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Abstract

Multiple-access digital communications is considered with direct-sequence spread-spectrum

(DS-SS) quadrature amplitude modulation and quaternary spreading in each transmission. Each

transmitted signal undergoes attenuation and a delay at a receiver in the additive white Gaussian

noise channel. The receiver uses coherent demodulation with a correlation detector synchronized to

the one of the K received signals so that the K − 1 other transmissions act as interference.

The average probability of error at the output of the detector is determined using Monte

Carlo simulation and compared with an approximation in which the interference component in each

detection statistic is approximated by a Gaussian random variable. Closed-form expressions are

derived for the first and second moments of the interference under several circumstances. The

moments are used with the “Gaussian approximation”, and the accuracy of the approximation is

investigated for each of the circumstances.
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Chapter 1

Introduction

Direct-sequence spread-spectrum (DS-SS) multiple-access communications [1] is a widely

used modulation format for both commercial cellular communications and military tactical radio

communications. Among the advantages of DS-SS multiple-access communications is the ability to

tolerate denser reuse of each portion of the frequency spectrum across a wide-area radio network

compared with time-division multiple-access or frequency-division multiple-access. It is achieved

at the cost of vulnerability to power mismatches in the multiple transmitted signals at a given

receiver, and under normal operation, the performance is often limited by the effect of multiple-

access interference on the detection of the information contained in the transmission of interest to

the receiver. Thus accounting for the effect of multiple-access interference is key to an accurate

analysis of the system’s performance.

Analysis of the performance of a link in a DS-SS multiple-access communication system

is complicated by the complexity of accounting precisely for the effect of multiple interferers on

the desired signal at a receiver. Precise evaluation leads to complex analytical expressions which

require computationally intensive evaluation, and the alternative of Monte Carlo simulation of system

performance similarly requires significant computation. The cost of this complexity is compounded

if high-fidelity link performance results are desired for use in the simulation of a large network of

radios.

The computation required for link performance modeling is reduced substantially if the

system model is modified to approximate the effect of interfering signals on the desired signal by

imposing an appropriately chosen Gaussian distribution on the component of the receiver’s decision
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statistic that represents the effect of the interferers. This “Gaussian approximation” [1] leads to

a performance evaluation whose accuracy depends on the particular circumstances considered and

the assumptions used in the approximation. Numerous methods have been introduced to improve

the tradeoff between the accuracy of the computational burden of the approximation (such as [2]

and [3]). Most have focused on a system in which each transmitter employs DS-SS binary phase-

shift-keyed (BPSK) modulation, DS-SS quaternary phase-shift-keyed (QPSK) modulation, or DS-SS

offset QPSK (OQPSK) modulation.

In this thesis, we consider the performance of a multiple-access communication system in

which each transmitter uses DS-SS M-ary quadrature amplitude modulation (M-QAM) with distinct

spreading sequences in the inphase and quadrature signals. Each transmitted signal uses the same

modulation format and signal parameters, each one undergoes an arbitrary channel attenuation,

delay, and carrier phase shift in propagating to the receiver of interest, and the sum of the resulting

signals are corrupted by additive white Gaussian noise at the receiver. The receiver uses coherent

demodulation with inphase and quadrature correlators synchronized to the inphase and quadrature

spreading signals of the desired signal, respectively. The K − 1 other transmissions thus act as

interference to the detection of the information in the desired signal. The receiver uses zero-threshold,

matched-filter detection of each channel symbol in the inphase and quadrature signals.

The average probability of error in the detection of a data symbol or the probability of

error in detecting a bit of information is determined using Monte Carlo simulation. The error

probability is compared with an approximation in which the effect of the multiple-access interference

on detection is approximated by the effect of a Gaussian random variable with the same first and

second moments as the multiple-access interference. Closed-form expressions are derived for the

first and second moments of the interference under several circumstances for use with the “Gaussian

approximation”, extending previous results for DS-SS BPSK modulation [4] and DS-SS OQPSK

modulation [5] . The accuracy of the approximation is investigated for each of the circumstances.

The model of the DS-SS M-QAM multiple-access system is defined in Chapter 2. Closed-

form expressions are derived in Chapter 3 and the appendices for the first and second moments

of the terms in the decision statistics which are due to the presence of multiple-access interference

at the receiver. Expression are developed for several circumstances of interest. The moments are

used to determine Gaussian approximations to the interference terms in the decision statistics and

the resulting probability of symbol-detection error and probability of bit error. The probability

2



of error under the Gaussian approximation is compared in Chapter 4 to the actual probability of

error (obtained by Monte Carlo simulation) for each circumstance of interest. The accuracy of the

approximations is summarized in Chapter 5.
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Chapter 2

System Model

The communication system considered in the thesis consists of K transmitted signals over an

additive white Gaussian noise (AWGN) channel, using quaternary data modulation and quaternary

direct-sequence spreading, as shown in Figures 2.1 and 2.2. Each transmitted signal represents a

different information source. The signal is attenuated and delayed by the channel between the corre-

sponding transmitter and the receiver, and the received signal consists of the sum of the attenuated,

delayed signals corrupted by an AWGN random process. The receiver converts the received signal

into an inphase (I) statistic and quadrature (Q) statistic for each transmitted data symbol in the

desired signal. The two statistics are applied to a decision device that determines the corresponded

detected data symbol. We consider one of the signals to be the signal of interest, and the other

K−1 signals are considered as interfering signals. The receiver is designed to detect the information

represented by the signal of interest.

2.1 Transmitter

The transmitter for the kth signal in the communication system is represented in Figure

2.3. Each transmitted signal has an inphase and a quadrature component and two bit streams

that are spread by respective spreading sequences. The information source generates a sequence of

information bits bk which are mapped to data symbols, with the ith output of the mapper consists

of the data symbol represented by the pair of real values (uk,i, vk,i).
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Figure 2.1: System model.

2.1.1 Data Signals

The modulation format we consider is rectangular, symmetric M-ary quadrature amplitude

modulation(M-QAM) [6] in which each of uk,i and vk,i is taken from the set
{
±1,±3, . . . ,±

√
M − 1

}
where M is the size of the symbol set. The ith pair of data symbols determines the polarities of

inphase and quadrature data signals over the time interval [iT, (i + 1)T ), where T is the symbol

duration. The data signals for transmitter k are given by

wIk(t) =

∞∑
i=−∞

uk,ipT (t− iT ) (2.1)

and

wQk (t) =

∞∑
i=−∞

vk,ipT (t− iT ). (2.2)

2.1.1.1 QPSK Data Signal

We consider quadrature phase-shift keying (QPSK) [6] as an example of M-QAM where

M = 4 and all symbols in the set have the same magnitude. The inphase and quadrature symbols uk,i

and vk,i are chosen from the set {+1,−1}. We can represent the symbols in the constellation diagram

shown in Figure 2.4. Since there are four symbols in the symbol set, each symbol represents two

bits of information. The constellation shown in this figure uses Gray coding [6] as the mapping from

information bits to data symbols, so that nearest-neighbor symbols differ by only one information

bit.

5



Figure 2.2: Block diagram of system.

2.1.1.2 16-QAM Data Signal

Another example signal set we consider is 16-QAM, in which the inphase and quadrature

components are chosen from the set {−3,−1,+1,+3}. This is illustrated in the constellation diagram

in Figure 2.5. For this symbol set, each symbol represents four bits of information, and Gray coding

is used for bit assignments.

2.1.2 Direct-Sequence Spread-Spectrum Data Signals

Spread-spectrum modulation increases the bandwidth of a signal in a manner which can

be exploited by the receiver to mitigate the effects of multipath propagation and interference from

other users of the channel. One form of spread spectrum is direct-sequence spread-spectrum (DS-SS)

modulation. DS-SS makes us of a pseudo-random sequence of pulses that are much shorter than the

symbol duration. The duration of each pulse is known as the chip duration. This is illustrated in

6



Figure 2.3: Transmitter model.

Figure 2.4: Constellation diagram for QPSK.

Figure 2.6.

The spreading signals in the inphase and quadrature channels for transmitted signal k are

given by

aQk (t) =

∞∑
j=−∞

aQk,jψc(t− jTc) (2.3)

and

aIk(t) =

∞∑
j=−∞

aIk,jψc(t− jTc), (2.4)

respectively, where aIk,i, a
Q
k,i ∈ {−1, 1}, Tc is the chip duration, and ψc(t) is the chip waveform with

an average power of one. I.e.

1

Tc

∫ Tc

0

ψ2
c (t)dt = 1. (2.5)

The spreading factor is given by N = T
Tc

, where N is assumed to be an integer. The signature

sequences of the kth transmitted signal for the inphase and quadrature channels, {aIk,i} and {aQk,i},

respectively, are defined by a sequence of elements from the set {−1,+1}. The data signals defined in

7



Figure 2.5: Constellation diagram for 16-QAM.

equations (2.1) and (2.2) are multiplied with the spreading signal to form the inphase and quadrature

DS-SS data signals

cIk(t) = aIk(t)wIk(t) (2.6)

and

cQk (t) = aQk (t)wQk (t), (2.7)

respectively.

2.1.3 Transmitted Signal

The transmitted M-QAM signal is formed by modulation of inphase and quadrature sinu-

soidal carriers by the inphase and quadrature DS-SS data signals, respectively. The kth transmitted

signal is given by

sk(t) =
√

2Pkc
I
k (t) cos (ωct+ θk) +

√
2Pkc

Q
k (t) sin (ωct+ θk) , 0 ≤ k ≤ K − 1, (2.8)

where ωc is the angular frequency, θk is the carrier phase, and cIk(t) and cQk (t) are as defined in

equations (2.6) and (2.7), respectively. The transmitted power in each of the inphase and quadrature

components of sk(t) during the ith symbol interval are given by Pku
2
k,i and (Pkv

2
k,i, respectively.

8



Figure 2.6: Illustration of DS-SS modulation.

For the special case of QPSK modulation (M = 4), the transmitted power in each component is

Pk regardless of the data symbol in the symbol interval. In comparison, offset QPSK (OQPSK)

modulation is considered in [5] in which the kth transmitted signal is given by

sk(t) =
√

2Pkc
I
k

(
t− Tc

2

)
cos (ωct+ θk) +

√
2Pkc

Q
k (t) sin (ωct+ θk) , 0 ≤ k ≤ K − 1. (2.9)

2.2 Channel

The channel over which the signal is transmitted is an AWGN channel with K−1 interfering

signals, where n(t) is an AWGN process with two-sided power spectral density N0/2. The kth

transmitted signal is attenuated by the multiplicative factor Ak and delayed by τk at the receiver.

The channel is shown in Figure 2.7. The received signal thus is given by

r(t) =

K−1∑
k=0

Ak
√

2Pkc
I
k (t− τk) cos (ωct+ Φk) +

K−1∑
k=0

Ak
√

2Pkc
Q
k (t− τk) sin (ωct+ Φk) +n(t) (2.10)

where Φk = Θk − ωcτk is the accumulated carrier phase at the receiver for the kth signal.

9



Figure 2.7: Channel model.

2.3 Receiver

A block diagram of the receiver is shown in Figure 2.8. Without loss of generality, we

consider a receiver designed to detect the information from transmitter zero and its detection of

the data symbol transmitted over the symbol interval [0, T ). Also, without loss of generality, we

assume that τ0 = 0 and Φ0 = 0. The receiver uses coherent demodulation with inphase and

quadrature correlators synchronized to the inphase and quadrature spreading signals of the desired

signal, respectively. It is assumed that the receiver has a local reference that is matched to the phase

of the desired component of the received signal, it has a perfect estimate of the symbol timing of the

desired component of the desired component of the received signal, and for M > 4, it has a perfect

estimate of the power in the desired component of the received signal for each data symbol in the

signal constellation. The latter permits the receiver to set the thresholds for the decision regions

of the decision device that yield maximum-likelihood symbol detection if the signal is corrupted by

AWGN [6]. The inphase decision statistic can be written as

ZI =

∫ T

0

r(t)aI0(τ) cos(ωcτ)dτ. (2.11)

The quadrature decision statistic can be similarly written as

ZQ =

∫ T

0

r(t)aQ0 (τ) sin(ωcτ)dτ. (2.12)

10



The decision statistics can be represented as

ZI = SI + ηI +

K−1∑
k=1

IIk = SI +N I (2.13)

and

ZQ = SQ + ηQ +

K−1∑
k=1

IQk = SQ +NQ (2.14)

where SI is the contribution from the desired signal, ηI is the contribution from the noise,
∑K−1
k=1 IIk

is the contribution from the interfering signals, and IIk is the interference component in the inphase

subchannel from the kth signal, 1 ≤ k ≤ K − 1. The components SQ, ηQ, and IQk , 1 ≤ k ≤ K − 1,

are similarly defined for the quadrature subchannel.

Figure 2.8: Receiver model.

2.4 Measures of Signal Quality and System Performance

Three measures of the quality of the received signal are used in this thesis. The signal-to-

interference-plus-noise ratio (SINR) at the receiver accounts for the effect of both the thermal noise

and interfering signals on the detection of the desired signal. For a given set of data symbols,

U = {u1,−1, u1,0, . . . , uK−1,−1, uK−1,0} (2.15)

and

V = {v1,−1, v1,0, . . . , vK−1,−1, vK−1,0} (2.16)

11



in the interfering signals, the SINR is given by

Γ(U, V ) =
A2

0P0T
2

Var (N I(U, V )) + Var (NQ(U, V ))
. (2.17)

The signal-to-noise ratio (SNR) can be expressed in terms of the average energy per data symbol at

the receiver, Es, or the average energy per bit of information at the receiver. From equation (2.17)

and [6], the former is given by Es

N0
= M−1

3 Γ(0, 0) and the latter is given by

Eb
N0

=
M − 1

3 log2(M)
Γ(0, 0). (2.18)

The average signal-to-interference ratio (SIR) at the receiver is the ratio of the average power in the

desired signal to the sum of the average power in the interfering signals. Since all transmissions use

the same modulation format with equally likely data symbols, the SIR is given by

Λ =
A2

0P0∑K−1
k=1 A2

kPk
. (2.19)

Two measures of system performance are considered in the thesis: the (average) probability of symbol

error, Ps, and the (average) probability of bit error, Pb. Since non-binary modulation is considered,

Pb 6= Ps. In general, the probability of bit error depends on the mapping of the information bits to

code symbols used by the transmitter.

2.5 Statistical Model of System

All the analysis and examples in subsequent chapters assume the same joint statistics for

the random variables that determine the transmitted signals. The data symbols, uk,i and vk,i are

uniformly distributed over the set
{
±1,±3, . . . ,±

√
M − 1

}
where M is the size of the symbol set.

The chip polarities, aIk,i and aQk,i, have values in {−1, 1} with

Pr(uk,i = 1) = Pr(vk,i = 1) = Pr(aIk,i = 1) = Pr(aQk,i = 1) =
1

2
(2.20)

for 0 ≤ k ≤ K − 1 and all i. The random variables that determine the transmitted signals over the

interval of interest are mutually independent.
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Two scenarios are considered in subsequent chapters with respect to the effect of the channel

on the interfering signals. In the first scenario, the delay of the kth transmitted signal, τk, and its

accumulated phase at the receiver, Φk, are fixed for 1 ≤ k ≤ K−1. In the second scenario, the delay

is uniformly distributed on the interval [0, T ) and the phase is uniformly distributed on the interval

[0, 2π) for 1 ≤ k ≤ K − 1. The 2(K − 1) random variables {τk,Φk}, 1 ≤ k ≤ K − 1 are mutually

independent and independent of the set of data-symbol and chip polarity random variables. The

noise random process n(t) is independent of the random variables that determine the transmitted

signals.

13



Chapter 3

Characterization of the Decision

Statistics

In this chapter, we consider the decision statistics for the system in Chapter 2, and we

develop expressions for their first and second moments for several conditions of interest. The devel-

opment is modeled after the development in [5] (which in turn draws on results from [4]). Binary

PSK and OQPSK DS-SS signals are considered in [4] and [5], respectively. In this chapter, we adapt

the approach of [5] to DS-SS QAM signals.

The inphase correlator statistic for the desired signal s0(t) is given in equations (2.11) and

(2.13), and the quadrature correlator statistic is given in equations (2.12) and (2.14). In all that

follows, conditioning on u0,0, v0,0 and the signature sequences of the desired signal is implicit. The

respective expected values of the desired portion of the inphase and quadrature components of the

decision statistic are given as

SI = u0,0A0T

√
P0

2
(3.1)

and

SQ = v0,0A0T

√
P0

2
. (3.2)

The noise components of both the inphase decision statistic and the quadrature decision statistic

14



have a mean of zero, and their respective variances are given by

σ2
ηI0

= σ2
ηQ0

=
N0T

4
. (3.3)

The component of the inphase decision statistic due to the kth interfering signal can be written as

IIk = W I
kAk

√
Pk
2

(3.4)

where

W I
k = U Ik cos(Φk)− V Ik sin(Φk), (3.5)

U Ik =

∫ T

0

cIk(t− τk)aI0(t)dt, (3.6)

and

V Ik =

∫ T

0

cQk (t− τk)aI0(t)dt. (3.7)

Similarly, for the quadrature decision statistic,

IQk = WQ
k Ak

√
Pk
2

(3.8)

where

WQ
k = UQk cos(Φk)− V Qk sin(Φk), (3.9)

UQk =

∫ T

0

cQk (t− τk)aQ0 (t)dt, (3.10)

and

V Qk =

∫ T

0

cIk(t− τk)aQ0 (t)dt. (3.11)

The random variables U Ik , V Ik , UQk and V Qk can be expressed in terms of the chip-pulse con-

tinuous partial autocorrelation functions and the discrete cross-correlation functions of the spreading

sequence of the desired signal and the spreading sequence of the kth interfering signal [5]. The ran-
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dom variable U Ik is expanded as

U Ik =

N−2∑
i=0

HI
k,i

[
R̂ψc

(Sk) + aI0,ia
I
0,i+1Rψc

(Sk)
]

+HI
k,N−1R̂ψc

(Sk) +HI
k,NRψc

(Sk), (3.12)

where

HI
k,i =


uk,−1a

I
k,i−γka

I
0,i, if 0 ≤ i ≤ γk − 1

uk,0a
I
k,i−γka

I
0,i, if γk ≤ i ≤ N − 1

uk,−1a
I
k,−γk−1a

I
0,0, if i = N.

(3.13)

The chip-pulse continuous partial autocorrelation functions are given by

Rψc(s) =

∫ s

0

ψc(t)ψc(t+ Tc − s)dt (3.14)

and

R̂ψc
=

∫ Tc−s

0

ψc(t)ψc(t− s)dt, (3.15)

and the chip delay random variable is given by Sk = τk − γkTc, with γk = bτk/Tcc. The subsequent

development is conditioned on τk (and thus, γk) except where otherwise noted. We assume 0 ≤ τk <

T for 1 ≤ k ≤ K − 1, which is general for the distributions specified in Section 2.5. Similarly, the

random variable V Ik is expanded as

V Ik =

N−2∑
i=0

H̃I
k,i

[
R̂ψc

(Sk) + aI0,ia
I
0,i+1Rψc

(Sk)
]

+ H̃I
k,N−1R̂ψc

(Sk) + H̃I
k,NRψc

(Sk), (3.16)

where

H̃I
k,i =


vk,−1a

Q
k,i−γka

I
0,i, if 0 ≤ i ≤ γk − 1

vk,0a
Q
k,i−γka

I
0,i, if γk ≤ i ≤ N − 1

vk,−1a
Q
k,−γk−1a

I
0,0, if i = N.

(3.17)

For the quadrature decision statistic, the random variable UQk is expanded as

UQk =

N−2∑
i=0

HQ
k,i

[
R̂ψc

(Sk) + aQ0,ia
Q
0,i+1Rψc

(Sk)
]

+HQ
k,N−1R̂ψc

(Sk) +HQ
k,NRψc

(Sk), (3.18)
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where

HQ
k,i =


vk,−1a

Q
k,i−γka

Q
0,i, if 0 ≤ i ≤ γk − 1

vk,0a
Q
k,i−γka

Q
0,i, if γk ≤ i ≤ N − 1

vk,−1a
Q
k,−γk−1a

Q
0,0, if i = N.

(3.19)

Similarly, the random variable V Qk is expanded as

V Qk =

N−2∑
i=0

H̃Q
k,i

[
R̂ψc(Sk) + aQ0,ia

I
0,i+1Rψc(Sk)

]
+ H̃I

k,N−1R̂ψc(Sk) + H̃Q
k,NRψc(Sk), (3.20)

where

H̃Q
k,i =


uk,−1a

I
k,i−γka

Q
0,i, if 0 ≤ i ≤ γk − 1

uk,0a
I
k,i−γka

Q
0,i, if γk ≤ i ≤ N − 1

uk,−1a
I
k,−γk−1a

Q
0,0, if i = N.

(3.21)

In Appendix A, it is shown that the (K − 1)(N + 1) sets of four random variables

Hk,i =
{
HI
k,i, H̃

I
k,i, H

Q
k,i, H̃

Q
k,i

}
, 0 ≤ i ≤ N, 1 ≤ k ≤ K − 1, (3.22)

are conditionally mutually independent given M =
⋃K−1
k=1 Mk, where

Mk =
{
|uk,0|, |uk,−1|, |vk,0|, |vk,−1|

}
, 1 ≤ k ≤ K − 1, (3.23)

and that the conditioning for Hk,i, 0 ≤ i ≤ N can be reduced to Mk for each k. The set of

random variables
{
HI
k,i, H̃

I
k,i, H

Q
k,i, H̃

Q
k,i

}
are shown to be conditionally dependent given Mk, how-

ever, and some pairs of the random variables are conditionally correlated. The random variables{
U Ik , V

I
k , U

Q
k , V

Q
k

}
are shown in Appendix B to have a conditional mean of zero given Mk. Their

conditional second moments given Mk are also derived in Appendix B.

Now consider the expectation of the multiple-access interference with respect to uniformly

distributed signature sequences for the desired signal. In Appendix C, it is shown that under this

expectation,

E
[
W I
k |Mk

]
= E

[
WQ
k |Mk

]
= 0, (3.24)
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E
[
(W I

k )2|Mk

]
=
[
γk|uk,−1|2 + (N − γk)|uk,0|2

]
R̂2
ψc

(Sk) cos2(Φk)

+
[
(γk + 1)|uk,−1|2 + (N − γk − 1)|uk,0|2

]
R2
ψc

(Sk) cos2(Φk)

+
[
γk|vk,−1|2 + (N − γk)|vk,0|2

]
R̂2
ψc

(Sk) sin2(Φk)

+
[
(γk + 1)|vk,−1|2 + (N − γk − 1)|vk,0|2

]
R2
ψc

(Sk) sin2(Φk), (3.25)

E
[
(WQ

k )2|Mk

]
=
[
γk|vk,−1|2 + (N − γk)|vk,0|2

]
R̂2
ψc

(Sk) cos2(Φk)

+
[
(γk + 1)|vk,−1|2 + (N − γk − 1)|vk,0|2

]
R2
ψc

(Sk) cos2(Φk)

+
[
γk|uk,−1|2 + (N − γk)|uk,0|2

]
R̂2
ψc

(Sk) sin2(Φk)

+
[
(γk + 1)|uk,−1|2 + (N − γk − 1)|uk,0|2

]
R2
ψc

(Sk) sin2(Φk), (3.26)

and

E
[
W I
kW

Q
k |Mk

]
= 0. (3.27)

For QPSK modulation, equations (3.25) and (3.26) simplify to

E
[
(W I

k )2|Mk

]
= E

[
(WQ

k )2|Mk

]
= N

(
R̂2
ψc

(Sk) +R2
ψc

(Sk)
)
. (3.28)

Note that the conditional first and second moments do not depend on Φk.

It is also shown in Appendix C that the (K − 1) sets
{
W I
k ,W

Q
k

}
are conditionally uncorre-

lated givenM and that conditioning for
{
W I
k ,W

Q
k

}
can be reduced toMk under expectation with

respect to the uniformly distributed signature sequences of the desired signal. It follows that the

(K− 1) sets {IIk , I
Q
k }, 1 ≤ k ≤ K− 1, are conditionally uncorrelated givenM and that conditioning

for {IIk , I
Q
k } can be reduced toMk. Furthermore, from equations (3.5), (3.8), and (3.24) - (3.27), it

follows that IIk and IQk are conditionally uncorrelated, zero-mean random variables given Mk and
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that

Var
(
IIk |Mk

)
=
A2
kPk
2

( [
γk|uk,−1|2 + (N − γk)|uk,0|2

]
R̂2
ψc

(Sk) cos2(Φk)

+
[
(γk + 1)|uk,−1|2 + (N − γk − 1)|uk,0|2

]
R2
ψc

(Sk) cos2(Φk)

+
[
γk|vk,−1|2 + (N − γk)|vk,0|2

]
R̂2
ψc

(Sk) sin2(Φk)

+
[
(γk + 1)|vk,−1|2 + (N − γk − 1)|vk,0|2

]
R2
ψc

(Sk) sin2(Φk)
)

(3.29)

and

Var
(
IQk |Mk

)
=
A2
kPk
2

( [
γk|vk,−1|2 + (N − γk)|vk,0|2

]
R̂2
ψc

(Sk) cos2(Φk)

+
[
(γk + 1)|vk,−1|2 + (N − γk − 1)|vk,0|2

]
R2
ψc

(Sk) cos2(Φk)

+
[
γk|uk,−1|2 + (N − γk)|uk,0|2

]
R̂2
ψc

(Sk) sin2(Φk)

+
[
(γk + 1)|uk,−1|2 + (N − γk − 1)|uk,0|2

]
R2
ψc

(Sk) sin2(Φk)
)
. (3.30)

Finally, from equations (2.13) and (2.14) and the definition of the system in Chapter 2, the

random variables {ηI , ηQ} are independent of {Mk, I
I
k , I

Q
k } and they are independent, zero-mean

Gaussian random variables with

Var(ηI) = Var(ηQ) =
N0T

4
. (3.31)

3.1 Interference with a Fixed Delay and Phase Offset

The variance of each interference term is given by equations (B.6) and (B.13) above if the

delay and phase offset of each interferer is fixed. We consider the special case of QPSK modulation

first, then the general case of M-QAM.

3.1.1 QPSK with Fixed Delay and Phase Offset Interference

For QPSK modulation, |uk,i| = |vk,i| = 1 for all k and i. In this section, two examples of

chip waveforms are considered: the rectangular waveform and the raised-cosine waveform. For the
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rectangular waveform, the chip autocorrelation functions are given by

Rψc(s) = s (3.32)

R̂ψc
(s) = Tc − s. (3.33)

Therefore the conditional variance of Ik can be written as

Var
(
IIk |Mk

)
= Var

(
IQk |Mk

)
(3.34)

=
A2
kPk
2

N
(
R̂2
ψc

(Sk) +R2
ψc

(Sk)
)

(3.35)

=
A2
kPk
2

N
(

(Tc − Sk)
2

+ (Sk)
2
)

(3.36)

=
A2
kPk
2

N
(
T 2
c − 2SkTc + 2S2

k

)
(3.37)

The energy per bit of information in the received signal is given by Eb = A2
0TP0. From equations

(2.17), (3.1), (3.2), (3.37), and (3.31), the SINR with a rectangular pulse waveform can be written

as

Γ(U, V ) =

(
N0

Es
+

K−1∑
k=1

A2
kPk

NA2
0P0

(
1− 2

Sk
Tc

+ 2

(
Sk
Tc

)2
))−1

, (3.38)

for all {U, V }. A similar analysis can be performed for the raised-cosine waveform, which has a

pulse shape given by

ψ(t) =
√

2/3[1− cos(2πt/Tc)]pTc
(t). (3.39)

In [7], the autocorrelation functions for the raised-cosine waveform are shown to be

Rψ(τ) =
2

3
τ +

1

3
τ cos

(
2πτ

Tc

)
− Tc

2π
sin

(
2πτ

Tc

)
(3.40)

R̂ψ(τ) =
2

3
(Tc − τ) +

1

3
(Tc − τ) cos

(
2πτ

Tc

)
+
Tc
2π

sin

(
2πτ

Tc

)
. (3.41)

The SINR is found following the same procedure as for the rectangular waveform, and

Γ(U, V ) =

(
N0

Es
+

K−1∑
k=1

A2
kPk

NA2
0P0

1

T 2
c

(
R̂2
ψ(Sk) +R2

ψ(Sk)
))−1

(3.42)
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for all {U, V } where Rψ(Sk) and R̂ψ(Sk) are as defined in equations (3.40) and (3.41) respectively.

Note that Γ(U, V ) does not depend on the phase offsets regardless of the chip waveform.

3.1.2 M-QAM with Fixed Delay Interference and Phase Offset Interfer-

ence

From equations (3.29) and (3.30), it follows that

Var(IIk |Mk) + Var(IQk |Mk) =
A2
kPk
2

[
γk|uk,−1|2 + (N − γk)|uk,0|2

]
R̂2
ψc

(Sk)

+
A2
kPk
2

[
(γk + 1)|uk,−1|2 + (N − γk − 1)|uk,0|2

]
R2
ψc

(Sk)

+
A2
kPk
2

[
γk|vk,−1|2 + (N − γk)|vk,0|2

]
R̂2
ψc

(Sk)

+
A2
kPk
2

[
(γk + 1)|vk,−1|2 + (N − γk − 1)|vk,0|2

]
R2
ψc

(Sk). (3.43)

From equation (2.10), the average energy per channel symbol is given by

Es = E
[
|u0,0|2 + |v0,0|2

]
A2

0P0T =
2(M − 1)

3
A2

0P0T, (3.44)

and from equations (3.1) and (3.2).

E
[
(SI)2

]
+ E

[
(SQ)2

]
=
M − 1

3
A2

0PT
2 =

EsT

2
. (3.45)

Thus from equations (2.17) and (3.31), the SINR is given by

Γ(U, V ) =

(
M − 1

3

N0

Es
+

K−1∑
k=1

A2
kPk

A2
0P0

1

2T 2

(
E
[
(W I

k )2
∣∣Mk] + E

[
(WQ

k )2
∣∣∣Mk]

))−1
. (3.46)

Note, from equations (3.25) and (3.26), that equation (3.46) does not depend on the phase offsets

of the interfering signals.

3.2 Symbol-Synchronous Interference

In this section, a system is considered in which each of the interfering signals is symbol

synchronous with the desired signal at the receiver. (That is, τk = 0, 1 ≤ k ≤ K − 1, and therefore
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Sk = 0, 1 ≤ k ≤ K − 1.) Note that R̂ψc(0) = Tc and Rψc(0) = 0.

3.2.1 QPSK with Symbol-Synchronous Interference

From equation (3.37),

Var(IIk |Mk) = Var(IQk |Mk) =
A2
kPk
2

NT 2
c (3.47)

for all {U, V }. Therefore,

Γ(U, V ) =

(
N0

Es
+

K−1∑
k=1

A2
kPk

NA2
0P0

)−1
(3.48)

for all {U, V }.

3.2.2 M-QAM with Symbol-Synchronous Interference

From equations (3.29) and (3.30),

Var
(
IIk |Mk

)
=
A2
kPk
2

[
N |uk,0|2T 2

c cos2(Φk) +N |vk,0|2T 2
c sin2(Φk)

]
(3.49)

and

Var
(
IQk |Mk

)
=
A2
kPk
2

[
N |vk,0|2T 2

c cos2(Φk) +N |uk,0|2T 2
c sin2(Φk)

]
. (3.50)

The SINR is thus given as

Γ(U, V ) =

(
M − 1

3

N0

Es
+

K−1∑
k=1

(
|uk,0|2 + |vk,0|2

) A2
kPk

NA2
0P0

)−1
. (3.51)

for all {U, V }.

3.3 Uniformly Distributed Interference Delays

In this section, we consider interfering signals for which each delay, τk, is uniformly dis-

tributed over [0, T ) so that Sk is uniformly distributed over [0, Tc) and γk is uniformly distributed

over {0, 1, . . . , N − 1}.
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3.3.1 QPSK with Uniform Interference Delays

Let

∆ =
1

Tc

∫ Tc

0

R2
ψc

(s)ds =
1

Tc

∫ Tc

0

R̂2
ψc

(s)ds. (3.52)

for either waveform under consideration. From equations (3.29) and (3.30) for QPSK modulation

Var
(
IIk |Mk

)
=
A2
kPk
2

[
2N∆ cos2(Φk) + 2N∆ sin2(Φk)

]
(3.53)

= A2
kPkN∆ (3.54)

and

Var
(
IQk |Mk

)
= A2

kPkN∆. (3.55)

If the waveform is rectangular, ∆ = 1
3T

2
c , so the SINR is given by

Γ(U, V ) =

(
N0

Es
+

2

3N

K−1∑
k=1

A2
kPk

A0P0

)−1
(3.56)

for each {U, V }. If the strength of all received signals is the same, a result from [5] is obtained

Γ(U, V ) =

(
N0

Es
+

2(K − 1)

3N

)−1
. (3.57)

For the raised-cosine chip waveform, the same technique as in [5] can be used with the

autocorrelation function found in [7]. Using this method

∆ =
1

Tc576π3

(
320 cos

(
2
π

Tc

)
π Tc

2 + 128 sin

(
2
π

Tc

)
π2Tc − 160 sin

(
2
π

Tc

)
Tc

3+

8 sin

(
4
π

Tc

)
π2Tc − 25 sin

(
4
π

Tc

)
Tc

3 + 28 cos

(
4
π

Tc

)
π Tc

2 + 96π3 + 72Tc
2π

)
= T 2

c

(
1

6
+

35

48π2

)
. (3.58)

Thus the SINR is given by

Γ(U, V ) =

(
1N0

2Eb
+

2
(
1
6 + 35

48π2

)
N

K−1∑
k=1

A2
kPk

A2
0P0

)−1
. (3.59)
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for all {U, V }.

3.3.2 M-QAM with Uniform Interference Delays

From equation (3.29), since

E[γk] =
N − 1

2
, (3.60)

Var
(
IIk |Mk

)
=
A2
kPk
2

[(
N − 1

2

)
|uk,−1|2 +

(
N + 1

2

)
|uk,0|2

]
∆ cos2(Φk)

+
A2
kPk
2

[(
N + 1

2

)
|uk,−1|2 +

(
N − 1

2

)
|uk,0|2

]
∆ cos2(Φk)

+
A2
kPk
2

[(
N − 1

2

)
|vk,−1|2 +

(
N + 1

2

)
|vk,0|2

]
∆ sin2(Φk)

+
A2
kPk
2

[(
N + 1

2

)
|vk,−1|2 +

(
N − 1

2

)
|vk,0|2

]
∆ sin2(Φk)

=
A2
kPk
2

N∆
[
|uk,−1|2 + |uk,0|2

]
cos2(Φk) +

A2
kPk
2

N∆
[
|vk,−1|2 + |vk,0|2

]
sin2(Φk).

(3.61)

Similarly,

Var
(
IQk |Mk

)
=
A2
kPk
2

N∆
[
|vk,−1|2 + |vk,0|2

]
cos2(Φk) +

A2
kPk
2

N∆
[
|uk,−1|2 + |uk,0|2

]
sin2(Φk).

(3.62)

The SINR is thus given by

Γ(U, V ) =

(
M − 1

3

N0

Es
+
K−1∑
k=1

N∆
[
|uk,−1|2 + |uk,0|2 + |vk,−1|2 + |vk,0|2

] A2
kPk

2A2
0PkT

2

)−1
(3.63)

for all {U, V }. If the waveform is rectangular,

Γ(U, V ) =

(
M − 1

3

N0

Es
+

1

6

K−1∑
k=1

A2
kPk

NA2
0Pk

[
|uk,−1|2 + |uk,0|2 + |vk,−1|2 + |vk,0|2

])−1
(3.64)

If the waveform is the raised-cosine function

Γ(U, V ) =

(
M − 1

3

N0

Es
+

1

2

(
1

6
+

35

48π2

)K−1∑
k=1

A2
kPk

NA2
0Pk

[
|uk,−1|2 + |uk,0|2 + |vk,−1|2 + |vk,0|2

])−1
.

(3.65)
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Chapter 4

Performance Evaluation and

Approximation

In this chapter, we consider the probability of error of the system in Chapter 2. In particular,

we compare the exact probability of error (obtained from Monte Carlo simulations using Matlab)

with a Gaussian approximation to the probability of error. Given the channel symbols in the desired

signal and the interfering signals, the Gaussian approximation replaces the decision statistics in

equations (2.13) and (2.14) with independent Gaussian random with mean and variance determined

by the mean and variance of the random variables they replace.

4.1 Closed-form expressions for the Gaussian Approximation

In this section, we obtain closed-form expressions for a Gaussian approximation to the

probability of symbol error and the probability of bit error for the two modulations formats we use

in the examples. Consider the condition that the channel symbol in the desired signal is {u0, v0}

and the channel symbols in the interfering signals are given by U and V in equations (2.15) and

(2.16). One approach to the Gaussian approximation employs the approximations

Pr(ZI < w) ≈ Q

(
SI − w
σNI

)
(4.1)
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and

Pr(ZQ < y) ≈ Q

(
SQ − y
σNQ

)
, (4.2)

where

Q(x) =
1√
2π

∫ ∞
x

exp

(
−u

2

2

)
du. (4.3)

The expressions above account for a possible difference in the variance of NI and the variance

of NQ. Instead, we employ a simplified Gaussian approximation in which we average the two

variances for each approximation so that

Pr(ZI < w) ≈ Q

(√
SI − w
σ

)
(4.4)

and

Pr(ZQ < y) ≈ Q

(√
SQ − y
σ

)
, (4.5)

where σ2 =
(
σ2
NI

+ σ2
NQ

)
/2. Using this approximation,

Pr

(
ZI < SI −

√
A2

0T
2P0

8

)
= Pr

(
ZQ < SQ −

√
A2

0T
2P0

8

)
= Q

(√
Γ(U, V )

)
(4.6)

where Γ(U, V ) is given by equation (2.17).

4.1.1 Closed-Form Approximations to the Probability of Error

The Gaussian approximation to the probability of error for QPSK modulation results in

standard expressions for the probability of symbol error and the probability of bit error under Gray

coding. Specifically,

Ps = 1−
(

1−Q
(√

Γ(U, V )
))2

(4.7)

and

Pb = Q
(√

Γ(U, V )
)
. (4.8)

The average probability of error is obtained by averaging over the distribution of (U, V ).
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The Gaussian approximation to the probability of error for M-QAM also results in standard

expressions for the probability of symbol error and the probability of bit error under Gray coding.

The probability of symbol error for an interior point in the signal constellation is

Ps = 4 Q(
√

Γ(U, V ))
(

1−Q(
√

Γ(U, V ))
)
. (4.9)

The probability of symbol error for a corner point in the signal constellation is

Ps = Q(
√

Γ(U, V ))
(

2−Q(
√

Γ(U, V ))
)
. (4.10)

The probability of symbol error for a exterior point in the signal constellation that is not a corner

point is

Ps = Q(
√

Γ(U, V ))
(

3− 2 Q(
√

Γ(U, V ))
)
. (4.11)

The probability of symbol error for each {U, V } is obtained by averaging these probabilities

of error over the uniform distribution of the transmitted data symbols {u0,0, v0,0}. The resulting

average probability of symbol error given {U, V } is given by

Ps =
4

M
Q(
√

Γ(U, V ))(2−Q(
√

Γ(U, V )) +
(
√
M − 2)4

M
Q(
√

Γ(U, V ))(3− 2 Q(
√

Γ(U, V )))

+
4(M/4−

√
M + 1)

M
4 Q(

√
Γ(U, V ))(1−Q(

√
Γ(U, V ))). (4.12)

For 16-QAM, this simplifies to

Ps = 3

(
Q
(√

Γ(U, V )
)
− 1

2
Q2
(√

Γ(U, V )
))

. (4.13)

The relationship between the probability of symbol error and the probability of bit error for

Gray-coded M-QAM depends on the value of M . The general form of the relationship is derived in

[8]. For 16-QAM it is given by equation (9) of [8], which is expressed in our notation as .

Pb =
3

4
Q(
√

Γ(U, V ))(2−Q(
√

Γ(U, V )) +
1

2
Q(
√

9Γ(U, V )) +
1

4
Q(
√

25Γ(U, V )). (4.14)

Since Gray coding is used, the bit mappings of nearest-neighbors in the signal constellation
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differ by one bit. For sufficiently large values of Γ(U, V ), the probability that more than one bit

is in error in the detected data symbol is negligible. The probability of bit error for M=16 is thus

approximated accurately by

Pb =
3

4
Q(
√

Γ(U, V )) (4.15)

for values of the SINR of practical interest.

4.2 QPSK with Symbol Synchronous Inference

The performance of the system with QPSK modulation in the presence of symbol-synchronous

interference is approximated using the Gaussian approximation and the results of Section 3.2.1 with

equation (3.48). The accuracy of the approximation is shown in Figure 4.1, which illustrates the

performance for a single symbol-synchronous interferer, no phase offset in the interferer, and various

values of the spreading factor N . (The results do not depend on the chip waveform.) The accuracy

of the approximation is considered for four values of the SIR: 0 dB, −3 dB, −6 dB, and −10 dB.

Comparison of the simulation results with the Gaussian approximation shows that the approxima-

tion is quite accurate for large values of N , but there is a significant difference between the Gaussian

approximation and the actual probability of error if N is small. As the signal-to-noise ratio Eb/N0

increases, the probability of error approaches an error floor which is due to the interference. The

error in the approximation is most noticeable as the performance approaches the error floor.

The performance predicted by the Gaussian approximation does not depend on the phase

offset of the interfering signals, as shown in the previous chapter. The actual system performance

does depend on the phase offset slightly, however, as shown in Figure 4.2 for various phase offsets, a

spreading factor of eight, and equal-power received signals. (Once again, the results do not depend

on the chip waveform.) The result of the Gaussian approximation is also shown, and once again it

is seen that the accuracy of the approximation decreases as the signal-to-noise ratio is increased.

4.3 QPSK and Interference with a Fixed Delay

The performance of the system with QPSK modulation in the presence of interferers with

arbitrary fixed delays is approximated using the Gaussian approximation and the results of Section

3.1.1. If the chip waveform of each transmission is rectangular, the value of Γ(U, V ) used in the
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(a) Probability of error for an SIR of 0 dB (b) Probability of error for an SIR of −3 dB

(c) Probability of error foran SIR of −6 dB (d) Probability of error for an SIR of −10 dB

Figure 4.1: Probability of error for QPSK with two users and various values of N .

approximation is given by equation (3.38). Similarly, equation (3.42) is used if the chip waveform

is the raised-cosine function. The accuracy of the approximation is shown in Figure 4.3, which

illustrates the performance for a single interferer, a spreading factor of eight, equal-power received

signals, and various values of the delay in the interferer. For either the waveform and any delay, the

Gaussian approximation is accurate over the range of values of Eb/N0 that are shown, though the

accuracy decreases for larger values of Eb/N0 (not shown in the figure).

4.4 QPSK with a Random Interference Delay

If a uniformly distributed random delay is imposed on each interfering signal, two different

methods of Gaussian approximation can be employed. The first methods employs the variance of

the interference after averaging over the random delay. The value of Γ(U, V ) is given by equations

(3.64) and (3.59) for rectangular and raised-cosine chip waveforms, respectively, with the average

probability of bit error approximated by equation (4.14). The results of the approximation are shown

for both waveforms in Figure 4.4a for a system with a single interferer, a spreading factor of eight,

and equal-power received signals. The approximation is fairly accurate if the rectangular waveform

is used, but it results in significant underestimation of the probability of error if the raised-cosine
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Figure 4.2: Probability of bit error for QPSK with various phases of interferer, K = 2, N = 8, and
an SIR of 0 dB.

waveform is used, especially if the signal-to-noise ratio is large. The second method of Gaussian

approximation first uses the approximation conditioned on the delay of each interferer. That is, it

employs equation (4.14) together with equations (3.38) and (3.42) for the respective waveforms and

each value of delay. The resulting approximations are given by

Pb =

∫ 1

0

Q
(√

γSINR(s)
)
ds. (4.16)

The accuracy of this approximation is shown in Figure 4.4b for the same system. The approximation

using this method has similar accuracy to the first method if the rectangular waveform is used. It

yields much greater accuracy than the first method if the raised-cosine waveform is used, however,

especially if the signal-to-noise ratio is large.

4.5 M-QAM with Symbol Synchronous Inference

The performance of the system with M-QAM in the presence of symbol-synchronous in-

terference is approximated using the Gaussian approximation and the results of Section 3.2.2 with

equation (3.51). The accuracy of the approximation is shown in Figure 4.5 for 16-QAM, which illus-
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(a) Rectangular chip waveform. (b) Raised-cosine chip waveform.

Figure 4.3: Probability of bit error for QPSK with K = 2, various interference delays, N = 8, and
an SIR of 0 dB.

(a) First method of averaging over delay. (b) Second method of averaging over delay.

Figure 4.4: Probability of bit error for QPSK with random interference delay, K = 2, N = 8, and
an SIR of 0 dB.
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(a) Probability of error for γSIR = 0 dB (b) Probability of error for γSIR = −3 dB

(c) Probability of error for γSIR = 3 dB

Figure 4.5: Probability of error for 16-QAM, chip and symbol synchronous, K = 2 and various
values of N .

trates the performance for a single symbol-synchronous interferer, no phase offset in the interferer,

and various values of the spreading factor N . (The results do not depend on the chip waveform.)

The accuracy of the approximation is considered for four values of the SIR: −3 dB, 0 dB, and 3

dB. Comparison of the simulation results with the Gaussian approximation shows that the approx-

imation is quite accurate for large values of N , with a moderate difference between the Gaussian

approximation and the actual probability of error if N is small. As the signal-to-noise ratio Eb/N0

increases, the probability of error approaches an error floor which is due to the interference. The

error in the approximation is most noticeable as the performance approaches the error floor.

4.6 M-QAM and Interference with a Fixed Delay

The performance of the system with M-QAM in the presence of interferers with arbitrary

fixed delays is approximated using the Gaussian approximation and the results of Section 3.1.2 with

equation (4.13). If the chip waveform of each transmission is rectangular, the value of Γ(U, V )

used in the approximation is given by equation (3.38). Similarly, equation (3.42) is used if the chip
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waveform is the raised-cosine function. The accuracy of the approximation is shown in Figure 4.6,

which illustrates the performance for 16-QAM, a single interferer, a spreading factor of 32, equal-

power received signals, and various values of the delay in the interferer. Since each delay illustrated

results in chip-synchronous interference, the results are the same for both waveforms. For each delay,

the Gaussian approximation is accurate over the range of values of ES/N0 that are shown, though

the accuracy decreases for larger values of ES/N0.

Figure 4.6: Probability of symbol error for 16-QAM with K = 2, various interference delays, and an
SIR of 0 dB.

4.7 M-QAM with a Random Interference Delay

The second of the two methods of Gaussian approximation in Section 4.4 is considered in this

section to approximate the probability of symbol error for the system using 16-QAM. The accuracy

of the approximation is shown in Figure 4.7. The performance is shown for both the rectangular

waveform and the raised-cosine waveform. The approximation using this method very high accuracy

if the signal-to-noise ratio is small and reasonable accuracy if the signal-to-noise ratio is large.
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Figure 4.7: Probability of symbol error for 16-QAM with random interference delay, K = 2, N = 32,
and an SIR of 0 dB.
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Chapter 5

Conclusion

In this thesis, closed-form expressions are developed for the variance of the interference terms

in the decision statistics of a DS-SS M-QAM communication system using coherent demodulation

and matched-filter detection from a signal that is corrupted by multiple-access interference and

thermal noise. The expressions are used in a Gaussian approximation to the probability of error

at the receiver which results in a simple, closed-form expressions for the approximate probability of

error. Two methods of Gaussian approximation are considered for the circumstance in which each

interfering signal is subjected to a random delay relative to the desired signal. Examples of the

approximations are examined for systems using QPSK modulation and 16-QAM is considered.

The accuracy of the approximations is very good for the system with QPSK modulation if

the signal-to-noise ratio is small, but it is less accurate if the signal-to-noise ratio is large, especially in

the presence of strong interference. Of the two methods of approximation under random delays, the

method that averages over Gaussian approximations which are conditioned on the delays provides

greater accuracy than the method that averages the interference variance over random delays prior to

applying the Gaussian approximation. This difference is greater if the raised-cosine chip waveform is

used than if the rectangular chop waveform is used. The approximations are accurate for the system

with 16-QAM and fixed delays, and the second method of approximation under random delays is

also accurate for the 16-QAM system.
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Appendix A Conditional Joint Distribution of Key Auxil-

iary Random Variables

In this appendix, we consider the conditional joint distribution of the 4(K−1)(N+1) random

variables, Hk,i = {HI
k,i, H̃

I
k,i, H

Q
k,i, H̃

Q
k,i}, 0 ≤ i ≤ N , k = 1, . . . ,K − 1, defined in Chapter 3, given

the magnitudes of the data symbols transmitted in the interval of interest. That is, conditioning is

on the set of random variables M =
{
Mk = {|uk,0|, |uk,−1|, |vk,0|, |vk,−1|} |1 ≤ k ≤ K − 1

}
. As in

Chapter 3, the signature sequences of the desired signal are given.

Consider first the (K − 1) sets of random variables {Hk,i|0 ≤ i ≤ N}, for k = 1,≤ k ≤

K− 1. From the definitions of the random variables and the distributions specified in Section 2.5, it

follows immediately that the K − 1 sets are conditionally mutually independent given M and that

conditioning for the kth set can be reduced to conditioning on Mk.

The conditional mutual independence of the (N + 1) sets Hk,i, 0 ≤ i ≤ N , given Mk is

established as follows. First condition on

M̃k = {sgn(|uk,0|), sgn(|uk,−1|), sgn(|vk,0|), sgn(|vk,−1|)} . (A.1)

Each set Hk,i is a function of
{
aIk,i−γk , a

Q
k,i−γk

}
for 1 ≤ i ≤ N − 1, and Hk,N is a function of{

aIk,i−γk−1, a
Q
k,i−γk−1

}
. The sets

{
aIk,i−γk , a

Q
k,i−γk

}
, 0 ≤ i ≤ N , are conditionally mutually inde-

pendent givenMk and M̃k. The sets Hk,i, 0 ≤ i ≤ N , are thus conditionally mutually independent

given Mk and M̃k.

The conditional joint distribution of Hk,i given Mk and M̃k is uniform on the support

{
(|uk,−1|, |uk,−1|, aI0,ia

Q
0,i|vk,−1|, a

I
0,ia

Q
0,i|vk,−1|),

(|uk,−1|,−|uk,−1|,−aI0,ia
Q
0,i|vk,−1|, a

I
0,ia

Q
0,i|vk,−1|),

(−|uk,−1|, |uk,−1|, aI0,ia
Q
0,i|vk,−1|,−a

I
0,ia

Q
0,i|vk,−1|),

(−|uk,−1|,−|uk,−1|,−aI0,ia
Q
0,i|vk,−1|,−a

I
0,ia

Q
0,i|vk,−1|)

}
given Mk and M̃k for 0 ≤ i ≤ γk−1. Similar results in terms of |uk,0| and |uk,−1| result for

Hk,i, γk ≤ i ≤ N .

In each case, the conditional joint distribution of Hk,i given Mk and M̃k does not depend
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on M̃k. The sets Hk,i, 0 ≤ i ≤ N , are thus conditionally mutually independent given Mk. Each

random variable in Hk,i has a conditional mean of zero given Mk,

E
[(
HI
k,i

)2 |Mk

]
= E

[(
H̃I
k,i

)
|Mk

]
=


|uk,−1|2, 0 ≤ i ≤ γk − 1

|uk,0|2, γk ≤ i ≤ N − 1

|uk,−1|2, i = N

(A.2)

E

[(
HQ
k,i

)2
|Mk

]
= E

[(
H̃Q
k,i

)
|Mk

]
=


|vk,−1|2, 0 ≤ i ≤ γk − 1

|vk,0|2, γk ≤ i ≤ N − 1

|vk,−1|2, i = N.

(A.3)

The four random variables Hk,i = {HI
k,i, H̃

I
k,i, H

Q
k,i, H̃

Q
k,i} are not conditionally mutually

independent given Mk for 0 ≤ i ≤ N . This is seen by noting that the fourth moment

E
[
HI
k,i · · · H̃

Q
k,i|Mk

]
=


|uk,−1|2|vk,−1|2 6= 0, 0 ≤ i ≤ γk − 1, i = N

|uk,0|2|vk,0|2 6= 0, γk ≤ N − 1

(A.4)

whereas, each of the four has a conditional mean of zero givenMk. From the conditional distributions

noted above, HI
k,i and H̃I

k,i are conditionally independent given Mk, as are each pair of random

variables,
{
HI
k,iH

Q
k,i

}
,
{
H̃I
k,iH̃

Q
k,i

}
, and

{
HQ
k,iH̃

Q
k,i

}
, for 0 ≤ i ≤ N . The remaining pairs of random

variables in Hk, i are conditionally correlated given Mk, however. For example,

E
[
HI
k,iH̃

Q
k,i|Mk

]
=


|uk,−1||vk,−1|aI0,i, a

Q
0,i, 0 ≤ i ≤ γk − 1,

|uk,0||vk,0|aI0,i, a
Q
0,i, 6= 0,

|uk,−1|2|vk,−1|aI0,0a
Q
0,0, i = N,

(A.5)

(Recall that aI0,i and aQ0,i are given for each i.) The same result follows for E
[
H̃I
k,iH

Q
k,i|Mk

]
. Note

that the conditional correlation coefficient of the pair of random variables givenMk has a magnitude

of one in either case.
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Appendix B Characterization of Multiple-Access Interference

In this appendix, we consider the multiple-access interference terms in equations (2.13) and

(2.14) by considering the random variables
{
U Ik , V

I
k , U

Q
k , V

Q
k

}
, 1,≤ k,≤ K−1, defined in equations

(3.6), (3.7), (3.10) and (3.11). As in Appendix A, conditioning is onM, and the signature sequences

of the desired signal are given. The development in this appendix is patterned after the analogous

development in [5] for a system with OQPSK DS-SS modulation.

Following [5], we can show that

U Ik = λIkR̂ψc (Sk) + µIkRψc (Sk) (B.6)

where

λIk = XI
k + Y Ik +HI

k,N−1 (B.7)

and

µIk = XI
k − Y Ik +HI

k,N (B.8)

The random variables XI
k and Y Ik are given by

XI
k =

∑
i∈AI

HI
k,i (B.9)

and

Y Ik =
∑
i∈BI

HI
k,i (B.10)

where

AI =
{
i, 0 ≤ i ≤ N − 2|aI0,iaI0,i+1 = +1

}
(B.11)

and

BI =
{
i, 0 ≤ i ≤ N − 2|aI0,iaI0,i+1 = −1

}
. (B.12)

In a similar manner,

V Ik = λ̃IkR̂ψc
(Sk) + µ̃IkRψc

(Sk) (B.13)

where

λ̃Ik = X̃I
k + Ỹ Ik + H̃I

k,N−1 (B.14)
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and

µ̃Ik = X̃I
k − Ỹ Ik + H̃I

k,N . (B.15)

The random variables X̃I
k and Ỹ Ik are given by

X̃I
k =

∑
i∈AI

H̃I
k,i (B.16)

and

Ỹ Ik =
∑
i∈BI

H̃I
k,i. (B.17)

Furthermore,

UQk = λQk R̂ψc(Sk) + µQk Rψc(Sk) (B.18)

where

λQk = XQ
k + Y Qk +HQ

k,N−1 (B.19)

and

µQk = XQ
k − Y

Q
k +HQ

k,N (B.20)

The random variables XQ
k and Y Qk are given by

XQ
k =

∑
i∈AQ

HQ
k,i (B.21)

and

Y Qk =
∑
i∈BQ

HQ
k,i (B.22)

where AQ and BQ are define as

AQ =
{
i, 0 ≤ i ≤ N − 2|aQ0,ia

Q
0,i+1 = +1

}
(B.23)

and

BQ =
{
i, 0 ≤ i ≤ N − 2|aQ0,ia

Q
0,i+1 = −1

}
. (B.24)

Similarly,

V Qk = λ̃Qk R̂ψc
(Sk) + µ̃Qk Rψc

(Sk) (B.25)
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where

λ̃Qk = X̃Q
k + Ỹ Qk + H̃Q

k,N−1 (B.26)

and

µ̃Qk = X̃Q
k − Ỹ

I
k + H̃Q

k,N . (B.27)

The random variables X̃Q
k and Ỹ Qk are given by

X̃Q
k =

∑
i∈AQ

H̃Q
k,i (B.28)

and

Ỹ Qk =
∑
i∈BQ

H̃Q
k,i. (B.29)

Since the signature sequences of the desired signal are given, so are AI , BI , AQ, and BQ. Conse-

quently, the (K − 1) sets

{
XI
k , Y

I
k , X̃

I
k , Ỹ

I
k , X

Q
k , Y

Q
k , X̃

Q
k , Ỹ

Q
k ,

HI
k,N−1, H

I
k,N , H̃

I
k,N−1, H̃

I
k,N , H

Q
k,N−1, H

Q
k,N , H̃

Q
k,N−1, H̃

Q
k,N ,

}
,

1 ≤ k ≤ K − 1 are conditionally mutually independent given M, from the results of Appendix A.

Consequently, so are the (K − 1) sets
{
U Ik , V

I
k , U

Q
k , V

Q
k

}
, 1 ≤ k ≤ K − 1. Furthermore, for each k,

the conditioning can be reduced to conditioning on Mk.

Equations (B.6), (B.13), (B.18), and (B.25) can be expanded as

U Ik = XI
kf(Sk) + Y Ik g(Sk) +HI

k,N−1R̂ψc
(Sk) +HI

k,NRψc
(Sk), (B.30)

V Ik = X̃I
kf(Sk) + Ỹ Ik g(Sk) + H̃I

k,N−1R̂ψc
(Sk) + H̃I

k,NRψc
(Sk), (B.31)

UQk = XQ
k f(Sk) + Y Qk g(Sk) +HQ

k,N−1R̂ψc
(Sk) +HQ

k,NRψc
(Sk), (B.32)

and

V Qk = X̃Q
k f(Sk) + Ỹ Qk g(Sk) + H̃Q

k,N−1R̂ψc(Sk) + H̃Q
k,NRψc(Sk). (B.33)
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where

f(s) = R̂ψc
(s) +Rψc

(s) (B.34)

and

g(s) = R̂ψc
(s)−Rψc

(s). (B.35)

The subsets AI , BI , {N − 1}, and {N} are disjoint, as are the subsets AQ, BQ, {N − 1}, and {N}.

Thus each of the four sets
{
XI
k , X

I
k , H

I
k,N−1, H

I
k,N

}
,
{
X̃I
k , Ỹ

I
k , H̃

I
k,N−1, H̃

I
k,N

}
,{

XQ
k , Y

Q
k , H

Q
k,N−1, H

Q
k,N

}
, and

{
X̃Q
k , Ỹ

Q
k , H̃

Q
k,N−1, H̃

Q
k,N

}
is a set of conditionally independent ran-

dom variables given Mk. From the results of Appendix A, however, there are dependencies across

the four sets.

The dependence on the signature sequences of the desired signal can be expressed in a simple

manner as follows. As shown in [4],

∣∣AI ∣∣ =
N − 1 + CI

2
(B.36)

and ∣∣BI ∣∣ =
N − 1− CI

2
(B.37)

where

CI =

N−2∑
j=0

aI0,ja
I
0,j+1 (B.38)

is the single-offset aperiodic autocorrelation [6] of the inphase signature sequence of the desired

signal.

Similarly ∣∣AQ∣∣ =
N − 1 + CQ

2
(B.39)

and ∣∣BQ∣∣ =
N − 1− CQ

2
(B.40)

where

CQ =

N−2∑
j=0

aQ0,ja
Q
0,j+1 (B.41)

is the single-offset aperiodic autocorrelation of the quadrature signature sequence of the desired
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signal.

From equations (B.9),(B.10),(B.16),(B.17),(B.21),(B.22),(B.28), and (B.29), the conditional

joint distribution of {
XI
k , Y

I
k , X̃

I
k , Ỹ

I
k , X

Q
k , Y

Q
k , X̃

Q
k , Ỹ

Q
k

}
given Mk depends on the signature sequences of the desired signal only through CI and CQ. The

same result follows for the conditional joint distribution of
{
U Ik , V

I
k , U

Q
k , V

Q
k

}
given Mk.

From the definitions of λIk, µIk, λ̃Ik, µ̃Ik, λQk , µQk , λ̃Qk , and µ̃Qk , it follows that each has a

conditional mean of zero given Mk for 1 ≤ k ≤ K − 1. The conditional second moments given Mk

are determined as follows. We can express XI
k and Y Ik as

XI
k =

∑
i∈AI

1

HI
k,i +

∑
i∈AI

2

HI
k,i (B.42)

and

Y Ik =
∑
i∈BI

1

HI
k,i +

∑
i∈BI

2

HI
k,i (B.43)

where

AI1 = AI ∩ {i|0 ≤ i ≤ γk−1} (B.44)

AI2 = AI ∩ {i|γk−1 ≤ i ≤ N − 2} (B.45)

and BI1 and BI1 are defined similarly. The random variables X̃I
k and Ỹ Ik can be expressed similarly

in terms of AI1, AI2, BI1 , and BI2 . And the random variables XQ
k , XQ

k , X̃Q
k and Ỹ Qk can be expressed

similarly in terms of analogous sets AQ1 , AQ2 , BQ1 , and BQ2 .
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Then

E
[(
λIk
)2 |Mk

]
= E


∑
i∈AI

1

HI
k,i +

∑
i∈AI

2

HI
k,i +

∑
i∈BI

1

HI
k,i +

∑
i∈BI

2

HI
k,i +HI

k,N−1

2

|Mk


=
∑
i∈AI

1

E
[(
HI
k,i

)2 |Mk

]
+
∑
i∈AI

2

E
[(
HI
k,i

)2 |Mk

]
+
∑
i∈BI

1

E
[(
HI
k,i

)2 |Mk

]
+
∑
i∈BI

2

E
[(
HI
k,i

)2 |Mk

]
+ E

[(
HI
k,N−1

)2 |Mk

]
= γk |uk,−1|2 + (N − 1− γk) |uk,0|2 + |uk,0|2

= γk |uk,−1|2 + (N − γk) |uk,0|2

(B.46)

since
∣∣AI1∣∣+

∣∣BI1∣∣ = γk and
∣∣AI2∣∣+

∣∣BI2∣∣ = N − 1− γk. Similarly,

E

[(
λ̃Ik

)2
|Mk

]
= γk |uk,−1|2 + (N − γk) |uk,0|2 , (B.47)

E
[(
µIk
)2 |Mk

]
= (γk + 1) |uk,−1|2 + (N − γk − 1) |uk,0|2 , (B.48)

and

E
[(
µ̃Ik
)2 |Mk

]
= (γk + 1) |uk,−1|2 + (N − γk − 1) |uk,0|2 . (B.49)

Similar steps result in

E

[(
λQk

)2
|Mk

]
= E

[(
λ̃Qk

)2
|Mk

]
= γk |vk,−1|2 + (N − γk) |vk,0|2

(B.50)

and

E

[(
µQk

)2
|Mk

]
= E

[(
µ̃Qk

)2
|Mk

]
= (γk + 1) |vk,−1|2 + (N − γk − 1) |vk,0|2

(B.51)

From the results of Appendix A, for each pair of the random variables the conditional crosscorrelation

given Mk is zero, except in the following instances.
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From the definitions of the random variables,

E
[
λIkµ

I
k|Mk

]
=
∑
i∈AI

1

|uk,−1|2 +
∑
i∈AI

2

|uk,0|2 −
∑
i∈BI

1

|uk,−1|2 −
∑
i∈BI

2

|uk,0|2

=
(∣∣AI1∣∣− ∣∣BI1∣∣) |uk,−1|2 +

(∣∣AI2∣∣− ∣∣BI2∣∣) |uk,0|2 ,
(B.52)

E
[
λ̃Ikµ̃

I
k|Mk

]
=
(∣∣AI1∣∣− ∣∣BI1∣∣) |uk,−1|2 +

(∣∣AI2∣∣− ∣∣BI2∣∣) |uk,0|2 , (B.53)

and

E
[
λQk µ

Q
k |Mk

]
= E

[
λ̃Qk µ̃

Q
k |Mk

]
=
(∣∣AI1∣∣− ∣∣BI1∣∣) |vk,−1|2 +

(∣∣AI2∣∣− ∣∣BI2∣∣) |vk,0|2 . (B.54)

In a similar manner,

E
[
λIkλ̃

Q
k |Mk

]
= E

[
λ̃Ikλ

Q
k |Mk

]
= |uk,−1| |vk,−1|

(
γk−1∑
i=0

aI0,ia
Q
0,i

)
+ |uk,0| |vk,0|

 N−2∑
i=γk−1

aI0,ia
Q
0,i

 ,
(B.55)

E
[
λIkµ̃

Q
k |Mk

]
= E

[
µIkλ̃

Q
k |Mk

]
= E

[
λ̃Ikµ

Q
k |Mk

]
= E

[
µ̃Ikλ

Q
k |Mk

]
= |uk,−1| |vk,−1|

(
γk−1∑
i=0

aI0,ia
Q
0,i

)
− |uk,0| |vk,0|

N−2∑
i=γk

aI0,ia
Q
0,i

 ,
(B.56)

and

E
[
µIkµ̃

Q
k |Mk

]
= E

[
µ̃Ikµ

Q
k |Mk

]
= |uk,−1| |vk,−1| aI0,0a

Q
0,0 + |uk,−1| |vk,−1|

(
γk−1∑
i=0

aI0,ia
Q
0,i

)

+ |uk,0| |vk,0|

N−2∑
i=γk

aI0,ia
Q
0,i

 .

(B.57)

The remaining conditional second moments of the random variables are defined by equations (B.7),

(B.8), (B.14), (B.15), (B.19), (B.20), (B.26), and (B.27), and are all zero. The conditional first and

second moments of
{
U Ik , V

I
k , U

Q
k , V

Q
k

}
givenMk follow from equations (B.6), (B.13), (B.18), (B.25)
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and equations (B.46) - (B.57). In particular, the conditional mean of each given Mk is zero.

Appendix C Moments of Interference Terms With Random

Signature Sequences

In this appendix, we consider the first and second conditional moments of the multiple-access

interference terms
{
W I
k ,W

Q
k

}
, 1 ≤ k ≤ K−1, givenM. Unlike the previous appendices, we consider

the expected value of the moments with respect to uniformly distributed signature sequences for the

desired signal. From the results of Appendix B it follows that the (K − 1) sets
{
U Ik , V

I
k , U

Q
k , V

Q
k

}
,

1 ≤ k ≤ K − 1, are conditionally uncorrelated given M under expectation with respect to the

signature sequences of the desired signal, and conditioning for the kth set can be reduced to Mk.

Under this expectation, the expressions for several quantities considered in Appendix B are

simplified. In particular, from equations (B.52) - (B.54),

E
[
λIkµ

I
k|Mk

]
= E

[
λ̃Ikµ̃

I
k|Mk

]
= E

[
λQk µ

Q
k |Mk

]
= E

[
λ̃Qk µ̃

Q
k |Mk

]
= 0, (C.58)

since

E
[
|AI1|

]
= E

[
|BI1 |

]
=
γk
2
, (C.59)

E
[
|AI2|

]
= E

[
|BI2 |

]
=
N − 1− γk

2
, (C.60)

E
[
|AQ1 |

]
= E

[
|BQ1 |

]
=
γk
2
, (C.61)

and

E
[
|AQ2 |

]
= E

[
|BQ2 |

]
=
N − 1− γk

2
, (C.62)

Similarly, from equations (B.55) - (B.57),

E
[
λIkλ̃

Q
k |Mk

]
= E

[
λ̃Ikλ

Q
k |Mk

]
= E

[
µIkµ̃

Q
k |Mk

]
= E

[
µ̃Ikµ

Q|Mk

]
= 0 (C.63)
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and

E
[
λIkµ̃

Q
k |Mk

]
= E

[
µIkλ

Q
k |Mk

]
= E

[
λ̃Ikµ

Q
k |Mk

]
= E

[
µ̃Ikλ

Q|Mk

]
= 0 (C.64)

The remaining conditional second moments of the random variables defined by equations (B.7),

(B.8),(B.14),(B.15),(B.19),(B.20),(B.26), and (B.27) are all zero. From equations (B.6)-(B.25), un-

der expectation with respect to uniform signature sequences,

E[U Ik |M̃k] = E[V Ik |M̃k] = E[UQk |M̃k] = E[V Ik |M̃k] = 0, (C.65)

E
[
(U Ik )2|M̃k

]
= E

[
(λIk)2|M̃k

]
R̂2
ψc

(Sk) + E
[
(µIk)2|M̃k

]
R2
ψc

(Sk) + 2 E[λIkµ
I
k|M̃k],

=
[
γk|uk,−1|2 + (N − γk)|uk,0|2

]
R̂2
ψc

(Sk)

+
[
(γk + 1)|uk,−1|2 + (N − γk − 1)|uk,0|2

]
R2
ψc

(Sk),

(C.66)

E
[
(V Ik )2|M̃k

]
;

=
[
γk|vk,−1|2 + (N − γk)|vk,0|2

]
R̂2
ψc

(Sk)

+
[
(γk + 1)|vk,−1|2 + (N − γk − 1)|vk,0|2

]
R2
ψc

(Sk),

(C.67)

E
[
(UQk )2|M̃k

]
= E

[
(V Ik )2|M̃k

]
, (C.68)

E
[
(V Qk )2|M̃k

]
= E

[
(U Ik )2|M̃k

]
, (C.69)

and each pair of random variables in
{
U Ik , V

I
k , U

Q
k , V

Q
k

}
is conditionally uncorrelated given Mk.

From the development above, the (K−1) sets
{
W I
k ,W

Q
k

}
, 1 ≤ k ≤ K−1 are conditionally

uncorrelated given M, and conditioning for
{
W I
k ,W

Q
k

}
can be reduced to Mk. From equations
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(3.5) and (3.9), both W I
k and WQ

k have a conditional mean of zero given Mk. Furthermore,

E
[
(W I

k )2|Mk

]
= E

[
(U Ik )2|Mk

]
cos2(Φk)

− 2 E
[
U IkV

I
k |Mk

]
cos(Φk) sin(Φk) + E

[
(vIk)2|Mk

]
sin(Φk)

=
[
γk|uk,−1|2 + (N − γk)|uk,0|2

]
R̂2
ψc

(Sk) cos2(Φk)

+
[
(γk + 1)|uk,−1|2 + (N − γk − 1)|uk,0|2

]
R2
ψc

(Sk) cos2(Φk)

+
[
γk|vk,−1|2 + (N − γk)|vk,0|2

]
R̂2
ψc

(Sk) sin2(Φk)

+
[
(γk + 1)|vk,−1|2 + (N − γk − 1)|vk,0|2

]
R2
ψc

(Sk) sin2(Φk)

(C.70)

Similarly

E
[
(WQ

k )2|Mk

]
=
[
γk|vk,−1|2 + (N − γk)|vk,0|2

]
R̂2
ψc

(Sk) cos2(Φk)

+
[
(γk + 1)|vk,−1|2 + (N − γk − 1)|vk,0|2

]
R2
ψc

(Sk) cos2(Φk)

+
[
γk|uk,−1|2 + (N − γk)|uk,0|2

]
R̂2
ψc

(Sk) sin2(Φk)

+
[
(γk + 1)|uk,−1|2 + (N − γk − 1)|uk,0|2

]
R2
ψc

(Sk) sin2(Φk) (C.71)

and

E
[
W I
kW

Q
k |Mk

]
= 0. (C.72)
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