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ABSTRACT 

 
Previous research in the mid-Atlantic and midwestern USA has identified 

advantages and drawbacks of “organic no-till” vegetable production, but few studies have 

been conducted in the warmer southeastern region. The purpose of this study was to 

examine the effects of tillage [no-till (NT) vs. conventional tillage (CT) of a cereal 

rye/crimson clover cover crop] and three nitrogen fertilization rates on organic tomato 

(Solanum lycopersicum L.) and summer squash (Cucurbita pepo L.) yield, weed 

suppression, and soil N dynamics in two years in a soil series in Clemson, SC. Squash 

yields were similar between tillage treatments in both years. NT tomato yields were 43% 

greater than CT yields in 2014, whereas CT tomato yields were 46% greater than NT 

yields in 2015. Squash and tomato yields per unit of management labor (time) were 

significantly greater in NT compared to CT treatments for both years. There were no 

statistical differences in squash and tomato yields between N fertilization treatments in 

either year. Pre-season soil N levels were significantly higher in NT tomato plots in 2014 

but similar between tillage treatments in tomato plots in 2015 and in squash plots both 

years. Post-season soil N levels in tomato plots were similar between tillage treatments 

both years. Post-season soil N levels were significantly higher in NT squash plots in 2014 

and in CT squash plots in 2015. Roller-crimped NT mulches provided adequate early-

season weed suppression in both years and saved considerable weed management and 

seedbed preparation labor. Overall, the results demonstrated that organic no-till is a 

viable method for reduced tillage summer vegetable production in the South Carolina 

Piedmont region.  
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CHAPTER ONE: INTRODUCTION AND LITERATURE REVIEW 

Organic Agriculture 

Representing just over four percent of overall U.S. food sales and roughly about 

0.5% of total U.S. cropland, organic production is a small but steadily growing segment 

in U.S. agriculture (Greene et al., 2009; USDA ERS, 2015). Among organic food sales, 

fresh fruits and vegetables are a top selling category, accounting for 43% of organic food 

sales. (USDA ERS, 2015). Organic food sales quintupled between 1997 and 2007 with 

consumer demand for organics often outstripping supply (Greene et al., 2009). The 

growth in demand is largely driven by consumer concerns over the health and 

environmental impacts of food choices (USDA ERS, 2014). Similarly, organic 

agriculture has been lauded for pesticide reduction, improvements in soil heath, carbon 

sequestration, and enhanced biodiversity (Greene et al., 2009). Concurrent to the rising 

popularity of organic foods is the growth of direct-to-consumer marketed foods, with a 

strong consumer preference for local organically produced foods (Low et al., 2015; 

USDA ERS, 2014). Forty percent of organic farms in the U.S. market food through 

direct-to-consumer channels (Low et al., 2015). Organic foods demand a higher price 

premium than conventionally produced food, which can be a strong marketing incentive 

for farmers to switch to organic practices (Greene et al., 2009; USDA ERS, 2014). 

Organic farming, at its core, is soil-health centric (Kuepper, 2010). Early organic 

farmers, promoted traditional agricultural practices such as animal and green manuring, 
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composting, crop rotation and diversified cropping to build and feed the “soil food web” 

(Kuepper, 2010). These traditional practices are codified in the National Organic 

Program (NOP), the governing document for organic agriculture, which emphasizes soil 

health by requiring organic producers to use cover crops, crop rotations and application 

of plant and animal materials (NOP, 2015). Weed management, though, is one of the 

biggest challenges to organic crop production (Sooby et al., 2007; Riemens et al., 2007), 

and the prohibition of synthetic herbicides and lack of effective organic alternatives 

makes weed management more complex in organic systems compared to conventional 

ones (DeDecker et al., 2014).  

Weed management strategies in organic farming include cultural practices such as 

cover cropping, crop rotations, diversified cropping as well and stale seedbed/delayed 

planting techniques and mechanical practices such as mowing and tilling (Morse and 

Creamer, 2006; Sooby et al., 2007; Schonbeck and Morse, 2007). Despite the widely 

known deleterious effects of soil disturbance on soil health organic farmers, out of 

necessity, rely heavily on soil tillage for weed management (Schonbeck and Morse, 2007; 

Morse and Creamer, 2006). Indeed, organic farmers are confounded by the seasonal 

paradox of both improving and damaging soil health (Schonbeck and Morse, 2007).  

A growing number of organic farmers, though, have begun finding success 

managing weeds while concomitantly improving soil health by blending traditional cover 

cropping for weed management with reduced tillage techniques (Leavitt et al., 2011; 

Mirsky et al., 2013). 
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Advantages of No-till Systems 

Background 

No-till is a reduced tillage practice in which soil disturbance is all but eliminated 

between harvest and the subsequent season’s planting (Köller, 2003). No-till and other 

reduced tillage practices spread gradually in the United States in the wake of 

technological innovations during and after World War II (Lal et al., 2007; Magdoff & 

Van Es, 2009). Chemical advancements such as the broadleaf herbicide 2-4,D (1945), 

and the non-selective herbicide paraquat (1962), created tillage alternatives for farmers 

who, prior to their invention, relied on primary (moldboard plow) and secondary tillage 

(chisel and/or disc plow) for weed management and seedbed preparation (Lal et al., 2007; 

Magdoff & Van Es, 2009; Coughenour and Chamala, 2000). Farmer adoption of reduced 

tillage practices spread gradually in the second half of the 20th century (Coughenour and 

Chamala, 2000). Currently, over 40% of agronomic crop acreage in the U.S. is managed 

using some form of conservation tillage, mostly no-till (CTIC, 2004). Several decades of 

no-till research, primarily regarding conventionally grown agronomic crops, has 

demonstrated a number of beneficial attributes associated with reduced tillage 

management. 

Soil Organic Matter 

No-till practices leave abundant residue on the soil surface resulting in slower 

residue decomposition than when incorporated (Magdoff and Weil, 2004; Franzluebbers, 
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2004). Surface-concentrated organic matter is better protected within soil macro-

aggregates from consumption by soil fauna and microbes (Franzluebbers, 2004). 

Eventually, all residues left in the field will decompose to some degree, losing the 

majority of their carbon (C) to the atmosphere via microbial respiration (Franzluebbers, 

2004), but by slowing down the process of decomposition, the rate of C loss can be 

lessened and soil organic matter (SOM) better preserved (Magdoff and Weil, 2004). Over 

time, continually adding residues while limiting or eliminating tillage altogether (i.e. no-

till) can gradually increase SOM levels (Franzluebbers, 2004). Decades of research have 

demonstrated that no-till increases SOM. Longer-term studies in different climatic zones 

in North America demonstrated higher SOM levels in no-till systems compared to 

conventionally tilled systems: barley (Arshad et al., 1990); maize and soybeans, (Dick, 

1983); maize (Blevins et al., 1977); wheat (Bauer and Black, 1981); and maize and 

soybean (Edwards et al., 1992).  

Soil Biology 

Microorganism diversity and functional diversity are greatly affected by soil 

disturbance (Kennedy et al., 2004; Altieri, 1999). Tillage disrupts at least the top 15-

25cm of the soil profile and distributes organic matter more evenly throughout the plow 

zone creating a less stratified, more homogenous surface layer with reduced soil 

microbial biomass and soil microbial species density (Franzluebbers, 2004; Altieri, 1999; 

Seiter and Horwath, 2004). In contrast, no-till systems, which increase and concentrate 

SOM in the upper centimeters of the soil profile increase microbial biomass and diversity 
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in surface soils (Franzluebbers, 2004; Seiter and Horwarth, 2004) and generally have 

higher fungi-to-bacteria ratios (Frey et al., 1999; Andrade et al., 2003). A number of 

studies (Aslam et al., 1999; Hubbard et al., 1999; Jordan et al., 1997; Kladivko et al., 

1997) also have demonstrated earthworm populations are generally larger in no-till 

compared to tilled systems.  

Andrade et al. (2003) reviewed 40 short- and long-term no-till/conventional 

tillage comparison studies and reported that soil microbial biomass generally was higher 

in no-till systems regardless of study site and crop rotation. Further, they documented that 

differences between microbial biomass in the two tillage treatments became more 

pronounced as the duration of the studies increased (Andrade et al. 2003). Increased 

microbial biomass and SOM, in turn, increase the mineralization potential of the soil 

resulting in greater plant available nutrients (Seiter and Horwath, 2004). Over time, no-

till systems, therefore, tend to accumulate greater biologically active fractions of SOM 

such as mineralizable C and nitrogen (N) than conventionally tilled systems (Pekrun et 

al., 2003; Kennedy et al., 2004; Seiter and Horwath, 2004). Overall, no-till imparts less 

stress on soil micro- and macrobiota and creates a soil environment closely resembling 

undisturbed, natural ecosystems (Andrade et al., 2003).  

Nutrient Cycling 

No-till residues decompose slower than those incorporated into the soil through 

tillage, thus the timing of nutrient release can be different between tilled and no-till 

systems (Magdoff and Weil, 2004). Conventional tillage triggers oxidative processes, 
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which accelerate the mineralization of nutrients such as N, P, and S for plant uptake 

(Franzluebbers, 2004; Magdoff and Weil, 2004). With no-till and other reduced tillage 

practices, mineralization of N generally is slower (Franzluebbers, 2004). In the short 

term, after transitioning from intensive cultivation to no-till management practices, 

additional N fertilizer may be required to account for slower N mineralization (Pekrun et 

al., 2003). However, after a transition period – which could last several years to a decade 

depending on soil conditions – a new equilibrium can be reached in no-till systems 

wherein increased SOM and microbial biomass lead to greater mineralized N, reducing 

the need for additional N fertilizer amendments (Magdoff and Weil, 2004; Pekrun, 2003). 

Increases in SOM and microbial biomass in long-term no-till management, in essence, 

compensate for slower N mineralization and can lead to increased net N mineralization 

compared to conventionally tilled systems (Pekrun et al., 2003).  

Agronomic Crop Yields 

Franzluebbers (2004) reviewed over 80 agronomic crop studies comparing no-till, 

shallow tillage, and deep inversion tillage and found that no-till systems produced no 

consistent yield advantage compared to tilled systems – yields tended to be comparable 

between the systems. No-till has also been associated with yield reduction, particularly 

with direct-seeded crops in poorly drained soils that are slow to warm up in the spring 

(Cannell and Hawes, 1994; Dick et al., 1991; Van Doren et al., 1976; Lal et al., 1989). 

Yet, longer-term agronomic crop studies revealed more distinct yield advantages 

conferred by no-till management when compared to conventional tillage. Dick et al. 
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(1991) and Ismail et al. (1994), 25-yr and 20-yr maize studies, respectively, reported that 

yields tended to increase with time under no-till management compared with 

conventional tillage.  

Soil and Water Conservation 

In general, returning plant residue to the soil surface tends to increase soil water 

entry and storage (Magdoff and Weil, 2004). Residues left on the soil surface also protect 

the soil from the erosive forces of rainfall and wind (Pimentel et al., 1995). Franzluebbers 

et al. (1999) reported that no-till practices resulted in significant reductions in both water 

runoff and soil loss in land that had previously been under conventional tillage. SOM 

enhances the soil’s ability to retain water by way of direct absorption and by promoting 

stronger aggregation (Magdoff and Weil, 2004). Thus, soils with a high SOM content 

have significantly higher available water capacity than soils with similar texture but with 

less SOM (Hudson, 1994). No-till practices, which maximize soil coverage with residues 

and increase SOM, tend to result in more erosion-resistant soils with greater soil water 

content compared conventional tillage (Blevins and Frye, 1993). 

Carbon Sequestration 

Agricultural soil conservation practices such as no-till, which increases soil C 

long term, serve as a potential mitigation strategy to curb greenhouse gas emissions and 

thus combat accelerated global climate change (Lal, 2010; West and Post, 2002; Six et 

al., 2004). Estimates of how effective no-till farming could potentially be to reducing 
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global warming, though, are highly variable and complex due to variations in crop 

residue, climate, and soil properties (Lal, 2010). Franzluebbers (2010), reviewed 147 

long-term no-till/conventional tillage comparison studies from the southeastern U.S. and 

reported that the agricultural soils in this region alone hold the potential to sequester 0.45 

Mg C ha-1 yr-1 if converted to no-till management. Six et al. (2004) reported that an 

estimated 0.031 Mg C ha-1 yr-1 of greenhouse gas emissions could be realized by using 

no-till, mainly by way of reduced fuel consumption.  

Cover Cropping for Soil Health and Weed Management 

Teasdale et al. (2007) defined cover crops as "a wide range of plants that are 

grown for various ecological benefits other than as a cash crop." Cover crops are 

commonly are used to fill a between-season temporal and/or spatial niche that otherwise 

would be occupied by unmanageable weed populations in the absence of cash crops (Lal 

et al., 1991; Teasdale, 1996). Cover crops provide a number of beneficial ecosystem 

functions: cover crops add organic C and N to the soil, uptake nutrients and recycle them, 

improve soil aggregation, increase macropore formation, enhance water infiltration, 

conserve soil moisture, protect the soil surface from wind and water erosion, improve soil 

tilth, and, in general, enhance soil biological diversity (Seiter and Horwath, 2004; Lal et 

al., 1991; Schonbeck and Morse, 2006; Schonbeck and Morse, 2007, Clark, 2007; 

Creamer and Baldwin, 2000).  

Regarding weed management, cover crops cover the soil surface with living plant 

tissue and outcompete weeds for sunlight, water, and nutrients (Mohler and Teasdale, 
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1993; Balkcom et al., 2007; Teasdale, 1996). A number of studies also have shown that 

cover crops suppress weeds to a varying degree through phytotoxic allelochemicals (e.g. 

phenolic acids, coumarins, benzoquinones, terpenoids, glucosinolates, and tannins) 

released into the soil (Reberg-Horton et al., 2005; Barnes and Putnam, 1983; Putnam and 

DeFrank, 1983; Chung et al. 2002; Seigler 1996; Swain, 1977). In addition to 

outcompeting weeds while growing, cover crops can be terminated and their residues left 

on the soil surface as an in situ mulch to suppress weed growth early in the growing 

season (5-7 weeks), commonly known as the “critical weed-free period”, when cash 

crops have yet to establish dense canopies to out-compete weeds (Schonbeck and Morse, 

2007). Surface-placed residues suppress weeds by intercepting and reflecting light 

transmittance, which stymies weed seed germination (Mohler and Teasdale, 1993; 

Teasdale and Mohler, 2000). Further, the physical presence of mulch on the soil surface 

impedes the emergence of germinated weeds (Teasdale and Mohler, 1993). Mulch can 

also alter soil temperature conditions, delaying the emergence of weed seeds by keeping 

soil temperatures sub-optimal early in the season (Teasdale and Mohler, 1993).  

Organic No-till 

Background 

Conventional no-till, an agricultural practice that relies heavily on chemically 

based weed suppression, is not practicable in organic production systems (Schonbeck and 

Morse, 2007; Moyer, 2011). Organic farmers are prohibited from using synthetic 

substances, such as herbicides, in organic production and handling (NOP, 2015) 
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However, in the last several decades, advancements in cover crop research and 

improvements in no-till equipment have led to a growing interest among organic farmers 

in developing no-till strategies that are compatible with organic systems (Moyer, 2011; 

Schonbeck, 2015; Schonbeck and Morse, 2007). “Organic no-till”, as it is known, is a 

cover crop centric reduced tillage system whereby an in situ cover crop mulch alone 

provides weed suppression and enables farmers to reduce tillage in organic systems 

(Moyer, 2011; Schonbeck, 2015; Schonbeck and Morse, 2007).  

In an organic no-till system, a cover crop – normally a winter annual (e.g. cereal 

rye, hairy vetch, crimson clover) – is planted in the fall at a dense seeding rate and 

overwintered until mature in the spring (Moyer, 2011; Schonbeck and Morse, 2007, 

Schonbeck, 2015). Variances of this cropping schedule exist. For instance, faster 

maturing, short-season crops (e.g. cowpeas, millet, sorghum-Sudan grass, buckwheat and 

sunn hemp) can be planted in the summer for fall cropping or planted in the fall and 

“frost” killed for early spring cropping (Schonbeck and Morse, 2007, Schonbeck, 2015). 

However, most published research regarding organic no-till has focused on fall-planted 

over-wintering cover crops. Large amounts of plant biomass are favorable when using 

cover crop in situ mulches for in-season weed suppression (Schonbeck and Morse, 2007). 

Mohler and Teasdale (1993) demonstrated that normal cover crop biomass levels, 

approximately 3,000 kg ha-1 or less, did not provide adequate weed suppression. They 

reported that biomass levels two and four times the natural amount were needed for 

adequate suppression of annual grasses and annual/perennial broadleaf weeds, 

respectively (Mohler and Teasdale 1993). 
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No-till Cover Crops 

Cereal rye (Secale cereale L.) is a fall-planted cover crop that is adaptable for 

most USDA plant hardiness zones (Clark, 2007). Rye, which has well-documented 

allelopathic properties, can produce a large amount of aboveground biomass (>9,000 kg 

ha-1), and is an optimal cool-season cover crop for organic no-till cropping systems in the 

southeastern U.S. (Mirsky et al., 2009; Reberg-Horton et al., 2012; Schonbeck and 

Morse, 2006). Cereal rye, especially as it matures, has a high C/N ratio and is thus slower 

to decompose than other cover crops, such as legumes (Teasdale and Abdul-Baki, 1998; 

Mohler and Teasdale, 1993). Mohler and Teasdale (1993) demonstrated that cereal rye 

maintains weed suppression over a longer growing season compared to legume cover 

crops, which generally have lower C/N ratios. Rye also is a scavenger or “catch” crop for 

residual N in the fall and winter, reducing the quantity of leachable NO3
- in the soil 

(Clark, et al., 1994; Meisinger, 1991; Shipley, et al., 1992).  

The high C/N ratio of mature cereal rye (25:1 to 55:1), which increases markedly 

later in the growing season as it matures, can lead to immobilization of N in the soil 

(Clark, et al., 1994; Creamer et al., 1997; Teasdale and Abdul-Baki, 1998). To reduce N 

immobilization while maintaining adequate biomass for weed suppression, rye is often 

planted with a companion winter legume such as crimson clover (Trifolium incarnatum 

L.) or hairy vetch (Vicia villosa Roth) (Schonbeck and Morse, 2007). Hairy vetch is 

better adapted to slightly cooler climates (USDA zones 5-7) than crimson clover and is 

winter hardy to USDA zones 3-4 (Clark, 2007). Compared to vetch, crimson clover is 
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better adapted to warmer U.S. climates (USDA zones 8-10) including much of the 

southeastern U.S. (Clark, 2007). Both hairy vetch and crimson clover can contribute 

considerable N to the soil (75-100 kg ha-1 N fertilizer equivalence), which reduces N 

immobilization in rye cover crop systems (Fageria et al., 2005; Hargrove, 1986; Clark et 

al., 1994; Creamer et al., 1997). Another advantage of using a cover crop biculture (grass 

+ legume) is that it can accumulate more “topgrowth” N than either cover crop grown 

alone because by depleting the soil of N, the grass, in essence, drives greater biological N 

fixation on behalf of the legume (Creamer et al., Clark et al., 1994).  

Cover Crop Termination 

Proper mechanical termination of cover crops is necessary to make organic no-till 

systems work (Schonbeck and Morse, 2007; Creamer and Dabney, 2002; Moyer, 2011). 

Organic no-till cover crops can be killed mechanically with a number of farm implements 

(e.g. mowers, cultipackers, undercutters, rolling stalk choppers, crop rollers) but optimal 

results have been documented with specialized roller-crimping devices – heavy, often 

water-filled cylinders with welded steel blades – that crush cover crop tissue and press 

the crop residue flat onto the soil surface (Schonbeck and Morse, 2007; Moyer, 2011, 

Mischler, et al., 2010, Ashford and Reeves, 2003; Morse, 1999). Mischler et al. (2010) 

and Mirsky et al. (2009) demonstrated that roller-crimpers provide consistent cover crop 

control comparable to herbicides. Ashford and Reeves (2003) demonstrated that roller-

crimping was more economical than chemical weed control. 

Unlike mowing, which tends to shred residues finely and distribute them 
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unevenly, roller-crimping keeps residues intact and in place, leaving behind a thick weed 

barrier that persists longer in season than when mowed (Schonbeck and Morse, 2007; 

Mirsky et al. 2009, Creamer and Dabney, 2002; Moyer, 2011). Further, roller-crimped 

cover crop residue is uniformly pressed in the direction of travel, which reduces the risk 

of hairpins and clogged equipment if followed with no-till planting equipment (Moyer, 

2011; Creamer and Dabney, 2002). Roller-crimpers also are more cost-effective 

compared to other methods of cover crop termination, such as mowing. Roller-crimpers 

can be operated at faster speeds than when mowing and do not require an energy-

intensive power take-off (PTO) drive (Mirsky et al., 2013). Ashford and Reeves (2003) 

reported that energy requirements for roller-crimper operation were one tenth that of a 

rotary mower.  

Timing of the cover crop termination is critical in organic no-till systems (Moyer, 

2011; Mirsky et al., 2009; Mischler et al., 2010; Creamer and Dabney, 2002). The cover 

crop needs to have time to generate sufficient biomass – if killed too early, not enough 

biomass has accumulated for lasting weed suppression (Schonbeck and Morse, 2007; 

Moyer, 2011, Mirsky et al., 2013). In experiments examining cover crop kill-date effects, 

Clark et al. (1994), Clark et al. (1995), Wagger (1989), and Mirsky et al. (2011) 

demonstrated that significant increases in cover crop biomass could be achieved by 

delaying spring termination by just 2-4 weeks. In general, mechanical control of cover 

crops improves with increasing plant maturity (Mirsky et al., 2012). Conversely, if the 

cover crop is left in the field too long and viable seed is formed, the seed from the cover 

crop can create weed problems in future cropping seasons (Moyer, 2011).  
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For optimal biomass production with little risk of carry-over weed seed, 

mechanically killed cover crops for organic no-till are best terminated at anthesis or 

greater but before viable seed has been produced (Moyer, 2011; Schonbeck, 2015; 

Mirsky et al., 2009). In an organic no-till study examining roller-crimped cereal rye, 

Mirsky et al. (2009) found that cereal rye regrowth was consistently controlled by 

terminating the crop at anthesis (Zadoks growth stage 61) or greater. Ashford and Reeves 

(2003) had similar findings: 85% and 95% cover crop control when rye was terminated at 

anthesis and soft dough stages, respectively. Another concern regarding the timing of 

cover crop termination is regrowth of a cover crop that was too immature at time of 

termination. Cover crop regrowth can create a carryover weed problem in the field as 

lingering cover crops can compete with cash crops for water and nutrients much like 

weeds do (Moyer, 2011; Mischler et al., 2010). Waiting until anthesis or greater before 

terminating the cover crop diminishes the chance for regrowth of the cover crop 

(Mischeler et al., 2010; Mirsky et al., 2009). 

Vegetable Yields 

Similar to the aforementioned conventional no-till agronomic crop studies, yield 

results in organic no-till vegetable production have been mixed. Yield reductions 

associated with no-till rye and/or vetch mulches were documented in squash (Leavitt et 

al., 2011), bell pepper (Diaz-Perez et al., 2008; Leavitt et al., 2011), and tomato 

production (Leavitt et al., 2011). On the contrary, comparable or positive yield responses 

in organic no-till systems compared to conventionally tilled systems were reported in 
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tomatoes (Abdul-Baki et al., 1996; Madden et al., 2004; Delate et al., 2012). Abdul-Baki 

et al. (1996) documented higher tomato yields with lower N fertilizer inputs using mowed 

hairy vetch, crimson clover, and rye + hairy vetch mulches compared to black 

polyethylene mulch (plasticulture) treatments. They also demonstrated that using cover 

crop mulches instead of plastic mulches potentially could save growers an estimated 

$1850/ha in reduced fertilizer, herbicide and equipment costs (Abdul-Baki et al., 1996). 

Indeed, one of the biggest potential advantages to using organic no-till practices is the 

potential for greater economic returns through lessened production and management costs 

(Moyer, 2011).  

Future Challenges 

Organic no-till, though, is not without its share of pitfalls. Common problems 

researchers have identified regarding organic no-till production include: sub-optimal soil 

temperatures early in the season and decreased degree growing days due to the cooling 

effect of cover crop mulches; loss of earliness due to a lack of synchrony between cover 

crop maturity and optimal cash crop planting dates; N immobilization when using high 

C/N cover crops (i.e. rye); increased weed pressure particularly when cover crop stands 

are inadequate; and reduced N mineralization due to a lack of cover crop incorporation 

(Leavitt et al., 2011; Schonbeck and Morse, 2007; Schonbeck, 2015; Moyer, 2011; 

Creamer et al., 1997; Morse, 1999; Mirsky et al., 2011). To keep weeds (particularly 

perennial weeds) in check, continuous no-till is not recommended in organic no-till 

systems – eventually some tillage is required between cropping seasons to manage weed 
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pressure (Schonbeck and Morse, 2007). Therefore, organic no-till is viewed not a as 

“zero” tillage system but more of a rotational tillage method – a means to eliminate most, 

but not all, tillage events from crop production (Schonbeck and Morse, 2007; Mirsky et 

al., 2012).  

Research Objective 

The purpose of this research is to evaluate organic no-till production for weed 

management, vegetable yield, and nutrient management compared to a conventionally 

tilled system.  

Literature Cited 

Abdul-Baki, A. A., & Teasdale, J. R. (2007.). Sustainable production of fresh market 
tomatoes with organic mulches. USDA Farmers' Bulletin 2280. Retrieved from: 
http://www.ars.usda.gov/is/np/SustainableTomatoes2007/TomatoPub.pdf 

 
Abdul-Baki, A., Stommel, J., Watada, A., Teasdale, J., and Morse, R. (1996). Hairy vetch 

mulch favorably impacts yield of processing tomato. HortScience, 31(338), 340. 
 
Altieri, M. A. (1999). The ecological role of biodiversity in agroecosystems. Agriculture 

Ecosystems & Environment, 74(1-3), 19-31.  
 
Arshad, M. A., Schnitzer, M., Angers, D. A., and Ripmeester, J. A. (1990). Effects of till 

vs no-till on the quality of soil organic matter. Soil Biology and Biochemistry, 
22(5), 595-599.  

 

Ashford, D. L. and Reeves, D. W. (2003). Use of a mechanical roller‐crimper alternative 
kill method for cover crops. American Journal of Alternative Agriculture, 18, 37-
45. 

 
Aslam, T., Choudhary, M. A., and Saggar, S. (1999). Tillage impacts on soil microbial 

biomass C, N and P, earthworms and agronomy after two years of cropping 
following permanent pasture in New Zealand. Soil & Tillage Research, 51(1-2), 
103-111.  



 17

Balkcom, K.S., Schomberg, H., Reeves, D. W. and Clark, A. J. (2007).  
Managing cover crops in conservation tillage systems.  In A. Clark (Ed.), 
Managing cover crops profitably (3rd ed., pp. 44-61). College Park, MD: SARE. 

 
Barnes, J. P. and Putnam, A. R. (1983). Rye residues contribute weed suppression in no-

tillage cropping systems. Journal of Chemical Ecology, 9(8), 1045-1057.  
 
Bauer, A., and Black, A. L. (1981). Soil carbon, nitrogen, and bulk density comparisons 

in two cropland tillage systems after 25 years and in virgin grassland. Soil Science 
Society of America Journal, 45, 1166-1170. 

 
Blevins, R. L. and Frye, W. F. (1993). Conservation tillage: an ecological approach to 

soil management. Advances in Agronomy, 51(34), 77. 
 
Blevins, R. L., Thomas, G. W., and Cornelius, P. L. (1977). Influence of no-tillage and 

nitrogen-fertilization on certain soil properties after 5 years of continuous corn. 
Agronomy Journal, 69(3), 383-386.  

 
Cannell, R. Q., and Hawes, J. D. (1994). Trends in tillage practices in relation to 

sustainable crop production with special reference to temperate climates. Soil and 
Tillage Research, 30(2–4), 245-282.  

 
Chung et al. (2002). Screening of allelochemicals on barnyardgrass (Echinochloa crus-

galli) and identification of potentially allelopathic compounds from rice (Oryza 

sativa) variety hull extracts. Journal of Crop Protection, 21, 913-920. 
 
Clark, A. J. (Ed.). (2007). Managing cover crops profitably (3rd ed.). College Park, MD: 

SARE. 
 
Clark, A. J., Decker, A. M., and Meisinger, J. J. (1994). Seeding rate and kill date effects 

on hairy vetch cereal rye cover crop mixtures for corn production. Agronomy 
Journal, 86(6), 1065-1070. 

 
Clark, A. J., Decker, A. M., Meisinger, J. J. and McIntosh, M. S. (1997). Kill date of 

vetch, rye, and a vetch-rye mixture: I. cover crop and corn nitrogen. Agronomy 
Journal, 89(3), 427-434. 

 
Clark, A. J., Decker, A. M., Meisinger, J. J., Mulford, F. R., and McIntosh, M. S. (1995). 

Hairy vetch kill date effects on soil-water and corn production. Agronomy Journal, 
87(3), 579-585.  

 
Conservation Technology Information Center (CTIC). (2004). National crop residue 

management survey. Retrieved from:  
http://www.ctic.org/CRM/ 



 18

Coughenour, C. M., and Chamala, S. (2000). Conservation tillage and cropping 
innovation: constructing the new culture of agriculture. Ames, Iowa: Iowa State 
University Press. 

 
Creamer, N. G, and Dabney, S. M. (2002). Killing cover crops mechanically: review of 

recent literature and assessment of new research results. American Journal of 
Alternative Agriculture, 17(01), 32-40.  

 
Creamer, N. G., Bennett, M. A., and Stinner, B. R. (1997). Evaluation of cover crop 

mixtures for use in vegetable production systems. HortScience, 32(5), 866-870. 
 
Creamer, N.G. and Baldwin, K. R. (2000). An evaluation of summer cover crops for use 

in vegetable production systems in North Carolina. HortScience, 35, 600-603. 
 
DeDecker, e. a. (2014). Weed management practice selection among midwest U.S. 

organic growers. Weed Science, Vol. 62(3), 520-531. 
 
Delate, K., Cwach, D., and Chase, C. (2012). Organic no-tillage system effects on 

soybean, corn and irrigated tomato production and economic performance in Iowa, 
USA. Renewable Agriculture and Food Systems, 27, 49-59. 

 
Diaz-Perez, J., Silvoy, J., Phatak, S., Ruberson, J., and Morse, R. (2008). Effect of winter 

cover crops and no-till on the yield of organically grown bell pepper (Capsicum 

annuum L.). In R. Prange and S. Bishop (eds.). (Ed.),  Proc. XXVII IHC-S11 
Sustainability through integrated and organic horticulture. pp. 767. 

 
Dick, W. A. (1983). Organic-carbon, nitrogen, and phosphorus concentrations and pH in 

soil profiles as affected by tillage intensity. Soil Science Society of America 
Journal, 47(1), 102-107.  

 
Dick, W. A., McCoy, E. L., Edwards, W. M., and Lal, R. (1991). Continuous application 

of no-tillage to Ohio soils. Agronomy Journal, 83(1), 65-73.  
 
Edwards, J. H., Wood, C. W., Thurlow , D.L., and Ruf, M. E. (1992). Tillage and crop-

rotation effects on fertility status of a Hapludult soil. Soil Science Society of 
America Journal, 56(5), 1577-1582. 

 
Fageria, N. K., Baligar, V. C., and Bailey, B. A. (2005). Role of cover crops in improving 

soil and row crop productivity. Communications in Soil Science and Plant 
Analysis, 36(19-20), 2733-2757.  

 
Franzluebbers, A. J. (2004). Tillage and residue management effects on soil organic 

matter. In R. Weil and F. Magdoff (Eds.), Soil organic matter in sustainable 
agriculture (pp. 227-268). Boca Raton, FL: CRC Press. 



 19

Franzluebbers, A. J., Hons, F. M., and Zuberer, D. A. (1994). Long-term changes in soil 
carbon and nitrogen pools in wheat management-systems. Soil Science Society of 
America Journal, 58(6), 1639-1645.  

 
Frey, S. D., Elliott, E. T., and Paustian, K. (1999). Bacterial and fungal abundance and 

biomass in conventional and no-tillage agroecosystems along two climatic 
gradients. Soil Biology and Biochemistry, 31(4), 573-585.  

 
Greene et al. (2009). Emerging issues in the U.S. organic industry, No. EIB-55. U.S. 

Department of Agriculture, Economic Research Service. Retrieved from: 
http://www.ers.usda.gov/publications/eib-economic-information-
bulletin/eib55.aspx 

 
Hargrove, W. L. (1986). Winter legumes as a nitrogen-source for no-till grain-sorghum. 

Agronomy Journal, 78(1), 70-74. 
 
Hubbard, V. C., Jordan, D., and Stecker, J. A. (1999). Earthworm response to rotation 

and tillage in a Missouri claypan soil. Biology and Fertility of Soils, 29(4), 343-
347.  

 
Hudson, B. D. (1994). Soil organic matter and available water capacity. . Journal of Soil 

and Water Conservation, 49(2), 89-194. 
 
Ismail, I., Blevins, R. L., and Frye, W. W. (1994). Long-germ no-tillage effects on soil 

properties and continuous corn yields. Soil Science Society of America Journal, 
58(1), 193-198. 

 
Jordan, D., Stecker, J. A., Cacnio-Hubbard, V. N., Li, F., Gantzer, C. J., and Brown, J. R. 

(1997). Earthworm activity in no-tillage and conventional tillage systems in 
Missouri soils: a preliminary study. Soil Biology and Biochemistry, 29(3–4), 489-
491.  

 
Kennedy, A. C., Stubbs, T. L., and Schillinger, W. F. (2004). Soil and crop management 

effects on soil microbiology. In R. Weil and F. Magdoff (Eds.), Soil organic 
matter in sustainable agriculture (pp. 295-326). Boca Raton, FL: CRC Press. 

 
Kladivko, E. J., Akhouri, N. M., and Weesies, G. (1997). Earthworm populations and 

species distributions under no-till and conventional tillage in Indiana and Illinois. 
Soil Biology and Biochemistry, 29(3–4), 613-615. 

 
Koller, K. (2003). Techniques of soil tillage. In A. El Titi (Ed.), Soil tillage in 

agroecosystems (pp. 1-27). Boca Raton, FL: CRC Press. 
 
 



 20

Kuepper, G. (2010). A brief overview of the history and philosophy of organic 
agriculture. Kerr Center for Sustainable Agriculture. 

 
Lal, R. (2010). Managing soils and ecosystems for mitigating anthropogenic carbon 

emissions and advancing global food security. Bioscience, 60(9), 708-721. 
 
Lal, R. (2013). Enhancing ecosystem services with no-till. Renewable Agriculture and 

Food Systems, 28(02), 102-114.  
 
Lal, R., Logan, T. J., and Fausey, N. R. (1989). Long-term tillage and wheel traffic 

effects on a poorly drained mollic ochraqualf in northwest Ohio. 1. soil physical 
properties, root distribution and grain yield of corn and soybean. Soil and Tillage 
Research, 14(4), 341-358.  

 
Lal, R., Regnier, E., Eckert, D. J., Edwards, W. M., and Hammond, R. (1991). 

Expectations of cover crops for sustainable agriculture. In W. L. Hargrove (Ed.), 
Cover crops for clean water (pp. 1-10). Ankeny, IA: Soil and Water Conservation 
Society. 

 
Lal, R., Reicosky, D. C., and Hanson, J. D. (2007). Evolution of the plow over 10,000 

years and the rationale for no-till farming. Soil and Tillage Research, 93(1), 1-12.  
 
Leavitt, M. J., Sheaffer, C. C., Wyse, D. L., and Allan, D. L. (2011). Rolled winter rye 

and hairy vetch cover crops lower weed density but reduce vegetable yields in no-
tillage organic production. HortScience, 46(3), 387-395. 

 
Low, S. et. al. 2015. (2015). Trends in U.S. local and regional food systems, No. AP-068. 

U.S. Department of Agriculture, Economic Research Service. Retrieved from: 
http://www.ers.usda.gov/media/1763057/ap068.pdf 

 
Madden, N. M. et al. (2004). Evaluation of conservation tillage and cover crop systems 

for organic processing tomato production. Horttechnology, 14(2), 243-250. 
 
Magdoff, F. and Weil, R. (2004). Soil organic matter management strategies. In R. Weil 

and F. Magdoff (Eds.), Soil organic matter in sustainable agriculture (pp. 45-66). 
Boca Raton, FL: CRC Press. 

 
Meisinger, J. J., Hargrove, W. L., Mikkelsen, Jr., R. L., Williams, J. R., & Benson, V. W. 

(1991). Effects of cover crops on groundwater quality. In W. L. Hargrove (Ed.), 
Cover crops for clean water (pp. 57-68). Ankeny, Iowa: Soil and Water 
Conservation Society. 

 
 
 



 21

Mirsky, S. B. et al. (2012). Conservation tillage issues: Cover crop-based organic 
rotational no-till grain production in the mid-atlantic region, USA. Renewable 
Agriculture and Food Systems, 27, 31-40. 

 
Mirsky, S. B. et al. (2013). Overcoming weed management challenges in cover crop-

based organic rotational no-till soybean production in the eastern United States. 
Weed Technology, 27(1), 193-203.  

 
Mirsky, S. B., Curran, W. S., Mortensen, D. A., Ryan, M. R., and Shumway, D. L. (2009). 

Control of cereal rye with a roller/crimper as influenced by cover crop phenology. 
Agronomy Journal, 101(6), 1589-1596.  

 
Mirsky, S. B., Curran, W. S., Mortensen, D. M., Ryan, M. R., and Shumway, D. L. 

(2011). Timing of cover-crop management effects on weed suppression in no-till 
planted soybean using a roller-crimper. Weed Science, 59(3), 380-389. 

 
Mischler, R. A., Curran, W. S., Duiker, S. W., and Hyde, J. A. (2010). Use of a rolled-rye 

cover crop for weed suppression in no-till soybeans. Weed Technology, 24(3), 
253-261.  

 
Mohler, C. L. and Teasdale, J. R. (1993). Response of weed emergence to rate of Vicia 

villosa Roth and Secale cereale L. residue. Weed Research, 33(6), 487-499. 
 
Morse, R. D. (1999). No-till vegetable production – its time is now. Horttechnology, 9(3), 

373-379. 
 
Morse, R., and Creamer, N. (2006). Developing no-tillage systems without chemicals: the 

best of both worlds? In P. Kristiansen, A. Taji, & J. Reganold (Eds.), Organic 
agriculture: A global perspective (pp. 83-91). Ithaca, NY: Comstock Pub. 
Associates. 

 
Moyer, J. (2011). Organic no-till farming. Austin, TX: Acres U.S.A. 
 
National Organic Program. (2015). Final rule: Title 7: Agriculture. Part 205. USDA-

AMS, Washington, D.C. Retrieved from: 
  http://www.ecfr.gov/cgi-bin/text-idx?tpl=/ecfrbrowse/Title07/7cfr205_main_02.tpl 
 
Pekrun, C., Kaul, H., and Claupein, W. (2003). Soil tillage for sustainable nutrient 

management. In A. El Titi (Ed.), Soil tillage in agroecosystems (pp. 83-113). Boca 
Raton, FL: CRC Press. 

 
Putnam, A. R., Defrank, J. and Barnes, J. P. (1983). Exploitation of allelopathy for weed-

control in annual and perennial cropping systems. Journal of Chemical Ecology, 
9(8), 1001-1010.  



 22

Reberg-Horton, S. C. et al. (2005). Changes over time in the allelochemical content of ten 
cultivars of rye (Secale cereale L.). Journal of Chemical Ecology, 31(1), 179-193.  

 
Reberg-Horton, S. C. et al. (2012). Utilizing cover crop mulches to reduce tillage in 

organic systems in the southeastern USA. Renewable Agriculture and Food 
Systems, 27(1), 41-48.  

 
Riemens, M., Groeneveld, R., Lotz, L., and Kropff, M. (2007).  

Effects of three management strategies on the seedbank, emergence and the need 
for hand weeding in an organic system. Weed Research, 47, 442-451. 

 
Schonbeck, M. W. (2015). What is "organic no-till," and is it pratical? Extension 

Foundation, eOrganic Community of Practice. Retrieved from: 
https://www.extension.org/pages/18526/what-is-organic-no-till-and-is-it-
practical#.VAuqLhar_No 

 
Schonbeck, M. W. and Morse, R. D. (2007). Reduced tillage and cover cropping systems 

for organic vegetable production. Virginia Association of Biological Farming Info. 
Sheet, 9-07. Retrieved from: 
http://www.sare.org/Learning-Center/SARE-Project-Products/Southern-SARE-
Project-Products/Reduced-Tillage-and-Cover-Cropping-Systems-for-Organic-
Vegetable-Production 

 
Seigler, D. S. (1996). Chemistry and mechanisms of allelopathic interactions. Agronomy 

Journal, 88(6), 876-885. 
 
Seiter, S. and Horwath, W. R. (2004). Strategies for managing soil organic matter to 

supply plant nutrients. In R. Weil and F. Magdoff (Eds.), Soil organic matter in 
sustainable agriculture (pp. 269-294). Boca Raton, FL: CRC Press. 

 
Shipley, P. R., Meisinger, J. J., and Decker, A. M. (1992). Conserving residual corn 

fertilizer nitrogen with winter cover crops. Agronomy Journal, 84(5), 869-876. 
 
Six, J. et al. (2004). The potential to mitigate global warming with no-tillage management 

is only realized when practised in the long term. Global Change Biology, 10(2), 
155-160.  

 
Sooby, J., Landeck, J., and Lipson, M. (2007). 2007 National Organic Research Agenda. 

Santa Cruz, CA.: Organic Farming Research Foundation. Retrieved from: 
 http://ofrf.org/sites/ofrf.org/files/docs/pdf/nora2007.pdf 
 
Swain, T. (1977). Secondary compounds as protective agents. Annual Review of Plant 

Physiology, 28, 479-501. 
 



 23

Teasdale, J. R., & Abdul-Baki, A. A. (1998). Comparison of mixtures vs. monocultures 
of cover crops for fresh-market tomato production with and without herbicide. 
Hortscience, 33(7), 1163-1166. 

 
Teasdale, J. R., Coffman, C. B., and Mangum, R. W. (2007). Potential long-term benefits 

of no-tillage and organic cropping systems for grain production and soil 
improvement. Agronomy Journal, 99(5), 1297-1305.  

 
Teasdale, J.R. and Mohler, C. L. (1993). Light transmittance, soil temperature, and soil 

moisture under residue of hairy vetch and rye. Agronomy Journal, 85(3), 673-680. 
 
Teasdale, J.R. and Mohler, C. L. (2000). The quantitative relationship between weed 

emergence and the physical properties of mulches. Weed Science, 48(3), 385-392.  
 
Teasdale, J. R. (1996). Contribution of cover crops to weed management in sustainable 

agricultural systems. Journal of Production Agriculture, 9(4), 475-479. 
 
USDA-ERS (U.S. Department of Agriculture–Economic Research Service). (2014). 

Organic market overview. USDA-ERS, Washington, D.C. Retrieved from: 
http://www.ers.usda.gov/topics/natural-resources-environment/organic-
agriculture/organic-market-overview.aspx 

 
USDA-ERS (U.S. Department of Agriculture–Economic Research Service). (2015). 

Organic agriculture overview. USDA-ERS, Washington, D.C. Retrieved from: 
http://www.ers.usda.gov/topics/natural-resources-environment/organic-
agriculture.aspx 

 
Van Doren, D. M., Triplett, G. B., and Henry, J. E. (1976). Influence of long term tillage, 

crop rotation, and soil type combinations on corn yield. Soil Science Society of 
America Journal, 40(1), 100-105. 

 
Wagger, M. G. (1989). Time of desiccation effects on plant composition and subsequent 

nitrogen release from several winter annual cover crops. Agronomy Journal, 81(2), 
236-241.  

 
West, T. O. and Post, W. M. (2002). Soil organic carbon sequestration rates by tillage and 

crop rotation: A global data analysis. Soil Science Society of America Journal, 66, 
1930-1946. 

 
 
 
 
 

 



 24

CHAPTER TWO: WEEDS, NITROGEN, AND YIELD: MEASURING THE 

EFFECTIVENESS OF AN ORGANIC NO-TILL SYSTEM 

Abstract 

Previous research in the mid-Atlantic and midwestern USA has identified 

advantages and drawbacks of “organic no-till” vegetable production, but few studies have 

been conducted in the warmer southeastern region. The purpose of this study was to 

examine the effects of tillage [no-till (NT) vs. conventional tillage (CT) of a cereal 

rye/crimson clover cover crop] and three nitrogen fertilization rates on organic tomato 

(Solanum lycopersicum L.) and summer squash (Cucurbita pepo L.) yield, weed 

suppression, and soil N dynamics in two years in a soil series in Clemson, SC. Squash 

yields were similar between tillage treatments in both years. NT tomato yields were 43% 

greater than CT yields in 2014, whereas CT tomato yields were 46% greater than NT 

yields in 2015. Squash and tomato yields per unit of management labor (time) were 

significantly greater in NT compared to CT treatments for both years. There were no 

statistical differences in squash and tomato yields between N fertilization treatments in 

either year. Pre-season soil N levels were significantly higher in NT tomato plots in 2014 

but similar between tillage treatments in tomato plots in 2015 and in squash plots both 

years. Post-season soil N levels in tomato plots were similar between tillage treatments 

both years. Post-season soil N levels were significantly higher in NT squash plots in 2014 

and in CT squash plots in 2015. Roller-crimped NT mulches provided adequate early-

season weed suppression in both years and saved considerable weed management and 

seedbed preparation labor. Overall, the results demonstrated that organic no-till is a 
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viable method for reduced tillage summer vegetable production in the South Carolina 

Piedmont region.  

Introduction 

Weed management and the associated labor inputs are consistently some of the 

biggest challenges to organic crop production (Riemens et al., 2007; Sooby et al., 2007). 

Organic farmers, out of necessity, rely heavily on soil tillage and other forms of labor-

intensive soil cultivation for weed management despite the well-known disadvantages to 

soil health associated with intensive soil disturbance (Schonbeck and Morse, 2007; Morse 

and Creamer, 2006).  

A small but growing number of organic farmers have begun adopting reduce tillage 

techniques, which blend the soil-conserving and labor-saving methods of conventional 

no-till systems with traditional soil building practices (i.e. cover cropping) used in 

organic production (Leavitt et al., 2011; Mirsky et al., 2013). In organic no-till, an in situ 

mulch is created by mechanically terminating mature cover crops. Subsequent cash crops 

are direct seeded or transplanted into the mulch-covered soil. The cover crop mulch 

manages weeds in place of mechanical cultivation through physical impedance, light 

interception, and allelopathy (Mohler and Teasdale, 1993; Teasdale and Mohler, 1993; 

Teasdale and Mohler, 2000).  

Weed suppression in no-till systems is achieved with high biomass (>3000 kg ha-1) 

cover crops (Mohler and Teasdale, 1993). Organic no-till research has focused primarily 
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on fall-planted, winter annual cover crops that establish quickly, are competitive with 

weeds during the winter and spring, produce large amounts of biomass, and are 

terminated easily using mechanical methods (Delate et al., 2012). Good results have been 

found using monocultures or combinations of cereal rye (Secale cereale L.), hairy vetch 

(Vicia villosa Roth), and crimson clover (Trifolium incarnatum L.) (Delate et al., 2012; 

Mischler et al., 2010; Duzy et al., 2014; Abdul-Baki et al., 1996).  

 Adequate termination of cover crops is essential to organic no-till (Schonbeck and 

Morse, 2007; Creamer and Dabney, 2002). Optimal results have been documented with 

specialized roller-crimping devices that crush cover crop tissue and press the intact crop 

residue onto the soil surface (Creamer and Dabney, 2002; Mischler, et al., 2010, Ashford 

and Reeves, 2003; Morse, 1999; Moyer, 2011). Mirsky et al. (2009), Mischler et al. 

(2010), and Ashford and Reeves (2003) found good control of roller-crimped no-till 

cover crops with lasting weed suppression.  

Despite the demonstrated weed suppression of no-till mulches, organic no-till 

vegetable production systems have produced mixed results (Delate et al., 2012). Yield 

reductions associated with no-till mulches were documented in squash (Leavitt et al., 

2011), bell pepper (Diaz-Perez et al., 2008; Leavitt et al., 2011), and tomato production 

(Leavitt et al., 2011). On the contrary, comparable or positive yield responses in organic 

no-till systems compared to conventionally tilled systems were reported in tomatoes 

(Abdul-Baki et al., 1996; Madden et al., 2004; Delate et al., 2012). 
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Common problems researchers have identified regarding organic no-till production 

include: sub-optimal soil temperatures early in the season and shortened degree growing 

days caused by the cooling effect of cover crop mulches; loss of earliness due to a lack of 

synchrony between cover crop maturity and optimal cash crop planting dates; N 

immobilization when using high C/N cover crops (i.e. rye); increased weed pressure 

particularly when cover crop stands are inadequate; and reduced N mineralization and 

poor N synchrony due to a lack of cover crop incorporation (Leavitt et al., 2011; 

Schonbeck and Morse, 2007; Schonbeck, 2015; Moyer, 2011; Creamer et al., 1997; 

Morse, 1999; Mirsky et al., 2011; Parr, et al., 2014).  

The purpose of this research is to compare an organic no-till vegetable production 

system to a conventionally tilled system on a Toccoa sandy loam soil in Clemson, SC 

along the following parameters: vegetable yield, soil N dynamics, and weed management 

inputs. 

Materials and Methods 

Field Experiment 

The experiment was initiated in October 2013 at the Clemson University Student 

Organic Farm, a 5-acre USDA certified organic farm on the Calhoun Field Research Area 

on the Clemson University campus. The soil at the study site is a moderately well drained 

Toccoa sandy loam (Coarse-loamy, mixed, active, nonacid, thermic Typic Udifluvents) 

with an average organic matter content of 4.6%. Although the experiment began in 2013, 
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observations were taken only from 2014 to 2015. The experimental design for both years 

was a 2 by 3 factorial randomized complete block design replicated three times. The 

treatments consisted of two levels of tillage [no-till (NT) and conventional tillage (CT)] 

of a cereal rye/crimson clover cover crop biculture and three levels of N fertilization (0, 

58, and 116 kg ha-1 N) for tomato and summer squash production. Conventional tillage 

was accomplished with a disk harrow to a depth of 15 cm. The recommended N fertilizer 

rate (116 kg ha-1) was based on Clemson Agricultural Service Lab soil fertility 

recommendations from a standard soil analysis of composited 0-15 cm soil samples taken 

in March 2014 from the year one experiment site. In 2014, soil at the experiment plot was 

amended with P (from 0-10-0 bone meal) at a rate of 448 kg ha-1 and K (from 0-0-50 

potash) at a rate of 60 kg ha-1 according to soil test recommendations. No P and K 

amendments were needed in 2015. The treatments were arranged in a split-split plot 

design. Tillage treatment split plots (6 m x 7.5 m) were established for each vegetable 

crop with 2 m alleys between each plot. Alleys were flail mowed, tilled, and planted to a 

buckwheat (Fagopyrum esculentum) cover crop in both years. Split-plots were divided 

into three split-split plots (vegetable rows) spaced 1.5 m apart for the N fertilization 

treatment. The treatments were replicated three times for each vegetable crop.  

On 4 October, 2013 and 13 September, 2014 experiment plots were seeded with a 

mixture of cereal rye (VNS) and crimson clover (VNS in 2013 and ‘Dixie’ in 2014) using 

a tractor-mounted  overseeder attachment with 10 cm row spacing. Two-year cropping 

history for the 2014 experiment plot included maize (Zea mays) and summer squash cash 

crops and Japanese millet (Echinochloa esculenta), sunn hemp (Crotalaria juncea), 
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cereal rye, crimson clover, and cowpea (Vigna unguiculata) cover crops. The 2015 plot 

cropping history included garlic (Allium sativum), carrot (Daucus carota), cole crops 

(Brassica oleracea) and beet (Beta vulgaris) cash crops and cereal rye, crimson clover, 

cowpea, and sudex (Sorghum bicolor × S. bicolor var. sudanese) cover crops. Prior to 

cover crop seeding, the plots had been disked to remove weeds and level the field. In 

2013, a seeding rate of 112 kg ha-1 rye and 39 kg ha-1 clover was used. The high rate of 

clover was due to calibration problems with the overseeder’s seed shoot. In 2014, the 

same rate of rye was used, but the clover rate was reduced to a more appropriate rate of 

12 kg ha-1. Cover crops in CT plots were flail mowed on 5 May, 2014 and 6 May, 2015 

and the plots were disked repeatedly the following day in both years to incorporate cover 

crop residue. NT termination was accomplished on 6 May, 2014 and 11 May, 2015 with a 

rear-mounted 2.4 m I & J (Gap, PA) roller-crimper that had been filled with 225 kg of 

water for a total weight of 860 kg. The drum could have accommodated more water, but 

the tractor’s lifting capacity was a limiting factor. In both years crimping was done in one 

direction with roughly 0.3 m of roller-crimper overlap with each pass. In 2014, the initial 

round of crimping did not fully terminate the rye crop, which by 7 May, had begun to 

rebound. The NT plots were re-crimped on 8 May with a small-plot 0.7 m roller-crimper 

mounted to a two-wheel walk-behind tractor. (The farm’s larger category 1 tractor was 

not operational at the time.) An additional 113 kg of weight was added to the small-plot 

crimper for a total weight of 230 kg. In 2015, two back-to-back passes with the 2.4 m 

roller-crimper were made over the cover crop (same direction) on 11 May to ensure 

adequate rye termination. At time of crimping, the rye had reached Zadoks stage 69 
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(anthesis complete) in 2014 and stage 75 (medium milk) in 2015. Crimson clover 

maturity was not noted in either year.  

Five-week old ‘Celebrity’ tomato and two-week old ‘Success’ squash seedlings 

were transplanted by hand in the corresponding CT and NT tomato and squash plots on 

09 May, 2014 (both crops) and on 14 May (tomatoes) and 18 May (squash) in 2015. 

Vegetable plots consisted of three rows 4.5 m in length with 0.3 m spacing between 

plants and 1.5 m spacing between row centers. Drip irrigation was installed on top of 

mulch in NT and on bare soil in CT prior to transplanting; plants were watered 

immediately after transplantation. In the NT plots, the cover crop mulch was spread 12-

15 cm apart by hand creating a narrow planting slit in the row prior to transplanting. The 

mulch was then pushed back against the plants after transplantation to cover the soil 

surface. All plants had been started in the farm’s greenhouse using on-farm generated 

potting soil [50% compost (2, 0.02, and 0.02 kg t-1 N, P, and K, respectively): 25% 

perlite: 25% peat moss] with 120 ml lime and 710 ml powderized 8-5-5 feather meal 

fertilizer added per 0.3 m3 of potting soil mix. Tomatoes were seeded in 128-count seed 

trays and then transplanted after 3 weeks into grow out pots measuring 10 cm in 

diameter. Squash were seeded in 72-count seed trays. Squash seedlings had reached the 

second true-leaf stage prior to transplantation. All vegetable transplants were fertilized 

with a powderized 8-5-5 feather meal fertilizer while in the greenhouse and were 

hardened off prior to transplantation. Immediately after transplantation, plants were 

fertilized according to N fertilization treatment with a side-dressed split application of a 

slower release, pelletized 13-0-0 feather meal fertilizer. A second split application of 13-
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0-0 was made at flowering stage for each crop. Tomatoes were trellised using the 

“Florida weave” technique.  

Cover Crop Data 

Aboveground cover crop biomass was sampled in three 0.5m2 quadrants in 2014 

and five 0.5 m2 quadrants in 2015 from the alleys between vegetable plots immediately 

prior to CT plot flail mowing. The biomass samples were oven dried for 72 hrs at 55°C 

and then weighed. Additionally, subsamples from each biomass sample were sent to the 

Clemson University Agricultural Service Lab where they were dried at 70-80°C for 12-

24 hrs, ground to pass through a 2 mm sieve, and analyzed for total N by combustion 

using a LECO® FP528 Nitrogen Combustion Analyzer. Cover crop N contribution to the 

following vegetable crops was estimated as 0.40 × total cover crop biomass × cover 

crop %N (Baldwin and Creamer, 2006). Four weeks after termination, NT plots were 

assessed visually for percentage cover crop regrowth (Leavitt et al., 2011).  

Weeding and Labor Inputs 

CT plots were weeded approximately every 1-2 weeks in 2014 and approximately 

every 2-3 weeks in 2015. Weeding in tilled plots consisted of rototilling, flame weeding, 

and hand hoeing. NT plots were weeded every 2-3 weeks in both years. Weeding in NT 

plots consisted of rotary and string mowing weeds that had emerged through the cover 

crop residue and hand-pulling of perennial weeds. Weed management labor (hours) was 

recorded for each vegetable crop by tillage treatment for both years. Additionally, a 
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visual assessment of all NT plots was made 6 weeks after crimping to estimate average 

percent ground coverage by weeds (Creamer et al., 1997). Labor (hours) spent preparing 

no-till (crimping) and tilled (mowing + disking) cover crop plots prior to transplanting 

was also recorded both years.  

Soil Analysis 

Prior to transplantation of vegetable crops and N fertilization (9 May, 2014 and 13 

May, 2015), six 0-15 cm soil samples were taken from each of the 36 split-split plots. 

Soil samples were composited by split-split plot and subsamples were sent to the USDA-

ARS Grassland Soil and Water Research Laboratory, Temple, TX for soil health analysis 

using the Soil Health Tool (SHT) ver. 4.4. (Haney, n.d.). Another series of soil samples, 

same protocol, were taken at the end of the each growing season (30 July, 2014 and 31 

July, 2015). The samples were dried at 50°C, ground to pass through a 2 mm sieve, 

extracted with DI water and H3A, and analyzed on a Seal Analytical rapid flow analyzer 

for NO3-N and NH4-N (Haney et al., 2008). The water extract was analyzed on a 

Teledyne-Tekmar Apollo 9000 C:N analyzer for water-extractable organic C and total N 

and 40 g of each dried soil sample was re-wetted with DI water and incubated with a 

Solvita® paddle in a 237 ml glass jar for 24 hours (Haney et al., 2008). At the end of 24-

hour incubation, the paddle was removed and placed in the Solvita® digital reader for 

CO2-C analysis. The SHT couples inorganic N (NO3-N and NH4-N), water-extractable 

organic C and N, and CO2-C measurements to estimate plant available N in the soil.  
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Vegetable Yield 

Yield data (weight) were recorded for marketable tomatoes (USDA grades 1-3) 

and marketable squash (USDA grades 1 and 2) in each row for every harvest (USDA 

1997a, 1997b). Squash were harvested 3-4 times per week and tomatoes 2-3 times per 

week in both years.  

Tissue Mineral Analysis 

In 2015, leaf tissue samples (excluding petioles) were taken from the most 

recently mature leaf of each plant in every row for both crops at early the early flowering 

stage. Samples were composited by row and sent to the Clemson Agricultural Service 

Lab where they were dried at 70-80°C for 12-24 hrs, ground to pass through a 2 mm 

sieve, and analyzed for total N by combustion using a LECO® FP528 Nitrogen 

Combustion Analyzer. 

Statistical Analysis 

Statistical analyses were performed with analysis of variance (ANOVA) using the 

Fit Model procedure of JMP® (version 11.0) to determine the effects of tillage and N 

fertilization on vegetable yield and soil N. Fisher’s least significant difference tests 

(Ρ≤0.05) were used to separate means. To compare inputs between the two tillage 

treatments, an analysis of labor was compiled by recording the total labor hours required 

to prepare the seedbed for planting and manage weeds during the vegetable growing 

season for each crop (Leavitt et al, 2011). Additionally, an ANOVA was performed to 
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determine the effects of tillage and N fertilization on vegetable yield per unit of labor. 

Results 

Cover crops 

Cover crop biomass averaged 8,400 kg ha-1 in 2014 and 8,960 kg ha-1 in 2015. 

Based on the average total N content of the cover crop samples, 1.74% (2014) and 1.72% 

(2015), total cover crop N content was approximately 146 kg ha-1 in 2014 and 154 kg ha-1 

in 2015. Total N contribution to the vegetable crops (0.40 × total cover crop biomass × 

cover crop %N) was 58 kg ha-1 (2014) and 61 kg ha-1 (2015). Roller-crimping provided 

adequate control of cover crops. Cover crop regrowth at 4 weeks after termination was 

minimal (<1%) in both years.  

Weeding and Labor Inputs 

Seedbed preparation labor was higher both years in CT plots (Table 1). Mowing + 

disking required 191% and 300% more labor in 2014 and 2015, respectively, compared 

to NT roller-crimping (Table 1). Managing weeds was also more labor-intensive in CT 

plots. Weed labor was 400% and 338% greater in CT tomato and squash plots, 

respectively, compared to NT plots in 2014 (Table 1). In 2015, weed labor was 45% 

greater in CT tomato plots compared to NT; squash plot weed management was 

comparable between tillage treatments. NT cover crop plots did become weedy later in 

the season particularly in 2014 when regrowth of the previous summer’s cover crop 

(Japanese millet) required routine mowing to keep the millet from overwhelming the NT 
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plots. Average percent ground cover by weeds at 6 weeks after termination in NT plots 

was 35% (tomatoes) and 25% (squash) in 2014 and 10% (tomatoes) and 10% (squash) in 

2015.  

Soil Analysis 

Pre-season analysis 

Average plant available N and total N were significantly greater in NT tomato 

plots compared to CT in 2014 (Table 2). There were no significant differences in 

available and total N between tillage treatments in 2015. There were no significant 

differences in CO2-C levels between tillage treatments in tomato plots in either year. 

Average plant available N and total N in squash plots were not statistically different 

between tillage treatments for either year studied (Table 2). Average squash plot CO2-C 

was significantly higher with NT in 2014 but similar between tillage treatments in 2015.  

Post-season analysis 

Tomato plant available N and total N levels were similar both years regardless of 

tillage treatment (Table 3a). Average CO2-C was significantly higher in 2014 with NT 

but similar between CT and NT in 2015. Average plant available N and total N were 

significantly greater in NT squash plots in 2014 and in CT plots in 2015 (Table 3b). 

Average CO2-C was significantly higher in CT squash plots in 2015. Based on post-

season soil analysis, N fertilization treatments did not significantly affect plant available 

N, total N, or CO2-C in either year for either crop studied. 
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Tissue Mineral Analysis 

Based on mid-season analysis, there appeared to be no effect of either tillage or 

fertilization on leaf tissue N. Average leaf tissue total N values were similar between 

tillage and N fertilization treatments for both crops in 2015 (Table 4). Average %N for 

both CT and NT were within the sufficiency ranges for both tomato (3.5-5.0%) and 

squash (4.0-6.0%) crops (Campbell, 2000).  

Vegetable Yield 

Average NT tomato yields were significantly greater than CT yields in 2014; in 

2015 CT yields were significantly greater than NT (Table 5). Squash yields were similar 

between tillage treatments for both years studied (Table 5). Nitrogen fertilization 

treatments did not significantly affect vegetable yield in either year for either crop studied 

nor were there significant tillage x fertilization interactions. Vegetable yields per unit of 

labor (seedbed preparation + weeding) were significantly greater in both NT crops in 

both years studied (Table 6). 

Discussion  

The significant reduction in CT tomato yield in 2014 was likely due to disease. 

CT tomatoes were severely damaged by a combination of Southern blight (Sclerotium 

rolfsii) and Pythium root rot (Pythium spp.). Plant pathogen diagnosis was confirmed by 

the Clemson University Plant Problem Clinic. Both pathogens thrive in moist conditions 

found in poorly drained sites (Kluepfel et al., 2014). Because of the no-till component of 
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the study, we did not create raised beds in either tillage treatment. The roller-crimper, we 

found, provides optimal cover crop termination on level terrain, although there are roller-

crimping devices designed for use in raised-bed systems (Reberg-Horton et al., 2012; 

Moyer, 2011). Normal farm CT practices include post-tillage raised-bed making to 

improve field drainage for cultural management of soil-borne diseases. In all, roughly 

14% of the CT tomato plants in 2014 were lost to disease, which impacted average row 

yields. However, when row yield data were transformed from yield per row to yield per 

plant (by dividing row yields by number of plants per row) and analyzed using the same 

statistical model, there were no significant differences between tillage treatments (data 

not shown). NT tomatoes remained disease free in 2014, which was notable because: 1) 

CT and NT crops were grown in spatially similar parts of the field with identical 

cropping histories; 2) soil conditions with high levels of available carbon (i.e. poorly 

decomposed plant tissue) such as those found in reduced tillage systems are conducive to 

Southern blight (diagnostician’s notes; Averre, 2009). A different field at the farm was 

used in the second year of the study and both CT and NT crops remained disease free.  

Seedbed prep and weed management labor were much higher in CT plots in 2014 

compared to 2015. Mowing and incorporating the cover crop residue took longer in 2014. 

More in-field tractor turns and repositioning were required in 2014 during mowing and 

subsequent tillage because of plot proximity to adjacent crop fields. Regarding 2015, 

roughly 75% of the cover crop at the study site (visual estimation) was lodged by severe 

rain and wind events three weeks prior to cover crop termination. At termination, 

approximately 20% of the cover crop stand in CT plots remained lodged – only 20% of 



 38

the crop was left standing at its original height. The lack of a fully erect cover crop made 

mowing less time intensive in 2015. Regarding in-season weeding, field conditions in 

2014 were generally wetter in the first several weeks of the vegetable-growing season 

compared to 2015. In 2015, there were no rain events for the first 2.5 weeks after 

transplanting, which decreased the amount of early-season weeding that had to be done in 

CT plots after transplantation.  

Overall, we found that the labor required to establish and manage weeds in CT 

plots was considerably greater when compared to NT. When yields were similar (squash, 

in both years) or even greater using CT practices (i.e. tomatoes in 2015), the management 

savings associated with NT translated to significantly greater yields per unit of labor 

input. Further, having a 5-7 week relatively weed-free window early in the growing 

season where little weeding was needed in newly transplanted crops – as was our 

experience with no-till – was particularly advantageous on a small, diversified farm such 

as ours where labor demands are high in the early summer growing season with 20+ 

crops growing in the fields at any given time.  

N levels were high across all treatments each year. N fertility treatments had no 

significant effect on vegetable yield. Thus, soil N was likely not a limiting factor in either 

year probably as a result of high soil organic matter content and residual N from previous 

cover crops. Plant available N, total N, and CO2-C were generally higher in soil from the 

2015 site.   
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Because of the short duration of the study, we were unfortunately unable to 

identify any discernible trends regarding differences in soil health across tillage 

treatments. Longer-term, mostly conventional agronomic-crop no-till studies, though, 

have demonstrated significant advantages to soil health (increased SOM) after multiple 

(>5) years of conventional no-tillage management (Arshad et al., 1990; Dick, 1983; 

Blevins et al., 1977; Bauer and Black, 1981; Edwards et al., 1992). 

Regarding greater farmer adoption of organic no-till, one potential drawback we 

recognized is weediness later in the growing season, which we experienced particularly 

in year one of the study. Repeated hand weeding or “rouging” of no-till plots can be 

especially labor intensive and could negate the early season weed management savings 

realized with no-till mulches. We found adequate weed management later in the growing 

season using string and rotary mowing to keep emerged weeds in check but not 

necessarily controlled. Unrelated to this study, the Student Organic Farm has also 

experimented with adding off-farm mulches (e.g. leaf litter) to no-till mulches for longer 

season summer vegetable (e.g. pepper and eggplant) production in an attempt to 

compensate for decomposition of no-till mulches over the course of the growing season. 

Further research into cost-effective weed management strategies in organic no-till 

systems is warranted.  

One main disadvantage we found using no-till was loss of earliness, which is an 

identified problem with spring/early-summer organic no-till vegetable cropping systems 

(Schonbeck and Morse, 2007). By prolonging the cover crop growing season until the rye 
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had matured to a stage where it could be managed by either tillage treatment, vegetables 

were not available for market until late June (squash) and mid-July (tomatoes). In order 

to produce tomatoes and squash for the early summer market period, the cover crops 

would had to have been terminated in early April, which would not have been compatible 

with no-till practices – the cover crop is too immature at this stage to be crimped and has 

not produced nearly enough biomass for effective no-till mulch. Thus, we found no-till 

vegetable production is perhaps best used for mid-to-late season summer crops. In future 

work, we would like to explore earlier fall planting/spring termination dates with faster 

maturing cover crop varieties to improve reduced tillage vegetable cropping earlier in the 

season. 
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Table 1. Total labor inputs by tillage treatment. 

 
 
 

 
  

Seedbed preparation 

(hrs) Weeding (hrs) 

Tomato Treatment 2014 2015 2014 2015 
 NT 0.9 0.3 1.3 1.1 
 CT 2.75 1.2 6.5 1.6 

      

Squash Treatment 2014 2015 2014 2015 
 NT 0.9 0.3 1.3 0.9 
 CT 2.75 1.2 5.7 0.9 
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Table 2. Effects of tillage (NT and CT) on average plant available N, total N, and CO2-C, pre-seasonx analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 
After cover crop termination but before vegetable transplantation. 
y DAT=Days after transplantation. 
z Mean separation within tillage and year by Fisher’s lease significant difference test, P≤0.05. 

  
Plant Available N            

(kg ha-1) Total N (kg ha-1) CO2-C (ppm) 

Tomato Tillage 0 DBTy 2014 1 DBT 2015 0 DBT 2014 1 DBT 2015 0 DBT 2014 1 DBT 2015 
 NT 61.36az 94.98a 74.12a 102.57a 132.34a 242.57a 
 CT 51.89b 100.07a 61.34b 113.44a 128.61a 189.50a 
        

  P = 0.0222 P = 0.5483  P = 0.0197 P = 0.2731 P = 0.7757 P = 0.2335 
                

Squash Tillage 0 DBT 2014 4 DBT 2015 0 DBT 2014 4 DBT 2015 0 DBT 2014 4 DBT 2015 
 NT 65.21a 90.60a 78.56a 99.99a 65.01a 217.76a 
 CT 54.97a 91.78a 65.92a 103.84a 44.21b 172.32a 
        

  P = 0.0699 P = 0.8377 P = 0.0846 P = 0.5761 P = 0.0493 P = 0.3342 
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Table 3a. Effects of tillage (NT and CT) and N fertilization (0, 58, and 116 kg ha-1) on average plant available N, total 

N, and CO2-C, post-seasonx analysis. 
 

 

x After all harvesting completed for the season. 
y DAT=Days after transplantation. 
zMean separation within tillage or fertilization and within year by Fisher’s least significant difference test, P ≤0.05. 

 

 

 

 

 

 

 

 

 

  Plant Available N (kg ha-1) Total N (kg ha-1) CO2-C (ppm) 

Tomato Tillage 82 DATy 2014 78 DAT 2015 82 DAT 2014 78 DAT 2015 82 DAT 2014 78 DAT 2015 
 NT 68.80a 89.48a 78.14a 104.03a 161.56az 315.98a 
 CT 59.99a 89.41a 67.22a 104.76a 97.29b 250.40a 
 Fertilization       
 0 69.45a 84.62a 78.11a 98.45a 94.83b 272.02a 
 58 61.26a 88.83a 69.23a 103.97a 162.67a 278.43a 
 116 62.57a 94.88a 70.69a 110.77a 130.77ab 299.12a 
        

 Tillage P = 0.1383 P = 0.9925 P = 0.1441 P = 0.9358 P = 0.0260 P = 0.0823 
 Fert P = 0.4601 P = 0.5047 P = 0.5495 P = 0.5366 P = 0.1288 P = 0.7972 

 
Tillage x 
Fert P = 0.7432 P = 0.4997 P = 0.7638 P = 0.5544 P = 0.4815 P = 0.4051 
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Table 3b. Effects of tillage (NT and CT) and N fertilization (0, 58, and 116 kg ha-1) on average plant available N, total  

N, and CO2-C, post-seasonx analysis. 

 

 

 

x After all harvesting completed for the season. 
y DAT=Days after transplantation. 
zMean separation within tillage or fertilization and within year by Fisher’s least significant difference test, P ≤0.05. 

  Plant Available N (kg ha-1) Total N (kg ha-1) CO2-C (ppm) 

Squash Tillage 82 DAT 2014 74 DAT 2015 82 DAT 2014 74 DAT 2015 82 DAT 2014 74 DAT 2015 
 NT 70.92a 80.56b 82.31a 93.89b 180.94a 202.80b 
 CT 59.88b 94.26a 67.89b 112.06a 130.67a 305.19a 
 Fertilization       
 0 65.84a 91.47a 75.39a 106.78a 154.97a 253.68a 
 58 64.38a 86.85a 73.79a 103.53a 171.05a 245.22a 
 116 65.98a 83.90a 76.12a 98.60a 141.39a 263.08a 
        

 Tillage P = 0.0239 P = 0.0099 P = 0.0232 P = 0.0138 P = 0.0843 P = 0.0105 
 Fert P = 0.9413 P = 0.3880 P = 0.9372 P = 0.5629 P = 0.6638 P = 0.9055 

 
Tillage x 
Fert P = 0.8259 P = 0.3235 P = 0.8481 P = 0.4375 P = 0.5631 P = 0.9274 
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Table 4. Effects of tillage (NT and CT) and N fertilization (0, 58, 116 kg ha-1)  

on average leaf tissue N (2015).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

zMean separation within tillage or fertilization by Fisher’s least significant 
difference test, P ≤0.05.  

  Total N (kg ha-1) 

Tomato Tillage  
 NT 4.18az 

 CT 4.01a 
 Fertilization  
 0 4.09a 
 58 4.14a 
 116 4.05a 
   
 Tillage P = 0.2710 
 Fert P = 0.8676 
 Tillage x Fert P = 0.3072 
      

Squash Tillage  
 NT 4.95a 
 CT 4.56a 
 Fertilization  
 0 4.76a 
 58 4.82a 
 116 4.67a 
   
 Tillage P = 0.0853 
 Fert P = 0.8200 
 Tillage x Fert P = 0.7217 



 50

Table 5. Effects of tillage (NT and CT) and N fertilization (0, 58, 116 kg ha-1) on 

average marketable vegetable yields per row. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

zMean separation within tillage or fertilization and within year by Fisher’s least 
significant difference test, P ≤0.05. 

  Yield (kg) 

Tomato Tillage 2014 2015 

 NT 13.74az 14.79b 

 CT 9.27b 21.55a 

 Fertilization   

 0 10.91a 15.89a 

 58 10.60a 18.85a 

 116 13.02a 19.80a 

    

 Tillage P = 0.0440 P = 0.0029 

 Fert P = 0.5609 P = 0.2019 

 

Tillage x 
Fert P = 0.8515 P = 0.5212 

    

Squash  Tillage 2014 2015 

 NT 30.37a 23.32a 

 CT 32.21a 25.14a 

 Fertilization   

 0 27.56a 22.46a 

 58 32.79a 26.45a 

 116 33.52a 23.78a 

    

 Tillage P = 0.5459 P = 0.4830 

 Fert P = 0.2459 P = 0.4404 

 

Tillage x 
Fert P = 0.9747 P = 0.7050 
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Table 6. Effects of tillage (NT and CT) on average marketable vegetable yield per  

unit of effort. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y Rate determined by dividing labor input totals for each tillage treatment by 
number of rows (9) to determine hours of labor input per row of crop by tillage 
treatment. Crop row yields were then divided by hours of labor per row to 
determine yield per unit of effort rate for each row. 
zMean separation within tillage and year by Fisher’s least significant difference 
test, P ≤0.05.  

  Yield per Unit of Efforty (kg/hr) 

Tomato Tillage 2014 2015 

 NT 57.26az 92.46a 

 CT 9.00b 69.52b 

    

  P < 0.0001 P = 0.0371 

       

Squash Tillage 2014 2015 

 NT 126.54a 179.40a 

 CT 34.27b 109.29b 

    

  P < 0.0001 P = 0.0003 
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