “Y” shows the methacrylic acid portion of the polymer, which is 11.5% 

the weight of the polymer.  The “H” with the red box in Figure 28 is a reactive (acidic) hydrogen, 

which is replaced by a sodium ion as shown in Figure 29.  The reactive hydrogen was replaced 

with a sodium ion by soaking the polymer in a 2.50M NaOH bath for 24 hours.   

 The NaOH solution was made by putting 100.0g of dry NaOH pellets into a 1.000 L ± 0.30 

mL volumetric flask.  This flask was then filled to the line on the neck with deionized water.  

Dissolving NaOH into water is an exothermic reaction, which caused the solution to become hot 

to the touch.  Since hot water is less dense than room temperature water, the solution was left 

to cool for 12 hours at room temperature in the covered volumetric flask.  Once the solution 

was at room temperature, the water level in the volumetric flask had dropped by 10-15 mL due 

to cooling.  Once the balance of water was added, the solution was ready for use.   

 The cryo-sectioned samples were arranged around the perimeter of a petri dish using 

paper clips to keep them in place, as shown in Figure 30.  The samples were soaked in 20mL of 
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2.5M NaOH, just enough to cover the seal area.  During the 24 hour waiting period, the petri 

dish was covered with its lid and a secondary cover to minimize evaporative losses.   

 After the 24 hour waiting period, the seals were removed from the soaking solution and 

washed.  The samples were initially dipped into a 400mL bath of deionized water.  Then the 

samples were washed with a stream of water from a pipette filled from a secondary reservoir of 

deionized water.  This was done to eliminate washing the samples with water which had been 

contaminated by sodium ions.  After the washing, the samples were placed on Kimwipes to 

remove excess moisture.  The reaction of the sodium hydroxide with the methacrylic acid sites 

in the Nucrel® fixed oxygen and sodium onto the surface of seal interface. 

 

Figure 28: Poly (ethylene-co-methacrylic acid) 
http://www.sigmaaldrich.com/catalog/product/aldrich/426628?lang=en&region=US 

http://www.sigmaaldrich.com/catalog/product/aldrich/426628?lang=en&region=US
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Figure 29: Chemical Structure of Poly (ethylene-co-methacrylic acid) after reaction with NaOH 

 

Figure 30: Seal Samples in a Petri Dish Soaking in NaOH 

Mounting Samples on Conductive Hardware for SEM 

 The scanning electron microscope operates by emitting a beam of electrons at a surface.  

If this surface is not grounded, electrons will build up and the data will become unusable.  
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Polymer samples are not inherently conductive, and will build up electrons if preventative steps 

are not taken.   

 The first step of mounting a sample for the SEM was proper sample support.  The SEM 

has high magnification, and any sample movement would cause the image to be blurry.  For this 

sample, proper sample support entailed keeping the polymer between “half-moon” metal discs 

as shown in Figure 31.  The polymer was adhered to the metal discs with conductive tape.  The 

metal discs were made of aluminum, which is conductive.  The half-moon discs, with the 

polymer pressed between them were then adhered, with conductive tape, to a full disc.  The full 

disc is visible, but partially obscured by the half-moon discs, in Figure 19.  The secondary 

mounting is necessary to bring the assembly to an appropriate total height for examination 

under the SEM.  Before any mounting hardware was used, it was cleaned with an ethanol 

soaked low lint Kimwipe to remove any contaminants.  Nitrile gloves were worn to eliminate the 

possibility of contaminating the sample.  Care was taken to label each side of the half-moon disc 

assembly to ensure each sample was examined in the same scanning direction.   
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Figure 31: Polymer Sample Mounted Between Half Moon Discs for SEM 

 Samples were mounted to assure that the data recorded were correlated to seal 

conditions.  Figure 32 shows six samples mounted on the multi holder.  The multi holder was 

used to expedite analysis.   

 

Figure 32: Samples Mounted on Multi-Holder 
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The Scanning Electron Microscope 

 The scanning electron microscope used was a Hitachi S-3400N (Hitachi, Ltd., Tokyo, 

Japan) with an Oxford X-Max 80 x-ray detector (Oxford Instruments plc., Abingdon, United 

Kingdom).  Figure 33 shows a view of the SEM and connected machinery.  The main body of the 

SEM is on the left of the image.  The x-ray analyzer is protruding at a 45o angle from the left side 

of the main body of the SEM.  The monitor on the left is used to control the SEM for general use, 

including backscattered electron imaging.  The monitor on the right is used to control the SEM 

for elemental analysis.   

 

Figure 33: The Group of Machinery Utilizing the SEM and X-ray Detector 

 Table 3 andTable 4 show the settings for the line scan data collection settings and the SEM data 

collection settings.  Settings such as probe current, back scattered electron gain, filament, gun 

bias, brightness, contrast, aperture alignment, and beam shift change on a daily basis and must 

be correctly set before meaningful SEM data can be collected.   
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Table 3: Line Scan Data Collection Settings 

Line Scan Settings 

Energy Range 10 keV 

Number Of Channels Auto 

Process Time 6 

Pixel Dwell Time 10 ms 

Line Definition Points 

Number of Points 500 

Point Separation 100 nm 

Working Distance 10.0 mm 

Line Length 50.0 μm 

Total Live Time 900.0 s 

Total Passes 180 

Dead Time 18% ≤ x 

Software AZtec 

 

Table 4: SEM Data Collection Settings 

SEM Settings 

Magnification 800x 

Vacuum 50 pa 

Electron Beam Voltage 3.00 keV 
 

 After line scans results were recorded, the data were analyzed with a program written in 

statistical analysis software (SAS ©).  The code of the program has been included in the 

appendix.  The program is compatible with the free-ware version of SAS ©.  The data resulting 

from the statistical analysis were compiled into Excel 2013 for further analysis. 

Analysis of Line Scan Data with SAS © Program 

 The SAS© program was written to output several types of data. The data utilized for the 

research was the diffusion output. After the 500 raw data points from each line scan were 

entered into the program, a flat (specifically not near the area of diffusion) sample of the line 
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scan was chosen to analyze for the standard deviation of the sample. After a baseline standard 

deviation was established, non-horizontal data points were trimmed from both ends of the line 

scan. The points were removed to “zoom in” on the area of interest, the transition in the seal 

area. 

 To use the SAS© program to measure diffusion distance, four variables were initially 

estimated. The four variables represent the x and y values of two coordinate points. The first 

estimate was the “low side” baseline x-ray counts per second. The low side baseline was not 

zero because of contamination in the sample chamber. The low side baseline served as the first 

y-value estimate. The second estimate was the μm-value where the line transitioned from 

horizontal to a slope. This number was a value on the relative position axis, the first x-value 

estimate.  

 The third estimate was the “high side” x-ray counts per second. The high side counts per 

second measure was constant after the transition in the seal area. The high side value served as 

the second y-value estimate. The fourth estimate was the μm-value where the line transitioned 

to horizontal from a slope. This served as the second x-value estimate. These four values, 

coupled with the standard deviation of the data set, allowed the program to output a diffusion 

distance value. Each diffusion distance was correlated to its respective seal temperature for 

analysis in Excel 2013. 

Analysis of Diffusion Data in Excel 2013 

 After diffusion distances were determined for each temperature, the data was compiled 

into Excel 2013. Diffusion distances based on a sodium trace and diffusion distances based on an 

oxygen based trace were collected. After all data was in Excel, it was possible to compare the 
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diffusion distances to other measured variables. Graphs utilizing diffusion data were made 

comparing: sodium based diffusion distance to seal temperature, oxygen based diffusion 

distance to seal temperature, oxygen based diffusion distance to sodium based diffusion 

distance, seal strength to sodium based diffusion distance, seal strength to oxygen based 

diffusion distance, paired seal strength to sodium based diffusion distance, and paired seal 

strength to oxygen based diffusion distance. All graphs were given a linear correlation 

coefficient. Utilizing the graphs based on diffusion data, further analysis could be done. 

Calculations Related to Electron Beam Interactions 

 A measurement of interest, the x-ray range, is how far from within the sample the 

characteristic x-rays are generated.  This measurement can be estimated based on the density 

of the sample, the critical ionization energy of the element of interest, and the voltage of the 

electron beam.  The Anderson-Hasler X-Ray Range is presented in Equation 2.  It is an equation 

to predict the depth of penetration of X-Ray microanalysis of an electron beam normal to a 

surface.  (Goldstein, et al., 2003) 

Equation 2: Depth of Penetration Estimation in EDX 

𝑅𝑥 =
0.064

𝜌
(𝐸0

1.68 − 𝐸𝑐
1.68) 

Rx= Depth of penetration of X-ray in µm 

ρ= Density of Sample in g/cm3 or g/cc 

E0= Incident Electron Beam Energy in keV 

EC= Critical Ionization Energy of Target Element in keV 
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 Spatial resolution can also be estimated as shown in Equation 3.  Spatial resolution in 

the x-ray microanalysis sense is the smallest interval measurable.  Two points closer than the 

resolution distance cannot be distinguished as separate entities.   

The equation has been estimated to be (NORAN Instruments, 1999): 

 

Equation 3: Spatial Resolution Estimation in EDX 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  .231
𝐸0

1.5 − 𝐸𝑐
1.5

𝜌
 

 

Initial Materials and Methods 

 Several ideas were attempted before a final set of materials and methods were chosen. 

The first attempt was to use a fluorescent tag. A fluorescent tag would be traceable via light 

microcopy. However, the fluorescent tag would not react with the surface of a low percent acid 

copolymer (Nucrel ® 0403) or a high percentage acid copolymer (Nucrel® 1202HC). The next 

attempt was to react the surface of Nucrel® 0403 with sodium hydroxide for tracing via EDX. The 

0403 was not reactive enough for sodium to be detected on the surface. It was discovered that 

Nucrel® 1202HC had the appropriate reactivity with sodium hydroxide. The final polymers used 

(DuPont Nucrel® 1202HC and Dow 501i LDPE) were cast on Clemson’s cast film line for the 

necessary thickness control. These attempts are discussed at length in the appendix. 
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RESULTS  

 The results section is broken up into seven sub-sections. The first section, thickness 

profiles, shows how the flattest portion of each film was selected for seal testing. 

 Seal testing shows the results of the final, backed, seal test. The seal samples were 

manually laminated to metal foil tape to eliminate the influence of material extensibility. Sealing 

temperatures were chosen based on an initial exploratory seal curve. A high temperature 

(300oF) was also chosen to explore if diffusion changed substantially for this polymer system at 

high temperatures.  

 DSC results show the differential scanning calorimetry results of both films used in the 

study. Analysis of the major melting points on each DSC result helps to explain why the seal 

curve had an unexpected shape. 

 Electron microscope results show how the data collected from the electron microscope 

were used to collect diffusion data. The section also highlights some of the proof of concept 

work associated with associated with ensuring the choice of materials was valid. 

 The EDX Resolution and Depth of Penetration show how the various settings and 

desired trace element affected both the depth from which the x-ray originates and resolution. 

The depth of penetration was calculated to be shallow, which is desirable since the trace ion is 

at the surface. However, the resolution of the EDX measurement is characteristically low. 

 Diffusion analysis shows how the results from the scanning electron microscope were 

used in conjunction with the seal curve results. The results of the diffusion distance vs. seal 



68 

temperature work were not as expected, which could have been caused by a number of 

reasons. Some of the reasons are outlined at the end of the results section. 

 The section about the revisit of the 220oF temperature setting with paired samples is an 

effort to explain the shape of the seal curve. It is also an effort to see if any trends appeared 

when samples were paired. To make a paired sample, two specimens (2.5 cm (1 inches) for seal 

strength testing, and 1.3 cm (0.5 inches) for SEM testing) were cut from the same 5.1 cm (2 

inches) wide seal section. All samples tested besides the four paired samples highlighted in the 

revisit of 220oF section were unpaired. 

Thickness Profiles 

 

Figure 34: Thickness Profile of 501i LDPE Used in Study 

Figure 34 shows the thickness profile of the cast LDPE.  Points 5-7 were chosen to use in the 

study because they contained the flattest 3.8 cm (1.5 inches) cross section of the film. Points 5-7 

have been highlighted in red.  The two edge beads were not included in the cross sectional 

profile measurements, as the edge bead portion of the film was considered waste. 
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Figure 35: Thickness Profile of Nucrel® 1202HC Used in Study 

 Figure 35 shows the cross sectional profile of the Nucrel® 1202HC. Points 6-9 were 

chosen to use in the study because they contained the flattest 3.8 cm (1.5 inches) cross section 

of the film. Points 6-9 have been highlighted in red. The two edge beads were not included in 

this sample either. 
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Seal Curves 

 

Figure 36: Seal Curve Results of Nucrel® 1202HC Poly(ethylene-co-methacrylic acid) Sealed to Dow 501i LDPE 

 Figure 36 shows unedited results from the seal test. Each temperature consists of 12-13 

data points.  
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Figure 37: Averaged, with Error Bars, Seal Curve Results of Nucrel® 1202HC Poly(ethylene-co-methacrylic acid) Sealed 
to Dow 501i LDPE 

 The data to generate Figure 37 were the average of the data from Figure 36. The values 

for the error bars were generated with the STDEV.S function in Excel 2013. The error bars used 

in this work represent ±1 standard deviation. Seal strengths representing 200oF and 205oF do 

not appear to have error bars at this scale, as their standard deviation is small. 
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Figure 38: Seal Curve Results in Fahrenheit Adjusted by Mode of Failure, Averaged, with One Standard Deviation Error 
Bars 

 The data to generate Figure 38 were the data from Figure 36. The data were adjusted by 

removing points not matching the predominant mode of failure, then averaged. The 

predominant mode of failure was chosen for each temperature. Both peelable and fusion seals 

are possible when making a seal curve because of the different levels of energy (temperature) 

put into the seal can cause different degrees of polymer chain motion. For every temperature 

most of the seals were peelable so fusion numbers were excluded.  

 The values for the error bars were generated with the STDEV.S function. It is important 

to note that the shape and values of the curve experienced minimal change when the data were 

adjusted between Figure 37 and Figure 38, however the standard deviation at each point 
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became smaller. Seal strengths representing 200oF and 205oF do not appear to have error bars 

at this scale, as their standard deviation was small. 

 This seal curve in Figure 38 is not a typical seal curve. A typical seal curve would have 

not dropped between 215oF and 230oF. It would have continued approximately in a line 

between the 215oF and 230oF points. The dip occurred because of the variation in melting 

temperatures between the two polymers. The melting of the Nucrel portion of the seal interface 

absorbed a portion of the energy applied to the seal.  This will be discussed further in the DSC 

section. 

 

DSC Curves

 

Figure 39: Differential Scanning Calorimetry Result from Dow 501i LDPE 
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 Figure 39 is a DSC result of the 501i LDPE used in the study. The film was first cast, then 

analysized via DSC. It is important to note the 111.77oC (233.2oF) temperature reading near the 

bottom of the figure. This is the melting point peak of the polymer. The 100.96oC (213.7oF) 

temperature marking near the top of the figure is the peak of the crystallization from the melt. 

This is the first heating and the first cooling of the material. This is an expected result, as this 

polymer has no additives. The second heating and the first cooling of the material are detailed in 

Figure 42. 

 

 

Figure 40: Differential Scanning Calorimetry Result from DuPont 1202HC Poly(ethylene-co-methacrylic acid) 

 Figure 40 shows a DSC result of 1202HC. The 47.57oC (117.6oF) peak is a minor 

endothermic point. The main melting point peaks at 98.78oC (209.8oF). A crystallization from the 
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melt point peaks at 84.32oC (183.8oF). It is interesting to note that, in Figure 38, there is a drop 

in the seal strength which correlates to the melting temperature of the 1202HC. Figure 40 is the 

first heating and the first cooling of the material. The second heating and the first cooling of the 

material is detailed in Figure 42. The minor melting point in Figure 40 is unexpected. It could be 

attributed to the melting point of the methacrylic acid copolymer. However, this is unlikely as 

the minor melting point is not present in the second heating (Figure 42).  
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Figure 41: Differential Scanning Calorimetry Overlay of Nucrel® 1202HC and 501i LDPE First Heating and First Cooling 

 Figure 41 shows a comparison between the DSC curves present in Figure 39 andFigure 

40. It is interesting to note that the dip in seal strength in Figure 38 corresponds to the area 

between the two melting points of the materials. Again, the melting point peak of the Nucrel® 

1202HC is 98.78oC (209.8oF) and the melting point peak of the 501i LDPE is 111.77oC (233.2oF).  
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Figure 42: Differential Scanning Calorimetry Overlay of Nucrel® 1202HC and 501i LDPE First Cooling and Second 
Heating 

 Figure 42 shows the second heating and the first cooling of the materials. The melting 

points of the materials have both shifted slightly higher. The minor endothermic point in the 

Nucrel® 1202HC has also dissapeared. Both of these factors can possibly be attributed to the 

slower cooling rate of the materials when they were cooled in the DSC versus when they were 

cast. The slower cooling in the DSC allows for more or larger crystals to form in LDPE.  
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Electron Microscope Results 

 

Figure 43: Energy Dispersive X-Ray Analysis Line Scan Result, Sodium Scan 

 Figure 43 shows an energy dispersive x-ray analysis (EDX) result with the raw data 

connected by straight lines. This type of result is called a line scan. It is a compilation of 500 data 

points collected across a 50μm line. The line is perpendicular to the seal interface as shown in 

Figure 44. The property measured in the figure is the concentration of sodium ions in the 

sample. A low concentration of sodium ions indicates the presence of LDPE (shown on the left 

side of the scan). A high concentration of sodium ions indicates the presence of reacted 1202HC 

(on the right side of the scan). The slope of the line between the two flat regions can be 

measured and interpreted as a seal diffusion. For the duration of sample analysis, the Nucrel® 

side of the seal interface was kept on the right side of the scan. 

 It is important to note that all EDX traces were based on elements added to the surface 

of the samples after sealing. Before sealing and soaking in NaOH, neither oxygen nor sodium 

were present in detectible quantities on the surface of either type of film. 
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Figure 44: Annotations made before Line Scan 

 Figure 44 shows the annotations made with the EDX analysis software before a line scan 

was created. The 90.0o reading is a line drawn down the middle of the seal interface, then drawn 

perpendicular to the seal interface. The line perpendicular to the seal interface was then used to 

properly align the 50μm caliper line. After the 50μm caliper line was drawn, the line scan line 

was drawn. The line scan in the figure is labeled “Line Data 5”.  
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Figure 45: Line Scan Data with Diffusion Beginning and Ending Marked in Red 

 Figure 45 shows the raw data points of a line scan of sodium across a “tagged” seal 

interface. The “tagged” interface refers to the sodium ions present on the surface of the seal 

interface due to the reaction of the Nucrel® with sodium hydroxide. 

 The blue dots are the raw data points. The large red dots were chosen using the SAS® 

program mentioned in the previous chapter. The relative position between the two red points 

on the x-axis is used to interpret the diffusion distance. The relative position of the high side 

point is approximately 24μm. The relative position of the low side point is approximately 22μm. 

For Figure 45, the diffusion recorded was approximately 2μm. The slope between the two lines 

is not significant because the values of the y-axis change with each scan. If the x-ray counts per 

second were consistent between data sets, useful slope data could be generated. 
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Figure 46: Sodium Tagged Seal Interface 

 Figure 46 is a the result of a back scattered grayscale electron image from a scanning 

electron microscope showing the seal interface between Nucrel® 1202HC and LDPE. All 

backscattered electron images are grayscale since backscatter measures electron reflection 

intensity, not light. The right side of the image is the Nucrel®. The left side of the image is LDPE. 

On the right side of the image, there are several light gray sodium deposits. This is remaining 

sodium on the surface after tagging the surface with sodium hydroxide.  

 An area where there was not a sodium deposit was chosen for all line scans. This 

because in early testing, it was discovered that scanning over an area with a sodium deposit 

caused a bump in the line scan near the area of the seal interface. Any bumps in the line scan at 
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the seal interface render the line scan unusable, so areas without sodium deposits were chosen 

for scanning. 

 

 

Figure 47: SEM Image of the Surface of Dow 501i LDPE Not Exposed to NaOH 

 Figure 47 is a the result of a back scattered electron image from a scanning electron 

microscope showing the surface of Dow 501i LDPE which hasn’t been exposed to NaOH. The 

lighter region on the right of the image is ink from a permanent marker which was used as an 

aid in focusing the microscope on the surface of the film. 
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Figure 48: Result of Area Scan of Spectrum 3 in Figure 47 

 Figure 48 is the EDX result of the area scan of the area labeled spectrum 3 in Figure 47. 

This result shows there is no sodium present in an untagged sample of Dow 501i LDPE. This is 

important because an unknown source of sodium would introduce error.  
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Figure 49: SEM Image of the Surface of Dow 501i LDPE Exposed to NaOH 

 Figure 49 is the result of a back scattered electron image from a scanning electron 

microscope. The LDPE surface has been exposed to NaOH. Spectrum 8 is centered on a 

contaminant on the surface of the film. A contaminant is used to ensure that the SEM is focused 

on the surface of the film. There are no sodium ions present on the surface of the film. This is 

expected, as LDPE is a non-reactive film. 
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Figure 50: Result of Area Scan of Spectrum 7 in Figure 49 

 Figure 50 is the EDX result of the area scan of the area labeled spectrum 7 in Figure 49. 

The result shows that there is not sodium present on the surface of the LDPE after it has been 

exposed to NaOH.  
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Figure 51:  SEM Image of the Surface of DuPont Nucrel® 1202HC Not Exposed to NaOH 

 Figure 51 is the result of a back scattered electron image from a scanning electron 

microscope. The surface has not been exposed to NaOH. The film is Nucrel® 1202HC. There is a 

contaminant present in the top right hand corner of the image to aid in focusing the microscope 

on the surface of the film. The contaminant contained no sodium. The unexposed Nucrel® 

1202HC contained no sodium ions. This is important because an unknown source of sodium 

would introduce error. 
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Figure 52: Result of Area Scan of Spectrum 11 in Figure 51 

 Figure 52 is the EDX result of the area scan of the area labeled spectrum 11 in Figure 51. 

The result shows that there are no sodium ions in an unreacted sample of Nucrel® 1202HC. This 

is expected based on the chemical properties of the film, as there are no sodium ions present 

initially. 
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Figure 53: SEM Image of the Surface of DuPont Nucrel® 1202HC Exposed to NaOH 

 Figure 53 is the result of a back scattered electron image from a scanning electron 

microscope. The surface of Nucrel® 1202HC has been exposed to NaOH. The lighter areas in the 

image are regions of high concentrations of sodium where the film was not fully washed. Since 

Nucrel® 1202HC is a random copolymer of methacrylic acid and polyethylene, there is a random 

distribution of reactive sites on the surface of the polymer.  
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Figure 54: Result of Area Scan of Spectrum 2 in Figure 53 

 Figure 54 is the EDX result of the area scan of the area labeled spectrum 2 in Figure 53. 

The area scan shows a concentration of sodium because the surface of the film was reacted with 

sodium hydroxide. The concentration of sodium on the surface of the film is 4.3% by weight. 

Considering that Nucrel® 1202HC is 11.5% methacrylic acid by weight, this is a logical value 

because, based on the total weight of the methacrylic acid linkage, only a portion of the 

methacrylic acid group is reactive. Of that reactive portion, only some of the sites will be 

available to react at the surface of the film. Of those sites at the surface, approximately half will 

have the correct orientation of the acid group to be reactive (Kimmel, 2015). 

EDX Resolution and Depth of Penetration 

 A measurement of interest, the x-ray range, is how deeply within the sample the 

characteristic x-rays are generated.  This measurement can be estimated based on the density 

of the sample, the critical ionization energy of the element of interest, and the voltage of the 
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electron beam.  As it applies to this research the depth of penetration equation is shown in 

Equation 4 (Goldstein, et al., 2003). 

Rx is the depth of penetration 

ρ (density) of  DuPont 1202HC EMAA is 0.93 g/cc 

ρ (density) of Dow 501i LDPE is 0.922g/cc 

E0 (incident electron beam energy) is 3.00 keV 

EC (critical ionization energy of target element) is 1.07 keV for sodium 

 

 

Equation 4: Anderson-Hasler X-Ray Range 

𝑅𝑥 =
0.064

(0.922 + 0.93)/2
(3.001.68 − 1.071.68) 

 

𝐷𝑒𝑝𝑡ℎ 𝑜𝑓 𝑃𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑅𝑥 = 0.036𝜇𝑚 

 

Another estimate of interest is the spatial resolution equation. The complete equation was 

presented in the materials and methods section. Two points closer than the resolution distance 

cannot be distinguished as separate entities. The spatial resolution of the EDX measurement 

smallest measurable interval is (NORAN Instruments, 1999):  

𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑆𝑜𝑑𝑖𝑢𝑚 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 =  .231
3.001.5 − 1.071.5

(0.922 + 0.93)/2
 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑆𝑜𝑑𝑖𝑢𝑚 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 = 1.02𝜇𝑚 
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𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑂𝑥𝑦𝑔𝑒𝑛 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 =  .231
3.001.5 −. 5321.5

(0.922 + 0.93)/2
 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑂𝑥𝑦𝑔𝑒𝑛 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 = 5.19𝜇𝑚 

The best resolution achievable with a light microscope is 200nm (Australian Centre for 

Microscopy & Microanalysis, 2014). 1.02μm is 1020nm, and 5.19μm is 5190nm. It is interesting 

to note that the resolution of the EDX measurement is lower than the best achievable resolution 

of a light microscope. 

Diffusion Analysis 

 

Figure 55: Average Sodium Based Diffusion Distance vs. Seal Temperature 

 Figure 55 shows the result of the average diffusion distance using sodium as a trace vs. 

seal temperature. The data were generated from a collection of line scans such as the scan in 

Figure 45. The R2 value is 0.0248. This indicates that the data are not linearly correlated. For this 

polymer system, diffusion distance is not correlated with seal temperature. This does not agree 
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with previous findings. It was previously found, using a zinc ion trace, that diffusion distance at 

the seal interface increases as seal temperature increases (Cooper, 2014). 
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Figure 56: Raw Oxygen Based Diffusion Trace 

 Figure 56 shows a raw oxygen based diffusion trace. The baseline counts per second 

were higher for oxygen than they were for sodium. This could be due to the 50 pascal 

atmosphere left in the SEM analysis chamber. The oxygen based diffusion trace was analyzed 

with the same statistical analysis program as the sodium based diffusion trace. 
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Figure 57: Average Oxygen Based Diffusion Distance vs. Seal Temperature 

 Figure 57 shows the result of the average diffusion distance using oxygen as a trace vs. 

seal temperature. There is a linear or slightly downward sloping diffusion line of best fit. The R2 

value is 0.0342, which is similar to the R2 value in Figure 55. Using oxygen as a trace to quantify 

diffusion in heat seals appears to be a novel idea based on the difficulty encountered in previous 

studies (Cooper, 2014). 
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Figure 58: Sodium and Oxygen Based Diffusion Distance vs. Seal Temperature 

 Figure 58 is a combination of the data from Figure 55 and Figure 57. It shows that when 

measuring diffusion via a sodium or oxygen trace, there is limited difference between the two 

data sets.  
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Figure 59: Correlation of Oxygen and Sodium Diffusion Distances by Seal Temperature 

 Figure 59 shows that the oxygen and sodium traces are correlated. The correlation is 

made by seal temperature. The seal temperatures are not in order, they are ordered by their 

diffusion distance. This figure, similar to Figure 58, is a different way of showing that the oxygen 

and sodium diffusion data are related.  
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Figure 60: Seal Strength vs. Average Sodium Based Diffusion Distance 

 Figure 60 shows the average sodium diffusion distance vs the seal strength. The R2 value 

is 0.0643. This indicates that the data do not have a linear correlation. For this polymer system, 

seal strength is not correlated to diffusion distance 
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Figure 61: Seal Strength vs. Average Oxygen Based Diffusion Distance 

 Figure 61 shows the average oxygen based diffusion distance vs. the seal strength. The 

r2 value is 0.0957. This indicates that the data do not have a linear correlation.  
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Figure 62: Seal Strength vs. Average Sodium Based and Oxygen Based Diffusion Distance 

 Figure 62 shows a combination of Figure 60 and Figure 61. This shows that when 

comparing seal strength to diffusion distance, the sodium and oxygen values are correlated. 

Previous research based on a zinc trace found a strong correlation between an increase in seal 

temperature and an increase in diffusion distance (Cooper, 2014).  
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Revisit of 220oF Sealing Temperature with Paired Samples 

 

Figure 63: Sodium Based Trace of Diffusion Distance at 220oF Seal Temperature, Using Paired Samples 

 Figure 63 shows the sodium based diffusion trace result of a test performed with paired 

samples. Each diffusion distance and seal strength were taken from the same sample. There is a 

reasonable correlation, r2=0.3036, from the data. It is important to note that the correlation of 

these data are higher than the correlations of the unpaired data. However, such a wide variation 

in diffusion distance with a relatively small change in seal strength was unexpected. When these 

data were averaged into a modified seal strength average vs. sodium based diffusion distance, 

no appreciable difference was noted.  

 In Figure 63, it was shown that paired samples had a R2 correlation of .3036. While this 

correlation is one of the stronger correlations seen in the study, it is important to note the 

variation of the data. Previously measured sodium based diffusion distances over the sealing 

temperature range from 205oF to 300oF ranged from 0.74μm to 16.27μm. Previously measured 

seal strengths over the seal temperature range of 205oF to 300oF were 264.4 gf/25mm to 2056.8 
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gf/25mm. This means that, in the paired samples where sodium was traced, there was a span of 

1.68% of the total observed seal strength covering 25.6% of the span of total observed diffusion 

distance. In related research, a range in sealing temperatures from 180oF to 300oF generated a 

range in diffusion from 1.24μm to 7.82μm (Cooper, 2014). In the same related research, the 

range of seal strengths was 22.02 gf/25mm to 891.41 gf/25mm. 

 

Figure 64: Oxygen Based Trace of Diffusion Distance at 220oF Seal Temperature, Using Paired Samples 

 Figure 64 shows the sodium based diffusion trace result of a test performed with paired 

samples. Each diffusion distance and seal strength were taken from the same sample. Such a 

wide variation in diffusion distance with a relatively small change in seal strength was 

unexpected. When these data were averaged into a modified seal strength average vs. oxygen 

based diffusion distance, no appreciable difference was noted. Previously measured oxygen 

based diffusion distances over the sealing temperature range of 205oF to 300oF ranged from 

0.64μm to 16.4μm. 
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Potential Reasons Which Caused Unexpected Data 

 Nucrel® 1202HC and 501i LDPE could have limited or unpredictable miscibility. Nucrel® 

is a copolymer of 88.5% low density polyethylene and 11.5% methacrylic acid. 501i LDPE is 100% 

low density polyethylene. The randomly distributed methacrylic acid groups could have caused 

the Nucrel® to have limited or unpredictable miscibility into the LDPE.  

 The EDX detector could have caused issues due to its limit of quantification when 

compared to its limit of detection. The “limit of quantification is the lowest concentration at 

which the analyte can not only be reliably detected but at which some predefined goals for bias 

and imprecision are met. The limit of quantification may be equivalent to the limit of detection 

or it could be at a much higher concentration” (Pry & Armbruster, 2008).  

 Another issue with EDX is that it is not specifically a surface analysis technique. The X-

rays come from within the bulk of the sample when the electron beam interacts with the 

sample. In this case the target ion was localized to the surface of the sample. Even though steps 

were taken to minimize the penetration depth of the electron beam, the X-ray information was 

gathered from beneath the surface as well as at the surface of the sample.  

 The seal curve, as shown in Figure 38, was comprised of two major groups of data for 

this sealant system. This could have caused issues with the correlation to the diffusion distance. 

The correlation between the seal strength and the diffusion distance appears to be “split” in 

Figure 62 partially because of the unique nature of the seal curve in Figure 38. In Figure 38, the 

data points are grouped below 1,000 gf/25mm of seal strength and above 1,400gf/25 mm of 

seal strength. 



103 

 Sample pairing is a technique which was shown to improve the correlation in the seal 

strength vs. diffusion graphs in Figure 63 and Figure 64. This means that each EDX measurement 

and seal strength measurement would be taken from the same seal sample of a given seal 

temperature. The majority of the data collected was collected un-paired.  Un-paired meaning 

that EDX measurements and seal strength measurements were taken from different samples of 

a given seal temperature.  Sample pairing could also work to improve the data correlation with a 

larger data set. 
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CONCLUSIONS 

- A technique for tracing ions on the surface of a reactive polymer using EDX was refined. 

Sodium and oxygen ions were traced.  

 

- A unique “split” seal curve was developed for the dissimilar polymer system used in the 

study. The reason for the split seal curve can be explained with the DSC results. 

 

- The current ion tracing system did not show a relationship between diffusion distance and 

temperature at which the seal was made. Likewise, there was no relationship between 

diffusion distance and seal strength. 

 

- Tracing diffusion via an oxygen is novel. The oxygen based diffusion trace correlated to the 

sodium based diffusion trace.  
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RECOMMENDATIONS FOR FUTURE WORK 

 Improvements can be made to the materials and methods used in this study. An 

element with a lower critical ionization energy could be used. Neon, fluorine, oxygen, nitrogen, 

carbon, boron, beryllium, and lithium have lower critical ionization energies than sodium. 

However, it is challenging to detect elements lighter than sodium with an x-ray detector with a 

beryllium window. There are windowless x-ray detectors available, but this would add cost.  

 The sample could be made conductive by carbon sputtering. If the sample were 

conductive, higher resolution scanning electron images can be acquired. Charging is eliminated 

if the sample were conductive, as grounded samples are able to eliminate their excess charge. If 

the sample were conductive, then a full vacuum could be used. If a full vacuum were used, then 

wavelength dispersive spectroscopy (WDS) becomes available. WDS offers up to 100 times 

greater sensitivity than EDX for the analysis of trace elements (Oxford Instruments, 2015).  

 Another way to make the sample conductive is by compounding with carbon black. Both 

polymers could be compounded with carbon black in the extruder used to cast the films used in 

this research. 

 More time effective and consistent sample preparation techniques could be utilized if 

the film created for analysis were free from gauge banding. A form of more effective sample 

preparation would be to utilize a lamination machine to laminate both polymer layers of interest 

to an inextensible layer. Manually laminating pressure sensitive adhesive tape to the samples 

was a consistent process, but a machine has the potential to be more consistent. An 

inextensible layer of choice would be aluminum foil or, an oriented film which behaves in a 

brittle manner.  
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 If a high precision heat sealer were used, then smaller temperature gradients than 5oF 

could be used for a more accurate seal curve. If the seal jaws on the heat sealer were wider than 

3/8 inches, the seal could be pulled longer for a larger seal curve plateau.  

 Another polymer system could be used. Ethyl methyl acrylate (EMA) copolymers would 

react with sodium hydroxide to form a sodium salt. EMA could also potentially be more soluble 

in low density polyethylene than EMAA. 

 A polymer system which would be interesting to study is a seal between a zinc ionomer 

and a sodium ionomer. If both polymers were roughly the same percentage of ionomer, then 

miscibility should not be an issue. Interesting comparisons could be done with a line scan across 

a seal interface with two ions, as two relevant diffusion traces could be made. Both sodium and 

zinc ionomers are commercially available.  

 With the assistance of a company with free radical polymerization equipment, 13C or 14C 

based polymers could be used. Carbon tagging is a common practice in biology and metabolism 

studies. 13C is not radioactive, 14C is radioactive.  

 A multistep reaction could be used to tag the surface of the polymer. Such reactions 

have successfully been done by other researchers (Luo, Stewart, Hirt, Husson, & Schwark, 2004). 

By using a multistep reaction, something more complex than a positive metal ion could be 

attached to the reactive sites at the seal interface. 

 For greater statistical significance, a larger number of samples could be analyzed with 

EDX via SEM. However, SEM line scan analysis is not a time efficient analysis. The inefficiency 

limits the practicality of testing too many samples.  
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APPENDIX 

Materials and Methods Idea One   

 DuPont’s Nucrel 0403 is a copolymer of polyethylene and methacrylic acid. The 

methacrylic acid content is 4% by weight. The polymer is produced by a free radical 

polymerization reaction. The melt index is 3. Dow’s 501i low density polyethylene has a melt 

index of 1.9. 501i LDPE is a barefoot polymer, meaning that it has no additives. LDPE is also 

produced by a free radical polymerization reaction. These polymers are compatible when heat 

sealed together. Besides the presence of the acid copolymer in the Nucrel, they are largely 

similar. When the polymers are sealed, there is a seal interface with properties that vary with 

sealing temperature. If the reactive groups in the Nucrel are tagged with a fluorescing ion such 

as europium3+, then the amount of diffusion in the seal could possibly be traced with light 

microscopy. Light microscopy has a resolution of approximately 200nm, a higher resolution than 

EDX when used to trace sodium ions on a polymer seal. The resolution of light microscopy is 

higher than EDX in this case because light microscopy is a surface analysis technique. By the 

nature of the analysis, EDX analyzes a depth profile of the sample. Research has been done 

where tagging the surface of an acid copolymer was successful (Luo, Stewart, Hirt, Husson, & 

Schwark, 2004). Research has also been done in the past where monomers were polymerized 

with fluorescing ions while in solution (Banks, Okamoto, & Ueba, 1980). This led to a fluorescent 

polymer with chemically bound fluorescing ions. However, when constraints were taken into 

account, attaching a fluorescent “probe” to the surface of the polymer of interest was not 

possible. The idea of tagging the seal interface with a fluorescing ion between Nucrel 0403 and 

501i LDPE was unsuccessful for several reasons: 
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 - The free radical polymerization of poly (ethylene co-methacrylic acid), PMAA, with a 

 fluorescing rare earth ion requires special equipment.  

 - Compounding a fluorescent tag into LDPE via mechanical mixing opens up the concern 

 of ion hopping, since the tagging agent would not be chemically bound to the polymer.  

 - Rare earth salts, the fluorescent compound of choice, do not dissolve well in water. 

 When they do dissociate, they are weakly basic in water. Rare earth salts are also 

 expensive. The rare earth salt used in idea one was europium (III) hydroxide 

 hexahydrate.   

 - PMAA is not a strong acid, meaning the “acidic H” does not dissociate easily. Weak 

 acids and weak bases form a reaction equilibrium. They do not react to completion.   

 - Light microscopy has a shallow depth of field (features in different planes are not 

 simultaneously in focus). Cryo-sectioning a seal interface creates a surface which is not 

 level because the surface is repeatedly fractured. It would defeat the purpose of cryo-

 sectioning to press the seal interface of a sample flat to facilitate analysis in a light 

 microscope.   

Analysis with a light microscope would also have benefits:  

 - Using a fluorescent tag and light microscopy would have benefits. Light microscopy is 

 an economical choice, as light microscopes are less costly to purchase and use than 

 scanning electron microscopes. Rare earth ions have known quantifiable emissions. The 

 analysis of the emissions can be performed using free software. Light microscopy is also 
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 beneficial in that the sample is not subject to a vacuum during analysis. Also, the sample 

 does not need to be conductive for light microscopy analysis. 

 - Light microscopy could become a feasible route if a multi-step reaction were used to 

 tag the  methacrylic acid groups at the surface of the seal interface. Light microscopy 

 could become a feasible technique for this type of research if a neutralized acid 

 copolymer (such as an ionomer) were made with a fluorescing rare earth element.  

Materials and Methods Idea Two 

 The second idea was to seal a high percentage acid copolymer, Nucrel 1202HC at 11.5% 

by weight methacrylic acid content, with 501i LDPE. The polymers are compatible in a heat seal. 

Seals were made, then cross sectioned to expose the seal interface. After the seal was made the 

available methacrylic acid groups would be reacted with a rare earth salt to induce fluorescence. 

This technique failed, as apparently the rare earth salt chosen was too weakly basic or weakly 

dissociating to react with the surface of the PMAA. The same rare earth salt was used for idea 

one as was used for idea two. 

Materials and Methods Idea Three 

 The third idea was to seal DuPont’s Nucrel 0403 to Dow’s 501i LDPE. The reaction would 

then be traced via a sodium tag. The sodium tag would be provided from sodium hydroxide 

(NaOH), which is a strong base. Strong bases completely dissociate in water. Seals were made, 

then cross sectioned to expose the seal interface. The cross sections were then soaked in a 2.5M 

solution of NaOH for 24 hours. A 2.5M solution of NaOH has a pH of 14.397.  
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 After the seal interface was tagged with sodium ions, it was examined with a scanning 

electron microscope. When the surface of the "tagged” Nucrel was examined, no sodium ions 

were found.  

 It is counterintuitive to think that no reaction occurred. It is likely that a reaction did 

occur, but the detection limit of the EDX detector used was too low. This could be remedied by 

using a more sensitive EDX detector, or by using a wavelength dispersive spectroscopy (WDS) 

detector. WDS detectors are designed for trace element analysis.  

 The issue could also be remedied by using a sodium neutralized ionomer. However, 

examining ions which were already present in the sample opens up the possibility of ion 

hopping. Ion hopping causes unknown inaccuracies in diffusion measurement. 

 The sample could also be made conductive using carbon sputtering. If the sample were 

conductive, a higher excitation voltage could be used, which could potentially aid in the 

detection of the sodium ion.  

 If the sample were made to be conductive, then a partial atmosphere would not be 

needed to reduce charging. In a full vacuum, the oxygen portion of the methacrylic acid could be 

traced. Without a full vacuum, atmospheric oxygen present in the sample chamber poses a 

source of contamination.  

Materials and Methods Idea Four 

 A high acid content acid copolymer of unspecified age was used to react with sodium. 

The polymer used was 1202HC. After the reaction with sodium, the sample was examined via 
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SEM. The sample showed sodium ions on the surface of the polymer. The seal interface 

between 501i and 1202HC was clearly visible. However, this system had issues:  

 -The polymer film had been pre made by an outside source. The polymer had gauge 

 banding that made seal strength analysis challenging.  

 -The polymer had developed methacrylic acid domains. These were visible in the SEM as 

 spots. If the methacrylic acid had developed domains, then it would be challenging to 

 measure a seal interface as the majority of the sodium ions would be concentrated in 

 the reactive domains rather than spread across the surface of the film. 

 To remedy the issue of age induced domains, Nucrel 1202HC was cast less than a month 

before it was used. Samples were cut from the same portion of film to eliminate thickness 

variations from sample to sample.  

Final Materials and Methods 

 Seals were made between Nucrel 1202HC and 501i LDPE. Both films were cast less than 

a month before seals were made and SEM analysis was performed. Seals were cross sectioned, 

and the seal interface was exposed to 2.5M NaOH for 24 hours. After the seals were exposed, 

SEM analysis was performed with a 50 pascal partial atmosphere. A 50 pascal partial 

atmosphere was used to prevent the sample from charging. Analysis of the SEM data was done 

with SAS® and Excel 2013. Tracing of both sodium ions and oxygen ions were successful with this 

technique. The reaction of the sodium hydroxide with the Nucrel fixed oxygen onto the reactive 

sites of the Nucrel. 
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Material Data Sheets

 

Figure 65: Specification Sheet, DuPont 1202HC, Page 1 of 3 (DuPont, 2014) 
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Figure 66: Specification Sheet, DuPont 1202HC, Page 2 of 3 (DuPont, 2014)  
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Figure 67: Specification Sheet, DuPont 1202HC, Page 3 of 3 (DuPont, 2014)  
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Figure 68: Specification Sheet, Dow 501i LDPE, Page 1 of 3 (The Dow Chemical Company, 2015)  
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Figure 69: Specification Sheet, Dow 501i LDPE, Page 2 of 3 (The Dow Chemical Company, 2015)  
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Figure 70: Specification Sheet, Dow 501i LDPE, Page 3 of 3 (The Dow Chemical Company, 2015) 
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SAS® Program 

data one; 
input x y; 
infile datalines dlm='09'x; 
datalines; 
 
; 
/* 
proc nlin; 
parms c1=20 c2=30 xl=29 xu=32 sd=4; 
slope = (c2-c1)/(xu-xl); 
int = c1-slope*xl; 
model y2 = c1*(x<xl) + (int + slope*x)*(xl <= x <= xu) + c2*(x>xu); 
run; 
*/ 
proc means; 
/* pick a flat area */ 
where x lt 23 and x gt 13; 
var y; 
run; 
proc nlmixed; 
/* exclude extremes from analysis */ 
where x gt 15 and x lt 35; 
 
/* c1 is low level of sodium c2 is high xl is end of flat region on low end xu is beginning of flat 
region on high end*/ 
/* change sd based on standard deviation output above from proc means */ 
arms c1=90 c2=115 xl=24 xu=27.5 sd=9.2; 
slope = (c2-c1)/(xu-xl); 
int = c1-slope*xl; 
mean =  c1*(x<xl) + (int + slope*x)*(xl <= x <= xu) + c2*(x>xu); 
model y ~ normal(mean,sd*sd); 
estimate 'slope' (c2-c1)/(xu-xl); 
estimate 'diffusion' (xu-xl); 
run; 
 
run; 
quit; 
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